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ABSTRACT 

 

IMPROVED THERMAL STABILITY OF CESIUM-DOPED PEROVSKITE FILMS WITH 

PMMA FOR SOLAR CELL APPLICATION 

 

Christine M. Gausin 

Old Dominion University, 2018 

Director: Dr. Gon Namkoong 

Perovskite solar cells (PSCs) have the potential to replace the traditional silicon solar cells 

for commercialization applications. Perovskites offer a lower cost to fabrication, superb 

efficiencies, high absorption coefficients, longer carrier lifetime and diffusion lengths. Despite 

their improved efficiency, perovskites suffer from several degradations relating to the material’s 

organic-inorganic composition upon exposure to different environmental conditions. In general, 

the main causes of degradation of perovskite films are due to exposure to moisture, oxygen, air, 

light, and temperature. Several efforts have been made to stabilize perovskites including 

encapsulation, doping of cations, and alterations to the perovskite structure. In this work, we study 

the effect of PMMA and cesium (Cs) on the thermal stability of perovskite solar cells.  

Due to the organic composition of perovskite solar cells (PSCs), the material has high 

sensitivity to moisture, air, oxygen, light and heat. Upon exposure to these sensitive factors, 

perovskite films undergo degradation very quickly, resulting in a reduced efficiency and unstable 

cell. To better improve the material’s stability, we study the effect of adding a PMMA layer on top 

of the MAPbI3 samples, induced at 85°C to study whether PMMA has a major effect not only in 

protecting the layer from degradation factors, but also on its thermal stability. XRD measurements 

confirmed that samples without the PMMA layer quickly showed signs of degradation after 72 

hours of heating with the peak formation of PbI2. MAPbI3 samples with the PMMA were able to 

withstand heating up to 1000 hours with minor sign of the PbI2 peak. SEM images confirmed the 



   

 

iii 

degradation of the samples without PMMA as indicated by pinholes forming along the grain 

boundaries and grain of the samples, while samples with the PMMA showed very little signs of 

degradation.  

We further studied the thermal stability of perovskite solar cells by heating the samples at 

a more aggressive temperature (120°C) and study the effects of cesium on the precursor solution. 

Due to MAPbI3’s susceptibility to degradation at higher temperatures, cesium was added to the 

precursor solution at different concentrations (x = 5, 9 and 20%) to form the CsxMA1−xPbI3 

formula. XRD data showed that after 72 hours of thermal treatment, samples with the cesium 

content withheld the perovskite samples from complete degradation. Data for the MAPbI3 

reference sample showed complete degradation after the 72 hours, as indicated by the very intense 

peak formation of PbI2.   
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NOMENCLATURE 

 

 
GB  Grain boundary 

PCE   Power conversion efficiency   

PSC   Perovskite solar cell  

PV  Photovoltaic  

SEM   Scanning electron microscope  

XRD  X-Ray diffraction  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Renewable Energy 

Renewable energy has been the source of power for many ancient civilizations for several 

thousands of years including human powered treadmills, wind energy for sail ships, and even solar 

energy to ignite fires [1]. Ancient civilization had no access to any technologies that would convert 

non-renewable energy sources like fossil fuels to be their main primary source of energy due to 

lack of technological advancement, and even lack of use. Fossil fuels, a form of non-renewable 

energy, did not become so apparent and popular until the Industrial Revolution that took place in 

the 18th century. The Industrial Revolution marked an era of technological advancement and the 

need for sources of energy, from which petroleum, coal and natural gas became the ideal and most 

abundant sources at that time. Fossil fuels were abundant sources at that time and were formed 

from organic material that had been in Earth over the course of millions of years. Fossil fuels have 

fueled and become the main energy source for many economic and technological advancements 

of the Industrial Era. Fossil fuels, however, have the disadvantage of forming emissions of carbon 

dioxide (CO2), which has been the leading cause for global warming, extreme weather conditions 

and decline in the ozone layer [2]. CO2 emission has since doubled across the world since 1975. 

Thus, there has been great interest in finding alternative sources of “clean energy” that would not 

harm the environment and be sufficient to support the demand of energy globally [3]. 

The International Energy Agency (IEA) foresees an increase of demand in energy globally 

by 30% between 2017 and 2040 [4]. Because of this, a major shift in the industry has led to 

harvesting renewable energy sources, which are forms of energy that can easily be replenished 
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naturally. According to the IEA, rapid development in renewable energy could increase power 

generation by 40% in efforts led by China and India [4]. Some of these energy sources include 

biomass, geothermal heat, sunlight, water, and wind. Among these energy sources, solar energy 

has captured a wide array of interests in research and application. Solar energy is a form of 

renewable energy that relies on the sun’s rays for electricity and/or thermal energy. Because of the 

abundance of solar energy, a great deal of research and development has been focused on 

developing cutting-edge technology that will replace the dependence on fossil fuels. Photovoltaics 

(PV) is one of the leading field in this development.  

 

1.2 Photovoltaic (PV) 

PV devices were first discovered by a team of scientists at Bell Telephone, which realized 

that silicon had the ability to create an electric charge upon exposure to sunlight. Photovoltaic 

devices, most commonly known as solar cells, convert the energy coming from the sun directly 

into electricity. The sun is comprised of photons, which are particles of solar energy that can be 

absorbed by semiconductor materials that form a PV device. Photons from the sun have varying 

energy corresponding to the different wavelengths of the solar spectrum. As photons strike a PV 

cell, several cases may happen: a photon is reflected off the cell, it passes through the cell 

completely, or it is absorbed by the semiconductor material [5]. Only absorbed photons can convert 

to generate electricity. Thus, a great deal of research and development (R&D) funds have been 

dedicated to investigating the types of semiconductor materials that can absorb a wide range of 

wavelengths to convert the most photons into energy. According to the National Renewable 

Energy Laboratory’s (NREL) efficiency chart below, the power conversion efficiency (PCE) of 

solar cells currently ranges from 10.6% to 46%.  
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Figure 1. NREL’s Efficiency Chart (“Best Research-Cell Efficiencies" is reprinted with 

permission by the National Renewable Energy Laboratory, Accessed April 23, 2018) 

 

As can be seen in Figure 1, PV devices range from multijunction cells to even thin-film 

technologies. Traditional solar cells are generally fabricated from silicon and prove to be the most 

efficient and are found commercially available in the market. Thin-film solar cells followed the 

first-generation solar cells and were termed “second-generation” solar cells due to the reduction 

of thickness, along with their given flexibility, while still retaining most of the efficiency of 

traditional silicon cells. Third-generation solar cells use other types of materials other than silicon, 

including organic materials or polymers. Currently, emerging third-generation solar cells are 

gaining the interest of many researchers as they can replace the currently used silicon solar cells 

by lowering the cost of fabrication and outputting comparable and even higher efficiencies. 
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1.2.1 Perovskite Solar Cells (PSCs) 

Perovskite solar cells (PSCs) are one of promising new generation solar cells that incorporate a 

mixed organic-inorganic material to harvest the energy from the sun. Organic-inorganic halide 

perovskites have emerged to be one of the leading PV technologies with increasing efficiencies in 

less than a decade, low fabrication cost, high carrier mobility, and large absorption characteristics 

[6] – [9]. Perovskites have the crystal ABX3 structure, where A forms the organic cation, B is the 

metal cation, and X is the halogen anion [9]. Many organic cations that have been used have 

typically been methylammonium (MA), or formamidinium (FA), while lead (Pb) and tin (Sn) have 

been commonly used for the divalent metal ion. The common halide ions that have been used in 

the perovskite structure has been iodine (I), bromine (Br) and chlorine (Cl). 

