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ABSTRACT

ON ANALYTIC NONLINEAR INPUT-OUTPUT SYSTEMS:

EXPANDED GLOBAL CONVERGENCE AND

SYSTEM INTERCONNECTIONS

Irina M. Winter Arboleda
Old Dominion University, 2019

Co–Directors: Dr. W. Steven Gray
Dr. Luis A. Duffaut Espinosa

Functional series representations of nonlinear systems first appeared in engineer-

ing in the early 1950’s. One common representation of a nonlinear input-output

system are Chen-Fliess series or Fliess operators. Such operators are described by

functional series indexed by words over a noncommutative alphabet. They can be

viewed as a noncommutative generalization of a Taylor series. A Fliess operator is

said to be globally convergent when its radius of convergence is infinite, in other

words, when there is no a priori upper bound on both the L1-norm of an admissible

input and the length of time over which the corresponding output is well defined. If

such bounds are required to ensure convergence, then the Fliess operator is said to

be locally convergent with a finite radius of convergence. However, in the literature,

a Fliess operator is classified as locally convergent or globally convergent based solely

on the growth rate of the coefficients in its generating series. The existing growth

rate bounds provide sufficient conditions for global convergence which are very con-

servative. Therefore, the first main goal of this dissertation is to develop a more

exact relationship between the coefficient growth rate and the nature of convergence

of the corresponding Fliess operator. This first goal is accomplished by introducing a

new topological space of formal power series which renders a Fréchet space instead of



the more commonly used ultrametric space. Then, a direct relationship is developed

between the nature of convergence of a Fliess operator and its generating series. The

second main goal of this dissertation is to show that the global convergence of Fliess

operators is preserved under the nonrecursive interconnections, namely the parallel

sum and product connections and the cascade connection. This fact had only been

understood previously in a narrow sense based on the more conservative tests for

global convergence.
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NOMENCLATURE

N The set of natural numbers

R The set of real numbers

C[t0, t1] Set of all continuous functions over the time interval [t0, t1]

X∗ Set of all words formed under the alphabet X

R〈X〉 Set of all polynomials generated by the alphabet X

Rℓ〈X〉 Set of all ℓ-dimensional vector–valued polynomials generated by the

alphabet X

R〈〈X〉〉 Set of all formal power series generated by the alphabet X

Rℓ〈〈X〉〉 Set of all ℓ-dimensional vector–valued formal power series generated

by the alphabet X

γc The minimum of the Gevrey orders associated with the series c

Rγ〈〈X〉〉 Set of all formal power series c ∈ R〈〈X〉〉 where γc = γ

RLC〈〈X〉〉 Set of all formal power series c ∈ R〈〈X〉〉 where 0 ≤ γc ≤ 1

RGC〈〈X〉〉 Set of all formal power series c ∈ R〈〈X〉〉 where 0 ≤ γc < 1

RGC〈〈X〉〉 Closure of the space RGC〈〈X〉〉 in the semi-norm topology

∂RGC〈〈X〉〉 Border of the space RGC〈〈X〉〉 in the semi-norm topology

C Catenation product

⊔⊔ Shuffle product

◦ Composition product

Eη Iterated integral associated with the word η

Fc Fliess operator associated with the formal power series c
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S∞,e Space of all series whose Fliess operators are globally or localy con-

vergent

S∞ Space of all series whose Fliess operators are globally convergent
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CHAPTER 1

INTRODUCTION

“Lo verdaderamente nuevo da miedo o

maravilla.”

– Julio Cortázar,

Historias de cronopios y de famas1

This chapter provides the background and motivation for the dissertation followed

by the main goals of the research. Finally, the basic outline of this dissertation is

presented.

1.1 BACKGROUND AND MOTIVATION

Functional series representations of nonlinear systems first appeared in engi-

neering in the early 1950’s. The most relevant functional series are the ones of

Volterra [38, 42], Wiener [38, 44], and Fliess [14, 15]. Fliess, motived by Chen’s work

on path integrals [3, 4], introduced an algebraic description of functional expansions

now known as Chen-Fliess series or Fliess operators [13–15, 27, 43]. These opera-

tors form a very general class of nonlinear input-output systems and can be viewed

as a noncommutative generalization of a Taylor series. Their algebraic nature is

especially well suited for describing system interconnections [10,11,22], feedback in-

variants [18, 20, 24], and solving system inversion problems in a nonlinear setting.

1.1.1 Fliess operators and their convergence

Let X = {x0, x1, . . . , xm} be an alphabet and X∗ the set comprised of all words

over X including the empty word, ∅, under the catenation product. A formal power

series c is a mapping c : X∗ → Rℓ, and the set of all such mappings will be denoted

by Rℓ〈〈X〉〉. The value of c at η ∈ X∗ is denoted by (c, η), and is called the coefficient

of η in c. Specifically, one can formally associate with any series c ∈ Rℓ〈〈X〉〉 a causal

m-input, ℓ-output operator, Fc, as described next. Let p ≥ 1 and t0 < t1 be given.

For a Lebesgue measurable function u : [t0, t1] → Rm, define ‖u‖p = max{‖ui‖p : 1 ≤
1What is truly new gives fear or wonder.
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i ≤ m}, where ‖ui‖p is the usual Lp-norm for a measurable real-valued function, ui,

defined on [t0, t1]. Let L
m
p [t0, t1] denote the set of all measurable functions defined on

[t0, t1] having a finite ‖ · ‖p norm and Bm
p (Ru)[t0, t1] := {u ∈ Lm

p [t0, t1] : ‖u‖p ≤ Ru}.
Assume C[t0, t1] is the subset of continuous functions in L

m
1 [t0, t1]. Define inductively

for each η ∈ X∗ the map Eη : L
m
1 [t0, t1] → C[t0, t1] by setting E∅[u] = 1 and letting

Exiη̄[u](t, t0) =

∫ t

t0

ui(τ)Eη̄[u](τ, t0) dτ, (1.1.1)

xi ∈ X , η̄ ∈ X∗, and u0 = 1. The input-output operator corresponding to c is the

Fliess operator

Fc[u](t) =
∑

η∈X∗

(c, η)Eη[u](t, t0) (1.1.2)

[14, 15]. Properties of Fliess operators, such as continuity, local convergence, global

convergence, differentiability, and analyticity have been extensively studied [14, 15,

25,41,43]. In the classical literature, the word “convergence” of a formal power series

describes the growth rate of the coefficients of the generating series. For example, if

there exist real numbers K,M > 0 such that

|(c, η)| ≤ KM |η| |η|!, ∀η ∈ X∗, (1.1.3)

where |η| denotes the length of the word η and |z| := maxi |zi| when z ∈ Rℓ, then

c is said to be locally convergent, and the set of all locally convergent formal power

series is denoted by Rℓ
LC〈〈X〉〉. This result implies that Fc constitutes a well defined

mapping from Bm
p (Ru)[t0, t0+T ] into B

ℓ
q(S)[t0, t0+T ] for sufficiently small Ru, T > 0,

where the numbers p, q ∈ [1,∞] are conjugate exponents, i.e., 1/p+1/q = 1 [25]. The

least upper bound on R := max{Ru, T}, say ρ(Fc), is called the radius of convergence

of the operator. It was shown in [7, 9] that

0 <
1

M(m+ 1)
≤ ρ(Fc).

A Fliess operator is said to be locally convergent when its radius of convergence is

finite or infinite (i.e., ρ(Fc) ≤ ∞). On the other hand, a Fliess operator is said to

be globally convergent when its radius of convergence is infinite (i.e., ρ(Fc) = ∞),

in other words, when there is no a priori upper bound on both the L1-norm of

an admissible input and the length of time over which the corresponding output is
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well defined. Finally, if such bounds are required to ensure convergence, then the

Fliess operator is said to be locally convergent with finite radius of convergence (i.e.,

ρ(Fc) < ∞). It is important to observe that the definitions of globally convergent

and locally convergent with finite radius of convergence used to describe a Fliess

operator are mutually exclusive. Figure 1 shows typical operator outputs for these

two cases, well defined for all time (left) and well defined only over a finite interval

of time (right).

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

t

y
(t

)

Fig. 1: Typical outputs of two Fliess operators: well defined for all time t > 0 and
well defined only over a finite interval of time.

Note that when a series c is locally convergent then its corresponding Fliess

operator Fc is at least locally convergent. The following example gives a particular

generating series and the nature of its Fliess operator.

Example 1.1.1. Consider the locally convergent series c =
∑∞

k=0 k! x
k
1. Observe

Fc[u](t) =
∞
∑

k=0

k!Exk
1
[u](t) =

∞
∑

k=0

Ek
x1
[u](t) =

1

1− Ex1
[u](t)

.

Setting u = 1 gives Fc[1](t) = 1/(1 − t), which has a finite escape time at t = 1.

Thus, Fc is locally convergent with finite radius of convergence.

When c satisfies the stronger condition

|(c, η)| ≤ KM |η|, ∀η ∈ X∗, (1.1.4)

the series is said to be globally convergent. The set of all such series is denoted by
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Rℓ
GC〈〈X〉〉. It was shown in [25] for this case that the series (1.1.2) defines an operator

from the extended space Lm
p,e(t0) into C[t0,∞), where

Lm
p,e(t0) := {u : [t0,∞) → Rm : u[t0,t1] ∈ Lm

p [t0, t1], ∀t1 ∈ (t0,∞)},

and u[t0,t1] denotes the restriction of u to [t0, t1]. Hence, its corresponding Fliess

operator Fc is globally convergent. The following is a global version of Example 1.1.1.

Example 1.1.2. Consider the globally convergent series c =
∑∞

k=0 x
k
1. Observe

Fc[u](t) =

∞
∑

k=0

Exk
1
[u](t) =

∞
∑

k=0

1

k!
Ek

x1
[u](t) = exp (Ex1

[u](t)) .

It is clear that for any input and length of time, the output above is always well de-

fined (In particular, u = 1 gives Fc[1](t) = et, which is an entire function). Therefore,

Fc is globally convergent.

It is important to observe that the definitions of local and global convergence

used to describe a generating series are not mutually exclusive, in fact, every globally

convergent series is also a locally convergent series since

|(c, η)| ≤ KM |η| ≤ KM |η| |η|!, ∀η ∈ X∗.

Therefore, the series c =
∑∞

k=0 x
k
1 in Example 1.1.2 is also locally convergent. This

example illustrates some of the ambiguity between the growth rate of the coefficients

of a generating series and the convergence behavior of its corresponding Fliess opera-

tor. In particular, the condition (1.1.4) was shown in [25] to be a sufficient condition

for global convergence of a Fliess operator. At present, a necessary condition is not

given in the literature. Similarly, if a Fliess operator is locally convergent with finite

radius of convergence, a precise claim about the growth rate of its corresponding

generating series is not immediately evident. So the first goal of this dissertation is

to develop an exact relationship between the growth rate of the coefficients of a gen-

erating series and the nature of the convergence of the corresponding Fliess operator.

In particular, it will be shown that (1.1.4) is very conservative as a test for global

Fliess operator convergence.



5

1.1.2 Interconnection of Fliess operators

Given two input-output systems Fc and Fd, there are three fundamental non-

recursive system interconnections normally encountered in engineering applications:

the parallel sum, the parallel product, and the cascade connection. For any admissi-

ble input, u, the parallel sum and parallel product connections as shown in Figures 2

and 3 correspond to

y = Fc[u] + Fd[u]

and

y = Fc[u]Fd[u],

respectively [14]. When Fliess operators are interconnected in a cascade fashion as

yu

Fd

Fc

+

Fig. 2: Parallel sum connection of two Fliess operators.

yu

Fd

Fc

×

Fig. 3: Parallel product connection of two Fliess operators.

shown in Figure 4, the composite system is described by

y = Fc[Fd[u]]

[10, 11]. It is known that the nonrecursive system interconnections of two Fliess

operators with locally convergent generating series are always well–posed and yield
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u
v

yFd Fc

Fig. 4: Cascade connection of two Fliess operators.

another Fliess operator in this class [5, 22]. In addition, two Fliess operators with

globally convergent generating series interconnected in a parallel sum or parallel

product manner always yield another Fliess operator in this class [41]. However, in

general this claim does not hold for the cascade connection [8, 10, 11]. The following

discussion serves as a motivating example related to the second main goal of this

dissertation.

Example 1.1.3. Consider the globally convergent series used in Example 1.1.2

c =

∞
∑

k=0

xk1.

It is easy to verify that y = Fc[u] has a bilinear state space realization [8]

ż = zu, z(0) = 1

y = z.

Cascading two such realizations gives the state space system

ż1 = z1z2, z1(0) = 1

ż2 = z2u, z2(0) = 1

y = z1.

The resulting input-output system is therefore

y(t) = Fc[Fc[u]](t) = Fc◦c[u](t),

where c ◦ c represents the generating series of the composite system. It was shown

explicitly in [10, 11] that c ◦ c has a subseries of coefficients growing faster than
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the global rate given by (1.1.4). However, since y(t) can be written in terms of a

composition of the functional Fc[u](t) = exp
(

∫ t

0
u(τ) dτ

)

, it can be shown that if

the input is well defined and absolutely integrable over any finite time interval, then

the output of the composite system is also well defined over the same interval [41].

Thus, the Fliess operator y(t) is globally convergent. For example, if the input is set

to be zero, the output is a double exponential function as shown in Figure 5, which

is real analytic.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t

-3

-2

-1

0

1

2

3

4

5

Fig. 5: Zero-input response of the cascade system Fc◦c on a double logarithmic scale
(solid line) and the function t (dotted line).

Therefore Fc◦c is a specific example of a Fliess operator which is globally convergent,

but whose generating series does not satisfy (1.1.4).

In light of the example above, the second goal of this dissertation is to precisely

describe when the nonrecursive interconnection of two globally convergent Fliess

operators is again globally convergent. In particular, the question of whether this

phenomenon could be predicted from the generating series alone is answered. It

should be stressed that this question is broader than the one addressed in [41], where

global convergence of a Fliess operator was preserved when (1.1.4) was satisfied.

Here the class of globally convergent operators is significantly enlarged. It should

also be noted in closing that this second goal is not relevant for feedback (recursive)

interconnections as global convergence is known to not be preserved in general [21,

Example 3].
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1.2 PROBLEM STATEMENT

The main goals of this dissertation are listed below.

i. Give an exact relationship between the growth rate of the coefficients of a gen-

erating series and the nature of the convergence of its corresponding Fliess op-

erator.

ii. Describe precisely when the nonrecursive interconnection of two globally con-

vergent Fliess operators is again globally convergent.

1.3 DISSERTATION OUTLINE

This dissertation is organized as follows. In Chapter 2, the necessary mathemati-

cal tools needed throughout the dissertation are presented. First, some elements from

the fundamental theory of formal power series and the nonrecursive interconnections

of two Fliess operators are described. Then, a section on topology is introduced,

some basic notation, definitions, and properties related to topological vector spaces

and in particular, locally convex topological vector spaces are summarized.

In Chapter 3, the first main goal of the dissertation is addressed. First, new and

stronger sufficient conditions on the growth rate of the coefficients of the generat-

ing series are given in order to ensure global convergence of its corresponding Fliess

operator. Then, a new space of formal power series is introduced. It requires one

to view the set of formal power series as a locally convex topological vector space

with a family of semi-norms instead of the more common ultrametric space setting.

Subsequently, an example is introduced in order to illustrate how to classify a gen-

erating series in this new space of formal power series. Finally, this new space is

proved to be a Fréchet space, and a straightforward relationship between the nature

of convergence of a Fliess operator and its generating series is given.

In Chapter 4, the second main goal of the dissertation is answered. First, the two

types of parallel interconnections, sum and product, are presented, and it is proved

that the new space of formal power series is closed under addition and shuffle product.

Finally, the cascade interconnection is addressed, and it is shown that the new space

of formal power series is closed under the composition product. These results allow

one to show that all nonrecursive interconnection of two globally convergent Fliess

operators preserve the global convergence property.
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In Chapter 5, the main conclusions of the dissertation are summarized, and future

research topics are given.



10

CHAPTER 2

MATHEMATICAL PRELIMINARIES

“Las cosas invisibles necesitan encarnarse,

las ideas caen a la tierra como palomas

muertas.”

– Julio Cortázar,

Historias de cronopios y de famas2

This chapter presents all the mathematical tools needed throughout the disser-

tation. First, some elements from the theory of formal power series are presented.

Then, the nonrecursive interconnections of two Fliess operators are described. Fi-

nally, a section on topology is provided in order to make possible the development of

an exact relationship between the growth rate of the coefficients of a generating series

and the nature of convergence of its corresponding Fliess operator in Chapter 3.

2.1 FORMAL POWER SERIES

The generating series of Fliess operators are characterized by noncommutative

formal power series. Thus, this section presents some basic notation and definitions

related to them. First, the definition of formal languages and formal power series

are introduced. Then two products of formal power series are defined: the shuffle

and composition products, along with their basic properties. These properties will

be used in Chapter 3 and Chapter 4. The majority of the presentation is based

on [2, 19].

2.1.1 Formal languages and formal power series

A finite nonempty set of noncommuting symbols X = {x0, x1, . . . , xm} is called

an alphabet. Each element of X is called a letter, and any finite sequence of letters

from X , η = xi1 · · ·xik , is called a word over X . The length of η, |η|, is the number

of letters in η. Let |η|xi
denote the number of times the letter xi ∈ X appears in

the word η. The set of all words of length k is denoted by Xk. The set of all words

2Invisible things need to be incarnated, ideas fall to the ground like dead doves.
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including the empty word, ∅, is designated by X∗. A language is any subset of X∗.

The catenation product is defined as follows.

Definition 2.1.1. The catenation product is the associative mapping

C : X∗ ×X∗ → X∗

(η, ξ) 7→ ηξ.

Clearly, for any η, ξ, ν ∈ X∗ it holds that

(ηξ)ν = η(ξν).

Also, the empty word ∅ is the identity element for C since

η∅ = ∅η = η, ∀η ∈ X∗.

The triple (X∗,C , ∅) is a free monoid of X .

Given a finite ℓ ∈ N, a formal power series in X is any mapping of the form

c : X∗ → Rℓ.

The value of c for a specific word η ∈ X∗ is denoted by (c, η) and is called the

coefficient of η in c. Typically, c is represented as the formal sum

c =
∑

η∈X∗

(c, η)η.

The coefficient (c, ∅) is referred to as the constant term. When the constant term is

zero, c is called proper. The support of c is the language

supp(c) = {η : (c, η) 6= 0}.

The order of a series c is defined as

ord(c) =







min{|η| : η ∈ supp(c)} : c 6= 0,

∞ : c = 0.

A series ĉ is said to be a subseries of c if supp(ĉ) ⊆ supp(c) and (ĉ, η) = (c, η), ∀η ∈
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supp(ĉ). The collection of all formal power series over X is denoted by Rℓ〈〈X〉〉. In
addition, the set of all series with finite support is denoted by Rℓ〈X〉. Its elements

are called polynomials. The sets Rℓ〈〈X〉〉 and Rℓ〈X〉 have considerable algebraic

structure, each admits a vector space structure over R. If c, d ∈ Rℓ〈〈X〉〉, their sum
is defined by

c + d =
∑

η∈X∗

(c + d, η)η =
∑

η∈X∗

((c, η) + (d, η))η,

and their scalar product is given by

αc =
∑

η∈X∗

(αc, η)η =
∑

η∈X∗

α(c, η)η, ∀α ∈ R.

2.1.2 Generating series for parallel connections

The following theorem relates the sum of the generating series to the parallel sum

connection of the corresponding Fliess operators.

Theorem 2.1.1. [14] Given Fliess operators Fc and Fd, where c, d ∈ Rℓ〈〈X〉〉, the
parallel sum connection Fc + Fd shown in Figure 2 has the generating series c + d.

That is,

Fc + Fd = Fc+d.

The definition of shuffle product is given below [2,14,31,35]. This product is used

to describe the parallel product connection of Fliess operators.

Definition 2.1.2. The shuffle product of two words η, ξ ∈ X∗ is the R-bilinear

mapping inductively defined as

(xiη) ⊔⊔ (xjξ) = xi(η ⊔⊔ (xjξ)) + xj((xiη) ⊔⊔ ξ),

where xi, xj ∈ X , η, ξ ∈ X∗ and with η ⊔⊔ ∅ = ∅ ⊔⊔ η = η.

The next example shows the key role of the shuffle product when working with the

product of iterated integrals.

