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Abstract

Let R be a commutative ring with a proper ideal I . A generalization of total graph is introduced and investigated. It is the
(undirected) graph with all elements of R as vertices, that two distinct vertices x, y ∈ R are adjacent if and only if x + y ∈ SH (I )
where SH (I ) = {a ∈ R : ra ∈ I for some r ∈ H} and H is a multiplicatively closed subset of R. This version of total graph is
denoted by T (Γ I

H (R)). We in addition characterize certain lower and upper bounds for the genus of the total graph, and compute
genus T (Γ I

H (R)) on finite ring R, with respect to some special ideal I .

Keywords: Commutative rings; Multiplicatively closed subset; Total graph; Genus

1. Introduction

Throughout, all rings will be commutative with non-zero identity. Let R be a ring and I a proper ideal of R. The
total graph of a commutative ring R, denoted by T (Γ (R)), was introduced by Anderson and Badawi in [1] and
studied by several authors ([2–4], etc.), where the authors in [3,4] obtained some facts on the genus of total graphs.
They considered a total graph with all elements of R as vertices, that two distinct vertices x, y ∈ R are adjacent if
and only if x + y ∈ Z (R) where Z (R) denotes the set of all zero-divisors of R. The total graph is then extended
in joint papers [5,6] of the second author in rings and modules, respectively. Furthermore, a generalized total graph
was introduced in [7]. For a proper submodule N of M , there is a generalization of the graph of modules relative
N under multiplicatively closed subset H denoted by T (Γ N

H (M)) which was studied by present authors in [8]. The
vertex set of T (Γ N

H (M)) is M , that two distinct vertices m and m ′ are adjacent if and only if m + m ′
∈ MH (N ) where

MH (N ) = {m ∈ M : rm ∈ N for some r ∈ H} and H is a multiplicatively closed subset of R, i.e. ab ∈ H for all
a, b ∈ H . As N is a proper submodule of M and N ⊆ MH (N ), MH (N ) is not empty.

We define a generalized total graph over ring R, denoted by T (Γ I
H (R)), with all elements of R as vertices, that two

distinct vertices x, y ∈ R are adjacent if and only if x + y ∈ SH (I ) where SH (I ) = {a ∈ R : ra ∈ I for some r ∈ H},
I is an ideal of R and H is a multiplicatively closed subset of R.
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It follows from the definition that if SH (I ) = R, (for example, if I = R, 0 ∈ H , H
⋂

(SH (I ) : R) ̸= ∅,
H

⋂
(0 : R) ̸= ∅ or H

⋂
(I : R) ̸= ∅, by [8]), then T (Γ I

H (R)) is complete; so we suppose that SH (I ) ̸= R. We
denote by Γ I

H (SH (I )) and Γ I
H (SC

H (I )) the (induced) subgraphs of T (Γ I
H (R)) with vertices in SH (I ) and R − SH (I ),

respectively. Based on our assumption, SH (I ) ̸= R and so Γ I
H (SC

H (I )) is always nontrivial.
Let G be a simple graph. We say that G is totally disconnected if none of two vertices of G are adjacent. We

use Kn to denote complete graph with n vertices. A biparti te graph G is a graph whose vertex set V (G) can be
partitioned into subsets V1 and V2 such that the edge set consists of precisely those edges which join vertices in V1 to
vertices of V2. In particular, if E consists of all possible such edges, then G is called the complete biparti te graph
and denoted by Km,n when |V1| = m and |V2| = n. Two subgraphs G1 and G2 of G are dis joint if G1 and G2 have
no common vertices and no vertex of G1 (resp., G2) is adjacent (in G) to any vertex not in G1 (resp., G2). The union
of two graphs G1 = (V1, E1) and G2 = (V2, E2) is the graph G1 ∪ G2 whose vertex set is V1 ∪ V2 and the edge set
is E1 ∪ E2. The Cartesian product of graphs G1 and G2 is defined as the graph G1 × G2 which the vertex set is
V (G1) × V (G2) and the edge set is the set of all pairs (u1, v1)(u2, v2) such that either u1u2 ∈ E(G1) and v1 = v2
or v1v2 ∈ E(G2) and u1 = u2. Two graphs G and H are said to be isomor phic to each another, written G ∼= H , if
there exists a bijection f : V (G) → V (H ) such that for each pair x, y of vertices of G, xy ∈ E(G) if and only if
f (x) f (y) ∈ E(H ). For a vertex v of graph G, deg(v) is the degree of vertex v and δ(G) := min{deg(v): v is a vertex
of G}. For a nonnegative integer k, a graph G is called k − regular if every vertex of G has degree k. The genus of
a graph G, denoted by g(G), is the minimal integer n such that the graph can be embedded in Sn , where Sn denotes
a sphere with n handles. Intuitively, G is embedded in a surface if it can be drawn in the surface so that its edges
intersect only at their common vertices. A planar graph is a graph that can be embedded in the plane, i.e., it can be
drawn on the plane in such a way that its edges intersect only at their endpoints. For such graphs the genus is zero.
A graph with genus one is called a toroidal graph. If G ′ is a subgraph of G, then g(G ′) ≤ g(G). For details on the
notion of embedding of a graph in a surface, see White [9, Chapter 6].

In Section 2, we remind some facts and give a lower bound for genus of the graph T (Γ I
H (R)). We proceed in

Section 3 by determining all isomorphism classes of finite rings R whose T (Γ I
H (R)) has genus at most one (i.e. a

planar or toroidal graph). Also, we compute genus of the graph over R = Zn under some well-known multiplicatively
closed subsets of R.

2. Background problem and some comments

Throughout, ⌈x⌉ denotes the least integer that is greater than or equal to x . In the following theorem we give some
well-known formulas, see, e.g., [9–11]:

Theorem 2.1. The following statements hold:

(1) For n ≥ 3 we have g(Kn) = ⌈
(n−3)(n−4)

12 ⌉.
(2) For m, n ≥ 2 we have g(Km,n) = ⌈

(m−2)(n−2)
4 ⌉.

(3) Let G1 and G2 be two graphs and for each i, pi be the number of vertices of G i . Then max {p1g(G2) +

g(G1), p2g(G1) + g(G2)} ≤ g(G1 × G2).
(4) The genus of a graph is the sum of the genuses of its components.