 

Figure 2. Chemical structure of perovskite in the ABX3 form 

 

Given such free-form structure, the composition of a perovskite structure can easily be 

modified to maximize its performance, whether it is to increase efficiency or improve its stability. 

The most commonly used perovskite structure is the MAPbI3, from which the methylammonium 

compound, also known as CH3NH3, has shown promising efficiencies and stability [10], [11]. In 
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2009, the recorded efficiency for perovskite solar cells were marked at 3.8% and in just less than 

a decade, the PCE of the cell has jumped to 22.7% proving that the material is a promising 

candidate for future PV technology application [12].  

 

1.3 Structural Stability   

The ABX3 perovskite form does not always result in a perfect perovskite phase as the 

precursor material have the flexibility to arrange themselves into various crystalline or amorphous 

phases which causes several issues when implemented as a PV technology [13]. The structure of 

perovskites can undergo multiple thermal annealing during film deposition, which does not always 

yield a stable phase at normal operating temperatures. There have been studies as to which A, B 

cations, and X anions should occupy the structure to best produce a stable perovskite phase. In its 

cubic phase, the lead halide octahedra’s size is determined by the size and electronegativity of the 

B and X ions and it also further determines the volume from which the A cation can occupy. Much 

of the orientation of the crystal structure relies heavily on the A cation size, such that if this size is 

large or even relatively small, the octahedral form needs to tilt or distort to accommodate the 

difference.  The small distortions in the crystal structure relate to the orthorhombic and tetragonal 

phase of the perovskite. These two phases share similar optoelectronic properties such as small 

shifts in band gap, carrier lifetime, and electron/hole mobilities. If the mismatch between the lead 

halide octahedral size and the A cation size is too large to accommodate, the compound will not 

be in a perovskite phase. Furthermore, understanding the tolerance factor of the lead halide 

octahedra’s distortion and tilting provides information on the possible phases the material could 

exist and indicate whether the material can form a crystal structure. The cubic phase’s tolerance 
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factor is known to be t = 1, while the deviation between tetragonal or orthorhombic ranges from 

0.7 < t < 0.9 [13].  

There have been other numerous studies attempting to understand the advantages and 

disadvantages of the distinct phases of perovskite at varying phases. The three structural phases as 

mentioned before for the MAPbI3 perovskite include a cubic phase (>56°C), tetragonal phase (-

113 to +56°C) and orthorhombic phase (<56°C) [14]. The orthorhombic phase is known to have 

fully ordered MA cations, while tetragonal phase has partially ordered MA cations and the cubic 

phase has fully disordered MA cations.  Phase transition among the three phases has been studied 

previously to understand what the impact of phase transitions on the optical, thermal, dielectric, 

and PV characteristic of a perovskite sample [14]. 

The common applied perovskite form, MAPbI3, has been studied to be in its perovskite phase at 

room temperature, with a tetragonal distortion. When the temperature is reduced, the material then 

deviates to its orthorhombic phase. As the temperature is increased, the material transitions into 

its cubic phase. Because MAPbI3 can exist at two distinct phases between relevant temperatures 

of 0 to +100°C, this material has low susceptibly to structural degradation in its lifetime. However, 

this does not prevent MAPbI3 to be prone to outside factor degradation including air, moisture, 

water, oxygen, UV-light and heat 

1.3.1 Instability of Perovskites  

Although this organic-inorganic material proves to be a promising candidate for the future 

of photovoltaics technologies, perovskites suffer from degradation due to its organic material 

composition. Multiple degradation factors have been identified correlating to the MAPbI3 structure 

including temperature, moisture, oxygen, electric-field, UV-light and heat [15], [16]. The 
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following chemical reaction was proposed to explain the thermal degradation of perovskite solar 

cells [17]:  

𝐂𝐇𝟑𝐍𝐇𝟑𝐏𝐛𝐈𝟑  
𝐇𝟐𝐎
↔  𝐂𝐇𝟑𝐍𝐇𝟑𝐈 (𝐚𝐪) + 𝐏𝐛𝐈𝟐(𝐬)  ( 1 ) 

𝐂𝐇𝟑𝐍𝐇𝟑𝐈 (𝐚𝐪)
 
↔ 𝐂𝐇𝟑𝐍𝐇𝟐(𝐚𝐪) + 𝐇𝐈 (𝐚𝐪)  ( 2 ) 

𝟒𝐇𝐈 (𝐚𝐪) + 𝐎𝟐
 
↔  𝟐𝐈𝟐(𝐬) + 𝟐𝐇𝟐𝐎 ( 3 ) 

𝟐𝐇𝐈 (𝐚𝐪)
𝐡𝐯
↔ 𝐇𝟐 ↑  +𝐈𝟐(𝐬) ( 4 ) 

  

When the chemical mixture of perovskite (CH3NH3PbI3) is exposed to water, it undergoes 

hydrolysis. This reaction results in the formation of lead iodide (PbI2) and CH3NH3I solutions, 

which are the some of the primary signs of degradation of the perovskite sample. Decomposition 

of the CH3NH3I solution into the methylamine (CH3NH2) and hydroiodic acid (HI) solutions 

results in the formation of I2 and H2O from the reaction formed by HI with oxygen molecules [17]. 

Further studies have also shown that when perovskite is exposed to sunlight, it corrodes the 

CH3NH3PbI3 to form PbI2 [18]. 

Because of the organic material of the perovskite solution, it makes it easier for these 

degradation factors to seep into the grains and grain boundaries and cause areas to be defective 

and therefore, reduce the performance of the device. Therefore, several studies have been 

conducted to better aid the device in its major challenge: thermal stability. Upon exposure to 

thermal heating, CH3NH3PbI3 goes under chemical mass loss and degradation as listed in the 

equations below [19].  