Example 2.1.1. Let u be a piecewise continuous, real-valued function defined over

the finite interval [t0, t1]. The iterated integral Eη was defined inductively in (1.1.1)

as

Eη[u](t, t0) = Exiη̄[u](t, t0) =

∫ t

t0

ui(τ)Eη̄[u](τ, t0) dτ
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with E∅[u] = 1 and u0 = 1, since each non empty word η ∈ X∗ can be written as

η = xiη̄ where xi ∈ X and η̄ ∈ X∗. Observe that for xi, xj ∈ X the integration by

parts formula gives

Exi
[u]Exj

[u] =

∫

ui(τ)dτ

∫

uj(τ)dτ

=

∫
(

ui(τ)

∫

uj(τ1)dτ1

)

dτ +

∫
(

uj(τ)

∫

ui(τ1)dτ1

)

dτ

=

∫

ui(τ)Exj
[u]dτ +

∫

uj(τ)Exi
[u]dτ

= Exixj
[u] + Exjxi

[u]

= Exixj+xjxi
[u] = Exi ⊔⊔ xj

[u].

As a consequence, any product of two iterated integrals is a linear combination of

iterated integrals, and it can be expressed in terms of the shuffle product.

The shuffle product definition is linearly extended to any two series c, d ∈ R〈〈X〉〉
by

c ⊔⊔ d =
∑

η,ξ∈X∗

(c, η)(d, ξ)η ⊔⊔ ξ.

An equivalent expression is

c ⊔⊔ d =
∑

ν∈X∗

(c ⊔⊔ d, ν)ν,

where
(c ⊔⊔ d, ν) =

∑

η,ξ∈X∗

(c, η)(d, ξ)(η ⊔⊔ ξ, ν).

Observe that, the shuffle product is always well defined since the product is locally

finite [2]. Also, Rℓ〈〈X〉〉 forms an associative R-algebra under the catenation product

and an associative and commutative R-algebra under the shuffle product. The next

lemma assigns upper bounds to the product of multiple iterated integrals, its proof

requires the use of shuffle products. It will be essential in Chapter 3.

Lemma 2.1.1. [7, 9] Let X = {x0, x1, . . . xm}. For any u ∈ Lm
1 [0, T ] and η ∈ X∗

|Eη[u](t)| ≤ Eη[ū](t), 0 ≤ t ≤ T, (2.1.1)

where ū ∈ Lm
1 [0, T ] has components ūj := |uj|, j = 1, 2, . . .m. Furthermore, for any
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integers rj ≥ 0 it follows that

∣

∣

∣

∣

∣

m
∏

j=0

Exj
rj [u](t)

∣

∣

∣

∣

∣

≤
m
∏

j=0

U
rj
j (t)

rj!
, 0 ≤ t ≤ T,

where Uj(t) :=
∫ t

0
|uj(s)|ds. In particular, if on [0, T ] it is assumed that

max{‖u‖1, T} ≤ R then

m
∏

j=0

Exj
rj [ū](t) ≤ Rk

∏m
j=0 rj !

, 0 ≤ t ≤ T, (2.1.2)

where k =
∑

j rj.

The following theorem relates the shuffle product of the generating series to the

parallel product connection of the corresponding Fliess operators.

Theorem 2.1.2. [14] Given Fliess operators Fc and Fd, where c, d ∈ Rℓ〈〈X〉〉, the
parallel product connection FcFd shown in Figure 3 has the generating series c ⊔⊔ d.

That is,

FcFd = Fc ⊔⊔ d.

2.1.3 Composition product and the cascade connection

The composition product can be traced back to Ferfera’s work in [10,11]. However,

the interpretation utilized here first appeared in [22] . This product is used to describe

the cascade connection of Fliess operators.

Definition 2.1.3. The composition product of c and d is given by

c ◦ d =
∑

η∈X∗

(c, η)ψd(η)(1). (2.1.3)

The mapping ψd is the algebra homomorphism from R〈〈X〉〉 to the set of vector space
endomorphism on R〈〈X〉〉, End(R〈〈X〉〉), uniquely specified by ψd(xiη) = ψd(xi) ◦
ψd(η) with

ψd(xi)(e) = x0(di ⊔⊔ e),

i = 0, 1, . . . , m for any e ∈ R〈〈X〉〉, and where di is the i-th component series of d

(d0 := 1). ψd(∅) is defined to be the identity map on R〈〈X〉〉.
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This composition product is associative and R-linear in its left argument. A

commonly used metric on R〈〈X〉〉 is the ultrametric metric

dist : (c, d) 7→ σord(c−d),

where σ is any real number such that 0 < σ < 1 [2]. Rℓ〈〈X〉〉 forms a complete

ultrametric space under the mapping dist. It is important to note that the mapping

ψd is continuous in the ultrametric sense. In Chapter 4, the following subset of

Rℓ〈〈X〉〉 described will be useful.

Definition 2.1.4. [12, 14] A series c ∈ Rℓ〈〈X〉〉 is said to be exchangeable if for

arbitrary η, ξ ∈ X∗

|η|xi
= |ξ|xi

, i = 0, 1, · · · ℓ =⇒ (c, η) = (c, ξ).

The next lemma will be essential when analyzing the cascade interconnection of

two globally convergent Fliess operators in Chapter 4.

Lemma 2.1.2. [23] If c ∈ Rℓ〈〈X〉〉 is an exchangeable series, and d ∈ Rm〈〈X〉〉 is
arbitrary, then the composition product can be written in the form

c ◦ d =
∞
∑

k=0

∑

r0,r1,...,rm≥0

r0+r1+···+rm=k

(c, xr00 · · ·xrmm )ψd(x
r0
0 )(1) ⊔⊔ · · · ⊔⊔ψd(x

rm
m )(1).

The following theorem relates the composition product of the generating series

to the cascade connection of the corresponding Fliess operators.

Theorem 2.1.3. Given Fliess operators Fc and Fd, where c ∈ Rℓ〈〈X〉〉 and d ∈
Rm〈〈X〉〉, the cascade connection Fc ◦Fd shown in Figure 4 has the generating series

c ◦ d. That is,
Fc ◦ Fd = Fc◦d,

where the composition product of c and d is given by ( 2.1.3).

2.2 TOPOLOGICAL FRAMEWORK

The first main goal of this dissertation is to development an exact relationship

between the growth rate of the coefficients of a generating series and the nature of
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convergence of its corresponding Fliess operator. In order to achieve this goal a new

topological space of formal power series is introduced. It requires one to view the set

of formal power series as a Fréchet space instead of the more common ultrametric

space setting given in Section 2.1.3. Thus, this section presents some basic notation,

definitions, and properties related to topological vector spaces and in particular,

locally convex topological vector spaces. First, a few preliminaries concerning real

analysis are summarized in order to make this dissertation more self-contained. Then,

topological vector spaces and locally convex topological vector spaces are introduced

along with their Cauchy criterion and completeness properties. These will be used

throughout Chapter 3 and Chapter 4. The majority of the concepts presented in this

section have been taken from [16, 28, 33, 34, 36, 37].

2.2.1 Preliminaries

The concepts of metric, normed, and semi-normed spaces provide the foundation

concerning real analysis for this whole section. The aim is to introduce these spaces

and give some specific examples, but their theory is too extensive to describe here in

any detail. The proofs are deferred to the references.

Definition 2.2.1. A metric d on a set X is a function d : X × X → R such that

for all x, y, z ∈ X , the following hold:

1. d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y (positivity);

2. d(x, y) = d(y, x) (symmetry);

3. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

A metric space (X, d) is a set X with a metric d defined on X .

A subspace of a metric space is a subset whose metric is obtained by restricting

the metric to the subset. The following examples illustrates these concepts.

Example 2.2.1. Define the absolute–value d : R× R → R by

d(x, y) = |x− y| .

Then d is a metric on R. The natural numbers N and the rational numbers Q with

the absolute–value metric are metric subspaces of R, as is any other subspace A ⊆ R.
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Example 2.2.2. Define d : R2 × R2 → R by

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2,

where x = (x1, x2) and y = (y1, y2). Then d is a metric on R2, called the Euclidean,

or ℓ2, metric. It corresponds to the usual notion of distance between points in the

plane.

The concepts of open and closed balls are introduced next.

Definition 2.2.2. Let (X, d) be a metric space. The open ball Br(x) of radius

r > 0 and center x ∈ X is the set of points contained in

Br(x) = {y ∈ X : d(x, y) < r}.

Similarly, the closed ball B̄r(x) of radius r > 0 and center x ∈ X is the set of points

contained in

B̄r(x) = {y ∈ X : d(x, y) ≤ r}.

A ball in a metric space is analogous to an interval in R. The next examples

illustrate this idea.

Example 2.2.3. Consider R with its standard absolute–value metric defined in Ex-

ample 2.2.1. Then the open ball is the open interval of radius r centered at x, i.e.,

Br(x) = {y ∈ R : |x− y| < r}, and the closed ball is the closed interval of radius r

centered at x, i.e., B̄r(x) = {y ∈ R : |x− y| ≤ r}.

Example 2.2.4. Consider R2 with the ℓ2 metric defined in Example 2.2.2. Then,

the open ball Br(x) is an open disc of radius r centered at x, and the closed ball

B̄r(x) is the closed disc of radius r centered at x.

In general, there are no algebraic operations defined on a metric space, only a

distance function. Most of the vector spaces that have a metric on them are usually

derived from a norm. It is assumed that the reader is familiar with the basic theory

of vector spaces. The definition of semi-norm is given first. It will be used extensively

in this dissertation.
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Definition 2.2.3. Given a vector space X , a semi-norm is a function ‖·‖ : X → R,

such that

1. ‖x‖ ≥ 0;

2. ‖kx‖ = |k| ‖x‖;

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖

for all x, y ∈ X and k ∈ R.

Note that it is possible for ‖x‖ to be zero even when x is nonzero. The following

concept plays a key role when analyzing the relationship between semi-norms and

local convexity in the final subsection of this chapter.

Definition 2.2.4. A family P of semi-norms on a vector space X is said to be

separating if for each x ∈ X , x 6= 0 there corresponds at least one p ∈ P with

p(x) 6= 0 .

The definitions of a norm and a normed space are given next.

Definition 2.2.5. A normed vector space (X, ‖ · ‖) is a vector space X together

with a function ‖ · ‖ : X → R, called a norm on X , such that

1. ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0;

2. ‖kx‖ = |k| ‖x‖;

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖

for all x, y ∈ X and k ∈ R.

It is easy to see that a semi-norm is an example of a norm. The following example

shows the relationship between a metric and normed spaces.

Example 2.2.5. Given a normed vector space (X, ‖ · ‖), define d : X ×X → R as

d(x, y) = ‖x− y‖.

The positivity of d follows immediately from the first property of a norm in Defini-

tion 3.2.1. Also,

d(x, y) = ‖x− y‖ = ‖y − x‖ = d(y, x),
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which proves the symmetry of d. Finally,

d(x, y) = ‖x− z + z − y‖ ≤ ‖x− z‖+ ‖z − y‖ = d(x, z) + d(y, z)

proves the triangle inequality. Therefore, d is a metric on X , and (X, d) is a metric

space.

The next examples give some classical normed vector spaces.

Example 2.2.6. The set of real numbers R with the absolute–value norm |·| is a

one-dimensional normed vector space.

Example 2.2.7. The space R2 with the norm define for x = (x1, x2) by

‖x‖2 =
√

x21 + x22,

is a normed vector space. This norm is referred to as the ℓ2-norm or the Euclidean

norm. The corresponding metric is the Euclidean ℓ2 metric.

The concepts of open and closed sets are introduced next.

Definition 2.2.6. Let X be a metric space. A set U ⊂ X is open if for every x ∈ U

there exists r > 0 such that Br(x) ⊂ U . A set V ⊂ X is closed if V c := X \ V is

open.

The next example illustrates the previous concept.

Example 2.2.8. Let f : R → R be a continuous function. Consider U a subset of

R defined as

U = {x ∈ R : 0 < f(x)}.

Suppose y ∈ U , then f(y) > 0. Since, f is continuous, there exists some δ > 0 such

that if |x− y| < δ, then |f(x)− f(y)| < f(y). Which implies −f(y) < f(x) − f(y)

and hence 0 < f(x). That is, if x ∈ Bδ(y), then f(x) > 0. Therefore, Bδ(y) ⊂ U and

U is an open subset of R.

As expected open balls are open and closed balls are closed.

Lemma 2.2.1. Let X be a metric space. If x ∈ X and r > 0, then the open ball

Br(x) is open and the closed ball B̄r(x) is closed.
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2.2.2 Topological vector spaces

The notion of a topological space is given first.

Definition 2.2.7. A topology on X is a family τ of subsets of X that contains ∅
and X and is closed under arbitrary (countable or uncountable) unions and finite

intersections. The pair (X, τ) is called a topological space.

There are topological spaces whose topology is derived from a metric. The fol-

lowing lemma gives a characterization of a metric space using open sets. It can be

proved using Definition 2.2.6 and Lemma 2.2.1.

Lemma 2.2.2. Let X be a metric space. The following properties hold:

1. The empty set ∅ and the whole set X are open.

2. An arbitrary (countable or uncountable) union of open sets is open.

3. A finite intersection of open sets is open.

The three properties of a metric space described in the previous lemma let one to

see that every metric space is a topological space. It is enough to see that Lemma 2.2.2

verifies the definition of a topology. The resulting family of open sets is called the

metric topology of the metric space . The concepts of open and closed sets in this

topological context are introduced next.

Definition 2.2.8. Let (X, τ) be a topological space. Then a set U ⊂ X is open

with respect to τ if U ∈ τ , and a set V ⊂ X is closed with respect to τ if V c ∈ τ .

The following gives an example of a topology and illustrates the previous concept.

Example 2.2.9. Let X be any set. Then T = {∅, X} is a topology on X , called the

trivial topology. The empty set and the whole set are both open and closed, and no

other subsets of X are either open or closed.

It is important to also define the neighborhood of a point.

Definition 2.2.9. Let (X, τ) be a topological space and x ∈ X . Then a set V ⊂ X

is a neighborhood of x if it contains an open set U such that

x ∈ U ⊂ V.
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The previous concept can be generalized to sets.

Definition 2.2.10. Let (X, τ) be a topological space and B ⊂ X . Then a set V ⊂ X

is a neighborhood of B if it contains an open set U such that

B ⊂ U ⊂ V.

The following gives a classical example of a topology.

Example 2.2.10. The standard topology τ on R is defined as

τ = {D ⊂ R : D is a union of open intervals}.

The term open interval is suggestive of the fact that every such interval is an open

set. In a similar way, every closed interval is closed in this topology.

Similar to a vector space, every topological space has a basis associated to it. The

formal definition for a topological basis is given next.

Definition 2.2.11. A basis for a topology on X is a collection B of subsets of X

(called basis elements) such that X and the intersection of any two basis elements

can be represented as the union of some basis elements.

A classic example that illustrates the previous definition is given next.

Example 2.2.11. It is easy to verify that the set of all open intervals is a basis for

the standard topology τ on R, defined in Example 2.2.10.

The following lemma shows, in general, how to find such a basis.

Lemma 2.2.3. [33, Lemma 2.3] Let X be a topological space. Suppose that B is

a collection of open sets of X such that for each open set U of X and each x in U ,

there is an element B of B such that x ∈ B ⊂ U . Then B is a basis for the topology

of X.

The next definitions are classic in topology.

Definition 2.2.12. A topological space is a Hausdorff space if given x, y ∈ X

such that x 6= y, there are disjoint open sets U, V with x ∈ U and y ∈ V .
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Definition 2.2.13. A space X is said to have a countable basis at x if there is

a countable collection B of neighborhoods of x such that any neighborhood of x

contains at least one of the elements of B. A space that has a countable basis at

each of its points is said to satisfy the first countability axiom.

An example of a first countable space is given next.

Example 2.2.12. Let (X, d) be a metric space. For each x ∈ X consider the

neighborhood basis

Bx = {Br(x) : r > 0, r ∈ Q}

consisting of open balls of rational radius r around x. Clearly, Bx is a countable

neighborhood basis at x. Hence, X with the metric topology is a first countable

space.

The following definition describes another notion of countability.

Definition 2.2.14. A topological spaceX is said to satisfy the second countability

axiom if X has a countable basis for its topology.

The relationship between these countability axioms is given next.

Lemma 2.2.4. If a topological space X is second countable, then it is first countable.

It is important to mention that Lemma 2.2.3 and 2.2.4 will be used for describing

the new space of formal power series introduced in Chapter 3. The next definition is

crucial in order to properly define a topological vector space, a central concept used

in this work. First, it must be noted that on the basic definition of a vector space V ,

the scalars are members of a field F , in which case V is called a vector space over F .

In particular, if the field F is R then V is called a real vector space. On this context,

the definition of a topological field is given next.

Definition 2.2.15. A topological field is a field equipped with a topology such that

the field operations of addition, multiplication, and non-zero inversion are continuous.

The following is a main concept used throughout this work.

Definition 2.2.16. A topological vector space X over a topological field F is a

vector space which is provided with a topology such that the maps (x, y) → x+ y of

X ×X into X , and (α, x) → αx of F ×X into X , are continuous.
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The following gives an example of a topological vector space.

Example 2.2.13. Let (X, ‖ · ‖) be a normed vector space. Every norm on a vector

space generates a metric by the formula d(x, y) = ‖x−y‖ where x, y ∈ X , as shown in

Example 2.2.5. Since, X is a metric space, the metric topology endowed in X makes

it a topological space. To see that X with this metric topology is a topological vector

space, one must verify that (x, y) → x + y and (α, x) → αx are continuous. First,

note that the product topology on X×X is the topology generated by the Euclidean

product metric d× d, i.e.,

(d× d)((x1, y1), (x2, y2)) =
√

‖x1 − x2‖2 + ‖y1 − y2‖2.

In order to check if the addition is continuous, let (x0, y0) ∈ X × X and ǫ > 0. Set

δ = ǫ/
√
2. If (x, y) ∈ X ×X satisfies (d× d)((x, y), (x0, y0)) < δ, then

‖x+ y − x0 − y0‖ ≤ ‖x− x0‖+ ‖y − y0‖ ≤
√
2(d× d)((x, y), (x0, y0)) <

√
2δ = ǫ.

On the other hand, the product topology on F × X is the topology generated by

the Euclidean product metric dF × d, where dF is the usual Euclidean metric on

F = R or F = C. In order to check if the scalar multiplication is continuous, let

x0 ∈ X , α0 ∈ F and ǫ > 0. Set δ = min
{

1, ǫ
1+|α0|+‖x0‖

}

. If x ∈ X and α ∈ F satisfy

(dF × d)((α, x), (α0, x0)) < δ, then

‖αx− α0x0‖ ≤ ‖α(x− x0)‖+ ‖(α− α0)x0‖ = |α| ‖x− x0‖+ |α− α0| ‖x0‖
< (|α|+ δ)δ + ‖x0‖δ ≤ (1 + |α0|+ ‖x0‖)δ ≤ ǫ.

Thus, every normed vector space endowed with the topology given by the metric

induced by the norm is a topological vector space. In general, an arbitrary metric

space is not a topological vector space. Indeed, there exist metrics for which both

the vector space operations of addition and scalar multiplication are discontinuous.

The concept of a topological vector space given in Definition 2.2.16 uses the notion

of continuity of functions. Checking for continuity, in general, is not an easy task.

However, when the space has certain characteristics, it is possible to use the notion

of convergence instead of continuity. First, the following definition is necessary.



24

Definition 2.2.17. A directed set is a set A equipped with a binary relation .

such that

(a) α . α for all α ∈ A ,

(b) if α . β and β . γ then α . γ for all α, β, γ ∈ A ,

(c) for any α, β ∈ A there exists γ ∈ A such that α . γ and β . γ.

The next examples illustrate this concept.

Example 2.2.14. The set of natural numbers N with the usual order ≤ is a directed

set.

Example 2.2.15. Let X be a set. Consider its power set 2X ordered by set inclusion.

Note that A ⊆ A for all A ∈ 2X . Also, if A,B,C ∈ 2X with A ⊆ B and B ⊆ C, it is

immediate that A ⊆ C. Finally, if A,B ∈ 2X , then A ∪B ∈ 2X and it follows that

A ⊆ A ∪B and B ⊆ A ∪B.

Therefore, the set 2X ordered by set inclusion is a directed set.

The next example generalizes the previous one.

Example 2.2.16. Any set that is closed under binary intersections and ordered by

reverse inclusion i.e., A . B if and only if A ⊆ B, is a directed set. In particular,

let X be a topological space and pick any point x ∈ X . Then, the set formed by the

collection of all neighborhoods of x, i.e.,

Nx := {V ⊆ X : V is a neighborhood of x}

ordered by reverse inclusion is a directed set.

Directed sets are used to define nets, which generalizes the notion of a sequence.

Definition 2.2.18. A net in X is a mapping α→ xα from a directed set A into X .