According to Theorem 2.1 we have g(Kn) = 0 for 1 ≤ n ≤ 4, g(Kn) = 1 for 5 ≤ n ≤ 7 and g(Kn) ≥ 2, for other
value of n.

Corollary 2.2. If G is a graph with n vertices, then g(G) ≤ ⌈
(n−3)(n−4)

12 ⌉.

In the following of the section, we characterize a lower bound for the genus of the graph T (Γ I
H (R)). Considering

the fact that Γ I
H (SH (I )) is in the form of K|SH (I )| (see [8, Remark 3.1]), in view of Theorem 2.1, it is enough for us to

obtain a lower bound for genus of the graph Γ I
H (SC

H (I )).

Theorem 2.3 ([8, Corollary 3.7]). Let | SH (I ) |= α, | R/SH (I ) |= β, and 2 ∈ (SH (I ) : R).Then Γ I
H (SC

H (I )) is a
disjoint union of β − 1 copies of Kα .

Theorem 2.4 ([8, Theorem 3.10]). Let | SH (I ) |= α and | R/SH (I ) |= β. If H, a multiplicatively closed subset of
R containing some even elements, then Γ I

H (SC
H (I )) is a disjoint union of β−1

2 copies of Kα,α .
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Corollary 2.5. Let |SH (I )| = α and |R/SH (I )| = β. Then the following hold:

1. If 2 ∈ (SH (I ) : R), then g(Γ I
H (SC

H (I ))) = (β − 1)⌈ (α−3)(α−4)
12 ⌉.

2. If 2r ∈ H for some r ∈ R, then g(Γ I
H (SC

H (I ))) =
β−1

2 ⌈
(α−2)2

4 ⌉ .

Proof. It is obvious by Theorems 2.3 and 2.4. □

Lemma 2.6 ([12, Proposition .2.1]). If G is a graph with n vertices and genus g, then δ(G) ≤ 6 +
12g−12

n .

Theorem 2.7 ([8, Theorem 3.13]). Suppose that the edge set of Γ I
H (SC

H (I )) is not empty and x is a vertex of the
graph. Then the degree of x is either | SH (I ) | or | SH (I ) | −1.

Proposition 2.8. Let Γ I
H (SC

H (I )) with t ′ vertices have a nonempty edge set, and let |SH (I )| = t . Then (t−7)t ′
12 + 1 ≤

g(Γ I
H (SC

H (I ))).

Proof. By Lemma 2.6 and Theorem 2.7, t − 1 = |SH (I )|− 1 = δ, so t − 1 ≤ 6 +
(12g−12)

t ′ . Then (t − 7)t ′
≤ 12g − 12.

Hence (t−7)t ′
12 + 1 ≤ g(Γ I

H (SC
H (I ))). □

Corollary 2.9. If R is infinite, then g(Γ I
H (SC

H (I ))) is infinite for all ideals I and all closed subsets H of R.

3. The genus of T (Γ I
H (R))

Considering Corollary 2.9, the genus will be infinite if R is not a finite ring. In order to compute the genus, we
consider a finite ring R.

In view of Theorem 2.1, it is enough for us to study the genus of Γ I
H (SC

H (I )).

Remark 3.1. If H ∩ I ̸= ∅, then SH (I ) = R and Γ I
H (SC

H (I )) is trivial so, in the following, we suppose that H ∩ I = ∅.
It should be noted that if H ∩ I = ∅, then H ∩ SH (I ) = ∅.

Theorem 3.2. Let R be a finite ring such that R = R1 × R2 × · · · × Rt with t ≥ 4, I = 0 × R2 × · · · × Rt and H be
a multiplicatively closed subset of R. Then γ (Γ I

H (SC
H (I ))) ≥ 2.

Proof. It is enough to show that there is a subgraph L of Γ I
H (SC

H (I )) with γ (L) ≥ 2; this implies that γ (Γ I
H (SC

H (I ))) ≥

2. So, we proceed for t = 4.

1. Let H ∩ (Z (R1) × R2 × · · · × Rt ) = ∅. Then I = SH (I ). By way of contradiction, let there exists
(r1, . . . , rt ) ∈ R − I such that (r1, . . . , rt )(h1, . . . , ht ) ∈ I for some (h1, . . . , ht ) ∈ H (note that h1 has inverse
in R1). Then r1h1 = 0 implies that r1 = 0, a contradiction.
(1′) If R1 = Z2, then K8 ⊆ Γ I

H (SC
H (I )).

(2′) Let |R1| > 2.
(a′) If 2 ∈ Z (R1), then considering the vertices {(a1, a2, a3, a4)|ai ∈ Ri for i ≥ 2}, there is a1 ̸= 0 belonging to
R1 such that 2a1 = 0. So, K8 ⊆ Γ I

H (SC
H (I )).

(b′). Let 2 ̸∈ Z (R1). For a non zero element l1 ∈ R1, set X1 = {(l1, l2, l3, l4) ∈ R|li ∈ Ri for 2 ≤ i ≤ 4} and
Y1 = {(−l1, l2, l3, l4) ∈ R|li ∈ Ri for 2 ≤ i ≤ 4}. Then X1, Y1 is a bipartition for Kn,n for n ≥ 8. Hence,
K8 ⊆ Γ I

H (SC
H (I )) or K8,8 ⊆ Γ I

H (SC
H (I )); so γ (Γ I

H (SC
H (I ))) ≥ 2.

2. Let H ∩ (Z (R1) × R2 × · · · × Rt ) ̸= ∅. Set T = H ∩ (Z (R1) × R2 × · · · × Rt ). For (d1, d2, . . . , dt ) ∈ T , put
K(d1,d2,...,dt ) = {(b1, b2, . . . , bt ) ∈ R|b1 ̸= 0, b1d1 = 0} and define K =

⋃
(d1,d2,...,dt )∈T K(d1,d2,...,dt ).

