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ABSTRACT
Letpi ≥ 2 and consider the following anisotropicp-Laplace equation

−
N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣
pi−2

∂u

∂xi

)
= g(x)f (u), u > 0 in�.

Under suitable hypothesis on the weight function g we present an
existence result for f (u) = e

1
u in a bounded smooth domain � and

nonexistence results for f (u) = −e
1
u or −(u−δ + u−γ ), δ, γ > 0 with

� = R
N respectively.
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1. Introduction

In this article we are interested in the question of existence of a weak solution to the
following anisotropic p-Laplace equation

−
N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣
pi−2

∂u
∂xi

)
= g(x) e

1
u , u > 0 in� (1)

where � is a bounded smooth domain in RN with N ≥ 3 and g ∈ L1(�) is nonnegative
which is not identically zero.

Alongside we present nonexistence results concerning stable solutions to the following
equation

−
N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣
pi−2

∂u
∂xi

)
= g(x)f (u) in R

N , u > 0 in R
N (2)

where f (u) is either −(u−δ + u−γ ) with δ, γ > 0 or −e
1
u . The weight function g ∈

L1loc(R
N) is such that g ≥ c > 0 for some constant c.
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2 P. GARAIN

Throughout the article, we assume that pi ≥ 2. If pi = 2 for all i and g ≡ 1 Equation (2)
becomes the Laplace equation

−�u = f (u) in�. (3)

Observe that the nonlinearities in our consideration is singular in the sense that it blows
up near the origin. Starting from the pioneering work of Crandall et al. [1] where the exis-
tence of a unique positive classical solution for f (u) = u−δ with any δ > 0 has been proved
for the problem (3) with zero Dirichlet boundary value. Lazer-McKenna [2] observed
that the above classical solution is a weak solution in H1

0(�) iff 0 < δ < 3. Boccardo-
Orsina [3] investigated the case of any δ > 0 concerning the existence of a weak solution in
H1
loc(�). Moreover, Canino-Degiovanni [4] and Canino-Sciunzi [5] investigated the ques-

tion of existence and uniqueness of solution for singular Laplace equations. Canino et al.
[6] generalized the problem (3) to the following singular p-Laplace equation

−�pu = f (x)
uδ

in�, u > 0 in�, u = 0 on ∂� (4)

to obtain existence and uniqueness of weak solution for any δ > 0 under suitable hypoth-
esis on f. For more details concerning singular problems reader can look at [7–9] and the
references therein.

Farina [10] settled the question of nonexistence of stable solution for the Equation (3)
with f (u) = eu. There is a huge literature in this direction for various type of nonlinearity
f (u), reader can look at the nice surveys [11, 12]. For f (u) = −u−δ with δ > 0 Ma-Wei
[13] proved that the Equation (3) does not admit any C1(RN) stable solution provided

2 ≤ N < 2 + 4
1 + δ

(
δ +

√
δ2 + δ

)
.

Moreovermany other qualitative properties of solutions has been obtained there. Consider
the weighted p-Laplace equation

− div
(
w(x)|∇u|p−2∇u

) = g(x)f (u) in R
N . (5)

For w = g = 1, Guo-Mei [14] showed nonexistence results in C1(RN) for (5), provided
2 ≤ p < N <

p(p+3)
p−1 and δ > qc where

qc = (p − 1)[(1 − p)N2 + (p2 + 2p)N − p2] − 2p2
√
(p − 1)(N − 1)

(N − p)[(p − 1)N − p(p + 3)]
.

By considering amore general weight g ∈ L1loc(R
N) such that |g| ≥ C|x|a for large |x|, Chen

et al. [15] proved nonexistence results for the Equation (5), provided w = 1 and 2 ≤ p <
N <

p(p+3)+4a
p−1 and δ > qc where

qc = 2(N + a)(p + a)− (N − p)[(p − 1)(N + a)− p − a] − β

(N − p)[(p − 1)N − p(p + 3)]
,

for

β = 2(p + a)

√
(p + a)

(
N + a + N − p

p − 1

)
.

Recently this has been extended for a general weight function w in [16, 17].
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Our main motive in this article is to investigate such results in the framework of the
anisotropic p-Laplace operator, which is non-homogeneous. Such operators appear in
many physical phenomena, for example, it reflects anisotropic physical properties of some
reinforcedmaterials [18], appears in image processing [19], to study the dynamics of fluids
in anisotropic media when the conductivities of the media are different in each direction
[20]. The first part of this article is devoted to the existence of a weak solution for the
anisotropic problem (1). Some recent works on singular anisotropic problems can be found
in [21, 22]. The singularity e

1
u is more singular in nature compared to u−δ which protects

one to obtain the uniform boundedness of un as in [3]. We overcome this difficulty using
the domain approximation method following [23]. In the second part we provide nonexis-
tence results of stable solutions for the anisotropic p-Laplace equation (2) with the mixed
singularities −(u−δ + u−γ ) and −e

1
u . We employ the idea introduced in [10] to establish

our main results stated in Section 2 for which Caccioppoli type estimates (see Section 5)
will be the main ingredient. The main difficulty to obtain such estimates arises due to the
nonhomogenity of the anisotropic p-Laplace operator which we overcome by choosing
suitable test functions in the stability condition.

