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Abstract

A graph G is said to be borderenergetic (L-borderenergetic, respectively) if its energy (Laplacian energy, respectively) equals
the energy (Laplacian energy, respectively) of the complete graph Kn . We extend this concept to signless Laplacian energy of
a graph. A graph G is called Q-borderenergetic if its signless Laplacian energy is same as that of the complete graph Kn , i.e.,
QE(G) = QE(Kn) = 2n − 2. In this paper, we construct some infinite family of graphs satisfying QE(G) = L E(G) = 2n − 2,
this happens to give a positive answer to the open problem mentioned by Nair Abreu et al. in Nair Abreu et al. (2011), that is
whether there are connected non-bipartite, non-regular graphs satisfying QE(G) = L E(G). We also obtain some bounds on the
order and size of Q-borderenergetic graphs. Finally, we use a computer search to find out all Q-borderenergetic graphs on no more
than 10 vertices, the number of such graphs is 39.

1. Introduction

Throughout this paper we consider simple undirected and connected graphs only. Let G be such a graph on n
vertices, the energy of G [1–3], denoted by E(G), is defined as the sum of the absolute values of all eigenvalues of its
adjacency matrix. If a graph G on n vertices has the same energy as the complete graph Kn , i.e., E(G) = E(Kn) =

2n − 2, then G is said to be borderenergetic, see [4]. For more details on borderenergetic, we refer to [5–8].
Let A be adjacency matrix and D diagonal matrix of vertex degrees of G, respectively, then L = D − A and

Q = D + A are called the Laplacian matrix and the signless Laplacian matrix of G, respectively. The Laplacian
energy of a graph G [9] is defined as L E(G) =

∑n
i=1|λi − d|, where λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ λn = 0 are the

Laplacian eigenvalues of G and d is the average degree of G. For its basic properties, see [10–15]. More recently,
Fernando Tura [16] proposed the concept of L-borderenergetic graphs, which means L E(G) = L E(Kn) = 2n − 2,
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and gave several classes of L-borderenergetic graphs. For more results on L-borderenergetic graphs, see [17–19]. In
this paper, we extend this concept to signless Laplacian energy of a graph.

For signless Laplacian spectral properties see [20]. The signless Laplacian energy of a graph G is defined as
QE(G) =

∑n
i=1|qi − d|, where q1 ≥ q2 ≥ · · · ≥ qn ≥ 0 are the signless Laplacian eigenvalues of G and d is

the average degree of G. We refer to a graph G as Q-borderenergetic if its signless Laplacian energy equals that
of the complete graph Kn , i.e., QE(G) = QE(Kn) = 2n − 2. We construct an infinite family of graphs satisfying
QE(G) = L E(G) = 2n − 2, see Theorem 3. It is interesting that this family of graphs also gives a positive answer
to the open problem mentioned by Nair Abreu et al. in Ref. [21], that is whether there are connected non-bipartite,
non-regular graphs satisfying QE(G) = L E(G). We also construct another two infinite families of Q-borderenergetic
graphs. Then, we obtain some bounds on the order and size of Q-borderenergetic graphs. Finally, we use a computer
search to find out all Q-borderenergetic graphs on no more than 10 vertices, the number of such graphs is 39.

2. Main results

If G is a regular graph of degree k, noting that D = k I , Q = k I + A, and L = k I − A, it follows that
E(G) = L E(G) = QE(G), also note that the graph pC4

⋃
qC6

⋃
rC3 is regular of degree n − 3, from [4] we

can easily get the following Theorem.

Theorem 1. Let p, q, and r are non-negative integers with p + q = 2, then pC4
⋃

qC6
⋃

rC3 is Q-borderenergetic.

It is well-known that for bipartite graphs the Laplacian spectrum coincides with the signless Laplacian spectrum,
obviously, in this case, QE(G) = L E(G). From Theorem 10 in [17] we know that there is not any L-borderenergetic
tree, thus there is not any Q-borderenergetic tree. While there does exist bipartite Q-borderenergetic graph, see graph
G10

3 in Fig. 2, for example.
Let G1 ▽ G2 denote the join of graphs G1 and G2, obtained from the union of G1 and G2 by joining every vertex

of G1 with every vertex of G2. The following lemma is from [16].