It is usually denoted as 〈xα〉α∈A, and it is said that 〈xα〉 is indexed by A.
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In a general topological space, sequences cannot be used to fully characterize the

topology. Sequences associate a point in X to every natural number. Nets are more

general, they associate a point to every element in a directed set. As will be shown

shortly, under certain conditions a net can be used to describe the topology. The

next examples illustrate the idea of a net using the directed sets defined above.

Example 2.2.17. Consider N equipped with ≤ as in Example 2.2.14. Note that

every function f : N → N is a net.

Example 2.2.18. Let X be any set. It is easy to check that any net in X indexed

by (N,≤) is a sequence in X . Specifically, any sequence xn is a function on N, and

thus, every sequence on N is a net.

Nets are one of the tools used in topology to generalize certain concepts from a

metric space to a topological point of view. For example, the notion of convergence

in a metric space is defined using sequences. However, in a topological vector space

it is described using nets. The next definition is needed in order to properly define

convergence in this context.

Definition 2.2.19. Let X be a topological vector space and E a subset of X . A

net 〈xα〉α∈A in X is eventually in E if there exists α0 ∈ A, such that xα ∈ A for all

α & α0.

The general definition of convergence in a topological vector space is as follows.

Definition 2.2.20. A net 〈xα〉α∈A in X is said to converge to x if for every neigh-

borhood U of x, 〈xα〉α∈A is eventually in U .

First, countable spaces have the convenient property that such concepts as closure

and continuity can be characterized in terms of sequential convergence as noted

in [16, p. 116]. Therefore, the following theorem can be used in conjunction with

Definition 2.2.16 in order to use the notion of convergence instead of continuity in

the context of topological vector spaces.

Theorem 2.2.1. [33, Theorem 1.1 (b)] Let X be a space satisfying the first count-

ability axiom. Then the function f : X → Y is continuous if and only if for every

convergent sequence (xn) in X converging to x, the sequence (f(xn)) converges to

f(x).
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2.2.3 Locally convex topological vector spaces

In functional analysis, locally convex spaces are by far the most important class

of topological vector spaces. First consider the basic definition of a convex subset.

Definition 2.2.21. A set A is said to be convex, if x, y ∈ A then tx+ (1− t)y ∈ A

for 0 ≤ t ≤ 1. In addition, A is called an absolutely convex set if given x, y ∈ A

then tx+ σy ∈ A, when t + σ ≤ 1 and 0 ≤ σ ≤ 1.

In the context of topological vector spaces, this concept yields the following defi-

nition.

Definition 2.2.22. A locally convex topological vector space is a topological

vector space such that there is a base for the topology consisting of convex sets.

An example of a locally convex topological vector space is given below.

Example 2.2.19. Consider the normed vector space (X, ‖ · ‖) endowed with the

topology given by the metric induced by the norm. It was shown in Example 2.2.13

that this is a topological vector space. In addition, it is easy to see that the collection

of open balls in X ,

Br(x) = {y ∈ X : ‖x− y‖ < r},

is a basis for the topology of X . Furthermore, if y, z ∈ Br(x) and 0 ≤ t ≤ 1, then it

follows that

‖ty + (1− t)z‖ = ‖t(y − x) + (1− t)(z − x)‖
≤ t‖y − x‖+ (1− t)‖z − x‖ ≤ tr + (1− t)r = r.

Therefore, ty + (1 − t)z ∈ Br(x), which shows that open balls in X are convex

sets. Hence, the space X with the topology induced by the norm is a locally convex

topological vector space.

The following notion will play a key part when analyzing the relationship between

semi-norms and local convexity.

Definition 2.2.23. Let A be a convex set in a topological vector space X . The

Minkowski functional or gauge functional, µA associated with A is

µA(x) = inf{t > 0 : x ∈ tA} (x ∈ X),
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where x ∈ A, and the notation tA denotes the set tA := {ta : a ∈ A}.

The next example illustrates a special case of a Minkowski functional.

Example 2.2.20. Consider a vector space X with the norm ‖ · ‖. Let A be the open

ball of radius one in X . Define the function muA from X to the real numbers, by

µA(x) = inf{r > 0 : x ∈ rA} = inf{r > 0 : x ∈ rBx(1)} = inf{r > 0 : x ∈ Bx(r)},

where x ∈ X . It is easy to see that µA(x) is actually the norm in the space X , i.e.,

µA(x) = ‖x‖.

As noted in [37, p. 25], semi-norms are closely related to local convexity in two

ways: In every locally convex space there exists a separating family of semi-norms.

Conversely, if P is a separating family of semi-norms on a vector space X , then P

can be used to define a locally convex topology on X . The first statement, related

to locally convex spaces, implies the next theorem.

Theorem 2.2.2. [37] Every locally convex topology X is induced by a family of

semi-norms.

The key idea behind the proof is to consider the Minkowski functionals associated

with each absolutely convex open neighborhood of zero in X . Then, the semi-norms

on X will turn out to be precisely the Minkowski functionals (see Theorem 1.36 part

(b) in [37] for details). On the other hand, the second statement noted in [37, p. 25],

related to a family of semi-norms on a vector space, implies the following theorem.

Theorem 2.2.3. [16, Theorem 5.14] Let {pα}α∈A be a family of semi-norms on the

vector space X. For x ∈ X,α ∈ A, and ǫ > 0, let

Ux,α(ǫ) = {y ∈ X : pα(y − x) < ǫ},

and let τ be the topology generated by the basis elements Ux,α(ǫ). Then the following

statements hold:

(a) For each x ∈ X, the finite intersections of the sets Ux,α(ǫ) (α ∈ A, ǫ > 0) form a

neighborhood base at x.

(b) If 〈xα〉α∈A is a net in X, then xi → x if and only if pα(xi−x) → 0 for all α ∈ A.
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(c) (X, τ) is a locally convex space.

When a vector space has a family of semi-norms, then the Definition 2.2.12 related

to the Hausdorff property can be rewritten as follows.

Theorem 2.2.4. [16, Theorem 5.16 (a)] Let X be a vector space with the topology

defined by a family {pα}α∈A of semi-norms. Then X is Hausdorff if and only if for

each x 6= 0 there exists α ∈ A such that pα(x) 6= 0.

The next example shows how Theorem 2.2.3 helps one to recognize a locally

convex topological vector space when a family of semi-norms is given without having

to use the formal definition in Definition 2.2.22. Two definitions needed for the

following example are given next.

Definition 2.2.24. A collection A of subsets of a space X is said to cover X , or

to be a covering of X , if the union of the elements of A is equal to X . It is called

an open covering of X if its elements are open subsets of X .

Definition 2.2.25. A space X is said to be compact if every open covering A of

X contains a finite subcollection that also covers X .

Example 2.2.21. Let X be topological vector space. Consider the vector space

C(X,R) of all continuous real-valued functions on X . For a compact set K ⊆ X ,

define the semi-norm on C(X,R) by

pK(f) = sup{|f(x)| : x ∈ K}.

The topology induced by the family of semi-norms {pK : K ⊆ X compact} is called

the compact-open topology. Furthermore, C(X,R) endowed with this topology is a

locally convex space by Theorem 2.2.3.

Finally, there are two essential topics to be considered when studying a topological

vector space: the Cauchy criterion and completeness. In the context of metric spaces,

these concepts can be defined entirely using sequences. However, in the context of

topological vector spaces, nets are used in place of sequences. The next definition

illustrates this fact for the Cauchy criterion.

Definition 2.2.26. A net 〈xα〉α∈A in topological vector space X is called a Cauchy

net if the net 〈xi − xj〉(i,j)∈A×A converges to zero in X . The set A×A is a directed

set defined as (i, j) . (i′, j′) if and only if i . i′ and j . j′.
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The next definition regarding completeness is analogous to that for metric spaces.

Definition 2.2.27. A topological vector space is said to be complete if every

Cauchy net converges.

As described in the previous subsection, for first countable spaces, questions re-

lated to closure and continuity reduce to questions about sequences. Furthermore,

in a first countable space (for example, a metric space) every Cauchy net reduces to

a Cauchy sequence, as shown in the next theorem.

Theorem 2.2.5. Let X be a locally convex topological vector space. If X is first

countable and 〈xα〉α∈A is a Cauchy net, then there exists a map f : N → A, such that

〈xf(n)〉n∈N is a Cauchy sequence.

Hence, in first countable spaces, analyzing convergence of nets is equivalent to

analyzing convergence of sequences. Also, as expected, the completeness of these

spaces is completely characterized by Cauchy sequences. In this context, it is im-

portant to observe that not every net corresponds to a sequence. The next example

illustrates this fact.

Example 2.2.22. Consider R with the usual topology. Let I = [1,+∞) and for all

i ∈ I set

ci =
1

i
.

Then, {ci}i∈I is a Cauchy net using the usual order ≤ in the interval I. Clearly, this

net converges to 0. However, {ci}i∈I is not a Cauchy sequence.

The following definition is classical.

Definition 2.2.28. A complete normed vector space with respect to the metric

induced by its norm is called a Banach space.

Two standard examples are given next.

Example 2.2.23. The space R2 with the Euclidean, ℓ2–norm is a normed vector

space as shown in Example 2.2.7. Let (xn,1, xn,2) with n ∈ N be a Cauchy sequence

in R2. Pick ǫ > 0. Since the real line R is complete, there exist y1, y2 ∈ R and

N1, N2 ∈ N such that

|xn,k − yk| <
ǫ

2
, ∀nk > Nk,
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where k ∈ {1, 2}. Thus, for all n1 > N1 and n2 > N2 it follows that

‖(xn,1, xn,2)− (y1, y2)‖2 =
√

(xn,1 − y1)2 + (xn,2 − y2)2

≤ |xn,1 − y1|+ |xn,2 − y2| <
ǫ

2
+
ǫ

2
= ǫ.

Therefore, every Cauchy sequence converges, that implies that R2 with the ℓ2–norm

is a Banach space.

Example 2.2.24. Let p ≥ 1 and f a measurable real–valued function defined on the

interval [t0, t1] ⊆ R. Define the norm

‖f‖p =
(
∫ t1

t0

|f |p dt
)1/p

.

This norm is referred to as the Lp-norm. In addition, the set of all measurable

functions defined on [t0, t1] having a finite ‖·‖p is denoted by Lp[t0, t1]. An important

property is that Lp[t0, t1] is a Banach space. The proof, which is rather long, can be

found in [36].

The most important type of locally convex topological vector space is a Fréchet

space.

Definition 2.2.29. A complete Hausdorff topological vector space whose topology

is defined by a countable family of semi-norms is called a Fréchet space.

It is important to note that every Banach space with the metric induced by its

norm is a Fréchet space, since the space is complete with respect to this metric.

However, not every Fréchet space is a Banach space, even more, some Fréchet spaces

do not have a metric associated to them. The following are known examples of

Fréchet spaces.

Example 2.2.25. Consider the Example 2.2.21. If X is a compact space, then the

locally convex topological vector space C(X,R) is a Fréchet space.

Example 2.2.26. Consider the vector space C∞[0, 1] of all infinitely differentiable

functions f : [0, 1] → R and define the following semi-norms

pk(f) = sup
0≤x≤1

∣

∣f (k)(x)
∣

∣ , k = 0, 1, · · · ,
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where f (k) denotes the k–th derivative of f and f (0) := f . The space C∞[0, 1] with

the family of semi-norms pk(f)k∈N is a Fréchet space.

Example 2.2.27. Consider the extended space Lm
p,e(t0) defined as

Lm
p,e(t0) := {u : [t0,∞) → Rm : u[t0,t1] ∈ Lm

p [t0, t1], ∀t1 ∈ (t0,∞)},

where u[t0,t1] denotes the restriction of the measurable real–valued function u to

[t0, t1], and Lp[t0, t1] is as defined in Example 2.2.24. An important property is that

Lm
p,e(t0) is a Fréchet space. The proof, which is rather long, can be found in [26].
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CHAPTER 3

EXPANDED SET OF GLOBALLY CONVERGENT

FLIESS OPERATORS

“Un cronopio pequeñito buscaba la llave de

la puerta de la calle en la mesa de luz, la

mesa de luz en el dormitorio, el dormitorio

en la casa, la casa en la calle. Aqúı se

deteńıa el cronopio, pues para salir a la

calle precisaba la llave de la puerta”

– Julio Cortázar,

Historias de cronopios y de famas 3

The goal of this chapter is to develop an exact relationship between the growth

rate of the coefficients of a generating series and the nature of the convergence of its

corresponding Fliess operator. As noted in Chapter 1, in the classical literature, the

word “convergence” of a formal power series is not trivially related to the convergence

of its corresponding Fliess operator. The “convergence” of a formal power series

describes only the growth rate of its coefficients, while the convergence of a Fliess

operator is related to the bounds on both the L1-norm of an admissible input and

the length of time over which the corresponding output is well defined.

In particular, observe that the Fliess operator’s definitions of globally convergent

and locally convergent with finite radius of convergence related to the operator are

mutually exclusive. A Fliess operator cannot be both globally and locally convergent

with finite radius of convergence at the same time, it will always fall into exactly

one category. However, the same cannot be said regrading the classical definition of

convergence concerning generating series. In this case, the definitions of locally and

globally convergence are notmutually exclusive. It is clear that every globally conver-

gent series is also a locally convergent series as shown at the end of Subsection 1.1.1

in Chapter 1. In the presence of all this confusing terminology, this dissertation aims

3A little cronopio looked for the key to the street door on the night table, the night table in the
bedroom, the bedroom in the house, the house in the street. Here the cronopio stopped, because
to go out to the street he needed the key to the door.
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to clarify the situation by giving a straightforward relationship between the nature

of convergence of a Fliess operator and its generating series.

In order to achieve this objective, the chapter is organized as follows: In Sec-

tion 3.1 sufficient conditions on the growth rate of the coefficients of the generating

series are given in order to ensure convergence of its corresponding Fliess opera-

tor. The result significantly expands the class of globally convergent Fliess operators

based on the condition (1.1.4). Next, Section 3.2 introduces the new space of formal

power series. It requires one to view the set of formal power series as a locally convex

topological vector space with a family of semi-norms instead of the more common

ultrametric space setting. Subsequently, in Section 3.3 an example is introduced

in order to illustrate how to classify a generating series in the new space of formal

power series. Finally, Section 3.4 gives the precise relationship between the growth

rate of the coefficients generating series and the nature of the convergence of its

corresponding Fliess operator via the two main theorems.

3.1 SUFFICIENT CONDITIONS FOR GLOBAL CONVERGENCE

In [25], the sufficient condition (1.1.4) for global convergence of a Fliess operator

was given. In this section, a less restrictive sufficient condition is developed in terms

of the Gevrey order of the generating series. The following definition based on [1,6,17]

is needed. It is assumed throughout that X = {x0, x1, . . . , xm}. Also, there is no loss

of generality in assuming ℓ = 1.

Definition 3.1.1. A series c ∈ R〈〈X〉〉 is Gevrey of order s ∈ [0,∞) if there exists

constants K,M > 0 such that

|(c, η)| ≤ KM |η|(|η|!)s, ∀η ∈ X∗. (3.1.1)

Clearly a Gevrey series of order s is also of order s′ if s′ > s.

The following example illustrates the previous definition.

Example 3.1.1. Consider the series c ∈ R〈〈X〉〉 and K,M > 0 such that

|(c, η)| = KM |η|(|η|!)2, ∀η ∈ X∗.

Clearly, c is Gevrey of order s ∈ [2,∞).
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It is important to note that if a series c ∈ R〈〈X〉〉 has a growth rate given

by (1.1.3) and no other information is known (for example, a more restrictive growth

condition), then the series c is Gevrey of order s ∈ [0,∞). To see this assertion

consider the next three examples.

Example 3.1.2. Consider the series c ∈ R〈〈X〉〉 and K,M > 0 such that

|(c, η)| = KM |η| |η|!, ∀η ∈ X∗.

Clearly, the growth rate of the coefficients of the series satisfies (1.1.3). Hence, c is

Gevrey of order s ∈ [1,∞).

Example 3.1.3. Consider the series c ∈ R〈〈X〉〉 and K,M > 0 such that

|(c, η)| = KM |η|(|η|!)1/2, ∀η ∈ X∗.

In which case, the growth rate of the coefficients of the series satisfies (1.1.3) since

|(c, η)| = KM |η|(|η|!)1/2 ≤ KM |η| |η|!, ∀η ∈ X∗.

In fact, c is Gevrey of order s ∈ [1/2,∞).

The examples above illustrate that the stricter the growth condition on the coef-

ficient, the larger the interval of the Gevrey order. Also, it is important to note that

the Gevrey order is always an interval with upper bound being infinity. However, its

lower bound is a number greater or equal to zero, this lower bound will play a key

role in the following subsection.

3.1.1 Classification of formal power series using Gevrey order

The following definition plays a key role in the classification of formal power series

henceforth.

Definition 3.1.2. Given a series c ∈ R〈〈X〉〉, define γc as the minimum of all s for

which c is Gevrey of order s, i.e.,

γc := min{s ∈ [0,∞) : s satisfies (3.1.1)}.



35

For example, if c satisfies the growth condition (1.1.4) then γc = 0. If it satis-

fies (1.1.3), it is only known that γc ∈ [0, 1]. The set of all generating series with

minimum Gevrey order γ is denoted by Rγ〈〈X〉〉. Specifically, a series c ∈ Rγ〈〈X〉〉
if and only if γc = γ. When c ∈ R1〈〈X〉〉, the series provides for a type of local

convergence for Fc, while the condition c ∈ R0〈〈X〉〉 provides global convergence

for Fc. This new concept can be used to introduce a new definition for the symbol

RGC〈〈X〉〉: Fix a series c ∈ R〈〈X〉〉. If 0 ≤ γc < 1 then the set of all such generating

series will be designated by RGC〈〈X〉〉. On the other hand, when 0 ≤ γc ≤ 1 then

Fc constitutes a well defined mapping from Bm
p (Ru)[t0, t0 + T ] into B

(
qSu)[t0, t0 + T ]

for sufficiently small Ru, T > 0, where the numbers p, q ∈ [1,∞] are conjugate expo-

nents, i.e., 1/p + 1/q = 1 [25]. The set of all such generating series will be denoted

by RLC〈〈X〉〉.
Henceforth, this dissertation will avoid referring to the “old terminology”. Mean-

ing, phrases like global convergent series and local convergent series will not be used.

Also, the new interpretation given to the symbols RLC〈〈X〉〉 and RGC〈〈X〉〉 will be
used for the remainder of the dissertation. In order to better visualize the situation,

see Figure 6. It summarizes the classification of formal power series using Gevrey

order under the new nomenclature.

R〈〈X〉〉
RLC〈〈X〉〉

RGC〈〈X〉〉

R1〈〈X〉〉
(shaded area
plus dotted line)

Fig. 6: Classification of generating series by Gevrey order.

Note that
⋃

0≤s≤1

Rγ〈〈X〉〉 = RLC〈〈X〉〉,

all Rγ〈〈X〉〉 with 0 ≤ s ≤ 1 are pairwise disjoint, and

⋂

0≤s≤1

Rγ〈〈X〉〉 = ∅.



36

This later fact implies that the new classification using the minimum Gevrey order

(specifically, γc) gives a partition of the set RLC〈〈X〉〉. In particular,

⋃

0≤s<1

Rγ〈〈X〉〉 = RGC〈〈X〉〉.

The next subsection justifies the new notation RGC〈〈X〉〉.

3.1.2 Convergence in the RGC〈〈X〉〉 space

It is known that when c ∈ R0〈〈X〉〉 ⊂ RGC〈〈X〉〉, its associated Fliess operator

Fc is globally convergent [25]. However, in general, when c ∈ RGC〈〈X〉〉 it is only

known that Fc is at least locally convergent since RGC〈〈X〉〉 ⊂ RLC〈〈X〉〉. The next

theorem makes a stronger claim.

Theorem 3.1.1. If c ∈ RGC〈〈X〉〉, then for any u ∈ Lm
1 [0, T ] the series

y(t) = Fc[u](t) =
∑

η∈X∗

(c, η)Eη[u](t)

converges absolutely and uniformly on [0, T ] for any T > 0.

Proof: If c ∈ RGC〈〈X〉〉, then there exist constants K,M > 0 such that

|(c, η)| ≤ KM |η|(|η|!)γc , ∀η ∈ X∗,

where 0 ≤ γc < 1. Fix some T > 0. Pick any u ∈ Lm
1 [0, T ] and let R = max{‖u‖1, T}.