2. Preliminaries

In this section, we present some basic results in the anisotropic Sobolev space.
Anisotropic Sobolev Space: Let pi ≥ 2 for all i, then for any domain D define the

anisotropic Sobolev space by

W1,pi(D) =
{
v ∈ W1,1(D) :

∂v
∂xi

∈ Lpi(D)
}

and

W1,pi
0 (D) = W1,pi(D) ∩ W1,1

0 (D)

endowed with the norm

‖v‖W1,pi
0 (D) =

N∑
i=1

∥∥∥∥ ∂v∂xi
∥∥∥∥
Lpi (D)

.

The spaceW1,pi
loc (D) is defined analogously.

We denote by p̄ to be the harmonic mean of p1, p2, . . . , pN defined by

1
p̄

= 1
N

N∑
i=1

1
pi

and

p̄∗ = Np̄
N − p̄

.

The following Sobolev embedding theorem can be found in [24–26].
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Theorem 2.1: For any bounded domain�, the inclusion map

W1,pi
0 (�) → Lr(�)

is continuous for every r ∈ [1, p̄∗] if p̄ < N and for every r ≥ 1 if p̄ ≥ N. Moreover, there
exists a positive constant C depending only on� such that for every v ∈ W1,pi

0 (�)

‖v‖Lr(�) ≤ C
N∏
i=1

∥∥∥∥ ∂v∂xi
∥∥∥∥
Lpi (�)

, ∀ r ∈ [1, p̄∗].

Weak Solution:We say that u ∈ W1,pi
loc (�) is a weak solution of the problem (1) if u>0

a.e. in� and for every φ ∈ C1
c (�)

N∑
i=1

∫
�

∣∣∣∣ ∂u∂xi
∣∣∣∣
pi−2

∂u
∂xi

∂ϕ

∂xi
dx =

∫
�

g(x) e
1
uφ dx. (6)

Stable Solution: We say that u ∈ W1,pi
loc (R

N) is a stable solution of the problem (2), if
u>0 a.e. in� such that both g(x)f (u), g(x)f ′(u) ∈ L1loc(R

N) and for all ϕ ∈ C1
c (R

N),

N∑
i=1

∫
RN

∣∣∣∣ ∂u∂xi
∣∣∣∣
pi−2

∂u
∂xi

∂ϕ

∂xi
dx =

∫
RN

g(x)f (u)ϕ dx (7)

and ∫
RN

g(x)f ′(u)ϕ2 dx ≤
N∑
i=1
(pi − 1)

∫
RN

∣∣∣∣ ∂u∂xi
∣∣∣∣
pi−2 ∣∣∣∣ ∂ϕ∂xi

∣∣∣∣
2
dx. (8)

For a general theory of anisotropic Sobolev space, we refer the reader to [24, 25, 27, 28].
Assumption and notation for the nonexistence results:We denote by � = RN for N ≥ 1

and assume 2 < p1 ≤ p2 ≤ · · · ≤ pN .
We will make use of the following truncated functions later. For k ∈ N, α > pN − 1 and

t ≥ 0, define

ak(t) =

⎧⎪⎨
⎪⎩
(1 − α)

2
k
α+1
2

(
t + 1 + α

k(1 − α)

)
, if 0 ≤ t <

1
k
,

t
1−α
2 , if t ≥ 1

k
,

and

bk(t) =

⎧⎪⎨
⎪⎩

−αkα+1
(
t − 1 + α

kα

)
, if 0 ≤ t <

1
k
,

t−α , if t ≥ 1
k
.

Then it can be easily verified that both ak and bk are positiveC1[0,∞)decreasing functions.
Moreover, ak and bk satisfies the following properties:
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(a)

ak(t)2 ≥ t bk(t), ∀ t ≥ 0.

(b)

ak(t)pi |a′
k(t)|2−pi + bk(t)pi |b′

k(t)|1−pi ≤ C |t|pi−α−1,

for some positive constant C(p1, p2, . . . , pN ,α).
(c)

a′
k(t)

2 = (α − 1)2

4α
|b′

k(t)|, ∀ t ≥ 0.

The following notations will be used for the nonexistence results.

Notation: The Equation (2) will be denoted by (2)s and (2)e for f (u) = −u−δ − u−γ and
f (u) = −e

1
u respectively. Without loss of generality we assume 0 < δ ≤ γ .

We denote by Br(0) to be the ball centred at 0 with radius r>0.

We denote by ui = ∂u
∂xi for all i = 1, 2, . . . ,N and q =

∑N
i=1 pi
N .

Denote by

l1 = pN − q
2

, l2 = 2δ
N(q − 1)

− q − 1
2

and l3 = 2
MN(q − 1)

− q − 1
2

.

We denote by

A =
(
N(q − 1)(pN − 1)

4
,∞

)
,

B =
(
0,

4
N(q − 1)(pN − 1)

)
, C =

(
0,

4
N(N − 1)(q − 1)

)
.

Define

I =
N⋂
i=1

Ii

where

Ii =
(

N2(q − 1)(pi − 1)
pi
(
N(q − 1)+ 4

)− N2(q − 1)
,∞

)
,

provided pi(N(q − 1)+ 4)− N2(q − 1) > 0 for all i = 1, 2, . . . ,N and J = B ∩ C.
We assume δ ∈ A andM ∈ J. Observe that δ ∈ A implies l2 > l1 and l2 > 0. AlsoM ∈ J

implies l3 > l1 and l3 > 0.
If C depends on ε we denote by Cε and if C depends on r1, r2, . . . , rm we denote it by

C(r1, r2, . . . , rm).
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Throughout this article ψR ∈ C1
c (R

N) is a test function such that

0 ≤ ψR ≤ 1 in R
N , ψR = 1 in BR(0),

ψR = 0 in R
N \ B2R(0)

with

|∇ψR| ≤ C
R

for some constant C>0 (independent of R).

