

AKCE International Journal of Graphs and Combinatorics

ISSN: 0972-8600 (Print) 2543-3474 (Online) Journal homepage: https://www.tandfonline.com/loi/uakc20

On the genus of some total graphs

L. Hamidian Jahromi & A. Abbasi

To cite this article: L. Hamidian Jahromi & A. Abbasi (2020) On the genus of some total graphs, AKCE International Journal of Graphs and Combinatorics, 17:1, 560-570, DOI: <u>10.1016/j.akcej.2018.04.002</u>

To link to this article: https://doi.org/10.1016/j.akcej.2018.04.002

© 2018 Kalasalingam University. Published with license by Taylor & Francis Group, LLC.

6

Published online: 08 Jun 2020.

Submit your article to this journal 🖸

View related articles 🗹

View Crossmark data 🗹

AKCE International Journal of Graphs and Combinatorics

On the genus of some total graphs

L. Hamidian Jahromi, A. Abbasi*

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran

Received 20 December 2017; received in revised form 20 April 2018; accepted 21 April 2018

Abstract

Let *R* be a commutative ring with a proper ideal *I*. A generalization of total graph is introduced and investigated. It is the (undirected) graph with all elements of *R* as vertices, that two distinct vertices $x, y \in R$ are adjacent if and only if $x + y \in S_H(I)$ where $S_H(I) = \{a \in R : ra \in I \text{ for some } r \in H\}$ and *H* is a multiplicatively closed subset of *R*. This version of total graph is denoted by $T(\Gamma_H^I(R))$. We in addition characterize certain lower and upper bounds for the genus of the total graph, and compute genus $T(\Gamma_H^I(R))$ on finite ring *R*, with respect to some special ideal *I*.

Keywords: Commutative rings; Multiplicatively closed subset; Total graph; Genus

1. Introduction

Throughout, all rings will be commutative with non-zero identity. Let *R* be a ring and *I* a proper ideal of *R*. The *total graph* of a commutative ring *R*, denoted by $T(\Gamma(R))$, was introduced by Anderson and Badawi in [1] and studied by several authors ([2–4], etc.), where the authors in [3,4] obtained some facts on the genus of total graphs. They considered a total graph with all elements of *R* as vertices, that two distinct vertices $x, y \in R$ are adjacent if and only if $x + y \in Z(R)$ where Z(R) denotes the set of all zero-divisors of *R*. The total graph is then extended in joint papers [5,6] of the second author in rings and modules, respectively. Furthermore, a generalized total graph was introduced in [7]. For a proper submodule *N* of *M*, there is a generalization of the graph of modules relative *N* under multiplicatively closed subset *H* denoted by $T(\Gamma_H^N(M))$ which was studied by present authors in [8]. The vertex set of $T(\Gamma_H^N(M))$ is *M*, that two distinct vertices *m* and *m'* are adjacent if and only if $m + m' \in M_H(N)$ where $M_H(N) = \{m \in M : rm \in N \text{ for some } r \in H\}$ and *H* is a multiplicatively closed subset of *R*, i.e. $ab \in H$ for all $a, b \in H$. As *N* is a proper submodule of *M* and $N \subseteq M_H(N)$, $M_H(N)$ is not empty.

We define a generalized total graph over ring R, denoted by $T(\Gamma_H^I(R))$, with all elements of R as vertices, that two distinct vertices $x, y \in R$ are adjacent if and only if $x + y \in S_H(I)$ where $S_H(I) = \{a \in R : ra \in I \text{ for some } r \in H\}$, I is an ideal of R and H is a multiplicatively closed subset of R.

* Corresponding author.

https://doi.org/10.1016/j.akcej.2018.04.002

© 2018 Kalasalingam University. Published with license by Taylor & Francis Group, LLC

Peer review under responsibility of Kalasalingam University.

E-mail addresses: acz459@yahoo.com (L.H. Jahromi), aabbasi@guilan.ac.ir (A. Abbasi).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/ by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

It follows from the definition that if $S_H(I) = R$, (for example, if $I = R, 0 \in H, H \cap (S_H(I) : R) \neq \emptyset$, $H \cap (0:R) \neq \emptyset$ or $H \cap (I:R) \neq \emptyset$, by [8]), then $T(\Gamma_H^I(R))$ is complete; so we suppose that $S_H(I) \neq R$. We denote by $\Gamma_{H}^{I}(S_{H}(I))$ and $\Gamma_{H}^{I}(S_{H}^{C}(I))$ the (induced) subgraphs of $T(\Gamma_{H}^{I}(R))$ with vertices in $S_{H}(I)$ and $R - S_{H}(I)$, respectively. Based on our assumption, $S_H(I) \neq R$ and so $\Gamma_H^I(S_H^C(I))$ is always nontrivial.

Let G be a simple graph. We say that G is *totally disconnected* if none of two vertices of G are adjacent. We use K_n to denote complete graph with n vertices. A bipartite graph G is a graph whose vertex set V(G) can be partitioned into subsets V_1 and V_2 such that the edge set consists of precisely those edges which join vertices in V_1 to vertices of V_2 . In particular, if E consists of all possible such edges, then G is called the *complete bipartite graph* and denoted by $K_{m,n}$ when $|V_1| = m$ and $|V_2| = n$. Two subgraphs G_1 and G_2 of G are disjoint if G_1 and G_2 have no common vertices and no vertex of G_1 (resp., G_2) is adjacent (in G) to any vertex not in G_1 (resp., G_2). The union of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is the graph $G_1 \cup G_2$ whose vertex set is $V_1 \cup V_2$ and the edge set is $E_1 \cup E_2$. The Cartesian product of graphs G_1 and G_2 is defined as the graph $G_1 \times G_2$ which the vertex set is $V(G_1) \times V(G_2)$ and the edge set is the set of all pairs $(u_1, v_1)(u_2, v_2)$ such that either $u_1u_2 \in E(G_1)$ and $v_1 = v_2$ or $v_1v_2 \in E(G_2)$ and $u_1 = u_2$. Two graphs G and H are said to be *isomorphic* to each another, written $G \cong H$, if there exists a bijection $f: V(G) \to V(H)$ such that for each pair x, y of vertices of G, $xy \in E(G)$ if and only if $f(x)f(y) \in E(H)$. For a vertex v of graph G, deg(v) is the degree of vertex v and $\delta(G) := \min\{deg(v): v \text{ is a vertex}\}$ of G}. For a nonnegative integer k, a graph G is called k - regular if every vertex of G has degree k. The genus of a graph G, denoted by g(G), is the minimal integer n such that the graph can be embedded in S_n , where S_n denotes a sphere with n handles. Intuitively, G is embedded in a surface if it can be drawn in the surface so that its edges intersect only at their common vertices. A *planar graph* is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. For such graphs the genus is zero. A graph with genus one is called a *toroidal* graph. If G' is a subgraph of G, then $g(G') \leq g(G)$. For details on the notion of embedding of a graph in a surface, see White [9, Chapter 6].

In Section 2, we remind some facts and give a lower bound for genus of the graph $T(\Gamma_H^I(R))$. We proceed in Section 3 by determining all isomorphism classes of finite rings R whose $T(\Gamma_H^I(R))$ has genus at most one (i.e. a planar or toroidal graph). Also, we compute genus of the graph over $R = \mathbb{Z}_n$ under some well-known multiplicatively closed subsets of R.

2. Background problem and some comments

Throughout, $\lceil x \rceil$ denotes the least integer that is greater than or equal to x. In the following theorem we give some well-known formulas, see, e.g., [9–11]:

Theorem 2.1. The following statements hold:

- (1) For $n \ge 3$ we have $g(K_n) = \lceil \frac{(n-3)(n-4)}{12} \rceil$. (2) For $m, n \ge 2$ we have $g(K_{m,n}) = \lceil \frac{(m-2)(n-2)}{4} \rceil$. (3) Let G_1 and G_2 be two graphs and for each i, p_i be the number of vertices of G_i . Then max $\{p_1g(G_2) + p_1g(G_2) + p_2g(G_2) \}$. $g(G_1), p_2g(G_1) + g(G_2) \le g(G_1 \times G_2).$
- (4) The genus of a graph is the sum of the genuses of its components.

According to Theorem 2.1 we have $g(K_n) = 0$ for $1 \le n \le 4$, $g(K_n) = 1$ for $5 \le n \le 7$ and $g(K_n) \ge 2$, for other value of *n*.

Corollary 2.2. If G is a graph with n vertices, then $g(G) \leq \lceil \frac{(n-3)(n-4)}{12} \rceil$.