Claim. SH (I ) = I ∪ K .
Let there exists (r1, . . . , rt ) ∈ R − I such that (r1, . . . , rt )(h1, . . . , ht ) ∈ I for some (h1, . . . , ht ) ∈ H . Then
r1h1 = 0 implies that h1 ∈ Z (R1)−{0} (by I∩H = ∅). So (r1, . . . , rt ) ∈ K . Conversely, let (b1, n2, . . . , nt ) ∈ K .
Then there exists (d ′, n′

2..., n′
t ) ∈ T such that b1d ′

= 0. So (b1, n2, . . . , nt )(d ′, n′
2..., n′

t ) ∈ I implies that
(b1, n2, . . . , nt ) ∈ SH (I ), hence K ⊆ SH (I ). Therefore, SH (I ) = I ∪ K .
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(i) If R1 = Z2, then K8 ⊆ Γ I
H (SC

H (I )).
(ii) Suppose |R1| > 2.
(i′) Let there exists (2, m2, m3, m4) ∈ T4, where T4 = H ∩ (Z (R1) × R2 × R3 × R4). Then 2 ∈ Z (R1) − {0} (by
H∩I = ∅). So 2a1 = 0 for non zero element a1 ∈ R1 and {(a1, n2, n3, n4)|ni ∈ Ri for 2 ≤ i ≤ 4} ⊆ K ⊆ SH (I ),
then a1 ̸= 2 (otherwise, SH (I ) ∩ H ̸= ∅), also a1 ̸= 1 since 2 ̸= 0 (by I ∩ H = ∅). Considering distinct sets
{(a1 − 1, a2, a3, a4)|ai ∈ Ri for i ≥ 2}, one has K8,8 ⊆ Γ I

H (SC
H (I )).

(ii′) Let (2, m2, m3, m4) ̸∈ T4 for every mi ∈ Ri with i ≥ 2. By the similar argument of case 1., if 2 ∈ Z (R1),
then K8 ⊆ Γ I

H (SC
H (I )) and if 2 ̸∈ Z (R1), then K8,8 ⊆ Γ I

H (SC
H (I )).

Hence, γ (Γ I
H (SC

H (I ))) ≥ 2. □

Remark 3.3. It should be noted that, Theorem 3.2 is satisfied for every I = R1× R2×· · ·× Rn−1×0× Rn+1×· · ·× Rt
with n > 1 and t ≥ 4.

Theorem 3.4. Let R = R1 × R2 × R3 where every Ri is a finite ring for 1 ≤ i ≤ 3, I = 0 × R2 × R3 and H be a
multiplicatively closed subset of R.

1. Let H ∩ (Z (R1) × R2 × R3) = ∅ or H ∩ (Z (R1) × R2 × R3) ̸= ∅ with (2, m2, m3) ̸∈ H ∩ (Z (R1) × R2 × R3)
for every m2 ∈ R2 and m3 ∈ R3.
(i) If 2 ∈ Z (R1) and |R2||R3| ≥ 8, then γ (Γ I

H (SC
H (I ))) ≥ 2.

(ii) If 2 ̸∈ Z (R1) and |R2||R3| ≥ 4, then γ (Γ I
H (SC

H (I ))) ≥ 1.
2. Let there exists (2, m2, m3) ∈ H ∩ (Z (R1) × R2 × R3) and |R2||R3| ≥ 4. Then γ (Γ I

H (SC
H (I ))) ≥ 1.

Proof.

1. (i) Consider {(a1, a2, a3)|ai ∈ Ri } which is in the form of Kn for n ≥ 8, where 2a1 = 0 for some a1 ̸= 0
belonging to R1.
(ii) For a non zero element l1 ∈ R1, consider {(l1, l2, l3)|li ∈ Ri , i = 2, 3} ∪ {(−l1, m2, m3)|mi ∈ Ri , i = 2, 3}

which is in the form of Kn,n for n ≥ 4.
2. If there is (2, m2, m3) ∈ H ∩ (Z (R1)× R2 × R3), then 2 ∈ Z (R1)−{0}, so 2a1 = 0 for non zero element a1 ∈ R1

and {(a1, n2, n3)|ni ∈ Ri , i = 2, 3} ⊆ SH (I ), then a1 ̸= 2 (otherwise, SH (I ) ∩ H ̸= ∅); furthermore, a1 ̸= 1
since 2 ̸= 0 ( by I ∩H = ∅). Hence the vertices {(a1−1, a2, a3)|ai ∈ Ri , i = 2, 3}∪{(1, a2, a3)|ai ∈ Ri , i = 2, 3}

are in the form of Kn,n for n ≥ 4. □

Corollary 3.5. Let R = R1 × R2 where every Ri is a finite ring for i ∈ {1, 2}, I = 0× R2 and H be a multiplicatively
closed subset of R.

It is easily proved that the following statements hold.

1. Let H ∩ (Z (R1) × R2) = ∅ or H ∩ (Z (R1) × R2) ̸= ∅ with (2, m2) ̸∈ H ∩ (Z (R1) × R2) for every m2 ∈ R2.
(i) If 2 ∈ Z (R1) and |R2| ≥ 8, then γ (Γ I

H (SC
H (I ))) ≥ 2.

(ii) If 2 ̸∈ Z (R1) and |R2| ≥ 4, then γ (Γ I
H (SC

H (I ))) ≥ 1.
2. Let there exists (2, m2) ∈ H ∩ (Z (R1) × R2) and |R2| ≥ 4. Then γ (Γ I

H (SC
H (I ))) ≥ 1.

Proof. It is obvious by Theorem 3.4. □

Example 3.6. Let R = Z6 × Z4, I = 0 × Z4 and H be a multiplicatively closed subset of R. Then Z (R) =

(Z (Z6) × Z4) ∪ (Z6 × Z (Z4)). If H ∩ (Z (Z6) × Z4) = ∅, then SH (I ) = I . Let H ∩ (Z (Z6) × Z4) ̸= ∅ and let
(2, ns) ∈ H (so for every ni ∈ Z4, (3, ni ) ̸∈ H , otherwise H ∩ I ̸= ∅). Then SH (I ) = I ∪ {(3, t2)|t2 ∈ Z4}.
Considering the vertices of Γ I

H (SC
H (I )) in the form of {(1, b2), (4, t2)|b2, t2 ∈ Z4} ∪ {(2, m2), (5, l2)|m2, l2 ∈ Z4}, one

has Γ I
H (SC

H (I )) is a K8,8.

Theorem 3.7. Let R = Fq × Rn , I = 0 × Rn where Rn is a ring with |Rn| = n, Fq is a field with q elements and let
H be a multiplicatively closed subset of R.

