

AKCE International Journal of Graphs and Combinatorics

ISSN: 0972-8600 (Print) 2543-3474 (Online) Journal homepage: https://www.tandfonline.com/loi/uakc20

Some classes of trees with maximum number of holes two

Srinivasa Rao Kola, Balakrishna Gudla & Niranjan P.K.

To cite this article: Srinivasa Rao Kola, Balakrishna Gudla & Niranjan P.K. (2020) Some classes of trees with maximum number of holes two, AKCE International Journal of Graphs and Combinatorics, 17:1, 16-24, DOI: 10.1016/j.akcej.2018.06.010

To link to this article: https://doi.org/10.1016/j.akcej.2018.06.010

© 2018 Kalasalingam University. Published with license by Taylor & Francis Group, LLC.

0

Published online: 17 Jun 2020.

Submit your article to this journal 🗹

Article views: 131

🜔 View related articles 🗹

View Crossmark data 🗹

Citing articles: 1 View citing articles

Some classes of trees with maximum number of holes two

Srinivasa Rao Kola*, Balakrishna Gudla, Niranjan P.K.

Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka, Surathkal, India

Received 3 January 2018; received in revised form 7 June 2018; accepted 14 June 2018

Abstract

An L (2, 1)-coloring of a simple connected graph G is an assignment of non-negative integers to the vertices of G such that adjacent vertices color difference is at least two, and vertices that are at distance two from each other get different colors. The maximum color assigned in an L (2, 1)-coloring is called span of that coloring. The span of a graph G denoted by λ (G) is the smallest span taken over all L (2, 1)-colorings of G. A hole is an unused color within the range of colors used by the coloring. An L (2, 1)-coloring f is said to be irreducible if no other L (2, 1)-coloring can be produced by decreasing a color of f. The maximum number of holes of a graph G, denoted by H_{λ} (G), is the maximum number of holes taken over all irreducible L (2, 1)-colorings with span λ (G). Laskar and Eyabi (Christpher, 2009) conjectured that if T is a tree, then H_{λ} (T) = 2 if and only if $T = P_n$, n > 4. We show that this conjecture does not hold by providing a counterexample. Also, we give some classes of trees with maximum number of holes two.

Keywords: L (2, 1)-coloring; Span of a graph; Irreducible coloring; Maximum number of holes

1. Introduction

The Channel assignment problem is the problem of assigning frequencies to transmitters without interference. One of the variations of Channel assignment problem is L(2, 1)-coloring of graphs. An L(2, 1)-coloring of a graph G, introduced by Griggs and Yeh [1] is an assignment f from the vertex set of G to $\{0, 1, 2, ..., k\}$ such that $|f(u) - f(v)| \ge 2$ if d(u, v) = 1, and $|f(u) - f(v)| \ge 1$ if d(u, v) = 2, where d(u, v) denotes the distance between the vertices u and v. The span of f is the largest integer assigned by f. The L(2, 1)-span or span $\lambda(G)$ of a graph G is the smallest span of f taken over all L(2, 1)-colorings of G. In the introductory paper, they have proved that $\lambda(P_n) = 4$ for $n \ge 5$ and they have shown that $\lambda(T)$ is either $\Delta + 1$ or $\Delta + 2$ for any tree T with maximum degree Δ . We refer a tree is Type-I if $\lambda(T) = \Delta + 1$, otherwise Type-II. In a graph G with maximum degree Δ , we refer a vertex v as a major vertex if its degree is Δ , otherwise it is a minor vertex. A Δ -path segment is a path

https://doi.org/10.1016/j.akcej.2018.06.010

© 2018 Kalasalingam University. Published with license by Taylor & Francis Group, LLC

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/ by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer review under responsibility of Kalasalingam University.

^{*} Corresponding author.

E-mail addresses: srinu.iitkgp@gmail.com (S.R. Kola), gudla.balakrishna@gmail.com (B. Gudla), niranjanpk704@gmail.com (Niranjan P.K).