In the following of the section, we characterize a lower bound for the genus of the graph $T(\Gamma_{H}^{I}(R))$. Considering the fact that $\Gamma_H^I(S_H(I))$ is in the form of $K_{|S_H(I)|}$ (see [8, Remark 3.1]), in view of Theorem 2.1, it is enough for us to obtain a lower bound for genus of the graph $\Gamma_{H}^{I}(S_{H}^{C}(I))$.

Theorem 2.3 ([8, Corollary 3.7]). Let $|S_H(I)| = \alpha$, $|R/S_H(I)| = \beta$, and $2 \in (S_H(I) : R)$. Then $\Gamma_H^I(S_H^C(I))$ is a disjoint union of $\beta - 1$ copies of K_{α} .

Theorem 2.4 ([8, Theorem 3.10]). Let $|S_H(I)| = \alpha$ and $|R/S_H(I)| = \beta$. If H, a multiplicatively closed subset of R containing some even elements, then $\Gamma^I_H(S^C_H(I))$ is a disjoint union of $\frac{\beta-1}{2}$ copies of $K_{\alpha,\alpha}$.

Corollary 2.5. Let $|S_H(I)| = \alpha$ and $|R/S_H(I)| = \beta$. Then the following hold:

- 1. If $2 \in (S_H(I) : R)$, then $g(\Gamma_H^I(S_H^C(I))) = (\beta 1) \lceil \frac{(\alpha 3)(\alpha 4)}{12} \rceil$. 2. If $2r \in H$ for some $r \in R$, then $g(\Gamma_H^I(S_H^C(I))) = \frac{\beta 1}{2} \lceil \frac{(\alpha 2)^2}{4} \rceil$.

Proof. It is obvious by Theorems 2.3 and 2.4. \Box

Lemma 2.6 ([12, Proposition .2.1]). If G is a graph with n vertices and genus g, then $\delta(G) \leq 6 + \frac{12g-12}{n}$.

Theorem 2.7 ([8, Theorem 3.13]). Suppose that the edge set of $\Gamma_H^I(S_H^C(I))$ is not empty and x is a vertex of the graph. Then the degree of x is either $|S_H(I)| \text{ or } |S_H(I)| -1$.

Proposition 2.8. Let $\Gamma_{H}^{I}(S_{H}^{C}(I))$ with t' vertices have a nonempty edge set, and let $|S_{H}(I)| = t$. Then $\frac{(t-7)t'}{12} + 1 \le t$ $g(\Gamma_H^I(S_H^C(I))).$

Proof. By Lemma 2.6 and Theorem 2.7, $t - 1 = |S_H(I)| - 1 = \delta$, so $t - 1 \le 6 + \frac{(12g - 12)}{t'}$. Then $(t - 7)t' \le 12g - 12$. Hence $\frac{(t - 7)t'}{12} + 1 \le g(\Gamma_H^I(S_H^C(I)))$.

Corollary 2.9. If R is infinite, then $g(\Gamma_H^I(S_H^C(I)))$ is infinite for all ideals I and all closed subsets H of R.

3. The genus of $T(\Gamma_H^I(R))$

Considering Corollary 2.9, the genus will be infinite if R is not a finite ring. In order to compute the genus, we consider a finite ring *R*.

In view of Theorem 2.1, it is enough for us to study the genus of $\Gamma_H^I(S_H^C(I))$.

Remark 3.1. If $H \cap I \neq \emptyset$, then $S_H(I) = R$ and $\Gamma_H^I(S_H^C(I))$ is trivial so, in the following, we suppose that $H \cap I = \emptyset$. It should be noted that if $H \cap I = \emptyset$, then $H \cap S_H(I) = \emptyset$.

Theorem 3.2. Let R be a finite ring such that $R = R_1 \times R_2 \times \cdots \times R_t$ with $t \ge 4$, $I = 0 \times R_2 \times \cdots \times R_t$ and H be a multiplicatively closed subset of R. Then $\gamma(\Gamma_H^I(S_H^C(I))) \ge 2$.

Proof. It is enough to show that there is a subgraph *L* of $\Gamma_H^I(S_H^C(I))$ with $\gamma(L) \ge 2$; this implies that $\gamma(\Gamma_H^I(S_H^C(I))) \ge 2$ 2. So, we proceed for t = 4.

1. Let $H \cap (Z(R_1) \times R_2 \times \cdots \times R_t) = \emptyset$. Then $I = S_H(I)$. By way of contradiction, let there exists $(r_1,\ldots,r_t) \in R-I$ such that $(r_1,\ldots,r_t)(h_1,\ldots,h_t) \in I$ for some $(h_1,\ldots,h_t) \in H$ (note that h_1 has inverse in R_1). Then $r_1h_1 = 0$ implies that $r_1 = 0$, a contradiction. (1') If $R_1 = \mathbb{Z}_2$, then $K_8 \subseteq \Gamma^I_H(S^C_H(I))$. (2') Let $|R_1| > 2$. (a') If $2 \in Z(R_1)$, then considering the vertices $\{(a_1, a_2, a_3, a_4) | a_i \in R_i \text{ for } i \ge 2\}$, there is $a_1 \ne 0$ belonging to R_1 such that $2a_1 = 0$. So, $K_8 \subseteq \Gamma_H^I(S_H^C(I))$. (b'). Let $2 \notin Z(R_1)$. For a non zero element $l_1 \in R_1$, set $X_1 = \{(l_1, l_2, l_3, l_4) \in R | l_i \in R_i \text{ for } 2 \le i \le 4\}$ and $Y_1 = \{(-l_1, l_2, l_3, l_4) \in R | l_i \in R_i \text{ for } 2 \le i \le 4\}$. Then X_1, Y_1 is a bipartition for $K_{n,n}$ for $n \ge 8$. Hence, $K_8 \subseteq \Gamma^I_H(S^C_H(I))$ or $K_{8,8} \subseteq \Gamma^I_H(S^C_H(I))$; so $\gamma(\Gamma^I_H(S^C_H(I))) \ge 2$. 2. Let $H \cap (Z(R_1) \times R_2 \times \cdots \times R_t) \neq \emptyset$. Set $T = H \cap (Z(R_1) \times R_2 \times \cdots \times R_t)$. For $(d_1, d_2, \ldots, d_t) \in T$, put

 $K_{(d_1,d_2,\dots,d_t)} = \{(b_1, b_2, \dots, b_t) \in R | b_1 \neq 0, b_1 d_1 = 0\}$ and define $K = \bigcup_{(d_1,d_2,\dots,d_t) \in T} K_{(d_1,d_2,\dots,d_t)}$. Claim. $S_H(I) = I \cup K$.

Let there exists $(r_1, \ldots, r_t) \in R - I$ such that $(r_1, \ldots, r_t)(h_1, \ldots, h_t) \in I$ for some $(h_1, \ldots, h_t) \in H$. Then $r_1h_1 = 0$ implies that $h_1 \in Z(R_1) - \{0\}$ (by $I \cap H = \emptyset$). So $(r_1, \ldots, r_t) \in K$. Conversely, let $(b_1, n_2, \ldots, n_t) \in K$. Then there exists $(d', n'_2, \dots, n'_t) \in T$ such that $b_1 d' = 0$. So $(b_1, n_2, \dots, n_t)(d', n'_2, \dots, n'_t) \in I$ implies that $(b_1, n_2, \ldots, n_t) \in S_H(I)$, hence $K \subseteq S_H(I)$. Therefore, $S_H(I) = I \cup K$.

(i) If $R_1 = \mathbb{Z}_2$, then $K_8 \subseteq \Gamma_H^I(S_H^C(I))$. (ii) Suppose $|R_1| > 2$. (i') Let there exists $(2, m_2, m_3, m_4) \in T_4$, where $T_4 = H \cap (Z(R_1) \times R_2 \times R_3 \times R_4)$. Then $2 \in Z(R_1) - \{0\}$ (by $H \cap I = \emptyset$). So $2a_1 = 0$ for non zero element $a_1 \in R_1$ and $\{(a_1, n_2, n_3, n_4) | n_i \in R_i \text{ for } 2 \le i \le 4\} \subseteq K \subseteq S_H(I)$, then $a_1 \neq 2$ (otherwise, $S_H(I) \cap H \neq \emptyset$), also $a_1 \neq 1$ since $2 \neq 0$ (by $I \cap H = \emptyset$). Considering distinct sets $\{(a_1 - 1, a_2, a_3, a_4) | a_i \in R_i \text{ for } i \ge 2\}$, one has $K_{8,8} \subseteq \Gamma_H^I(S_H^C(I))$. (ii') Let $(2, m_2, m_3, m_4) \notin T_4$ for every $m_i \in R_i$ with $i \ge 2$. By the similar argument of case 1., if $2 \in Z(R_1)$, then $K_8 \subseteq \Gamma_H^I(S_H^C(I))$ and if $2 \notin Z(R_1)$, then $K_{8,8} \subseteq \Gamma_H^I(S_H^C(I))$.