Lemma 2. Let G1 and G2 be graphs on n1 and n2 vertices, respectively. Let L1 and L2 be the Laplacian matrices
for G1 and G2, respectively, and let L be the Laplacian matrix for G1 ▽ G2. If 0 = α1 ≤ α2 ≤ · · · ≤ αn1

and 0 = β1 ≤ β2 ≤ · · · ≤ βn2 are the eigenvalues of L1 and L2, respectively, then the eigenvalues of L are
{0, n2 + α2, n2 + α3, . . . , n2 + αn1 , n1 + β2, n1 + β3, . . . , n1 + βn2 , n1 + n2}.

Theorem 3. For each integer p ≥ 1, K1 ▽ (K3 ∪ pK2) is L-borderenergetic and Q-borderenergetic.

Proof. On the one hand, by Lemma 2 and direct calculation, the Laplacian spectrum of K1 ▽ (K3 ∪ pK2) is
{0, 1(p), 3(p), 4(2), 2p + 4}. Noting that its average degree is 3, it can be easily verified that L E(K1 ▽ (K3 ∪ pK2)) =

4p + 6 = 2n − 2, where n = 2p + 4 is the order of K1 ▽ (K3 ∪ pK2).
On the other hand, the signless Laplacian matrix of K1 ▽ (K3 ∪ pK2) with suitable labeling has the form

Q(K1 ▽ (K3 ∪ pK2)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2p + 3 1 1 1 1 1 · · · 1
1 3 1 1 0 · · · · · · 0

1 1 3 1 0
...

1 1 1 3 0

1 0 0 0 2 1
...

1
... 1 2

. . . 0
...

...
. . .

. . . 1
1 0 · · · · · · 0 1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Q. Tao, Y. Hou / AKCE International Journal of Graphs and Combinatorics 17 (1) 39–44 39



Please cite this article in press as: Q. Tao, Y. Hou, Q-borderenergetic graphs, AKCE International Journal of Graphs and Combinatorics (2018),
https://doi.org/10.1016/j.akcej.2018.03.001.

Thus, its signless Laplacian characteristic polynomial is |x I − Q(K1 ▽ (K3 ∪ pK2))|

=

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

x − (2p + 3) −1 −1 −1 −1 −1 · · · −1
−1 x − 3 −1 −1 0 · · · · · · 0

−1 −1 x − 3 −1 0
...

−1 −1 −1 x − 3 0

−1 0 0 0 x − 2 −1
...

−1
... −1 x − 2

. . . 0
...

...
. . .

. . . −1
−1 0 · · · · · · 0 −1 x − 2

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

.

Performing C1 +
1

x−5 (C2 + C3 + C4), where Ci is the i th column of the above determinant, we obtain |x I − Q(K1 ▽

(K3 ∪ pK2))|

=

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

x − (2p + 3) +
−3

x − 5
−1 −1 −1 −1 −1 · · · −1

0 x − 3 −1 −1 0 · · · · · · 0

0 −1 x − 3 −1 0
...

0 −1 −1 x − 3 0

−1 0 0 0 x − 2 −1
...

−1
... −1 x − 2

. . . 0
...

...
. . .

. . . −1
−1 0 · · · · · · 0 −1 x − 2

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

.

Again performing C1 +
1

x−3 (C5 + C6), . . . , C1 +
1

x−3 (Cn−1 + Cn), then directly expanding along the first column, we
have

|x I − Q(K1 ▽ (K3 ∪ pK2))|

= (x − (2p + 3) +
−3

x − 5
+

−2p
x − 3

)(x − 5)(x − 2)2(x − 3)p(x − 1)p

= (x2
− (2p + 9)x + 10p + 18)(x − 2)3(x − 3)p−1(x − 1)p.