1. Let q = 2m .Then Γ I
H (SC

H (I )) is planar if and only if 2 ≤ n ≤ 4 and it is toroidal if and only if m = 1 and
5 ≤ n ≤ 7.
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2. If for every m ∈ N, q ̸= 2m , then Γ I
H (SC

H (I )) is planar if and only if n = 2 and it is toroidal if and only if q = 3
and n ∈ {3, 4}.

Proof. Claim; for every n ∈ N, I = SH (I ). By way of contradiction, let there exists (m, d) ∈ R − I such that
(m, d)(t, l) ∈ I for some (t, l) ∈ H . So mt = 0 which implies that m = 0; so m = 0, a contradiction.

1. Let q = 2m .
(a) If m = 1, for every (1, b) ∈ SC

H (I ), we have (1, b) + (1, b′) ∈ SH (I ) where b, b′ are disjoint elements of Rn .
So Γ I

H (SC
H (I )) is Kn .

(b) Let m > 1. Considering vertices of Γ I
H (SC

H (I )) in the form of {(l, a)|l ∈ F2m , a ∈ Rn} and by the fact that
char (F2m ) = 2, in the same way of proof of Theorem 3.2, Γ I

H (SC
H (I )) is a disjoint union of 2m

− 1 copies of Kn .
Hence, Γ I

H (SC
H (I )) is planar if and only if 2 ≤ n ≤ 4 and it is toroidal if and only if m = 1 and 5 ≤ n ≤ 7.

2. Let for all m ∈ N, one has q ̸= 2m . For non zero element l ∈ Fq , let Xl = {(l, a)|a ∈ Rn} and
Yl = {(−l, a)|a ∈ Rn}. Then Xl , Yl is a bipartition of Kn,n . So Γ I

H (SC
H (I )) is a disjoint union of q−1

2 copies
of Kn,n . Hence Γ I

H (SC
H (I )) is planar if and only if n = 2 and it is toroidal if and only if q = 3 and n ∈ {3, 4}. □

Theorem 3.8. Let R be a finite ring for which R = R1 × R2 × · · · × Rt with t ≥ 2, I = 0 × R2 × · · · × Rt ,
H = R − Z (R) and let 2 ̸∈ Z (R1). If γ (Γ I

H (SC
H (I ))) ≤ 1, then R is isomorphic to the one of the following rings:

Z3 × Z2 × Z2, R1 × Z2,Z3 × Z3,Z3 × Z4,Z3 × F4,Z3 × Z2[X ]/(X2).

Proof. Note that t < 4, by Theorem 3.2.

1′. Let t = 3.
If γ (Γ I

H (SC
H (I ))) < 1, then |R2||R3| < 4, by Theorem 3.4. For γ (Γ I

H (SC
H (I ))) = 1, consider |R2||R3| = 4, by

the proof of Theorem 3.4. So, for γ (Γ I
H (SC

H (I ))) ≤ 1, |R2||R3| ≤ 4. Hence R2 = R3 = Z2. For every non zero
element b1 ∈ R1, set Xb1 = {(b1, n2, n3)|ni ∈ Ri , i = 2, 3}. Then Xb1 , X−b1 is a bipartition of K4,4. If |R1| > 3,
then γ (Γ I

H (SC
H (I ))) ≥ 2 (since there exist at least two bipartition of K4,4 in Γ I

H (SC
H (I )) ). Hence, |R1| ≤ 3, so

R1 = Z3 (since 2 ̸∈ Z (R1)). Therefore, R = Z3 × Z2 × Z2.
2′. Let t = 2.

For every non zero element b1 ∈ R1, set Xb1 = {(b1, n2)|n2 ∈ R2}. Then Xb1 , X−b1 is a bipartition of Kn,n

for n = |R2|. Since 2 ̸∈ Z (R1) and γ (Γ I
H (SC

H (I ))) ≤ 1, then by Corollary 3.5 and by the same way of case 1′,
|R2| ≤ 4.
(i) Let |R2| = 2. Then Xb1 and X−b1 , for nonzero b1 ∈ R1, are in the form of K2,2 and Γ I

H (SC
H (I )) is a disjoint

union of some copies of K2,2. So for every R = R1 × R2 with |R2| = 2, Γ I
H (SC

H (I )) is planar.
(ii) Let |R2| = 3, 4. For every non zero element b1 ∈ R1, Xb1 , X−b1 is a bipartition of K3,3 or K4,4 and
γ (K3,3) = γ (K4,4) = 1. So, by 2 ̸∈ Z (R1) and the same way of case 1′, |R1| = 3 and R1 = Z3.
Hence, for t = 2, R is isomorphic to the one of the following rings:

R1 × Z2,Z3 × Z3,Z3 × Z4,Z3 × F4,Z3 × Z2[X ]/(X2). □

Proposition 3.9. Let R be a finite ring for which R = R1 × R2 × · · · × Rt with t ≥ 2, I = 0 × R2 × · · · × Rt ,
H = R − Z (R) and let 2 ∈ Z (R1). If γ (Γ I

H (SC
H (I ))) ≤ 1, then R is isomorphic to the one of the following rings:

R1 × Z2,Z2 × Z5,Z2 × Z6,Z2 × Z7,

or

R1 × Z2 × Z2, R1 × Z3, R1 × R2 wi th |R2| = 4.

Proof. Note that t < 4, by Theorem 3.2. Put P = {a1 ∈ R1|a1 ̸= 0, 2a1 = 0}(|P| ≥ 1, by 2 ∈ Z (R1)) and
R1

⋆
= R1 − {0}.

1. Let t = 3. Put l = |R2||R3|. For every non zero element a1 ∈ R1, set Xa1 = {(a1, n2, n3)|ni ∈ Ri , i = 2, 3}. If
a1 ∈ P , then Xa1 is in the form of Kl . If a1 ̸∈ P , then Xa1 , X−a1 is a bipartition of Kl,l .
Since 2 ∈ Z (R1), then by Theorem 3.4, |R2||R3| < 8. So |R2||R3| = 4 or 6.
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(a) Let |R2||R3| = 4.
(i′) If char (R1) = 2 (R⋆

1 = P), then Γ I
H (SC

H (I )) is a disjoint union of some copies of K4, which is planar.
(ii′) Let char (R1) ̸= 2. Consider P = R1

⋆
− P (note that |P| ≥ 2).