𝐂𝐇𝟑𝐍𝐇𝟑𝐏𝐛𝐈𝟑  
𝚫
↔ 𝐍𝐇𝟑 + 𝐂𝐇𝟑𝐈 + 𝐏𝐛𝐈𝟐  ( 5 ) 

𝐂𝐇𝟑𝐍𝐇𝟑𝐈
𝚫
↔ 𝐍𝐇𝟑 + 𝐂𝐇𝟑𝐈 ( 6 ) 

𝐂𝐇𝟑𝐍𝐇𝟑
+ (𝐠) + 𝐈−(𝐠)

 
→  𝐂𝐇𝟑𝐍𝐇𝟐(𝐚𝐪) + 𝐇𝐈 (𝐚𝐪)  ( 7 ) 
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𝐂𝐇𝟑𝐍𝐇𝟑𝐈
𝚫
↔ 𝐍𝐇𝟑 + 𝐂𝐇𝟑𝐈 ( 8 ) 

 

Thermal degradation of MAPbI3 is surface initiated, and is a layer by layer reaction, and 

therefore the decomposition of the methylammonium ions (CH3NH3
+) is assisted by iodide through 

the process called reverse Menshutkin reaction. This reaction is a process of simultaneously 

breaking the C-N bond, which typically is common for quaternary ammonium salts. However, in 

the decomposition of methylammonium, ammonia is produced rather than trimethylamine 

(CH3)3N [19]. The further degradation of perovskites is initiated at the weak Pb-I-Pb bonds along 

the (001) plane, where PbI2 prefers a relaxed trigonal structure. The remaining CH3NH3
+ and I- 

ions in 𝐂𝐇𝟑𝐍𝐇𝟑𝐈
𝚫
↔ 𝐍𝐇𝟑 + 𝐂𝐇𝟑𝐈 ( 6 create a reaction that releases the CH3NH2 and HI gas 

from the sample. Due to the thermal decomposition of MAPbI3 into PbI2 under a surface reaction, 

degradation is kinetically preferred along the surface, exposing the first layer and decomposing it 

until the next layer degrades and the process goes on and on until the entire perovskite material is 

completely degraded [19].  

MA forming the A cation in the crystal structure of the ABX3 form of the perovskite suffers 

from its own instability such as heat. There have been several researchers involved in attempting 

to replace the MA cation with other cations including the larger FA cation, and or simply replacing 

the organic cation with an inorganic cesium (Cs) for a more thermally stable solar cell. However, 

research in this field is still ongoing on determining which combination, or which cation can 

withstand thermal stability while still outputting high efficiencies.  

 

1.4 Motivation 

Commercially available photovoltaic technologies are mostly comprised of silicon-based 

devices. Silicon is an abundant element source, and thus makes this material a probable option for 
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commercialization. However, silicon-based solar cells have reached a saturation in efficiency only 

improving at about 2.7% in the last ten years [20], [21]. Although the pricing for silicon-based 

materials have decreased in the last seven years, the cost of production has continuously increased 

[22]. Silicon-based solar cells must undergo multiple stages of fabrication, which increases the 

cost for production as more machines and materials are needed to fabricate one solar cell wafer. 

The need to reduce the cost of commercialization while still producing highly efficient and stable 

cells is becoming more and more apparent today. According to the NREL efficiency chart, the top-

performing multi-crystalline silicon cell is currently at 22.3%, while the more expensive single-

crystal silicon cell is currently rated at 25.8%. Third-generation PVs have emerged to be possible 

candidates for replacement of the more traditional silicon solar cells. Perovskite solar cell (PSC), 

one of the emerging PVs of today has shown major improvements, especially in efficiency in just 

less than ten years. NREL’s efficiency chart records the current efficiency for perovskite to sit at 

22.7%, which is slightly higher than the multi-crystalline silicon cell. Furthermore, the fabrication 

of PSCs does not require expensive equipment, nor do they take a long time. Perovskite solar cells 

have been studied to produce the highest efficiencies using sol-gel method (process of settling 

nano-sized particles from a colloidal solution deposited onto a substrate by spin-coating or other 

methods), while other methods have shown promising results such as hot-casting technique. 

However, much improvement must be made before this inorganic-organic material can be largely 

commercialized.  

The work discussed in this paper explores some of the top priorities in improving the 

perovskite solar cell including its crystal structure, film quality, and thermal stability. Perovskite 

solar cells are prone to degradation upon exposure to moisture, light, heat, water, and oxygen. 

Under these environmental conditions, the material easily degrades as these defects travel through 
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the pinholes, and gaps in the perovskite crystal grain causing internal instability. With the presence 

of moisture, perovskite solar cells undergo degradation in a matter of hours. Furthermore, 

perovskite solutions decompose to PbI2 upon exposure with moisture. With the presence of 

moisture and water, the photo conversion efficiency and optical properties of the perovskite 

material quickly deteriorates resulting in a lower stability, and poor device performance. The 

polymer poly(methyl methacrylate) (PMMA) layer has been studied to help passivate any defect 

on perovskite solar cells and aid in preventing moisture from degrading the crystal grain of the 

film [23], [24]. PMMA has been proven to delocalize any captured carries at the deep trap areas 

forming on the perovskite surface, as well as modify the surface of the structure to passivate 

defected areas [25]. With the delocalization of trapped carriers and passivation of surface defects, 

PMMA aids in improving device performance by increasing 𝐽𝑠𝑐 , 𝑉𝑜𝑐 𝑎𝑛𝑑 𝐹𝐹 [26]. By improving 

the film quality of the crystal (fabricating films with larger crystal grains, and smaller grain 

boundaries), the film quality of the perovskite can easily improve on having fewer defects that 

degrade the crystal grains. Moreover, crystal growth and film quality are improved with the 

addition of PMMA, as it is known to improve crystal growth and increase crystal size [26]. PMMA 

has been fabricated in a complete perovskite solar cell with efficiencies exceeding 18% [23], [24]. 

Another key area that remains a challenge preventing perovskites from future commercialization 

is its thermal stability. Solar cells that must meet certification for industrial manufacturing must 

meet the operating temperature between -40 to +85℃ as well as have a lifespan of 20 years or 

more [27]. Given such wide and elevated temperature range for commercialization, the study of 

thermal stability of perovskites proves to be one of the leading challenges that must be addressed 

first.  MAPbI3 perovskite solar cells suffer from thermal instability as mentioned in Section 1.3.1. 

MAPbI3 films suffer from mechanical stress and degradation due to poor thermal conductivity 
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[28], [29]. To resolve this issue, several studies have mentioned replacing the MA cation in the 

conventionally used perovskite with FA and such replacement has proven a more stable perovskite 

under higher temperatures. However, FA-based perovskites are still prone to degradation to 

oxygen due to oxidation and are more sensitive to moisture in comparison to MA-based 

perovskites [26].  Other studies have completely replaced A in the ABX3 form with cesium (Cs) 

to produce highly stable perovskites at temperatures reaching 300℃. However, Cs-based 

perovskites have non-ideal band gaps (>1.7 eV), which produces lower PCEs in comparison to 

other perovskite-based materials [26]. The work described here will study the thermal degradation 

of perovskite solar cells (MAPbI3) and show improvements upon addition of PMMA by thermally 

heating the sample at 85C for 1000 hours period. Furthermore, cesium is doped into the mixture 

to form CsxMA1−xPbI3 and show how doping this cation improves the stability of perovskites at 

higher temperatures. 

