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Abstract. Let G and H be graphs, and G � H the strong product of G and H.
We prove that for any connected graphs G and H there is a strongly connected
orientation D of G�H such that diam(D) ≤ 2r+15, where r is the radius of G�H.

This improves the general bound diam(D) ≤ 2r2+2r for arbitrary graphs, proved
by Chvátal and Thomassen.
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1. Introduction. The Robbins’ theorem states that an undirected graph G
admits a strongly connected orientation if and only if G is connected and bridge-
less. When orienting the edges of an undirected graph the objective is to obtain
an orientation which is strongly connected and, when distances in the obtained di-
graph are relevant, has some additional metric properties. In this respect two main
parameters were subject to investigation, namely the diameter of a (di)graph, and
the sum of all distances (or the avarage distance) in a (di)graph. The sum of all
distances is known as the Wiener index, introduced by Wiener in 1947 and widely
applied in chemistry. The diameter of a digraph is one of the measures of efficiency
of a road network with one way streets, which is modeled by a digraph; this topic
is discussed in detail in [16], [17] and [18].

In this article we ask what is the minimum diameter of a strongly connected
digraph D whose underlying graph is G, where G is a fixed undirected graph subject
to this question. Let G be an undirected graph and

diammin(G) = min{diam(D) |D is a strong orientation of G} .

In [2] (see also [1]) Chvátal and Thomassen obtained a sharp upper bound for
diammin(G) of an arbitrary bridgeless connected graph G.
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Theorem 1.1. ([2]) For every bridgeless connected graph G of radius r we have

diammin(G) ≤ 2r2 + 2r.

This parameter was later studied in [16] in context of optimizing the traffic flow
in city streets which are modeled by grid graphs Pm2Pn. The authors of [16]
construct orientations of Pm2Pn which minimize the diameter and compare them
to the most commonly used orientations in city streets — orientations where streets
and avenues are alternatively turned left and right, or up and down. It is shown
that these commonly used orientations are not optimal with respect to diameter
and other metric parameters.

Several other classes of graphs have been considered and bounds for diammin(G)
were obtained, in particular numerous results for products of graphs are known.
Cartesian products of trees admit orienatations such that the diameter of the un-
derlying graph is equal to the diameter of the obtained digraph (see [9]). Such
orientations are called optimal orientations.

Theorem 1.2. ([9]) If T1 and T2 are trees with diameters at least 4, then

diammin(T12T2) = diam(T12T2) .

The diameter of Cartesian products of complete graphs, products of cycles and
products of paths were studied in [5, 6, 7, 8], and in most cases optimal orientations
of these products were constructed, except in few cases where the diameter of the
obtained digraph is larger than the diameter of the underlying graph by a small
constant (we call such orientations near-optimal). In [20] a general upper bound
for diammin(G2H) was obtained for arbitrary connected graphs G and H.

A similar type of a problem is the problem where the sum of all distances of
the obtained digraph is in question, and not the diameter. The Wiener index of
digraphs

W (D) =
∑

(u,v)∈V (D)×V (D)

d(u, v)

has been studied in articles [10, 11] and [14]. In these articles the authors search for
the maximum and minimum possible Wiener index of a digraph D whose underlying
graph is a fixed graph G (however in these articles, there are no assumptions
that the obtained digraph must be strongly connected). In [10] (see also [14]) the
maximum Wiener index of a tournament is established, and in [11] the maximum
Wiener index of digraphs whose underlying graph is a tree is partly determined;
several conjectures are formulated as well. We also mention that the Wiener index
of strong products of graphs was determined in [13].

In this article we study strong products of graphs. Let G and H be graphs.
The strong product of G and H is the graph, denoted as G � H, with vertex set
V (G �H) = V (G) × V (H). Vertices (x1, y1) and (x2, y2) are adjacent in G �H
if x1 = x2 and y1y2 ∈ E(H), or x1x2 ∈ E(G) and y1 = y2, or x1x2 ∈ E(G) and
y1y2 ∈ E(H).

