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ABSTRACT 

 

STUDY OF A HIGH-EFFICIENT WIDE-BANDGAP DC-DC POWER CONVERTER FOR 

SOLAR POWER INTEGRATION 

 

Yashwanth Bezawada 

Old Dominion University, 2017 

Director: Dr. Yucheng Zhang 

 This research focuses on the design and analysis of a Boost cascaded Buck-Boost (BoCBB) 

power converter with super high efficiency in electric power conversion. The BoCBB power 

converter is based on emerging wide-bandgap silicon-carbide (SiC) MOSFETs and Schottky 

diodes, which have only 1/6 times of power loss in traditional silicon power semiconductor 

devices. The BoCBB power converter can be widely applied in solar harvesting for the National 

Aeronautics and Space Administration (NASA), military bases and electric utilities, as well as 

high-power DC motor drives for the electric vehicles, robotics, and manufacturing and product 

lines.  

 This research analyzed the topology and energy efficiency of a 3-kW BoCBB power 

converter. The energy efficiency of the SiC-based BoCBB power converter was calculated under 

various switching frequencies (20-kHz – 100-kHz) and was first tested by a simulation study of 

solar power integration in a 400-Vdc distribution microgrid in Matlab/Simulink environment. The 

design of 50-kHz in switching frequency revealed to be optimal in overall system performance. 

This conclusion was further verified by experimental tests. The experimental tests demonstrated a 

high efficiency of above 97% in power conversion. In order to improve the power quality of the 

BoCBB power converter for time-varying solar radiation, a novel sliding-window-combined 

(SWC) hysteresis control technique was proposed and preliminarily verified by a simulation study 

to enhance transients of a power grid. 
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NOMENCLATURE 

 

BoCBB   Boost-Cascaded Buck-Boost  

BoIBB         Boost-Interleaved Buck-Boost 
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CCM         Continuous Conduction Mode  

CV     Constant Voltage 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

 Fossil fuels such as coal and oil, have been used very often for the supply chain. But due to the 

increase in population, the requirement of the energy supply has increased and exposed the limitations of 

these fuels. Even though fossil fuels are easy to extract, they are depleting, limited, and unsustainable in 

the longer term. Other than limitations, pollution is a major disadvantage of fossil fuels. They release carbon 

dioxide when burned thereby determining the greenhouse effect. Extraction of coal results in the destruction 

of wide areas of land and extracting coal is considered a high risk activity. All of these disadvantages of 

fossil fuels develop great interest in renewable energy sources (RES). Among RES, solar energy can easily 

be deployed by both home and commercial power users as it does not require any huge setup.  

 Solar energy is a widely available energy resource on earth. The amount of solar energy strikes on 

earth (173,000 Tera watts) is 10,000 times the world’s total energy use [1]. In the past eight years, the 

amount of solar power installed in the U.S has increased more than 23 times. According to a solar industry 

update, the United States has installed 4.0 gigawatts (GW) in the first half of 2016, which is a 47% increase 

compared to the first half of 2015. It is estimated that by the end of 2016, about 61 GW to 74 GW of 

photovoltaic (PV) will be installed globally [1]. With the increase in demand and number of installations, 

analysts have reported a significant drop in PV module pricing. As mentioned, the use of solar energy has 

resulted in substantial environmental and human health benefits. A recent design of experiments of a U.S 

study states that, in 2014, solar power saved 17 metric tons of carbon dioxide. The study also states that 7.6 

billion gallons of water consumption has been reduced from the power sector [1].   

 PV cells are used to convert solar energy into electric energy. When a semiconductor device is 

exposed to light, the photons of the light ray are absorbed by the semiconductor crystals, which releases 

free electrons. These free electrons are the reason for the production of electricity. 
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1.2 Characteristics of Photovoltaic Cell 

Fig 1 shows the equivalent circuit of PV cell. PV cells can be modeled as current source in parallel with 

a diode and behave like a diode since current source acts like open circuit when no light strikes on the 

surface of the PV cell [2]. 

 

 

Fig 1. The equivalent circuit of a PV cell 

 

 In [2], by applying Kirchhoff’s Law for an ideal PV cell Iph, the PV current is equal to the current 

generated by photoelectric effect minus the diode current Id. 

Iph = I - Id        (1) 

where Id is proportional to the saturation current given by  

 𝐼𝑑  =  𝐼𝑜 [𝑒𝑥𝑝 (
𝑉

𝐴.𝑁𝑠.𝑉𝑇
) − 1]      (2) 

V is the voltage imposed in the diode. 

𝑉𝑇 =
k..𝑇𝑐

q
        (3) 

where, I0 = reverse saturation or leakage current of the diode (A). 

 VTc = 26 mV at 300 K for silisium cell (V). 

 K = Boltzmann constant (1.381*10-23 J/K). 

 q = electron charge (1.602 × 10−19 C). 

 VT = thermal voltage (V). 

 Ns = number of PV cells connected in series (no units). 
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 A = ideality factor (no units). 

Considering the series resistance RS and parallel resistance RP, the diode current gives  

𝐼𝑑 = 𝐼𝑜[exp (
𝑉+𝐼.𝑅𝑠

𝑎
)-1]         (4) 

By applying the Kirchhoff’s Law, 

I = Iph – Id - Ip                       (5) 

I =  Iph – 𝐼𝑜 [exp (
𝑉+𝐼.𝑅𝑠

𝑎
) − 1] − 

𝑉+𝑅𝑠.𝐼

𝑅𝑝
        (6) 

 Based on the equations (1) to (6) and considering the environment parameters G = 200, 400, 600, 

800 and 1000 (W/m2), and T = 0, 10, 20, 30, 40 and 50 (Celsius), Fig 2 shows typical I-V relationships for 

a PV module under various irradiance. This graph also plots the power output (P) for the PV module. From 

these plots, it can be observed that there is a point at which the power produced by the PV module is at its 

maximum value; this corresponds to the knee point of the V-I curve. An important capability for any 

effective PV application is the ability to dynamically track this point under varying irradiance. For solar 

power extraction for medium scale or large scale systems, two traction methods are used i.e. sun tracking 

and the Maximum Power Point Tracking (MPPT).  

 

 

                                 Fig 2. P-V and I-V characteristics of Photovoltaic cell 
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1.3 Maximum Power Point Tracking (MPPT) 

The MPPT technique is used to extract the maximum power at any given environmental condition. 

Technically MPPT technique is generally applied for PV solar systems and wind turbines. MPPT tackles 

the efficiency of power transfer from the PV cell depending on the amount of sunlight on the solar panels 

and the electrical characteristics of the load i.e. the output voltage of PV cell. 

 The efficiency of the solar power system is optimized for varying load characteristics to keep the 

maximum power transfer at high efficiency. Solar cells have a complex relation between temperature and 

irradiance that produces a non-linear output efficiency which can be analyzed based on I-V curve [3]. MPPT 

controller are tuned as power converters to control the voltage and current conversation that sample the 

output of the PV cells [4].  

 Nineteen distinct MPPT methods have been proposed by peer researchers, which are summarized 

in [5]. In the CV method, MPPT is achieved by considering reference voltage value (Vref) under a varying 

conditions. Although the CV method is simple and inexpensive to implement, it is not flexible under 

dynamically varying operating conditions. But under the low irradiance conditions, the algorithm of the CV 

method has proven to be more effective than others. For this reason, the CV method can be combined with 

other MPPT techniques [6]. 

