AKCE International Journal of Graphs and Combinatorics

On the genus of some total graphs

L. Hamidian Jahromi \& A. Abbasi

To cite this article: L. Hamidian Jahromi \& A. Abbasi (2020) On the genus of some total graphs, AKCE International Journal of Graphs and Combinatorics, 17:1, 560-570, DOI: 10.1016/ j.akcej.2018.04.002

To link to this article: https://doi.org/10.1016/j.akcej.2018.04.002

© 2018 Kalasalingam University. Published with license by Taylor \& Francis Group, LLC.

Published online: 08 Jun 2020.

Submit your article to this journal

Article views: 332

View related articles

View Crossmark data $\sqrt{\top}$

On the genus of some total graphs

L. Hamidian Jahromi, A. Abbasi*
Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran

Received 20 December 2017; received in revised form 20 April 2018; accepted 21 April 2018

Abstract

Let R be a commutative ring with a proper ideal I. A generalization of total graph is introduced and investigated. It is the (undirected) graph with all elements of R as vertices, that two distinct vertices $x, y \in R$ are adjacent if and only if $x+y \in S_{H}(I)$ where $S_{H}(I)=\{a \in R: r a \in I$ for some $r \in H\}$ and H is a multiplicatively closed subset of R. This version of total graph is denoted by $T\left(\Gamma_{H}^{I}(R)\right)$. We in addition characterize certain lower and upper bounds for the genus of the total graph, and compute genus $T\left(\Gamma_{H}^{I}(R)\right)$ on finite ring R, with respect to some special ideal I.

Keywords: Commutative rings; Multiplicatively closed subset; Total graph; Genus

1. Introduction

Throughout, all rings will be commutative with non-zero identity. Let R be a ring and I a proper ideal of R. The total graph of a commutative ring R, denoted by $T(\Gamma(R))$, was introduced by Anderson and Badawi in [1] and studied by several authors ([2-4], etc.), where the authors in [3,4] obtained some facts on the genus of total graphs. They considered a total graph with all elements of R as vertices, that two distinct vertices $x, y \in R$ are adjacent if and only if $x+y \in Z(R)$ where $Z(R)$ denotes the set of all zero-divisors of R. The total graph is then extended in joint papers [5,6] of the second author in rings and modules, respectively. Furthermore, a generalized total graph was introduced in [7]. For a proper submodule N of M, there is a generalization of the graph of modules relative N under multiplicatively closed subset H denoted by $T\left(\Gamma_{H}^{N}(M)\right)$ which was studied by present authors in [8]. The vertex set of $T\left(\Gamma_{H}^{N}(M)\right)$ is M, that two distinct vertices m and m^{\prime} are adjacent if and only if $m+m^{\prime} \in M_{H}(N)$ where $M_{H}(N)=\{m \in M: r m \in N$ for some $r \in H\}$ and H is a multiplicatively closed subset of R, i.e. $a b \in H$ for all $a, b \in H$. As N is a proper submodule of M and $N \subseteq M_{H}(N), M_{H}(N)$ is not empty.

We define a generalized total graph over ring R, denoted by $T\left(\Gamma_{H}^{I}(R)\right.$), with all elements of R as vertices, that two distinct vertices $x, y \in R$ are adjacent if and only if $x+y \in S_{H}(I)$ where $S_{H}(I)=\{a \in R: r a \in I$ for some $r \in H\}$, I is an ideal of R and H is a multiplicatively closed subset of R.

[^0]It follows from the definition that if $S_{H}(I)=R$, (for example, if $I=R, 0 \in H, H \bigcap\left(S_{H}(I): R\right) \neq \emptyset$, $H \bigcap(0: R) \neq \emptyset$ or $H \bigcap(I: R) \neq \emptyset$, by [8]), then $T\left(\Gamma_{H}^{I}(R)\right)$ is complete; so we suppose that $S_{H}(I) \neq R$. We denote by $\Gamma_{H}^{I}\left(S_{H}(I)\right)$ and $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ the (induced) subgraphs of $T\left(\Gamma_{H}^{I}(R)\right)$ with vertices in $S_{H}(I)$ and $R-S_{H}(I)$, respectively. Based on our assumption, $S_{H}(I) \neq R$ and so $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is always nontrivial.

Let G be a simple graph. We say that G is totally disconnected if none of two vertices of G are adjacent. We use K_{n} to denote complete graph with n vertices. A bipartite graph G is a graph whose vertex set $V(G)$ can be partitioned into subsets V_{1} and V_{2} such that the edge set consists of precisely those edges which join vertices in V_{1} to vertices of V_{2}. In particular, if E consists of all possible such edges, then G is called the complete bipartite graph and denoted by $K_{m, n}$ when $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$. Two subgraphs G_{1} and G_{2} of G are disjoint if G_{1} and G_{2} have no common vertices and no vertex of G_{1} (resp., G_{2}) is adjacent (in G) to any vertex not in G_{1} (resp., G_{2}). The union of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is the graph $G_{1} \cup G_{2}$ whose vertex set is $V_{1} \cup V_{2}$ and the edge set is $E_{1} \cup E_{2}$. The Cartesian product of graphs G_{1} and G_{2} is defined as the graph $G_{1} \times G_{2}$ which the vertex set is $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and the edge set is the set of all pairs $\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right)$ such that either $u_{1} u_{2} \in E\left(G_{1}\right)$ and $v_{1}=v_{2}$ or $v_{1} v_{2} \in E\left(G_{2}\right)$ and $u_{1}=u_{2}$. Two graphs G and H are said to be isomorphic to each another, written $G \cong H$, if there exists a bijection $f: V(G) \rightarrow V(H)$ such that for each pair x, y of vertices of $G, x y \in E(G)$ if and only if $f(x) f(y) \in E(H)$. For a vertex v of graph $G, \operatorname{deg}(v)$ is the degree of vertex v and $\delta(G):=\min \{\operatorname{deg}(v)$: v is a vertex of $G\}$. For a nonnegative integer k, a graph G is called k-regular if every vertex of G has degree k. The genus of a graph G, denoted by $g(G)$, is the minimal integer n such that the graph can be embedded in S_{n}, where S_{n} denotes a sphere with n handles. Intuitively, G is embedded in a surface if it can be drawn in the surface so that its edges intersect only at their common vertices. A planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. For such graphs the genus is zero. A graph with genus one is called a toroidal graph. If G^{\prime} is a subgraph of G, then $g\left(G^{\prime}\right) \leq g(G)$. For details on the notion of embedding of a graph in a surface, see White [9, Chapter 6].

In Section 2, we remind some facts and give a lower bound for genus of the graph $T\left(\Gamma_{H}^{I}(R)\right)$. We proceed in Section 3 by determining all isomorphism classes of finite rings R whose $T\left(\Gamma_{H}^{I}(R)\right.$) has genus at most one (i.e. a planar or toroidal graph). Also, we compute genus of the graph over $R=\mathbb{Z}_{n}$ under some well-known multiplicatively closed subsets of R.

2. Background problem and some comments

Throughout, $\lceil x\rceil$ denotes the least integer that is greater than or equal to x. In the following theorem we give some well-known formulas, see, e.g., [9-11]:

Theorem 2.1. The following statements hold:
(1) For $n \geq 3$ we have $g\left(K_{n}\right)=\left\lceil\frac{(n-3)(n-4)}{12}\right\rceil$.
(2) For $m, n \geq 2$ we have $g\left(K_{m, n}\right)=\left\lceil\frac{(m-2)(n-2)}{4}\right\rceil$.
(3) Let G_{1} and G_{2} be two graphs and for each i, p_{i} be the number of vertices of G_{i}. Then $\max \left\{p_{1} g\left(G_{2}\right)+\right.$ $\left.g\left(G_{1}\right), p_{2} g\left(G_{1}\right)+g\left(G_{2}\right)\right\} \leq g\left(G_{1} \times G_{2}\right)$.
(4) The genus of a graph is the sum of the genuses of its components.

According to Theorem 2.1 we have $g\left(K_{n}\right)=0$ for $1 \leq n \leq 4, g\left(K_{n}\right)=1$ for $5 \leq n \leq 7$ and $g\left(K_{n}\right) \geq 2$, for other value of n.

Corollary 2.2. If G is a graph with n vertices, then $g(G) \leq\left\lceil\frac{(n-3)(n-4)}{12}\right\rceil$.
In the following of the section, we characterize a lower bound for the genus of the graph $T\left(\Gamma_{H}^{I}(R)\right)$. Considering the fact that $\Gamma_{H}^{I}\left(S_{H}(I)\right)$ is in the form of $K_{\left|S_{H}(I)\right|}$ (see [8, Remark 3.1]), in view of Theorem 2.1, it is enough for us to obtain a lower bound for genus of the graph $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$.