Suppose that |P| > 2. We claim that |P| ≥ 4. If |P| = 3 and a1, −a1, a2 ∈ P , then −a2 ∈ P . So |P| = 4, a
contradiction.
Hence, if |P| > 2, considering the sets Xa1 , X−a1 and Xa2 , X−a2 where a1, −a1, a2, −a2 ∈ P , there are at least
two copies of K4,4 in Γ I

H (SC
H (I )) that implies, γ (Γ I

H (SC
H (I ))) ≥ 2.

So, |P| = 2. Then for b1, −b1 ∈ P , Xb1 , X−b1 is in the form of K4,4. Thus, in this case, Γ I
H (SC

H (I )) is a disjoint
union of some copies of K4 and one copy of K4,4, which is toroidal.
Therefore, if t = 3 and |R2||R3| = 4, then R = R1 × Z2 × Z2 with char (R1) = 2 (R⋆

1 = P) or |P| = 2.
(b) Let |R2||R3| = 6. If char (R1) ̸= 2, then K6,6 is a subgraph of Γ I

H (SC
H (I )) which implies that γ (Γ I

H (SC
H (I ))) >

1. So char (R1) = 2. Also, by γ (Γ I
H (SC

H (I ))) ≤ 1, we should have |P| = 1, since for every l ∈ P ,
K6 ⊆ Γ I

H (SC
H (I )) and γ (K6) = 1. Hence, in this case we have R1 = Z2 and R is isomorphic to Z2 × Z6.

2. Let t = 2. For every non zero element a1 ∈ R1, set Xa1 = {(a1, n2)|n2 ∈ R2}. Since 2 ∈ Z (R1), then by
Corollary 3.5, n = |R2| < 8. For every non zero element a1 ∈ P , Xa1 is in the form of Kn for n ≤ 7. If a1 ̸∈ P ,
then Xa1 , X−a1 is a bipartition of Kn,n .
(a′) Let |R2| = 2. If char (R1) = 2, then Γ I

H (SC
H (I )) is a disjoint union of some copies of K2, which is planar.

If char (R1) ̸= 2 (R⋆
1 ̸= P), then for every a1 ∈ P , Xa1 , X−a1 is a bipartition of K2,2. So Γ I

H (SC
H (I )) is a disjoint

union of some copies of K2 and K2,2, which is planar. Hence, in this case, R = R1 × Z2.
(b′) Let |R2| = 3. If char (R1) = 2, then Γ I

H (SC
H (I )) is a disjoint union of some copies of K3, which is planar.

Let char (R1) ̸= 2 (R⋆
1 ̸= P). If |P| > 2, then |P| ≥ 4. So, there exist at least two copies of K3,3 in Γ I

H (SC
H (I ))

that implies that Γ I
H (SC

H (I )) ≥ 2.
Hence, |P| = 2 and Γ I

H (SC
H (I )) is a disjoint union of some copies of K3 and one copy of K3,3, which is toroidal.

Thus, in this case, R = R1 × Z3 with char (R1) = 2 or |P| = 2.
(c′) If |R2| = 4, then by the same way of case 1(a), R = R1 × R2, where |R2| = 4 with char (R1) = 2 or
|P| = 2.
(d′). Let |R2| ∈ {5, 6, 7}. If |P| ≥ 2, then γ (Γ I

H (SC
H (I ))) ≥ 2 ( since for every a1 ∈ P , Kn ⊆ Γ I

H (SC
H (I ))

for n ∈ {5, 6, 7}). So |P| = 1. If char (R1) ̸= 2, then Kn,n ⊆ Γ I
H (SC

H (I )) for n ∈ {5, 6, 7}, that implies that
γ (Γ I

H (SC
H (I ))) > 1. So char (R1) = 2 and R1 = Z2, since |P| = 1.

Hence, in this case, R is isomorphic to the one of the following rings:

Z2 × Z5,Z2 × Z6,Z2 × Z7. □

Remark 3.10. Let R be a ring with I = 0 and H be a multiplicatively closed subset of R. Then Γ I
H (SC

H (I )) is a
subgraph of T (Γ (R)), since SH (I ) = {r ∈ R : rs = 0 for some s ∈ H (0 ̸∈ H )} ⊆ Z (R). Recall that T (Γ (R)) is the
graph with all elements of R as vertices, and two distinct vertices x, y ∈ R are adjacent if and only if x + y ∈ Z (R)
where Z (R) denotes the set of all zero-divisors of R, so γ (Γ I

H (SC
H (I ))) ≤ γ (T (Γ (R))).

For finite ring R with ideal I = 0 × 0 × · · · × Rn × · · · × Rt , n ≥ 1, t ≥ 2 and multiplicatively closed subset H of
R, Γ I

H (SC
H (I )) is a subgraph of T (Γ (R)), since SH (I ) ⊆ Z (R). For the recent inclusion, let (r1, r2, . . . , rt ) ∈ SH (I ).

Then (r1, r2, . . . , rt )(s1, s2, . . . , st ) ∈ I for some (s1, s2, . . . , st ) ∈ H , so ri si = 0 for every 1 ≤ i ≤ n − 1. If for every
1 ≤ i ≤ n − 1, si = 0, then H ∩ I ̸= ∅, a contradiction, so there exists sl ̸= 0 for 1 ≤ l ≤ n − 1. Then rlsl = 0
implies that rl ∈ Z (Rl), hence SH (I ) ⊆ Z (R).

Theorem 3.11. Let I = kZn with d = (k, n) and H = {a|a ∈ Zn, (a, n) = 1}.

1. Let n be an even integer.
(i) If d is an even integer, then Γ I

H (SC
H (I )) is a disjoint union of K

n
d and d−2

2 copies of K n
d , n

d
. Hence

g(Γ I
H (SC

H (I ))) = ⌈
( n

d −3)( n
d −4)

12 ⌉ +
d−2

2 ⌈
( n

d −2)2

4 ⌉.
(ii) If d is an odd integer, then Γ I

H (SC
H (I )) is a disjoint union of d−1

2 copies of K n
d , n

d
and g(Γ I

H (SC
H (I ))) =

d−1
2 ⌈

( n
d −2)2

4 ⌉.
2. If n is an odd integer, then Γ I

H (SC
H (I )) is a disjoint union of d−1

2 copies of K n
d , n

d
and g(Γ I

H (SC
H (I ))) =

d−1
2 ⌈

( n
d −2)2

4 ⌉.
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Fig. 1. The total graph of Theorem 3.11.