  Open circuit voltage (OCV) is a technique similar to the CV method, periodically open circuits the 

PV array. The OCV method is efficient to compensate temperature effect, which affects the output voltage 

of the PV cell. The set point of PV voltage is determined as a certain percentage of VOC, typically between 

71-78%; there is no power generated at the downside when PV array is in open circuit [5]. The drawback 

of this method is it can only approximate the maximum power point. 

  Short current pulse (SCP) is another MPPT technique similar to OCV. In the SCP technique, the 

PV panel is short-circuited rather than open-circuited. The solar power converter is regulated by a current 

control loop and the operating current is commanded to be a percentage of the ISC, often around 92% [6]. 

Since ISC is dependent on irradiance, it is comparatively insensitive to temperature and no power is 
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generated, while the PV array is being short circuited. The SCP method is more effective to varying 

irradiance compared to differences in the PV module temperature.  

 Other than the OC, OCV, and SCP methods, there are other methods which can be used to 

determine the true maximum power point. Extremum-seeking control theory uses a feedback system to 

induce oscillations around the equilibrium point to realize maximum power point [7]. The Perturb-and-

Observe (P&O) method periodically adjusts the operating point and measures the instantaneous solar power 

output. The solar power converter will adjusts the operating point in the same direction when the solar 

power increases. The operating point reverses its direction when the solar power gets decreased. Although 

this method is effective, it may not be able to take care of frequent changes in environmental conditions 

since it would oscillate around the maximum power point [6].  

 The incremental conductance (IC) methods eliminates the oscillations around the output, which 

improves the P&O method. To achieve the maximum power point, the IC method forms a connection 

between the instantaneous conductance (I/V) and incremental conductance (
𝑑𝑣

𝑑𝑡
) values to calculate both the 

magnitude and direction. Both P&O and IC may make use of fuzzy logic to increase performance and 

accuracy [6] [7].   

1.4 Previous Research of Solar Power Converters 

 DC-DC power converters play an important role in the PV interface system. The function of the 

DC-DC power converter is to maintain the output voltage and to achieve the MPPT with the use of 

voltage/power control techniques. Previously, peer researchers used isolated DC-DC power converters like 

Flyback and Push-Pull as a power converter for the PV interface system. An isolated DC-DC power 

converter contains power transformers to isolate input power to the output power. A power transformer can 

be used to transfer high voltages and to provide galvanic isolation, improve safety, and enhance noise 

immunity.  

 Besides these advantages, isolated DC-DC power converters also have the following drawbacks, 

like size, and cost, as well as low efficiency and additive heat dissipation, which are the essential impacts 
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in field applications. Therefore, this leads to the interest of non-isolated DC-DC power converter like Buck, 

Boost, and Buck-Boost power converters. These power converters are most frequently used nowadays for 

PV interface system. A Boost power converter is commonly used as a non-isolated DC-DC power converter 

in order to step up PV voltage as well as to achieve MPPT. The block diagram of conventional PV grid 

connection is shown in Fig 3. Several methods has been implemented to achieve high voltage gain for the 

Boost power converter.  

 

 
Fig 3. The block diagram of conventional PV grid connection system 

 

 

 But PV voltages vary widely due to changes in temperature and irradiance. For this case depending 

on the voltage level, step up function along with a step down function is needed for a DC-DC power 

converter. Although a traditional Buck-Boost power converter can be operated in these functions, but in a 

traditional Buck-Boost power converter, the entire energy gets stores in an inductor which imposes current 

stress and low conversion efficiency [8]. Individual Buck and Boost power converters impose low voltage 

stress on elements compared to the Buck-Boost power converter. The use of Buck and Boost power 

converters allows to connect the direct path between the output and input, which leads to the maximum 

energy transfer due to low voltage stress. 

 Several multi-stage DC-DC power converters have been proposed to provide high voltage gains, 

and to reduce voltage stress across circuit components as well as high efficiency. Parallel, cascading, and 

Interleave are types of multi-stage DC-DC power converters. Various interleaved power converters are 

proposed such as Bidirectional interleaved DC-DC power converters [9], interleaved couple inductor Boost 
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power converters [10] and interleaved Boost DC-DC power converters [11]. The major advantage of these 

interleaved power converters is that they all can achieve a very low ripple current in the source. Alongside 

the fact that the current stress and filter size of these power converters are low, these power converters can 

only perform voltage step-up operations. These limitations in the previous research lead to two-switching 

Buck-Boost power converters. Boost Cascaded Buck-Boost (BoCBB) power converter is among the 

proposed two switch Buck-Boost (TSBB) DC-DC power converters applicable for the current design.  

 A DC-DC power converter generates a transient response whenever the change in mode takes place 

i.e. Buck to Boost mode or vice versa. The number of transient responses can be controlled by an operating 

circuit by using a hysteresis controller. Several control techniques have been used earlier in order to achieve 

better performance and stability of a designed system. [12] discussed the design and implementation issue, 

and the experimental results of the linear PID and PI controller and fuzzy controller were compared. The 

design of linear PID and PI controllers and fuzzy controllers requires quite different procedures. The design 

of the fuzzy controller does not require a mathematical model but, comparatively, a small signal model is 

needed for the design of PID controllers. But the disadvantage of the above method is the implementation 

of fuzzy controllers demands more computation power and memory than implementation of linear 

controllers.  

 In [13], the formulation of a PID controller is introduced to replace the output voltage derivative 

with the information of the capacitor current. In this way, the noise injection is reduced. This formulation 

preserves the fundamental principle of a PID controller and incorporates a load current feed forward as well 

as inductor current dynamics. The drawback of the method is the derivative gain never changes, even at 

switching transition. Therefore, impulse noise injection due the derivative term of a conventional PID 

control is avoided by using the proposed PID formulation.  [14] discusses the use of Internal Model Control 

and Model Reference Control structures of Posicast-based control scheme which is applicable to parameter 

uncertain plants. This method still needs more investigation on its stability during transients. These 

drawbacks in the previous research leads to implementation of a hysteresis controller to reduce the number 
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of transient responses. In this thesis, a sliding-window combined (SWC) hysteresis control technique is 

discussed more in details in Chapter 3.

1.5 Objective of this Project 

The aim of the thesis is to design, test, and analyze the Boost-Cascaded Buck-Boost (BoCBB) DC-

DC power converter used for PV power system applications. The BoCBB DC-DC power converter 

proposed in this thesis can fit commercial PV power systems utilized in the military, NASA, robotics, and 

automobiles. Implementation of MPPT method is used as a part of power converter design in order to 

extract maximum power. The efficiency of the BoCBB power converter under various switching frequency 

has been found by using a calculation of power losses in the circuit. Testing of BoCBB is performed by 

using Matlab/Simulink software. The experiment is performed to validate the theoretical analysis of 

efficiency analysis of the BoCBB DC-DC power converter.  

 A BoCBB power converter is considered as a DC-DC power converter for the PV interface. BoCBB 

has potential to tackle varying PV voltages and has the advantage of low voltage stress on components 

compared to other multi-stage DC-DC power converters. Alongside performing both step-up and step-down 

functions, efficiency of the DC-DC power converter is also one of the major considerations in this thesis. 