Remark 3.3. It should be noted that, Theorem 3.2 is satisfied for every $I = R_1 \times R_2 \times \cdots \times R_{n-1} \times 0 \times R_{n+1} \times \cdots \times R_t$ with n > 1 and $t \ge 4$.

Theorem 3.4. Let $R = R_1 \times R_2 \times R_3$ where every R_i is a finite ring for $1 \le i \le 3$, $I = 0 \times R_2 \times R_3$ and H be a multiplicatively closed subset of R.

- 1. Let $H \cap (Z(R_1) \times R_2 \times R_3) = \emptyset$ or $H \cap (Z(R_1) \times R_2 \times R_3) \neq \emptyset$ with $(2, m_2, m_3) \notin H \cap (Z(R_1) \times R_2 \times R_3)$ for every $m_2 \in R_2$ and $m_3 \in R_3$. (i) If $2 \in Z(R_1)$ and $|R_2||R_3| \ge 8$, then $\gamma(\Gamma_H^I(S_H^C(I))) \ge 2$. (ii) If $2 \notin Z(R_1)$ and $|R_2||R_3| \ge 4$, then $\gamma(\Gamma_H^I(S_H^C(I))) \ge 1$.
- 2. Let there exists $(2, m_2, m_3) \in H \cap (Z(R_1) \times R_2 \times R_3)$ and $|R_2||R_3| \ge 4$. Then $\gamma(\Gamma_H^I(S_H^C(I))) \ge 1$.

Proof.

- (i) Consider {(a₁, a₂, a₃)|a_i ∈ R_i} which is in the form of K_n for n ≥ 8, where 2a₁ = 0 for some a₁ ≠ 0 belonging to R₁.
 (ii) For a non zero element l₁ ∈ R₁, consider {(l₁, l₂, l₃)|l_i ∈ R_i, i = 2, 3} ∪ {(-l₁, m₂, m₃)|m_i ∈ R_i, i = 2, 3} which is in the form of K_{n,n} for n ≥ 4.
- 2. If there is $(2, m_2, m_3) \in H \cap (Z(R_1) \times R_2 \times R_3)$, then $2 \in Z(R_1) \{0\}$, so $2a_1 = 0$ for non zero element $a_1 \in R_1$ and $\{(a_1, n_2, n_3) | n_i \in R_i, i = 2, 3\} \subseteq S_H(I)$, then $a_1 \neq 2$ (otherwise, $S_H(I) \cap H \neq \emptyset$); furthermore, $a_1 \neq 1$ since $2 \neq 0$ (by $I \cap H = \emptyset$). Hence the vertices $\{(a_1 - 1, a_2, a_3) | a_i \in R_i, i = 2, 3\} \cup \{(1, a_2, a_3) | a_i \in R_i, i = 2, 3\}$ are in the form of $K_{n,n}$ for $n \geq 4$. \Box

Corollary 3.5. Let $R = R_1 \times R_2$ where every R_i is a finite ring for $i \in \{1, 2\}$, $I = 0 \times R_2$ and H be a multiplicatively closed subset of R.

It is easily proved that the following statements hold.

- 1. Let $H \cap (Z(R_1) \times R_2) = \emptyset$ or $H \cap (Z(R_1) \times R_2) \neq \emptyset$ with $(2, m_2) \notin H \cap (Z(R_1) \times R_2)$ for every $m_2 \in R_2$. (i) If $2 \in Z(R_1)$ and $|R_2| \ge 8$, then $\gamma(\Gamma_H^I(S_H^C(I))) \ge 2$. (ii) If $2 \notin Z(R_1)$ and $|R_2| \ge 4$, then $\gamma(\Gamma_H^I(S_H^C(I))) \ge 1$.
- 2. Let there exists $(2, m_2) \in H \cap (Z(R_1) \times R_2)$ and $|R_2| \ge 4$. Then $\gamma(\Gamma_H^I(S_H^C(I))) \ge 1$.

Proof. It is obvious by Theorem 3.4. \Box

Example 3.6. Let $R = \mathbb{Z}_6 \times \mathbb{Z}_4$, $I = 0 \times \mathbb{Z}_4$ and H be a multiplicatively closed subset of R. Then $Z(R) = (Z(\mathbb{Z}_6) \times \mathbb{Z}_4) \cup (\mathbb{Z}_6 \times Z(\mathbb{Z}_4))$. If $H \cap (Z(\mathbb{Z}_6) \times \mathbb{Z}_4) = \emptyset$, then $S_H(I) = I$. Let $H \cap (Z(\mathbb{Z}_6) \times \mathbb{Z}_4) \neq \emptyset$ and let $(2, n_s) \in H$ (so for every $n_i \in \mathbb{Z}_4$, $(3, n_i) \notin H$, otherwise $H \cap I \neq \emptyset$). Then $S_H(I) = I \cup \{(3, t_2) | t_2 \in \mathbb{Z}_4\}$. Considering the vertices of $\Gamma_H^I(S_H^C(I))$ in the form of $\{(1, b_2), (4, t_2) | b_2, t_2 \in \mathbb{Z}_4\} \cup \{(2, m_2), (5, l_2) | m_2, l_2 \in \mathbb{Z}_4\}$, one has $\Gamma_H^I(S_H^C(I))$ is a $K_{8,8}$.

Theorem 3.7. Let $R = \mathbb{F}_q \times R_n$, $I = 0 \times R_n$ where R_n is a ring with $|R_n| = n$, \mathbb{F}_q is a field with q elements and let H be a multiplicatively closed subset of R.

1. Let $q = 2^m$. Then $\Gamma_H^I(S_H^C(I))$ is planar if and only if $2 \le n \le 4$ and it is toroidal if and only if m = 1 and $5 \le n \le 7$.

563

Please cite this article in press as: L.H. Jahromi, A. Abbasi, On the genus of some total graphs, AKCE International Journal of Graphs and Combinatorics (2018), https://doi.org/10.1016/j.akcej.2018.04.002.

2. If for every $m \in \mathbb{N}$, $q \neq 2^m$, then $\Gamma^I_H(S^C_H(I))$ is planar if and only if n = 2 and it is toroidal if and only if q = 3and $n \in \{3, 4\}$.

Proof. Claim; for every $n \in \mathbb{N}$, $I = S_H(I)$. By way of contradiction, let there exists $(m, d) \in R - I$ such that $(m, d)(t, l) \in I$ for some $(t, l) \in H$. So mt = 0 which implies that m = 0; so m = 0, a contradiction.

- 1. Let $q = 2^m$. (a) If m = 1, for every $(1, b) \in S_H^C(I)$, we have $(1, b) + (1, b') \in S_H(I)$ where b, b' are disjoint elements of R_n . So $\Gamma_{H}^{I}(S_{H}^{C}(I))$ is K_{n} . (b) Let m > 1. Considering vertices of $\Gamma_H^I(S_H^C(I))$ in the form of $\{(l, a) | l \in \mathbb{F}_{2^m}, a \in R_n\}$ and by the fact that $char(\mathbb{F}_{2^m}) = 2$, in the same way of proof of Theorem 3.2, $\Gamma_H^I(S_H^C(I))$ is a disjoint union of $2^m - 1$ copies of K_n . Hence, $\Gamma_{H}^{I}(S_{H}^{C}(I))$ is planar if and only if $2 \le n \le 4$ and it is toroidal if and only if m = 1 and $5 \le n \le 7$.
- 2. Let for all $m \in \mathbb{N}$, one has $q \neq 2^m$. For non zero element $l \in F_q$, let $X_l = \{(l, a) | a \in R_n\}$ and $Y_l = \{(-l, a) | a \in R_n\}$. Then X_l, Y_l is a bipartition of $K_{n,n}$. So $\Gamma_H^I(S_H^C(I))$ is a disjoint union of $\frac{q-1}{2}$ copies of $K_{n,n}$. Hence $\Gamma_H^I(S_H^C(I))$ is planar if and only if n = 2 and it is toroidal if and only if q = 3 and $n \in \{3, 4\}$. \Box

Theorem 3.8. Let R be a finite ring for which $R = R_1 \times R_2 \times \cdots \times R_t$ with $t \ge 2$, $I = 0 \times R_2 \times \cdots \times R_t$, H = R - Z(R) and let $2 \notin Z(R_1)$. If $\gamma(\Gamma_H^I(S_H^C(I))) \leq 1$, then R is isomorphic to the one of the following rings:

 $\mathbb{Z}_3 \times \mathbb{Z}_2 \times \mathbb{Z}_2, R_1 \times \mathbb{Z}_2, \mathbb{Z}_3 \times \mathbb{Z}_3, \mathbb{Z}_3 \times \mathbb{Z}_4, \mathbb{Z}_3 \times \mathbb{F}_4, \mathbb{Z}_3 \times \mathbb{Z}_2[X]/(X^2).$

Proof. Note that t < 4, by Theorem 3.2.