3. Main results

The main results of this article reads as follows:

Theorem 3.1: Let� ⊂ RN be a bounded smooth domain, N ≥ 3 and pN ≥ · · · p2 ≥ p1 ≥
2. Then the problem (1) admits a weak solution u in W1,pi

loc (�) ∩ L∞(�) such that (u −
ε)+ ∈ W1,pi

0 (�) for every ε > 0, provided

(a) g ∈ Lm(�) for some m >
p̄∗

p̄∗−p̄ if p̄ < N where p̄∗ ≥ pN .
(b) g ∈ Lm(�) for some m > r

r−pN if p̄ ≥ N where r > pN .

Theorem 3.2: Let u ∈ W1,pi
loc (�) be such that 0 < u ≤ 1 a.e. in�. Assume that 1 ≤ δ < γ

be such that δ ∈ A ∩ I. Then u is not a stable solution to the problem (2)s.

Theorem 3.3: Let u ∈ W1,pi
loc (�) be such that u ≥ 1 a.e. in �. Assume that 0 < δ < γ be

such that δ ∈ A and γ ∈ I ∩ [1,∞). Then u is not a stable solution to the problem (2)s.

Theorem 3.4: Let u ∈ W1,pi
loc (�) be such that u>0 a.e. in �. Assume that 1 ≤ δ = γ ∈

A ∩ I. Then u is not a stable solution to the problem (2)s.

Theorem 3.5: Let u ∈ W1,pi
loc (�) be such that 0 < u ≤ M a.e in�, provided M ∈ J. Then u

is not a stable solution to the Equation (2)e.

We present the proof of the above theorems in the following two sections.

4. Proof of existence results

For n ∈ N, define gn(x) = min{g(x), n} and consider the following approximated problem

−
N∑
i=1

∂

∂xi
(|ui|pi−2ui) = gn(x) e

1
(u+ 1

n ) in�. (9)

Lemma 4.1: Let

(1) g ∈ Lm(�) for some m >
p̄∗

p̄∗−p̄ if p̄ < N or
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(2) g ∈ Lm(�) for some m > r
r−pN if p̄ ≥ N where r > pN .

Then for every n ∈ N the problem (9) has a positive solution un ∈ W1,pi
0 (�). Moreover,

one has

(i) ‖un‖L∞(�) ≤ C for some constant C independent of n.
(ii) un+1 ≥ un and each un is unique.
(iii) there exists a positive constant cω > 0 such that for every ω ⊂⊂ � we have un ≥

cω > 0.

Proof: Existence: Let v ∈ Lr(�) for some r ≥ 1. Then the problem

−
N∑
i=1

∂

∂xi
(|ui|pi−2ui) = gn(x) e

1
(|v|+ 1

n )

has a unique solution u = A(v) ∈ W1,pi
0 (�) since the r.h.s belongs to L∞(�), see [25].

Choosing u = A(v) as a test function and using Theorem 2.1 together with Hölder’s
inequality we obtain

‖u‖Lr(�) ≤ CN

for some constant CN independent of u. Now arguing as in Lemma 2.1 of [21] gives the
existence of un.

(i) (1) Let p̄ < N and g ∈ Lm(�) for somem >
p̄∗

p̄∗−p̄ . ChoosingGk(un) = (un − k)+

for k>1 as a test function in (9) we get

‖Gk(un)‖W1,pi
0 (�)

≤ e
(∫

�

g|Gk(un)| dx
) 1

pi
.

Using Theorem 2.1 with r = p̄∗ and Hölder’s inequality we get

‖Gk(un)‖Lp̄∗ (�) ≤ c
(∫

A(k)
|g|p̄∗′

dx
) p̄∗−1

p̄∗(p̄−1)
.

Now for 1< k<h denote by A(h) = {x ∈ � : u(x) > h}, we get

(h − k)pi |A(h)|
pi
p̄∗

≤
(∫

A(k)
|Gk(un)|p̄∗

) pi
p̄∗

≤ c
(∫

A(k)
|g|p̄∗′

dx
) pi(p̄∗−1)

p̄∗(p̄−1)
.

Now using Hölder’s inequality with exponents q = m
p̄∗′ and q′ = q

q−1 we get

(h − k)pi |A(h)|
pi
p̄∗ ≤ c‖g‖

pi
p̄−1
Lm(�)|A(k)|

pi(p̄∗−1)(m−p̄∗′
)

p̄∗m(p̄−1) .
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Therefore we have

|A(h)| ≤
c‖g‖

p̄∗
p̄−1
Lm(�)

(h − k)p̄∗ |A(k)|β ,

where β = (p̄∗−1)(m−p̄∗′
)

m(p̄−1) > 1 sincem >
p̄∗

p̄∗−p̄ . By Stampacchia’s result [29] we
get ‖un‖L∞(�) ≤ C where C is independent of n.

(2) Choosing Gk(un) = (un − k)+ as a test function in (9) and using Hölder’s
inequality we get

‖Gk(un)‖W1,pi
0 (�)

≤ e‖g‖
1

pi−1

Lr′ (A(k))
.