The strong product of graphs is one of the four standard graph products, see
[3]. It has attracted considerable attantion, especially in the study of Shannon
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capacity and consequently its application in the information theory. Couriously
enough, strong products of graphs were recently applied in a construction of a
counterexample to the famous Hedetniemi’s conjecture, see [19].

Since E(G2H) ⊆ E(G � H) any upper bound for diammin(G2H) is also an
upper bound for diammin(G�H). To obtain a better bound for diammin(G�H),
we have to show how to orient edges in E(G�H) \E(G2H) so that there will be
a shorter path between any pair of vertices in G�H. This has already been shown
for strong products of paths in [12], however here we aim at a general approach
which can be applied to any strong product of graphs.

In Section 2 we define near-optimal orienatations of strong products of even
cycles, afterwards in Section 3 we generalize the method for products of trees. In
particular, in Section 3 we define an orientation of strong product of arbitrary
trees by rules A to G. Then, in Section 4, we give several local properties of this
orientation (we skip the proofs of this section, because the proving method is rather
straightforward, and the results are proved by routine applications of rules A to G;
the full version of the paper, including all the proofs, is available in [4]). Finally,
in Section 5, the diameter of the orientation defined in Section 3 is established.

In the rest of the introduction we fix the notations and the terminology. Let
D = (V,A) be a directed graph, and u, v ∈ V . If uv ∈ A we write u → v, and we
say that u is an in-neighbor of v, and that v is an out-neighbor of u. A uv-path
in D is a sequence of pairwise distinct vertices u = u0, u1, . . . , un = v such that
uiui+1 ∈ A for all indices i. We say that D is a strongly connected or strong digraph
if there is a uv-path in D for every u, v ∈ V . For vertices u, v ∈ V the distance
from u to v in D is the length of a shortest uv-path in D, if such a path exists,
otherwise the distance is∞. We denote the distance from u to v by dist(u, v). The
diameter of D is defined as

diam(D) = max{dist(u, v) |u, v ∈ V }.

For a connected graph G and a vertex v of G, the shortest path tree with respect
to v is a spanning tree such that for every x ∈ V (G) we have dG(v, x) = dT (v, x)
(such a tree exists, and we may obtain it by a BFS algorithm). The eccentricity of
a vertex x ∈ V (G) is ecc(x) = max{dist(x, v) | v ∈ V (G)}. A center of a graph G is
a vertex v ∈ V (G) with minimal eccentricity. The eccentricity of a central vertex
is called the radius of G, and is denoted by rad(G). Clearly, if G is a graph and T
is a shortest path tree with respect to a central vertex of G, then rad(G) = rad(T ).
Note also that for any graph G, diam(G) ≤ 2 rad(G).

Let G � H be the strong product of G and H. For a y ∈ V (H) the G-layer
Gy is the subgraph of G�H induced by {(x, y) |x ∈ V (G)}, and for an x ∈ V (G)
the H-layer Hx is the subgraph of G � H induced by {(x, y) | y ∈ V (H)}. If
e = (x, y)(x′, y′) is an edge of G�H such that x 6= x′ and y 6= y′ then e is called
a direct edge of G�H. If an edge of G�H is not a direct edge, then it is called a
Cartesian edge. Note that the edge set of G�H is given by

E(G�H) = E(G×H) ∪ E(G2H) ,

where G×H denotes the direct product of graphs, and G2H denotes the Cartesian
product of graphs. It is well known (see [3]) that the distance between vertices
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(x1, y1) and (x2, y2) of G�H is given by

dG�H((x1, y1)(x2, y2)) = max{dG(x1, x2), dH(y1, y2)},
and consequently the radius and the diameter of strong products are

rad(G�H) = max{rad(G), rad(H)} and diam(G�H) = max{diam(G),diam(H)} ,
respectively.

2. The diameter of strong products of even cycles. Let G = Cm and
H = Cn, where m,n ≥ 4 are even. Let A1∪B1 be the bipartition of G and A2∪B2

the bipartition of H. We orient the edges of G and H cyclicly to obtain strong
orientations of Cm and Cn, and we denote the obtained digraphs by D1 and D2,
respectively. Let −D1 and −D2 be directed graphs obtained from D1 and D2 by
reversing the direction of each arc, respectively. Note that G-layers and H-layers of
G�H are isomorphic to G and H, respectively. Therefore we may use orientations
D1 and D2 to orient layers of G � H (when we do so, we say that G-layers are
oriented according to D1, and H-layers are oriented according to D2).