Observe that from (2.1.1)

Fc[u](t) =
∑

η∈X∗

(c, η)Eη[u](t)

≤
∑

η∈X∗

|(c, η)| |Eη[u](t)|

≤
∞
∑

k=0

KMk(k!)γc
∑

η∈Xk

Eη[ū](t)

=
∞
∑

k=0

KMk(k!)γc
∑

r0,r1,...,rm≥0

r0+r1+···+rm=k

m
∏

j=0

Exj
rj [ū](t),
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where the identities

∑

η∈Xk

η =
∑

r0,r1,...,rm≥0

r0+r1+···+rm=k

xr00 ⊔⊔xr11 ⊔⊔ · · · ⊔⊔ xrmm , k ≥ 0

and EηEξ = Eη ⊔⊔ ξ were used in the last step. Then from (2.1.2) it follows that

Fc[u](t) ≤
∞
∑

k=0

KMk(k!)γc
∑

r0,r1,...,rm≥0

r0+r1+···+rm=k

Rk

∏m
j=0 rj !

=
∞
∑

k=0

K(MR)k(k!)γc
∑

r0,r1,...,rm≥0

r0+r1+···+rm=k

1
∏m

j=0 rj !

=

∞
∑

k=0

K(MR)k(k!)γc
(m+ 1)k

k!

=
∞
∑

k=0

K(MR(m + 1))k
1

(k!)1−γc
. (3.1.2)

Applying the ratio test to the sequence

ak := K
(MR(m + 1))k

(k!)1−γc
, k ≥ 0

and using the fact that 0 < 1− γc ≤ 1:

lim
k→∞

∣

∣

∣

∣

ak+1

ak

∣

∣

∣

∣

= lim
k→∞

(MR(m+ 1))k+1

((k + 1)!)1−γc

(k!)1−γc

(MR(m+ 1))k

= (MR(m+ 1)) lim
k→∞

1

(k + 1)1−γc

= 0.

Thus, the series Fc[u](t) converges absolutely and uniformly on [0, T ].

The following result it is an immediate consequence of Theorem 3.1.2.

Theorem 3.1.2. If c ∈ RGC〈〈X〉〉, then the series ( 1.1.2) defines an operator from

the extended space Lm
p,e(0) into C[0,∞) and its corresponding Fliess operator Fc is

globally convergent.

The notion of a bounding function has proved useful in computing the radius of

convergence for Fliess operators [41].
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Definition 3.1.3. Let B and fbe real–valued functions defined on the interval

[0, T ], T > 0. B is a bounding function of f if and only if f is bounded pointwise

by B, i.e.,

B(t) ≤ f(t), ∀t ∈ [0, T ].

The next corollary follows directly from (3.1.2). It describes a class of bounding

functions for Fliess operators with generating series in RGC〈〈X〉〉.

Corollary 3.1.1. Suppose c ∈ RGC〈〈X〉〉 with 0 ≤ γc < 1 and growth constants

K,M > 0. Then for any u ∈ Lm
1 [0, T ] and T > 0, the function

y(t) = Fc[u](t) =
∑

η∈X∗

(c, η)Eη[u](t)

has a bounding function

B(t) =
∞
∑

k=0

K(MR(t)(m+ 1))k
1

(k!)1−γc
,

where R(t) := max{‖u‖1,[0,t], t}, t ∈ [0, T ]. (Here ‖ · ‖1,[0,t] denotes the 1-norm

restricted to the interval [0, t].)

The next example illustrates the use of Theorem 3.1.2 and Corollary 3.1.1.

Example 3.1.4. Consider the single-input, single-output (SISO) Wiener system as

shown in Figure 7, where ż = u with z(0) = 0 and h(z) = ez. In which case, direct

yu
z

h 

Fig. 7: SISO Wiener system.

substitution of z into h gives

y(t) =
∞
∑

k=0

(z(t))k

k!
=

∞
∑

k=0

(Ex1
[u](t))k

k!
=

∞
∑

k=0

Ex1
⊔⊔ k [u](t)

k!
=

∞
∑

k=0

k!Ex1
k [u](t)

k!

=

∞
∑

k=0

Ex1
k [u](t) = Fc[u](t).
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Note that the generating series is c =
∑∞

k=0 x1
k, and Fc is globally convergent as

shown in Example 1.1.2. Moreover, c is Gevrey of order s ∈ [0,∞) with γc = 0, and

its growth constants are K = M = 1. Then, c ∈ RGC〈〈X〉〉. For any T > 0 and

u ∈ L1[0, T ], let R(t) = max{‖u‖1,[0,t], t} on [0, T ]. It follows from Corollary 3.1.1

that for any t ∈ [0, T ]

Fc[u](t) =
∞
∑

k=0

Ex1
k [u](t) ≤

∞
∑

k=0

2kR(t)k

k!
= e2R(t) = B(t).

This example is consistent with the fact that a series c ∈ R〈〈X〉〉 with growth con-

dition given by (1.1.4), i.e, c ∈ R0〈〈X〉〉, is known to have exponential bounding

function [25].

The final theorem of this section is a generalization of the previous example. That

is, in light of Theorem 3.1.2, when 0 ≤ γc < 1, the corresponding Fliess operator is

well defined on [0, T ] for any T > 0. Therefore, as in the γc = 0 case, it may also have

a bounding function which is entire. To develop this result, the following technical

lemma and definition are needed first.

Lemma 3.1.1. For any integer l ≥ 0 and 0 < r ≤ 1 such that lr ≫ 1 it follows that

(lr)! ≤ KrM
l
r(l!)

r,

where Kr = ((2π)1−rr)1/2 and Mr = rr.

Proof: Using Stirling’s formula, O(k!) = O(
√
2πk

(

k
e

)k
), observe

O((lr)!) = O
(

√
2πlr

(

lr

e

)lr
)

= O





√
2πlr

(√
2πl
)r (r

r)l(l!)r





= O
(

1

l(1−r)/2
((2π)1−rr)1/2(rr)l(l!)r

)

.

Noting that 1/l(1−r)/2 ≤ 1, it follows that

O((lr)!) ≤ O(((2π)1−rr)1/2(rr)l(l!)r)

The following definition introduces the concept of a Mittag-Leffler function as a
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generalization of an exponential function.

Definition 3.1.4. [30] The Mittag-Leffler function is

Eα,β(t) =
∞
∑

k=0

tk

Γ(αk + β)
,

where t, α, β are real numbers and α, β > 0. In particular, E1,1(t) = et.

Finally, in the following theorem, a general bounding function for the Fliess op-

erator with any generating series in RGC〈〈X〉〉 is given in terms of a Mittag-Leffler

function.

Theorem 3.1.3. Suppose c ∈ RGC〈〈X〉〉 with 0 ≤ γc < 1 and growth constants

K,M > 0. Let R(t) = max{‖u‖1,[0,t], t} on the interval [0, T ]. Then a bounding

function for Fc[u](t) is

B(t) = KKs̄E−s̄,1(Ms̄A(t)),

where s̄ = γc − 1, A(t) =MR(t)(m + 1), Ks̄ = (−(2π)1+s̄s̄)1/2 and Ms̄ = (−s̄)−s̄.

Proof: Setting A(t) =MR(t)(m+1), it follows from Corollary 3.1.1 that the bound-

ing function

B(t) = K
∞
∑

k=0

1

k!−s̄
A(t)k

applies. Using Lemma 3.1.1 with l = k and r = −s̄ when k ≫ 1 gives

B(t) ≤ K

∞
∑

k=0

Ks̄Ms̄
k

(−ks̄)!A(t)
k = KKs̄

∞
∑

k=0

1

Γ(−ks̄ + 1)
(Ms̄A(t))

k = KKs̄E−s̄,1(Ms̄A(t)),

where Ks̄ = (−(2π)1+s̄s̄)1/2 and Ms̄ = (−s̄)−s̄.

Note that, in particular, when c ∈ R0〈〈X〉〉 ⊂ RGC〈〈X〉〉 then γc = 0. Therefore,

using Theorem 3.1.3 the bounding function for Fc[u](t) is as expected an exponential

function,

KKs̄E−s̄,1(Ms̄A(t)) = KE1,1(A(t)) = KeMR(t)(m+1).

3.2 SPACES OF FORMAL POWER SERIES S∞,E AND S∞

A new space of formal power series, denoted by S∞, is needed in order to develop

a clear relationship between a generating series and its Fliess operator in the context
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of convergence. First, in subsection 3.2.1 a set of normed linear spaces S∞(R), R > 0

is defined. The main properties related to these spaces are then presented. Next,

in subsection 3.2.2 the topological properties of the S∞ are given. In particular, it

is shown that S∞ is a locally convex topological vector space with a family of semi-

norms. In subsection 3.2.3 a description of the relationship between the topology

induced on the S∞ space and the usual ultrametric topology is illustrated via exam-

ples. Finally, in subsection 3.2.4, the main relationships between the various spaces

are fully development.

3.2.1 The S∞(R) spaces

The following norm is of central importance in this work.

Definition 3.2.1. Let c ∈ R〈〈X〉〉. For any real number R > 0,

‖c‖∞,R := sup
η∈X∗

{

|(c, η)| R
|η|

|η|!

}

.

Define the following family of normed linear spaces:

S∞(R) := {c ∈ R〈〈X〉〉 : ‖c‖∞,R <∞},

where the addition and scalar multiplication are defined as in Subsection 2.1.1. It is

clear that S∞(R) is closed under addition and scalar multiplication since

‖c+ d‖∞,R = sup
η∈X∗

{

|(c+ d, η)| R
|η|

|η|!

}

≤ sup
η∈X∗

{

|(c, η)| R
|η|

|η|!

}

+ sup
η∈X∗

{

|(c, η)| R
|η|

|η|!

}

= ‖c‖∞,R + ‖d‖∞,R

for all c, d ∈ S∞(R), and

‖αc‖∞,R = sup
η∈X∗

{

|(αc, η)| R
|η|

|η|!

}

≤ |α| sup
η∈X∗

{

|(c, η)| R
|η|

|η|!

}

= |α| ‖c‖∞,R

for all c ∈ S∞(R), α ∈ R. Also, define:

S∞,e :=
⋃

R>0

S∞(R)
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and
S∞ :=

⋂

R>0

S∞(R).

It is easy to verify that each space S∞(R) is Hausdorff, since every metric space is

Hausdorff. The next theorem shows how two different norms for the same series are

related.

Theorem 3.2.1. Let 0 < R < R′. For any c ∈ R〈〈X〉〉,

‖c‖∞,R ≤ ‖c‖∞,R′.

Proof: If 0 < R < R′, then

‖c‖∞,R = sup
η∈X∗

{

|(c, η)| R
|η|

|η|!

}

≤ sup
η∈X∗

{

|(c, η)| R
′|η|

|η|!

}

= ‖c‖∞,R′.

An immediate consequence of this theorem is that the spaces S∞(R), R > 0 are

nested as shown in Figure 8.

Corollary 3.2.1. If 0 < R < R′, then, S∞(R′) ⊂ S∞(R).

Proof: If c ∈ S∞(R′), then ‖c‖∞,R′ < ∞. Thus, by Theorem 3.2.1 it follows that

‖c‖∞,R <∞, which implies c ∈ S∞(R).

R〈〈X〉〉
S∞,e

S∞(R)

S∞(R′)
•

•
•

S∞

Fig. 8: The spaces S∞,e, S∞(R) and S∞ are nested.

The following example gives a series in the space S∞.
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Example 3.2.1. Consider the series

c =
∞
∑

n=0

xn0 .

For any R > 0

‖c‖∞,R = sup
n≥0

{

|(c, xn0 )|
Rn

n!

}

= sup
n≥0

Rn

n!
= k <∞,

where k is a constant depending on R. Therefore, c ∈ S∞(R) ⊂ S∞,e. In addition,

c ∈ S∞ since c ∈ S∞(R), ∀R > 0.

The next example describes a series in the complement of S∞, i.e, S∞,e \ S∞.

Example 3.2.2. Consider the series

c =
∞
∑

n=0

2nn! xn0 .

For any R > 0

‖c‖∞,R = sup
n≥0

{

|(c, xn0 )|
Rn

n!

}

= sup
n≥0

(2R)n =

{

∞ : R > 1/2

1 : R ≤ 1/2.

Therefore, c ∈ S∞(R) when R ≤ 1/2, so that c ∈ S∞,e. In addition, c ∈ S∞,e \ S∞

The next lemma provides the relationship between the norms of a series in S∞,e

and its subseries.

Lemma 3.2.1. Let c ∈ S∞,e. If ĉ is a subseries of c, then for any R > 0

‖ĉ‖∞,R ≤ ‖c‖∞,R.
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Proof: For fixed R > 0 observe

‖c‖∞,R = sup
η∈X∗

{

|(c, η)| R
|η|

|η|!

}

=max

{

sup
η∈supp(ĉ)

{

|(c, η)| R
|η|

|η|!

}

, sup
η 6∈supp(ĉ)

{

|(c, η)| R
|η|

|η|!

}

}

=max

{

‖ĉ‖∞,R, sup
η 6∈supp(ĉ)

{

|(c, η)| R
|η|

|η|!

}

}

.

Therefore, ‖ĉ‖∞,R ≤ ‖c‖∞,R.

As the spaces S∞(R), R > 0 are nested, it is natural to ask if a sequence converges

in one space, will it also converge in a larger space? Furthermore, would the limit

point be the same in both spaces? Such questions are addressed in the next lemma.

Lemma 3.2.2. Let 0 < R < R′. If ci → c as a sequence in S∞(R′), then ci → c as

a sequence in S∞(R).

Proof: Since ci → c in S∞(R′) then, for any ǫ > 0 there exists a natural number N

such that if i > N then ‖ci− c′‖∞,R′ < ǫ. On the other hand, since R < R′, it follows

by Theorem 3.2.1 that

‖ci − c′‖∞,R < ‖ci − c′‖∞,R′.

Thus, ‖ci − c′‖∞,R < ǫ, which leads to the conclusion that ci → c′ in the larger space

S∞(R) ⊃ S∞(R′).

The final theorem of this subsection shows that each space S∞(R) is complete.

Theorem 3.2.2. (S∞(R), ‖ · ‖∞,R) is a Banach space for any R > 0.

Proof: The proof parallels the classical proof for the completeness of l∞ [29, p. 33].

Fix R > 0 and let {ci}i≥0 be a Cauchy sequence in the normed linear space S∞(R).

Then for any ǫ > 0 there exists an N ∈ N such that for all i, j > N

‖ci − cj‖∞,R = sup
η∈X∗

{

|(ci − cj, η)|
R|η|

|η|!

}

< ǫ.

Therefore, given any word η ∈ X∗

|(ci − cj , η)|
R|η|

|η|! =

∣

∣

∣

∣

(ci, η)
R|η|

|η|! − (cj , η)
R|η|

|η|!

∣

∣

∣

∣

< ǫ, (3.2.1)
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implying that {(ci, η)R|η|/ |η|!}i≥0 is a Cauchy sequence in R. For each η ∈ X∗ define

cη = lim
i→∞

(ci, η)
R|η|

|η|! ,

and let c :=
∑

η∈X∗(c, η)η, where (c, η) := cη |η|!/R|η|. The claim now is that c ∈
S∞(R). Letting j → ∞ in (3.2.1) gives

∣

∣

∣

∣

(ci, η)
R|η|

|η|! − cη

∣

∣

∣

∣

< ǫ, i > N. (3.2.2)

For any fixed i, since ci ∈ S∞(R), there exists a real number Bi > 0 such that

|(ci, η)|R|η|/ |η|! ≤ Bi for all η ∈ X∗. Therefore, if i > N then for every η ∈ X∗

|(c, η)| R
|η|

|η|! ≤
∣

∣

∣

∣

cη − (ci, η)
R|η|

|η|!

∣

∣

∣

∣

+ |(ci, η)|
R|η|

|η|! ≤ ǫ+Bi.

Hence, c ∈ S∞(R). To show completeness, it is only necessary to show that ci → c

as a sequence in S∞(R). From (3.2.2) it follows that for any η ∈ X∗

|(ci, η)− (c, η)| R
|η|

|η|! < ǫ, i > N.

Therefore, ‖ci − c‖∞,R < ǫ when i > N , implying that ci → c as desired.

3.2.2 The semi-norm topology on S∞

The space

S∞ =
⋂

R>0

S∞(R)

is of particular interest here as there exists a topology which makes it a locally convex

topological vector space. The space S∞ cannot in any obvious way be viewed as a

normed linear space. First consider each S∞(R) with the topology induced by the

norm ‖ · ‖∞,R. Define the topology τ on the space S∞ as the one generated by the

basis elements

Bc,R(ǫ) := {d ∈ S∞ : ‖c− d‖∞,R < ǫ}, (3.2.3)

where c ∈ S∞ and ǫ, R > 0. It is easy to check that τ contains and S∞, and is

closed under arbitrary unions and finite intersections. Thus, (S∞, τ) is a topological
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space. However, to see that is a locally convex topological vector space a little

more work is needed. It is first necessary to show that (S∞, τ) is second countable,

and therefore first countable. Then, Definition 2.2.16 and Lemma 2.2.1 are used to

show that (S∞, τ) is a topological vector space and τ is usually called the semi-norm

topology. Finally, it is proved to be a locally convex topological vector space using

Theorem 2.2.3. The next theorem addresses the second countability axiom.

Theorem 3.2.3. The space (S∞, τ) is second countable.

Proof: The proof parallels the classical proof for the second countability of R [34,

p. 56]. Let B be the collection of open sets Bcq,Rq
(r), where Rq, r ∈ Q+, and cq ∈ S∞

with (cq, η) ∈ Q, ∀η ∈ X∗. In order to prove that B is a countable basis, one can

use Lemma 2.2.3. In which case it is necessary to prove that for any set U ∈ S∞ and

c ∈ U there exists an open set Bcq,Rq
(r) ∈ B such that

c ∈ Bcq,Rq
(r) ⊆ U.

First, select any open set U ∈ S∞ and a series c ∈ U . Since τ is the assumed topology

on S∞, there exists an open set Bc,R(ǫ) ⊂ U . On the other hand, there exists rational

numbers Rq, r ∈ Q+ such that
ǫ

4
< r <

ǫ

2
(3.2.4)

and

Rq > R. (3.2.5)

In addition, there exists a series cq ∈ S∞ with (cq, η) ∈ Q, ∀η ∈ X∗ such that

|(c, η)− (cq, η)| <
( ǫ

4

) |η|!
Rq

|η|
, ∀η ∈ X∗. (3.2.6)

Since (c, η),
(

ǫ
4

) |η|!

Rq
|η| ∈ R for all η ∈ X∗, and the setQ is dense in R, then, from (3.2.6)

it follows that

|(c, η)− (cq, η)|
Rq

|η|

|η|! <
ǫ

4
, ∀η ∈ X∗.

The definition of the supremum gives

sup
η∈X∗

{

|(c− cq, η)|
Rq

|η|

|η|!

}

<
ǫ

4
.
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Using the norm as in Definition 3.2.1 yields

‖c− cq‖∞,Rq
<
ǫ

4
.

Therefore, cq ∈ Bc,Rq

(

ǫ
4

)

. In addition, since ǫ/4 < r from (3.2.4), it follows that

‖c− cq‖∞,Rq
<
ǫ

4
< r.

This implies that c ∈ Bcq,Rq
(r) ∈ B. Next, taking any d ∈ Bcq,Rq

(r), note that since

R < Rq from (3.2.5), it follows that

‖c− d‖∞,R ≤ ‖c− d‖∞,Rq
≤ ‖c− cq‖∞,Rq

+ ‖cq − d‖∞,Rq
, (3.2.7)

where the triangle inequality was used in the last step. Observe that

‖d− cq‖∞,Rq
< r,

since d ∈ Bcq,Rq
(r). Applying the previous results to (3.2.7) gives

‖c− d‖∞,R ≤ ‖c− d‖∞,Rq
≤ ‖c− cq‖∞,Rq

+ ‖cq − d‖∞,Rq
<
ǫ

4
+ r.

In addition, since r < ǫ
2
from (3.2.4), it follows that

‖c− d‖∞,R <
ǫ

4
+
ǫ

2
< ǫ. (3.2.8)

Thus, d ∈ Bc,R(ǫ), and therefore, Bcq ,Rq
(r) ⊆ Bc,R(ǫ). Finally, it is concluded that

c ∈ Bcq,Rq
(r) ⊆ Bc,R(ǫ) ⊆ U,

which completes the prove.

By Lemma 2.2.4, second countability implies first countability. Thus, the follow-

ing result concerning first countability of S∞ is immediate.

Corollary 3.2.2. The space (S∞, τ) is first countable.

As discussed in Chapter 2 and noted in [16, p. 116], first countable spaces have

the convenient property that such concepts as closure and continuity can be charac-

terized in terms of sequential convergence. In which case, only sequences are needed



48

henceforth instead of nets. In addition, to prove that (S∞, τ) is a topological vec-

tor space, the notion of convergence can be used instead of continuity. A common

convergence criterion when dealing with semi-norms is the following.