1'. Let t = 3.

If $\gamma(\Gamma_{H}^{I}(S_{H}^{C}(I))) < 1$, then $|R_{2}||R_{3}| < 4$, by Theorem 3.4. For $\gamma(\Gamma_{H}^{I}(S_{H}^{C}(I))) = 1$, consider $|R_{2}||R_{3}| = 4$, by the proof of Theorem 3.4. So, for $\gamma(\Gamma_H^I(S_H^C(I))) \le 1$, $|R_2||R_3| \le 4$. Hence $R_2 = R_3 = \mathbb{Z}_2$. For every non zero element $b_1 \in R_1$, set $X_{b_1} = \{(b_1, n_2, n_3) | n_i \in R_i, i = 2, 3\}$. Then X_{b_1}, X_{-b_1} is a bipartition of $K_{4,4}$. If $|R_1| > 3$, then $\gamma(\Gamma_H^I(S_H^C(I))) \ge 2$ (since there exist at least two bipartition of $K_{4,4}$ in $\Gamma_H^I(S_H^C(I))$). Hence, $|R_1| \le 3$, so $R_1 = \mathbb{Z}_3$ (since $2 \notin Z(R_1)$). Therefore, $R = \mathbb{Z}_3 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

2'. Let t = 2.

For every non zero element $b_1 \in R_1$, set $X_{b_1} = \{(b_1, n_2) | n_2 \in R_2\}$. Then X_{b_1}, X_{-b_1} is a bipartition of $K_{n,n}$ for $n = |R_2|$. Since $2 \notin Z(R_1)$ and $\gamma(\Gamma_H^I(S_H^C(I))) \le 1$, then by Corollary 3.5 and by the same way of case 1', $|R_2| \le 4.$

(i) Let $|R_2| = 2$. Then X_{b_1} and X_{-b_1} , for nonzero $b_1 \in R_1$, are in the form of $K_{2,2}$ and $\Gamma_H^I(S_H^C(I))$ is a disjoint union of some copies of $K_{2,2}$. So for every $R = R_1 \times R_2$ with $|R_2| = 2$, $\Gamma_H^I(S_H^C(I))$ is planar.

(ii) Let $|R_2| = 3, 4$. For every non zero element $b_1 \in R_1, X_{b_1}, X_{-b_1}$ is a bipartition of $K_{3,3}$ or $K_{4,4}$ and $\gamma(K_{3,3}) = \gamma(K_{4,4}) = 1$. So, by $2 \notin Z(R_1)$ and the same way of case 1', $|R_1| = 3$ and $R_1 = \mathbb{Z}_3$. Hence, for t = 2, R is isomorphic to the one of the following rings:

 $R_1 \times \mathbb{Z}_2, \mathbb{Z}_3 \times \mathbb{Z}_3, \mathbb{Z}_3 \times \mathbb{Z}_4, \mathbb{Z}_3 \times \mathbb{F}_4, \mathbb{Z}_3 \times \mathbb{Z}_2[X]/(X^2).$

Proposition 3.9. Let R be a finite ring for which $R = R_1 \times R_2 \times \cdots \times R_t$ with $t \ge 2$, $I = 0 \times R_2 \times \cdots \times R_t$, H = R - Z(R) and let $2 \in Z(R_1)$. If $\gamma(\Gamma_H^I(S_H^C(I))) \leq 1$, then R is isomorphic to the one of the following rings:

$$R_1 \times \mathbb{Z}_2, \mathbb{Z}_2 \times \mathbb{Z}_5, \mathbb{Z}_2 \times \mathbb{Z}_6, \mathbb{Z}_2 \times \mathbb{Z}_7,$$

or
$$R_1 \times \mathbb{Z}_2 \times \mathbb{Z}_2, R_1 \times \mathbb{Z}_3, R_1 \times R_2 \text{ with } |R_2| = 4.$$

Proof. Note that t < 4, by Theorem 3.2. Put $P = \{a_1 \in R_1 | a_1 \neq 0, 2a_1 = 0\} (|P| \ge 1, by 2 \in Z(R_1))$ and $R_1^{\star} = R_1 - \{0\}.$

1. Let t = 3. Put $l = |R_2||R_3|$. For every non zero element $a_1 \in R_1$, set $X_{a_1} = \{(a_1, a_2, a_3) | a_i \in R_i, i = 2, 3\}$. If $a_1 \in P$, then X_{a_1} is in the form of K_l . If $a_1 \notin P$, then X_{a_1}, X_{-a_1} is a bipartition of $K_{l,l}$. Since $2 \in Z(R_1)$, then by Theorem 3.4, $|R_2||R_3| < 8$. So $|R_2||R_3| = 4$ or 6.

564

Please cite this article in press as: L.H. Jahromi, A. Abbasi, On the genus of some total graphs, AKCE International Journal of Graphs and Combinatorics (2018), https://doi.org/10.1016/j.akcej.2018.04.002

(a) Let $|R_2||R_3| = 4$.

(i') If $char(R_1) = 2$ $(R_1^{\star} = P)$, then $\Gamma_H^I(S_H^C(I))$ is a disjoint union of some copies of K_4 , which is planar. (ii') Let $char(R_1) \neq 2$. Consider $\overline{P} = R_1^* - P$ (note that $|\overline{P}| \ge 2$).

Suppose that $|\overline{P}| > 2$. We claim that $|\overline{P}| \ge 4$. If $|\overline{P}| = 3$ and $a_1, -a_1, a_2 \in \overline{P}$, then $-a_2 \in \overline{P}$. So $|\overline{P}| = 4$. a contradiction.

Hence, if $|\overline{P}| > 2$, considering the sets X_{a_1}, X_{-a_1} and X_{a_2}, X_{-a_2} where $a_1, -a_1, a_2, -a_2 \in \overline{P}$, there are at least two copies of $K_{4,4}$ in $\Gamma_H^I(S_H^C(I))$ that implies, $\gamma(\Gamma_H^I(S_H^C(I))) \ge 2$.

So, $|\overline{P}| = 2$. Then for $b_1, -b_1 \in \overline{P}, X_{b_1}, X_{-b_1}$ is in the form of $K_{4,4}$. Thus, in this case, $\Gamma_H^I(S_H^C(I))$ is a disjoint union of some copies of K_4 and one copy of $K_{4,4}$, which is toroidal.

Therefore, if t = 3 and $|R_2||R_3| = 4$, then $R = R_1 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ with $char(R_1) = 2(R_1^* = P)$ or $|\overline{P}| = 2$. (b) Let $|R_2||R_3| = 6$. If $char(R_1) \neq 2$, then $K_{6,6}$ is a subgraph of $\Gamma_H^I(S_H^C(I))$ which implies that $\gamma(\Gamma_H^I(S_H^C(I))) > 1$ 1. So $char(R_1) = 2$. Also, by $\gamma(\Gamma^I_H(S^C_H(I))) \leq 1$, we should have |P| = 1, since for every $l \in P$,

- $K_6 \subseteq \Gamma^I_H(S^C_H(I))$ and $\gamma(K_6) = 1$. Hence, in this case we have $R_1 = Z_2$ and R is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_6$.
- 2. Let t = 2. For every non zero element $a_1 \in R_1$, set $X_{a_1} = \{(a_1, n_2) | n_2 \in R_2\}$. Since $2 \in Z(R_1)$, then by Corollary 3.5, $n = |R_2| < 8$. For every non zero element $a_1 \in P$, X_{a_1} is in the form of K_n for $n \le 7$. If $a_1 \notin P$, then X_{a_1}, X_{-a_1} is a bipartition of $K_{n,n}$.

(a') Let $|R_2| = 2$. If $char(R_1) = 2$, then $\Gamma_H^I(S_H^C(I))$ is a disjoint union of some copies of K_2 , which is planar. If $char(R_1) \neq 2$ $(R_1^* \neq P)$, then for every $a_1 \in P$, X_{a_1} , X_{-a_1} is a bipartition of $K_{2,2}$. So $\Gamma_H^I(S_L^C(I))$ is a disjoint union of some copies of K_2 and $K_{2,2}$, which is planar. Hence, in this case, $R = R_1 \times \mathbb{Z}_2$.

