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Abstract. In this note, we propose an elementary method to study the existence
and uniqueness of solutions to a type of variational problems which arise naturally in
the theory of large deviations. This type of problems involves a movable boundary
and may not have the coercivity condition in general. Our method is elementarily
based on direct analysis over the space of absolutely continuous functions and specific
properties of the underlying functional.
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1. Introduction. Let H be a real-valued function on R, we study in this note
the following type of variational problems

max
ϕ∈C1

0 [0,1]

∫ 1

0

L(ϕ(t), ϕ′(t))dt

with L(v, u) = v − v2 −H(u) under appropriate assumptions on H, where C1
0 [0, 1]

denotes the space of continuously differentiable functions on [0, 1] vanishing at 0.
Here ϕ(1) is variable as a movable boundary. The main motivation of investigating
this type of variational problems is from the study of large deviations in probability
theory. More precisely, let us use AC0[0, 1] to denote the space of absolutely con-
tinuous functions on [0, 1] vanishing at 0, then one way of characterizing a rough
large deviation principle (see [8] and [9]) is through a variational problem

max
ϕ∈AC0[0,1]

[F (ϕ)− S(ϕ)]

where F is a continuous functional under some restrictions and S is the so called
rate functional describing how difficult a stochastic process falls into a neighborhood
of ϕ. This rough large deviation principle is also referred as Varadhan’s integral
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lemma (see [4] for example). When one tries to establish precise large deviations,
it is in general required that the maximizer in the above variational problem is
unique and has C1 smooth regularity (see [6] and [9]).

Indeed, in a recent paper [10] the author considered a functional F (ϕ) =∫ 1

0

(
ϕ(t)− ϕ(t)2

)
dt and a special family of pure jump stochastic processes depend-

ing on a small parameter ϵ > 0 whose trajectories are step functions with finitely
many steps on time interval [0, 1]. Those jump processes make jumps of size ±ϵ
according to the rate ϵ/2, and in this case the rate functional S(ϕ) for this fam-

ily turns out to be
∫ 1

0

(
ϕ′(t) ln

(
ϕ′(t) +

√
ϕ′(t)2 + 1

)
+ 1−

√
ϕ′(t)2 + 1

)
dt for all

absolutely continuous ϕ. This leads to the problem maxϕ∈C1
0 [0,1]

∫ 1

0
L(ϕ(t), ϕ′(t))dt

for L(v, u) = v − v2 −H0(u) with H0(u) = u ln
(
u+

√
u2 + 1

)
+ 1−

√
u2 + 1.

In this note, we consider a more general H and establish the following main
result.

Theorem 1.1. Suppose that a function H(u) is non-negative and strictly convex
such that

lim
|u|→∞

H(u)

|u|
= ∞. (1.1)

Then the variational problem

max
ϕ∈C1

0 [0,1]

∫ 1

0

[
ϕ(t)− ϕ(t)2 −H(ϕ′(t))

]
dt (1.2)

has a unique maximizer.

The uniqueness follows from standard arguments which is included in Section

2. The existence of max
∫ 1

0
L(ϕ(t), ϕ′(t))dt in reference was given, in general, with

two fixed boundaries and with the coercivity condition, namely,

−L(v, u) ≥ α|u|q − β, for some α > 0, β ≥ 0 and q > 1.

We refer the reader to [7], [5, Section 8.2] and [2, Chapters 11–16] for precise
arguments together with suitable refinements and extensions. Our assumption
(1.1) indicates that −L(v, u) grows in u faster than |u|, but not necessarily faster
than |u|q for q > 1. This can be also seen for the special H0 defined above. The
assumption (1.1) is called superlinear growth according to [1, Section 3.2]. Al-
though some more complicated method based on Sobolev spaces may be applied
to derive the existence (see for example [1] and [2]), an elementary proof of the
existence is given in this note mainly based on nice properties of the functional∫ 1

0

[
ϕ(t)− ϕ(t)2 −H(ϕ′(t))

]
dt and the analysis over the space AC0[0, 1].

2. Uniqueness. With −L(v, u) = H(u) + v2 − v, the variational problem can
be written as

α = max
ϕ∈C1

0 [0,1]

∫ 1

0

[
ϕ(t)− ϕ(t)2 −H(ϕ′(t))

]
dt = − min

ϕ∈C1
0 [0,1]

∫ 1

0

−L(ϕ(t), ϕ′(t))dt.

(2.1)



On a type of superlinear growth variational problems 3

The function −L from R2 to R is convex. Now suppose ϕ1 and ϕ2 are two mini-
mizers of the problem (2.1). Let w(t) = [ϕ1(t) + ϕ2(t)]/2, then on one hand∫ 1

0

−L(w(t), w′(t))dt ≥ −α.