Definition 3.2.2. A sequence {ci}i∈N in S∞ converges to c ∈ S∞ in the τ topology

on the space S∞ if and only if ‖ci − c‖∞,R → 0 as i→ ∞ for all R > 0.

This criterion is selected since each S∞(R) is a Banach space, and therefore,

it is Hausdorff and first countable. Then, as described in [28, p. 20] sequentially

continuous maps are continuous.

The following theorem describes the primary space of formal power series used in

this work.

Theorem 3.2.4. The space (S∞, τ) is a topological vector space.

Proof: Since the space (S∞, τ) is first countable, Theorem 2.2.1 is used in order to

use the notion of convergence instead of continuity in Definition 2.2.16. Thus, it is

necessary to check two claims: First, if cn → c and dn → d in S∞, then cn+dn → c+d

in S∞. Second, if cn → c in S∞ and αn → α in R, then αncn → αc in S∞. Consider

the first claim. Fix any ǫ > 0. Then for all R > 0 it must hold that

‖cn − c‖∞,R <
ǫ

2
, n > N

and

‖dn − d‖∞,R <
ǫ

2
, n > M,

for some N,M > 0. For n > max{N,M} and any R > 0 it follows that

‖(cn + dn)− (c+ d)‖∞,R ≤ ‖cn − c‖∞,R + ‖dn − d‖∞,R <
ǫ

2
+
ǫ

2
= ǫ.

Therefore, cn + dn → c + d in S∞. Concerning the second claim, suppose cn → c in

S∞ and αn → α in R. Fix any ǫ > 0. Then for all R > 0, there exists some N > 0

such that

|αn − α| < min

{

ǫ

2‖c‖∞,R

, 1

}

, n > N.

In addition, there exists some M > 0 such that

‖cn − c‖∞,R <
ǫ

2(|α|+ 1)
, n > M.
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Thus, for n > max{N,M} and for any R > 0, it follows that

‖(αncn − αc)‖∞,R ≤ ‖(αncn − αnc)‖∞,R + ‖(αnc− αc)‖∞,R

= |αn| ‖cn − c‖∞,R + |αn − α| ‖c‖∞,R

<
ǫ

2
+
ǫ

2
= ǫ.

Therefore, αncn → αc in S∞, which completes the proof.

Since the space S∞ is a topological vector space equipped with a family of semi-

norms ‖ · ‖∞,R, R > 0, the topology τ is usually called the semi-norm topology. The

Hausdorff property of S∞ is verified next.

Theorem 3.2.5. The space S∞ with the semi-norm topology is Hausdorff.

Proof: For each R > 0, the norm property on S∞(R) ensures that if c 6= 0 then

‖c‖∞,R 6= 0. Thus, from Theorem 2.2.4 it follows that S∞ with the semi-norm

topology is Hausdorff.

The next result shows that S∞ with the semi-norm topology is a locally convex

topological vector space.

Theorem 3.2.6. The space S∞ with the semi-norm topology is a locally convex

topological vector space.

Proof: It follows directly from Theorem 2.2.3 part (c), since the semi-norm topology

in S∞ is induced by the family of semi-norms ‖ · ‖∞,R, R > 0 .

Finally, it is only natural to wonder if a sequence converges in the space S∞(R)

and in the semi-norm topology, will it converge to the same point? This question is

answered in the next lemma.

Lemma 3.2.3. Fix R > 0. If ci → c as a sequence in S∞(R) and ci → c′ in the

semi-norm topology, then c = c′.

Proof: Since ci → c′ in the semi-norm topology, then ‖ci − c‖∞,R̂ → 0 as i → ∞ for

all R̂ > 0. Then, in particular, for R̂ = R it follows that ‖ci − c‖∞,R → 0 as i→ ∞.

This is equivalent to ci → c as a sequence in S∞(R), therefore c = c′.
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3.2.3 The semi-norm topology versus the ultrametric topology

In the previous subsections, a new norm ‖·‖∞,R, R > 0 on R〈〈X〉〉 was introduced
and used to define several spaces. Furthermore, S∞ was endowed a related semi-

norm topology. As mentioned in Chapter 2, a more common metric on R〈〈X〉〉 is the
ultrametric metric. The objective of this section is to demonstrate that convergence

in the semi-norm topology is in general unrelated to convergence in the ultrametric

sense. The following example illustrates the case where a series converges in the

semi-norm topology but fails to converge in the ultrametric sense.

Example 3.2.3. Consider the sequence of constants in Example 2.2.22

{

ci =
1

i

}

i≥1

as polynomials in R〈〈X〉〉. Clearly,

‖ci − 0‖∞,R =
1

i

for all R > 0. Thus, ci ∈ S∞ and ci → 0 as i → ∞ in the semi-norm topology.

On the other hand, this sequence does not approach zero in the ultrametric sense

because dist(ci, 0) = 1 for every i ≥ 1. In fact, this sequence is not even Cauchy

because dist(ci, ci+1) = 1 for every i ≥ 1.

The next example illustrates the case where a series converges in the ultrametric

sense but not in the semi-norm topology.

Example 3.2.4. Consider the sequence of polynomials

ci = 1 +M1! x0 +M22! x20 + · · ·+M ii! xi0, i ≥ 0,

where M > 0 is fixed. It is easily verified that dist(ci, c) → 0 as i→ ∞ when

c =

∞
∑

n=0

Mnn! xn0 .



51

Therefore, ci → c in the ultrametric sense. Next observe that

‖ci‖∞,R =

{

(MR)i : MR > 1

1 : MR ≤ 1,

and thus, each ci ∈ S∞,e. Similarly, c ∈ S∞,e because ‖c‖∞,R < ∞ when MR ≤ 1.

In addition, c ∈ S∞,e \ S∞. Note that, if M = 2 the series c is the one considered in

Example 3.2.2. On the other hand,

‖ci − c‖∞,R = sup
n>i

(MR)n =















(MR)i+1 : MR < 1

1 : MR = 1

∞ : MR > 1,

which implies that

lim
i→∞

‖ci − c‖∞,R = lim
i→∞

(MR)i+1 = 0,

only when MR < 1. Therefore, the sequence {ci}i≥1 converges to c in the normed

linear space S∞(R) when R < 1/M , but not to c in the semi-norm topology. In fact,

‖ci − ci−1‖∞,R = (MR)i can not be made arbitrarily small for sufficient large i when

MR ≥ 1. So the sequence is not Cauchy in the semi-norm topology.

3.2.4 Relationships between S∞,e, S∞, RLC〈〈X〉〉, and RGC〈〈X〉〉

The main relationships between the spaces S∞,e, S∞, RLC〈〈X〉〉, and RGC〈〈X〉〉
are presented. First, the following concept is needed in order to make the comparison

easier. Given c ∈ S∞,e, define R̄c as the supreme of all R for which c ∈ S∞(R), i.e.,

R̄c := sup
‖c‖∞,R<∞

R>0

R.

As shown in Section 3.1.1, when c ∈ RLC〈〈X〉〉, then there exist constants K,M > 0

such that

|(c, η)| ≤ KM |η|(|η|!)γc , ∀η ∈ X∗,

where 0 ≤ γc ≤ 1. Also, Fc constitutes a well defined mapping for sufficiently

small Ru, T > 0. The least upper bound on max{Ru, T} is ρ(Fc). Note that if
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R ≤ 1/M ≤ ρ(Fc)(m+ 1) then

‖c‖∞,R ≤ sup
η∈X∗

K(MR)|η| = K <∞,

otherwise, ‖c‖∞,R is unbounded. Thus, R̄c = 1/M . Which implies that c ∈
S∞(1/M) ⊆ S∞,e. Therefore,

RLC〈〈X〉〉 ⊆ S∞,e. (3.2.9)

On the other hand, if c ∈ RGC〈〈X〉〉, then there exist constants K,M > 0 such that

|(c, η)| ≤ KM |η|(|η|!)γc , ∀η ∈ X∗,

where 0 ≤ γc < 1. Also, it is not hard to see that for every R > 0

‖c‖∞,R ≤ sup
η∈X∗

K(MR)|η|

(|η|!)1−γc
<∞,

thus R̄c = ∞, which implies that c ∈ S∞ ⊂ S∞,e. Therefore,

RGC〈〈X〉〉 ⊆ S∞ ⊂ S∞,e. (3.2.10)

The next claim is that, the relation shown in (3.2.9) can be strengthened as shown

in the following theorem.

Theorem 3.2.7. RLC〈〈X〉〉 = S∞,e.

Proof: In light of (3.2.9), it only needs to be shown that S∞,e ⊆ RLC〈〈X〉〉. The

proof is by contradiction. If c ∈ S∞,e, then there exists a finite R̄c > 0 such that

c ∈ S∞(R) for all 0 < R < R̄c. Now assume c 6∈ RLC〈〈X〉〉. Then for any constants

K,M > 0 there is a subseries ĉ of c and some ǫ > 0 such that

|(ĉ, η)| > KM |η|(|η|!)1+ǫ, ∀η ∈ supp(ĉ).

On the other hand, for all 0 < R < R̄c

‖c‖∞,R = sup
η∈X∗

{

|(c, η)| R
|η|

|η|!

}

≥ sup
η∈supp(ĉ)

K(MR)|η|(|η|!)ǫ.
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Thus, ‖c‖∞,R = ∞ for any R > 0. Which contradicts the fact c ∈ S∞(R) for all

0 < R < R̄c. Therefore, c ∈ RLC〈〈X〉〉, and the theorem is proved.

The relationship between RGC〈〈X〉〉 and S∞ is more complicated. First, it

is shown in the following section that there exist a series in S∞ which is not in

RGC〈〈X〉〉. Therefore, the sets are not equivalent. That stated, a result involving

the closure of the space RGC〈〈X〉〉 and S∞ can be proved. Let RGC〈〈X〉〉 denote

the closure of RGC〈〈X〉〉 in the semi-norm topology on S∞. This statement makes

sense since RGC〈〈X〉〉 ⊆ S∞, and S∞ with the semi-norm topology is first countable.

Therefore, if c ∈ RGC〈〈X〉〉, then there exists a sequence {ci}i≥0 in RGC〈〈X〉〉 which
converges to c in the semi-norm topology.

The following theorem illustrates one relationship between RGC〈〈X〉〉 and S∞.

Theorem 3.2.8. RGC〈〈X〉〉 ⊆ S∞.

Proof: If c ∈ RGC〈〈X〉〉, then there exists a sequence {ci}i≥0 in RGC〈〈X〉〉 ⊆ S∞ ⊂
S∞(R) which converges to c in the semi-norm topology. Therefore, {ci}i≥0 also

converges to c as a sequence in the complete normed linear space S∞(R) for every

R > 0. This implies that c ∈ S∞(R) for every R > 0. Thus, c ∈ S∞ := ∩R>0S∞(R).

Figure 9 summarizes what relationships have been proved so far concerning the

sets of formal power series S∞,e, S∞, RLC〈〈X〉〉 and RGC〈〈X〉〉.

R〈〈X〉〉
RLC〈〈X〉〉= S∞,e

S∞

RGC〈〈X〉〉

R1〈〈X〉〉
(shaded area
plus dotted line)

RGC〈〈X〉〉 ⊆ S∞

(inside area
plus dotted line)

Fig. 9: Relationship between S∞,e, S∞, RLC〈〈X〉〉, and RGC〈〈X〉〉.

The relationship in Theorem 3.2.8 can be strengthened to an equivalence instead of

one sided inclusion. However, the tools needed to prove such a statement will be

deferred to Section 3.4.
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3.3 EXAMPLE: CLASSIFICATION OF THE FERFERA SERIES

In Chapter 1, Example 1.1.3 mentioned a specific case of a Fliess operator which

is globally convergent, but whose generating series does not satisfy (1.1.4). It is

only known that such a generating series has a coefficient growth rate strictly be-

tween (1.1.3) and (1.1.4) as explained in [41]. As part of the first main goal of this

dissertation, a precise growth rate of the coefficients for that generating series is pre-

sented. Also, the specific formal power series space to which it belongs is given in

this section.

The Ferfera series considered in Example 1.1.3 is analyzed explicitly. Let X =

{x0, x1} and consider the rational series

x∗1 :=
∞
∑

k=0

xk1.

The specific series considered by Ferfera in [10, 11] is

cF := x∗1 ◦ x∗1

using the notion of formal power series composition defined in (2.1.3). As shown in

Chapter 1, y = Fx∗
1
[u] has a state space realization ż = zu, y = z, z(0) = 1 [8].

Cascading two such realizations, the response is similar for different inputs. In fact,

it is shown in [41, Theorem 8] that the cascade of any two systems having generating

series in R0〈〈X〉〉 always has a double exponential bounding function. Therefore, the

Fliess operator associated to cF is globally convergent. It was also shown in [10, 11]

that cF does not have a coefficient growth rate satisfying (1.1.4). In fact, the specific

growth rate is still unknown. A general formula for the coefficients of cF is

(cF , x
k0
0 x

k1
1 · · ·xkl−1

0 xkl1 ) = (k0)
k1(k0 + k2)

k3 · · · (k0 + k2 + · · ·+ kl−1)
kl (3.3.1)

for all l ≥ 0 and ki ≥ 0, i = 0, 1, . . . , l [21]. The following two subseries of cF are also

of interest:

c
1/2
F :=

∞
∑

k=0

(cF , x
k
0x

k
1) x

k
0x

k
1
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c1F :=

∞
∑

k0,k1=0

(cF , x
k0
0 x

k1
1 ) xk00 x

k1
1 .

Ferfera’s central argument in showing that rationality is not preserved under com-

position was the observation that the coefficients

(c
1/2
F , xk0x

k
1) = kk, k ≥ 0

grow too fast to satisfy (1.1.4). Therefore, cF can not be rational.

This section is organized as follows: First, in Subsection 3.3.1 the Gevrey order

of the Ferfera series is calculated in order to know its precise coefficient growth

rate. Subsequently, in Subsection 3.3.2, the specific space to which the Ferfera series

belongs is shown.

3.3.1 Gevrey order of the Ferfera series

In order to determine the precise growth rate of the coefficients of the Ferfera

series, cF , it is necessary to calculate its Gevrey order. First, to gain some insight

on what to expect, the subseries c
1/2
F of cF is considered and its Gevrey order is

calculated.

Theorem 3.3.1. The series c
1/2
F has Gevrey order s ∈ [1/2,∞), i.e., c

1/2
F ∈

R1/2〈〈X〉〉.

Proof: Let n =
∣

∣xk0x
k
1

∣

∣ = 2k ≥ 0 and define the sequences

an = (c
1/2
F , x

n/2
0 x

n/2
1 ) = (n/2)(n/2)

bn(s) = KMn(n!)s

for any fixed K,M > 0. Also define the function

fn(s) = ln

(

an
bn(s)

)

=
n

2
ln
(n

2

)

− ln(K)− n ln(M)− s ln(n!).

Using Stirling’s approximation

O(n!) = O
(√

2πn
(n

e

)n)

, (3.3.2)
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it follows directly that

O (fn(s)) =

O
(

− ln(K)− n

2
ln(2)− n ln(M) + n

(

1

2
− s

)

ln(n) + ns− s

2
ln(2π)− s

2
ln(n)

)

.

Consider the following cases:

1. If s < 1/2 then lim
n→∞

fn(s) ≤ lim
n→∞

n

(

1

2
− s

)

ln(n) +O(n) = +∞.

2. If s > 1/2 then lim
n→∞

fn(s) ≤ lim
n→∞

n

(

1

2
− s

)

ln(n) +O(n) = −∞.

3. If s = 1/2 then

lim
n→∞

fn(1/2) =

− ln(K)− 1

4
ln(2π)− 1

4
lim
n→∞

ln(n) + lim
n→∞

n

(

1

2
− ln(2)

2
− ln(M)

)

.

Therefore, if 1
2
− ln(2)

2
− ln(M) ≤ 0 then limn→∞ fn(1/2) = −∞. In summary, when

s ≥ 1/2

lim
n→∞

an
bn(s)

= 0,

and this implies in particular that bn(1/2) is growing faster than an. On the other

hand, if s < 1/2 then an can not be bounded by a sequence of the form bn(s). Hence,

the coefficients (c
1/2
F , x

n/2
0 x

n/2
1 ) must be upper bounded for all n ≥ 0 by KM(n!)1/2

for some K,M > 0. That is,

(c
1/2
F , x

n/2
0 x

n/2
1 ) < KM(n!)1/2, n ≥ 1,

which implies that the series c
1/2
F has Gevrey order s ∈ [1/2,∞), i.e., c

1/2
F ∈

R1/2〈〈X〉〉.

As an empirical check, an estimate of the minimum of the Gevrey order of c
1/2
F

was computed numerically using the nonlinear fitting capabilities of Mathematica via

the code:

nmax=300;
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data=Table[{n,Log[(n/2)^(n/2)]},{n,1,nmax,2}];

nlm=NonlinearModelFit[data,Log[K*M^n*(n!)^s],{K,M,s},n]

Show[ListPlot[data],Plot[nlm[n],{n,1,nmax}],Frame->True]

The corresponding growth parameters estimates are shown in Table 1. The quality

of the fit for the first 30 coefficients is shown on a semi-logarithmic scale in Figure 10.

It is representative of the fit for the entire data set of 300 points.
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2k

ln
(K

M
2
k
((
2
k
)!
)s
)

Fig. 10: Empirical fit of KM2k((2k)!)s (solid line) to the first 30 coefficients (word

length n = 2k ≤ 60) of the series c
1/2
F (dots).

TABLE 1: Growth parameters estimates for the series c
1/2
F .

series coefficients K M s

(x∗1 ◦ x∗1, xk0xk1) 0.39102 1.14373 0.503423

It is important to note that Theorem 3.3.1 has two purposes: First, it shows that

c
1/2
F ∈ R1/2〈〈X〉〉, and second, it illustrates a specific example of a series that is in

a space Rγ〈〈X〉〉 where γ is a number strictly between 0 and 1. Also, since c
1/2
F is a

subseries of cF , the minimum value of the Gevrey order of cF is at least 1/2. The

following theorem gives the precise Gevrey order of cF .

Theorem 3.3.2. The series cF has Gevrey order s ∈ [1,∞), i.e., cF ∈ R1〈〈X〉〉.
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Proof: It is sufficient to show that c1F has Gevrey order s ∈ [1,∞), since cF contains

c1F as a subseries and it is known that cF could not have a growth rate of its coefficients

faster than (1.1.3). In other words, cF has a minimum Gevrey order s ≤ 1 (because

it has an analytic state space realization [39]). Let n =
∣

∣xk00 x
k1
1

∣

∣ = k0 + k1 ≥ 0 and

dn :=
n
∑

k0=0

(cF , x
k0
0 x

n−k0
1 ) xk00 x

n−k0
1 .

Define the sequences

an(k0) = (dn, x
k0
0 x

n−k0
1 ) = (k0)

(n−k0), 0 ≤ k0 ≤ n,

bn(s) = KMn(n!)s, K,M > 0,

using (3.3.1) with l = 1. Also, define

fn(k0, s) = ln

(

an(k0)

bn(s)

)

= (n− k0) ln(k0)− ln(K)− n ln(M)− s ln(n!),

so using (3.3.2) yields

O (fn(k0, s)) =

O
(

(n− k0) ln(k0)− ln(K)− n ln(M) + sn− s

2
ln(2πn)− sn ln(n).

)

Observe that fn(k0, s) has a maximum over R if and only if

k0 = k̂0 := exp(W (ne)− 1),

since
∂fn(k0, s)

∂k0

∣

∣

∣

∣

k0=k̂0

= − ln(k̂0) +
(n− k̂0)

k̂0
= 0

and
∂2fn(k0, s)

∂k20

∣

∣

∣

∣

k0=k̂0

= − 1

k̂0
− n

k̂20
< 0, ∀ 0 ≤ k̂0 ≤ n,

whereW denotes the LambertW–function, namely, the inverse of the function g(z) =

z exp(z) [5]. Therefore, the goal is to compute limn→∞ fn(k̂0, s). Observe that

∂

∂s
lim
n→∞

fn(k̂0, s) = lim
n→∞

(

n− 1

2
ln(2πn)− n ln(n)

)

< 0,
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which implies that limn→∞ fn(k̂0, s) is a non-increasing function of s. A direct calcu-

lation gives

lim
n→∞

fn(k̂0, s) = lim
n→∞

(

nW (ne) +W (ne) exp(W (ne)− 1) + exp(W (ne)− 1)

+sn− n− n ln(M)− s

2
ln(2πn)− sn ln(n)

)

.