We orient the Cartesian edges of G�H by the following rules.

(A) For every y ∈ B2 the edges of Gy are oriented according to D1, and for every
y ∈ A2 the edges of Gy are oriented according to −D1.

(B) For every x ∈ A1 the edges of Hx are oriented according to D2, and for every
x ∈ B1 the edges of Hx are oriented according to −D2.

To define the orientations of direct edges of G�H assume x1 → x2 in D1 and
y1 → y2 in D2, and apply the following rules.

(G1) (x1, y1)→ (x2, y2) and (x2, y1)→ (x1, y2), if (x1, y1) ∈ (A1×B2)∪(B1×A2).

(G2) (x2, y2)→ (x1, y1) and (x1, y2)→ (x2, y1), if (x1, y1) ∈ (A1×A2)∪(B1×B2).

Call the obtained digraph D. The orientation is defined in such a way that the
“neighboring diagonals” are directed in opposite directions (see Figure 1).

The diameter of the obtained digraph is 1
2 max{m,n}+ 1 (we skip the proof of

this claim). Note that there are exactly two white vertices in Figure 1. Call them
x and y and note that d(x, y) = 2 and d(y, x) = 4 = 1

2 max{6, 4} + 1. Note that
this orientation is near-optimal because diam(Cm � Cn) = 1

2 max{m,n}, if m and
n are even.

Proposition 2.1. For every evenm,n ≥ 4, diammin(Cm�Cn) ≤ 1
2 max{m,n}+1.

Rules (A), (B), (G1) and (G2) can be applied to any product G � H with
bipartite factors G and H, and the resulting digraph will be well-defined. However
the resulting digraph might not be strong because there might be some vertices
that have only in-neighbors or only out-neighbors (if both factors have a vertex of
degree one).

To obtain a strong orientation of G�H when G and H have vertices of degree
one, and in particular when G and H are trees, additional rules (C), (D), (E) and
(F) are introduced in the following section. These rules deal with orientations of
direct edges of G�H that are incident to vertices of degree 3 in G�H.
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Figure 1: The orientation of P6 � P4 ⊆ C6 � C4 .

3. The diameter of strong products of trees. Let T be a tree and r ∈ V (T )
be the root of T . For x, y ∈ V (T ) we write x < y if x lies on the path between y
and r.

Let T1 and T2 be trees, and let r1 and r2 be their roots, respectively (the roots
may be chosen arbitrarely). Let Ai ∪Bi be the bipartition of Ti, and assume that
ri ∈ Ai for i ∈ {1, 2}.

Let D1 be the orientation of T1 such that every edge is oriented away from the
root r1. More precisely, if xy is an edge in T1 and x < y then we orient xy as
x→ y. Let D2 be the orientation of T2 such that every edge is oriented away from
the root r2.

With these settings we are ready to define an orientation of T1 � T2. We orient
the Cartesian edges of T1 � T2 according to rules (A) and (B), where G = T1 and
H = T2. To define the orientations of direct edges of T1 � T2 assume x1 → x2 in
D1 and y1 → y2 in D2, and apply the following rules (note that the objective of
rules (C) to (F) is that all vertices of G�H have at least one in-neighbor and at
least one out-neighbor).

(C) If x1 = r1, and y2 ∈ A2 is a leaf, then orient (x1, y1)→ (x2, y2) and (x1, y2)→
(x2, y1).

(D) If x2 ∈ A1 is a leaf, y1 = r2, and y2 is not a leaf, then orient (x1, y1)→ (x2, y2)
and (x1, y2)→ (x2, y1).

(E) If x2 ∈ A1 is a leaf, y1 = r2, and y2 is a leaf, then orient (x1, y2) → (x2, y1)
and (x2, y2)→ (x1, y1).