On the other hand, the convexity of −L yields∫ 1

0

−L(w(t), w′(t))dt =

∫ 1

0

−L

(
1

2
(ϕ1(t), ϕ

′
1(t)) +

1

2
(ϕ2(t), ϕ

′
2(t))

)
dt

≤ 1

2

∫ 1

0

−L(ϕ1(t), ϕ
′
1(t))dt+

1

2

∫ 1

0

−L(ϕ2(t), ϕ
′
2(t))dt = −α,

which indicates that w(t) is also a minimizer of (2.1). From the equality∫ 1

0

[
−1

2
L(ϕ1(t), ϕ

′
1(t))−

1

2
L(ϕ2(t), ϕ

′
2(t)) + L(w(t), w′(t))

]
dt

= −1

2
α− 1

2
α+ α = 0 (2.2)

and the fact that the integrand of (2.2) is always non-positive, we have

−1

2
L(ϕ1(t), ϕ

′
1(t))−

1

2
L(ϕ2(t), ϕ

′
2(t)) = −L(w(t), w′(t)), for all t ∈ [0, 1].

We rewrite the above identity as follows

1

2
ϕ2
1(t) +

1

2
ϕ2
2(t)−

(
ϕ1(t) + ϕ2(t)

2

)2

= H

(
ϕ′
1(t) + ϕ′

2(t)

2

)
−
(
1

2
H(ϕ′

1(t)) +
1

2
H(ϕ′

2(t))

)
. (2.3)

If there were a point t0 ∈ [0, 1] such that ϕ1(t0) ̸= ϕ2(t0), then the left hand
side of (2.3) would be strictly less than zero which is from the strict convexity of
the function x2. But the right hand side is always non-negative. This produces a
contradiction.

3. Existence. Let us denote

v(ϕ) =

∫ 1

0

[
ϕ(t)− ϕ(t)2 −H(ϕ′(t))

]
dt.

The existence of our variational problem is proved in the following way. We first
prove the existence of maxϕ∈AC0[0,1] v(ϕ). To get the C1 smoothness of the maxi-
mizer, we identify our original problem with the one having two fixed boundaries

max
ϕ∈AC0[0,1]

ϕ(1)=c

v(ϕ), for some c ∈ R.

Then we show C1 regularity of the maximizer by means of two fixed boundary
variational results.
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3.1. Existence of maxϕ∈AC0[0,1] v(ϕ). Let us first define a subset A of
AC0[0, 1] as follows

A =

{
ϕ ∈ AC0[0, 1] :

∫ 1

0

H(ϕ′(t))dt ≤ 1

4
+H(0)

}
.

We need the following lemma regarding the properties of the subset A and v(ϕ).

Lemma 3.1. The subset A is compact in AC0[0, 1] and −v(ϕ) is lower semi-
continuous in AC0[0, 1] in the uniform topology.

This important and purely technical lemma will be proved at the end of this
section. Now we claim that

sup
ϕ∈AC0[0,1]

v(ϕ) = sup
ϕ∈A

v(ϕ). (3.1)

To see (3.1), we notice that for any ϕ /∈ A,

v(ϕ) < −H(0) = v(0)

from which it follows that such ϕ can not be a maximizer. Let us write α =
supϕ∈A v(ϕ) and choose a sequence {ϕn(t)}n≥1 ⊆ A such that

lim
n→∞

v(ϕn) = α, and lim
n→∞

max
0≤t≤1

|ϕn(t)− ϕ0(t)| = 0 for some ϕ0 ∈ AC0[0, 1].

The reason that we can choose such a sequence ϕn is from the fact that A is
compact in AC0[0, 1] according to Lemma 3.1 (after passing to a subsequence). To
achieve the existence, we will show v(ϕ0) = α. First it is trivial that v(ϕ0) ≤ α.
What is more, the lower semi-continuity of −v(·) in Lemma 3.1 implies that

v(ϕ0) ≥ lim sup
n→∞

v(ϕn) = α,

which proves the existence.

Proof of Lemma 3.1. The proof will be given in several steps. First we show that A
is an absolutely euqicontinuous family of functions: for any ϵ > 0, there is δ(ϵ) > 0
such that whenever finitely many non-overlapping intervals

∑
i(ti − si) ≤ δ, then∑

i

|ϕ(ti)− ϕ(si)| < ϵ, for any ϕ ∈ A. (3.2)

To see (3.2), we first note that the assumption (1.1) implies that there exists some
C(ϵ) > 0, such that whenever |u| > C,

H(u)

|u|
≥

2
[
1
4 +H(0)

]
ϵ

.
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Now we set δ(ϵ) = ϵ/(2C), then for all ϕ ∈ A,

1

4
+H(0) ≥

∫ 1

0

H(ϕ′(t))dt ≥
∑
i

∫ ti

si

H(ϕ′(t))dt

≥
∑
i

∫ ti

si

H(ϕ′(t))

|ϕ′(t)|
|ϕ′(t)|1{|ϕ′(t)|>C}(t)dt

≥
2
[
1
4 +H(0)

]
ϵ

·
∑
i

∫ ti

si

|ϕ′(t)|1{|ϕ′(t)|>C}(t)dt.