(b') Let $|R_2| = 3$. If $char(R_1) = 2$, then $\Gamma_H^I(S_H^{\overline{C}}(I))$ is a disjoint union of some copies of K_3 , which is planar. Let $char(R_1) \neq 2$ $(R_1^* \neq P)$. If $|\overline{P}| > 2$, then $|\overline{P}| \ge 4$. So, there exist at least two copies of $K_{3,3}$ in $\Gamma_H^I(S_H^C(I))$ that implies that $\Gamma_H^I(S_H^C(I)) \geq 2$.

Hence, $|\overline{P}| = 2$ and $\Gamma_{H}^{I}(S_{H}^{C}(I))$ is a disjoint union of some copies of K_{3} and one copy of $K_{3,3}$, which is toroidal. Thus, in this case, $R = R_1 \times \mathbb{Z}_3$ with $char(R_1) = 2$ or $|\overline{P}| = 2$.

(c') If $|R_2| = 4$, then by the same way of case 1(a), $R = R_1 \times R_2$, where $|R_2| = 4$ with $char(R_1) = 2$ or $|\overline{P}| = 2.$

(d'). Let $|R_2| \in \{5, 6, 7\}$. If $|P| \ge 2$, then $\gamma(\Gamma_H^I(S_H^C(I))) \ge 2$ (since for every $a_1 \in P, K_n \subseteq \Gamma_H^I(S_H^C(I))$) for $n \in \{5, 6, 7\}$). So |P| = 1. If $char(R_1) \neq 2$, then $K_{n,n} \subseteq \Gamma^I_H(S^C_H(I))$ for $n \in \{5, 6, 7\}$, that implies that $\gamma(\Gamma_{H}^{I}(S_{H}^{C}(I))) > 1$. So *char*(R_{1}) = 2 and $R_{1} = \mathbb{Z}_{2}$, since |P| = 1.

Hence, in this case, R is isomorphic to the one of the following rings:

 $\mathbb{Z}_2 \times \mathbb{Z}_5, \mathbb{Z}_2 \times \mathbb{Z}_6, \mathbb{Z}_2 \times \mathbb{Z}_7.$

Remark 3.10. Let R be a ring with I = 0 and H be a multiplicatively closed subset of R. Then $\Gamma_{H}^{I}(S_{H}^{C}(I))$ is a subgraph of $T(\Gamma(R))$, since $S_H(I) = \{r \in R : rs = 0 \text{ for some } s \in H(0 \notin H)\} \subseteq Z(R)$. Recall that $T(\Gamma(R))$ is the graph with all elements of R as vertices, and two distinct vertices $x, y \in R$ are adjacent if and only if $x + y \in Z(R)$ where Z(R) denotes the set of all zero-divisors of R, so $\gamma(\Gamma_H^I(S_H^C(I))) \leq \gamma(T(\Gamma(R)))$.

For finite ring *R* with ideal $I = 0 \times 0 \times \cdots \times R_n \times \cdots \times R_t$, $n \ge 1$, $t \ge 2$ and multiplicatively closed subset *H* of $R, \Gamma^I_H(S^C_H(I))$ is a subgraph of $T(\Gamma(R))$, since $S_H(I) \subseteq Z(R)$. For the recent inclusion, let $(r_1, r_2, \ldots, r_t) \in S_H(I)$. Then $(r_1, r_2, ..., r_t)(s_1, s_2, ..., s_t) \in I$ for some $(s_1, s_2, ..., s_t) \in H$, so $r_i s_i = 0$ for every $1 \le i \le n - 1$. If for every $1 \le i \le n-1$, $s_i = 0$, then $H \cap I \ne \emptyset$, a contradiction, so there exists $s_l \ne 0$ for $1 \le l \le n-1$. Then $r_l s_l = 0$ implies that $r_l \in Z(R_l)$, hence $S_H(I) \subseteq Z(R)$.

Theorem 3.11. Let $I = k\mathbb{Z}_n$ with d = (k, n) and $H = \{a | a \in \mathbb{Z}_n, (a, n) = 1\}$.

- 1. Let n be an even integer.
 - (i) If d is an even integer, then $\Gamma_{H}^{I}(S_{H}^{C}(I))$ is a disjoint union of $K^{\frac{n}{d}}$ and $\frac{d-2}{2}$ copies of $K_{\frac{n}{d},\frac{n}{d}}$. Hence $g(\Gamma_{H}^{I}(S_{H}^{C}(I))) = \lceil \frac{\binom{n}{d} - 3\binom{n}{d} - 4}{12} \rceil + \frac{d-2}{2} \lceil \frac{\binom{n}{d} - 2^{2}}{4} \rceil.$ (ii) If d is an odd integer, then $\Gamma_{H}^{I}(S_{H}^{C}(I))$ is a disjoint union of $\frac{d-1}{2}$ copies of $K_{\frac{n}{d},\frac{n}{d}}$ and $g(\Gamma_{H}^{I}(S_{H}^{C}(I))) =$
- $\frac{d-1}{2} \left[\frac{\binom{n}{d}-2}{4} \right].$ 2. If *n* is an odd integer, then $\Gamma_H^I(S_H^C(I))$ is a disjoint union of $\frac{d-1}{2}$ copies of $K_{\frac{n}{d},\frac{n}{d}}$ and $g(\Gamma_H^I(S_H^C(I))) =$ $\frac{d-1}{2} \left[\frac{\left(\frac{n}{d}-2\right)^2}{4} \right].$

565

Fig. 1. The total graph of Theorem 3.11.

Proof. We at first show that $d\mathbb{Z}_n = I = S_H(I)$. There are $t_1, t_2 \in \mathbb{Z}$ such that $t_1n + t_2k = d$, so $d \in I$. Hence $I = d\mathbb{Z}_n$. We claim that $I = S_H(I)$. By way of contradiction, if there exists $m \in \mathbb{Z}_n - I$ such that $tm \in I$ for some $t \in H$, then d|tm. But (d, t) = 1 (since d|n), so d|m, a contradiction. Hence $I = S_H(I)$.

1. Let *n* be an even integer. Then

(i) If d = 2, then $I = 2\mathbb{Z}_n$; so for every $m' \in S_H^C(I)$, $2m' \in S_H(I)$. Then by Theorem 2.3, $\Gamma_H^I(S_H^C(I))$ is in the form of $K_{\frac{n}{2}}$. Therefore, $g(\Gamma_H^I(S_H^C(I))) = \lceil \frac{(\frac{n}{2} - 3)(\frac{n}{2} - 4)}{12} \rceil$, by Theorem 2.1.

Let d be an even integer greater than 2, then
$$S_H^C(I)$$
 has the following elements:

$$\begin{array}{l} 1, 2, \dots, \frac{d}{2}, \dots, d-1 \\ d+1, \dots, \frac{3d}{2}, \dots, 2d-1 \\ \vdots \\ \vdots \\ \left[(\frac{n}{d}-1)d \right] + 1, \dots, (2\frac{n}{d}-1)\frac{d}{2}, \dots, \frac{n}{d}d-1. \\ \text{Hence, } \Gamma_{H}^{I}(S_{H}^{C}(I)) \text{ is a disjoint union of } K_{\frac{n}{d}} \text{ and } \frac{d-2}{2} \text{ copies of } K_{\frac{n}{d}, \frac{n}{d}}. \text{ So by Theorem 2.1, } g(\Gamma_{H}^{I}(S_{H}^{C}(I))) = \left[\frac{\left(\frac{d}{d}-3\right)^{2}}{12} \right] + \frac{d-2}{2} \left[\frac{\left(\frac{d}{d}-2\right)^{2}}{4} \right]. \\ (\text{ii) Let } d \text{ be an odd integer, then } S_{H}^{C}(I) \text{ has the following elements: } 1, 2, \dots, \frac{d-1}{2}, \frac{d+1}{2}, \dots, d-1 \\ d+1, \dots, \frac{3d-1}{2}, \frac{3d+1}{2}, \dots, 2d-1 \\ \vdots \\ \left[\left(\frac{n}{d}-1\right)d \right] + 1, \dots, \frac{\left[\left(2\frac{n}{d}-1\right)d \right] - 1}{2}, \frac{\left[\left(2\frac{n}{d}-1\right)d \right] + 1}{2}, \dots, \frac{n}{d}d-1. \\ \text{Hence, } \Gamma_{H}^{I}(S_{H}^{C}(I)) \text{ is a disjoint union of } \frac{d-1}{2} \text{ copies of } K_{\frac{n}{d}, \frac{n}{d}} \text{ as in Fig. 1, where } 1 \leq i \leq \frac{d-1}{2}. \\ \text{Then by} \end{array}$$

Theorem 2.1, $g(\Gamma_H^I(S_H^C(I))) = \frac{d-1}{2} \lceil \frac{\binom{d}{d}-2^2}{4} \rceil$. 2. Let *n* be an odd integer; so, $2 \in H$. Then by Theorem 2.4, $\Gamma_H^I(S_H^C(I))$ is a disjoint union of $\frac{d-1}{2}$ copies of $K_{\frac{d}{d},\frac{d}{d}}$

and by Theorem 2.1, $g(\Gamma_{H}^{I}(S_{H}^{C}(I))) = \frac{d-1}{2} \lceil \frac{\binom{n}{d} - 2^{2}}{4} \rceil$.