(F) If x2 ∈ A1 is a leaf, y2 ∈ B2 is a leaf, and y1 6= r2, then orient (x2, y1) →
(x1, y2) and (x2, y2)→ (x1, y1).

(G) Otherwise (if assumptions of (C), (D), (E) and (F) are false) then apply rules
(G1) and (G2).

If T1 and T2 are rooted paths, then the orientation of T1�T2, obtained by rules
(A) to (G), is shown in Figure 2.
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r1

r2

Figure 2: Orientation of P9 � P8 obtained from rules (A) to (G).

When T1 and T2 are arbitrary trees, the orientation of T1 � T2 obtained by
rules (A) to (G) produces a digraph with a “small” diameter. The diameter of this
digraph is given by the following theorem, which is our main result.

Theorem 3.1. For any trees T1 and T2 we have

diammin(T1 � T2) ≤ max{diam(T1),diam(T2)}+ 15.

The proof of the above theorem is given in Section 5. It follows from the
theorem that strong products of trees admit near-optimal orientations, and we
made no attempt to optimize the constant 15 (in fact, we think that the constant
15 can be reduced, if a very detailed case analysis is applied). We now apply the
bound of Theorem 3.1 to obtain a bound for diammin(G�H) when G and H are
arbitrary graphs.

Corollary 3.2. For any connected graphs G andH, diammin(G�H) ≤ 2 rad(G�
H) + 15.

Proof. Let T1 and T2 be shortest path trees in G and H with respect to their
central vertices, respectively. Then we have

diammin(G�H) ≤ diammin(T1 � T2) ≤ max{diam(T1),diam(T2)}+ 15

≤ 2 max{rad(T1), rad(T2)}+ 15 = 2 max{rad(G), rad(H)}+ 15

= 2 rad(G�H) + 15. 2
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The above result bounds diammin(G�H) in terms of rad(G�H). We ask the
following question.

Question 3.3. Does there exist a constant k, such that for every connected graphs
G and H, diammin(G�H) ≤ diam(G�H) + k?

If the answer to the above question is positive, then strong products of connected
graphs admit near-optimal orientations.

4. Short directed paths between neighbouring vertices. In this section
we state several local properties of the orientation D of T1 � T2 obtained by rules
(A) to (G), as they are given in Sections 2 and 3. The proofs of all results given
here can be found in [4]. However, we do provide the proof of Lemma 4.4, which
is the most important result of this section. In the sequal we assume that T1 and
T2 are trees with roots r1 and r2. The roots may be arbitrarily chosen, and we
assume that D1 and D2 are digraphs obtained by orienting all edges of T1 and T2

away from their respective roots.

Lemma 4.1. Let T1 and T2 be trees and D the orientation of T1 � T2 according
to rules (A) to (G). If x1, x2 ∈ V (T1) are not leaves in T1 and x1x2 ∈ E(T1), and
y1, y2 ∈ V (T2) are not leaves in T2 and y1y2 ∈ E(T2), then we have the following
orientations of direct edges (see Figure 3):

(a) If (x1, y1) ∈ (A1 × A2) ∪ (B1 × B2) and x2 → x1, or (x1, y1) ∈ (A1 × B2) ∪
(B1 ×A2) and x1 → x2, then (x1, y1)→ (x2, y2) and (x2, y1)→ (x1, y2).

(b) If (x1, y1) ∈ (A1 × A2) ∪ (B1 × B2) and x1 → x2, or (x1, y1) ∈ (A1 × B2) ∪
(B1 ×A2) and x2 → x1, then (x1, y2)→ (x2, y1) and (x2, y2)→ (x1, y1).

x1 x2

(a)

e1 e2

y2

y1

x1x1 x2

(b)

y2

y1

Figure 3: The orientation of direct edges of {x1, x2} × {y1, y2}.