The selection of components such as power semiconductor switches, diodes, and inductors plays an 

important role in high-efficient power converter design. In this project, emerging SiC material MOSFETs 

and Schottky diodes are adopted to reduce the power losses at the switching and conduction losses, which 

improves the efficiency of the circuit. Simulations are performed by using PI controller to achieve MPPT. 

Also switching modes in BoCBB leads to transient response. The PV characteristics are non-linear varying 

in temperature and irradiance, which leads to frequent transient responses in the system, reducing the 

number of transients by operating the BoCBB with the help of a novel sliding window technique. Hysteresis 

controllers are implemented and compared to reveal the benefits of a sliding window concept for BoCBB. 

The hardware implementation of BoCBB considers the CREE MOSFET’s driver circuit in order to achieve 

faster switching.
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1.6 Thesis Outline 

Chapter 1 explores the reasons of developing solar energy to replace traditional fossil fuels. The 

amount of solar energy installation in the United States during 2015 and 2016 and its estimation of near 

future have been discussed. Photovoltaic characteristics of the solar cell has been shown for different 

temperatures and irradiance. The concept of MPPT as well as several MPPT techniques have been 

introduced. Also introduced a various DC-DC power converters used in the earlier of stage to achieve 

MPPT. 

Chapter 2 discusses the types of multistage Buck-Boost power converters implemented and detailed 

explanation of the reasons for using a Boost Cascaded Buck-Boost power converter (BoCBB). The 

parameters of 3kW and 400V output voltage of BoCBB are specified. The controller part of BoCBB is 

explained by using two flow charts for both Buck and Boost mode. Separately, efficiency of energy 

conversion in BoCBB by using SiC and Si MOSFET is compared by using the power losses calculations 

of the MOSFET, Schottky diode, and inductor.  

Chapter 3 analyses the control part of the BoCBB. The chapter introduces controller topologies 

with the circuit diagrams and explains about the drawbacks of them in detail. This chapter focuses on the 

design of the SWC hysteresis controller. By using simulation results, the decrease in number of modes by 

using sliding window controller has been explained.  

Chapter 4 describes the simulation design and analysis of the BoCBB DC-DC power converter. 

The simulation results are presented. Also, the PCB design of the BoCBB and its driver circuit for CREE 

SiC MOSFET are explained in detailed with the operation.  

Chapter 5 exhibits the hardware test results of the BoCBB without controller topology by 

considering several duty cycle values. Performance of CLC filter for 20kHz, 50kHz and 100kHz is 

presented in this chapter. 

Chapter 6 concludes the 50kHz switch frequency as an optimal frequency for the SiC based BoCBB 

power converters and future work on BoCBB is proposed in this chapter.
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CHAPTER 2 

BOOST-CASCADED BUCK-BOOST POWER CONVERTER 

2.1 Introduction 

  In Chapter 1, several multi-staging techniques were mentioned. This chapter introduces several 

TSBB power converters. These power converters can be operated in both Buck and Boost modes based on 

varying PV voltage. Multi-stage DC-DC power converters can achieve high gain and high efficiency. When 

power converters are cascaded, the output of the first stage becomes the input for the second stage. 

Conventional Buck-Boost power converters store all energy in the inductor and then delivers to the output 

which suffers from high inductor current stress and low conversion efficiency [15]. The TSBB DC-DC power 

converters are proposed to solve the reverse output voltage problem. When two switches of TSBB DC-DC 

power converters operate with two independent control and non-simultaneous switching, the TSBB DC-DC 

power converters will function as either Buck power converters or Boost power converters. Therefore, partial 

energy can be directly delivered to the output, which leads to higher efficiency [16] [17].   

2.2 Types of TSBB DC-DC Power Converters 

  Several TSBB DC-DC power converters have been proposed [18] which includes Buck-Cascaded 

Buck-Boost (BuCBB) DC-DC power converters, Boost-Cascaded Buck-Boost (BoCBB) DC-DC power 

converters, Buck-Interleaved Buck-Boost (BuIBB) DC-DC power converters, and Boost-Interleaved Buck-

Boost (BoIBB) DC-DC power converters, as shown in Fig 4. 

 

a) Buck-Cascaded Buck-Boost power converter 

Fig 4. TSBB DC-DC power converters 
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Fig 4. (Cont.) 

 

b) Boost-Cascaded Buck-Boost power converter 

 

 

c) Buck-Interleaved Buck-Boost power converter 

 

 

d) Boost-Interleaved Buck-Boost power converter 
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The BoCBB power converter has the simplest circuit among the proposed TSBB DC-DC power 

converters. As discussed above, SBoost and SBuck switches are operated independently to deliver energy directly. 

As shown in Table 1, the inductor L1 acts as Boost inductor and L2 act as a filter when BoCBB is in Boost 

mode. For the Buck mode inductor L1 acts as filter and L2 acts as Buck inductor when BoCBB is in Buck 

mode. In order to pass low frequency energy, the inductor is required at the input of the proposed TSBB DC-

DC power converters. BoCBB is considered to be more suitable for this case. 

 

Table 1: Inductor functionality in TSBB power converters 

Mode/ 

Topology 

L1 L2 

Buck Boost Buck Boost 

BuCBB Buck 

Inductor 

Boost 

Inductor 

N/A N/A 

BoCBB Filter Boost 

Inductor 

Buck 

Inductor 

Filter 

BuIBB Buck 

Inductor 

Boost 

Inductor 

Buck 

Inductor 

Filter 

BoIBB Filter Boost 

Inductor 

Buck 

Inductor 

Boost 

Inductor 

 

2.3 Specification of a 3kW BoCBB DC-DC Power Converter   

BoCBB acts as a Boost power converter for the low input voltages and a Buck power converter for the high 

input voltages (as discussed, input voltage depends on the temperature and irradiance).A traditional Buck-

Boost power converter cannot be directly used for this case because of the poor switch utilization, achieving 

a maximum of 25% at a duty ratio of 50%, when Vin = Vout (for Continuous Conduction Mode, CCM) [19].    

 Specifications of BoCBB DC-DC power converter are shown below 

Power rating = 3KW 

Input voltage = [300V- 480V] 

Output voltage = 400V 

Switching Frequency = 20kHz , 50kHz, and 100kHz 
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Calculations of components value in Boost cascaded Buck-Boost (BoCBB) power converter are shown in 

Equations (7)-(10). 