 

1.5 Methodology  

To achieve a stable perovskite solar cell, PMMA was added on top of the precursor solution 

upon a hot casting technique. MAPbI3 samples with and without PMMA were induced to a thermal 

treatment at 85°C to study the known thermal degradation of perovskites, along with confirming 

the improved stability upon addition of PMMA. To further improve the thermal stability of 

perovskites, MA-based perovskite samples were fabricated with different concentration of cesium 

(Cs). MA-based perovskites have shown promising efficiencies but prove to be less stable upon 

exposure to different temperatures. To investigate the effects of cesium on the MA-based 

perovskite samples, different concentrations of cesium were doped: x = 5%, x = 9%, x = 20% to 

form the following chemical formula CsxMA1−xPbI3 using the hot-casting technique for sample 



   

 

12 

preparations. The CsxMA1−xPbI3 samples were heated at 85°C and a more thermally aggressive 

temperature, 120℃, to determine how cesium will aid in the thermal stability of the samples.  The 

captured SEM images allow to identify areas of defects, with formation of pinholes along the grain 

boundaries, as well as confirm the duration of stability for the samples as confirmed by the XRD 

data.   
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CHAPTER 2 

EXPERIMENTAL 

 

In this thesis, the MAPbI3 and CsxMA1−xPbI3 samples were prepared via hot casting 

technique (where the temperature of the substrate and the temperature of the solution must retain 

to be at a certain temperature before spin-coating). Due to the ease of fabrication of perovskite 

solar cells, only a spin-coating machine and a hot plate was required for fabrication. However, due 

to the samples sensitivity to moisture and oxygen, the samples were stored inside a nitrogen 

glovebox. To characterize the MAPbI3 and CsxMA1−xPbI3 samples, different characterization 

techniques were needed including x-ray diffraction (XRD) and scanning electron microscopy 

(SEM). 

 

2.1 Solution Preparation  

Fluorine doped tin oxide coated (FTO) glasses were used as the substrate for the precursor 

solution deposition. These FTO substrates were cleaned in a five-step sonication process using 

mucosal, deionized (DI) water, methanol, acetone and 2-propanol (IPA) for a 10-minute duration 

per each cleaning step.  The FTO substrates were then dried with nitrogen and heated for 15 

minutes at 120℃ on a hot plate to remove any remaining traces of the solvents used. The Cs-doped 

perovskite (CsxMA1-xPbI3) precursor solution was prepared by incorporating the hot casting 

technique with the three concentrations of cesium iodide (CsI) (x = 5%, 9%, and 20%). The 

MAPbI3 precursor was prepared by dissolving equimolar ratios of lead iodide (PbI2, Sigma-

Aldrich, 99%) and methylamine hydrochloride (MAI, Sigma-Aldrich) in N,N-dimethylformamide 

(DMF, Sigma-Aldrich, anhydrous, 99.8%) to a concentration of 11 wt%. The cesium-doping 
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involved preparing three types of solution with the respected concentration of cesium and were 

heated on a hot plate for 18 hours at 70℃ with magnetic stirring in a nitrogen (N2) filled glove 

box. The temperature for the solution and the FTO substrate must retain to be at 180°C and at 

70°C, respectively upon spin-coating at 4000rpm. Some samples prepared were coated with 

PMMA by spin-coating the polymethyl-methacrylate (PMMA, Mw ~ 120,000) in chlorobenzene 

(10mg/ml) at 4000rpm for 10 seconds. 

 

2.2 Characterization  

In this work, characterization techniques involving the x-ray diffraction (XRD) and 

scanning electron microscopy (SEM) were used to determine degradation of the samples (if any at 

all) with morphology, crystal structure, absorption, and optical quality of the MAPbI3 and  

CsxMA1−xPbI3 samples. The following subsections will provide a full detailed explanation of each 

material characterization techniques used.  

2.2.1 X-ray Diffraction (XRD) 

 This work utilized the Rigaku Miniflex II benchtop XRD instrument along with the 

integrated X-ray powder diffraction software, PDXL provided by Rigaku to verify the crystal 

information of the samples measured. The data collected were ranged from 5 – 70° at the 2𝜃 range 

with an acquisition rate of 5°/min with a step size of 0.02°. The 2𝜃 range was used to cover the 

different preferred orientation of the perovskite phase at 14.08°, 28.44°, 31.85°, 40.58°, 43.19° 

assigned to the (110), (220), (310), (224) and (330) planes. Minor peaks exist at the following 

planes indicating the high phase purity of the perovskite films at 19.92°, 23.54°, 24.52°, 39.94°, 

50.22° and 52.54° corresponding to the (200), (211), (312), (404) and (226) planes [26] – [28]. 

PbI2 peaks would start becoming more apparent if the samples started degrading at the following 
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plane (001) corresponding to 12.6° [27] – [33]. For investigation of the thermal stability of 

CsxMA1−xPbI3 solar cells, only the major known peaks were closely observed: 12.6° (001), 14.08° 

(110), and 28.44° (220). 

X-ray diffraction incorporates the constructive interference technique, where two waves 

with the same wavelength align and interact to form a resulting wave with much bigger amplitude 

than the original waves.  X-ray diffraction not only employs constructive interference to gather 

information about the sample, it is one of the most important non-destructive techniques when it 

comes to material characterization. X-ray diffraction provides critical information about a 

sample’s structural information and crystalline phase. X-ray wavelengths were identified to be the 

main light source for the diffractometer upon discovery that the three-dimensional (3D) diffraction 

resembled that of the crystal lattice spacing on a crystalline substance [34]. An X-ray 

diffractometer typically consists of an x-ray light source, a sample holder, and x-ray detector. The 

generation of x-rays initiate upon heating of the filament of the cathode x-ray tube to produce 

electrons, which are accelerated towards a given target. The target material produces specific 

wavelengths unique to its own, and some known target materials include copper (Cu), iron (Fe), 

molybdenum (Mo) and chromium (Cr). Most XRD equipment use copper as the base target 

material for characterization [35], [36]. 

 Due to the accelerated bombardment of electrons onto the target material, several electrons 

on the core shell of the Cu atoms are ejected, producing vacancies that are quickly filled by 

electrons dropping from higher levels. Therefore, an X-ray spectrum is emitted during the process 

of ejection and filling of vacancies. The X-ray spectra produce information on the transition of 

electrons between the atomic energy levels of the K-shells (n = 1). K𝛼 spectras contain information 

about the transition from the n = 2 and n = 1 levels of filling the vacant electrons, while K𝛽 
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provides the energy transition from n = 3 to n = 1. The production of the K-shell spectrum is 

typically determined by the target material used with its specific wavelength corresponding to the 

shell transition for vacancy filling. Using the CuK𝛼 light source (𝜆 = 1.5418 Å), only the K𝛼 

radiation is filtered into the monochromatic x-rays and is directed onto the sample material for 

bombardment. The incident x-ray beams that bombard the sample produces diffracted x-rays that 

are detected and recorded by the x-ray detector. Figure 3 depicts the relationship between the 

incident x-rays, the d-spacing of the atoms, and the diffracted x-rays. This relationship, known as 

Bragg’s Law, plays a critical role in X-ray diffraction. Bragg’s Law states that the diffracted x-

rays that reflect from the sample contain diffracted peaks at a range of various 2𝜃 angles from 

which the samples were measured.  