Theorem 2.3 ([8, Corollary 3.7]). Let $\left|S_{H}(I)\right|=\alpha,\left|R / S_{H}(I)\right|=\beta$, and $2 \in\left(S_{H}(I): R\right)$.Then $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of $\beta-1$ copies of K_{α}.

Theorem 2.4 ([8, Theorem 3.10]). Let $\left|S_{H}(I)\right|=\alpha$ and $\left|R / S_{H}(I)\right|=\beta$. If H, a multiplicatively closed subset of R containing some even elements, then $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of $\frac{\beta-1}{2}$ copies of $K_{\alpha, \alpha}$.

Corollary 2.5. Let $\left|S_{H}(I)\right|=\alpha$ and $\left|R / S_{H}(I)\right|=\beta$. Then the following hold:

1. If $2 \in\left(S_{H}(I): R\right)$, then $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=(\beta-1)\left\lceil\frac{(\alpha-3)(\alpha-4)}{12}\right\rceil$.
2. If $2 r \in H$ for some $r \in R$, then $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=\frac{\beta-1}{2}\left\lceil\frac{(\alpha-2)^{2}}{4}\right\rceil$.

Proof. It is obvious by Theorems 2.3 and 2.4.
Lemma 2.6 ([12, Proposition .2.1]). If G is a graph with n vertices and genus g, then $\delta(G) \leq 6+\frac{12 g-12}{n}$.
Theorem 2.7 ([8, Theorem 3.13]). Suppose that the edge set of $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is not empty and x is a vertex of the graph. Then the degree of x is either $\left|S_{H}(I)\right|$ or $\left|S_{H}(I)\right|-1$.

Proposition 2.8. Let $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ with t^{\prime} vertices have a nonempty edge set, and let $\left|S_{H}(I)\right|=t$. Then $\frac{(t-7) t^{\prime}}{12}+1 \leq$ $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)$.

Proof. By Lemma 2.6 and Theorem $2.7, t-1=\left|S_{H}(I)\right|-1=\delta$, so $t-1 \leq 6+\frac{(12 g-12)}{t^{\prime}}$. Then $(t-7) t^{\prime} \leq 12 g-12$. Hence $\frac{(t-7) t^{\prime}}{12}+1 \leq g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)$.

Corollary 2.9. If R is infinite, then $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)$ is infinite for all ideals I and all closed subsets H of R.

3. The genus of $\boldsymbol{T}\left(\Gamma_{H}^{I}(R)\right)$

Considering Corollary 2.9, the genus will be infinite if R is not a finite ring. In order to compute the genus, we consider a finite ring R.

In view of Theorem 2.1, it is enough for us to study the genus of $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$.
Remark 3.1. If $H \cap I \neq \emptyset$, then $S_{H}(I)=R$ and $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is trivial so, in the following, we suppose that $H \cap I=\emptyset$. It should be noted that if $H \cap I=\emptyset$, then $H \cap S_{H}(I)=\emptyset$.

Theorem 3.2. Let R be a finite ring such that $R=R_{1} \times R_{2} \times \cdots \times R_{t}$ with $t \geq 4, I=0 \times R_{2} \times \cdots \times R_{t}$ and H be a multiplicatively closed subset of R. Then $\gamma\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right) \geq 2$.

Proof. It is enough to show that there is a subgraph L of $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ with $\gamma(L) \geq 2$; this implies that $\gamma\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right) \geq$ 2. So, we proceed for $t=4$.

1. Let $H \cap\left(Z\left(R_{1}\right) \times R_{2} \times \cdots \times R_{t}\right)=\emptyset$. Then $I=S_{H}(I)$. By way of contradiction, let there exists $\left(r_{1}, \ldots, r_{t}\right) \in R-I$ such that $\left(r_{1}, \ldots, r_{t}\right)\left(h_{1}, \ldots, h_{t}\right) \in I$ for some $\left(h_{1}, \ldots, h_{t}\right) \in H$ (note that h_{1} has inverse in R_{1}). Then $r_{1} h_{1}=0$ implies that $r_{1}=0$, a contradiction.
$\left(1^{\prime}\right)$ If $R_{1}=\mathbb{Z}_{2}$, then $K_{8} \subseteq \Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$.
(2') Let $\left|R_{1}\right|>2$.
(a^{\prime}) If $2 \in Z\left(R_{1}\right)$, then considering the vertices $\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \mid a_{i} \in R_{i}\right.$ for $\left.i \geq 2\right\}$, there is $a_{1} \neq 0$ belonging to R_{1} such that $2 a_{1}=0$. So, $K_{8} \subseteq \Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$.
(b'). Let $2 \notin Z\left(R_{1}\right)$. For a non zero element $l_{1} \in R_{1}$, set $X_{1}=\left\{\left(l_{1}, l_{2}, l_{3}, l_{4}\right) \in R \mid l_{i} \in R_{i}\right.$ for $\left.2 \leq i \leq 4\right\}$ and $Y_{1}=\left\{\left(-l_{1}, l_{2}, l_{3}, l_{4}\right) \in R \mid l_{i} \in R_{i}\right.$ for $\left.2 \leq i \leq 4\right\}$. Then X_{1}, Y_{1} is a bipartition for $K_{n, n}$ for $n \geq 8$. Hence, $K_{8} \subseteq \Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ or $K_{8,8} \subseteq \Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$; so $\gamma\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right) \geq 2$.
2. Let $H \cap\left(Z\left(R_{1}\right) \times R_{2} \times \cdots \times R_{t}\right) \neq \emptyset$. Set $T=H \cap\left(Z\left(R_{1}\right) \times R_{2} \times \cdots \times R_{t}\right)$. For $\left(d_{1}, d_{2}, \ldots, d_{t}\right) \in T$, put $K_{\left(d_{1}, d_{2}, \ldots, d_{t}\right)}=\left\{\left(b_{1}, b_{2}, \ldots, b_{t}\right) \in R \mid b_{1} \neq 0, b_{1} d_{1}=0\right\}$ and define $K=\bigcup_{\left(d_{1}, d_{2}, \ldots, d_{t}\right) \in T} K_{\left(d_{1}, d_{2}, \ldots, d_{t}\right)}$. Claim. $S_{H}(I)=I \cup K$.
Let there exists $\left(r_{1}, \ldots, r_{t}\right) \in R-I$ such that $\left(r_{1}, \ldots, r_{t}\right)\left(h_{1}, \ldots, h_{t}\right) \in I$ for some $\left(h_{1}, \ldots, h_{t}\right) \in H$. Then $r_{1} h_{1}=0$ implies that $h_{1} \in Z\left(R_{1}\right)-\{0\}$ (by $I \cap H=\emptyset$). So $\left(r_{1}, \ldots, r_{t}\right) \in K$. Conversely, let $\left(b_{1}, n_{2}, \ldots, n_{t}\right) \in K$. Then there exists $\left(d^{\prime}, n^{\prime}{ }_{2} \ldots, n^{\prime}{ }_{t}\right) \in T$ such that $b_{1} d^{\prime}=0$. So $\left(b_{1}, n_{2}, \ldots, n_{t}\right)\left(d^{\prime}, n^{\prime}{ }_{2} \ldots, n_{t}^{\prime}\right) \in I$ implies that $\left(b_{1}, n_{2}, \ldots, n_{t}\right) \in S_{H}(I)$, hence $K \subseteq S_{H}(I)$. Therefore, $S_{H}(I)=I \cup K$.
(i) If $R_{1}=\mathbb{Z}_{2}$, then $K_{8} \subseteq \Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$.
(ii) Suppose $\left|R_{1}\right|>2$.
(i') Let there exists $\left(2, m_{2}, m_{3}, m_{4}\right) \in T_{4}$, where $T_{4}=H \cap\left(Z\left(R_{1}\right) \times R_{2} \times R_{3} \times R_{4}\right)$. Then $2 \in Z\left(R_{1}\right)-\{0\}$ (by $H \cap I=\emptyset)$. So $2 a_{1}=0$ for non zero element $a_{1} \in R_{1}$ and $\left\{\left(a_{1}, n_{2}, n_{3}, n_{4}\right) \mid n_{i} \in R_{i}\right.$ for $\left.2 \leq i \leq 4\right\} \subseteq K \subseteq S_{H}(I)$, then $a_{1} \neq 2$ (otherwise, $S_{H}(I) \cap H \neq \emptyset$), also $a_{1} \neq 1$ since $2 \neq 0$ (by $I \cap H=\emptyset$). Considering distinct sets $\left\{\left(a_{1}-1, a_{2}, a_{3}, a_{4}\right) \mid a_{i} \in R_{i}\right.$ for $\left.i \geq 2\right\}$, one has $K_{8,8} \subseteq \Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$.
(ii') Let $\left(2, m_{2}, m_{3}, m_{4}\right) \notin T_{4}$ for every $m_{i} \in R_{i}$ with $i \geq 2$. By the similar argument of case 1 ., if $2 \in Z\left(R_{1}\right)$, then $K_{8} \subseteq \Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ and if $2 \notin Z\left(R_{1}\right)$, then $K_{8,8} \subseteq \Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$.
Hence, $\gamma\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right) \geq 2$.
Remark 3.3. It should be noted that, Theorem 3.2 is satisfied for every $I=R_{1} \times R_{2} \times \cdots \times R_{n-1} \times 0 \times R_{n+1} \times \cdots \times R_{t}$ with $n>1$ and $t \geq 4$.