𝐿𝐵𝑜𝑜𝑠𝑡  =
𝑉𝑔

2𝛥𝑖𝐿
 𝐷𝑇𝑠       (7) 

𝐶𝐵𝑜𝑜𝑠𝑡 =
𝑉

2𝑅𝛥𝑉
 𝐷𝑇𝑠       (8) 

𝐿𝐵𝑢𝑐𝑘 =  
(𝑉𝑔−𝑉)

2𝛥𝑖𝐿
 𝐷𝑇𝑠       (9) 

𝐶𝑜𝑢𝑡 =  
𝛥𝑖𝐿

8𝛥𝑉𝑜𝑢𝑡
 𝑇𝑠        (10) 

By using the above equations the component values of BoCBB is shown in Table.2  

 

           Table 2: Component values of BoCBB circuit 

 Buck mode Boost mode 

Vin 480V 300V 

L1 5.6 mH 5.6 mH 

L2 4.4 mH 4.4 mH 

C1 100 nF 100 nF 

C2 50 µF 50 µF 

Rload 53.3 Ώ 53.3 Ώ 

Vout 400V  400V 

 

 

2.4 Switching Operation of BoCBB 

  A switching operation is performed according to the varying input voltage Vin. SBoost and SBuck are 

operated independently. When BoCBB is in Buck mode, the duty cycle of SBuck will be D = 
Vout

Vin
 which adjusts 

the width of the pulse signal and SBoost will be in off state i.e. open circuit as shown in Fig 5.When BoCBB is 

in Boost mode, the duty cycle D = 1- 
𝑉𝑖𝑛

𝑉𝑜𝑢𝑡
 of the pulse signal is adjusted according to varying input. This pulse 

signal is given to the SBoost. In order to pass the voltage to the load SBuck should be short circuited i.e. SBuck 

should be always turned on (SBuck =1), as shown in Fig 6.  
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  When Vin > Vout   

SBoost = 0                          (11) 

Duty cycle D =  SBuck =
Vout

Vin
       (12) 

 

 

Fig 5. BoCBB power converter in Buck mode 

 

  When Vin <= Vout 

Duty cycle D’ =  SBoost = 1 −  
𝑉𝑖𝑛

𝑉𝑜𝑢𝑡
     (13) 

SBuck = 1         (14) 

 

Fig 6. BoCBB power converter in Boost mode 

 

2.5 Power Losses Analysis 

 The total power dissipated by the DC-DC power converter is calculated by the summation of power 

losses at each power component. Control circuitry and inductor losses are least dependent on input power. 
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The maximum efficiency depends on selection of power components. A BoCBB power converter’s power 

losses are associated with MOSFET, Schottky diode, and the inductor. A major contribution of the power 

losses comes from the MOSFET. Conduction losses of MOSFET are higher than the switching losses 

because of high channel resistance and low gate charge. 

2.5.1 Losses associated with MOSFET 

  In this case, MOSFETs are used as a switch for the BoCBB, since MOSFETs can be used for long 

duty cycles, variation in the loads, and for high frequencies. Typically, MOSFETs are associated with 

conduction losses and switching losses. The majority of the power losses in the circuit are due to conduction 

and switching in the MOSFETs. Since the BoCBB power converter has high side and low side switching, the 

power losses are calculated for both sides individually depending on the Buck mode or Boost mode. 

PMOSFET = PSwit, losses + Pcond, losses                  (15) 

High side conduction losses: 

Pcond(hs) = Iout
2.RDS(ON).D                     (16) 

High side switching losses: 

Pswit(hs)  =
𝐼𝑜𝑢𝑡.𝑉𝑖𝑛

2
. (𝑡𝑟𝑖𝑠𝑒 + 𝑡𝑓𝑎𝑙𝑙). 𝐹𝑆𝑤     (17) 

Low side conduction losses: 

Pcond(ls) = (1- D).Iout
2.RDS(ON)      (18) 

Low side switching losses: 

Pswit(ls)  = (
 𝑉𝐹+𝐼𝑜𝑢𝑡.1.1.𝑅𝐷𝑆(𝑜𝑛)

2
. 𝑡𝑟𝑖𝑠𝑒  + 𝑡𝑓𝑎𝑙𝑙 . 𝑉𝐹) 𝐼𝑜𝑢𝑡. 𝐹𝑆𝑤   (19) 

Low side switching losses are very small. It can be ignored while calculating total losses.  

Whereas D =Vout/Vin for Buck power converter 

               D = Vin/Vout for Boost power converter   

   Iout = output current 

   FSW = Switching Frequency 
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 RDS = Source to drain resistance, trise(rise time), tfall(fall time), VF(Forward voltage drop) is given by 

the manufacturer. 

2.5.2 Diode losses 

The power losses in the diode are determined based on forward voltage, VF. A Schottky diode should be 

used whenever possible since it has a low forward voltage (~ 0.3V) and minimal reverse recovery time. 

PDIODE = (1-D).VF.Iout                       (20) 

2.5.3 Inductor Losses 

The power losses in the inductor can be seen in the hysteresis curve. Hysteresis is one of the core-material 

characteristics that causes power loss in the inductor core. Two types of losses are present in the inductor 

1) core losses and 2) low frequency copper losses [20]. Fig 7 shows the hysteresis curve of power inductor. 

The variation zone of B and H in this research has been marked as dB and dH in a traditional B-H curve of 

electrical magnetic material, as indicated in Fig 7. This curve is used to find the ΔB (i.e. dB) which 

determines the core losses. 

 

 

Fig 7. Hysteresis (B-H) curve of power inductor 

 

Core losses and Copper losses or eddy losses: 

                    Core losses depends on the core used. Usually for an inductor, iron alloys are used as a core, which 

is a good conductor of electricity, therefore it produce an eddy current in the core. According to Faraday’s law, 
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the AC flux induced voltage in the core is proportional to the derivative of the flux. The voltage magnitude 

increases directly with the excitation frequency, f. When the impedance of the core material is purely resistive, 

it will be independent of frequency. The magnitude of the induced eddy currents increases directly with f2. 

This implies that the eddy current losses should increase as frequency increases [20].  

                High operating flux density leads to reduced size, weight, and cost. Silicon steel and similar materials 

exhibit saturation flux densities of 1.5 to 2 T, but it exhibits high core losses. In case of low resistive materials 

the eddy losses will be high [20]. The core losses can be written as  

Pfe = kfe.(ΔB)β.Ac.lm                                                                                  (21) 

whereas Ac = Area of the core (cm) 

ΔB =
𝑇.𝐷.(𝑉𝑔)

N.𝐴𝑐
  {for Boost power converter} 

               ΔB =
𝑇.𝐷.(𝑉𝑔−𝑉𝑖𝑛)

N.𝐴𝑐
  (T) {for Buck power converter} 

               D is duty cycle (no units)  

              β = 2.7 (no units) (decided by the manufacturer, usually lies in between 2.6 to 2.8)  

               kfe (cmx )and lm (cm) is decided by the manufacturer   

                For this case EER cores are used for the inductor, based on L𝐼2 and AL values type of the EER core 

can be selected. By using L= 5.6mH and I= 7.5A, AL =650mH/1000 turns.  

By using L and AL 

𝑁 = 103√
𝐿

𝐴𝐿
                                                                   (22) 

N = 93 turns 

                    Here, EER40 is used as a core based on L.i2. By looking at Appendix D in [20], lm (magnetic path 

length), kfe(constant), Ac (cross sectional area), MLT (mean length per turn), WA(winding area) can be 

determined.  

Pcopper = I2. Rac                                                                                          (23) 

Rac =
h

δ
 𝑅𝑑𝑐                                                                                             (24) 
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𝛿 =
7.5

√𝑓
                                                                                                     (25) 

                                                   𝑅𝑑𝑐 = ρ
𝑁𝑙𝑚

𝐴𝑤
                                                                                            (26) 

N = number of turns (no units) 

f = switching frequency (Hz) 

h = diameter of the wire (cm) 

Lm = mean length per turn (cm) 

Aw =area of the wire (cm2). 

ρ = 1.762*10−6 (Ώ-cm) 

2.6 Results of Power Losses Analysis                  

          The selection of MOSFET has a major role in power losses analysis. The silicon carbide MOSFET 

has been considered for this case. As discussed earlier, high channel resistance affects the conduction losses. 