So its signless Laplacian spectrum is {1(p), 2(3), 3(p−1), p +
9
2 ±

1
2

√
4p2 − 4p + 9}. Hence, we have

QE(K1 ▽ (K3 ∪ pK2))

= 2p + 3 + 0 · (p − 1) + |p +
9
2

+
1
2

√
4p2 − 4p + 9 − 3| + |p +

9
2

−
1
2

√
4p2 − 4p + 9 − 3|

= 4p + 6
= 2n − 2.

This completes the proof. □

It is not difficult to verify that K1 ▽ (K3 ∪ pK2) is connected non-bipartite and non-regular, therefore, Theorem 3
also gives a positive answer to the problem mentioned by Nair Abreu et al. in Ref. [21], that is whether there are
connected non-bipartite, non-regular graphs satisfying QE(G) = L E(G).

Note that graph K1 ▽ (K3 ∪ pK2) can be seen as constructed by connecting one vertex of K4 with both ends of
each of p copies of K2. If we do the same thing on two or three vertices of K4, which has the form as graph H1 and
H2 in Fig. 1, respectively, we obtain another two families of Q-borderenergetic graphs.

Theorem 4. (1) For each integer p ≥ 1, let H1 be a graph constructed by connecting two vertices of K4 with both
ends of each of p copies of K2, respectively. Then H1 is a Q-borderenergetic graph of order 4p + 4.
(2) For each integer p ≥ 1, let H2 be a graph constructed by connecting three vertices of K4 with both ends of each
of p copies of K2, respectively. Then H2 is a Q-borderenergetic graph of order 6p + 4.
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Fig. 1. Two families of Q-borderenergetic graphs.

Proof. (1) According to the form of signless Laplacian characteristic polynomial |x I − Q(H1)|, by direct calculation
similar to the proof of Theorem 3, we get that |x I − Q(H1)| = (x2

− (2p + 9)x + 8p + 18)(x − 2p − 3)(x − 2)3(x −

3)2p−2(x − 1)2p. So the signless Laplacian spectrum of H1 is {1(2p), 2(3), 3(2p−2), 2p + 3, p +
9
2 ±

1
2

√
4p2 + 4p + 9},

and noting that the average degree of H1 is 3, consequently, by simple calculation, its signless Laplacian energy is
QE(H1) = 8p + 6 = 2n − 2, where n = 4p + 4.
(2) Similarly, by direct calculation we obtain the signless Laplacian characteristic polynomial of H2, |x I − Q(H2)| =

(x − (2p + 6))(x − (2p + 3))2(x − 2)3(x − 3)3p−2(x − 1)3p. Hence the signless Laplacian spectrum of H2

is {1(3p), 2(3), 3(3p−2), (2p + 3)(2), 2p + 6}, also note that the average degree of H2 is 3, it can be verified that
QE(H2) = 12p + 6 = 2n − 2, where n = 6p + 4. This completes the proof. □

Next, we present a lower bound on the size and a bound on the order of Q-borderenergetic graphs, respectively.

Lemma 5 ([22]). Let G be a connected graph of order n ≥ 3 with m edges and having first Zagreb index
M1(G) =

∑n
i=1d2

i . Then QE(G) ≥ 2( M1(G)
m −

2m
n ).

Lemma 6 ([22]). Let G be a connected graph of order n with m edges and having maximum degree ∆. Then
QE(G) ≤ 2(2m + 1 − ∆ −

2m
n ) with equality if and only if G ∼= K1,n−1.

Theorem 7. If G is a Q-borderenergetic graph of order n with m edges, then

m >
1
4

(n − n2
+

√
n2(n − 1)2 + 8M1(G)n).