Theorem 3.4. Let $R=R_{1} \times R_{2} \times R_{3}$ where every R_{i} is a finite ring for $1 \leq i \leq 3, I=0 \times R_{2} \times R_{3}$ and H be a multiplicatively closed subset of R.

1. Let $H \cap\left(Z\left(R_{1}\right) \times R_{2} \times R_{3}\right)=\emptyset$ or $H \cap\left(Z\left(R_{1}\right) \times R_{2} \times R_{3}\right) \neq \emptyset$ with $\left(2, m_{2}, m_{3}\right) \notin H \cap\left(Z\left(R_{1}\right) \times R_{2} \times R_{3}\right)$ for every $m_{2} \in R_{2}$ and $m_{3} \in R_{3}$.
(i) If $2 \in Z\left(R_{1}\right)$ and $\left|R_{2}\right|\left|R_{3}\right| \geq 8$, then $\gamma\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right) \geq 2$.
(ii) If $2 \notin Z\left(R_{1}\right)$ and $\left|R_{2}\right|\left|R_{3}\right| \geq 4$, then $\gamma\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right) \geq 1$.
2. Let there exists $\left(2, m_{2}, m_{3}\right) \in H \cap\left(Z\left(R_{1}\right) \times R_{2} \times R_{3}\right)$ and $\left|R_{2} \| R_{3}\right| \geq 4$. Then $\gamma\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right) \geq 1$.

Proof.

1. (i) Consider $\left\{\left(a_{1}, a_{2}, a_{3}\right) \mid a_{i} \in R_{i}\right\}$ which is in the form of K_{n} for $n \geq 8$, where $2 a_{1}=0$ for some $a_{1} \neq 0$ belonging to R_{1}.
(ii) For a non zero element $l_{1} \in R_{1}$, consider $\left\{\left(l_{1}, l_{2}, l_{3}\right) \mid l_{i} \in R_{i}, i=2,3\right\} \cup\left\{\left(-l_{1}, m_{2}, m_{3}\right) \mid m_{i} \in R_{i}, i=2,3\right\}$ which is in the form of $K_{n, n}$ for $n \geq 4$.
2. If there is $\left(2, m_{2}, m_{3}\right) \in H \cap\left(Z\left(R_{1}\right) \times R_{2} \times R_{3}\right)$, then $2 \in Z\left(R_{1}\right)-\{0\}$, so $2 a_{1}=0$ for non zero element $a_{1} \in R_{1}$ and $\left\{\left(a_{1}, n_{2}, n_{3}\right) \mid n_{i} \in R_{i}, i=2,3\right\} \subseteq S_{H}(I)$, then $a_{1} \neq 2$ (otherwise, $S_{H}(I) \cap H \neq \emptyset$); furthermore, $a_{1} \neq 1$ since $2 \neq 0$ (by $I \cap H=\emptyset)$. Hence the vertices $\left\{\left(a_{1}-1, a_{2}, a_{3}\right) \mid a_{i} \in R_{i}, i=2,3\right\} \cup\left\{\left(1, a_{2}, a_{3}\right) \mid a_{i} \in R_{i}, i=2,3\right\}$ are in the form of $K_{n, n}$ for $n \geq 4$.

Corollary 3.5. Let $R=R_{1} \times R_{2}$ where every R_{i} is a finite ring for $i \in\{1,2\}, I=0 \times R_{2}$ and H be a multiplicatively closed subset of R.

It is easily proved that the following statements hold.

1. Let $H \cap\left(Z\left(R_{1}\right) \times R_{2}\right)=\emptyset$ or $H \cap\left(Z\left(R_{1}\right) \times R_{2}\right) \neq \emptyset$ with $\left(2, m_{2}\right) \notin H \cap\left(Z\left(R_{1}\right) \times R_{2}\right)$ for every $m_{2} \in R_{2}$.
(i) If $2 \in Z\left(R_{1}\right)$ and $\left|R_{2}\right| \geq 8$, then $\gamma\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right) \geq 2$.
(ii) If $2 \notin Z\left(R_{1}\right)$ and $\left|R_{2}\right| \geq 4$, then $\gamma\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right) \geq 1$.
2. Let there exists $\left(2, m_{2}\right) \in H \cap\left(Z\left(R_{1}\right) \times R_{2}\right)$ and $\left|R_{2}\right| \geq 4$. Then $\gamma\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right) \geq 1$.

Proof. It is obvious by Theorem 3.4.
Example 3.6. Let $R=\mathbb{Z}_{6} \times \mathbb{Z}_{4}, I=0 \times \mathbb{Z}_{4}$ and H be a multiplicatively closed subset of R. Then $Z(R)=$ $\left(Z\left(\mathbb{Z}_{6}\right) \times \mathbb{Z}_{4}\right) \cup\left(\mathbb{Z}_{6} \times Z\left(\mathbb{Z}_{4}\right)\right)$. If $H \cap\left(Z\left(\mathbb{Z}_{6}\right) \times \mathbb{Z}_{4}\right)=\emptyset$, then $S_{H}(I)=I$. Let $H \cap\left(Z\left(\mathbb{Z}_{6}\right) \times \mathbb{Z}_{4}\right) \neq \emptyset$ and let $\left(2, n_{s}\right) \in H$ (so for every $n_{i} \in \mathbb{Z}_{4},\left(3, n_{i}\right) \notin H$, otherwise $\left.H \cap I \neq \emptyset\right)$. Then $S_{H}(I)=I \cup\left\{\left(3, t_{2}\right) \mid t_{2} \in \mathbb{Z}_{4}\right\}$. Considering the vertices of $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ in the form of $\left\{\left(1, b_{2}\right),\left(4, t_{2}\right) \mid b_{2}, t_{2} \in \mathbb{Z}_{4}\right\} \cup\left\{\left(2, m_{2}\right),\left(5, l_{2}\right) \mid m_{2}, l_{2} \in \mathbb{Z}_{4}\right\}$, one has $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a $K_{8,8}$.

Theorem 3.7. Let $R=\mathbb{F}_{q} \times R_{n}, I=0 \times R_{n}$ where R_{n} is a ring with $\left|R_{n}\right|=n, \mathbb{F}_{q}$ is a field with q elements and let H be a multiplicatively closed subset of R.

1. Let $q=2^{m}$.Then $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is planar if and only if $2 \leq n \leq 4$ and it is toroidal if and only if $m=1$ and $5 \leq n \leq 7$.

[^1]2. If for every $m \in \mathbb{N}, q \neq 2^{m}$, then $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is planar if and only if $n=2$ and it is toroidal if and only if $q=3$ and $n \in\{3,4\}$.

Proof. Claim; for every $n \in \mathbb{N}, I=S_{H}(I)$. By way of contradiction, let there exists $(m, d) \in R-I$ such that $(m, d)(t, l) \in I$ for some $(t, l) \in H$. So $m t=0$ which implies that $m=0$; so $m=0$, a contradiction.

