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Abstract

Generalized Tutte–Grothendieck invariants are mappings from the class of matroids to a commutative ring that are characterized
recursively by contraction–deletion rules. Well known examples are Tutte, chromatic, tension and flow polynomials. In general,
the rule consists of three formulas valid separately for loops, isthmuses, and the ordinary elements. We show that each generalized
Tutte–Grothendieck invariant thus also Tutte polynomials on matroids can be transformed so that the contraction–deletion rule for
loops (isthmuses) coincides with the general case.

Keywords: Generalized Tutte–Grothendieck invariant; Isthmus- and loop-smooth modifications; Tutte polynomial; Matroid duality;
Deletion–contraction formula

1. Introduction

A generalized Tutte–Grothendieck invariant (shortly a T–G invariant) Φ is a mapping from the class of finite
matroids to a commutative ring (R, +, ·, 0, 1) such that Φ(M) = Φ(M ′) if M is isomorphic to M ′ and there are
constants α1, β1, α2, β2 ∈ R such that

Φ(M) = 1 if the ground set of M is empty,
Φ(M) = α1 · Φ(M − e) if e is an isthmus of M ,
Φ(M) = β1 · Φ(M − e) if e is a loop of M ,
Φ(M) = α2 · Φ(M/e) + β2 · Φ(M − e) otherwise,

(1)

for every matroid M and every element e of M (see [1–5]). We also say that Φ is determined by the quadruple
(α1, β1, α2, β2). In certain sense, all T–G invariants can be derived from the Tutte polynomial of M

T (M; x, y) =

∑
A⊆E

(x − 1)r (E)−r (A)(y − 1)r∗(E)−r∗(E\A), (2)
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where E and r denote the ground set and rank function of M , respectively (see [1]). This invariant encodes many
properties of graphs and has applications in combinatorics, knot theory, statistical physics and coding theory (see
cf. [1,6–8]).

If e is a loop or an isthmus of M , then M − e = M/e. Thus the second (third) row of (1) is contained in the fourth
row if α1 = α2 + β2 (β1 = α2 + β2). In this case we call Φ an isthmus-smooth (loop-smooth) T–G invariant.

We show that any T–G invariant can be transformed to an isthmus-smooth T–G invariant and to a loop-smooth T–G
invariant. The transformations are studied in framework of matroid duality. Furthermore, we discuss modifications of
duality and convolution formulas known for the Tutte polynomial. Notice that transformations into isthmus-smooth
invariants are used by decomposition formulas of T–G invariants in [3].

2. General modifications

By (2), T (M; x, y) is a sum of polynomials xr1 yr2 where r1 ≤ r (M), r2 ≤ r∗(M). Hence all denominators
in a polynomial T̃ (M; x1, y1, x2, y2) = xr (M)

2 yr∗(M)
2 T (M; x1/x2, y1/y2) vanish. Thus all fractions in formula

α
r (M)
2 β

r∗(M)
2 T (M; α1/α2, β1/β2) are only formal and we do not need to assume any restriction for α1, β1, α2, β2 ∈ R.

Lemma 1. Let α1, β1, α2, β2 be arbitrary elements of a commutative ring (R, +, ·, 0, 1). Then α
r (M)
2 β

r∗(M)
2 T (M;

α1/α2, β1/β2) is the unique T–G invariant determined by quadruple (α1, β1, α2, β2).

The proof of Lemma 1 is left to the reader. It suffices to use induction on |E |, (1), and that T (M; x, y) is determined
by (x, y, 1, 1) (see cf. [1]). Notice that a simpler form of Lemma 1 was proved in [9] (see also [1, Corollary 6.2.6]).

Theorem 1. If Φ is a T–G invariant determined by (α1, β1, α2, β2) and ξ ∈ R, then

Φ is
ξ (M) = (ξβ2)r (M)(ξ (α1 − α2))r∗(M)Φ(M)

is an isthmus-smooth T–G invariant such that for every matroid M,

Φ is
ξ (M) = 1 if E = ∅,

Φ is
ξ (M) = (ξβ1(α1 − α2))Φ is

ξ (M − e) if e is a loop of M,

Φ is
ξ (M) = ξβ2α2Φ

is
ξ (M/e) + ξβ2(α1 − α2)Φ is

ξ (M − e) otherwise.

Proof. Define by ζ1 = ξβ2, ζ2 = ξ (α1 − α2). Then Φ is
ξ (M) = ζ

r (M)
1 ζ

r∗(M)
2 Φ(M) for each matroid M . By Lemma 1,

Φ(M) = α
r (M)
2 β

r∗(M)
2 T (M; α1/α2, β1/β2), whence

Φ is
ξ (M) = (ζ1α2)r (M)(ζ2β2)r∗(M)T (M;

ζ1α1

ζ1α2
,
ζ2β1

ζ2β2
).

Thus by Lemma 1, Φ is
ξ is a T–G invariant determined by (ζ1α1, ζ2β1, ζ1α2, ζ2β2). Furthermore, Φ is

ξ is isthmus-smooth
because ζ1α1 = ζ1α2 + ζ2β2. □

We call Φ is
ξ the ξ -isthmus-smooth modification of Φ. If Φ is an isthmus-smooth invariant (i.e., if α1 = α2 + β2),

then Φ is
ξ (M) = (ξβ2)|E |Φ(M) for every matroid M .

Theorem 2. If Φ is a T–G invariant determined by (α1, β1, α2, β2) and ξ ∈ R, then

Φ ls
ξ (M) = (ξα2)r∗(M)(ξ (β1 − β2))r (M)Φ(M)

is a loop-smooth T–G invariant such that for every matroid M,

Φ ls
ξ (M) = 1 if E = ∅,

Φ ls
ξ (M) = (ξα1(β1 − β2))Φ ls

ξ (M − e) if e is an isthmus of M,

Φ ls
ξ (M) = ξα2(β1 − β2)Φ ls

ξ (M/e) + ξα2β2Φ
ls
ξ (M − e) otherwise.