Using the fact that W (ne) exp(W (ne)− 1) = n gives

lim
n→∞

fn(k̂0, s) = lim
n→∞

(

nW (ne) + exp(W (ne)− 1) + sn

−n ln(M)− s

2
ln(2πn)− sn ln(n)

)

.

This reduces to computing the limit

lim
n→∞

nW (ne)− sn ln(n).

But since limn→∞W (ne)/ ln(n) = 1, it follows that:

1. If s < 1 then lim
n→∞

fn(k̂0, s) = +∞.

2. If s ≥ 1 then lim
n→∞

fn(k̂0, s) = −∞.

Thus, if s ≥ 1 then

lim
n→∞

an(k̂0)

bn(s)
= 0,

which implies that bn(1) is growing faster than an(k̂0), and thus faster than an(k0)

for all 0 ≤ k0 ≤ n. On the other hand, if s < 1 then an(k0) can not be bounded by a

sequence of the form bn(s). Hence, the coefficients of c1F for words of length n must

be upper bounded by KMnn! for some K,M > 0. Namely,

(c1F , x
k0
0 x

n−k0
1 ) < KMn! ∀ 0 ≤ k0 ≤ n <∞

and no smaller Gevrey type bound applies. This, implies that the series c1F has

Gevrey order s ∈ [1,∞). Therefore, the series cF has also Gevrey order s ∈ [1,∞),
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i.e., cF ∈ R1〈〈X〉〉.

An estimate of the minimum of the Gevrey order of c1F was also computed nu-

merically using Mathematica via the code:

nmax=300;

data=Reap[For[n=1,n >=nmax,n++,maxn=0;

For[j=0,j >= i,j++,m=(n-j)*Log[j];maxn=If[m >=maxn,m,maxn]]

Sow[{n,maxn}]];][[2,1]];

nlm=NonlinearModelFit[data,Log[K*M^n*(n!)^s],{K,M,s},n]

Show[ListPlot[data],Plot[nlm[n],{n,1,nmax}],Frame->True]

The fit is as shown in Figure 11. A sample of the corresponding data is shown in

Table 2. The asymptotic behavior of the estimates of the Gevrey order of c1F as a

function of maximum word length is shown on a semi-logarithmic scale in Figure 12.

The estimates are monotonically increasing towards s = 1 but at an extremely slow

rate.
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Fig. 11: Empirical fit of KMn(n!)s (solid line) to the first 30 coefficients of the series
c1F (dots).

3.3.2 Topological aspects of the Ferfera series

It is important to observe that cF 6∈ RGC〈〈X〉〉 since cF ∈ R1〈〈X〉〉 as a conse-

quence of Theorem 3.3.2. Thus, cF can be in either S∞,e \ S∞ or S∞ \ RGC〈〈X〉〉.
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TABLE 2: Growth parameters estimates for the series c1F .

maximum word length K M s

50 1.49671 0.696282 0.758571

300 6.60041 0.579581 0.808544

500 19.496 0.545318 0.821234

5000 1.04761× 109 0.414991 0.865870
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Fig. 12: Gevrey order estimates of c1F as a function of maximum word length n.

However, a more specific set where it belongs cannot be given at this point. Such a

set will be presented in the next section. Here the goal is to provide the specific set

to which the subseries c1F of cF belongs. The following theorem says that c1F is in the

closure of RGC〈〈X〉〉 in the semi-norm topology.

Theorem 3.3.3. The series c1F ∈ RGC〈〈X〉〉.

Proof: It is sufficient to construct a sequence in RGC〈〈X〉〉 that converges to c1F

in the semi-norm topology since RGC〈〈X〉〉 must contain all its limit points by the
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definition of closure. Consider the truncation of c1F ,

dN :=
N
∑

n=0

dn :=
N
∑

n=0

n
∑

k0=0

(cF , x
k0
0 x

n−k0
1 ) xk00 x

n−k0
1 .

Clearly, the polynomial dN ∈ R0〈〈X〉〉. Observe that for any R > 0

‖dN‖∞,R = sup
n≤N

0≤k0≤n

{

kn−k0
0

Rn

n!

}

<∞,

and

‖dN − c1F‖∞,R = sup
n>N

0≤k0≤n

{

kn−k0
0

Rn

n!

}

.

Since k0 = k̂0 := exp(W (ne)− 1) maximizes kn−k0
0 over 0 ≤ k0 ≤ n,

‖dN − c1F‖∞,R ≤ sup
n>N

{

exp(W (ne)− 1)n−exp(W (ne)−1)R
n

n!

}

. (3.3.3)

Now define

f(n) = exp(W (ne)− 1)n−exp(W (ne)−1)R
n

n!
.

Applying the logarithm to both sides of this equation and using (3.3.2), it follows

that

ln(f(n)) = (W (ne)− 1)(n− exp(W (ne)− 1)) + n ln(R) + n− 1

2
ln(2πn)− n ln(n).

The identity W (ne) exp(W (ne)− 1)) = n then yields

ln(f(n)) = nW (ne) +
n

W (ne)
+ n(ln(R)− 1)− 1

2
ln(2πn)− n ln(n). (3.3.4)

Observe that f(n) has a maximum over R if and only if n = n̂, where

d ln(f(n))

dn

∣

∣

∣

∣

n=n̂

= W (n̂e)− 1

2n̂
− ln(n̂) + ln(R)− 1 = 0

since
d2 ln(f(n))

dn2

∣

∣

∣

∣

n=n̂

=
W (n̂e)− 2n̂ + 1

2n̂2(W (n̂e) + 1)
< 0.
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Therefore,

sup
n>N

f(n) = sup
n>N

{

exp(W (ne)− 1)n−exp(W (ne)−1)R
n

n!

}

= max{f(N), f(n̂)}.

Substituting this bound into (3.3.3) and taking the limit gives

lim
N→∞

‖dN − c1F‖∞,R ≤ lim
N→∞

max{f(N), f(n̂)} = lim
N→∞

f(N).

Now using (3.3.4) and the fact that limN→∞ ln f(N) = ln limN→∞ f(N), it follows

that

lim
N→∞

ln(f(N)) = lim
N→∞

N(W (Ne)− ln(N) + ln(R)− 1)) +
N

W (Ne)
− 1

2
ln(2πN)

= −∞.

The identity limN→∞W (Ne) − ln(N) = −∞ has also been used above. Thus, for

any R > 0

lim
N→∞

‖dN − c1F‖∞,R ≤ lim
N→∞

f(N) = 0.

Hence, the sequence {dN}N≥0 ∈ R0〈〈X〉〉 ⊂ RGC〈〈X〉〉 converges to c1F in the semi-

norm topology, and, consequently, c1F ∈ RGC〈〈X〉〉.

R〈〈X〉〉
RLC〈〈X〉〉= S∞,e

S∞

RGC〈〈X〉〉

R1〈〈X〉〉
(shaded area
plus dotted line)

RGC〈〈X〉〉 ⊆ S∞

(inside area
plus dotted line)

∂RGC〈〈X〉〉

Fig. 13: Relationships between S∞,e, S∞, RLC〈〈X〉〉, RGC〈〈X〉〉 and ∂RGC〈〈X〉〉.

Finally, by simple set theory, ∂RGC〈〈X〉〉 = RGC〈〈X〉〉 \ RGC〈〈X〉〉 (as indicated
in Figure 13), thus one can write c1F ∈ ∂RGC〈〈X〉〉. On the other hand, c1F ∈
RGC〈〈X〉〉 ⊂ S∞ which implies that c1F ∈ S∞ \ RGC〈〈X〉〉. This later fact confirms
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that, as expected in Subsection 3.2.4, there exists a series in S∞ which is not in

RGC〈〈X〉〉, namely, c1F .

3.4 ON THE RADIUS OF CONVERGENCE OF FLIESS

OPERATORS

In this section, the first main goal of this dissertation is addressed, namely, de-

veloping the precise relationship between the growth rate of the coefficients of a

generating series and the nature of the convergence of its corresponding Fliess op-

erator. First, a sufficient condition for a generating series to have a corresponding

locally convergent Fliess operator with finite radius of convergence is given. Next,

a complete characterization (extending the one given in Section 3.2) of the space

S∞ is given, specifically, the equality RGC〈〈X〉〉 = S∞ is proved, and the space S∞

with the semi-norm topology is shown to be a Fréchet space. Finally, a necessary

and sufficient condition for a generating series to have a corresponding globally con-

vergent Fliess operator and a locally convergent Fliess operator with finite radius of

convergence is given.

The following classical theorems from complex analysis are used extensively

throughout this section.

Theorem 3.4.1. [45] Consider a power series f(z) =
∑

n≥0 anz
n defined on C.

There exists a real number 0 ≤ R ≤ ∞, called the radius of convergence of the series

f , such that the series converges for all values of z with |z| < R and diverges for all

z such that |z| > R with R = 1/ lim supn→∞ |an|1/n (1/0 := ∞, 1/∞ := 0).

Theorem 3.4.2. [45] Let f(z) =
∑

n≥0 anz
n/n! be a function which is analytic

at z = 0. Suppose z0 is a singularity of f having smallest modulus. Then for any

ǫ > 0 there exists an integer N ≥ 0 such that for all n > N , |an| < (1/ |z0| + ǫ)nn!.

Furthermore, for infinitely many n, |an| > (1/ |z0| − ǫ)nn!.

3.4.1 Locally convergent Fliess operators with finite radius of conver-

gence

A sufficient condition for a generating series to have a corresponding locally con-

vergent Fliess operator is given next.

Theorem 3.4.3. If c ∈ RLC〈〈X〉〉 \ RGC〈〈X〉〉 then the radius of convergence of

series ( 1.1.2) is finite.
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Proof: Since c ∈ RLC〈〈X〉〉, there exists Ru, T > 0 such that for any u ∈
Bm

1 (Ru)[0, T ] the operator converges absolutely and uniformly on [0, T ]. Define the

truncation cN =
∑N

n=0

∑

η∈Xn(c, η)η. Clearly, cN ∈ R0〈〈X〉〉 ⊂ RGC〈〈X〉〉, and thus,

the operator defining FcN [u](t) converges absolutely and uniformly on [0, T ] for any

T > 0 and u ∈ L1,e(0). Furthermore, observe that for any fixed N > 0, the radius of

convergence of the series

Fc[u](t) = FcN [u](t) + Fc−cN [u](t),

is finite if and only if

Fc−cN [u](t) =
∞
∑

k=N+1

∑

η∈Xk

(c− cN , η)Eη[u](t)

has a finite radius of convergence. The key observation is that the sequence {cN}N≥0

can not converge to c in the semi-norm topology, otherwise c ∈ RGC〈〈X〉〉, which
contradicts the assumption that c ∈ RLC〈〈X〉〉 \ RGC〈〈X〉〉. Using this fact, a finite

singularity of Fc−cN [u](t) can be constructed. This implies that Fc[u](t) also has

a finite singularity, and therefore, a finite radius of convergence. Following [7, 9,

Example 1], it is immediate that

|Fc−cN [u](t)| ≤
∞
∑

n=N+1

∑

η∈Xn

|(c− cN , η)|
R̂

n

n!
≤

∞
∑

n=0

an
R̂n

n!
, (3.4.1)

where R̂ := 2max{Ru, T} > 0 and

an :=











max
η∈Xn

|(c− cN , η)| : n > N

0 : n ≤ N.

Define

L = lim
N→∞

‖cN − c‖∞,R = lim
N→∞

sup
η∈X∗

{

|(c− cN , η)|
R|η|

|η|!

}

. (3.4.2)

Note that L > 0 for some R > 0 since {cN}N≥0 does not converge to c in the
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semi-norm topology. In particular, choosing R = R̂ gives

L = lim
n→∞

sup
n≥0

{

|an|
R̂n

n!

}

. (3.4.3)

The definition of the limit superior implies that for any 0 < ǫ < 1 there exists an

integer N ≥ 0 such that for all n > N , |an| R̂n/n! < L+ǫ. Furthermore, for infinitely

many n, |an| R̂n/n! > L− ǫ [45, p. 46]. From the first inequality

|an| <
(L+ ǫ)n!

R̂n
≤
(

L1/n

R̂
+ ǫ′

)n

n!,

and for infinitely many n,

|an| >
(L− ǫ)n!

R̂n
≥
(

L1/n

R̂
− ǫ′

)n

n!,

where ǫ′ := ǫ1/N/R̂. Thus, from Theorems 3.4.1 and 3.4.2 it follows that

z0 := lim
n→∞

R̂

L1/n
=

1

lim supn→∞ (|an| /n!)1/n
.

Since L > 0, the real number z0 6= 0 is a finite singularity of f(z) :=
∑∞

n=0 anz
n/n!.

In light of (3.4.1) then Fc−cN [u](t) must also have a finite singularity, and the theorem

is proved.

The previous theorem gave a sufficient condition for a generating series to have a

locally convergent with finite radius of convergence Fliess operator, namely the gen-

erating series must be in the space RLC〈〈X〉〉 \RGC〈〈X〉〉. Therefore, it is important

to know as much as possible about this space. The following theorem gives one such

characterization involving subseries growing at the factorial rate.

Theorem 3.4.4. Let c ∈ RLC〈〈X〉〉 \ RGC〈〈X〉〉 with growth constants K,M > 0.

Then, there exists a subseries ĉ ∈ R1〈〈X〉〉 of c whose coefficients are growing exactly

at the rate KM |η| |η|!.

Proof: Following the proof of Theorem 3.4.3, for any ǫ > 0 and L > 0 defined as

in (3.4.3), there must exist an integer N > 0 such that

(

L1/n

R̂
− ǫ′

)n

n! < |an| <
(

L1/n

R̂
+ ǫ′

)n

n! (3.4.4)
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for all n > N . Let

an :=











max
η∈Xn

|(c− cN , η)| : n > N

0 : n ≤ N,

and for each n > N define

η∗n := arg max
ν∈Xn

|(c, ν)|.

Construct ĉ ∈ R〈〈X〉〉 such that for all η ∈ Xn, n ≥ 0

(ĉ, η) :=







(c, η∗n) : η = η∗n, n > N

0 : otherwise.

Clearly ĉ is a subseries of c, and by design |an| = |(ĉ, η)| for all η ∈ Xn since

supp(ĉ) ⊂ X∗ \XN . Thus, a direct application of (3.4.4) gives for some K > 0

|(ĉ, η)| = KM |η| |η|!, ∀η ∈ supp(ĉ),

where

M := lim
n→∞

L1/n

R̂
= lim

N→∞

(

sup
η∈X∗

{

|(c− cN , η)|
1

|η|!

})1/N

.

Actually, Theorem 3.4.4 can be extended to show that a series is in RLC〈〈X〉〉 \
RGC〈〈X〉〉 if and only if the series has a subseries growing at the factorial rate.

However, at this point that conclusion cannot be proved without more tools. In

particular, a characterization of the space S∞ beyond the one given in Section 3.2 is

needed. First, Theorem 3.2.8 is strengthened to an equivalence instead of as a one

sided inclusion in the following result.

Theorem 3.4.5. RGC〈〈X〉〉 = S∞.

Proof: From Theorem 3.2.8 it is known that RGC〈〈X〉〉 ⊆ S∞. Thus, it only needs

to be shown that S∞ ⊆ RGC〈〈X〉〉. The proof is by contradiction. Suppose c ∈ S∞

with c 6∈ RGC〈〈X〉〉. Then c ∈ S∞ \ RGC〈〈X〉〉 ⊂ RLC〈〈X〉〉 \ RGC〈〈X〉〉, and by

Theorem 3.4.4 there exists a subseries ĉ of c such that

|(ĉ, η)| = KM |η| |η|!, ∀η ∈ supp(ĉ).
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Then for R > 1/M

‖ĉ‖∞,R = sup
η∈supp(ĉ)

K(MR)|η| = ∞.

Therefore, ‖c‖∞,R = ∞ when R > 1/M since by Lemma 3.2.1 it follows that ‖ĉ‖∞,R ≤
‖c‖∞,R. This is a contradiction since c ∈ S∞.

Subsequently, a characterization of S∞ related to its completeness is needed.

Lemma 3.4.1. The space S∞ with the semi-norm topology is complete.

Proof: Given that S∞ = RGC〈〈X〉〉 is closed in the semi-norm topology, S∞ ⊂
S∞(R), and S∞(R) is a complete metric space for any fixed R > 0, then, using [16,

Proposition 0.24] it follows that S∞ is a complete space.

Next, the space S∞ with the semi-norm topology is showed to be a Fréchet space.

Theorem 3.4.6. The space S∞ with the semi-norm topology is a Fréchet space.

Proof: The prove is done by a simple check of all the requirements in Defini-

tion 2.2.29. First, the space is known to be Hausdorff by Theorem 3.2.5. The

space is also complete from the previous Lemma 3.4.1. Therefore, the space S∞ is

a complete topological vector space whose topology is defined by a countable family

of semi-norms, i.e., it is a Fréchet space.

Given all the new information about the spaces, Figure 13 can be updated as

shown in Figure 14. This summarizes the final relationships between S∞,e, S∞, and

the various notions of convergence.

Next, the anticipated result involving Theorem 3.4.4 as both a necessary and

sufficient condition is given.

Theorem 3.4.7. A series c ∈ RLC〈〈X〉〉 \ RGC〈〈X〉〉 if and only if there exists a

subseries ĉ ∈ R1〈〈X〉〉 of c, whose coefficients are each growing exactly at the rate

KM |η| |η|! for some growth constants K,M > 0.

Proof: In light of Theorem 3.4.4, the sufficient condition is already proved. Thus,

only the necessary condition needs to be shown. Let ĉ ∈ R1〈〈X〉〉 be a subseries of c

with coefficients growing exactly at the rate KM |η| |η|!. Then, it follows that

‖ĉ‖∞,R = sup
η∈supp(ĉ)

{

|(c, η)| R
|η|

|η|!

}

= sup
η∈supp(ĉ)

K(MR)|η| = ∞,
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R〈〈X〉〉
RLC〈〈X〉〉 = S∞,e

RGC〈〈X〉〉

R1〈〈X〉〉
(shaded area
plus dotted line)

RGC〈〈X〉〉 = S∞

(inside area
plus dotted line)

RLC〈〈X〉〉 \ RGC〈〈X〉〉
(shaded area)

∂RGC〈〈X〉〉
(dotted line)

Fig. 14: Relationships between S∞,e, S∞ and the various notions of convergence.

when R > 1/M . Using Lemma 3.2.1, ‖c‖∞,R = ∞ when R > 1/M . Therefore,

c ∈ S∞,e \ S∞. Applying Theorems 3.2.7 and 3.4.5 gives c ∈ RLC〈〈X〉〉 \RGC〈〈X〉〉,
which completes the proof.

The next example illustrates Theorem 3.4.7 and Theorem 3.4.3.

Example 3.4.1. Consider the series c =
∑∞

k=0 k! x
k
1. Clearly, it is growing at the

factorial rate, in which case, c ∈ RLC〈〈X〉〉 \ RGC〈〈X〉〉 by Theorem 3.4.7. On the

other hand,

‖c‖∞,R = sup
η∈X∗

{

|(c, η)| R
|η|

|η|!

}

= sup
n≥0

Rn.

Thus, ‖c‖∞,R <∞ if and only if R < 1. This indicates that the radius of convergence

of Fc[u](t) is unity. To confirm this, apply the identity k! xk1 = x ⊔⊔ k
1 so that

Fc[u](t) =

∞
∑

k=0

k!Exk
1
[u](t) =

∞
∑

k=0

Ek
x1
[u](t) =

1

1− Ex1
[u](t)

.

Setting u = 1 gives Fc[1](t) = 1/(1 − t), which has a finite escape time at t = 1 as

expected.
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3.4.2 Global convergence of Fliess operators

A sufficient conditions for a generating series to have a corresponding globally

convergent Fliess operator is given next.

Theorem 3.4.8. If c ∈ S∞, then the radius of convergence of series ( 1.1.2) is

infinite.

The proof of this theorem is based on the approach taken to prove Theorem 3.4.3.

Recall that a series c ∈ RLC〈〈X〉〉 was selected, and then its truncation was defined

as

cN =
N
∑

n=0

∑

η∈Xn

(c, η)η, N ≥ 0.

Clearly, cN ∈ RGC〈〈X〉〉. On the other hand, for any fixed N > 0,

Fc[u](t) = FcN [u](t) + Fc−cN [u](t),

which implied that

Fc−cN [u](t) =
∞
∑

k=N+1

∑

η∈Xk

(c− cN , η)Eη[u](t).

Then, a bound for the function |Fc−cN [u](t)| was imposed using (3.4.1). Next, the

limit L was defined by (3.4.2) as

L = lim
N→∞

‖cN − c‖∞,R.