1. Let $q=2^{m}$.
(a) If $m=1$, for every $(1, b) \in S_{H}^{C}(I)$, we have $(1, b)+\left(1, b^{\prime}\right) \in S_{H}(I)$ where b, b^{\prime} are disjoint elements of R_{n}. So $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is K_{n}.
(b) Let $m>1$. Considering vertices of $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ in the form of $\left\{(l, a) \mid l \in \mathbb{F}_{2^{m}}, a \in R_{n}\right\}$ and by the fact that $\operatorname{char}\left(\mathbb{F}_{2^{m}}\right)=2$, in the same way of proof of Theorem 3.2, $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of $2^{m}-1$ copies of K_{n}. Hence, $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is planar if and only if $2 \leq n \leq 4$ and it is toroidal if and only if $m=1$ and $5 \leq n \leq 7$.
2. Let for all $m \in \mathbb{N}$, one has $q \neq 2^{m}$. For non zero element $l \in F_{q}$, let $X_{l}=\left\{(l, a) \mid a \in R_{n}\right\}$ and $Y_{l}=\left\{(-l, a) \mid a \in R_{n}\right\}$. Then X_{l}, Y_{l} is a bipartition of $K_{n, n}$. So $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of $\frac{q-1}{2}$ copies of $K_{n, n}$. Hence $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is planar if and only if $n=2$ and it is toroidal if and only if $q=3$ and $n \in\{3,4\}$.

Theorem 3.8. Let R be a finite ring for which $R=R_{1} \times R_{2} \times \cdots \times R_{t}$ with $t \geq 2, I=0 \times R_{2} \times \cdots \times R_{t}$, $H=R-Z(R)$ and let $2 \notin Z\left(R_{1}\right)$. If $\gamma\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right) \leq 1$, then R is isomorphic to the one of the following rings:
$\mathbb{Z}_{3} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, R_{1} \times \mathbb{Z}_{2}, \mathbb{Z}_{3} \times \mathbb{Z}_{3}, \mathbb{Z}_{3} \times \mathbb{Z}_{4}, \mathbb{Z}_{3} \times \mathbb{F}_{4}, \mathbb{Z}_{3} \times \mathbb{Z}_{2}[X] /\left(X^{2}\right)$.
Proof. Note that $t<4$, by Theorem 3.2.
1^{\prime}. Let $t=3$.
If $\gamma\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)<1$, then $\left|R_{2}\right|\left|R_{3}\right|<4$, by Theorem 3.4. For $\gamma\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=1$, consider $\left|R_{2}\right|\left|R_{3}\right|=4$, by the proof of Theorem 3.4. So, for $\gamma\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right) \leq 1,\left|R_{2}\right|\left|R_{3}\right| \leq 4$. Hence $R_{2}=R_{3}=\mathbb{Z}_{2}$. For every non zero element $b_{1} \in R_{1}$, set $X_{b_{1}}=\left\{\left(b_{1}, n_{2}, n_{3}\right) \mid n_{i} \in R_{i}, i=2,3\right\}$. Then $X_{b_{1}}, X_{-b_{1}}$ is a bipartition of $K_{4,4}$. If $\left|R_{1}\right|>3$, then $\gamma\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right) \geq 2$ (since there exist at least two bipartition of $K_{4,4}$ in $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$). Hence, $\left|R_{1}\right| \leq 3$, so $R_{1}=\mathbb{Z}_{3}$ (since $2 \notin Z\left(R_{1}\right)$). Therefore, $R=\mathbb{Z}_{3} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
2^{\prime}. Let $t=2$.
For every non zero element $b_{1} \in R_{1}$, set $X_{b_{1}}=\left\{\left(b_{1}, n_{2}\right) \mid n_{2} \in R_{2}\right\}$. Then $X_{b_{1}}, X_{-b_{1}}$ is a bipartition of $K_{n, n}$ for $n=\left|R_{2}\right|$. Since $2 \notin Z\left(R_{1}\right)$ and $\gamma\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right) \leq 1$, then by Corollary 3.5 and by the same way of case 1^{\prime}, $\left|R_{2}\right| \leq 4$.
(i) Let $\left|R_{2}\right|=2$. Then $X_{b_{1}}$ and $X_{-b_{1}}$, for nonzero $b_{1} \in R_{1}$, are in the form of $K_{2,2}$ and $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of some copies of $K_{2,2}$. So for every $R=R_{1} \times R_{2}$ with $\left|R_{2}\right|=2, \Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is planar.
(ii) Let $\left|R_{2}\right|=3$, 4. For every non zero element $b_{1} \in R_{1}, X_{b_{1}}, X_{-b_{1}}$ is a bipartition of $K_{3,3}$ or $K_{4,4}$ and $\gamma\left(K_{3,3}\right)=\gamma\left(K_{4,4}\right)=1$. So, by $2 \notin Z\left(R_{1}\right)$ and the same way of case $1^{\prime},\left|R_{1}\right|=3$ and $R_{1}=\mathbb{Z}_{3}$.
Hence, for $t=2, R$ is isomorphic to the one of the following rings:

$$
R_{1} \times \mathbb{Z}_{2}, \mathbb{Z}_{3} \times \mathbb{Z}_{3}, \mathbb{Z}_{3} \times \mathbb{Z}_{4}, \mathbb{Z}_{3} \times \mathbb{F}_{4}, \mathbb{Z}_{3} \times \mathbb{Z}_{2}[X] /\left(X^{2}\right)
$$

Proposition 3.9. Let R be a finite ring for which $R=R_{1} \times R_{2} \times \cdots \times R_{t}$ with $t \geq 2, I=0 \times R_{2} \times \cdots \times R_{t}$, $H=R-Z(R)$ and let $2 \in Z\left(R_{1}\right)$. If $\gamma\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right) \leq 1$, then R is isomorphic to the one of the following rings:
$R_{1} \times \mathbb{Z}_{2}, \mathbb{Z}_{2} \times \mathbb{Z}_{5}, \mathbb{Z}_{2} \times \mathbb{Z}_{6}, \mathbb{Z}_{2} \times \mathbb{Z}_{7}$,
or
$R_{1} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, R_{1} \times \mathbb{Z}_{3}, R_{1} \times R_{2}$ with $\left|R_{2}\right|=4$.
Proof. Note that $t<4$, by Theorem 3.2. Put $P=\left\{a_{1} \in R_{1} \mid a_{1} \neq 0,2 a_{1}=0\right\}\left(|P| \geq 1\right.$, by $\left.2 \in Z\left(R_{1}\right)\right)$ and $R_{1}{ }^{\star}=R_{1}-\{0\}$.