 

q l 

q 
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Diffracted X-rays
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q q 
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Figure 3.Bragg's Law of x-ray diffraction. 

 

 

 Bragg’s Law provides a relationship between the d-spacing (d) of the atoms to the angle of 

incidence (𝜃), the wavelength of the x-ray source (𝜆) and the order of reflection (n) defined as 

                        𝒏𝝀 = 𝟐𝒅𝒔𝒊𝒏𝜽. ( 9 ) 
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The relationship provided by Bragg’s Law allows for the extraction of information relating 

to the identification of an unknown sample, crystal geometry, and lattice information. The lattice 

constant a of the sample, for example, can be extracted given the known crystal’s geometry (known 

as the Miller indices hkl) d as described below 

𝒅 =
𝒂

√𝒉𝟐+𝒌𝟐+𝒍𝟐 
. ( 10 ) 

The diffracted beams are measured by the detector when Bragg’s law is satisfied upon 

constructive interference. The diffractometer counts the pulses per unit time, which are directly 

proportional to the intensity of the diffracted beams of the x-rays, and a plotted image of the peaks 

are outputted by the software. Several databases exist to confirm which peaks correlate to specific 

materials such as the International Centre for Diffraction Data (ICDD) and provide for quick 

identification of the material. Given the raw file produced by the diffractometer software, 

additional provided by the equipment such as that of Rigaku’s PDXL software provides a way to 

extract more information from the given XRD data. A number of kinds of information such as the 

crystal size, stress-and-strain, and crystallinity of the sample can be provided easily when the XRD 

data is loaded into the PDXL software.  

2.2.2 Scanning Electron Microscope (SEM) 

 The images captured in this report were collected by JEOL JSM-6400LV. Images were 

captured at an accelerating voltage of 15kV with different magnification conditions as indicated 

in the image scale bar. Due to the organic material of the samples, a thin conductive layer of gold 

(Au) was coated on the surface of the CsxMA1-xPbI3 samples using a Hummer V Sputter Coater. 

The samples were measured at different magnifications ranging from 10𝜇𝑚 to 1𝜇𝑚 to give a better 

overall image of the grain size and grain boundaries (GB) as well as a zoomed in view to give a 

better view of the possible degradation occurring on the grains and GBs.   
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CHAPTER 3 

THERMAL DEGRADATION OF PEROVSKITE FILMS AND CS-DOPED 

PEROVSKITE FILMS 

 

In this work, samples of MAPbI3 and CsxMA1-xPbI3 were prepared as mentioned in Section 

2.1 without PMMA. The reference sample (MAPbI3) was thermally treated at both 85°C and 120°C 

to observe the length of stability of perovskite solar cells without PMMA. CsxMA1-xPbI3 was also 

induced to thermal treatment at 85°C to observe the effect of Cs-doped perovskite solar cells on 

the thermal stability of the solar cell. Both the reference and CsxMA1-xPbI3 samples without 

PMMA did not sustain more than 72 hours of heating at 85°C before showing signs of degradation 

as indicated by the PbI2 peak. The reference sample, MAPbI3 was further heated at 120°C to 

observe the stability of MA-based perovskites at higher temperatures. This section will provide a 

detailed discussion and complete analysis of the data resulting from SEM, and XRD.  

 

3.1 MAPbI3 without PMMA heated at 85℃ 

This section will discuss the MAPbI3 sample fabricated without PMMA. The XRD peaks 

exist at 14.08°, and 28.44° corresponding to the perovskite (110), and (220). The PbI2 peak started 

becoming prominent at 12.6°, corresponding to the (001) plane. It can be noted that the perovskite 

peak at 14.08° decreases over time as the sample is heated. Furthermore, signs of degradation 

started becoming apparent at the 72 hours reading as indicated by the formation of the PbI2 peak. 

As the sample were heated past 72 hours, the PbI2 peak increased at an alarming rate showing 

complete degradation of the sample after the 528 hours heating.  
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Figure 4. XRD data for MAPbI3 without PMMA sample heated at 85°C for 528 hours. 

 

 

The integrated intensity of the XRD peaks were plotted to further show the inverse 

relationship between the perovskite and PbI2 peak at 14.08° (110) and 12.6° (001) respectively. As 

the samples were thermally treated over the period of experimentation, the integrated intensity for 

the perovskite peak corresponding to the (110) plane decreased and reached a saturation point 

around the 312 hours reading. The integrated intensity for the PbI2 peak linearly increased over 

time, clearly concluding that the sample is degraded. To further investigate the effect of 

degradation of the perovskite films, the crystal size was calculated using the Scherrer equation: 

𝑳 =
𝐊𝛌

𝛃𝐜𝐨𝐬𝛉
 ( 11 ) 

0

310

620

930

1240

0

310

620

930

1240

0

310

620

930

1240

0

310

620

930

1240

0

310

620

930

1240

5 10 15 20 25 30 35 40
0

310

620

930

1240

 

 

 528hr

 312hr

 144hr

 72hr

 24hr

 0hr

(001)

PbI2
(110)

MAPbI3

(220)

MAPbI3

 
 

 
 

In
te

n
s
it
y
 (

a
.u

.)

 

Wavelength (nm)2𝜃 (deg) 



   

 

20 

where L is the average crystal size, 𝜆 is the wavelength of the X-ray source (CuKα =

 1.5418 Å or 0.15418 𝑛𝑚), and 𝛽 is the full width at half maximum (FWHM). Upon thermal 

treatment, the crystal size for the PbI2 peak increased while the crystal size for the MAPbI3 peak 

deceased. This confirms the degradation effect as observed in the integrated intensity plot, the 

XRD data and the SEM images.  

 

Figure 5.  MAPbI3 without PMMA's (a) XRD integrated intensity and (b) crystal size for 

(110) and (001) planes. 

 

The data is further confirmed by the captured SEM images below Figure 6(a) shows poor 

morphological structure with a rough surface and grainy structure. The initial image at 0 hour, as 
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Figure 6(b). In Figure 6(b), signs of degradation started becoming more prominent along the grain 

boundaries (GBs). The crystal grain surface of the MAPbI3 sample started showing signs of 

roughness and formation of pinholes (dark spots) around the edge of the grains. As the samples 

are induced to the thermal treatment over time, the pinholes started moving towards the center of 

the grains, as can be seen in Figure 6(c). The 1𝜇𝑚 magnification of the SEM image shows that the 
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pinholes after the 72 hours heating is not as deep in comparison to the pinholes forming at the 528 

hours reading. This means that the longer the samples are being heated, the deeper the pinholes 

form, making it easier for heat to degrade the perovskite layer by layer.  