Proof. By Lemma 5, we have

2(n − 1) ≥ 2(
M1(G)

m
−

2m
n

)

by simplification, we obtain

2m2
+ (n2

− n)m − M1(G)n ≥ 0

solving this inequality of m, it is easy to get

m ≥
1
4

(n − n2
+

√
n2(n − 1)2 + 8M1(G)n). (1)

Next, we should point out that the equality in Eq. (1) does not hold. This can be seen from the proof of Lemma 5
(Theorem 3.3 in [22]). In order to make the equality in Lemma 5 hold, on the one hand, graph G must have only one
signless Laplacian eigenvalue greater than or equal to average degree 2m

n , that is, there should hold q2 < 2m
n for G. On

the other hand, for the line graph ℓ(G) of G, its largest adjacency eigenvalue should satisfy µ1(ℓ(G)) =
2m(ℓ(G))
n(ℓ(G)) , that

is, the line graph ℓ(G) of G is regular, (see page 55, theorem 3.2.1 in [23]). Therefore, G should be a regular graph or
semi-regular bipartite graph, (see page 8, proposition 1.2.2 in [23]).

For a regular graph G, if G ≇ Kn , G has at least two non-adjacent vertices with equal degree ∆1 = ∆2, where ∆1,
∆2 are the largest and the second largest degree of G. According to the proof of theorem 3.1 in [24], if a graph G has
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Fig. 2. Q-borderenergetic graphs on no more than 10 vertices.

two non-adjacent vertices with the largest and the second largest degree ∆1 and ∆2, respectively, then q2 ≥ ∆2. Thus
the second largest signless Laplacian eigenvalue of G satisfying q2 ≥ ∆2 =

2m
n .

For a semi-regular bipartite graph G, if G ≇ K1,n−1, (where K1,n−1 is star graph, which is not Q-borderenergetic),
G has at least two non-adjacent vertices with equal degree ∆1 = ∆2 ≥

2m
n , therefore, similarly, we have

q2 ≥ ∆2 ≥
2m
n .

From the above, we know that there is no Q-borderenergetic graph such that the equality in Eq. (1) holds. □

Theorem 8. If G is a Q-borderenergetic graph of order n with m edges, then
1
2

((2m + 2 − ∆) −

√
(2m + 2 − ∆)2 − 8m) < n <

1
2

((2m + 2 − ∆) +

√
(2m + 2 − ∆)2 − 8m).

Proof. By Lemma 6, we have

2(n − 1) ≤ 2(2m + 1 − ∆ −
2m
n

)

by simplification, we obtain

n2
− (2m + 2 − ∆)n + 2m ≤ 0

solving this inequality of n, we get
1
2

((2m + 2 − ∆) −

√
(2m + 2 − ∆)2 − 8m) ≤ n ≤

1
2

((2m + 2 − ∆) +

√
(2m + 2 − ∆)2 − 8m). (2)
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Further, the equality in Lemma 6 holds if and only if G ∼= K1,n−1, which is not Q-borderenergetic. Therefore, there
is no Q-borderenergetic graph such that the equalities in Eq. (2) hold. □

At last, we perform a computer-aided search for Q-borderenergetic graphs on n ≤ 10 vertices and obtain that
there are totally 39 non-complete Q-borderenergetic graphs, among which there are 2 on n = 6 vertices, 4 on n = 8
vertices, 3 on n = 9 vertices and 30 on n = 10 vertices. We list the result in the following theorem.

Theorem 9. There are totally 39 non-complete Q-borderenergetic graphs on n ≤ 10 vertices, which are listed in
Fig. 2 in Appendix, their signless Laplacian spectra are listed in the following table, where q1, q2, q3 in SQ(G10

1 ) are
three roots of cubic equation x3

− 18x2
+ 101x − 176 = 0.