1. Let $t=3$. Put $l=\left|R_{2}\right|\left|R_{3}\right|$. For every non zero element $a_{1} \in R_{1}$, set $X_{a_{1}}=\left\{\left(a_{1}, n_{2}, n_{3}\right) \mid n_{i} \in R_{i}, i=2\right.$, 3\}. If $a_{1} \in P$, then $X_{a_{1}}$ is in the form of K_{l}. If $a_{1} \notin P$, then $X_{a_{1}}, X_{-a_{1}}$ is a bipartition of $K_{l, l}$.
Since $2 \in Z\left(R_{1}\right)$, then by Theorem $3.4,\left|R_{2}\right|\left|R_{3}\right|<8$. So $\left|R_{2}\right|\left|R_{3}\right|=4$ or 6 .
(a) Let $\left|R_{2}\right|\left|R_{3}\right|=4$.
(i') If $\operatorname{char}\left(R_{1}\right)=2\left(R_{1}^{\star}=P\right)$, then $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of some copies of K_{4}, which is planar.
(ii') Let $\operatorname{char}\left(R_{1}\right) \neq 2$. Consider $\bar{P}=R_{1}{ }^{\star}-P$ (note that $|\bar{P}| \geq 2$).
Suppose that $|\bar{P}|>2$. We claim that $|\bar{P}| \geq 4$. If $|\bar{P}|=3$ and $a_{1},-a_{1}, a_{2} \in \bar{P}$, then $-a_{2} \in \bar{P}$. So $|\bar{P}|=4$, a contradiction.
Hence, if $|\bar{P}|>2$, considering the sets $X_{a_{1}}, X_{-a_{1}}$ and $X_{a_{2}}, X_{-a_{2}}$ where $a_{1},-a_{1}, a_{2},-a_{2} \in \bar{P}$, there are at least two copies of $K_{4,4}$ in $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ that implies, $\gamma\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right) \geq 2$.
So, $|\bar{P}|=2$. Then for $b_{1},-b_{1} \in \bar{P}, X_{b_{1}}, X_{-b_{1}}$ is in the form of $K_{4,4}$. Thus, in this case, $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of some copies of K_{4} and one copy of $K_{4,4}$, which is toroidal.
Therefore, if $t=3$ and $\left|R_{2}\right|\left|R_{3}\right|=4$, then $R=R_{1} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ with $\operatorname{char}\left(R_{1}\right)=2\left(R_{1}^{\star}=P\right)$ or $|\bar{P}|=2$.
(b) Let $\left|R_{2}\right|\left|R_{3}\right|=6$. If $\operatorname{char}\left(R_{1}\right) \neq 2$, then $K_{6,6}$ is a subgraph of $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ which implies that $\gamma\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)>$ 1. So $\operatorname{char}\left(R_{1}\right)=2$. Also, by $\gamma\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right) \leq 1$, we should have $|P|=1$, since for every $l \in P$, $K_{6} \subseteq \Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ and $\gamma\left(K_{6}\right)=1$. Hence, in this case we have $R_{1}=Z_{2}$ and R is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{6}$.
2. Let $t=2$. For every non zero element $a_{1} \in R_{1}$, set $X_{a_{1}}=\left\{\left(a_{1}, n_{2}\right) \mid n_{2} \in R_{2}\right\}$. Since $2 \in Z\left(R_{1}\right)$, then by Corollary $3.5, n=\left|R_{2}\right|<8$. For every non zero element $a_{1} \in P, X_{a_{1}}$ is in the form of K_{n} for $n \leq 7$. If $a_{1} \notin P$, then $X_{a_{1}}, X_{-a_{1}}$ is a bipartition of $K_{n, n}$.
(a') Let $\left|R_{2}\right|=2$. If $\operatorname{char}\left(R_{1}\right)=2$, then $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of some copies of K_{2}, which is planar.
If $\operatorname{char}\left(R_{1}\right) \neq 2\left(R_{1}^{\star} \neq P\right)$, then for every $a_{1} \in \bar{P}, X_{a_{1}}, X_{-a_{1}}$ is a bipartition of $K_{2,2}$. So $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of some copies of K_{2} and $K_{2,2}$, which is planar. Hence, in this case, $R=R_{1} \times \mathbb{Z}_{2}$.
(b') Let $\left|R_{2}\right|=3$. If $\operatorname{char}\left(R_{1}\right)=2$, then $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of some copies of K_{3}, which is planar.
Let $\operatorname{char}\left(R_{1}\right) \neq 2\left(R_{1}^{\star} \neq P\right)$. If $|\bar{P}|>2$, then $|\bar{P}| \geq 4$. So, there exist at least two copies of $K_{3,3}$ in $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ that implies that $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right) \geq 2$.
Hence, $|\bar{P}|=2$ and $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of some copies of K_{3} and one copy of $K_{3,3}$, which is toroidal. Thus, in this case, $R=R_{1} \times \mathbb{Z}_{3}$ with $\operatorname{char}\left(R_{1}\right)=2$ or $|\bar{P}|=2$.
(c^{\prime}) If $\left|R_{2}\right|=4$, then by the same way of case 1 (a), $R=R_{1} \times R_{2}$, where $\left|R_{2}\right|=4$ with $\operatorname{char}\left(R_{1}\right)=2$ or $|\bar{P}|=2$.
(d^{\prime}). Let $\left|R_{2}\right| \in\{5,6,7\}$. If $|P| \geq 2$, then $\gamma\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right) \geq 2$ (since for every $a_{1} \in P, K_{n} \subseteq \Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ for $n \in\{5,6,7\}$). So $|P|=1$. If $\operatorname{char}\left(R_{1}\right) \neq 2$, then $K_{n, n} \subseteq \Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ for $n \in\{5,6,7\}$, that implies that $\gamma\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)>1$. So $\operatorname{char}\left(R_{1}\right)=2$ and $R_{1}=\mathbb{Z}_{2}$, since $|P|=1$.
Hence, in this case, R is isomorphic to the one of the following rings:

$$
\mathbb{Z}_{2} \times \mathbb{Z}_{5}, \mathbb{Z}_{2} \times \mathbb{Z}_{6}, \mathbb{Z}_{2} \times \mathbb{Z}_{7}
$$

Remark 3.10. Let R be a ring with $I=0$ and H be a multiplicatively closed subset of R. Then $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a subgraph of $T\left(\Gamma(R)\right.$), since $S_{H}(I)=\{r \in R: r s=0$ for some $s \in H(0 \notin H)\} \subseteq Z(R)$. Recall that $T(\Gamma(R))$ is the graph with all elements of R as vertices, and two distinct vertices $x, y \in R$ are adjacent if and only if $x+y \in Z(R)$ where $Z(R)$ denotes the set of all zero-divisors of R, so $\gamma\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right) \leq \gamma(T(\Gamma(R)))$.

For finite ring R with ideal $I=0 \times 0 \times \cdots \times R_{n} \times \cdots \times R_{t}, n \geq 1, t \geq 2$ and multiplicatively closed subset H of $R, \Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a subgraph of $T(\Gamma(R))$, since $S_{H}(I) \subseteq Z(R)$. For the recent inclusion, let $\left(r_{1}, r_{2}, \ldots, r_{t}\right) \in S_{H}(I)$. Then $\left(r_{1}, r_{2}, \ldots, r_{t}\right)\left(s_{1}, s_{2}, \ldots, s_{t}\right) \in I$ for some $\left(s_{1}, s_{2}, \ldots, s_{t}\right) \in H$, so $r_{i} s_{i}=0$ for every $1 \leq i \leq n-1$. If for every $1 \leq i \leq n-1, s_{i}=0$, then $H \cap I \neq \emptyset$, a contradiction, so there exists $s_{l} \neq 0$ for $1 \leq l \leq n-1$. Then $r_{l} s_{l}=0$ implies that $r_{l} \in Z\left(R_{l}\right)$, hence $S_{H}(I) \subseteq Z(R)$.

Theorem 3.11. Let $I=k \mathbb{Z}_{n}$ with $d=(k, n)$ and $H=\left\{a \mid a \in \mathbb{Z}_{n},(a, n)=1\right\}$.

1. Let n be an even integer.
(i) If d is an even integer, then $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of $K^{\frac{n}{d}}$ and $\frac{d-2}{2}$ copies of $K_{\frac{n}{d}, \frac{n}{d}}$. Hence $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=\left\lceil\frac{\left(\frac{n}{d}-3\right)\left(\frac{n}{d}-4\right)}{12}\right\rceil+\frac{d-2}{2}\left\lceil\frac{\left(\frac{n}{d}-2\right)^{2}}{4}\right\rceil$.
(ii) If d is an odd integer, then $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of $\frac{d-1}{2}$ copies of $K_{\frac{n}{d}, \frac{n}{d}}$ and $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=$ $\frac{d-1}{2}\left\lceil\frac{\left(\frac{n}{d}-2\right)^{2}}{4}\right\rceil$.
2. If n is an odd integer, then $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of $\frac{d-1}{2}$ copies of $K_{\frac{n}{d}, \frac{n}{d}}$ and $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=$ $\frac{d-1}{2}\left\lceil\frac{\left(\frac{n}{d}-2\right)^{2}}{4}\right\rceil$.

Fig. 1. The total graph of Theorem 3.11.

Proof. We at first show that $d \mathbb{Z}_{n}=I=S_{H}(I)$. There are $t_{1}, t_{2} \in \mathbb{Z}$ such that $t_{1} n+t_{2} k=d$, so $d \in I$. Hence $I=d \mathbb{Z}_{n}$. We claim that $I=S_{H}(I)$. By way of contradiction, if there exists $m \in \mathbb{Z}_{n}-I$ such that $t m \in I$ for some $t \in H$, then $d \mid t m$. But $(d, t)=1($ since $d \mid n)$, so $d \mid m$, a contradiction. Hence $I=S_{H}(I)$.