From Table 3, it can be found that  SiC MOSFETs have lower high channel resistance, lower rise time and 

fall time (which reduces switching losses in MOSFETs) and superior thermal properties.  

 

Table 3: SiC and Si MOSFET parameters 

Parameters CREE 

C2M028120D 

Fairchild 

FQA8N100C 

tfall 21.7 ns 202 nS 

trise 12.8 ns 145 ns 

VF 3.3 V 1.4 V 

RDS(ON) 280m Ώ 1.45 Ώ 

                 

               Table 4 – Table 7 show the power losses and efficiency of the MOSFET CREE C2M028120D 

and the Fairchild FQA8N100C at 20kHz, 50kHz, and 100kHz in both Buck and Boost mode of BoCBB. In 

order to find the losses of the components in the circuit, several variables must be considered. In Buck 

mode, the Boost switch will be in the OFF state which leads to zero switching or conduction losses (Fig 5). 
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When it comes to Boost mode, the Buck switch will be in the ON state. Therefore, no switching losses are 

considered for SBuck, but there will be conduction losses since it is in ON state.  

               With the frequency changes, the value of the inductor also changes, therefore, the number of turns 

(N) for the inductor changes. Since the conduction losses of diode and MOSFET are independent of 

frequency, they will be similar for different frequencies. For this circuit, the Schottky diode has been used. 

Only conduction losses are considered since switching losses for the Schottky diode are negligible. The 

core losses of the inductor are not significant for the diode and MOSFET, since the ΔB is small. Moreover, 

copper losses and core losses of the inductor depends on the type of core used.  

 

 

Table 4: Losses of Fairchild MOSFET Buck mode (FQA8N100C) 

Frequency 20kHz 50kHz 100kHz 

 Buck mode Buck mode Buck mode 

Core losses 2.75*10−4W 0.5*10−4W 5.3*10−4W 

Copper losses 0.6W 1.3W 1.32W 

Switching losses  13W 32.5W 65W 

Conduction 

losses 

Buck 

side 

65.25W 65.25W 65.25W 

Diode losses  0.45W 0.45W 0.45W 

Total Losses 79.3W 99.5 132.02W 

Efficiency  97.35% 96.68% 95.59% 
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Table 5: Losses of Fairchild MOSFET Boost mode (FQA8N100C) 

Frequency 20kHz 50kHz 100kHz 

 Boost mode Boost mode Boost mode 

Core losses 1.15*10−4W 0.55*10−4W 1.6*10−3W 

Copper losses 1.3W 1.3W 1.32W 

Switching losses  7.5W 19.5W 39W 

Conduction 

losses 

Buck 

side 

20.5W 20.5W 20.5W 

Boost 

side 

61.2W 61.2W 61.2W 

Diode losses  1.7W 1.7W 1.7W 

Total Losses 92.2W 104.2 123.7W 

Efficiency  96.92% 96.52% 95.87% 

 

 

Table 6: Losses of SiC MOSFET Buck mode (C2M0280120D) 

Frequency 20kHz 50kHz 100kHz 

 Buck mode Buck mode Buck mode 

Core losses 2.75*10−4W 0.5*10−4W 5.3*10−4W 

Copper losses 0.6W 1.3W 1.32W 

Switching losses  1.25W 3.15W 6.3W 

Conduction 

losses 

Buck 

side 

12.6W 12.6W 12.6W 

Diode losses  0.45W 0.45W 0.45W 

Total losses 15.35W 17.5W 20.03W 

Efficiency  99.45% 99.4% 99.33% 
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Table 7: Losses of SiC MOSFET Boost mode (C2M0280120D) 

Frequency 20kHz 50kHz 100kHz 

 Boost mode Boost mode Boost mode 

Core losses 1.15*10−4W 0.55*10−4W 1.6*10−3W 

Copper losses 1.3W 1.3W 1.32W 

Switching losses  0.75W 1.9W 3.75W 

Conduction 

losses 

Buck 

side 

3.95W 3.95W 3.95W 

Boost 

side 

11.8W 11.8W 11.8W 

Diode losses  1.7W 1.7W 1.7W 

Total losses 19.4W 20.75W 22.52W 

Efficiency  99.35% 99.31% 98.25% 
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CHAPTER 3 

 SLIDING WINDOW-COMBINED HYSTERSIS  

CONTROL TECHNIQUE  

3.1 Introduction 

 A DC-DC power converter should generate a regulated DC output voltage under varying load and 

input voltage conditions. With the changing time, temperature, irradiance, pressure, the power converter 

component values also varies. Therefore, the control of the output voltage must be performed in a closed-

loop manner using principles of negative feedback. Previously, several control methods have been applied 

in DC-DC power converters to meet specified requirements in control target. For example, the voltage 

control mode, current/power control mode, PID, and fuzzy logic controller [21]-[24].  

3.2 Types of Control Methods 

3.2.1 Voltage-mode control 

 Voltage mode control is the basic control mode shown in Fig 8 and consists of a single loop 

controller connected to a reference voltage. The first output voltage is measured by subtracting from the 

external reference voltage in an error amplifier. The error amplifier generates a control voltage compared to 

a constant amplitude sawtooth waveform. The PWM signal, generated by a comparator is fed to drivers of 

controllable switches in the DC-DC power converter. The value of the control voltages defines the duty ratio 

of the PWM signal. The frequency of the PWM signal is the same as the frequency of  the sawtooth waveform 

[25]. The main advantage of the voltage-mode control is its simple hardware implementation based on the 

use of a feedback loop consisting solely of voltages and flexibility, i.e. the ability to control shorter on-time 

and high noise tolerance. 
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Fig 8. Voltage-mode control 

 

 The error amplifier responds quickly to the changes in the power converter output voltage. 

Therefore, the voltage-mode control provides good load regulation. However, line regulation, i.e. variation 

in the input voltage is delayed, changes in input must adjust themselves in the power converter output before 

they can be connected [25]. To solve this issue, the voltage-mode control scheme improves by a voltage feed 

forward path. The feed forward path directly affects the PWM duty ratio according to changes in the input 

voltage [25]. 

 3.2.2 Current-mode control 

 Current-mode control shown in Fig 9 is the modified version of voltage-control mode. The sawtooth 

waveform in voltage-mode control is replayed by inductor current. The current sensing can be performed by 

using the on-resistance of the ongoing inductor current.  This inductor current is passed to a comparator and 

can also be converted to analog voltage and compared to the control voltage. This replacement of the 

sawtooth waveform of the voltage-mode control scheme by a power converter signal extensively alters the 

dynamic behavior of the power converter [25]. The power converter depends on the characteristics of the 

current source. The output current in PWM DC-DC power converter is either equal to the average inductor 

current or a function of the duty ratio.  
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Fig 9. Current-mode control 

 In practical use, current-mode control senses the peak inductor current instead of the average current, 

since the peak current is equal to peak switching current [25]. Moreover, the peak inductor current is 

proportional to the input voltage. Therefore, the inner loop of the current-mode control inherently executes 

the input voltage feed forward technique. Since the current mode control has two types of feedback loops: 

voltage loop and current loop, the control implemented is relatively complex. Advantages of current-mode 

control include: input voltage feed forward, limit on the peak switch current, equal current sharing in modular 

power converters, and reduction in the power converter dynamic order. Along with the complexity, the low-

noise tolerance due to the high sensitivity of current detection is also considered a major drawback for the 

current-mode control [25]. 