Proof. Dual form of the proof of Theorem 1. □
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We call Φ ls
ξ the ξ -loop-smooth modification of Φ. If Φ is an isthmus invariant, then Φ ls

ξ (M) = (ξα2)|E |Φ(M) for
every matroid M .

If Φ is a T–G invariant determined by (α1, β1, α2, β2), then denote by Φ∗ the T–G invariant determined by
(β1, α1, β2, α2). Clearly, Φ = (Φ∗)∗. By Lemma 1 and the duality formula T (M; x, y) = T (M∗

; y, x) (see cf. [1]),

Φ(M) = Φ∗(M∗). (3)

Notice that Φ ls
ξ = ((Φ∗)is

ξ )∗, whence Φ is
ξ = ((((Φ∗)∗)is

ξ )∗)∗ = ((Φ∗)ls
ξ )∗. Thus

Φ ls
ξ = ((Φ∗)is

ξ )∗ and Φ is
ξ = ((Φ∗)ls

ξ )∗. (4)

If R contains no zero divisors, we can extend R into its quotient field and allow ξ to be any element of R (or the
quotient field of R) in Theorems 1 and 2.

Theorem 1 (2) has no sense if β2 = 0 (α2 = 0) or α1 = α2 (β1 = β2). If β2 = 0 (α2 = 0), then Φ(M) is easy
to evaluate because by (1), Φ(M) = β

r∗(M)
1 α

iM
1 α

r (M)−iM
2 (Φ(M) = α

r (M)
1 β

lM
1 β

r∗(M)−lM
2 ), where iM (lM ) denotes the

number of isthmuses (loops) in M . If α = α1 = α2 ̸= 0, then we can replace in Lemma 1 formal fraction α1/α2 by 1
whence Φ(M) = αr (M)β

r∗(M)
2 T (M; 1, β1/β2). Thus by (3), Φ(M) = α

r (M)
2 βr∗(M)T (M; α1/α2, 1) if β = β1 = β2 ̸= 0.

Notice that to evaluate T (M; 1, y) and T (M; x, 1) is in general as difficult as to evaluate T (M; x, y) (see [10–12] for
more details).

3. Modifications of the Tutte polynomial

Suppose that Z[x, y] is the ring of polynomials of variables x and y with integral coefficients and let Φ(M) =

T (M; x, y). Then Φ(M) is a T–G invariant determined by (x, y, 1, 1) (see cf. [1]). Let R be a commutative ring
containing Z[x, y] and let ξ ∈ R. By Theorem 1, the ξ -isthmus-smooth modification of the Tutte polynomial of M is

T is
ξ (M; x, y) = ξ |E |(x − 1)r∗(M)T (M; x, y) (5)

and satisfies

T is
ξ (M; x, y) = 1 if E = ∅,

T is
ξ (M; x, y) = ξ y(x − 1)T is

ξ (M − e; x, y) if e is a loop of M ,

T is
ξ (M; x, y) = ξT is

ξ (M/e; x, y) + ξ (x − 1)T is
ξ (M − e; x, y) otherwise.

By Theorem 2, the ξ -loop-smooth modification of the Tutte polynomial of M is

T ls
ξ (M; x, y) = ξ |E |(y − 1)r (M)T (M; x, y) (6)

and satisfies

T ls
ξ (M; x, y) = 1 if E = ∅,

T ls
ξ (M; x, y) = ξ x(y − 1)T ls

ξ (M − e; x, y) if e is an isthmus,

T ls
ξ (M; x, y) = ξ (y − 1)T ls

ξ (M − e; x, y) + ξT ls
ξ (M/e; x, y) otherwise.

By (3), T ls
ξ (M; x, y) = (T ls

ξ )∗(M∗
; x, y), and by (4), (T ls

ξ )∗(M∗
; x, y) = (T ∗)is

ξ (M∗
; x, y). By (1) and (2),

T ∗(M∗
; x, y) = T (M∗

; y, x), whence (T ∗)is
ξ (M∗

; x, y) = T is
ξ (M∗

; y, x), i.e., we have a variant of the duality formula

T ls
ξ (M; x, y) = T is

ξ (M∗
; y, x). (7)

Kook, Reiner, and Stanton [13] introduced the convolution formula

T (M; x, y) =

∑
A⊆E

T (M/A; x, 0) · T (M |A; 0, y),

(where M |A and M/A denote the restriction of M to A and the contraction of A from M , respectively). Suppose that
ξ ̸= 0. Then by (5) and (6),

T (M; x, y) =

∑
A⊆E

ξ−|E |(−1)−r (M/A)T ls
ξ (M/A; x, 0) · (−1)−r∗(M |A)T is

ξ (M |A; 0, y).

M. Kochol / AKCE International Journal of Graphs and Combinatorics 17 (1) 72–7372



Please cite this article in press as: M. Kochol, Modifications of Tutte–Grothendieck invariants and Tutte polynomials, AKCE International Journal of Graphs and Combinatorics
(2018), https://doi.org/10.1016/j.akcej.2018.05.001.

Since r∗(M |A) = |A| − r (A), r (M/A) = r (M) − r (A), and 2r (A) − r (M) − |A| has the same parity as r (M) + |A|,
we get a variant of the convolution formula

T (M; x, y) = ξ−|E |(−1)r (M)
∑
A⊆E

(−1)|A|T ls
ξ (M/A; x, 0) · T is

ξ (M |A; 0, y). (8)
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