1. Let n be an even integer. Then
(i) If $d=2$, then $I=2 \mathbb{Z}_{n}$; so for every $m^{\prime} \in S_{H}^{C}(I), 2 m^{\prime} \in S_{H}(I)$. Then by Theorem 2.3, $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is in the form of $K_{\frac{n}{2}}$. Therefore, $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=\left\lceil\frac{\left(\frac{n}{2}-3\right)\left(\frac{n}{2}-4\right)}{12}\right\rceil$, by Theorem 2.1.
Let d be an even integer greater than 2 , then $S_{H}^{C}(I)$ has the following elements:

$$
\begin{aligned}
& 1,2, \ldots, \frac{d}{2}, \ldots, d-1 \\
& d+1, \ldots, \frac{3 d}{2}, \ldots, 2 d-1 \\
& \cdot \\
& \cdot \\
& {\left[\left(\frac{n}{d}-1\right) d\right]+1, \ldots,\left(2 \frac{n}{d}-1\right) \frac{d}{2}, \ldots, \frac{n}{d} d-1 .}
\end{aligned}
$$

Hence, $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of $K_{\frac{n}{d}}$ and $\frac{d-2}{2}$ copies of $K_{\frac{n}{d}, \frac{n}{d}}$. So by Theorem 2.1, $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=$ $\left\lceil\frac{\left(\frac{n}{d}-3\right)\left(\frac{n}{d}-4\right)}{12}\right\rceil+\frac{d-2}{2}\left\lceil\frac{\left(\frac{n}{d}-2\right)^{2}}{4}\right\rceil$.
(ii) Let d be an odd integer, then $S_{H}^{C}(I)$ has the following elements: $1,2, \ldots, \frac{d-1}{2}, \frac{d+1}{2}, \ldots, d-1$ $d+1, \ldots, \frac{3 d-1}{2}, \frac{3 d+1}{2}, \ldots, 2 d-1$

$$
\left[\left(\frac{n}{d}-1\right) d\right]+1, \ldots, \frac{\left[\left(2 \frac{n}{d}-1\right) d\right]-1}{2}, \frac{\left[\left(\frac{n}{d}-1\right) d\right]+1}{2}, \ldots, \frac{n}{d} d-1 .
$$

Hence, $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of $\frac{d-1}{2}$ copies of $K_{\frac{n}{d}, \frac{n}{d}}$ as in Fig. 1, where $1 \leq i \leq \frac{d-1}{2}$. Then by Theorem 2.1, $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=\frac{d-1}{2}\left\lceil\frac{\left(\frac{n}{d}-2\right)^{2}}{4}\right\rceil$.
2. Let n be an odd integer; so, $2 \in \stackrel{H}{H}$. Then by Theorem $2.4, \Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of $\frac{d-1}{2}$ copies of $K_{\frac{n}{d}, \frac{n}{d}}$ and by Theorem 2.1, $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=\frac{d-1}{2}\left\lceil\frac{\left(\frac{n}{d}-2\right)^{2}}{4}\right\rceil$.

Example 3.12. Consider $R=\mathbb{Z}_{18}, I=12 \mathbb{Z}_{18}$ and $H=\left\{a \mid a \in \mathbb{Z}_{18},(a, 18)=1\right\}$. Then $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of K_{3} and two copies of $K_{3,3}$. Then $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=\left\lceil\frac{(3-3)(3-4)}{12}\right\rceil+\frac{6-2}{2}\left\lceil\frac{(3-2)^{2}}{4}\right\rceil=2$.

Theorem 3.13. Let $R=\mathbb{Z}_{n} \times \mathbb{Z}_{n}, I=0 \times \mathbb{Z}_{n}$ and $H=\left\{(a, b) \mid a, b \in \mathbb{Z}_{n} \times \mathbb{Z}_{n},(a, n)=1\right\}$. Then:

1. If n is an even integer, then $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of K_{n} and $\frac{n-2}{2}$ copies of $K_{n, n}$. In this case, $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=\left\lceil\frac{(n-3)(n-4)}{12}\right\rceil+\frac{n-2}{2}\left\lceil\frac{(n-2)^{2}}{4}\right\rceil$.
2. If n is an odd integer, then $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of $\frac{n-1}{2}$ copies of $K_{n, n}$. In this case $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=$ $\frac{n-1}{2}\left\lceil\frac{(n-2)^{2}}{4}\right\rceil$.

Proof.

1. Let n be an even integer. We claim that $I=S_{H}(I)$. By way of contradiction, if there is $(m, d) \in \mathbb{Z}_{n} \times \mathbb{Z}_{n}-\left(0 \times \mathbb{Z}_{n}\right)$ such that $(t, l)(m, d) \in 0 \times \mathbb{Z}_{n}$ for some $(t, l) \in H$, then $n \mid t m$, but $(t, n)=1$; so $n \mid m$, a contradiction. Hence $I=S_{H}(I)$. The number of elements of $\left(\mathbb{Z}_{n} \times \mathbb{Z}_{n}\right)-S_{H}(I)$ is $n^{2}-n$. For every element $(a, b) \in S_{H}^{C}(I)$, we have $(a, b)+(-a, b) \in S_{H}(I)$. Let $(a, b)+(c, d) \in S_{H}(I)$ for (a, b) and $(c, d) \in S_{H}^{C}(I)$. Then $a+c=0$ and this implies that $a=-c$. Hence, each element (a, b) of $S_{H}^{C}(I)$ is just adjacent to ($-a, d$) for every element $d \in \mathbb{Z}_{n}$. Because n is even, so just for one element $0 \neq a=\frac{n}{2} \in \mathbb{Z}_{n},(a, b) \in S_{H}^{C}(I)$ is adjacent to (a,c) for every $b, c \in \mathbb{Z}_{n}$. Hence, $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of K_{n} and $\frac{n-2}{2}$ copies of $K_{n, n}$. Now by Theorem 2.1, $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=\left\lceil\frac{(n-3)(n-4)}{12}\right\rceil+\frac{n-2}{2}\left\lceil\frac{(n-2)^{2}}{4}\right\rceil$.
2. If n is an odd integer, then $2 \in \stackrel{2}{H}$. By Theorem 2.4, $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of $\frac{n-1}{2}$ copies of $K_{n, n}$ and $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=\frac{n-1}{2}\left\lceil\frac{(n-2)^{2}}{4}\right\rceil$, by Theorem 2.1.

Example 3.14. Consider $R=\mathbb{Z}_{8} \times \mathbb{Z}_{8}, I=0 \times \mathbb{Z}_{8}$ and $H=\left\{(a, b) \mid(a, b) \in \mathbb{Z}_{8} \times \mathbb{Z}_{8},(a, 8)=1\right\}$. Then $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of K_{8} and 3 copies of $K_{8,8}$. Hence $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=29$.

Theorem 3.15. Let $I=k \mathbb{Z}_{n}, H=\mathbb{Z}_{n}-p \mathbb{Z}_{n}$ where p is a prime number with $1<p \leq n,\left|S_{H}(I)\right|=\alpha$ and $\left|\mathbb{Z}_{n} / S_{H}(I)\right|=\beta$.

1. If $p \neq 2$, then $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of $\frac{\beta-1}{2}$ copies of $K_{\alpha, \alpha}$ and $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=\frac{\beta-1}{2}\left\lceil\frac{(\alpha-2)^{2}}{4}\right\rceil$.
2. Let $p=2$. Then $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of $K_{\frac{n}{2^{\prime}}}$ and $\frac{2^{l^{\prime}-2}}{2}$ copies of $K_{\frac{n}{2^{\prime}}}$, $\frac{n}{2^{\prime}}$. Hence

$$
g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=\left\lceil\frac{\left(\frac{n}{2^{\prime}}-3\right)\left(\frac{n}{2^{l^{\prime}}}-4\right)}{12}\right\rceil+\frac{2^{l^{\prime}}-2}{2}\left\lceil\frac{\left(\frac{n}{2^{\prime}}-2\right)^{2}}{4}\right\rceil,
$$

where $(k, n)=2^{l^{\prime}} r^{\prime}$ with $l^{\prime}, r^{\prime} \in \mathbb{N}$ and $\left(2, r^{\prime}\right)=1$.
Proof. By the proof of Theorem 3.11, $I=d \mathbb{Z}_{n}$, where $d=(k, n)$.

1. If $p \neq 2$, then $2 \in \mathbb{Z}_{n}-p \mathbb{Z}_{n}$. So, $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of $\frac{\beta-1}{2}$ copies of $K_{\alpha, \alpha}$ by Theorem 2.4 and $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=\frac{(\beta-1)}{2}\left\lceil\frac{(\alpha-2)^{2}}{4}\right\rceil$, by Theorem 2.1.
2. Let $p=2$. If n is odd, then $0 \in H$ and this is impossible; so we assume that n is even. It should be noted that d is even; since if d is odd, then $d \in H$ and $\emptyset \neq I \cap H$ that this implies that $\mathbb{Z}_{n}=S_{H}(I)$, which is not in our assumptions.
Let $n=2^{l} r$ for $l, r \in \mathbb{N}$ where $(2, r)=1$. We can assume that $d=2^{l^{\prime} r^{\prime}}$ where $l^{\prime}, r^{\prime} \in \mathbb{N}$ and $l^{\prime} \leq l, r^{\prime} \leq r$. Here, we claim that $S_{H}(I)=2^{l^{\prime}} \mathbb{Z}_{n}$. Suppose there is $m \in \mathbb{Z}_{n}-2^{l^{\prime}} \mathbb{Z}_{n}$ such that $d \mid t m$ for some $t \in H$, so $2^{l^{\prime}} \mid t m$. Hence $2^{l^{\prime}} \mid m$, a contradiction. Therefore, $S_{H}(I) \subseteq 2^{l^{\prime}} \mathbb{Z}_{n}$. Now, let $2^{l^{\prime}} t^{\prime} \in 2^{l^{\prime}} \mathbb{Z}_{n}$ for some $t^{\prime} \in \mathbb{Z}_{n}$. It is clear that $2^{l^{\prime}} t^{\prime} r^{\prime} \in I$, so $2^{l^{\prime}} t^{\prime} \in S_{H}(I)$. Hence, by an argument similar to the proof of Theorem 3.11, $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is
 Theorem 2.1.