Proof. We at first show that dZn = I = SH (I ). There are t1, t2 ∈ Z such that t1n + t2k = d, so d ∈ I . Hence
I = dZn . We claim that I = SH (I ). By way of contradiction, if there exists m ∈ Zn − I such that tm ∈ I for some
t ∈ H , then d|tm. But (d, t) = 1 ( since d|n), so d|m, a contradiction. Hence I = SH (I ).

1. Let n be an even integer. Then
(i) If d = 2, then I = 2Zn; so for every m ′

∈ SC
H (I ), 2m ′

∈ SH (I ). Then by Theorem 2.3, Γ I
H (SC

H (I )) is in the
form of K n

2
. Therefore, g(Γ I

H (SC
H (I ))) = ⌈

( n
2 −3)( n

2 −4)
12 ⌉, by Theorem 2.1.

Let d be an even integer greater than 2, then SC
H (I ) has the following elements:

1, 2, . . . , d
2 , . . . , d − 1

d + 1, . . . , 3d
2 , . . . , 2d − 1

.

.

.
[( n

d − 1)d] + 1, . . . , (2 n
d − 1) d

2 , . . . , n
d d − 1.

Hence, Γ I
H (SC

H (I )) is a disjoint union of K n
d

and d−2
2 copies of K n

d , n
d

. So by Theorem 2.1, g(Γ I
H (SC

H (I ))) =

⌈
( n

d −3)( n
d −4)

12 ⌉ +
d−2

2 ⌈
( n

d −2)2

4 ⌉.
(ii) Let d be an odd integer, then SC

H (I ) has the following elements: 1, 2, . . . , d−1
2 , d+1

2 , . . . , d − 1
d + 1, . . . , 3d−1

2 , 3d+1
2 , . . . , 2d − 1

.

.

.
[( n

d − 1)d] + 1, . . . ,
[(2 n

d −1)d]−1
2 ,

[(2 n
d −1)d]+1

2 , . . . , n
d d − 1.

Hence, Γ I
H (SC

H (I )) is a disjoint union of d−1
2 copies of K n

d , n
d

as in Fig. 1, where 1 ≤ i ≤
d−1

2 . Then by

Theorem 2.1, g(Γ I
H (SC

H (I ))) =
d−1

2 ⌈
( n

d −2)2

4 ⌉.
2. Let n be an odd integer; so, 2 ∈ H . Then by Theorem 2.4, Γ I

H (SC
H (I )) is a disjoint union of d−1

2 copies of K n
d , n

d

and by Theorem 2.1, g(Γ I
H (SC

H (I ))) =
d−1

2 ⌈
( n

d −2)2

4 ⌉. □

Example 3.12. Consider R = Z18, I = 12Z18 and H = {a|a ∈ Z18, (a, 18) = 1}. Then Γ I
H (SC

H (I )) is a disjoint
union of K3 and two copies of K3,3. Then g(Γ I

H (SC
H (I ))) = ⌈

(3−3)(3−4)
12 ⌉ +

6−2
2 ⌈

(3−2)2

4 ⌉ = 2.

Theorem 3.13. Let R = Zn × Zn , I = 0 × Zn and H = {(a, b)|a, b ∈ Zn × Zn, (a, n) = 1}. Then:

1. If n is an even integer, then Γ I
H (SC

H (I )) is a disjoint union of Kn and n−2
2 copies of Kn,n . In this case,

g(Γ I
H (SC

H (I ))) = ⌈
(n−3)(n−4)

12 ⌉ +
n−2

2 ⌈
(n−2)2

4 ⌉.
2. If n is an odd integer, then Γ I

H (SC
H (I )) is a disjoint union of n−1

2 copies of Kn,n . In this case g(Γ I
H (SC

H (I ))) =

n−1
2 ⌈

(n−2)2

4 ⌉.
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Proof.

1. Let n be an even integer. We claim that I = SH (I ). By way of contradiction, if there is (m, d) ∈ Zn×Zn−(0×Zn)
such that (t, l)(m, d) ∈ 0 × Zn for some (t, l) ∈ H , then n|tm, but (t, n) = 1; so n|m, a contradiction. Hence
I = SH (I ). The number of elements of (Zn × Zn) − SH (I ) is n2

− n. For every element (a, b) ∈ SC
H (I ), we

have (a, b) + (−a, b) ∈ SH (I ). Let (a, b) + (c, d) ∈ SH (I ) for (a, b) and (c, d) ∈ SC
H (I ). Then a + c = 0

and this implies that a = −c. Hence, each element (a, b) of SC
H (I ) is just adjacent to (−a, d) for every element

d ∈ Zn . Because n is even, so just for one element 0 ̸= a =
n
2 ∈ Zn , (a, b) ∈ SC

H (I ) is adjacent to (a, c) for
every b, c ∈ Zn . Hence, Γ I

H (SC
H (I )) is a disjoint union of Kn and n−2

2 copies of Kn,n . Now by Theorem 2.1,
g(Γ I

H (SC
H (I ))) = ⌈

(n−3)(n−4)
12 ⌉ +

n−2
2 ⌈

(n−2)2

4 ⌉.
2. If n is an odd integer, then 2 ∈ H . By Theorem 2.4, Γ I

H (SC
H (I )) is a disjoint union of n−1

2 copies of Kn,n and
g(Γ I

H (SC
H (I ))) =

n−1
2 ⌈

(n−2)2

4 ⌉, by Theorem 2.1. □

Example 3.14. Consider R = Z8 × Z8, I = 0 × Z8 and H = {(a, b)|(a, b) ∈ Z8 × Z8, (a, 8) = 1}. Then Γ I
H (SC

H (I ))
is a disjoint union of K8 and 3 copies of K8,8. Hence g(Γ I

H (SC
H (I ))) = 29.

Theorem 3.15. Let I = kZn , H = Zn − pZn where p is a prime number with 1 < p ≤ n, | SH (I ) |= α and
| Zn/SH (I ) |= β.

1. If p ̸= 2, then Γ I
H (SC

H (I )) is a disjoint union of β−1
2 copies of Kα,α and g(Γ I

H (SC
H (I ))) =

β−1
2 ⌈

(α−2)2

4 ⌉.