Example 3.12. Consider $R = \mathbb{Z}_{18}$, $I = 12\mathbb{Z}_{18}$ and $H = \{a | a \in \mathbb{Z}_{18}, (a, 18) = 1\}$. Then $\Gamma_H^I(S_H^C(I))$ is a disjoint union of K_3 and two copies of $K_{3,3}$. Then $g(\Gamma_H^I(S_H^C(I))) = \lceil \frac{(3-3)(3-4)}{12} \rceil + \frac{6-2}{2} \lceil \frac{(3-2)^2}{4} \rceil = 2$.

Theorem 3.13. Let $R = \mathbb{Z}_n \times \mathbb{Z}_n$, $I = 0 \times \mathbb{Z}_n$ and $H = \{(a, b) | a, b \in \mathbb{Z}_n \times \mathbb{Z}_n, (a, n) = 1\}$. Then:

- If n is an even integer, then Γ^I_H(S^C_H(I)) is a disjoint union of K_n and n-2/2 copies of K_{n,n}. In this case, g(Γ^I_H(S^C_H(I))) = Γ⁽ⁿ⁻³⁾⁽ⁿ⁻⁴⁾/₁₂] + n-2/2 Γ^{(n-2)²}/₄].
 If n is an odd integer, then Γ^I_H(S^C_H(I)) is a disjoint union of n-1/2 copies of K_{n,n}. In this case g(Γ^I_H(S^C_H(I))) = Γ⁽ⁿ⁻³⁾⁽ⁿ⁻⁴⁾/₂ [(S^C_H(I)) = (S^C_H
- $\frac{n-1}{2} \left\lceil \frac{(n-2)^2}{2} \right\rceil$

Please cite this article in press as: L.H. Jahromi, A. Abbasi, On the genus of some total graphs, AKCE International Journal of Graphs and Combinatorics (2018), https://doi.org/10.1016/j.akcej.2018.04.002.

Proof.

- 1. Let *n* be an even integer. We claim that $I = S_H(I)$. By way of contradiction, if there is $(m, d) \in \mathbb{Z}_n \times \mathbb{Z}_n (0 \times \mathbb{Z}_n)$ such that $(t, l)(m, d) \in 0 \times \mathbb{Z}_n$ for some $(t, l) \in H$, then $n \mid tm$, but (t, n) = 1; so $n \mid m$, a contradiction. Hence $I = S_H(I)$. The number of elements of $(\mathbb{Z}_n \times \mathbb{Z}_n) - S_H(I)$ is $n^2 - n$. For every element $(a, b) \in S_H^C(I)$, we have $(a, b) + (-a, b) \in S_H(I)$. Let $(a, b) + (c, d) \in S_H(I)$ for (a, b) and $(c, d) \in S_H^C(I)$. Then a + c = 0and this implies that a = -c. Hence, each element (a, b) of $S_H^C(I)$ is just adjacent to (-a, d) for every element $d \in \mathbb{Z}_n$. Because *n* is even, so just for one element $0 \neq a = \frac{n}{2} \in \mathbb{Z}_n$, $(a, b) \in S_H^C(I)$ is adjacent to (a, c) for every $b, c \in \mathbb{Z}_n$. Hence, $\Gamma_H^I(S_H^C(I))$ is a disjoint union of K_n and $\frac{n-2}{2}$ copies of $K_{n,n}$. Now by Theorem 2.1, $g(\Gamma_H^I(S_H^C(I))) = \lceil \frac{(n-3)(n-4)}{12} \rceil + \frac{n-2}{2} \lceil \frac{(n-2)^2}{4} \rceil$. 2. If *n* is an odd integer, then $2 \in H$. By Theorem 2.4, $\Gamma_H^I(S_H^C(I))$ is a disjoint union of $\frac{n-1}{2}$ copies of $K_{n,n}$ and
- $g(\Gamma_{H}^{I}(S_{H}^{C}(I))) = \frac{n-1}{2} [\frac{(n-2)^{2}}{4}], \text{ by Theorem 2.1.}$

Example 3.14. Consider $R = \mathbb{Z}_8 \times \mathbb{Z}_8$, $I = 0 \times \mathbb{Z}_8$ and $H = \{(a, b) | (a, b) \in \mathbb{Z}_8 \times \mathbb{Z}_8, (a, 8) = 1\}$. Then $\Gamma_H^I(S_H^C(I))$ is a disjoint union of K_8 and 3 copies of $K_{8,8}$. Hence $g(\Gamma_H^I(S_H^C(I))) = 29$.

Theorem 3.15. Let $I = k\mathbb{Z}_n$, $H = \mathbb{Z}_n - p\mathbb{Z}_n$ where p is a prime number with $1 , <math>|S_H(I)| = \alpha$ and $|\mathbb{Z}_n/S_H(I)| = \beta.$

- 1. If $p \neq 2$, then $\Gamma_H^I(S_H^C(I))$ is a disjoint union of $\frac{\beta-1}{2}$ copies of $K_{\alpha,\alpha}$ and $g(\Gamma_H^I(S_H^C(I))) = \frac{\beta-1}{2} \lceil \frac{(\alpha-2)^2}{4} \rceil$.
- 2. Let p = 2. Then $\Gamma_H^I(S_H^C(I))$ is a disjoint union of $K_{\frac{n}{2l'}}$ and $\frac{2^{l'-2}}{2}$ copies of $K_{\frac{n}{2l'},\frac{n}{2l'}}$. Hence

$$g(\Gamma_{H}^{I}(S_{H}^{C}(I))) = \lceil \frac{(\frac{n}{2^{l'}} - 3)(\frac{n}{2^{l'}} - 4)}{12} \rceil + \frac{2^{l'} - 2}{2} \lceil \frac{(\frac{n}{2^{l'}} - 2)^{2}}{4} \rceil,$$

where $(k, n) = 2^{l'} r'$ with $l', r' \in \mathbb{N}$ and (2, r') = 1.

Proof. By the proof of Theorem 3.11, $I = d\mathbb{Z}_n$, where d = (k, n).

- 1. If $p \neq 2$, then $2 \in \mathbb{Z}_n p\mathbb{Z}_n$. So, $\Gamma_H^I(S_H^C(I))$ is a disjoint union of $\frac{\beta-1}{2}$ copies of $K_{\alpha,\alpha}$ by Theorem 2.4 and
- $g(\Gamma_H^I(S_H^C(I))) = \frac{(\beta-1)}{2} \lceil \frac{(\alpha-2)^2}{4} \rceil$, by Theorem 2.1. 2. Let p = 2. If *n* is odd, then $0 \in H$ and this is impossible; so we assume that *n* is even. It should be noted that d is even; since if d is odd, then $d \in H$ and $\emptyset \neq I \cap H$ that this implies that $\mathbb{Z}_n = S_H(I)$, which is not in our assumptions.

Let $n = 2^l r$ for $l, r \in \mathbb{N}$ where (2, r) = 1. We can assume that $d = 2^{l'} r'$ where $l', r' \in \mathbb{N}$ and $l' \leq l, r' \leq r$. Here, we claim that $S_H(I) = 2^{l'} \mathbb{Z}_n$. Suppose there is $m \in \mathbb{Z}_n - 2^{l'} \mathbb{Z}_n$ such that $d \mid tm$ for some $t \in H$, so $2^{l'} \mid tm$. Hence $2^{l'} \mid m$, a contradiction. Therefore, $S_H(I) \subseteq 2^{l'} \mathbb{Z}_n$. Now, let $2^{l'}t' \in 2^{l'} \mathbb{Z}_n$ for some $t' \in \mathbb{Z}_n$. It is clear that $2^{l'}t'r' \in I$, so $2^{l'}t' \in S_H(I)$. Hence, by an argument similar to the proof of Theorem 3.11, $\Gamma_H^I(S_H^C(I))$ is a disjoint union of $K_{\frac{n}{2^{l'}}}$ and $\frac{2^{l'}-2}{2}$ copies of $K_{\frac{n}{2^{l'}},\frac{n}{2^{l'}}}$. So $g(\Gamma_H^I(S_H^C(I))) = \lceil \frac{(\frac{n}{2^{l'}}-3)(\frac{n}{2^{l'}}-4)}{12} \rceil + \frac{2^{l'}-2}{2} \lceil \frac{(\frac{n}{2^{l'}}-2)^2}{4} \rceil$, by Theorem 2.1. \Box

Example 3.16. Consider $R = \mathbb{Z}_{64}$, $I = 4\mathbb{Z}_{64}$ and $H = \mathbb{Z}_{64} - 2\mathbb{Z}_{64}$. Then $\Gamma_H^I(S_H^C(I))$ is a disjoint union of $K_{16,16}$ and K_{16} such that $g(\Gamma_{H}^{I}(S_{H}^{C}(I))) = 62$.