The key observation in this procedure was that L > 0 for some R > 0. This is because

c was in the complement of RGC〈〈X〉〉, and therefore, any sequence in RGC〈〈X〉〉
would never converge to c in the semi-norm topology. In particular, the sequence

{ci}i≥0 does not converge to c in the semi-norm topology. In this case, the series is in

S∞ = RGC〈〈X〉〉 and not in its complement RLC〈〈X〉〉 \RGC〈〈X〉〉 = S∞,e \S∞ as in

the previous subsection. Thus, the procedure summarized above until the definition

of L still holds in the present context. The hypothesis now is that the sequence

{ci}i≥0 converges to c in the semi-norm topology when c ∈ S∞, so that L = 0 for all

R > 0. In order to prove this hypothesis, the following lemma is needed first. It can

be viewed as a generalization of Example 3.2.4.
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Lemma 3.4.2. Let c ∈ S∞,e and define cN =
∑N

n=0

∑

η∈Xn (c, η)η, N ≥ 0. Then

there exists an R > 0 such that cN → c as a sequence in the normed linear space

S∞(R).

Proof: If c ∈ S∞,e = RLC〈〈X〉〉 then |(c, η)| ≤ KM |η|(|η|!)γc , ∀η ∈ X∗ for some

K,M > 0 and 0 ≤ γc ≤ 1. Therefore,

‖cN − c‖∞,R ≤ sup
n>N

K
(MR)n

(n!)1−γc
.

When 0 ≤ γc < 1 it follows that

lim
N→∞

‖cN − c‖∞,R ≤ lim
N→∞

sup
n>N

K
(MR)n

(n!)1−γc

= lim
N→∞

K
(MR)N+1

((N + 1)!)1−γc
= 0 (3.4.5)

for all R > 0. On the other hand, when γc = 1

lim
N→∞

‖cN − c‖∞,R ≤ lim
N→∞

K(MR)N+1 = 0,

when R < 1/M and infinity otherwise. This implies in both cases that there exists

an R > 0 such that cN → c as a sequence in the normed linear space S∞(R).

The following corollary describes the particular case when c ∈ RGC〈〈X〉〉 ⊂ S∞,e.

Corollary 3.4.1. If c ∈ RGC〈〈X〉〉 then cN → c in the semi-norm topology.

Proof: The claim follows directly from (3.4.5).

The next lemma provides the exact hypothesis needed in order to prove The-

orem 3.4.8, namely, that the sequence {cN}N≥0 converges to c in the semi-norm

topology when c ∈ S∞.

Lemma 3.4.3. Let c ∈ S∞ and define cN =
∑N

n=0

∑

η∈Xn (c, η)η, N ≥ 0. Then

cN → c in the semi-norm topology.

Proof: In light of Corollary 3.4.1, the claim only needs to be shown for series in

∂RGC〈〈X〉〉 . The proof is by contradiction. If c ∈ S∞ then

‖c‖∞,R <∞, ∀R > 0. (3.4.6)
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Now suppose {cN}N≥0 does not converges to c in the semi-norm topology. In which

case,

L = lim
N→∞

‖cN − c‖∞,R > 0 (3.4.7)

for some R > 0. Note that the proof of Theorem 3.4.3 uses only the fact that (3.4.2)

holds since {cN}N≥0 does not converge to c in the semi-norm topology. Therefore, L

in (3.4.3) is well defined and (3.4.4) also holds. Following the proof of Theorem 3.4.4,

a subseries ĉ ∈ R1〈〈X〉〉 of c whose coefficients are growing exactly at the rate

KM |η| |η|! for some K,M > 0 is constructed. However, by Theorem 3.4.7 it follows

that c ∈ S∞,e \ S∞. This fact contradicts (3.4.6), which completes the proof.

Now, the proof of Theorem 3.4.8 can be given.

Proof of Theorem 3.4.8: Following the same approach as in the proof of Theo-

rem 3.4.3, one is led to the conclusion in this case that for any R > 0

L = lim
N→∞

‖cN − c‖∞,R = 0

precisely because the sequence {cN}N≥0 converges to c in the semi-norm topology

via Lemma 3.4.3. Applying Theorems 3.4.1 and 3.4.2 as before now gives

z0 := lim
n→∞

R̂

L1/n
=

1

lim supn→∞ (|an| /n!)1/n
= ∞.

Thus, f can not have a finite singularity, implying that Fc[u](t) has a infinite radius

of convergence.

It is important to note that Theorem 3.4.3 and 3.4.8 can both be extended to

give not only a sufficient condition but also a necessary condition. The following two

theorems accomplish the first main goal of this dissertation, namely to develop the

precise relationship between the growth rate of the coefficients of a generating series

and the nature of the convergence of its corresponding Fliess operator.

Theorem 3.4.9. A series c ∈ S∞,e \ S∞ if and only if the radius of convergence of

series ( 1.1.2) is finite.

Proof: The sufficient condition was already proved in Theorem 3.4.3. Thus, only

the necessary condition needs to be shown. The proof will be done by contradiction.

Given a series c ∈ R〈〈X〉〉 whose associated Fliess operator (1.1.2) has finite radius

of convergence, assume c ∈ S∞. Thus, by Theorem 3.4.8, the radius of convergence
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of series (1.1.2) is infinite. This yields a contradiction since the radius of convergence

was finite. Therefore, c ∈ S∞,e \ S∞, which completes the proof.

The following result also follows from the fact that S∞,e \ S∞ and S∞ are com-

plements.

Theorem 3.4.10. A series c ∈ S∞ if and only if the radius of convergence of se-

ries ( 1.1.2) is infinite.

Proof: Analogous to the proof of the previous theorem, only the necessary condition

needs to be shown. Given a series c ∈ R〈〈X〉〉 whose associated Fliess operator (1.1.2)

has infinite radius of convergence, assume c ∈ S∞,e \ S∞,e. Thus, by Theorem 3.4.8,

the radius of convergence of series (1.1.2) is finite. This yields a contradiction since

the radius of convergence was infinite. Therefore, c ∈ S∞, and the theorem is proved.

In light of Theorem 3.4.10, it now makes more sense to call S∞ = RGC〈〈X〉〉 ⊃
RGC〈〈X〉〉 the set of globally convergent generating series. This means, of course,

that the growth rate of the coefficients in the generating series is no longer the sole

indicator of whether the Fliess operator is globally convergent. In Section 3.3 it was

proved that c1F ∈ ∂RGC〈〈X〉〉. Now another series on the border is exhibited.

Corollary 3.4.2. The series cF ∈ ∂RGC〈〈X〉〉.

Proof: In [41, Theorem 8] it was shown that cF always has a double exponential

bounding function and that ensures that FcF [u](t) is well defined on [0, T ] for any

T > 0 and u ∈ L1,e(0). Thus, the radius of convergence of FcF is infinite. Applying,

Theorem 3.4.10 it follows that cF ∈ S∞. However, by Theorem 3.3.2, cF ∈ R1〈〈X〉〉.
Hence, cF ∈ ∂RGC〈〈X〉〉.

The next example illustrates Theorem 3.4.10.

Example 3.4.2. Reconsider the series c1F and the truncated version dN as defined

in the proof of Theorem 3.3.3. From (3.4.1) it follows that

∣

∣

∣
Fc1

F
−dN [u](t)

∣

∣

∣
≤
∑

n>N

n
∑

k0=0

kn−k0
0

Rn

n!
.

Therefore, Fc1
F
−dN [u](t) converges for all R, T > 0 using the ratio test on the upper

bound above. In addition, Fc1
F
[u](t) = FdN [u](t) + Fc1

F
−dN [u](t) is also bounded, and

thus, this further confirms the claim in Theorem 3.3.3 that c1F ∈ S∞.



74

3.5 SUMMARY

It was proved in Section 3.1 that having c ∈ RGC〈〈X〉〉, i.e., 0 ≤ γc < 1, is

a sufficient condition for global convergence of the corresponding Fliess operator.

Section 3.2 introduced the spaces of formal power series, using the norm, ‖·‖∞,R, R >

0. Then, the space S∞ := ∩R>0S∞(R) was proved to be a locally convex topological

vector space with a family of semi-norms. In addition, two important relationships

between these sets were proved, specifically, RLC〈〈X〉〉 = S∞,e := ∪R>0S∞(R), and

RGC〈〈X〉〉 ⊆ S∞. Subsequently, in Section 3.3, the example of the Ferfera series cF

was considered. First, a precise growth rate for the coefficients of cF is presented, in

particular is shown that cF ∈ R1〈〈X〉〉. Then, the specific set to which its subseries

c1F belongs to is given, namely, c1F ∈ ∂RGC〈〈X〉〉. Finally, Section 3.4 gives the precise

relationship between the growth rate of the coefficients of a generating series and the

nature of the convergence of its corresponding Fliess operator via Theorems 3.4.9

and 3.4.10. It also, became clear to call S∞ = RGC〈〈X〉〉 ⊃ RGC〈〈X〉〉 the space

of globally convergent generating series, since its associated Fliess operator is always

globally convergent. Ultimately, the main consequence of these results is that the

set of generating series known to render global convergence has been expanded, and

now the growth rate of the coefficients of a generating series is no longer the sole

indicator of whether a Fliess operator is global convergent.
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CHAPTER 4

APPLICATION TO NONRECURSIVE

INTERCONNECTED FLIESS OPERATORS

“Negarse a que el acto delicado de girar el

picaporte, ese acto por el cual todo podŕıa

transformarse, se cumpla con la fŕıa efica-

cia de un reflejo cotidiano”

– Julio Cortázar,

Historias de cronopios y de famas 4

The goal of this chapter is to describe precisely when the nonrecursive intercon-

nection of two globally convergent Fliess operators is again globally convergent. As

shown in Chapter 3, the set of generating series known to render global convergence

has been expanded, and now the growth rate of the coefficients of a generating series

is no longer the sole indicator of whether a given generating series renders a globally

convergent Fliess operator. It should be stressed that this is a larger question than

the one addressed in [41], where global convergence of a Fliess operator was shown

to be preserved for nonrecursive interconnections when (1.1.4) was satisfied.

This chapter is organized as follows. In Section 4.1, the two types of parallel in-

terconnections are presented: sum and product. First, the particular case when both

series are in RGC〈〈X〉〉 is considered, and a condition on the Gevrey order of the re-

sulting series is given. Then, the space S∞ is showed to be closed under addition and

the shuffle product, which implies that both parallel interconnections of two glob-

ally convergent Fliess operators preserve the global convergence property. Finally,

Section 4.2 addresses the cascade interconnection, and the space S∞ is shown to be

closed under the composition product. This implies that the cascade interconnec-

tion of two globally convergent Fliess operators also preserves the global convergence

property.

4To deny that the delicate act of turning the latch, that act by which everything could be
transformed, is fulfilled with the cold efficacy of a daily reflex.
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4.1 PARALLEL SUM AND PARALLEL PRODUCT

INTERCONNECTIONS

This section is divided in two subsections, each dealing with a type of parallel

interconnection. In each subsection, first the particular case when both series are in

RGC〈〈X〉〉 is presented. Then, an upper bound on the minimum of the Gevrey order

of the resulting series is given. Lastly, since global convergence of a Fliess operator

is completely characterized by its generating series being in the space S∞, it is only

necessary to show that S∞ is closed under addition and the shuffle product in order to

prove that both parallel interconnections of two globally convergent Fliess operators

preserve the global convergence property. The following definition and technical

results will be needed to do this analysis.

Definition 4.1.1. A series c ∈ Rγ〈〈X〉〉 is said to bemaximal with growth constants

K,M > 0 if each component of (c, η) is equal to KM |η|(|η|!)γ, ∀η ∈ X∗.

Note that if a series is maximal then using Definition 2.1.4, the series is also

exchangeable. The next lemma follows from Stirling’s approximation.

Lemma 4.1.1. For any K,M, s > 0, there exists an integer N > 0 such that

KMn ≤ (n!)s, (4.1.1)

for all integers n > N .

Proof: From Stirling’s approximation it follows that O(n!) = O(
√
2πn(n/e)n).

Therefore,

lim
n→+∞

K
Mn

(n!)s
=

K

(2π)s/2
lim

n→+∞

(esM)n√
nnns

= 0,

which directly leads to (4.1.1).

The next lemma presents the neoclassical inequality, a generalization of the bi-

nomial theorem.

Lemma 4.1.2. [32] (Neoclassical Inequality) For any integer n ≥ 0, x, y ∈ R+, and

p ≥ 1 it follows that

(

1

p

) n
∑

j=0

xj/p

(j/p)!

y(n−j)/p

((n− j)/p)!
≤ (x+ y)n/p

(n/p)!
.
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Observe that when p = 1 above, the result reduces to the binomial theorem.

4.1.1 The parallel sum interconnection

The particular case when both series are in RGC〈〈X〉〉 is presented first. In order

to give an upper bound on the minimum of the Gevrey order of the resulting series

of the parallel sum connection, an analysis of the maximal series case is needed first.

The following lemma gives an upper bound on the minimum of the Gevrey order of

the sum of two series when both series are maximal.

Lemma 4.1.3. Let c, d ∈ RGC〈〈X〉〉 be maximal series with minimum Gevrey order

γc and γd, respectively. If b := c+ d then b ∈ RGC〈〈X〉〉 has minimum Gevrey order

γb = max {γc, γd}.

Proof: First recall that the minimum Gevrey order of a series b is the minimum s

satisfying (3.1.1). Observe for any ν ∈ Xn, n ≥ 0, that

(b, ν) = (c, ν) + (d, ν) = KcM
n
c (n!)

γc +KdM
n
d (n!)

γd

≤ KMn(n!)s, (4.1.2)

where s := max {γc, γd}, M := max {Mc,Md} and K := Kc +Kd. Letting γb denote

the minimum Gevrey order of b, it is clear from (4.1.2) that γb ≤ s < 1, which implies

that b ∈ RGC〈〈X〉〉. It is shown now that γb 6< s since considering otherwise would

render a contradiction. Suppose γb < s and there exist constants Kb,Mb > 0 such

that (b, ν) ≤ KbM
n
b (n!)

γb , ∀ν ∈ Xn, n ≥ 0. There is no loss of generality in assuming

γc ≤ γd. In which case, γb < s = max {γc, γd} = γd, and therefore,

(b, ν) = KcM
n
c (n!)

γc +KdM
n
d (n!)

γd ≤ KbM
n
b (n!)

γb .

In particular, this implies that KdM
n
d (n!)

γd−γb ≤ KbM
n
b . Hence,

(n!)γd−γb ≤ Kb

Kd

(

Mb

Md

)n

. (4.1.3)

Substituting M ′ = Mb/Md, K
′ = Kb/Kd and s′ = γd − γb in (4.1.3) gives K ′M ′n ≥

(n!)s
′
, which contradicts (4.1.1) in Lemma 4.1.1 since by assumption γd − γb > 0.

Therefore, γb = max {γc, γd}.

It is now possible to compute an upper bound on the minimum Gevrey order of
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the sum of two arbitrary series in RGC〈〈X〉〉.

Theorem 4.1.1. Let c, d ∈ RGC〈〈X〉〉 with minimum Gevrey order γc and γd, respec-

tively. If b := c+d then b ∈ RGC〈〈X〉〉 with minimum Gevrey order γb ≤ max {γc, γd}.

Proof: For any ν ∈ X∗ it follows that

|(c+ d, ν)| ≤ |(c, ν)|+ |(d, ν)| ≤ (c̄, ν) + (d̄, ν) = (b̄, ν),

where b̄, c̄ and d̄, are the maximal series corresponding to b, c, and d, respectively

(that is, each pair, for example b and b̄, share the same growth constants). From

Lemma 4.1.3 it then follows directly that γb ≤ max {γc, γd}.

The fact that the upper bound on the minimum Gevrey order of the sum of two

series is the maximum of the minimum Gevrey orders of the component series implies

that RGC〈〈X〉〉 is closed under addition. The next theorem is one of the main results

of this dissertation. It shows that S∞ is also closed under addition, and thus, the

parallel sum connection preserves the global convergence property.

Theorem 4.1.2. The space S∞ is closed under addition.

Proof: Let c, d ∈ S∞. Then clearly

‖c+ d‖∞,R ≤ ‖c‖∞,R + ‖d‖∞,R <∞

for all R > 0. Hence, c+ d ∈ S∞.

4.1.2 The parallel product interconnection

Analogous to the approach in Subsection 4.1.1, the particular case when both

series are maximal and in RGC〈〈X〉〉 is presented first. However, the case of the

parallel product connection is more difficult than the one faced for the parallel sum

connection since the sum is replaced now with shuffle the product. The following

lemma gives an upper bound on the minimum of the Gevrey order of the resulting

series when both series are maximal. The neoclassical inequality plays a key role in

the proof.

Lemma 4.1.4. Let c, d ∈ RGC〈〈X〉〉 be maximal series with minimum Gevrey order

γc and γd, respectively. If b := c ⊔⊔ d then b ∈ RGC〈〈X〉〉 has minimum Gevrey order

γb = max {γc, γd}.
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Proof: Observe that for any ν ∈ Xn, n ≥ 0,

(b, ν) = (c ⊔⊔ d, ν) =

n
∑

j=0

∑

η∈Xj

ξ∈Xn−j

(c, η)(d, ξ)(η ⊔⊔ ξ, ν)

=

n
∑

j=0

KcM
j
c (j!)

γcKdM
n−j
d ((n− j)!)γd

(

n

j

)

= KcKdn!
n
∑

j=0

M j
cM

n−j
d

1

(j!)1−γc((n− j)!)1−γd
.

Using Lemma 3.1.1 when j ≫ 1and letting s := max {γc, γd} < 1, s′ := 1 − s,

Ks := ((2π)1−s′s′)1/2 and Ms := s′s
′

, it follows that

(c ⊔⊔ d, ν) ≤ KcKdn!
n
∑

j=0

M j
cM

n−j
d

(Ks)
2Mn

s

(js′)!((n− j)s′)!
,

= KcKd(Ks)
2Mn

s n!

n
∑

j=0

(Mc
1/s′)

js′

(Md
1/s′)

(n−j)s′

(js′)!((n− j)s′)!
.

Now applying Lemma 4.1.2 gives

(c ⊔⊔ d, ν) ≤ 1

s′
KcKd(Ks)

2Mn
s n!

(Mc
1/s′ +Md

1/s′)ns
′

(ns′)!
.

In which case, from Lemma 3.1.1 when n≫ 1 is it immediate that

(c ⊔⊔ d, ν) ≤ KMn(n!)s, (4.1.4)

where M := Mc
1/s′ + Md

1/s′ and K := KcKdKs/s
′. Since the minimum Gevrey

order is the minimum s satisfying (3.1.1), if the minimum Gevrey order of b = c ⊔⊔ d

is γb, then it is clear from (4.1.4) that γb ≤ s < 1, which automatically implies

that b ∈ RGC〈〈X〉〉. It is shown now that γb 6< s since otherwise a contradiction

is obtained. Suppose γb < s and that there exist constants Kb,Mb > 0 such that

(b, ν) ≤ KbM
n
b (n!)

γb , ∀ν ∈ Xn, n ≥ 0. Without loss of generality assume γc ≤ γd. In

which case, γb < s = max {γc, γd} = γd. Thus, for any fixed n ≥ 0

(b, ν) = (c ⊔⊔ d, ν) ≤ KbM
n
b (n!)

γb ,
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which implies that

(c ⊔⊔ d, ν)=

n
∑

j=0

∑

η∈Xj

ξ∈Xn−j

(c, η)(d, ξ)(η ⊔⊔ ξ, ν) ≤ KbM
n
b (n!)

γb.

In particular, the j = 0 term in the summation above must satisfy

(c, ∅)(d, ν) = KcKdM
n
d (n!)

γd ≤ KbM
n
b (n!)

γb ,

which amounts to the inequality

(n!)γd−γb ≤ Kb

KcKd

(

Mb

Md

)n

. (4.1.5)

Letting M ′ := Mb/Md, K
′ := Kb/(KcKd) and s̄ := γd − γb in (4.1.5) gives K ′M ′n ≥

(n!)s̄, which contradicts (4.1.1) in Lemma 4.1.1 since by assumption s̄ = γd− γb > 0.

Thus, γb = max {γc, γd}.

It is now possible to compute an upper bound on the minimum Gevrey order of

the shuffle product of two arbitrary series in RGC〈〈X〉〉.

Theorem 4.1.3. Let c, d ∈ RGC〈〈X〉〉 with minimum Gevrey order γc and γd, re-

spectively. If b := c ⊔⊔ d then b ∈ RGC〈〈X〉〉 with minimum Gevrey order γb ≤
max {γc, γd}.