2. Let p = 2. Then Γ I
H (SC

H (I )) is a disjoint union of K n
2l′

and 2l′
−2
2 copies of K n

2l′
, n

2l′
. Hence

g(Γ I
H (SC

H (I ))) = ⌈

( n
2l′ − 3)( n

2l′ − 4)

12
⌉ +

2l ′
− 2
2

⌈

( n
2l′ − 2)2

4
⌉,

where (k, n) = 2l ′r ′ with l ′, r ′
∈ N and (2, r ′) = 1.

Proof. By the proof of Theorem 3.11, I = dZn , where d = (k, n).

1. If p ̸= 2, then 2 ∈ Zn − pZn . So, Γ I
H (SC

H (I )) is a disjoint union of β−1
2 copies of Kα,α by Theorem 2.4 and

g(Γ I
H (SC

H (I ))) =
(β−1)

2 ⌈
(α−2)2

4 ⌉, by Theorem 2.1.
2. Let p = 2. If n is odd, then 0 ∈ H and this is impossible; so we assume that n is even. It should be noted that

d is even; since if d is odd, then d ∈ H and ∅ ̸= I ∩ H that this implies that Zn = SH (I ), which is not in our
assumptions.
Let n = 2lr for l, r ∈ N where (2, r ) = 1. We can assume that d = 2l ′r ′ where l ′, r ′

∈ N and l ′ ≤ l, r ′
≤ r .

Here, we claim that SH (I ) = 2l ′Zn . Suppose there is m ∈ Zn − 2l ′Zn such that d|tm for some t ∈ H , so 2l ′
|tm.

Hence 2l ′
|m, a contradiction. Therefore, SH (I ) ⊆ 2l ′Zn . Now, let 2l ′ t ′

∈ 2l ′Zn for some t ′
∈ Zn . It is clear

that 2l ′ t ′r ′
∈ I , so 2l ′ t ′

∈ SH (I ). Hence, by an argument similar to the proof of Theorem 3.11, Γ I
H (SC

H (I )) is

a disjoint union of K n
2l′

and 2l′
−2
2 copies of K n

2l′
, n

2l′
. So g(Γ I

H (SC
H (I ))) = ⌈

( n
2l′

−3)( n
2l′

−4)

12 ⌉ +
2l′

−2
2 ⌈

( n
2l′

−2)2

4 ⌉, by
Theorem 2.1. □

Example 3.16. Consider R = Z64, I = 4Z64 and H = Z64 − 2Z64. Then Γ I
H (SC

H (I )) is a disjoint union of K16,16 and
K16 such that g(Γ I

H (SC
H (I ))) = 62.

Theorem 3.17. Let I = kZn , H = {as
|s ≥ 0} such that a|n with ( n

a , a) = 1, | SH (I ) |= α and | Zn/SH (I ) |= β.

1. If there is at least one even number in H, then Γ I
H (SC

H (I )) is a disjoint union of β−1
2 copies of Kα,α . In this case

g(Γ I
H (SC

H (I ))) =
β−1

2 ⌈
(α−2)2

4 ⌉.
2. Let there be no even number in H, (d, n

a ) = l where d = (k, n) and n = rl for some r ∈ N.
(1′). If l is an even integer, then Γ I

H (SC
H (I )) is a disjoint union of Kr and l−2

2 copies of Kr,r . In this case
g(Γ I

H (SC
H (I ))) = ⌈

(r−3)(r−4)
12 ⌉ +

l−2
2 ⌈

(r−2)2

4 ⌉.
(2′). If l is an odd integer, then Γ I

H (SC
H (I )) is a disjoint union of l−1

2 copies of Kr,r and g(Γ I
H (SC

H (I ))) =

l−1
2 ⌈

(r−2)2

4 ⌉.
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Proof. Note that by the proof of Theorem 3.11, I = dZn .

1. If there is at least one even element in H , then by Theorem 2.4, Γ I
H (SC

H (I )) is a disjoint union of β−1
2 copies of

Kα,α . Therefore, g(Γ N
H (SC

H (N ))) =
(β−1)

2 ⌈
(α−2)2

4 ⌉, by Theorem 2.1.
2. Let there be no even element in H . If (d, n

a ) = 1, then d|a, since n =
n
a a where ( n

a , a) = 1. Hence ∅ ̸= I ∩ H
and this implies that Zn = SH (I ), which is not the case. So, we assume that (d, n

a ) = l ̸= 1. Put I ′
= lZn . We

claim that I ′
= SH (I ). Suppose there is m ′

∈ Zn − I ′ such that d|agm ′, where ag
∈ H and g ≥ 0, then l|agm ′.

So, l|m ′, a contradiction.
Conversely, we show that d|al and this implies that I ′

⊆ SH (I ). Let d = n1l and n
a = n2l, for some

n1, n2 ∈ N (so (n1, n2) = 1). We show that n1|a; this implies that n1l|al and the proof is complete.
Let (n1, a) = h (so n1 = g1h and a = g2h, for some g1, g2 ∈ N where (g1, g2) = 1). By the fact that d = n1l

and d|n, one has g1hl|g2hn2l; so g1|g2n2 and (g1, g2) = 1 implies that g1|n2. This yields g1 = 1 and so n1|a.
(1′). Let l be an even integer, then by the same way as the proof of Theorem 3.11, Γ I

H (SC
H (I )) is a disjoint

union of Kr and l−2
2 copies of Kr,r . Hence, g(Γ I

H (SC
H (I ))) = ⌈

(r−3)(r−4)
12 ⌉ +

l−2
2 ⌈

(r−2)2

4 ⌉, by Theorem 2.1.
(2′). Let l be an odd integer. By the same way as the proof of Theorem 3.11, Γ I

H (SC
H (I )) is a disjoint union of

l−1
2 copies of Kr,r and g(Γ I

H (SC
H (I ))) =

l−1
2 ⌈

(r−2)2

4 ⌉, by Theorem 2.1. □

Example 3.18. Consider R = Z60, I = 15Z60 and H = {3s
|s ≥ 0}. Then Γ I

H (SC
H (I )) is a disjoint union of 2 copies

of K12,12 and g(Γ I
H (SC

H (I ))) = 50.

Theorem 3.19. Let I = kZn , H = {1, t} with n|t2
− 1, | SH (I ) |= α and | Zn/SH (I ) |= β.