Theorem 3.17. Let $I = k\mathbb{Z}_n$, $H = \{a^s | s \ge 0\}$ such that $a \mid n$ with $(\frac{n}{a}, a) = 1$, $|S_H(I)| = \alpha$ and $|\mathbb{Z}_n/S_H(I)| = \beta$.

1. If there is at least one even number in H, then $\Gamma_H^I(S_H^C(I))$ is a disjoint union of $\frac{\beta-1}{2}$ copies of $K_{\alpha,\alpha}$. In this case $g(\Gamma_H^I(S_H^C(I))) = \frac{\beta - 1}{2} \lceil \frac{(\alpha - 2)^2}{4} \rceil.$

2. Let there be no even number in H, $(d, \frac{n}{a}) = l$ where d = (k, n) and n = rl for some $r \in \mathbb{N}$. (1'). If *l* is an even integer, then $\Gamma_{H}^{I}(S_{H}^{C}(I))$ is a disjoint union of K_{r} and $\frac{l-2}{2}$ copies of $K_{r,r}$. In this case $g(\Gamma_{H}^{I}(S_{H}^{C}(I))) = \lceil \frac{(r-3)(r-4)}{12} \rceil + \frac{l-2}{2} \lceil \frac{(r-2)^{2}}{4} \rceil$. (2'). If l is an odd integer, then $\Gamma_{H}^{I}(S_{H}^{C}(I))$ is a disjoint union of $\frac{l-1}{2}$ copies of $K_{r,r}$ and $g(\Gamma_{H}^{I}(S_{H}^{C}(I))) =$ $\frac{l-1}{2} \left[\frac{(r-2)^2}{4} \right].$

Proof. Note that by the proof of Theorem 3.11, $I = d\mathbb{Z}_n$.

- 1. If there is at least one even element in H, then by Theorem 2.4, $\Gamma_H^I(S_H^C(I))$ is a disjoint union of $\frac{\beta-1}{2}$ copies of
- $K_{\alpha,\alpha}$. Therefore, $g(\Gamma_H^N(S_H^C(N))) = \frac{(\beta-1)}{2} \lceil \frac{(\alpha-2)^2}{4} \rceil$, by Theorem 2.1. 2. Let there be no even element in H. If $(d, \frac{n}{a}) = 1$, then d|a, since $n = \frac{n}{a}a$ where $(\frac{n}{a}, a) = 1$. Hence $\emptyset \neq I \cap H$ and this implies that $\mathbb{Z}_n = S_H(I)$, which is not the case. So, we assume that $(d, \frac{n}{a}) = l \neq 1$. Put $I' = l\mathbb{Z}_n$. We claim that $I' = S_H(I)$. Suppose there is $m' \in \mathbb{Z}_n - I'$ such that $d \mid a^g m'$, where $a^g \in H$ and $g \ge 0$, then $l \mid a^g m'$. So, l|m', a contradiction.

Conversely, we show that d|al and this implies that $I' \subseteq S_H(I)$. Let $d = n_1 l$ and $\frac{n}{a} = n_2 l$, for some $n_1, n_2 \in \mathbb{N}$ (so $(n_1, n_2) = 1$). We show that $n_1|a$; this implies that $n_1l|al$ and the proof is complete.

Let $(n_1, a) = h$ (so $n_1 = g_1h$ and $a = g_2h$, for some $g_1, g_2 \in \mathbb{N}$ where $(g_1, g_2) = 1$). By the fact that $d = n_1 l$ and d|n, one has $g_1hl|g_2hn_2l$; so $g_1|g_2n_2$ and $(g_1, g_2) = 1$ implies that $g_1|n_2$. This yields $g_1 = 1$ and so $n_1|a$.

(1'). Let *l* be an even integer, then by the same way as the proof of Theorem 3.11, $\Gamma_H^I(S_H^C(I))$ is a disjoint union of K_r and $\frac{l-2}{2}$ copies of $K_{r,r}$. Hence, $g(\Gamma_H^I(S_H^C(I))) = \lceil \frac{(r-3)(r-4)}{12} \rceil + \frac{l-2}{2} \lceil \frac{(r-2)^2}{4} \rceil$, by Theorem 2.1. (2'). Let *l* be an odd integer. By the same way as the proof of Theorem 3.11, $\Gamma_H^I(S_H^C(I))$ is a disjoint union of

 $\frac{l-1}{2}$ copies of $K_{r,r}$ and $g(\Gamma_H^I(S_H^C(I))) = \frac{l-1}{2} \lceil \frac{(r-2)^2}{4} \rceil$, by Theorem 2.1.

Example 3.18. Consider $R = \mathbb{Z}_{60}$, $I = 15\mathbb{Z}_{60}$ and $H = \{3^s | s \ge 0\}$. Then $\Gamma_H^I(S_H^C(I))$ is a disjoint union of 2 copies of $K_{12,12}$ and $g(\Gamma_{H}^{I}(S_{H}^{C}(I))) = 50$.

Theorem 3.19. Let $I = k\mathbb{Z}_n$, $H = \{1, t\}$ with $n|t^2 - 1$, $|S_H(I)| = \alpha$ and $|\mathbb{Z}_n/S_H(I)| = \beta$.

- 1. If t is an even integer, then $\Gamma_{H}^{I}(S_{H}^{C}(I))$ is a disjoint union of $\frac{\beta-1}{2}$ copies of $K_{\alpha,\alpha}$ and $g(\Gamma_{H}^{I}(S_{H}^{C}(I))) =$ $\frac{\beta-1}{2} \left\lceil \frac{(\alpha-2)^2}{4} \right\rceil.$ 2. *let t be an odd integer and* (k, n) = d.
- (1). If d is an even integer, then $\Gamma_H^I(S_H^C(I))$ is a disjoint union of $K_{\frac{n}{d}}$ and $\frac{d-2}{2}$ copies of $K_{\frac{n}{d},\frac{n}{d}}$. In this case $g(\Gamma_{H}^{I}(S_{H}^{C}(I))) = \lceil \frac{\binom{n}{d} - 3\binom{n}{d} - 4}{12} \rceil + \frac{d-2}{2} \lceil \frac{\binom{n}{d} - 2^{2}}{4} \rceil.$ (2'). If *d* is an odd integer, then $\Gamma_{H}^{I}(S_{H}^{C}(I))$ is a disjoint union of $\frac{d-1}{2}$ copies of $K_{\frac{n}{d},\frac{n}{d}}$ and $g(\Gamma_{H}^{I}(S_{H}^{C}(I))) =$ $\frac{d-1}{2} \left[\frac{\left(\frac{n}{d}-2\right)^2}{4} \right].$

Proof.

- 1. Let t be an even integer. In view of Theorem 2.4, $\Gamma_H^I(S_H^C(I))$ is a disjoint union of $\frac{\beta-1}{2}$ copies of $K_{\alpha,\alpha}$ and
- $g(\Gamma_H^I(S_H^C(I))) = \frac{\beta-1}{2} \lceil \frac{(\alpha-2)^2}{4} \rceil$. 2. By the proof of Theorem 3.11, $I = d\mathbb{Z}_n$. Let t be an odd integer. We claim that $I = S_H(I)$. Otherwise, there is $a \in \mathbb{Z}_n - I$ such that d|at. So $d|at^2$. By the assumption $d|t^2 - 1$, hence d|a and this implies that $a \in I$, a contradiction. Thus, $I = S_H(I)$.

(1') If d is an even integer, then we proceed in the proof of Theorem 3.11. So $\Gamma_H^I(S_H^C(I))$ is a disjoint union of $K_{\frac{n}{2}}$ and $\frac{d-2}{2}$ copies of $K_{\frac{n}{2},\frac{n}{2}}$. Then

$$g(\Gamma_{H}^{I}(S_{H}^{C}(I))) = \lceil \frac{(\frac{n}{d} - 3)(\frac{n}{d} - 4)}{12} \rceil + \frac{d - 2}{2} \lceil \frac{(\frac{n}{d} - 2)^{2}}{4} \rceil,$$

by Theorem 2.1.