Fig. 2.1. Irreducible L(2, 1)-span coloring of T_1 with two holes.

between two major vertices. Wang [2] has proved that if a tree *T* does not contain Δ -path segments of length 1, 2 and 4, then *T* is Type-I. Zhai et al. [3] improved the above condition as if *T* does not contains Δ -path segment of length 2 and 4, then $\lambda(T) = \Delta + 1$. Mandal and Panigrahi [4] have found that $\lambda(T) = \Delta + 1$ if *T* has at most one Δ -path segment of length either 2 or 4 and all other Δ -path segments are of length at least 7. Wood and Jacob [5] have given a complete characterization of the L(2, 1)-span of trees up to twenty vertices. Fishburn et al. [6] have introduced the concept of irreducibility of L(2, 1)-coloring. An L(2, 1)-coloring *f* of a graph *G* is said to be irreducible if there is no L(2, 1)-coloring *g* of *G* such that $g(v) \leq f(v)$ for all vertices *v* in *G* and g(u) < f(u) for at least one vertex *u* of *G*. An integer *l* between 0 and the span of an L(2, 1)-coloring *f* is said to be a hole if there is no vertex *v* such that f(v) = l. The maximum number of holes over all irreducible span colorings of a graph *G* is denoted by $H_{\lambda}(G)$. Laskar and Eyabi [7] have determined the maximum number of holes for paths, cycles, stars and complete bipartite graphs as 2, 2, 1 and 1 respectively. Also, they showed that $H_{\lambda}(T) \leq 1$ for any Type-I tree *T* and $H_{\lambda}(T) \leq 2$ if *T* is Type-II tree. Further, they conjectured as below.

Conjecture 1.1 ([7]). For any tree T, $H_{\lambda}(T) = 2$ if and only if T is a path P_n , n > 4.

In this paper, we give a counterexample for Conjecture 1.1 by giving a two hole irreducible span coloring for a Type-II tree which is not a path. Also, we consider some Type-II trees given by Wood and Jacob [5] and for each tree, we construct infinitely many Type-II trees with maximum number of holes two.

2. Counterexample

In this section, we give a counterexample to Conjecture 1.1. Wood and Jacob [5] have proved that a tree T with maximum degree $\Delta = 3$ and containing a subtree T_1 with four major vertices v_1, v_2, v_3 and v_4 of T such that $v_1v_2, v_3v_4 \in E(T), d(v_2, v_3) = 4$ and $d(v_1, v_4) = 6$ is Type-II. For this subtree T_1 , we define an irreducible span coloring with two holes which disproves Conjecture 1.1. For the sake of completeness, we give the proof given by Wood and Jacob [5] to show T is Type-II.

Theorem 2.1 ([5]). A tree T with maximum degree $\Delta = 3$ and containing a subtree T_1 as below, is Type-II.

Proof. Suppose T_1 is Type-I, that is $\lambda(T_1) = 4$. Let f be a span coloring of T_1 . In any span coloring of a Type-I tree, any major vertex receives either 0 or $\Delta + 1$. Without loss of generality, let $f(v_1) = 4$ and $f(v_2) = 0$. If $f(v_3) = 4$ and $f(v_4) = 0$, then there is no possibility for coloring the vertices between v_2 and v_3 . Suppose that $f(v_3) = 0$ and $f(v_4) = 4$. Since $f(v_1) = 4$, $f(v_2) = 0$ and $f(v_3) = 0$, the only possibility for coloring the vertices between v_2 and v_3 . Suppose that $f(v_3) = 0$ and v_3 is $\langle 3 \ 1 \ 4 \rangle$, which is not possible as $f(v_4) = 4$. Therefore T_1 is Type-II and hence T.

The following example gives a counterexample for Conjecture 1.1.

Example 2.2. It is clear that the coloring of T_1 given in Fig. 2.1 is an irreducible L(2, 1)-span coloring with two holes.

3. Some classes of Type-II trees with maximum number of holes two

Wood and Jacob [5] have given some sufficient conditions for a tree to be Type-II. We consider some of their sufficient conditions as below.

Theorem 3.1 ([5]). A tree T with maximum degree Δ and containing any of the following subtrees is Type-II.

1. $\Delta = 3$,

Now, we show that $H_{\lambda}(T_i) = 1, 2 \le i \le 6$. Later, in this section, we construct some classes of Type-II trees from $T_i, 2 \le i \le 6$ with maximum number of holes two. In the following theorem, we prove that there is no irreducible L(2, 1)-span coloring with two holes for $T_i, 2 \le i \le 6$.

Theorem 3.2. For the trees T_i , $2 \leq i \leq 6$, $H_{\lambda}(T_i) \leq 1$.

Proof. First, we consider T_2 with the following labeling and prove $H_{\lambda}(T_2) \leq 1$.