This further implies

ϵ/2 ≥
∑
i

∫ ti

si

|ϕ′(t)|1{|ϕ′(t)|>P}(t)dt

=
∑
i

∫ ti

si

|ϕ′(t)|dt−
∑
i

∫ ti

si

|ϕ′(t)|1{|ϕ′(t)|≤C}(t)dt,

from which it follows∑
i

|ϕ(ti)− ϕ(si)| ≤
∑
i

∫ ti

si

|ϕ′(t)|dt ≤ ϵ/2

+
∑
i

∫ ti

si

|ϕ′(t)|1{|ϕ′(t)|≤C}(t)dt ≤ ϵ/2 + ϵ/2 = ϵ.

The second step is to prove the lower semi-continuity of −v(·). To this end, let
us choose a sequence of absolutely continuous functions {ϕn} ⊆ A such that

max
0≤t≤1

|ϕn(t)− ϕ0(t)| → 0 as n → ∞.

We show that ϕ0 is also absolutely continuous. More precisely, according to abso-
lute equicontinuity (3.2), for any ϵ > 0, there is δ(ϵ) > 0 such that if

∑
i(ti−si) < δ,

then supn
∑

i |ϕn(ti)−ϕn(si)| < ϵ. By sending n → ∞ we get
∑

i |ϕ0(ti)−ϕ0(si)| <
ϵ, which proves the absolute continuity of ϕ0. Let 0 = t0 < t1 · · · < tk = 1, then
Jensen’s inequality implies

lim inf
n→∞

∫ 1

0

H(ϕ′
n(t))dt = lim inf

n→∞

k−1∑
i=0

∫ ti+1

ti

H(ϕ′
n(t))dt

≥ lim inf
n→∞

k−1∑
i=0

(ti+1 − ti)H

(
ϕn(ti+1)− ϕn(ti)

ti+1 − ti

)

=
k−1∑
i=0

(ti+1 − ti)H

(
ϕ0(ti+1)− ϕ0(ti)

ti+1 − ti

)
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=
k−1∑
i=0

∫ ti+1

ti

H (Ψ(t)) dt, where Ψ(t) =
ϕ0(ti+1)− ϕ0(ti)

ti+1 − ti
for ti ≤ t < ti+1

=

∫ 1

0

H (Ψ(t)) dt.

If a sequence △m of partitions is infinitely small, then the corresponding functions
Ψm(t) converge to ϕ′

0(t) almost everywhere (because of absolute continuity of ϕ0).
By combining the continuity of H and Fatou’s lemma we get∫ 1

0

H (ϕ′
0(t)) dt ≤ lim inf

n→∞

∫ 1

0

H(ϕ′
n(t))dt,

which proves the lower semi-continuity of
∫ 1

0
H(ϕ(t))dt. The lower semi-continuity

of −v(·) now follows from that of
∫ 1

0
H(ϕ(t))dt.

The last step is to prove the compactness of A in AC0[0, 1]. The lower semi-

continuity of
∫ 1

0
H(ϕ(t))dt yields that A is closed in AC0[0, 1]. What is more, the

equicontinuity in the first step and the fact that all functions in A have zero initial
value imply that A is pre-compact in C0[0, 1]. Thus A is compact in AC0[0, 1]. 2

3.2. C1 regularity of the maximizer. For one movable boundary variational
problem maxϕ∈AC0[0,1] v(ϕ), there seems to be no ready results on C1 regularity
which can be used to our problem, but this can be achieved by identifying our
original problem with the one having two fixed boundaries:

g(c) := max
ϕ∈AC0[0,1]

ϕ(1)=c

v(ϕ).

Firstly, we note that g(c) is well defined (i.e. the maximum is reached) for some c
as the value ϕ(1) of the maximizer of maxϕ∈AC0[0,1] v(ϕ). Secondly, two variational
problems are identical

max
ϕ∈AC0[0,1]

v(ϕ) = g(c) for some (possibly not unique) c ∈ R (3.3)

because of the existence of maxϕ∈AC0[0,1] v(ϕ). Without this existence, (3.3) may
fail. Thus if we can prove C1 regularity for any maximizer of g(c), then the same
regularity holds for the maximizer of maxϕ∈AC0[0,1] v(ϕ). To this end, we shall,
for example, apply the regularity results in [3] under mild hypotheses by using
nonsmooth analysis. More precisely, under the conditions of Theorem 1.1, the
function ϕ(t) − ϕ(t)2 − H(ϕ′(t)) satisfies all the hypotheses of Theorem 2.1 and
Corollary 3.1 in [3], which yields the required C1 regularity of the maximizer.



On a type of superlinear growth variational problems 7

References

1. G. Buttazzo, M. Giaquinta, and S. Hildebrandt, One-dimensional variational
problems: An introduction, Oxford University Press, New York, 1998.

2. L. Cesari, Optimization-theory and applications, Springer-Verlag, New York, 1983.

3. F. Clarke and R. Vinter, Regularity properties of solutions to the basic problem
in the calculus of variations, Transactions of the American Mathematical Society 289
(1985), 73–98.

4. A. Dembo and O. Zeitouni, Large deviations techniques and applications, 2nd. ed.,
Springer, Berlin/Heidelberg/New York, 2010.

5. L. Evans, Partial differential equations, AMS, Providence, RI, 1997.

6. M. Schilder, Some asymptotic formulas for Wiener integrals, Transactions of the
American Mathematical Society 125(1) (1966), 63–85.
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