(2') If *d* is an odd integer, then we proceed in the proof of Theorem 3.11. Hence, $\Gamma_H^I(S_H^C(I))$ is a disjoint union of $\frac{d-1}{2}$ copies of $K_{\frac{n}{d},\frac{n}{d}}$ and $g(\Gamma_H^I(S_H^C(I))) = \frac{d-1}{2} \lceil \frac{(\frac{n}{d}-2)^2}{4} \rceil$, by Theorem 2.1. \Box

Example 3.20. Consider $R = \mathbb{Z}_{50}$, $I = 5\mathbb{Z}_{50}$ and $H = \{1, 49\}$. Then $\Gamma_H^I(S_H^C(I))$ is a disjoint union of two copies of $K_{10,10}$ and $g(\Gamma_{H}^{I}(S_{H}^{C}(I))) = 32.$

Theorem 3.21. Let $R = \mathbb{Z}_n \times \mathbb{Z}_n$, $I = 0 \times \mathbb{Z}_n$, $H = \{(1, 1), (t, t)\}$ with $n|t^2 - 1$, $|S_H(I)| = \alpha$ and $|\mathbb{Z}_n/S_H(I)| = \beta$.

1. If t is an even integer, then $\Gamma_{H}^{I}(S_{H}^{C}(I))$ is a disjoint union of $\frac{\beta-1}{2}$ copies of $K_{\alpha,\alpha}$ and $g(\Gamma_{H}^{I}(S_{H}^{C}(I))) =$ $\frac{\beta-1}{2}\left[\frac{(\alpha-2)^2}{4}\right].$

Please cite this article in press as: L.H. Jahromi, A. Abbasi, On the genus of some total graphs, AKCE International Journal of Graphs and Combinatorics (2018), https://doi.org/10.1016/j.akcej.2018.04.002.

Fig. 2. The total graph of Theorem 3.23(1).

2. Let t be an odd integer.

(i) If *n* is an even integer, then $\Gamma_{H}^{I}(S_{H}^{C}(I))$ is a disjoint union of K_{n} and $\frac{n-2}{2}$ copies of $K_{n,n}$. In this case, $g(\Gamma_{H}^{I}(S_{H}^{C}(I))) = \lceil \frac{(n-3)(n-4)}{12} \rceil + \frac{n-2}{2} \lceil \frac{(n-2)^{2}}{4} \rceil$. (ii) If *n* is an odd integer, then $\Gamma_{H}^{I}(S_{H}^{C}(I))$ is a disjoint union of $\frac{n-1}{2}$ copies of $K_{n,n}$. In this case $g(\Gamma_{H}^{I}(S_{H}^{C}(I))) = \frac{n-1}{2} \lceil \frac{(n-2)^{2}}{4} \rceil$.

Proof.

- 1. If t is an even integer, then $\Gamma_H^I(S_H^C(I))$ is a disjoint union of $\frac{\beta-1}{2}$ copies of $K_{\alpha,\alpha}$ by Theorem 2.4 and $g(\Gamma_H^I(S_H^C(I))) = \frac{\beta-1}{2} \lceil \frac{(\alpha-2)^2}{4} \rceil$.
- 2. Let *t* be an odd integer. We claim that $I = S_H(I)$. Otherwise, there is $(a, b) \in \mathbb{Z}_n \times \mathbb{Z}_n$ such that $(a, b)(t, t) \in I$ where $a \neq 0$ and *b* is an arbitrary element of \mathbb{Z}_n . So n|at; then $n|at^2$. By the assumption $n|t^2 1$, so n|a and this implies that a = 0, a contradiction. Hence $I = S_H(I)$. The remaining is similar to proof of Theorem 3.13. \Box

Example 3.22. Consider $R = \mathbb{Z}_{21} \times \mathbb{Z}_{21}$, $I = 0 \times \mathbb{Z}_{21}$ and $H = \{(1, 1), (13, 13)\}$. Then $\Gamma_H^I(S_H^C(I))$ is a disjoint union of 10 copies of $K_{21,21}$ and $g(\Gamma_H^I(S_H^C(I))) = 910$.

Theorem 3.23. Let \mathbb{Z}_p denote the field of p elements where p > 2 is a prime number, $R = \mathbb{Z}_p \times \mathbb{Z}_{2^m}$ where $m \in \mathbb{N}$ and $I = 0 \times \mathbb{Z}_{2^m}$. Let H be one of the following sets: {(1, 1)}, {(1, 1), (2, 1)}, ..., {(1, 1), (2, 1), ..., (p - 1, 1)}, {(1, 0), {(2, 0)}, ..., {(1, 0), (2, 0)}, ..., {(p - 1, 0)}.

1. If m = 1, then $\Gamma_{H}^{I}(S_{H}^{C}(I))$ is planar. 2. If m > 1, then $g(\Gamma_{H}^{I}(S_{H}^{C}(I))) = \frac{p-1}{2} \lceil \frac{(2^{m}-2)^{2}}{4} \rceil$.

Proof. We note that $I = S_H(I)$ for every positive integer *m* and all cases of *H*. Otherwise, there exists $(a, c) \in \mathbb{Z}_p \times \mathbb{Z}_{2^m}$ such that $a \neq 0$ and p|at for some $(t, b) \in H$, where $b \in \mathbb{Z}_2$. Because (p, t) = 1, so p|a, a contradiction. Hence, in all cases, $I = S_H(I)$.

- 1. If m = 1, for every $(a, b) \in S_H^C(I)$, we have $(a, b) + (-a, b) \in S_H(I)$, where $a \in Z_p$ and $b \in Z_2$. So, $\Gamma_H^I(S_H^C(I))$ is a disjoint union of $\frac{p-1}{2}$ copies of $K_{2,2}$, where $R = \mathbb{Z}_p \times \mathbb{Z}_2$ and $I = 0 \times \mathbb{Z}_2$, as Fig. 2, where $1 \le i \le \frac{p-1}{2}$. Hence $g(\Gamma_H^I(S_H^C(I))) = 0$, by Theorem 2.1.
- 2. In the same way of the case 1, for $R = \mathbb{Z}_p \times \mathbb{Z}_{2^m}$ with $m \in \mathbb{N}$ and m > 1, $\Gamma_H^I(S_H^C(I))$ is a disjoint union of $\frac{p-1}{2}$ copies of $K_{2^m,2^m}$ and $g(\Gamma_H^I(S_H^C(I))) = \frac{p-1}{2} \lceil \frac{(2^m-2)^2}{4} \rceil$, where $I = 0 \times \mathbb{Z}_{2^m}$. \Box

References

- [1] D.F. Anderson, A. Badawi, The total graph of a commutative ring, J. Algebra 320 (7) (2008) 2706–2719.
- [2] S. Akbari, D. Kiani, F. Mohammadi, S. Moradi, The total graph and regular graph of a commutative ring, J. Pure Appl. Algebra 213 (12) (2009) 2224–2228.
- [3] H.R. Maimani, C. Wickham, S. Yassemi, Rings whose total graphs have genus at most one, Rocky Mountain J. Math. 42 (5) (2010) 1551–1560.

- [4] T. Tamizh Chelvam, T. Asir, On the genus of the total graph of a commutative ring, Comm. Algebra 41 (2013) 142–153.
- [5] A. Abbasi, Sh. Habibi, The total graph of a commutative ring with respect to proper ideals, J. Korean Math. Soc. 49 (1) (2012) 85–98.
- [6] A. Abbasi, . Sh. Habibi, The total graph of a module over a commutative ring with respect to proper submodules, J. Algebra Appl. 11 (3) (2012) 1250048 13 pages.
- [7] D.F. Anderson, A. Badawi, The generalized total graph of a commutative ring, J. Algebra Appl. 12 (5) (2013) 1250212 18 pages.
- [8] A. Abbasi, L. Hamidian Jahromi, A generalization of total graphs of modules over commutative rings under multiplicatively closed subsets, J. Math. Ext. 11 (3) (2017) 87–102.
- [9] A.T. White, Graphs, Groups and Surfaces, North-Holland, Amsterdam, 1973.
- [10] J. Battle, F. Harary, Y. Kodama, J.W.T. Youngs, Additivity of the genus of a graph, Bull. Amer. Math. Soc. 68 (6) (1962) 565-568.
- [11] A.T. White, The genus of the Cartesian product of two graphs, J. Combin. Theory Ser. B 11 (2) (1971) 89–94.
- [12] C. Wickham, Classification of rings with genus one zero-divisor graphs, Comm. Algebra 36 (2) (2008) 325–345.

Further reading

[1] C. Godsil, G. Royle, Algebraic Graph Theory, Springer, New York, 2001.