1. If t is an even integer, then Γ I
H (SC

H (I )) is a disjoint union of β−1
2 copies of Kα,α and g(Γ I

H (SC
H (I ))) =

β−1
2 ⌈

(α−2)2

4 ⌉.
2. let t be an odd integer and (k, n) = d.

(1′). If d is an even integer, then Γ I
H (SC

H (I )) is a disjoint union of K n
d

and d−2
2 copies of K n

d , n
d

. In this case

g(Γ I
H (SC

H (I ))) = ⌈
( n

d −3)( n
d −4)

12 ⌉ +
d−2

2 ⌈
( n

d −2)2

4 ⌉.
(2′). If d is an odd integer, then Γ I

H (SC
H (I )) is a disjoint union of d−1

2 copies of K n
d , n

d
and g(Γ I

H (SC
H (I ))) =

d−1
2 ⌈

( n
d −2)2

4 ⌉.

Proof.

1. Let t be an even integer. In view of Theorem 2.4, Γ I
H (SC

H (I )) is a disjoint union of β−1
2 copies of Kα,α and

g(Γ I
H (SC

H (I ))) =
β−1

2 ⌈
(α−2)2

4 ⌉.
2. By the proof of Theorem 3.11, I = dZn . Let t be an odd integer. We claim that I = SH (I ). Otherwise, there

is a ∈ Zn − I such that d|at . So d|at2. By the assumption d|t2
− 1, hence d|a and this implies that a ∈ I , a

contradiction. Thus, I = SH (I ).
(1′) If d is an even integer, then we proceed in the proof of Theorem 3.11. So Γ I

H (SC
H (I )) is a disjoint union of

K n
d

and d−2
2 copies of K n

d , n
d

. Then

g(Γ I
H (SC

H (I ))) = ⌈
( n

d − 3)( n
d − 4)

12
⌉ +

d − 2
2

⌈
( n

d − 2)2

4
⌉,

by Theorem 2.1.
(2′) If d is an odd integer, then we proceed in the proof of Theorem 3.11. Hence, Γ I

H (SC
H (I )) is a disjoint union

of d−1
2 copies of K n

d , n
d

and g(Γ I
H (SC

H (I ))) =
d−1

2 ⌈
( n

d −2)2

4 ⌉, by Theorem 2.1. □

Example 3.20. Consider R = Z50, I = 5Z50 and H = {1, 49}. Then Γ I
H (SC

H (I )) is a disjoint union of two copies of
K10,10 and g(Γ I

H (SC
H (I ))) = 32.

Theorem 3.21. Let R = Zn ×Zn , I = 0 ×Zn , H = {(1, 1), (t, t)} with n|t2
− 1, | SH (I ) |= α and | Zn/SH (I ) |= β.

1. If t is an even integer, then Γ I
H (SC

H (I )) is a disjoint union of β−1
2 copies of Kα,α and g(Γ I

H (SC
H (I ))) =

β−1
2 ⌈

(α−2)2

4 ⌉.
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Fig. 2. The total graph of Theorem 3.23(1).

2. Let t be an odd integer.
(i) If n is an even integer, then Γ I

H (SC
H (I )) is a disjoint union of Kn and n−2

2 copies of Kn,n . In this case,
g(Γ I

H (SC
H (I ))) = ⌈

(n−3)(n−4)
12 ⌉ +

n−2
2 ⌈

(n−2)2

4 ⌉.
(ii) If n is an odd integer, then Γ I

H (SC
H (I )) is a disjoint union of n−1

2 copies of Kn,n . In this case g(Γ I
H (SC

H (I ))) =

n−1
2 ⌈

(n−2)2

4 ⌉.

Proof.

1. If t is an even integer, then Γ I
H (SC

H (I )) is a disjoint union of β−1
2 copies of Kα,α by Theorem 2.4 and

g(Γ I
H (SC

H (I ))) =
β−1

2 ⌈
(α−2)2

4 ⌉.
2. Let t be an odd integer. We claim that I = SH (I ). Otherwise, there is (a, b) ∈ Zn × Zn such that (a, b)(t, t) ∈ I

where a ̸= 0 and b is an arbitrary element of Zn . So n|at ; then n|at2. By the assumption n|t2
−1, so n|a and this

implies that a = 0, a contradiction. Hence I = SH (I ). The remaining is similar to proof of Theorem 3.13. □

Example 3.22. Consider R = Z21 ×Z21, I = 0×Z21 and H = {(1, 1), (13, 13)}. Then Γ I
H (SC

H (I )) is a disjoint union
of 10 copies of K21,21 and g(Γ I

H (SC
H (I ))) = 910.

Theorem 3.23. Let Zp denote the field of p elements where p > 2 is a prime number, R = Zp × Z2m where
m ∈ N and I = 0 × Z2m . Let H be one of the following sets: {(1, 1)}, {(1, 1), (2, 1)}, . . . , {(1, 1), (2, 1), . . . , (p −

1, 1)}, {(1, 0)}, {(1, 0), (2, 0)}, . . . ,{(1, 0), (2, 0), . . . , (p − 1, 0)}.

1. If m = 1, then Γ I
H (SC

H (I )) is planar.
2. If m > 1, then g(Γ I

H (SC
H (I ))) =

p−1
2 ⌈

(2m
−2)2

4 ⌉.

Proof. We note that I = SH (I ) for every positive integer m and all cases of H . Otherwise, there exists (a, c) ∈

Zp × Z2m such that a ̸= 0 and p|at for some (t, b) ∈ H , where b ∈ Z2. Because (p, t) = 1, so p|a, a contradiction.
Hence, in all cases, I = SH (I ).

1. If m = 1, for every (a, b) ∈ SC
H (I ), we have (a, b)+ (−a, b) ∈ SH (I ), where a ∈ Z p and b ∈ Z2. So, Γ I

H (SC
H (I ))

is a disjoint union of p−1
2 copies of K2,2, where R = Zp × Z2 and I = 0 × Z2, as Fig. 2, where 1 ≤ i ≤

p−1
2 .

Hence g(Γ I
H (SC

H (I ))) = 0, by Theorem 2.1.
2. In the same way of the case 1, for R = Zp × Z2m with m ∈ N and m > 1, Γ I

H (SC
H (I )) is a disjoint union of p−1

2

copies of K2m ,2m and g(Γ I
H (SC

H (I ))) =
p−1

2 ⌈
(2m

−2)2

4 ⌉, where I = 0 × Z2m . □
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