Using Hölder’s inequality with exponents m
r′ and

m
m−r′ we get

‖Gk(un)‖W1,pi
0 (�)

≤ c‖g‖
1

pi−1
Lm(�)|A(k)|

(m−r′)
mr′(pi−1) .

Now for 1< k<h we have

(h − k)pi |A(h)| pir

≤
(∫

A(h)
(u − k)r dx

) pi
r

≤
(∫

A(k)
(u − k)r dx

) pi
r

≤
N∑
i=1

∫
�

|∂iGk(un)|pi dx

≤ c‖g‖p
′
i
Lm(�)|A(k)|

pi(m−r′)
mr′(pi−1) .

Therefore we have

|A(h)| ≤ c
‖g‖ r

pi−1 |A(k)|γ
(h − k)r

,

where γ = r(m−r′)
mr′(pi−1) > 1 sincem > r

r−pN . By Stampacchia’s result [29] we get
‖un‖L∞(�) ≤ C where C is independent of n.

(ii) Let un and un+1 satisfies the Equations (9). Then for every φ ∈ W1,pi
0 (�)

N∑
i=1

∫
�

|(un)i|pi−2(un)iφi dx =
∫
�

gn e
1

(un+ 1
n ) φ dx (10)

and
N∑
i=1

∫
�

|(un+1)i|pi−2(un+1)iφi dx =
∫
�

gn+1 e
1

(un+1+ 1
n+1 ) φ dx. (11)
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Choosing φ = (un − un+1)
+ as a test function and subtracting (10) and (11) we

have

N∑
i=1

∫
�

(|(un)i|pi−2(un)i − |(un+1)i|pi−2(un+1)i
)
(un − un+1)

+
i dx

≤
∫
�

gn+1(x)

{
e

1
(un+ 1

n ) − e
1

(un+1+ 1
n+1 )

}
(un − un+1)

+
i dx ≤ 0.

Using the algebraic inequality (Lemma A.0.5 of [30]) we get for any pi ≥ 2

‖(un − un+1)
+‖W1,pi

0 (�)
= 0.

Therefore (i) holds. The uniqueness follows similarly as in the monotonicity.
(iii) Observe that u1 ∈ L∞(�) by using (i). Hence

N∑
i=1

∫
�

|(u1)i|pi−2(u1)iφi dx = g1 e
1

(u1+1) ≥ g1 e
1

‖u1‖∞+1 .

Since g is nonnegative and not identically zero, by the strong maximum principle
(Theorem 3.18 of [24]) we get the property (iii).

�

Proof of Theorem 3.1: Let p̄ < N such that p̄∗ ≥ pN and� = ⋃
k�k where�k ⊂⊂ �k+1

for each k. Let γk = inf�k un > 0. Choosingφ = (un − γ1)
+ as a test function in (9), using

Lemma 4.1 and Theorem 2.1 we get

N∑
i=1

∫
{un>γ1}

|(un)i|pi dx

=
∫

{un>γ1}
gn e

1
(un+ 1

n ) (un − γ1)
+ dx

≤ c‖g‖Lm(�)‖(un − γ1)
+‖W1,pi

0 (�)

where c is a constant independent of n. Using Lemma 4.1 and the fact

‖un‖W1,pi (�1) ≤ ‖un‖W1,pi ({un>γ1})

we get the sequence {un} is uniformly bounded in W1,pi(�1) and as a consequence of
Theorem 2.1 it has a subsequence {u1nk} converges weakly in W1,pi(�1) and strongly in
Lpi(�1) and almost everywhere in�1 to u�1 ∈ W1,pi(�1), say.

Proceeding in the same way for any k, we obtain a subsequence {uknl} of {un} such that
uknl converges weakly in W1,pi(�k), strongly in Lpi(�k) and almost everywhere to u�k ∈
W1,pi(�k). We may assume uk+1

nl is a subsequence of uknl for every k, and that nkk → ∞ as
k → ∞. Therefore u�k+1 = u�k on �k. Define u = u�1 and u = u�k+1 on �k+1 \�k for
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each k. Therefore by our construction the diagonal subsequence {unk} := {uknk} converges
weakly to u inW1,pi

loc (�k), strongly in Lpi(�k) and almost everywhere in�. Now we claim
that {unk} converges strongly to u in W1,pi

loc (�k). Let �′ ⊂⊂ �. Let φ ∈ C∞
c (�) such that

0 ≤ φ ≤ 1 in �, φ = 1 on �′ and let k1 ≥ 1 such that suppφ ⊂ �k1 . For every k,m ≥ 1
we have

N∑
i=1

∫
�′

(|(unk)i|pi−2(unk)i − |(unm)i|pi−2(unm)i
)
(unk − unm)i dx

≤
N∑
i=1

∫
�

(|(unk)i|pi−2(unk)i − |(unm)i|pi−2(unm)i
) (
φ(unk − unm)

)
i dx

−
N∑
i=1

∫
�k1

{(|(unk)i|pi−2(unk)i − |(unm)i|pi−2(unm)i
)
.φi
}
(unk − unm) dx

:= A − B.

Now the fact that unk is uniformly bounded in W1,pi(�k1) and converges strongly in
Lpi(�k1) implies B → 0 as k,m → ∞. Choosing ψ = φ(unk − unm) and either n = nk or
n = nm we get for l = k,m∣∣(unl)i|pi−2(unl)i

(
φ(unk − unm)

)
i dx

∣∣
≤
∫
�k1

gn(x) e
1

(unl+
1
nl
) |unk − unm | dx.