Suppose that T_2 has an irreducible L(2, 1)-span coloring f with two holes h, h'. Since 0, the span of f and any two consecutive colors cannot be holes, the possibilities for $\{h, h'\}$ are $\{1, 3\}$, $\{1, 4\}$ and $\{2, 4\}$. If $\{h, h'\} = \{1, 3\}$, then any major vertex receives only either 0 or 2. If $f(v_1) = 0$, then neighbors of v_1 receives 2, 4 and 5. Since at least one of the pendant vertices u_1 and u_2 receives the color 4 or 5 which is reducible to 3, $f(v_1) \neq 0$. So, $f(v_1), f(v_3)$ and $f(v_4)$ must be 2. If $f(w_1) = 0$, then $f(w_3)$ and $f(v_2)$ must be 2 and 0 respectively (as $f(w_2)$ is either 4 or 5). With this partial coloring there is no possibility for coloring the path $w_4w_5w_6$ (only two colors 4 and 5 are available). If $f(w_1)$ is either 4 or 5. Then $f(w_2)$ and $f(v_2)$ must be 0 and 2 respectively. Since either w_4 or w_7 receives 0, there is no possible coloring for either w_5w_6 or w_8w_9 . Therefore, there is no irreducible span coloring of T_2 with holes 1 and 3.

If $\{h, h'\} = \{1, 4\}$, then any major vertex receives only 0 or 5. If $f(v_1) = 5$, then one of the colors assigned to u_1 or u_2 reduces to 1. So, $f(v_1)$, $f(v_3)$ and $f(v_4)$ must be 0. If u_1 or u_2 receives 5 then it reduces to a hole 4. Therefore u_1 and u_2 receive the colors 2 and 3, and w_1 receives the color 5. Since $f(w_1) = 5$ and $f(w_2) = 2$ or 3, w_3 and v_2 receive 0 and 5 respectively. With this partial coloring there is no possibility for coloring the path $w_4w_5w_6$ (only two colors 2 and 3 are available). Therefore, there is no irreducible span coloring of T_2 with 1 and 4 as holes.

If $\{h, h'\} = \{2, 4\}$, then any major vertex receives only 3 or 5. If $f(v_1) = 3$ and $f(w_1)$ is 0 or 1, then $f(w_2) = 5$ and $f(v_2) = 3$. In this case color 5 received by w_2 reduces to a hole 4. If $f(v_1) = 3$ and $f(w_1) = 5$, then $f(w_3)$ and $f(v_2)$ must be 3 and 5 respectively. With this partial coloring the possibilities for coloring the path $w_4w_5w_6v_3$ are $\langle 0 \ 3 \ 1 \ 5 \rangle$ and $\langle 1 \ 3 \ 0 \ 5 \rangle$. In both the cases, one of the pendant vertices u_3 or u_4 receives 3, which reduces to a hole 2. If $f(v_1) = 5$, then $f(w_1)$ must be 3 otherwise u_1 or u_2 receives 3 which reduces to a hole 2. So, $f(w_3)$ and $f(v_2)$ must be 5 and 3 respectively. With this partial coloring the possibilities for coloring the path $w_4w_5w_6$ are $\langle 0 \ 5 \ 1 \rangle$ and $\langle 1 \ 5 \ 0 \rangle$. In both the cases, the color 5 reduces to a hole 4. Therefore $H_{\lambda}(T_2) \leq 1$.

Now, we consider T_3 with labeling as below.

Suppose that T_3 has an irreducible L(2, 1)-span coloring f with two holes h, h'. The possibilities for $\{h, h'\}$ are $\{1, 3\}, \{1, 4\}$ and $\{2, 4\}$. If $\{h, h'\} = \{1, 3\}$, then as in T_2 , $f(v_1)$, $f(v_3)$ and $f(v_4)$ must be 2. Since v_2 is adjacent to v_3 , $f(v_2) = 0$. With this partial coloring there is no possibility for coloring the path $w_1w_2w_3$. If $\{h, h'\} = \{1, 4\}$, then $f(v_1), f(v_3)$ and $f(v_4)$ must be 0. As v_2 and v_3 are adjacent, v_2 receives 5. With this partial coloring there is no possibility for coloring the path $w_1w_2w_3$. If $\{h, h'\} = \{2, 4\}$, then any major vertex receives only 3 or 5. If $f(v_3) = 3$ and $f(v_2) = 5$, the possibilities for coloring the path $v_1w_1w_2w_3$ are $\langle 5 \ 0 \ 3 \ 1 \rangle$ and $\langle 5 \ 1 \ 3 \ 0 \rangle$. In both the cases, u_1 or u_3 receives 3 which reduces to 2. If $f(v_3) = 5$ and $f(v_2) = 3$, then the possibilities to color the path $w_1w_2w_3$ are $\langle 0 \ 5 \ 1 \rangle$ and $\langle 1 \ 5 \ 0 \rangle$. In both the cases, the color 5 reduces to a hole 4. Therefore, there is no irreducible L(2, 1)-span coloring for T_3 with two holes.