Proof: First observe that for all ν ∈ X∗

|(c ⊔⊔ d, ν)| ≤ (c̄ ⊔⊔ d̄, ν) = (b̄, ν),

where b̄, c̄ and d̄ are maximal series corresponding to b, c and d, respectively. From

Lemma 4.1.4 it then follows directly that γb ≤ max {γc, γd}.

The fact that the upper bound on the minimum Gevrey order of the shuffle prod-

uct of two series is the maximum of the minimum Gevrey orders of the component

series implies that RGC〈〈X〉〉 is closed under the shuffle product. In order to show

that S∞ is also closed under the shuffle product, the next inequality is needed. It is

interesting to observe its similarity to the Cauchy-Schwarz inequality but using the

shuffle product instead of the inner product.



81

Lemma 4.1.5. For every c, d ∈ S∞,

‖c ⊔⊔ d‖∞,R ≤ ‖c‖∞,R‖d‖∞,R

for all R > 0.

Proof: Starting with the definition of the norm on S∞(R):

‖c ⊔⊔ d‖∞,R = sup
ν∈X∗

{

|(c ⊔⊔ d, ν)| R
|ν|

|ν|!

}

≤ sup
ν∈Xn

0≤j≤n
n≥0







∑

η∈Xj ,ξ∈Xn−j

|(c, η)| |(d, ξ)| (η ⊔⊔ ξ, ν)
Rn

n!







≤ sup
ν∈Xn

0≤j≤n
n≥0







(

max
η∈Xj

|(c, η)|Rj

)(

max
ξ∈Xn−j

|(d, ξ)|Rn−j

)

1

n!

∑

η∈Xj ,ξ∈Xn−j

(η ⊔⊔ ξ, ν)







.

It is easy to show by induction that

∑

η∈Xj

ξ∈Xn−j

(η ⊔⊔ ξ, ν) =

(

n

j

)

, ∀ν ∈ Xn.

Therefore,

‖c ⊔⊔ d‖∞,R ≤ sup
ν∈Xn

0≤j≤n
n≥0

{(

max
η∈Xj

|(c, η)| R
j

j!

)(

max
ξ∈Xn−j

|(d, ξ)| Rn−j

(n− j)!

)}

.

Since c, d ∈ S∞, it is clear that ‖c‖∞,R <∞ and ‖d‖∞,R <∞. This implies that

‖c ⊔⊔ d‖∞,R ≤ sup
η∈Xj

0≤j≤n
n≥0

{

|(c, η)| R
j

j!

}

sup
ξ∈Xn−j

0≤j≤n
n≥0

{

|(d, ξ)| Rn−j

(n− j)!

}

≤ sup
η∈X∗

{

|(c, η)| R
|η|

|η|!

}

sup
ξ∈X∗

{

|(d, ξ)| R
|ξ|

|ξ|!

}

= ‖c‖∞,R‖d‖∞,R,

which completes the proof.

The next theorem is one of the main results of this dissertation. It shows that S∞
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is also closed under the shuffle product, and thus, the parallel product connection

preserves the global convergence property.

Theorem 4.1.4. The space S∞ is closed under the shuffle product.

Proof: Let c, d ∈ S∞. Then from Lemma 4.1.5 it follows that

‖c ⊔⊔ d‖∞,R ≤ ‖c‖∞,R‖d‖∞,R <∞

for all R > 0. Hence, c ⊔⊔ d ∈ S∞.

4.2 CASCADE INTERCONNECTION

In this section the cascade interconnection is addressed. It is instructive to start

with a few simple examples.

Example 4.2.1. Let X0 = {x0} and assume c ∈ RGC〈〈X0〉〉 has minimum Gevrey

order γc. Since c ◦ d = c for any d ∈ R〈〈X〉〉, it follows that the minimum Gevrey

order γc is preserved for this particular series composition.

Example 4.2.2. Consider the rational series

c =
∞
∑

n1,n2=0

KMn1+n2 xn1

0 x1x
n2

0 = K(Mx0)
∗x1(Mx0)

∗.

This series is input-limited in the sense that there is a fixed upper bound on |η|x1

when η ∈ supp(c) [10, 11]. In this case, the letter x1, corresponding to the input

u in Fc[u], appears exactly once in every word in the support of c. It is known

that the composition product preserves rationality when its left argument is input-

limited [8, 10, 11]. Therefore, since all rational series are in R0〈〈X〉〉, then c ◦ d ∈
R0〈〈X〉〉 for any d ∈ R〈〈X〉〉.

Examples 4.2.1 and 4.2.2 provide specific cases in which the Gevrey order of the

composition of two series can be determined exactly. The following theorem shows

that an explicit upper bound on the minimum Gevrey order of a composition over

RGC〈〈X〉〉 can be computed when the left argument of the composition product is

input-limited. Unfortunately, at present, no other classes of series are known for

which an explicit upper bound on the minimum Gevrey order can be determined.
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Theorem 4.2.1. Let c, d ∈ RGC〈〈X〉〉 with minimum Gevrey orders γc and γd,

respectively. If b := c ◦ d with c input-limited, then b ∈ RGC〈〈X〉〉, and its minimum

Gevrey order is γb ≤ max{γc, γd}.

Proof: Since c is input-limited, there exists some fixed N ∈ N such |η|x1
≤ N ,

∀η ∈ supp{c}. Therefore, the composition product b = c ◦ d can be written in terms

of a finite number of sums and shuffle products. It then follows from Theorems 4.1.1

and 4.1.3 that the minimum Gevrey order of b must satisfy γb ≤ max{γc, γd}.

In order to show that S∞ is closed under the composition product, the next

theorem involving maximal series is needed.

Theorem 4.2.2. Let c̄ ∈ S∞ be a maximal series and d ∈ S∞. Then c̄ ◦ d ∈ S∞.

The first step in proving this theorem is to construct a sequence in S∞ that

converges to the composition product, c̄ ◦ d, in the semi-norm topology. Then, since

the space S∞ is Fréchet (thus, complete) the series c̄ ◦ d will also be on the space.

In order to pick this sequence properly, the following lemma is introduced. It can be

seen as an analogue of Lemma 3.4.2 but now including the composition product.

Lemma 4.2.1. Let c, d ∈ S∞,e and define cN =
∑N

n=0

∑

η∈Xn (c, η)η, N ≥ 0. If

b := c ◦ d then b ∈ S∞,e and there exists an R > 0 such that cN ◦ d→ b as a sequence

in the normed linear space S∞(R).

Proof: If c, d ∈ S∞,e then it is known that b := c ◦ d ∈ RLC〈〈X〉〉 = S∞,e [22]. This

implies that |(b, η)| ≤ KM |η|(|η|!)γb , ∀η ∈ X∗ for some K,M > 0 and 0 ≤ γb ≤ 1.

Therefore, for any R > 0

‖cN ◦ d− b‖∞,R = sup
ν∈X∗

{

|((cN − c) ◦ d, ν)| R
|ν|

|ν|!

}

.

Since ord((cN − c) ◦ d) ≥ N + 1, it follows that

‖cN ◦ d− b‖∞,R = sup
ν∈Xn

n>N

{

|(b, ν)| R
|ν|

|ν|!

}

≤ sup
n>N

K
(MR)n

(n!)1−γb
≤











K
(MR)N+1

((N + 1)!)1−γb
: 0 ≤ γb < 1

K(MR)N+1 : γb = 1.
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When 0 ≤ γb < 1 observe that

lim
N→∞

‖cN ◦ d− b‖∞,R ≤ lim
N→∞

sup
n>N

K
(MR)n

(n!)1−γb
= lim

N→∞
K

(MR)N+1

((N + 1)!)1−γb
= 0 (4.2.1)

for all R > 0. On the other hand, when γb = 1 and R < 1/M then

lim
N→∞

‖cN ◦ d− b‖∞,R ≤ lim
N→∞

K(MR)N+1 = 0

and infinity otherwise. This implies in both cases that there exists an R > 0 such

that cN ◦ d→ b as a sequence in the normed linear space S∞(R).

It is important to observe that the lemma above implies that the composition

product is continuous in its left argument, at least with respect to a specific sequence.

The next corollary explores the particular case when c ◦ d ∈ RGC〈〈X〉〉 ⊂ S∞,e. It

can be viewed as an analogue of Corollary 3.4.1 involving the composition product.

Corollary 4.2.1. If c◦d ∈ RGC〈〈X〉〉 then cN ◦d→ c◦d in the semi-norm topology.

Proof: The claim follows directly from (4.2.1).

A second important observation regarding the proof of Theorem 4.2.2 is that the

sequence in S∞ has to be Cauchy in the semi-norm topology, again since the space

S∞ is Fréchet (thus, complete). To prove that this sequence is Cauchy in the semi-

norm topology, Lemma 2.1.2 is applied to a maximal series. That stated, now the

proof of Theorem 4.2.2 can be presented.

Proof of Theorem 4.2.2 The key idea is to define the sequence {c̄N}N≥0 as in

Lemma 4.2.1. Then there exists an R > 0 such that c̄N ◦ d → c̄ ◦ d as a sequence

in the normed space S∞(R). In light of Corollary 3.2.3, if {c̄N ◦ d}N≥0 also con-

verges in the semi-norm topology then the (unique) limit point will be c̄ ◦ d. In

order to prove that this convergence also holds in the semi-norm topology is suf-

ficient to show that {c̄N ◦ d}N≥0 is a Cauchy sequence in the semi-norm topology

since the space S∞ is Fréchet. First note that c̄ ∈ S∞ is a maximal series, hence

|(c̄, η)| = KcM
|η|
c (|η|!)γc , ∀η ∈ X∗ for some Kc,Mc > 0 and 0 ≤ γc ≤ 1. By

Lemma 3.4.3, c̄N → c̄ in the semi-norm topology, which implies that {c̄N}N≥0 is a

Cauchy sequence in the semi-norm topology. Thus, given N1 > N2 ∈ N, there exists

a natural number L such that for any ǫ > 0

‖c̄N1
− c̄N2

‖∞,R < ǫ (4.2.2)
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when N2 > L and for all R > 0. Applying the definition of the norm in (4.2.2) it

follows

‖c̄N1
− c̄N2

‖∞,R = sup
N2<n<N1

Kc
(McR)

n

(n!)1−γc
<

ǫ′

N1 −N2

, (4.2.3)

where N1 > N2 > L, ǫ′ > 0, and R > 0 is arbitrary. On the other hand, observe that

c̄N1
◦ d− c̄N2

◦ d = (c̄N1
− c̄N2

) ◦ d =
N1
∑

k>N2

∑

η∈Xk

(c̄, η)ψd(η)(1).

The key observation here is that c̄ is maximal and therefore exchangeable. Thus

Lemma 2.1.2 can be applied to the expression above. Following [40, Proof of Theo-

rem 2] yields

c̄N1
◦ d− c̄N2

◦ d =
N1
∑

k>N2

KcM
k
c (k!)

γc
∑

r0,...,rm≥0

r0+···+rm=k

x ⊔⊔ r0
0

r0!
⊔⊔ · · · ⊔⊔

(xm ◦ d) ⊔⊔ rm

rm!

=

N1
∑

k>N2

Kc
(Mc(x0 +mx0d))

⊔⊔ k

(k!)1−γc
. (4.2.4)

Fixed R > 0, taking the ‖ · ‖∞,R on both sides of (4.2.4) and using Theorems 4.1.2

and 4.1.4 gives

‖c̄N1
◦ d− c̄N2

◦ d‖∞,R =

∥

∥

∥

∥

∥

N1
∑

k>N2

Kc
(Mc(x0 +mx0d))

⊔⊔ k

(k!)1−γc

∥

∥

∥

∥

∥

∞,R

≤
N1
∑

k>N2

Kc
‖(Mc(x0 +mx0d))

⊔⊔ k‖∞,R

(k!)1−γc
. (4.2.5)

However, again applying Theorems 4.1.2 and 4.1.4, it follows that

‖(x0 +mx0d)
⊔⊔ k‖∞,R ≤‖(x0 +mx0 ◦ d)‖k∞,R

≤(R +Rm‖d‖∞,R)
k = Rk(1 +m‖d‖∞,R)

k, (4.2.6)

since d ∈ S∞. Substituting (4.2.6) in (4.2.5) gives

‖c̄N1
◦ d− c̄N2

◦ d‖∞,R ≤
N1
∑

k>N2

Kc
(McR(1 +m‖d‖∞,R))

k

(k!)1−γb
. (4.2.7)
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Note that each term on the right hand summation of (4.2.7) is bounded by its

supreme, therefore

‖c̄N1
◦ d− c̄N2

◦ d‖∞,R ≤ (N1 −N2) sup
N2<k<N1

Kc
(McR(1 +m‖d‖∞,R))

k

(k!)1−γb
.

Note that if N1 > N2 > L, ǫ′ > 0 and L are selected as in (4.2.3), then

‖c̄N1
◦ d− c̄N2

◦ d‖∞,R ≤ (N1 −N2) sup
N2<n<N1

Kc
(McR

′)n

(n!)1−γc
< (N1 −N2)

ǫ′

N1 −N2

= ǫ′,

where R′ := (McR(1 +m‖d‖∞,R)), and R = R′ is used in (4.2.3). This implies that

{c̄N ◦ d}N≥0 is a Cauchy sequence in the semi-norm topology, therefore c̄ ◦ d ∈ S∞.

In the light of Theorem 4.2.2, the last main result of this dissertation is given

next.

Theorem 4.2.3. The space S∞ is closed under the composition product.

Proof: Let c, d ∈ S∞. Then for any ν ∈ X∗,

|(c ◦ d, ν)| ≤
∑

η∈X∗

|(c, η) (ψd(η)(1), ν)| ≤
∑

η∈X∗

|(c̄, η) (ψd(η)(1), ν)| = |(c̄ ◦ d, ν)| ,

where c̄ is the maximal series corresponding to c. Thus,

|(c ◦ d, ν)| ≤ |(c̄ ◦ d, ν)| .

This inequality was first shown in [41] for the cases when c, d are in R1〈〈X〉〉 or

R0〈〈X〉〉. Multiplying each side by R|ν|/ |ν|! gives

|(c ◦ d, ν)| R
|ν|

|ν|! ≤ |(c̄ ◦ d, ν)| R
|ν|

|ν|! .

Taking the supreme on the length of the words on each side yields

sup
ν∈X∗

{

|(c ◦ d, ν)| R
|ν|

|ν|!

}

≤ sup
ν∈X∗

{

|(c̄ ◦ d, ν)| R
|ν|

|ν|!

}

.

Thus,

‖c ◦ d‖∞,R ≤ ‖c̄ ◦ d‖∞,R <∞,
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using Theorem 4.2.2 in the last step. Therefore, c ◦ d ∈ S∞, which completes the

proof.

The next example illustrates the main theorem of the subsection.

Example 4.2.3. Consider the bilinear state space system

ż1 = z1z2, z1(0) = 1

ż2 = z2u, z2(0) = 1

y = z1.

It is easily verified that y = FcF [u]. The operator FcF has an infinite radius of

convergence since it was shown in Chapter 3, that cF ∈ S∞. The cascade of two such

systems has the realization

ż = g0(z) + g1(z)u, y = h(z), (4.2.8)

where

g0(z) =













z1z2

z2z3

z3z4

0













, g1(z) =













0

0

0

z4













,

h(z) = z1, and zi(0) = 1 for all i. The corresponding generating series cF ◦ cF can be

computed by iterated Lie derivatives (see [27]) to give

cF ◦ cF =1 + x0 + 2x20 + 6x30 + 23x40 + x30x1 + 106x50

+ 9x40x1 + 3x30x1x0 + x30x
2
1 + 568x60 + 68x40x1

+ 34x30x1x0 + 11x40x
2
1 + 11x30x1x

2
0 + 3x30x

2
1x0

+ 4x30x1x0x1 + x30x
3
1 + · · ·

Consistent with Theorem 4.2.3, cF ◦ cF is also in S∞ and therefore FcF ◦cF would have

an infinite radius of convergence. In order to test this claim independently, note that

the solution of (4.2.8) can be written in terms of compositions of functionals as

y(t) = FcF ◦cF [u](t) = Fc[Fc[Fc[Fc[u]]]](t),
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t

0 0.5 1 1.5 2 2.5 3
-8

-6

-4

-2

0

2

4

FcF ◦cF
[u](t)

t+ 1.2

Fig. 15: Response of the operator FcF ◦cF [u] when u = e−t (solid line) on a quadruple
logarithmic scale and the bounding function t+ 1.2 (dotted line).

where

Fc[u](t) = exp

(
∫ t

0

u(τ) dτ

)

.

Now given any u ∈ L1
p[0, T ] for some arbitrary T > 0, Fc[u] is clearly well defined

on [0, T ]. Repeating this argument three more times yields the same conclusion

for y. A MatLab simulation of (4.2.8) to generate y when u(t) = e−t is shown in

Figure 15. Since the output is four nested exponentials, the response is best viewed

by taking four successive logarithms. Note that in the figure the response increases

monotonically after approximately t = 1.1. The quadruple exponential of t + 1.2

(found empirically) bounds the response completely so that there exists no finite

escape times. This behavior is consistent with that of a globally convergent Fliess

operator.

4.3 SUMMARY

In Section 4.1, it was shown that the two parallel interconnections of Fliess op-

erators preserve the global convergence property. Upper bounds on the minimum

of the Gevrey orders of the resulting series were also calculated and an interesting

Cauchy–Schwarz type inequality but using the shuffle product was presented. It was
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shown in Section 4.2 that the cascade interconnection of two globally convergent

Fliess operators also preserves the global convergence property. Therefore, all nonre-

cursive interconnection of two globally convergent Fliess operators preserve the global

convergence property, which accomplishes the second main goal of this dissertation.
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CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH

“Perdón por las manchas de esta página.

Son de té con limón, o de naranja. Puede

que un d́ıa tenga dos mesas, una para

comer y otra para escribir”

– Julio Cortázar,

Historias de cronopios y de famas3

In this final chapter, the main contributions and conclusions of this dissertation

are summarized and future research topics are given.

5.1 MAIN CONCLUSIONS

This dissertation was focused on the solution of two problems.

The first problem was to develop an exact relationship between the growth rate of

the coefficient’s generating series and the nature of the convergence of its correspond-

ing Fliess operator. This problem was solved through Theorems 3.4.9 and 3.4.10. The

set of generating series known to ensure global convergence was expanded, and now

the growth rate of the coefficients generating series is no longer the sole indicator

of whether a given generating series renders a globally convergent Fliess operator.

Specifically, global convergence of a Fliess operator is completely characterized by

its generating series being in the Fréchet space S∞ = RGC〈〈X〉〉. The Ferfera series

cF was shown to be on the boundary ∂RGC〈〈X〉〉. In which case cF ∈ R1〈〈X〉〉 and
FcF is globally convergent. It is important to mention that, in this dissertation, the

approach for the creation of the new set of formal power series was two folded, one

considering the properties related to the known spaces on the literature; and on the

other hand, considering new topological properties. However, another perspectives

for the creation of this new set are also available. In particular, using a concept

called projective systems [26].

3Sorry for the spots on this page. They are tea with lemon, or orange. One day I may have two
tables, one to eat and one to write.
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The second problem was to describe precisely when the nonrecursive interconnec-

tion of two globally convergent Fliess operators is again globally convergent. This

problem was solved through Theorems 4.1.2, 4.1.4, and 4.2.3. Specifically, it was

shown that S∞ is closed under addition, the shuffle product, and the composition

product. In the process, explicit upper bounds were given in Theorems 4.1.1 and 4.1.3

for the Gevrey orders of the sum and the shuffle product when generating series were

in RGC〈〈X〉〉 ⊂ S∞.

5.2 FUTURE RESEARCH

Some interesting future research problems related to this dissertation are pro-

posed. First, it was shown that the new space of globally convergent generating

series, S∞, is a Fréchet space. Thus, one could then ask: Are there any other use-

ful properties related to this space? What is the topological structure of the longer

space S∞,e? Is there any topology, similar to the semi-norm topology that can be

associated to it? Also, what other results can be obtained when using the approach

of projective systems [26] when creating the space S∞? Next, it was proved that

the property of global convergence of two Fliess operators is preserved for all nonre-

cursive interconnections. A follow up question is what type of convergence behavior

is possible when interconnecting two systems, one with a finite radius of conver-

gence and one that is globally convergent. The feedback interconnection was not

relevant in this dissertation since global convergence is known to not be preserved

in general [21, Example 3]. However, the following question can be formulated: Un-

der what special conditions might a feedback interconnection of two Fliess operators

preserve the global convergence property?
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[13] ——, “Intégrales itérées de K.T. Chen, bruit blanc Gaussien et filtrage non
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