Now Lemma 4.1, g ∈ Lm(�) and the strong convergence of unk givesA → 0 as k,m → ∞.
Now the algebraic inequality (Lemma A.0.5 of [30]) gives

N∑
i=1

∫
�′

|(unk)i − (unm)i|pi dx → 0

as k,m → ∞. Therefore for any φ ∈ C1
c (�) we have

N∑
i=1

∫
�

|(unk)i|pi−2(unk)iφi dx =
N∑
i=1

∫
�

|ui|pi−2uiφi dx.

Lemma 4.1 and the fact unk ≥ csuppφ > 0 gives∣∣∣∣∣
∫
�

gnk(x) e
1

(unk+ 1
nk
)
φ dx

∣∣∣∣∣ ≤ e
1

csuppφ ‖φ‖L∞(�)‖g‖L1(�).

By Lebesgue dominated theorem we obtain∫
�

gnk(x) e
1

(unk+ 1
nk
)
φ dx =

∫
�

g(x) e
1
uφ dx.

Hence u ∈ W1,pi
loc (�) is a weak solution of the problem (7). Now observe that (unk − ε)+

in bounded inW1,pi
0 (�) and it has a subsequence converges to vweakly inW1,pi

0 (�). Since
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unk converges almost everywhere to u, we have v = (u − ε)+ ∈ W1,pi
0 (�). The case p̄ ≥ N

follows similarly using Theorem 2.1. �

5. Proof of nonexistence results

To prove ourmain results we establish the following a priori estimate on the stable solution
to the problem (2).

5.1. A priori estimate

Lemma 5.1: Let u ∈ W1,pi
loc (�) be a positive stable solution to either of the Equation (2)s

or (2)e and α > pN − 1 be fixed. Then for every ε ∈ (0,α), there exists a positive constant
C = Cε(p1, p2, . . . , pN , q,α) such that for any nonnegative ψ ∈ C1

c (�), one has∫
�

g(x)uf ′(u)bk(u)ψq dx

≤ C
N∑
i=1

∫
�

upi−α−1|ψi|piψq−pi dx

− (α − 1)2(N(q − 1)+ ε)

4α(1 − ε)

∫
�

g(x)f (u)bk(u)ψq dx. (12)

As a corollary of Lemma 5.1 we obtain the following Caccioppoli type estimates.

Corollary 5.2: Let u ∈ W1,pi
loc (�) be a positive stable solution to the problem (2)s. Then the

following holds:

(1) Assume that 0 < u ≤ 1 a.e. in � and 1 ≤ δ < γ be such that δ ∈ A ∩ I. Then for
any β ∈ (l1, l2), there exists a constant C = C(p1, p2, . . . , pN , q,N,β) such that for
every ψ ∈ C1

c (�) with 0 ≤ ψ ≤ 1 in�, we have∫
�

g(x)
(
ψ

u

)2β+δ+q−1
dx ≤ C

N∑
i=1

∫
�

|ψi|piθ ′
i dx (13)

where

θi = 2β + δ + q − 1
2β + q − pi

, θ ′
i = 2β + δ + q − 1

δ + pi − 1
.

(2) Assume that u ≥ 1 a.e. in� and 0 < δ < γ be such that δ ∈ A and γ ∈ I ∩ [1,∞).
Then for any β ∈ (l1, l2), there exists a constant C = C(p1, p2, . . . , pN , q,N,β) such
that for every ψ ∈ C1

c (�) with 0 ≤ ψ ≤ 1 in�, we have∫
�

g(x)
(
ψ

u

)2β+γ+q−1
dx ≤ C

N∑
i=1

∫
�

|ψi|piζ ′
i dx (14)

where

ζi = 2β + γ + q − 1
2β + q − pi

, ζ ′
i = 2β + γ + q − 1

γ + pi − 1
.
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(3) Assume that u>0 a.e. in� and 1 ≤ δ = γ ∈ A ∩ I. Then for any β ∈ (l1, l2), there
exists a constant C = C(p1, p2, . . . , pN , q,N,β) such that for every ψ ∈ C1

c (�) with
0 ≤ ψ ≤ 1 in�, we have

∫
�

g(x)
(
ψ

u

)2β+δ+q−1
dx ≤ C

N∑
i=1

∫
�

|ψi|piθ ′
i dx (15)

where

θi = 2β + δ + q − 1
2β + q − pi

, θ ′
i = 2β + δ + q − 1

δ + pi − 1
.

Corollary 5.3: Let u ∈ W1,pi
loc (�) be a positive stable solution to the problem (2)e such that

0 < u ≤ M a.e. in � for some positive constant M. Then for any β ∈ (l1, l3) there exists a
constant C = C(p1, p2, . . . , pN , q,N,β) such that for every ψ ∈ C1

c (�) with 0 ≤ ψ ≤ 1 in
�, we have ∫

�

g(x)
(
ψ

u

)2β+q
dx ≤ C

N∑
i=1

∫
�

|ψi|2β+q dx. (16)

Proof of Lemma 5.1: Let u ∈ W1,pi
loc (�) be a positive stable solution to the Equation (2)

and ψ ∈ C1
c (�) be nonnegative in �. Then u satisfies both the equations (7) and (8). We

prove the lemma into the following two steps.
Step 1. Choosing φ = bk(u)ψq as a test function in (7), we have