Next, we consider T_4 along with the following labeling.

Suppose that T_4 has an irreducible L(2, 1)-span coloring f with two holes h, h'. Then $\{h, h'\}$ is $\{1, 3\}$ or $\{1, 4\}$ or $\{2, 4\}$. If $\{h, h'\} = \{1, 3\}$, then any major vertex receives only either 0 or 2. Since one of the vertices v_1 or v_2 must

receive 0, a pendant vertex adjacent to it receives 4 or 5 which reduces to a hole 3. If $\{h, h'\} = \{1, 4\}$, then any major vertex receives only either 0 or 5. Since one of the vertices v_1 or v_2 must receive 5, a pendant vertex adjacent to it receives 2 or 3 which reduces to a hole 1. If $\{h, h'\} = \{2, 4\}$, then any major vertex receives only 3 or 5. If $f(v_1) = 3$ and $f(v_2) = 5$, then $f(w_2) = 3$ which implies $f(v_3) = 5$. Since the coloring is irreducible, $f(u_4)$ cannot be 3. With this partial coloring, there is no possibility for coloring the path $w_4w_5w_6$. If $f(v_1) = 5$ and $f(v_2) = 3$ then $f(w_2) = 5$ which reduces to 4. Therefore $H_{\lambda}(T_4) \leq 1$.

Now, consider T_5 with labeling as below.

Suppose that T_5 has an irreducible L(2, 1)-span coloring f with two holes h, h'. The possibilities for $\{h, h'\}$ are $\{1, 3\}, \{1, 4\}$ and $\{2, 4\}$. If $\{h, h'\} = \{1, 3\}$, then as in T_2 , $f(v_1)$, $f(v_3)$ and $f(v_5)$ must be 2, and $f(v_2) = f(v_4) = 0$. With this partial coloring there is no possibility for coloring the path $w_2w_3w_4w_5$. If $\{h, h'\} = \{1, 4\}$, then as in T_2 , $f(v_1), f(v_3)$ and $f(v_5)$ must be 0. Then one of the pendant vertices u_1 and u_2 receives the color 5 which is reducible to 4. If $\{h, h'\} = \{2, 4\}$, then any major vertex receives only 3 or 5. If v_1 receives 5, then $f(v_2) = 3$ and one of the pendant vertices u_1 and u_2 receives the color 3 which is reducible to 2. Therefore $f(v_1)$ and $f(v_5)$ must be 3 and hence $f(v_2) = 5$, $f(v_3) = 3$ and $f(v_4) = 5$. With this partial coloring there is no possibility to color the path $w_2 w_3 w_4 w_5$. Therefore $H_{\lambda}(T_5) \leq 1$.

Finally, we consider the tree T_6 along with labeling as below.

Suppose T_6 has an irreducible L(2, 1)-span coloring f with holes h, h'. The possibilities for $\{h, h'\}$ are $\{1, 3\}$, $\{1, 5\}$ and $\{3, 5\}$. If $\{h, h'\} = \{1, 3\}$, then any major vertex receives 0 or 2 only. Without loss of generality, we assume $f(v_1) = 0$ and $f(v_2) = 2$. Then one of the pendant vertices adjacent to v_1 must receive 4 which reduces to 3. Similarly one can see that other two cases are not possible. Therefore $H_{\lambda}(T_6) \leq 1$.

Theorem 3.3. For the trees T_i , $2 \leq i \leq 6$, $H_{\lambda}(T_i) = 1$.

Proof. From Theorem 3.2, we have $H_{\lambda}(T_i) \leq 1, 2 \leq i \leq 6$. It is easy to see that the colorings of $T_i, 2 \leq i \leq 6$ given below are irreducible L (2, 1)-span colorings with one hole. Therefore $H_{\lambda}(T_i) = 1, 2 \le i \le 6$.