 3.2.3 PID Controller 

 Proportional Integral and Derivational (PID) control, shown in Fig 10, is one of the old control 

techniques implemented on DC-DC power converters [26] [27]. It is operated on one of the control 

techniques which include proportional (P), proportional and derivational (PD), proportional and integral (PI), 

and proportional-integral and derivational (PID) controllers. These different controllers regulate DC power 

supply in various ways. PID is widely used for industrial applications in the field of power electronics. Easy 

implementation is one of the major reason for the use of PID techniques in industrial applications.  
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 A PID controller uses feedback control mechanism, which is widely used in the research field. This 

control method is often considered as simple, reliable, and easy to implement.  

 

Fig 10. PID controller 

 PID controllers are easy and simple to implement and have a high reliability in linear systems. 

Disadvantages of PID controllers include being non-reliable in the case of non-linear systems, the fact that 

it has longer rise time when overshoot in output voltage deceases, and it suffers from dynamic response.  

 3.2.4 Fuzzy logic controller 

 Fuzzy logic, shown in Fig 11, solves some of the problems associated with PID controllers. It is non-

linear, adaptive, and it is a practical alternative for a variety control applications [28]-[30]. The concept of 

Fuzzy logic (FL) was developed by Lotfi Zadeh, a professor from the University of California at Berkley. 

He states FL is not only a controller. It also processes data by allowing partial set membership functions 

rather than crisp ones. There are four main blocks in the fuzzy logic controller system structure: fuzzifier, 

rule base, inference engine and defuzzyfier. The working of the fuzzy logic controller can be explained in 

three steps: i. fuzzification, ii. inference and iii. defuzzification.  
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Fig 11. Fuzzy logic controller 

The first step in the processes is the crisp set. It is used as input data, or non-fuzzy data, then it acts 

like a power converter to a fuzzy set using fuzzyfier with the help of linguistic variables, fuzzy linguistic 

terms, and membership functions. The important consideration in fuzzy logic is that a numerical value does 

not have to be fuzzified using only one membership function. Membership function is a curve that describes 

each point in the input space which is mapped to a membership value. Membership functions include 

Triangular, Gaussian, Trapezoidal, Generalized Bell, and Sigmoidal. Rule base is the backbone of fuzzy 

logic controllers. Steps performed by Rule Base block: i. The purpose of rule base is to control the output 

variable. ii. A fuzzy rule is a simple IF-THEN rule with a specific condition and conclusion, represented by 

the matrix table. iii. Error and change in error are the two variables taken along the axes, and the conclusions 

are within the table. 

Advantages of fuzzy logic controllers are low-cost implementation based on low price sensors, low-

resolution analog-to-digital power converters, fuzzy logic can be easily developed by adding new rules to 

improve performance or new features, it can be used for the improvement of traditional controller systems, 

it provides better performance under parameter variation and load disturbances, it operates at wide range 

conditions compared to PID, it can be operated with noise and disturbance of different natures and 

developing the fuzzy logic controller is much easier than developing a model based or other controller for 

the same work. 
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3.3 Transient Response 

 When the voltage from a solar panel is considered as input to the DC-DC power converters, the input 

voltage varies randomly and unpredictably within a certain range. These traditional control methods respond 

to transients and thus make DC-DC power converters transitioning from Buck mode to Boost mode or vice-

versa. The transient response occurs whenever a sudden disturbance happens in a system. This transient 

response may cause voltage fluctuation in the output voltage and thus leads to instability in the system. The 

objective of the transient stability is to retain a steady output. Often change in modes leads to various transient 

responses for the output. Therefore, in this chapter, a novel sliding-window-combined (SWC) hysteresis 

control is designed to reduce the frequency of mode transition and improve voltage stability in the 

circumstances of quickly varying solar power. 

In this chapter, the principle of the proposed SWC hysteresis control is introduced in Section 3.4, 

and its advantages over traditional hysteresis control are discussed and validated in Sections 3.4 and 3.5, 

respectively. Fig 12 indicates frequent mode transitions when there is fluctuation around the threshold of 

400 volts. The solar power data are sampled from a real application [web]. In Fig. 12 and other plots, orange 

lines indicate the operation mode (i.e. Buck or Boost mode) of the BoCBB power converter. The voltage 

level of 402 volts indicates the Buck mode and the 398 volts indicates the Boost mode in the BoCBB power 

converter. 

 

 

Fig 12. Mode selection of BoCBB for varying input 
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 At first, the hysteresis controller for mode transition is introduced. The drawback of traditional 

hysteresis controllers in voltage stability is discussed. Based on that, the principle of a SWC hysteresis 

controller is developed by integrating a sliding window into the hysteresis controller to control the number 

of mode transitions freely. 

3.3 Hysteresis Controller 

 Considering the rated input voltage of 400 volts, the hysteresis control is expected to reduce the 

number of mode transitions, when the input solar voltage varies around the 400 volts. The hysteresis 

controller is designed with threshold voltages for the two modes as shown in Fig. 13 The BoCBB solar power 

converter transits from Boost mode to Buck mode when the solar input voltage exceeds the upper boundary 

of 402 volts (assuming input voltage varies from 390 volts to 410 volts). And the BoCBB power converter 

transits from Buck mode to Boost mode when the solar input voltage reaches below the lower boundary of 

398 volts.

 

Fig 13. Hysteresis control blocks in Matlab simulation and defined boundary values of a traditional 

hysteresis controller 

 

 In Fig 14, the term of Vin(t)-Vin(t-1) is used to evaluate the increase or decrease of input solar 

voltage in amplitude by comparing initial input with the input value of previous time step over a unit delay. 

VOH is the upper threshold voltage and VOL is the lower threshold voltage.  VOUT (t-1) defines the mode of 
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previous time interval of the hysteresis control. VOUT(t-1) is used to avoid mode transition when the input 

voltage oscillates within the defined range of threshold voltages.  

 The flow chart shown in Fig 14 explains that if the term of Vin(t)-Vin(t-1) is greater than or equal 

to one, the solar input voltage is increasing and the controller should transit into Buck mode only when the 

input goes over upper threshold voltage (i.e. 402 volts in this study). Otherwise, the controller remains 

staying in Boost mode. Similarly, when the term of Vin(t)-Vin(t-1) less than or equal to one, the controller 

should transit into Boost mode only when the input goes below lower threshold value (i.e. 398 volts in this 

study). Otherwise, the controller remains operating in Buck mode. 