N∑
i=1

∫
�

|b′
k(u)||ui|piψq dx

≤ q
N∑
i=1

∫
�

ψq−1bk(u)|ui|pi−2uiψi dx −
∫
�

g(x)f (u)bk(u)ψq dx. (17)

Using Young’s inequality with ε ∈ (0, 1), we obtain

q
N∑
i=1

∫
�

ψq−1bk(u)|ui|pi−2uiψi dx

≤ ε

N∑
i=1

∫
�

|b′
k(u)||ui|piψq dx + C

N∑
i=1

∫
�

bk(u)pi |b′
k(u)|1−pi |ψi|piψq−pi dx,

for some positive constant depending C = Cε(p1, p2, . . . , pN , q).
Therefore for ε ∈ (0, 1), we obtain

(1 − ε)

N∑
i=1

|b′
k(u)||ui|piψq dx

≤ C
N∑
i=1

∫
�

bk(u)pi |b′
k(u)|1−pi |ψi|piψq−pi dx −

∫
�

g(x)f (u)bk(u)ψq dx. (18)
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Step 2. Choosing φ = ak(u)ψ
q
2 in the inequality (8), we obtain

∫
�

g(x)f ′(u)ak(u)2ψq dx ≤
N∑
i=1
(pi − 1)

(
Xi + q2

4
Yi + qZi

)
, (19)

where

Xi =
∫
�

|a′
k(u)|2|ui|piψq dx, Yi =

∫
�

ψq−2ak(u)2|ui|pi−2|ψi|2 dx,

and

Zi =
∫
�

|a′
k(u)|ak(u)ψq−1|ui|pi−1|ψi| dx.

Using (c) noting that

Xi = (α − 1)2

4α

∫
�

|b′
k(u)||ui|piψq dx,

from the estimate (18), we obtain

N∑
i=1

Xi = (α − 1)2

4α

N∑
i=1

∫
�

|b′
k(u)||ui|piψq dx

≤ (α − 1)2

4α(1 − ε)

{
C

N∑
i=1

∫
�

bk(u)pi |b′
k(u)|1−pi |ψi|piψq−pi dx

−
∫
�

g(x)f (u)bk(u)ψq dx

}
.

Moreover, using Young’s inequality we have

(pi − 1)
q2

4
Yi

= (pi − 1)
q2

4

∫
�

ψq−2ak(u)2|ui|pi−2|ψi|2 dx

= (pi − 1)
q2

4

∫
�

(
|ui|pi−2|a′

k(u)|
2(pi−2)

pi ψ
q(pi−2)

pi

)

×
(
ak(u)2|a′

k(u)|
2(2−pi)

pi |ψi|2ψ
2(q−pi)

pi

)
dx

≤ ε

2N
Xi + C

2

∫
�

ak(u)pi |a′
k(u)|2−pi |ψi|piψq−pi dx,
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and

(pi − 1)qZi

= (pi − 1)q
∫
�

|a′
k(u)|ak(u)ψq−1|ui|pi−1|ψi| dx

= (pi − 1)q
∫
�

(
|ui|pi−1|a′

k(u)|
2
p′iψ

q
p′i
)(

ak(u)|a′
k(u)|

2−pi
pi |ψ |piψq−pi

)
dx

≤ ε

2N
Xi + C

2

∫
�

ak(u)pi |a′
k(u)|2−pi |ψi|piψq−pi dx

for some positive constant C = Cε(p1, p2, . . . , pN , q,N).
Using the above estimates in (19) together with (a) and (b) we obtain∫
�

g(x)uf ′(u)bk(u)ψq dx

≤
∫
�

g(x)f ′(u)ak(u)2ψq dx

≤
N∑
i=1

(
pi − 1 + ε

N

)
Xi + C

N∑
i=1

∫
�

ak(u)pi |a′
k(u)|2−pi |ψi|piψq−pi dx

≤
(
p1 − 1 + ε

N

) N∑
i=1

Xi +
(
p2 − 1 + ε

N

) N∑
i=1

Xi + · · · +
(
pN − 1 + ε

N

) N∑
i=1

Xi

+ C
N∑
i=1

∫
�

ak(u)pi |a′
k(u)|2−pi |ψi|piψq−pi dx

= (
N(q − 1)+ ε

) N∑
i=1

Xi + C
N∑
i=1

∫
�

ak(u)pi |a′
k(u)|2−pi |ψi|piψq−pi dx

≤ (α − 1)2
(
N(q − 1)+ ε

)
4α(1 − ε)

{
C

N∑
i=1

∫
�

bk(u)pi |b′
k(u)|1−pi |ψi|piψq−pi dx

−
∫
�

g(x)f (u)bk(u)ψq dx

}
+ C

N∑
i=1

∫
�

ak(u)pi |a′
k(u)|2−pi |ψi|piψq−pi dx

≤ C
N∑
i=1

∫
�

{
bk(u)pi |b′

k(u)|1−pi + ak(u)pi |a′
k(u)|2−pi

} |ψi|piψq−pi dx

− (α − 1)2(N(q − 1)+ ε)

4α(1 − ε)

∫
�

g(x)f (u)bk(u)ψq dx

≤ C
N∑
i=1

∫
�

upi−α−1|ψi|piψq−pi dx

− (α − 1)2(N(q − 1)+ ε)

4α(1 − ε)

∫
�

g(x)f (u)bk(u)ψq dx
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for some positive constant C = Cε(p1, . . . , pN , q,N,α). �

Proof of Corollary 5.2: Let u ∈ W1,pi
loc (�) be a positive stable solution to the problem (2)s.