20

3.1. Construction of Type-II trees with maximum number of holes two

We start this subsection with a lemma that gives a Type-II tree with maximum number of holes two from a Type-II tree with a two hole L(2, 1)-span coloring without changing the span. Later, we apply this lemma on trees T_i , $1 \le i \le 6$ to construct infinitely many trees with maximum number of holes two.

Lemma 3.4. If T is a Type-II tree and T has a two hole reducible span coloring, then there exists a tree T' such that T is a subtree of T', $\lambda(T') = \lambda(T)$ and $H_{\lambda}(T') = 2$.

Proof. Let *T* be a Type-II tree with maximum degree Δ and let *f* be a reducible *L* (2, 1)-span coloring of *T* with two holes *h* and *h'*. Without loss of generality h < h'. Now, we give a procedure to construct *T'* from *T*.

Step-I: Whenever a vertex color reduction is possible to a color other than hole, we reduce the color. Finally, f is an L(2, 1)-span coloring of T with no vertex color can be reduced to a color other than hole.

Step-II: Suppose that a color received by a minor vertex *u* reduces to *h'*. Let *k* be the order of the set $S_u = \{c : 0 \le c < h', c \ne h \text{ and } c \text{ is not the color assigned to any neighbor of u}\}$. Now we attach *k* new pendant vertices and we assign them the *k* colors from S_u . Apply this procedure to all the minor vertices whose color reduces to *h'*.

Step-III: We follow the procedure of Step-II for all the minor vertices in the tree obtained from Step-II by replacing h' by h. Let T' obtained finally.

Next, we show that the coloring of T' is an irreducible span coloring. From Step-I, Step-II and Step-III, it is clear that none of the minor vertex colors is reducible. Now, we prove that any major vertex color is not reducible to a hole. Suppose that a color l assigned to a major vertex u reduces to a hole l'. It is clear that $l \neq 0, 1$. If $2 \leq l \leq \Delta + 1$, then none of the colors l' - 1, l', l' + 1, l - 1, l and l + 1 can be given to the neighbors of u. Since in any case the colors l' - 1, l', l' + 1, l - 1, l and l + 1 are at least 4, it is not possible to color the Δ neighbors of u. If $l = \Delta + 2$, then $l' < \Delta + 1$ is not possible as above. So, $l = \Delta + 2$ and $l' = \Delta + 1$. Since $0, 1, 2, \ldots, \Delta - 1$ are used to color the Δ neighbors of u, the other hole must be Δ which is not possible as Δ and $\Delta + 1$ are consecutive.

Theorem 3.5. There are infinitely many Type-II trees with $\Delta = 3$ and maximum number of holes two.

Proof. Since the trees T_i , $2 \le i \le 5$ have reducible L(2, 1)-span colorings with two holes, we apply Lemma 3.4 and get the following trees T'_i , $2 \le i \le 5$ with irreducible span colorings f_i , $2 \le i \le 5$ with two holes.

21

Let f_1 be the irreducible L(2, 1)-span coloring of T_1 given in Example 2.2 and let $T'_1 = T_1$. Now, we construct infinitely many Type-II trees with $\Delta = 3$ and maximum number of holes two from T'_i , $1 \le i \le 5$. When we say connecting two trees, we mean adding an edge between them. Let c be a color of a vertex u in T'_i , $1 \le i \le 5$. Depending on the colors of neighbors of u, we connect the trees (one at a time) given in Table 3.1 corresponding to the color c with the first vertex to T'_i at u. In the case of connecting a single vertex, first we connect the smallest colored vertex to maintain irreducibility. It is easy to see that after every step the tree obtained is Type-II with maximum