Example 3.16. Consider $R=\mathbb{Z}_{64}, I=4 \mathbb{Z}_{64}$ and $H=\mathbb{Z}_{64}-2 \mathbb{Z}_{64}$. Then $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of $K_{16,16}$ and K_{16} such that $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=62$.

Theorem 3.17. Let $I=k \mathbb{Z}_{n}, H=\left\{a^{s} \mid s \geq 0\right\}$ such that $a \mid n$ with $\left(\frac{n}{a}, a\right)=1,\left|S_{H}(I)\right|=\alpha$ and $\left|\mathbb{Z}_{n} / S_{H}(I)\right|=\beta$.

1. If there is at least one even number in H, then $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of $\frac{\beta-1}{2}$ copies of $K_{\alpha, \alpha}$. In this case $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=\frac{\beta-1}{2}\left\lceil\frac{(\alpha-2)^{2}}{4}\right\rceil$.
2. Let there be no even number in $H,\left(d, \frac{n}{a}\right)=l$ where $d=(k, n)$ and $n=r l$ for some $r \in \mathbb{N}$.
(1^{\prime}). If l is an even integer, then $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of K_{r} and $\frac{l-2}{2}$ copies of $K_{r, r}$. In this case $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=\left\lceil\frac{(r-3)(r-4)}{12}\right\rceil+\frac{l-2}{2}\left\lceil\frac{(r-2)^{2}}{4}\right\rceil$.
(2'). If l is an odd integer, then $\Gamma_{H}^{I}\left(\stackrel{4}{S}_{H}^{C}(I)\right)$ is a disjoint union of $\frac{l-1}{2}$ copies of $K_{r, r}$ and $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=$ $\frac{l-1}{2}\left\lceil\frac{(r-2)^{2}}{4}\right\rceil$.

Proof. Note that by the proof of Theorem 3.11, $I=d \mathbb{Z}_{n}$.

1. If there is at least one even element in H, then by Theorem $2.4, \Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of $\frac{\beta-1}{2}$ copies of $K_{\alpha, \alpha}$. Therefore, $g\left(\Gamma_{H}^{N}\left(S_{H}^{C}(N)\right)\right)=\frac{(\beta-1)}{2}\left\lceil\frac{(\alpha-2)^{2}}{4}\right\rceil$, by Theorem 2.1.
2. Let there be no even element in H. If $\left(d, \frac{n}{a}\right)=1$, then $d \mid a$, since $n=\frac{n}{a} a$ where $\left(\frac{n}{a}, a\right)=1$. Hence $\emptyset \neq I \cap H$ and this implies that $\mathbb{Z}_{n}=S_{H}(I)$, which is not the case. So, we assume that $\left(d, \frac{n}{a}\right)=l \neq 1$. Put $I^{\prime}=l \mathbb{Z}_{n}$. We claim that $I^{\prime}=S_{H}(I)$. Suppose there is $m^{\prime} \in \mathbb{Z}_{n}-I^{\prime}$ such that $d \mid a^{g} m^{\prime}$, where $a^{g} \in H$ and $g \geq 0$, then $l \mid a^{g} m^{\prime}$. So, $l \mid m^{\prime}$, a contradiction.

Conversely, we show that $d \mid a l$ and this implies that $I^{\prime} \subseteq S_{H}(I)$. Let $d=n_{1} l$ and $\frac{n}{a}=n_{2} l$, for some $n_{1}, n_{2} \in \mathbb{N}$ (so $\left(n_{1}, n_{2}\right)=1$). We show that $n_{1} \mid a$; this implies that $n_{1} l \mid a l$ and the proof is complete.

Let $\left(n_{1}, a\right)=h$ (so $n_{1}=g_{1} h$ and $a=g_{2} h$, for some $g_{1}, g_{2} \in \mathbb{N}$ where $\left(g_{1}, g_{2}\right)=1$). By the fact that $d=n_{1} l$ and $d \mid n$, one has $g_{1} h l \mid g_{2} h n_{2} l$; so $g_{1} \mid g_{2} n_{2}$ and $\left(g_{1}, g_{2}\right)=1$ implies that $g_{1} \mid n_{2}$. This yields $g_{1}=1$ and so $n_{1} \mid a$.
$\left(1^{\prime}\right)$. Let l be an even integer, then by the same way as the proof of Theorem 3.11, $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of K_{r} and $\frac{l-2}{2}$ copies of $K_{r, r}$. Hence, $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=\left\lceil\frac{(r-3)(r-4)}{12}\right\rceil+\frac{l-2}{2}\left\lceil\frac{(r-2)^{2}}{4}\right\rceil$, by Theorem 2.1.
$\left(2^{\prime}\right)$. Let l be an odd integer. By the same way as the proof of Theorem 3.11, $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of $\frac{l-1}{2}$ copies of $K_{r, r}$ and $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=\frac{l-1}{2}\left\lceil\frac{(r-2)^{2}}{4}\right\rceil$, by Theorem 2.1.

Example 3.18. Consider $R=\mathbb{Z}_{60}, I=15 \mathbb{Z}_{60}$ and $H=\left\{3^{s} \mid s \geq 0\right\}$. Then $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of 2 copies of $K_{12,12}$ and $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=50$.

Theorem 3.19. Let $I=k \mathbb{Z}_{n}, H=\{1, t\}$ with $n\left|t^{2}-1,\left|S_{H}(I)\right|=\alpha\right.$ and $| \mathbb{Z}_{n} / S_{H}(I) \mid=\beta$.

1. If t is an even integer, then $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of $\frac{\beta-1}{2}$ copies of $K_{\alpha, \alpha}$ and $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=$ $\frac{\beta-1}{2}\left\lceil\frac{(\alpha-2)^{2}}{4}\right\rceil$.
2. let t be an odd integer and $(k, n)=d$.
(1'). If d is an even integer, then $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of $K_{\frac{n}{d}}$ and $\frac{d-2}{2}$ copies of $K_{\frac{n}{d}, \frac{n}{d}}$. In this case $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=\left\lceil\frac{\left(\frac{n}{d}-3\right)\left(\frac{n}{d}-4\right)}{12}\right\rceil+\frac{d-2}{2}\left\lceil\frac{\left(\frac{n}{d}-2\right)^{2}}{4}\right\rceil$.
(2'). If d is an odd integer, then $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of $\frac{d-1}{2}$ copies of $K_{\frac{n}{d}, \frac{n}{d}}$ and $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=$ $\frac{d-1}{2}\left\lceil\frac{\left(\frac{n}{d}-2\right)^{2}}{4}\right\rceil$.

Proof.

1. Let t be an even integer. In view of Theorem $2.4, \Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of $\frac{\beta-1}{2}$ copies of $K_{\alpha, \alpha}$ and $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=\frac{\beta-1}{2}\left\lceil\frac{(\alpha-2)^{2}}{4}\right\rceil$.
2. By the proof of Theorem $3.11, I=d \mathbb{Z}_{n}$. Let t be an odd integer. We claim that $I=S_{H}(I)$. Otherwise, there is $a \in \mathbb{Z}_{n}-I$ such that $d \mid a t$. So $d \mid a t^{2}$. By the assumption $d \mid t^{2}-1$, hence $d \mid a$ and this implies that $a \in I$, a contradiction. Thus, $I=S_{H}(I)$.
$\left(1^{\prime}\right)$ If d is an even integer, then we proceed in the proof of Theorem 3.11. So $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of $K_{\frac{n}{d}}$ and $\frac{d-2}{2}$ copies of $K_{\frac{n}{d}, \frac{n}{d}}$. Then

$$
g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=\left\lceil\frac{\left(\frac{n}{d}-3\right)\left(\frac{n}{d}-4\right)}{12}\right\rceil+\frac{d-2}{2}\left\lceil\frac{\left(\frac{n}{d}-2\right)^{2}}{4}\right\rceil,
$$

by Theorem 2.1.
(2^{\prime}) If d is an odd integer, then we proceed in the proof of Theorem 3.11. Hence, $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of $\frac{d-1}{2}$ copies of $K_{\frac{n}{d}, \frac{n}{d}}$ and $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=\frac{d-1}{2}\left\lceil\frac{\left(\frac{n}{d}-2\right)^{2}}{4}\right\rceil$, by Theorem 2.1.