Let P be the path x = x0, x1, . . . , xn = y between x and y in a rooted tree T .
The root of the path P is the vertex xk (where 0 ≤ k ≤ n) such that xk < xi for
every i 6= k. The root of the path P is the vertex of P that is nearest to the root
of the tree.
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Lemma 4.2. Let T1 and T2 be trees and D the orientation of T1 � T2 according
to rules (A) to (G). Let x1, x2, x3 be a path in T1, and let y1 and y2 be adjacent
vertices in T2. If x2 is not the root of the path x1, x2, x3, then the Cartesian edges
of the subgraph induced by {x1, x2, x3} × {y1, y2} are oriented as shown in Figure
4 (cases (a) to (d)).

x1 x2 x3

(a)

y2

y1

x1 x2 x3

(b)

(c) (d)

y2

y1

Figure 4: The orientation of Cartesian edges of {x1, x2, x3} × {y1, y2}.

If x1 → x2 → x3 → x4 → x1 in D, then we say that x1, x2, x3 and x4 induce
a directed 4-cycle. Observe that in all cases of Lemma 4.2, if {x1, x2} × {y1, y2}
doesn’t induce a directed 4-cycle, then {x2, x3}×{y1, y2} induces a directed 4-cycle.

The following lemma is analogous to Lemma 4.2.

Lemma 4.3. Let T1 and T2 be trees and D the orientation of T1 �T2 according to
rules (A) to (G). Let x1 and x2 be adjacent vertices in T1, and let y1, y2, y3 be a
path in T2. If y2 is not the root of the path y1, y2, y3, then the Cartesian edges of
the subgraph induced by {x1, x2} × {y1, y2, y3} are oriented as shown in Figure 5
(cases (a) to (d)).

Lemma 4.4. For any trees T1 and T2 let D be the orientation of T1 �T2 according
to rules (A) to (G). Let x1, x2 ∈ V (T1) be adjacent vertices in T1 and y1, y2 ∈ V (T2)
adjacent vertices in T2. Then there exists a path of length at most 4 from (x1, y1)
to (x2, y2) in D.

Proof. We may assume that (x2, y2)→ (x1, y1) in D, for otherwise the statement
of the lemma is true.
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x1 x2

(a)

y2

y1

y3

x1 x2

(b)

x1 x2

(c)

x1 x2

(d)

Figure 5: The orientation of Cartesian edges of {x1, x2} × {y1, y2, y3}.

If {x1, x2} × {y1, y2} induces a directed 4-cycle, then there is a path of length
2 from (x1, y1) to (x2, y2).

Suppose that (x1, y1) → (x2, y1) and (x1, y1) → (x1, y2) in D. If x2 is not a
leaf and x2 6= r1, then there is a vertex x3 ∈ V (T1) adjacent to x2, such that x2 is
not the root of the path x1, x2, x3. Therefore {x2, x3}×{y1, y2} induces a directed
4-cycle (by Lemma 4.2), and so there is a directed path from (x2, y1) to (x2, y2)
of length at most 3. Since (x1, y1) → (x2, y1) we have a path of length at most 4
from (x1, y1) to (x2, y2).

If y2 is not a leaf or y2 6= r2, the proof is similar, therefore we can assume
that both x2 and y2 are either a leaf or the root in D1 and D2, respectively. We
distinguish the following cases:

(a) Suppose that x2 is a leaf in D1 and y2 is a leaf in D2. Then x1 → x2 in D1 and
y1 → y2 in D2. Hence x1 ∈ A1 and y1 ∈ B2 and the orientation of the edge
with endvertices (x1, y1) and (x2, y2) is obtained by the rule (G1) (if x1 6= r1)
or the rule (C) (if x1 = r1). In either case we have (x1, y1) → (x2, y2), a
contradiction.

(b) Suppose that x2 is a leaf in D1 and y2 = r2. Since x2 is a leaf we have
x1 → x2 in D1 and since y2 = r2 we have y2 → y1 in D2. Therefore x1 ∈ B1

and y1 ∈ B2. The orientation of the edge with endvertices (x1, y1) and (x2, y2)
is obtained by the rule (D) (if y1 is not a leaf) or the rule (E) (if y1 is a leaf).
In either case we have (x1, y1)→ (x2, y2), a contradiction.

(c) Suppose that x2 = r1 and y2 is a leaf in D2. Then y1 → y2 in D2 and
therefore x2 ∈ B1, a contradiction (since x2 = r1 ∈ A1).