Trees connectable to the	tree T_6^{\prime} .		
Color of vertex		Connectable trees	
0	(a) $\bullet 2$ (b) $\bullet 1$ $4 \bullet 2$	(c) $\begin{array}{c} \bullet & \bullet \\ 4 & 2 & \bullet \\ \bullet & \bullet \\ 6 & \bullet \\ \end{array}$ (d) $\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ 6 & \bullet \\ \end{array}$ (e) $\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ 1 & \bullet \\ \end{array}$	(e) $\begin{array}{c} \bullet & \bullet & \bullet \\ 6 & 4 & 2 & 0 \end{array}$
1	(a) $\begin{array}{c} \bullet 0 \\ 4 \\ \bullet 2 \end{array}$ (b) $\begin{array}{c} \bullet 0 \\ \bullet 2 \end{array}$	(c) $\begin{array}{c} \bullet & \bullet & \bullet \\ 6 & 4 & 2 & 0 \end{array}$ (d) $\begin{array}{c} \bullet & \bullet & 0 \\ 6 & 4 & \bullet & 2 \end{array}$	
2	(a) ● 0(b) ● 4	(c) $\begin{array}{c} \bullet \\ 4 \\ \bullet \\ \end{array}$ (d) $\begin{array}{c} \bullet \\ 4 \\ \bullet \\ 6 \end{array}$ (e)	(e) $\begin{array}{c} \bullet & \bullet & \bullet \\ 6 & 4 & 2 & 0 \end{array}$ (f) $\begin{array}{c} \bullet & \bullet & 0 \\ 6 & 4 & \bullet & 2 \end{array}$
4	 (a) ● 0 (b) ● 1 (c) ● 2 	(d) $\bullet 6$ (e) $\begin{array}{c} \bullet & \bullet \\ 2 & \bullet \\ 0 \end{array}$ (f) $\begin{array}{c} \bullet & \bullet \\ 6 & 2 \end{array} \begin{array}{c} \bullet \\ 0 \end{array}$	(g) $6 \xrightarrow{\bullet} 0 \\ 1 \\ 2$
6	 (a) ● 0 (b) ● 1 (c) ● 2 	(d) $\begin{array}{c} \bullet \\ \bullet $	(g) $4 \xrightarrow{\bullet} 0 1 2$

Table 3.2Trees connectable to the tree T'_{-}

number of holes two and $\Delta = 3$. Also, since at every step, connecting of trees to the pendant vertices is possible, we get infinitely many trees.

Example 3.6. In this example, we give an illustration of Theorem 3.5 for the tree T'_5 . The vertex a_1 has the color 5 and its neighbor's color is 3 in T'_5 . From Theorem 3.5, there are only two possibilities (a) and (c) corresponding to color 5 in Table 3.1 out of which (a) is connected first. Later, out of the two possibilities, (b) and (c) for the vertex a_1 , (c) is connected. Similarly, some trees are connected for the vertices a_i , $1 \le i \le 6$.

Theorem 3.7. There are infinitely many Type-II trees with $\Delta = 4$ and maximum number of holes two.

Proof. We apply Lemma 3.4 on T_6 to get figure T'_6 with coloring f_6 as below. Rest of the proof is similar to that of Theorem 3.5 and using Table 3.2.

Remark. Tables 3.1 and 3.2 are obtained using the concept in the proof of Lemma 3.4. It is easy to see that connecting a tree (not a tree obtained by connecting some trees from the table) to T'_i , $1 \le i \le 6$ other than the trees listed in the tables, produces a reducible L (2, 1)-span coloring for the resultant tree. Therefore, the class of trees generated from the tables is complete with respect to f_i , $1 \le i \le 6$. Changing two hole coloring of T'_i , $1 \le i \le 6$ produces different class of Type-II trees with maximum number of holes two.

References

- [1] Jerrold R. Griggs, Roger K. Yeh, Labelling graphs with a condition at distance 2, SIAM J. Discrete Math. 5 (4) (1992) 586–595.
- [2] W.F. Wang, The L(2, 1)-labelling of trees, Discrete Appl. Math. 154 (3) (2006) 598-603.
- [3] M.Q. Zhai, C.H. Lu, J.L. Shu, A note on L(2, 1)-labelling of trees, Acta Math. Appl. Sin. Engl. Ser. 28 (2) (2012) 395–400.
- [4] Nibedita Mandal, Pratima Panigrahi, Solutions of some L(2, 1)-coloring related open problems, Discuss. Math. Graph Theory 36 (2) (2016) 279–297.
- [5] Christpher A. Wood, Jobby Jacob, A Complete L(2, 1)-span characterization for small trees, AKCE Int. J. Graphs Comb. 12 (1) (2015) 26–31.
- [6] Peter. C. Fishburn, Renu Laskar, Fred S. Roberts, John Villalpando, Parameters of L(2, 1)-coloring, Manuscript.
- [7] Renu Laskar, Gilbert Eyabi, Holes in L(2, 1)-coloring on certain classes of graphs, AKCE Int. J. Graphs Comb. 6 (2) (2009) 329–339.