 

Figure 6. SEM images for MAPbI3 without PMMA taken at (a) 0hr, (b) 72hrs and (c) 

528hrs. 

 

3.2 CsxMA1-xPbI3 without PMMA heated at 85℃ 

This section will discuss the CsxMA1-xPbI3 samples without PMMA heated at 85℃. 

Samples were prepared as detailed win Section 2.1. The XRD peaks exist at 14.08°, and 28.44° 

corresponding to the perovskite planes at (110), and (220) and the PbI2 peak at 12.6°, 
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corresponding to the (001) plane. Note that the perovskite peak at 14.08° decreases with increasing 

cesium content, as indicated by the XRD data in  

 

Figure 7(a). The SEM images in  

 

Figure 7(b) – (d) correspond to the samples x = 20%, x = 9% and x = 5%. An interesting 

feature to note is that the “root-like” structure located towards the center of the grains of the 

perovskite surface is much bigger with lower cesium content.  

Comparing  

 

Figure 7(b) and  

 

Figure 7(d) shows that the grain surface of the x = 5% sample is grainier and rougher in 

comparison to the smooth surface of the x = 20% sample. Furthermore, the x = 9% sample exhibits 

the largest grain size in comparison to the rest of the samples.  
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Figure 7. (a) XRD data and SEM images for (b) 20%, (c) 9%, and (d) 5% Cesium-doped 

perovskite samples before thermal treatment.  

 

 

After 72 hours of thermal treatment, the CsxMA1-xPbI3 samples started showing signs of 

degradation upon appearance of the PbI2 peak at 12.6° and formation of pinholes along the GBs. 
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sample, as can be seen in the XRD data in Error! Reference source not found.(a). This could be 
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sample exhibit more pinholes all around, while the larger sized grains of the sample, only exhibit 

pinholes along the edge of the crystal grain as indicated by Error! Reference source not 

found.(d). This confirms the theory that a better film quality is needed to prevent further 

degradation of the crystals of perovskite films. The pinhole on the x = 20% sample is scattered not 

only along the grain boundaries but are reaching the center of the grain surface. The pinholes are 

also much darker, which could indicate that these pinholes are deeper which could confirm the 

reason why the degradation rate of this sample is much faster than the rest of the other samples. 

Initially the surface of the x = 20% sample was smoother, but upon thermal treatment, the surface 

started becoming grainier and rough as indicated by the 1𝜇𝑚 magnification image. 

Figure 8. (a) XRD data and SEM images for (b) 20%, (c) 9%, and (d) 5% Cesium-doped 

perovskite samples after 72 hours of thermal treatment. 
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The CsxMA1-xPbI3 completely degraded after 528 hours of thermal treatment. The PbI2 

peak at 12.6° showed supreme dominance over the perovskite peak at 14.08°. Figure 9(a) shows 

complete degradation for the x = 20% sample with a very low peak still located at 14.08° 

corresponding to the perovskite (110) plane peak. The x = 5% sample maintained a still visible 

height for the perovskite peak even after 528 hours of thermal treatment. The SEM images show 

the morphological degradation of the samples with complete pinhole coverage along the grains 

and GBs. 

Figure 9. (a) XRD data and SEM images for (b) 20%, (c) 9%, and (d) 5% Cesium-

doped perovskite samples after 528 hours of thermal treatment. 
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This section will discuss the MAPbI3 sample fabricated without PMMA and induced to 

thermal heating at 120℃. The XRD peaks exist at 14.08°, and 28.44° corresponding to the 

perovskite (110), and (220). The PbI2 peak started becoming prominent at 12.6°, corresponding to 

the (001) plane. Error! Reference source not found. represents the XRD data and SEM images 

captured for the duration of the experiment. Prior to thermal heating at the aggressive temperature 

of 120°C, no signs of degradation were present on the XRD data nor the SEM captured images. 

The surface of the MAPbI3 sample shows the “root-like” structure present towards the center of 

the grain, but is not as rough or as prominent in comparison to the same surface formation in the 

MAPbI3 sample heated at 85°C in Figure 6(a). The XRD data in Error! Reference source not 

found.(a) indicate that the sample suffered thermal instability upon thermal treatment and prior to 

the 24 hours reading given the relatively low perovskite peak existing at 14.08°. At the 72 hours 

reading, the perovskite peak is no longer present and the PbI2 peak at 12.6° is now five times the 

height of the original perovskite peak. The captured SEM images present some interesting data 

with the “root-like” structure almost not being present, and several dark spots forming all over the 

grain structure at the higher magnification image. Furthermore, the 1𝜇𝑚 magnification shows 

“cracked-like” structures along the grain boundaries of the sample with the high presence of 

pinholes (dark pots). Upon recording of the images at the 72 hours reading, the sample is 

completely covered in pinholes. The closer magnification shows very deep pinholes suggesting 

that the sample has decomposed the last layer of the perovskite and the sample has degraded 

completely. From the 1𝜇𝑚 magnification, it is clear to note that the grain boundary can no longer 

be differentiated from the grains, as the pinholes covered the sample completely. This suggests 
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that MA-based perovskite solar cells are prone to degradation and instability upon thermal 

treatment at higher temperatures (in this case, 120°C). 

Figure 10. (a) XRD data and SEM images captured at (b) 72hr, (c) 24hr, and (d) 0hr upon 

thermal heating of MAPbI3 samples at 120°C. 
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CHAPTER 4 

IMPROVED THERMAL STABILITY OF PEROVSKITE SOLAR CELLS WITH 

ADDED PMMA 

 

The CsxMA1-xPbI3 films fabricated in this experiment follow the fabrication procedure as 

mentioned in Section 2.1 with the added PMMA layer. The CsxMA1-xPbI3 samples successfully 

showed stability over heating at extended period of hours (close to 1000 hours) for samples heated 

at 85°C. CsxMA1-xPbI3 samples heated at 120°C sustained a shorter period of stability due to the 

aggressiveness of the thermal treatment. This section will provide a detailed discussion and 

complete analysis of the data resulting from SEM, and XRD data.   

 

4.1 MAPbI3 with PMMA heated at 85℃ 

This section will discuss the MAPbI3 sample fabricated with PMMA. The XRD peaks exist 

at 14.08°, and 28.44° corresponding to the perovskite (110), and (220) planes. In comparison to 

the XRD data presented in Figure 4, the MAPbI3 peak in this data set shows a linear increase in 

perovskite height at (110). Even after 528 hours of thermal treatment, no PbI2 peak was present at 

12.6° as observed in Figure 11. Hence, the addition of PMMA aided in the passivation defects and 

prevented the sample from degrading upon exposure to the environmental degradation factors. As 

the sample is heated over time, the passivation of PMMA into the perovskite allows for the 
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MAPbI3 sample to be less susceptible to degradation from heat. Therefore, it can be concluded 

that PMMA improved the thermal stability of the MAPbI3 sample.  