(d) Suppose that x2 = r1 and y2 = r2. In this case we have x2 → x1 in D1 and
therefore y2 ∈ B2, a contradiction (since y2 = r2 ∈ A2).

Suppose that (x2, y1)→ (x1, y1) and (x1, y2)→ (x1, y1) in D. If x1 is not a leaf
and x1 6= r1, or if y1 is not a leaf and y1 6= r2, then there is a vertex x0 ∈ V (T1) such
that {x0, x1} × {y1, y2} induces a directed 4-cycle, or there is a vertex y0 ∈ V (T2)



10 I. Hrastnik Ladinek and S. Špacapan

such that {x1, x2} × {y0, y1} induces a directed 4-cycle. Since (x1, y2) → (x2, y2)
and (x2, y1) → (x2, y2) we get (in either case) a directed path of length at most 4
from (x1, y1) to (x2, y2).

(a) Suppose that x1 is a leaf in D1 and y1 is a leaf in D2. Then we have x2 → x1

in D1 and y2 → y1 in D2. Hence x1 ∈ A1 and y1 ∈ B2. By the rule (E) (if
y2 = r2) or the rule (F) (if y2 6= r2) we get the edge (x1, y1) → (x2, y2), a
contradiction.

(b) Suppose that x1 is a leaf in D1 and y1 = r2. Then we have x2 → x1 in D1 and
therefore y1 ∈ B2 (because (x2, y1)→ (x1, y1) in D). This is a contradiction,
since y1 = r2 ∈ A2.

(c) Suppose that x1 = r1 and y1 is a leaf in D2. Then x1 → x2 in D1 and
y2 ∈ B2. Since x1 ∈ A1 we get, by the rule (C), the edge (x1, y1)→ (x2, y2),
a contradiction.

(d) Suppose that x1 = r1 and y1 = r2. Since y1 → y2 in D1 we get x1 ∈ B1. This
is a contradiction, since x1 = r1 ∈ A1. 2

Lemma 4.5. For any trees T1 and T2 let D be the orientation of T1 �T2 according
to rules (A) to (G). Let x1, x2 ∈ V (T1) be adjacent vertices in T1 and y1 ∈ V (T2).
Then there exists a path of length at most 4 from (x1, y1) to (x2, y1) in D.

Lemma 4.6. For any trees T1 and T2 let D be the orientation of T1 �T2 according
to rules (A) to (G). Let y1, y2 ∈ V (T2) be adjacent vertices in T2 and x1 ∈ V (T1).
Then there exists a path of length at most 5 from (x1, y1) to (x1, y2) in D.

5. Proof of the main theorem. In this section we prove Theorem 3.1.
Choose a root ri in Ti, and let Di be the orientation of Ti, such that every

edge is oriented away from ri, for i ∈ {1, 2} (any vertex of Ti may be chosen as
the root of Ti). We orient the edges of T1 � T2 according to rules (A) to (G), and
call the obtained digraph D. Let (x, y), (x′, y′) ∈ V (D). We claim that there is a
directed path P from (x, y) to (x′, y′) in D such that the length of P is at most
max{diam(T1),diam(T2)}+ 15. Let

x = x0, x1, . . . , xm = x′

be the path between x and x′ in T1, and let

y = y0, y1, . . . , yn = y′

be the path between y and y′ in T2. Denote these two paths by P1 and P2,
respectively. Let ` = min{m,n}.

A. (x, y) and (x′, y′) are contained in the same G-layer
Suppose that y = y′ and that xi is the root of P1 (here we are refering to the root
of the path P1). If m = 1 then, by Lemma 4.5, there exists a path of length at
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most 4 from (x0, y) to (x1, y), therefore we may assume that m > 1. Let v be any
neighbour of y in T2. If y ∈ A2 and i 6= m− 1 then

(x0, y)→ . . .→ (xi, y)
4→ (xi+1, v)→ · · · → (xm−1, v)

4→ (xm, y)

is a path of length m+ 6 in D (for paths of length 4 above we applied Lemma 4.6).
If i = m− 1 then

(x0, y)→ . . .→ (xm−1, y)
4→ (xm, y)

is a path of length m + 3 in D (for the path of length 4 we applied Lemma 4.5).
If y ∈ B2 then

(x0, y)
4→ (x1, v)→ . . .→ (xi−1, v)

4→ (xi, y)→ (xi+1, y)→ · · · → (xm, y)

is a path of length m + 6 in D.
B. (x, y) and (x′, y′) are contained in the same H-layer

If x = x′ we prove analogously as in case A that there is a path from (x, y0) to
(x, yn) of length at most n + 6 in D.