 

 

Fig 14.  Flow chart to control the mode transition based on the concept of traditional hysteresis loop. 
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Fig 15. Mode transition of BoCBB power converter under specified traditional hysteresis control 

 

 Comparing Fig. 13 and Fig. 15, it is noted that the number of mode transitions can be greatly reduced 

by applying traditional hysteresis control. In this case, the number of mode transitions reduces from 21 to 4 

in the data period. But there are some considerations of importance, which lead to the disadvantage of using 

traditional hysteresis control in this application. There is a limitation in the duty cycle of BoCBB solar power 

converters. Assuming the BoCBB power converter is in Boost mode initially, the power converter remains 

in Boost mode unless the input solar voltage exceeds the upper threshold voltage. But when the input solar 

voltage is within (400V- 402V) and the power converter is in Boost mode, the duty cycle for Boost mode 

will be: 

DBoost = 1 -
𝑉𝑖𝑛

𝑉𝑜𝑢𝑡
         (27)                                  

(e.g. DBoost = 1 -
402

400
 = - 0.005) 

 Obviously, a negative duty cycle is theoretically impossible and the duty cycle has to be restricted 

to ‘0’. Under this condition, there is an overvoltage reflected in the output voltage until the input solar 

voltage exceeds the upper threshold and the mode transits into Buck mode. Similarly, the duty cycle of the 

Buck mode cannot go over ‘1’ theoretically and has to be limited to ‘1’. Within this stand-by mode transition 

status, there is a voltage sag reflected in the output voltage. 
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D = 
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
                                                   (28) 

(e.g. D = 
400

398
 = 1.005) 

 Overall, the traditional hysteresis control results in overvoltage and voltage sag during transients of 

mode transitions in the application of DC-DC solar conversion. This problem can be fixed by integrating 

sliding-window into the hysteresis controller. A larger width of the hysteresis loop leads to a smaller number 

of mode transitions but a larger voltage fluctuation. 

3.5 Sliding Window-Combined Hysteresis Controller 

The weakness in traditional hysteresis control can be compensated by using a sliding window to the input 

of hysteresis control to form a sliding-window-combined hysteresis control – the SWC hysteresis control.  

The block diagram of SWC hysteresis controller is shown in Fig 16. The width of the sliding window (the 

integration time) is kept as a pre-selected constant to calculate the mean value of the input solar voltage over 

a period of time:              

Mean of f(t) = 
1

𝑇
∫ 𝑓(𝑡). 𝑑𝑡

𝑡

𝑡−𝑇
                       (29) 

     where T = the width of sliding window in seconds 

       f = 1/T. 

 

 

Fig 16. Control block of sliding-window-combined hysteresis control 
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 Based on the baseline BoCBB power converter, a series of tests were performed by changing the 

window width T in the SWC hysteresis control. Comparing to Fig 17 (a), Fig 17(e) shows that the number 

of mode transition is directly dependent on the width of sliding window. 

 

 

 

Fig 17. Comparing the number of mode transition  

under different width in sliding window 
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Fig 17. (Cont.) 

 

 

 

 With the decrease in frequency, the sliding window width increases and vice-versa. With a low 

frequency, the mean of the input is considered across higher time lengths, which leads to decrease in change 

of mode. From Fig 17 (a) it can be concluded as the sliding window concept behavir is similar to the 

hystersis controller at lower frequencies. With high frequency, the mean of the input is considered across 

the lower time lengths which leads to an increase in the change of mode. From Fig 17 (e) it can be concluded 

that the sliding window concept behaviour is similar to the voltage mode controller. The minimal frequency 

can be considered in order to adjust the change in modes for given input time length. 
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CHAPTER 4 

 SIMULATION & PCB DESIGN OF BoCBB POWER CONVERTER 

4.1 Simulation Block of BoCBB Power Converter 

 A simulation was performed by using Simulink software. Fig 18 shows the Simulink block diagram 

of BoCBB DC-DC power converter. The Proportional and Integral (PI) controller is used to eliminate 

steady state error resulting from the P controller. A  low pass filter is connected as the input for the feedback 

loop to block the high frequency voltage and allow the low frequency output voltage. As discussed in 

Chapter 3, error voltage can be found by comparing the output voltage with the reference voltage. This 

error voltage is given to the PI controller, which generates voltage to adjust the duty cycle of the both 

swtiches. The PWM generator is used to generate pulses, the width of the pulses are adjusted by using duty 

cycle.  

 

 

Fig 18. Simulink model of Boost-cascaded Buck-Boost power converter 
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The component values considered for BoCBB DC-DC power converter are shown in Table 8. 

 

Table 8: Component values of Simulink BoCBB circuit 

 Buck mode Boost mode 

Vin 480V 300V 

L1 5.6 mH 5.6 mH 

L2 4.4 mH 4.4 mH 

C1 100 nF 100 nF 

C2 50 µF 50 µF 

Rload 53.3 Ώ 53.3 Ώ 

Vout 400V  400V 

 

 

                  

Fig 19. Flowchart for the selection of switches based on input and output voltages 
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 The Matlab function consists of the logical program shown in Fig 19. This flow chart explains the 

selction of pulse signal to the switching operation at the Boost side (DBuck) and the Buck-Boost side (DBoost). 

When the input voltage is greater than the output voltage, DBuck is equal to the pulse signal with a duty cycle 

of  
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
 gernerated from PWM generater (Buck) and DBoost equals to zero since the Boost switch will be in 

off state which does not allow current to pass to the ground. When the input voltage is less than or equal to 

the output voltage, DBuck is equal to one (DBuck should be always on in order to pass the current to the load 

side) and  DBoost equals the pulse signal with a duty cycle of  1 −
𝑉𝑖𝑛

𝑉𝑜𝑢𝑡
 generated from the PWM generator 

(Boost). Fig 20- Fig 23 shows the simulation results of Boost-Cascaded Buck-Boost power converter 

(BoCBB) in Buck mode.  

 

 

Fig 20. BoCBB output in Buck mode 

 

 

Fig 21. Duty cycle of SBoost and SBuck of BoCBB in Buck mode 
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Fig 22. BoCBB output in Boost mode 

 

 

Fig 23. Duty cycle of SBoost and SBuck of BoCBB in Boost mode 

 

4.2 Driver Circuit of SiC MOSFET 

 The key features of the SiC MOSFET are: low RDS(on) and small RDS(on) change over operating 

temperature range; fast switching transient times,  low capacitances; easy to parallel,  and easy to drive. 

The SiC MOSFET is positioned to replace silicon MOSFETs and IGBTs in high efficiency, high switching 

frequency power conversion applications. In order to drive the CREE MOSFET for the Boost cascaded 

Buck-Boost (BoCBB) power converter, the isolated driver circuit is used.  

The isolated driver circuit, shown in Fig 24, consists of two DC-DC power converters, an Opto-

Isolator (HCPL 3180) and the gate driver (IXYS IXD 609). The function of the DC-DC power converters 
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is to generate +VEE and -VCC to the Opto-Isolator and to the gate driver. The gate driver can generate an 

output voltage 35V and + or _ 9A current. The function of Opto-Isolator is to generate output ranging from 

0 to 20V, which is used as input for the gate driver.  

 As already mentioned DC-DC power converters DC1 (RP 1212D) and DC2 (RP 1205S) are used 

to generate +VCC as 12V and -VEE as 5V, to make sure VCC -VEE is less than 20V. In case VCC -VEE goes 

over 20V, to limit the voltage to 19V for VCC of the Opto-Isolator (Since VCC – VEE range for IC 1 (HCPL) 

is 10V to 20V) the emitter-follower circuit consisting of Transistor T1 and Diode D1 is used. A resistor 

R16 is included for additional damping. A variable resistor has been used to control the control the voltage. 

Table 9 shows the component values of the driver circuit for BoCBB power converter. 