Figure 11. XRD data for the first 500 hours of measurement for MAPbI3 with PMMA 

heated at 85°C. 

 

The SEM images below show no indication of signs of degradation along the GBs and the 

grains. Figure 12shows a smooth surface with the “root-like” structure being somewhat centered 

along the grain. Upon heating for 72 hours, the “root-like” structure seems to be expanding towards 

the edge of the grains. It can be noted that in Figure 12(c) that the structure completely covers the 

grain, and formation of pinholes are starting to become more prominent along the edge of the 

grains. The SEM data shows how the structural stability of the sample reacts to the thermal 

treatment and provides a better insight about the morphological changes occurring. Although there 
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is formation of pinholes, no signs of degradation can be seen in the XRD data presented in Figure 

11. This suggests that PMMA does change the morphological structure of the surface of the 

perovskite film, and passivate defective areas forming along the grain boundary of the sample.  

 

Figure 12. SEM image for MAPbI3 with PMMA heated at 85°C for (a) 0hr, (b) 72hr, 

and (c) 528hr. 

 

 

Since the samples did not suffer or show any signs of degradation, the XRD integrated 

intensities plotted in Figure 13 correspond to the preferred orientation of MAPbI3 peaks at (110) 

and (220). The integrated intensity for the (110) plane is much higher than that of the (220) plane, 

indicating that the MAPbI3 sample fabricated preferred crystal growth along the (110) plane. 
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However, the two planes follow the same trend from which as the samples were heated over a 

period of 1000 hour.  

 

Figure 13. (a) XRD integrated intensity and (b) crystal size for planes (110) and (220) of 

MAPbI3 with PMMA heated at 85°C. 

 

Since the sample was able to withstand up to 528 hours of thermal treatment, it was 

furtherer treated to the standard thermal testing of 1000 hours. The XRD data indicates good 

thermal stability even until the 1000 hours thermal treatment. It is found that there is minor sign 

of the PbI2 peak close to 1000 hours thermal heating, as shown in  

 

Figure 14(a). This could be a clear indication of an early sign of degradation, or it could 

also be due to the noise presented during the measurement. The SEM image below shows a smooth 

surface of the MAPbI3 sample prior to thermal treatment. The “root-like” formation towards the 

center of the grain inhibits the same phenomenon as other samples upon thermal treatment, where 

the formation spreads to cover the entire grain. Prior to the thermal treatment, the SEM images 

showed no signs of degradation indicating a good film and morphological structure. Upon heating 
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for 528 hours, there are some signs of dark spots along the GBs, which could be pinholes forming. 

The XRD data, however, shows no indication of any signs of degradation or appearance of the 

PbI2 peak. After 1000 hours of thermal treatment, the SEM images showed pinholes covering the 

very small grain sizes along the surface of the MAPbI3 sample. The 10𝜇𝑚 magnification indicates 

the complete degradation of smaller grains with several pinholes covering its surface. The larger 

grain sizes exhibit more pinholes forming along the GBs, but as indicated by the XRD data, there 

is minor sign of degradation. This could still be attributed to the effect of PMMA passivation on 

the surface morphology of the perovskite sample. As the samples are heated, the PMMA passivates 

onto the defective states and prevent any moisture and air from degrading the sample within. Thus, 

even with the morphological degradation occurring at the crystal grain of the MAPbI3 sample, it 

remains stable with the help of PMMA. 
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Figure 14. (a) XRD data and SEM images for (b) 1000hr, (c) 528hr, and (d) 0hr 

thermal treatment of MAPbI3 with PMMA at 85°C. 

4.2 CsxMA1-xPbI3 with PMMA heated at 85℃ 

This section will discuss the results for the CsxMA1-xPbI3 with PMMA thermally treated 

at 85℃. The XRD peaks exist at 14.08°, and 28.44° corresponding to the perovskite (110), and 

(220). The XRD data shows the decreasing peak of the MAPbI3 height with increasing content of 

Cs as seen in  

 

Figure 15 (a). Furthermore, the SEM images show that the “root-like” structure is more 

prominent for the x = 5% sample in comparison to the x = 20% sample as can be seen in  

 

Figure 15(d) and  

 

Figure 15(b), respectively. This “root-like” structure may be one of the main indication of 

the perovskite precursor solution and increasing the cesium content reduces this shape formation.  
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Figure 15: (a) XRD data and SEM images for (b) x = 20%, (c) x = 9%, and (d) x = 5% 

CsxMA1-xPbI3 with PMMA prior to thermal treatment. 

 

After 500 hours of thermal heating, the CsxMA1-xPbI3 sample shows a slight decrease in 

the MAPbI3 peak height for the x = 9% and x = 5% sample. However, the peak for the x = 20% 

sample increases slightly in comparison to the initial reading in  

 

Figure 15(a). From the SEM image in  

 

Figure 16(b), the GBs along the small grains of the x = 20% sample is suffering from 

degradation. However, due to the addition of PMMA, these defects are passivated completely, 

given the slight increase in the perovskite peak at 14.08°. The film morphology for the x = 5% and 
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x = 9% prove to have a better film morphology than the sample with the x = 20% cesium content, 

as the grain structure for these samples are larger indicating less grain boundaries. 

 

Figure 16. (a) XRD data and SEM images for (b) x = 20%, (c) x = 9%, and (d) x = 5% 

CsxMA1-xPbI3 with PMMA after 528 hours of thermal treatment. 

 

The CsxMA1-xPbI3 were thermally treated to more than 1000 hours due to the stability of 

the previously studied MAPbI3 sample, withstanding this amount of prolonged thermal treatment. 

Error! Reference source not found. shows the XRD data after 1000 hours of thermally heating 

the samples. It is clear to note that the MAPbI3 height for the x = 20% sample had a 62% reduction. 

This sample initially had a lower poor film quality than the remaining samples, and therefore, 

confirming the higher percent increase in the perovskite peak. The remaining samples (x = 5% and 

x = 9%) saw a reduction in height but is not as significant as the reduction that the x = 20% sample 

presented after 1000 hours of thermal treatment. The appearance of the PbI2 at 12.6° could have 

appeared due to scratches on the surface of the sample allowing for defective areas to penetrate 
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the perovskite crystal structure and cause degradation. This formation of peak could also be 

referred to as XRD noise by many, and not necessarily an indication of degradation. The PbI2 peak 

height for the CsxMA1-xPbI3 is not as prominent as the PbI2 peak in the samples without PMMA 

was mentioned in Chapter 3.  This suggests that CsxMA1-xPbI3 with PMMA samples can withstand 

thermal treatment for prolonged periods of time (exceeding 1000 hours), so long as the samples 

are protected from scratches to prevent degradation from within. 

Figure 17. (a) XRD data and SEM images for (b) x = 20%, (c) x = 9%, and (d) x = 5% 

CsxMA1-xPbI3 with PMMA after 1000 hours of thermal treatment. 