Observe that the fact β > l1 implies α = 2β + q − 1 > pN − 1. Then by Lemma 5.1,
using the fact 0 < δ ≤ γ and f (u) = −u−δ − u−γ in the inequality (12), for some
C = Cε(p1, . . . , pN , q,N,α) we obtain

αε

∫
�

g(x)(u−δ + u−γ )bk(u)ψq dx ≤ C
N∑
i=1

∫
�

upi−α−1|ψi|piψq−pi dx,

where αε = δ − (α−1)2(N(q−1)+ε)
4α(1−ε) . Observe that

lim
ε→0

αε = δ − N(q − 1)(α − 1)2

4α
> 0, ∀ β ∈ (l1, l2).

Hence we can fix β ∈ (l1, l2) and choose ε ∈ (0, 1) such that αε > 0. As a consequence we
have ∫

�

g(x)(u−δ + u−γ )bk(u)ψq dx ≤ C
N∑
i=1

∫
�

upi−2β−q|ψi|piψq−pi dx (20)

for some positive constant C = C(p1, . . . , pN , q,N,α).

(1) Since δ < γ and 0 < u ≤ 1 a.e. in�, for anyβ ∈ (l1, l2) the inequality (20) becomes

∫
�

g(x)u−δbk(u)ψq dx ≤ C
N∑
i=1

∫
�

|u|pi−2β−q|ψi|piψq−pi dx.

By the monotone convergence theorem we obtain

∫
�

g(x)u−2β−δ−q+1ψq dx ≤ C
N∑
i=1

∫
�

|u|pi−2β−q|ψi|piψq−pi dx.

Replacing ψ by ψ
2β+δ+q−1

q and using the Young’s inequality for ε ∈ (0, 1) with the
exponents θi = 2β+δ+q−1

2β+q−pi , θi
′ = 2β+δ+q−1

δ+pi−1 in the above inequality we obtain

∫
�

g(x)
(
ψ

u

)2β+δ+q−1
dx

≤ C
N∑
i=1

∫
�

upi−2β−qψ2β+δ+q−pi−1|ψi|pi dx

= C
N∑
i=1

∫
�

((
ψ

u

)2β+q−pi
) (
ψδ−1|ψi|pi

)
dx

≤ ε

∫
�

g(x)
(
ψ

u

)2β+δ+q−1
dx + C

N∑
i=1

∫
�

g− θ ′i
θi ψ(δ−1)θi′ |ψi|piθ ′

i dx.
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Using δ ≥ 1 and choosing 0 ≤ ψ ≤ 1 in� together with the fact g ≥ c we obtain

∫
�

g(x)
(
ψ

u

)2β+δ+q−1
dx ≤ C

N∑
i=1

∫
�

|ψi|piθ ′
i dx,

for some positive constant C = C(p1, . . . , pN , q,N,β).
(2) Since δ < γ and u ≥ 1 a.e. in�, for any β ∈ (l1, l2) the inequality (20) becomes

∫
�

g(x)u−γ bk(u)ψq dx ≤ C
N∑
i=1

∫
�

|u|pi−2β−q|ψi|piψq−pi dx.

By the monotone convergence theorem we obtain

∫
�

g(x)u−2β−γ−q+1ψq dx ≤ C
N∑
i=1

∫
�

|u|pi−2β−q|ψi|piψq−pi dx.

Replacing ψ by ψ
2β+γ+q−1

q and using the Young’s inequality for ε ∈ (0, 1) with the
exponents ζi = 2β+γ+q−1

2β+q−pi , ζi′ = 2β+γ+q−1
γ+pi−1 in the above inequality we obtain

∫
�

g(x)
(
ψ

u

)2β+γ+q−1
dx

≤ C
N∑
i=1

∫
�

upi−2β−qψ2β+γ+q−pi−1|ψi|pi dx

= C
N∑
i=1

∫
�

((
ψ

u

)2β+q−pi
) (
ψγ−1|ψi|pi

)
dx

≤ ε

∫
�

g(x)
(
ψ

u

)2β+γ+q−1
dx + C

N∑
i=1

∫
�

g− ζ ′i
ζi ψ(γ−1)ζ ′

i |ψi|piζ ′
i dx.

Using γ ≥ 1 and choosing 0 ≤ ψ ≤ 1 in� together with the fact g ≥ c we obtain

∫
�

g(x)
(
ψ

u

)2β+γ+q−1
dx ≤ C

N∑
i=1

∫
�

|ψi|piζ ′
i dx,

for some positive constant C = C(p1, . . . , pN , q,N,β).
(3) Since δ = γ ≥ 1 and u>0 a.e. in�, for any β ∈ (l1, l2) the inequality (20) becomes

∫
�

g(x)u−δbk(u)ψq dx ≤ C
N∑
i=1

∫
�

|u|pi−2β−q|ψi|piψq−pi dx.

Now proceeding similarly as in Case (1) we obtain the required estimate.