Example 3.20. Consider $R=\mathbb{Z}_{50}, I=5 \mathbb{Z}_{50}$ and $H=\{1,49\}$. Then $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of two copies of $K_{10,10}$ and $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=32$.

Theorem 3.21. Let $R=\mathbb{Z}_{n} \times \mathbb{Z}_{n}, I=0 \times \mathbb{Z}_{n}, H=\{(1,1),(t, t)\}$ with $n\left|t^{2}-1,\left|S_{H}(I)\right|=\alpha\right.$ and $| \mathbb{Z}_{n} / S_{H}(I) \mid=\beta$.

1. If t is an even integer, then $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of $\frac{\beta-1}{2}$ copies of $K_{\alpha, \alpha}$ and $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=$ $\frac{\beta-1}{2}\left\lceil\frac{(\alpha-2)^{2}}{4}\right\rceil$.

Fig. 2. The total graph of Theorem 3.23(1).
2. Let t be an odd integer.
(i) If n is an even integer, then $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of K_{n} and $\frac{n-2}{2}$ copies of $K_{n, n}$. In this case, $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=\left\lceil\frac{(n-3)(n-4)}{12}\right\rceil+\frac{n-2}{2}\left\lceil\frac{(n-2)^{2}}{4}\right\rceil$.
(ii) If n is an odd integer, then $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of $\frac{n-1}{2}$ copies of $K_{n, n}$. In this case $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=$ $\frac{n-1}{2}\left\lceil\frac{(n-2)^{2}}{4}\right\rceil$.

Proof.

1. If t is an even integer, then $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of $\frac{\beta-1}{2}$ copies of $K_{\alpha, \alpha}$ by Theorem 2.4 and $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=\frac{\beta-1}{2}\left\lceil\frac{(\alpha-2)^{2}}{4}\right\rceil$.
2. Let t be an odd integer. We claim that $I=S_{H}(I)$. Otherwise, there is $(a, b) \in \mathbb{Z}_{n} \times \mathbb{Z}_{n}$ such that $(a, b)(t, t) \in I$ where $a \neq 0$ and b is an arbitrary element of \mathbb{Z}_{n}. So $n \mid a t$; then $n \mid a t^{2}$. By the assumption $n \mid t^{2}-1$, so $n \mid a$ and this implies that $a=0$, a contradiction. Hence $I=S_{H}(I)$. The remaining is similar to proof of Theorem 3.13.

Example 3.22. Consider $R=\mathbb{Z}_{21} \times \mathbb{Z}_{21}, I=0 \times \mathbb{Z}_{21}$ and $H=\{(1,1),(13,13)\}$. Then $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of 10 copies of $K_{21,21}$ and $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=910$.

Theorem 3.23. Let \mathbb{Z}_{p} denote the field of p elements where $p>2$ is a prime number, $R=\mathbb{Z}_{p} \times \mathbb{Z}_{2^{m}}$ where $m \in \mathbb{N}$ and $I=0 \times \mathbb{Z}_{2^{m}}$. Let H be one of the following sets: $\{(1,1)\},\{(1,1),(2,1)\}, \ldots,\{(1,1),(2,1), \ldots,(p-$ $1,1)\},\{(1,0)\},\{(1,0),(2,0)\}, \ldots,\{(1,0),(2,0), \ldots,(p-1,0)\}$.

1. If $m=1$, then $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is planar.
2. If $m>1$, then $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=\frac{p-1}{2}\left\lceil\frac{\left(2^{m}-2\right)^{2}}{4}\right\rceil$.

Proof. We note that $I=S_{H}(I)$ for every positive integer m and all cases of H. Otherwise, there exists $(a, c) \in$ $\mathbb{Z}_{p} \times \mathbb{Z}_{2^{m}}$ such that $a \neq 0$ and $p \mid a t$ for some $(t, b) \in H$, where $b \in \mathbb{Z}_{2}$. Because $(p, t)=1$, so $p \mid a$, a contradiction. Hence, in all cases, $I=S_{H}(I)$.

1. If $m=1$, for every $(a, b) \in S_{H}^{C}(I)$, we have $(a, b)+(-a, b) \in S_{H}(I)$, where $a \in Z_{p}$ and $b \in Z_{2}$. So, $\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of $\frac{p-1}{2}$ copies of $K_{2,2}$, where $R=\mathbb{Z}_{p} \times \mathbb{Z}_{2}$ and $I=0 \times \mathbb{Z}_{2}$, as Fig. 2, where $1 \leq i \leq \frac{p-1}{2}$. Hence $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=0$, by Theorem 2.1.
2. In the same way of the case 1 , for $R=\mathbb{Z}_{p} \times \mathbb{Z}_{2^{m}}$ with $m \in \mathbb{N}$ and $m>1, \Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)$ is a disjoint union of $\frac{p-1}{2}$ copies of $K_{2^{m}, 2^{m}}$ and $g\left(\Gamma_{H}^{I}\left(S_{H}^{C}(I)\right)\right)=\frac{p-1}{2}\left\lceil\frac{\left(2^{m}-2\right)^{2}}{4}\right\rceil$, where $I=0 \times \mathbb{Z}_{2^{m}}$.

References

[1] D.F. Anderson, A. Badawi, The total graph of a commutative ring, J. Algebra 320 (7) (2008) 2706-2719.
[2] S. Akbari, D. Kiani, F. Mohammadi, S. Moradi, The total graph and regular graph of a commutative ring, J. Pure Appl. Algebra 213 (12) (2009) 2224-2228.
[3] H.R. Maimani, C. Wickham, S. Yassemi, Rings whose total graphs have genus at most one, Rocky Mountain J. Math. 42 (5) (2010) 1551-1560.
[4] T. Tamizh Chelvam, T. Asir, On the genus of the total graph of a commutative ring, Comm. Algebra 41 (2013) 142-153.
[5] A. Abbasi, . Sh. Habibi, The total graph of a commutative ring with respect to proper ideals, J. Korean Math. Soc. 49 (1) (2012) 85-98.
[6] A. Abbasi, . Sh. Habibi, The total graph of a module over a commutative ring with respect to proper submodules, J. Algebra Appl. 11 (3) (2012) 125004813 pages.
[7] D.F. Anderson, A. Badawi, The generalized total graph of a commutative ring, J. Algebra Appl. 12 (5) (2013) 125021218 pages.
[8] A. Abbasi, L. Hamidian Jahromi, A generalization of total graphs of modules over commutative rings under multiplicatively closed subsets, J. Math. Ext. 11 (3) (2017) 87-102.
[9] A.T. White, Graphs, Groups and Surfaces, North-Holland, Amsterdam, 1973.
[10] J. Battle, F. Harary, Y. Kodama, J.W.T. Youngs, Additivity of the genus of a graph, Bull. Amer. Math. Soc. 68 (6) (1962) 565-568.
[11] A.T. White, The genus of the Cartesian product of two graphs, J. Combin. Theory Ser. B 11 (2) (1971) 89-94.
[12] C. Wickham, Classification of rings with genus one zero-divisor graphs, Comm. Algebra 36 (2) (2008) 325-345.

Further reading

[1] C. Godsil, G. Royle, Algebraic Graph Theory, Springer, New York, 2001.

[^0]: Peer review under responsibility of Kalasalingam University.

 * Corresponding author.

 E-mail addresses: acz459@yahoo.com (L.H. Jahromi), aabbasi@guilan.ac.ir (A. Abbasi).
 https://doi.org/10.1016/j.akcej.2018.04.002
 © 2018 Kalasalingam University. Published with license by Taylor \& Francis Group, LLC
 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/ by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^1]: Please cite this article in press as: L.H. Jahromi, A. Abbasi, On the genus of some total graphs, AKCE International Journal of Graphs and Combinatorics (2018), https://doi.org/10.1016/j.akcej.2018.04.002.