C. (x, y) and (x′, y′) are not contained in the same G-layer or H-layer
Suppose that x 6= x′ and y 6= y′. Let xi be the root of P1 and m,n ≥ 3. Note that
x1, x2, . . . , x`−1 and y1, y2, . . . , y`−1 are not leaves, therefore we may apply Lemma
4.1 to find the orientations of direct edges with endvertices in {x1, x2, . . . , x`−1} ×
{y1, y2, . . . , y`−1}.

(a). Suppose that (x0, y0) ∈ (A1 ×A2) ∪ (B1 ×B2).

(i) Suppose that 1 ≤ i ≤ `−2. By Lemma 4.4 we have (x0, y0)
4→ (x1, y1). Since

xi → xi−1 → . . . → x1 we have, by Lemma 4.1, (x1, y1) → (x2, y2) → . . . →
(xi, yi) in D. Hence,

(x0, y0)
4→ (x1, y1)→ (x2, y2)→ . . .→ (xi, yi)

is a path from (x0, y0) to (xi, yi) in D.

We claim that (xi, yi)→ (xi, yi+1), (xi, yi)→ (xi, yi−1) or (xi, yi)→ (xi+1, yi)
in D.

If yi−1 → yi → yi+1 or yi+1 → yi → yi−1 in D2, then we have, by the rule (B),
either (xi, yi−1) → (xi, yi) → (xi, yi+1) or (xi, yi+1) → (xi, yi) → (xi, yi−1).
In this case the claim is true.

Suppose that yi−1 ← yi → yi+1 in D2. If (xi, yi) ∈ (A1 × A2), then we
have (since xi ∈ A1) (xi, yi) → (xi, yi+1) and (xi, yi) → (xi, yi−1). If
(xi, yi) ∈ (B1 × B2), then we have (since yi ∈ B2 and xi → xi+1 in D1)
(xi, yi)→ (xi+1, yi). This proves the claim.

Suppose that (xi, yi)→ (xi, yi+1) in D. Since (xi, yi+1) ∈ (A1 ×B2)∪ (B1 ×
A2) and xi → xi+1 → . . .→ x`−2 we have, by Lemma 4.1, the path

(xi, yi+1)→ (xi+1, yi+2)→ . . .→ (x`−2, y`−1).
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To obtain the orientation of the edge (x`−2, y`−1)(x`−1, y`) one of the rules
(C), (G1) or (G2) is applied (since x`−1 is not a leaf, rules (D), (E) and (F)
do not apply). In either case we have (x`−2, y`−1)→ (x`−1, y`).

Altogether we have the path

(x0, y0)
4→ (x1, y1)→ . . .→ (xi, yi)→ (xi, yi+1)→ . . .→ (x`−1, y`)

of length ` + 3.

If m ≥ n we use case A. of this theorem to find that there is the path from
(x`−1, y`) to (xm, yn) of length at most m − ` + 7. When we combine all of
the above paths we obtain a path from (x0, y0) to (xm, yn) of length at most
m + 10.

If n > m then (x`−1, y`)
4→ (x`, y`+1), by Lemma 4.4. As in case B. of this

theorem there is a path from (x`, y`+1) to (xm, yn) of length at most n−`+5.
In this case, by combining all of the above paths, we get a path from (x0, y0)
to (xm, yn) of length at most n + 12.