 

 

Fig 24. Circuit Diagram of CREE SiC MOSFET driver 

 

Table 9: Component values of SiC driver circuit  

Components Values 

Capacitor (C3, C4, C8) 1µF 

Capacitor  (C5, C9, C11, C12) 100nF 

Capacitor (C6, C7 4.7µF 
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C10) 10nF 

Resistor (R1, R2, R5) 620 Ω 

Resistor (R3) 47k Ω 

Resistor (R4) 100k Ω 

Resistor (R6, R7, R8, R9, R10, R11) 20 Ω 

DC-DC power converter (DC1) RP1212D (12V-12V) 

DC-DC power converter (DC2) RP1205S (12V-5V) 

Opto-Isolator (HCPL 3180) 

Gate driver IXYS IXD 609 

 

 

4.3 Printed Circuit Board (PCB) design of BoCBB Power Converter 

Schematic diagram of BoCBB PCB board is shown in Fig 25. Several things have been considered while 

designing the PCB board shown in Fig 26.  

a) The components of high power side shown in Fig 27 share a different top layer and the components 

of the control circuit (low power side) share another top layer. This separation avoids the contact 

of heat dissipation at the high power circuit with the lower power circuit, but the both high power 

elements and control circuit elements share a common ground, as shown in Fig 28.  

b) The heat sinks are connected to the MOSFETs and Schottky diodes to release the heat generated 

due to the power loss at the MOSFETs and Schottky diodes. The back side of MOSFETs and 

Schottky diodes, which release heat, are faced outwards of the PCB board.   

c) The width of the connection lines of high power circuit is thicker than lower power circuit (control 

circuit).   
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Fig 25. PCB Schematic diagram of BoCBB with driver circuit 

 

 

Fig 26. PCB board of BoCBB with driver circuit 
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Fig 27. Top layer of the BoCBB PCB board 

 

 

Fig 28. Ground layer of the BoCBB PCB board 
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Fig 29. PCB Board of BoCBB  

 

As shown in Fig 29, a Silicon carbide compound is applied to achieve proper insulation between 

the heat sink and MOSFETs as well as the Schottky diodes. It protects the MOSFETs and Schottky diodes 

by connecting the components firmly to the heat sink, which results in release of heat quickly and equally. 
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CHAPTER 5 

EXPERIMENTAL RESULTS 

A hardware test is performed by using BoCBB PCB board for 200W power by using two 100Ω 

loads in series shown in Fig 31. Fig 30 represents the schematic diagram of experiment conducted on 

BoCBB in Boost mode.  The experimental results are represented in Table 10 to Table 12. Since the input 

current is proportional to the duty cycle of the Boost power converter, for the higher duty cycle at the Boost 

inductor, the L1 current flow is high. High current leads to more power losses at MOSFET, inductor, and 

Schottky diode. Hence, for high duty cycles, power losses are high. Tables 10 to Table 12 proves the 

statement by comparing efficiency of Boost power converters for duty cycle 0.5 and 0.1 at 20kHz, 50kHz, 

and 100kHz frequency. The efficiency decreases from 3-5% from 20kHz to 100kHz for different duty 

cycles. As mentioned in Chapter 3, the below results prove that with the increase in frequency, the power 

losses also increase since switching losses of MOSFET and copper losses of the inductor depends on the 

switching frequency of the DC-DC power converter. The efficiency decreases from 3-5% from 20kHz to 

100kHz with the same duty cycle. 

 

 

Fig 30. Circuit diagram of BoCBB in Boost mode  
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The performance of the inductor plays an important role for conducting the hardware test of BoCBB 

power converter in Boost mode. Since high current flows through the Boost inductor for high duty cycle 

the EE 40 core goes into saturation for high currents which affects the performance of the circuit. In order 

to avoid the saturation, the permeability of the inductor has been increased. The increase in permeability 

leads to increase in number of turns for EE40 core, which leads to increase in copper losses of inductor 

(since copper losses depends number of turns).  

 

 
 

Fig 31. Hardware test of BoCBB in Boost mode 

 

 

 

Table 10: Efficiency of BoCBB in Boost mode at frequency = 20 kHz of Rload = 200.8 Ώ 

D Vin Iin Vout Iout η % = 

Pout/Pin  

0.5 108.9V 

 

1.94A 200.1V 0.996A 94.43% 

0.4 126.5V 1.65A 200.1V 0.996A 95.48% 

0.3 145.2V 1.42A 200.1V 0.996A 96.61% 

0.2 164.2V 1.25A 200.2V 0.997A 97.24% 

0.1 183.1V 1.11A 200.2V 0.997A 98.20% 
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Table 11: Efficiency of BoCBB in Boost mode at frequency = 50 kHz of Rload = 200.8 Ώ 

D Vin Iin Vout Iout η % = 

Pout/Pin  

0.5 106.5V 

 

2.01A 200.4V 0.998A 93.42% 

0.4 125.4V 1.68A 200.2V 0.997A 94.97% 

0.3 144.3V 1.44A 200.2V 0.997A 96.05% 

0.2 163.9V 1.26A 200.2V 0.997A 96.65% 

0.1 183.9V 1.12A 200.2V 0.997A 97.01% 

 

 

Table 12: Efficiency of BoCBB in Boost mode at frequency = 100 kHz of Rload = 200.8 Ώ 

D Vin Iin Vout Iout η % = 

Pout/Pin  

0.5 107.2V 

 

2.08A 201.1V 1.0A 90.32% 

0.4 125.6V 1.73A 200.8V 1.0A 92.41% 

0.3 145.1V 1.47A 200.3V 0.997A 93.62% 

0.2 165.1V 1.28A 200.2V 0.997A 94.42% 

0.1 187.1V 1.12A 200.2V 0.997A 95.25% 

 

 

 

     
Fig 32. The waveform at capacitor C1 at (a) 20 kHz (b) 50 kHz and (c) 100 kHz 
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 From Fig 32, the peak-peak voltage at capacitor increases with the decrease in frequency. An 

increase in peak-peak voltage leads to a higher current from capacitor to Buck inductor L2. This applies 

more stress on the inductor L2, which leads to saturation of EE 40 core. A heavy current chassis mount 

inductor shown in Fig 33, has been used to improve the performance of the LCL for BoCBB in Boost mode.  

 

 
Fig 33. Heavy current chassis mount inductor 

 

 

Even though, a heavy current chassis mount inductor improves the performance of the filter, it 

generates additional power losses compared to the EE 40 core. A Heavy current chassis mount inductor is 

applicable for low frequencies which leads to generation more power losses in high frequency circuits. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

 

  Even though the efficiency of BoCBB is greater at 20kHz frequency (94.43%), the peak-peak 

voltage of capacitor C1 =125V is considered the concern of the performance of LCL filter. Since the peak-

peak voltage of capacitor C1= 60V at 50kHz is lower than peak-peak voltage of capacitor C1 at 20kHz. 

LCL filter of BoCBB at 100kHz has the better performance since peak-peak voltage of capacitor C1=50V, 

but the efficiency of the BoCBB at 100kHz = 90.32% which is lower than the efficiency at 50kHz = 93.42%. 

From theoretical results found in Chapter 3, the power losses of BoCBB in Boost mode is greater than the 

BoCBB in Buck mode. Therefore, the efficiency measured in experimentation is the minimum for the 

BoCBB. This leads to the conclusion that 50kHz switching frequency is more suitable for performance of 

BoCBB DC-DC power converter and also BoCBB is highly efficiency at 50kHz. 

6.2 Future Work 

Future work will focus on performing experiments to analyze the sliding window concept in a 

hardware-in-the-loop (HIL) testbed. The sliding window method is expected to minimize the transients 

caused by frequent mode transition in the BoCBB power converter.   
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