4.3 MAPbI3 with PMMA heated at 120℃ 

This section will discuss the MAPbI3 samples with PMMA heated at 120℃. Samples were 

prepared as detailed win Section 2.1. The XRD peaks exist at 14.08°, and 28.44° corresponding to 

the perovskite planes at (110), and (220) and the PbI2 peak at 12.6°, corresponding to the (001) 

plane. As can be seen in  
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Figure 18. XRD data for MAPbI3 heated at 120℃ for 72 hours. 

This was confirmed by the PbI2 peak at 12.6° being four times the height of the perovskite 

peak at 14.08°. This data suggests the instability of MA-based perovskite solar cells at high 

temperatures, even with the additional help of passivated defects from PMMA. The captured SEM 

images in  

 

Figure 19 show the increase of pinhole formation over the period of heating. The “root-

like” structure mentioned previously, from which should relate to the perovskite decreases to a 

smaller diameter over time. This further confirms the degraded sample no longer have a high 

perovskite peak. , the MAPbI3 sample exhibited complete degradation between the 24 and 72 hours 

reading. Upon taking the measurement at 72 hours, the PbI2 peak height at 12.6° was already four 

times the height of the perovskite peak at 14.08°. Prior to degrading, the perovskite peak increased 

with the possibility of the PMMA passivating the defects and protecting the sample from 

degradation. Upon prolonged thermal treatment, the PMMA could no longer keep the sample 

stable due to the aggressiveness of the temperature heating 
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Figure 18. XRD data for MAPbI3 heated at 120℃ for 72 hours. 

This was confirmed by the PbI2 peak at 12.6° being four times the height of the perovskite 

peak at 14.08°. This data suggests the instability of MA-based perovskite solar cells at high 

temperatures, even with the additional help of passivated defects from PMMA. The captured SEM 

images in  

 

Figure 19 show the increase of pinhole formation over the period of heating. The “root-

like” structure mentioned previously, from which should relate to the perovskite decreases to a 

smaller diameter over time. This further confirms the degraded sample no longer have a high 

perovskite peak.  
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Figure 19. SEM images for MAPbI3 thermally heated at 120°C for (a) 0hr, (b) 24hrs, and 

(c) 72hrs. 

 

 

 

4.4 CsxMA1-xPbI3 with PMMA heated at 120℃ 

This section will discuss the results for the CsxMA1-xPbI3 with PMMA thermally heated at 

120℃. The XRD peaks exist at 14.08°, and 28.44° corresponding to the perovskite planes at (110), 

and (220) and the PbI2 peak at 12.6°, corresponding to the (001) plane. The samples in this section 

were induced to a higher heat temperature to observe whether PMMA and the additional Cs-doping 

will aid in the thermal stability of the perovskite solar cell. As Cs-based perovskites are known to 

withstand elevated temperatures reaching >300℃, we wanted to explore the effect of improving 
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the thermal stability of perovskite solar cells by doping the MA-based perovskites with cesium 

and adding PMMA to help passivate defects.  

 

Figure 20. XRD data for CsxMA1-xPbI3 with PMMA prior to thermal treatment at 

120°C. 

 

CsxMA1-xPbI3 samples were only thermally treated for 72 hours upon discovery of the high 

PbI2 peak at 12.6°. The prominence of the PbI2 peak, however, is not that high in comparison to 

the MAPbI3 sample mentioned in the previous section. Per the SEM image in  

 

Figure 21. XRD data for CsxMA1-xPbI3 with PMMA thermally treated at 120°C for 72 

hours(b), the x = 20% shows a relatively smooth feature with very few signs of pinholes. The x = 

9% sample in  
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Figure 21. XRD data for CsxMA1-xPbI3 with PMMA thermally treated at 120°C for 72 

hours(c), shows high prominence of pinholes along the GBs which led to the higher PbI2 peak in 

the XRD data.  The SEM image in  

 

Figure 21. XRD data for CsxMA1-xPbI3 with PMMA thermally treated at 120°C for 72 

hours(d) represents the x = 5%, showing signs of pinholes and scratches on the surface. However, 

even with these deformation and defects, the x = 5% sample was able to maintain similar peak 

heights for both the perovskite and PbI2 peak. In comparison to the MAPbI3 sample heated at the 

sample temperature with the same PMMA layer, this data shows clearly how the added cesium 

can aid in thermal stability of the sample. Comparing  

 

Figure 18. XRD data for MAPbI3 heated at 120℃ for 72 hours. 

This was confirmed by the PbI2 peak at 12.6° being four times the height of the perovskite 

peak at 14.08°. This data suggests the instability of MA-based perovskite solar cells at high 

temperatures, even with the additional help of passivated defects from PMMA. The captured SEM 

images in  

 

Figure 19 show the increase of pinhole formation over the period of heating. The “root-

like” structure mentioned previously, from which should relate to the perovskite decreases to a 

smaller diameter over time. This further confirms the degraded sample no longer have a high 

perovskite peak.  and  
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Figure 21. XRD data for CsxMA1-xPbI3 with PMMA thermally treated at 120°C for 72 

hours, we see that the PbI2 peak at the 72 hours reading for the MAPbI3 sample is much higher 

than the PbI2 peak for the Cs-doped samples. By doping perovskite samples with cesium, we see 

an improved thermal stability at elevated temperatures.  

 

Figure 21. XRD data for CsxMA1-xPbI3 with PMMA thermally treated at 120°C 

for 72 hours.  
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CHAPTER 5 

CONCLUSION 

This thesis demonstrated the improved stability of MAPbI3 and CsxMA1-xPbI3 perovskite 

solar cells with different concentrations of cesium (x = 5%, 9%, and 20%) with the added PMMA. 

Samples heated at 85°C without PMMA showed stability only until 72 hours before it started 

showing signs of degradation as seen in the XRD data and SEM images. Furthermore, MAPbI3 

and CsxMA1-xPbI3 heated at 85°C degraded completely after 500 hours of thermal heating. In 

comparison, samples with the added PMMA layer were able to withstand prolonged heating up to 

1000 hours. The added PMMA layer aided in passivating the defective areas along the grain 

boundaries and protected the device from degradation due to heat. To further confirm the improved 

stability of perovskite solar cells with PMMA, samples were induced to heating at 120°C. Herein, 

we observed that the samples degraded between at the 72 hours heating. The MAPbI3 sample 

showed the highest degradation rate in comparison to the samples with the cesium content. 

Because of the aggressive of the temperature, PMMA was not able to keep the sample thermally 

stable for longer periods of time. However, the Cs-doped perovskite samples were able to show 

good stability with the XRD data showing that the height difference between the perovskite peak 

and the PbI2 peak is not that high in comparison to the MAPbI3 samples. Therefore, it is clear to 

say that PMMA aided in the passivation of defects and improving the stability of perovskite solar 

cells at lower temperatures. Addition of Cs is needed, however, to further improve the thermal 

stability of perovskite solar cells at higher temperatures. 
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