SQ(G6
1) = {1,2,2,2,4,7} SQ(G10

12) = {2,2,3,4,4,5,5,6,7,10}

SQ(G6
2) = {2,2,2,4,4,8} SQ(G10

13) = {1,3,3,4,5,5,6,6,6,11}

SQ(G8
1) = {1,1,2,2,2,3, 1

2 (13 ±
√

17)} SQ(G10
14) = {2,3,3,3,5,5,5,7, 1

2 (17 ±
√

17)}

SQ(G8
2) = {1,1,2,2,2,5, 1

2 (11 ±
√

17)} SQ(G10
15) = {2,2,3,4,5,5,6,7,8 ± 2

√
2}

SQ(G8
3) = {2,2,4,4,5,5,6,10} SQ(G10

16) = {2,2,4,4,5,6,6,6, 1
2 (17 ±

√
33)}

SQ(G8
4) = {2,4,4,4,4,6,6,10} SQ(G10

17) = {2,3,3,5,5,6,6,6,6,12}

SQ(G9
1) = {2,2,2,3,3,5,5,6,8} SQ(G10

18) = {2,4,4,4,5,6,7,7, 1
2 (17 ±

√
33)}

SQ(G9
2) = {2,2,2,2,5,5,5,5,8} SQ(G10

19) = {3,3,4,4,5,6,6,8, 1
2 (17 ±

√
33)}

SQ(G9
3) = {3,3,3,5,5,5, 1

2 (17 ±
√

33)} SQ(G10
20) = {3,3,4,5,5,6,6,6,8,12}

SQ(G10
1 ) = {1,1,1,2,2,2,3,q1, q2, q3} SQ(G10

21) = {3,4,5,6,6,6,4 ±
√

3, 10 ±
√

7}

SQ(G10
2 ) = {1,1,1,2,2,2,3,5,5,8} SQ(G10

22, G10
23) = {2,4,4,5,5,6,6,7,7,12}

SQ(G10
3 ) = {0,1,2,2,2,4,5,5, 1

2 (11 ±
√

17)} SQ(G10
24) = {3,4,4,4,6,6,7,7,7,12}

SQ(G10
4 , G10

5 ) = {1,1,1,2,2,4,4,6, 1
2 (11 ±

√
17)} SQ(G10

25) = {3,4,4,5,5,6,6,7,8,12}

SQ(G10
6 ) = {1,2,2,2,2,4,4,5,6,8} SQ(G10

26) = {6,7,7,7, 1
2 (21 ±

√
41)

SQ(G10
7 ) = {1,2,2,2,3,4,5,6, 1

2 (13 ±
√

17)} 1
2 (9 ±

√
5), 1

2 (9 ±
√

5)}

SQ(G10
8 ) = {1,2,2,3,3,4,4,5,7,9} SQ(G10

27) = {4,4,4,6,6,7,7,7, 1
2 (21 ±

√
33)}

SQ(G10
9 ) = {2,2,2,2,3,4,4,5,8 ±

√
2} SQ(G10

28) = {4,5,5,6,6,7,7,8,8,14}

SQ(G10
10) = {2,5,5,6,7 ±

√
5, SQ(G10

29) = {5,5,6,7,7,8,8,8,8,16}
1
2 (5 ±

√
5), 1

2 (5 ±
√

5)} SQ(G10
30) = {1,1,1,2,2,2,3,3, 1

2 (15 ±
√

33)}

SQ(G10
11) = {2,2,2,4,4,5,5,7, 1

2 (15 ±
√

33)}
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Appendix. Fig. 2

See Fig. 2.
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[14] K.C. Das, I. Gutman, A.S. Çevik, B. Zhou, On Laplacian energy, MATCH Commun. Math. Comput. Chem. 70 (2013) 689–696.
[15] K.C. Das, Seyed Ahmad Mojallal, On Laplacian energy of graphs, Discrete Math. 325 (2014) 52–64.
[16] Fernando Tura, L-borderenergetic graphs, MATCH Commun. Math. Comput. Chem. 77 (2017) 37–44.
[17] B. Deng, X. Li, J. Wang, Further results on L-borderenergetic graphs, MATCH Commun. Math. Comput. Chem. 77 (2017) 607–616.
[18] B. Deng, X. Li, More on L-borderenergetic graphs, MATCH Commun. Math. Comput. Chem. 77 (2017) 115–127.
[19] Q. Tao, Y. Hou, A Computer Search for the L-Borderenergetic graphs, MATCH Commun. Math. Comput. Chem. 77 (2017) 595–606.
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