Suppose that (xi, yi)→ (xi, yi−1) or (xi, yi)→ (xi+1, yi) in D. If yi−1 is not
a leaf then we have, by Lemma 4.1, the edge (xi, yi−1)→ (xi+1, yi). If yi−1 is
a leaf (note that this is possible only if i = 1) then we have again (xi, yi−1)→
(xi+1, yi) by the rule (G2) (it is easy to see that rules (C), (D), (E), (F) and
(G1) do not apply in this case). Since (xi+1, yi) ∈ (A1×B2)∪ (B1×A2) and
xi+1 → xi+2 → . . .→ x`−2 we have, by Lemma 4.1, the path

(xi+1, yi)→ (xi+2, yi+1)→ . . .→ (x`−1, y`−2).

When we combine this path with

(x0, y0)
4→ (x1, y1)→ . . .→ (xi, yi)→ (xi, yi−1)→ (xi+1, yi)

we get a path from (x0, y0) to (x`−1, y`−2) of length ` + 3. To construct a
path from (x0, y0) to (xm, yn) we use the claim below, and obtain a path of
length at most max{m,n}+ 11.

Claim 1: There is a path from (x`−1, y`−2) to (xm, yn) of length at most
max{m,n} − ` + 8.

To obtain the orientation of the edge (x`−1, y`−2)(x`, y`−1) one of the rules
(D), (G1) or (G2) is applied (since y`−1 is not a leaf, rules (C), (E) and (F)
do not apply). In either case we have (x`−1, y`−2)→ (x`, y`−1).

If m > n then (x`, y`−1)
4→ (x`+1, y`), by Lemma 4.4. By case A. of this

theorem there is a path from (x`+1, y`) to (xm, yn) of length at most m−`+5.

If n ≥ m then there is a path from (x`, y`−1) to (xm, yn) of length at most
n − ` + 7 (case B. of this theorem). When we combine this path with
(x`−1, y`−2) → (x`, y`−1) we get a path of length at most n − ` + 8. This
proves the claim.
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(ii) Suppose that i ≥ `− 1. In this case we have

(x0, y0)
4→ (x1, y1)→ (x2, y2)→ . . .→ (x`−1, y`−1).

By Lemma 4.4 we have (x`−1, y`−1)
4→ (x`, y`). If m ≥ n we use case A. of

this theorem, otherwise we use case B. of this theorem, to find a path from
(x`, y`) to (xm, yn) of length at most max{m,n}− `+ 6. It follows that there
is a path from (x0, y0) to (xm, yn) of length at most max{m,n}+ 12.

(iii) Suppose that i = 0. Since there is either (x0, y0) → (x1, y0) or (x1, y1) →
(x2, y1) and since (x0, y0)

4→ (x1, y1) and (x1, y0)
4→ (x2, y1), we have a path

of length 5 from (x0, y0) to (x2, y1). By Lemma 4.1 we have

(x2, y1)→ (x3, y2)→ . . .→ (x`−1, y`−2).

By Claim 1 we have a path from (x`−1, y`−2) to (xm, yn) of length at most
max{m,n} − ` + 8. If we combine all of these paths we obtain a path from
(x0, y0) to (xm, yn) of length at most max{m,n}+ 10.

To finish the proof of case (a) it remains to construct a path from (x0, y0) to
(xm, yn) when m < 3 or n < 3. Without loss of generality we can assume m < 3

and m ≤ n. If m = 2 we have (x0, y0)
4→ (x1, y1)

4→ (x2, y2). By case B. we have a
path from (x2, y2) to (x2, yn) of length at most n + 4 and therefore there is a path
from (x0, y0) to (xm, yn) of length at most n + 12. For m = 1 the proof is similar.

(b). Suppose that (x0, y0) ∈ (A1 × B2) ∪ (B1 × A2). By Lemma 4.5 we have

(x0, y0)
4→ (x1, y0). Since (x1, y0) ∈ (A1 × A2) ∪ (B1 × B2) this case reduces to

case (a). By case (a) we have a path from (x1, y0) to (xm, yn) of length at most

max{m − 1, n} + 12, and therefore (when we use (x0, y0)
4→ (x1, y0)) we have a

path from (x0, y0) to (xm, yn) of length at most max{m,n} + 15. This completes
the proof of Theorem 3.1. 2
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