�
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Proof of Corollary 5.3: AssumeM ∈ J and let u ∈ W1,pi
loc (�) be such that 0 < u ≤ M a.e.

in� is a positive stable solution of the Equation (2)e. Let β ∈ (l1, l3) and define α = 2β +
q − 1. Observe that the fact β > l1 impliesα > pN − 1. Therefore we can apply Lemma 5.1
to choose f (u) = −e

1
u and use the assumption 0 < u ≤ M a.e. in � in the estimate (12)

and obtain

αε

∫
�

g(x) e
1
u bk(u)ψq dx ≤ C

N∑
i=1

∫
�

upi−α−1|ψi|piψq−pi dx,

for some positive constant C = Cε(p1, . . . , pN , q,N,α)where αε = 1
M − (α−1)2(N(q−1)+ε)

4α(1−ε) .
Observe that

lim
ε→0

αε = 1
M

− N(q − 1)(α − 1)2

4α
> 0, ∀ β ∈ (l1, l3).

Hencewe can fixβ ∈ (l1, l3) and choose ε ∈ (0, 1) such thatαε > 0. Using ex > x for x>0,
in the above estimate we obtain

∫
�

g(x)
1
u
bk(u)ψq dx ≤

∫
�

g(x) e
1
u bk(u)ψq dx ≤ C

N∑
i=1

∫
�

upi−2β−q|ψi|piψq−pi dx,

for some positive constant C = C(β , p1, . . . , pN , q,N). By the monotone convergence
theorem we obtain

∫
�

g(x)u−2β−qψq dx ≤ C
N∑
i=1

∫
�

upi−2β−q|ψi|piψq−pi dx.

Replacing ψ by ψ
2β+q
q and using the Young’s inequality for ε ∈ (0, 1) with exponents γi =

2β+q
2β+q−pi , γi

′ = 2β+q
pi in the above inequality we obtain

∫
�

g(x)
(
ψ

u

)2β+q
dx

≤ C
N∑
i=1

∫
�

(
ψ

u

)2β+q−pi
|ψi|pi dx

≤ ε

∫
�

g(x)
(
ψ

u

)2β+q
dx + C

N∑
i=1

∫
�

g− γi′
γi |ψi|2β+q dx.

Therefore, using the fact that g ≥ c, we have

∫
�

g(x)
(
ψ

u

)2β+q
dx ≤ C

N∑
i=1

∫
�

|ψi|2β+q dx,

for some positive constant C = C(β , p1, . . . , pN , q,N). �
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5.2. Proof of themain results

Proof of Theorem 3.2: Let u ∈ W1,pi
loc (�) be a stable solution of the Equation (2)s such that

0 < u ≤ 1 a.e. in�. Then by Corollary 5.2 we have

∫
�

g(x)
(
ψ

u

)2β+δ+q−1
dx ≤ C

N∑
i=1

∫
�

|ψi|piθ ′
i dx.

Choosing ψ = ψR in the above inequality we obtain

∫
BR(0)

g(x)
(
1
u

)2β+δ+q−1
dx ≤ C

N∑
i=1

RN−piθ ′
i , (21)

for some positive constant C independent of R. Observe that,

lim
β→l2

(N − piθ ′
i ) = N − pi(2l2 + δ + q − 1)

δ + pi − 1
< 0

which follows from the assumption δ ∈ I, since

δ >
N2(q − 1)(pi − 1)

pi(N(q − 1)+ 4)− N2(q − 1)
for all i = 1, 2, . . . ,N.

As a consequence, we can choose β ∈ (l1, l2), such that N − piθ ′
i < 0 for all i. Therefore,

letting R → ∞ in (21), we obtain∫
�

g(x)
(
1
u

)2β+δ+q−1
dx = 0,

which is a contradiction. �

Proof of Theorem 3.3: Let u ∈ W1,pi
loc (�) be a stable solution of the Equation (2)s such that

u ≥ 1 a.e. in�. Then by Corollary 5.2 we have

∫
�

g(x)
(
ψ

u

)2β+γ+q−1
dx ≤ C

N∑
i=1

∫
�

|ψi|piζ ′
i dx.

Choosing ψ = ψR in the above inequality we obtain

∫
BR(0)

g(x)
(
1
u

)2β+γ+q−1
dx ≤ C

N∑
i=1

RN−piζ ′
i , (22)

for some positive constant C independent of R. Observe that,

lim
β→l2

(N − piζ ′
i ) = N − pi(2l2 + γ + q − 1)

δ + pi − 1
< 0

which follows from the assumption γ ∈ I, since γ >
N2(q−1)(pi−1)

pi(N(q−1)+4)−N2(q−1) for all
i = 1, 2, . . . ,N. As a consequence, we can choose β ∈ (l1, l2), such that N − piζ ′

i < 0 for
all i.



COMPLEX VARIABLES AND ELLIPTIC EQUATIONS 19

Therefore, letting R → ∞ in (22), we obtain
∫
�

g(x)
(
1
u

)2β+γ+q−1
dx = 0,

which is a contradiction. �

Proof of Theorem 3.4: Let u ∈ W1,pi
loc (�) be a positive stable solution of the Equation (2)s.

Then by Corollary 5.2 we have

∫
�

g(x)
(
ψ

u

)2β+δ+q−1
dx ≤ C

N∑
i=1

∫
�

|ψi|piθ ′
i dx.

Now proceeding similarly as in Theorem 3.2 we obtain
∫
�

g(x)
(
1
u

)2β+δ+q−1
dx = 0,

which is a contradiction. �

Proof of Theorem 3.5: Let u ∈ W1,pi
loc (�) be a stable solution to the problem (2)e such that

0 < u ≤ M a.e. in�. Then by Corollary 5.3 we have

∫
�

g(x)
(
ψ

u

)2β+q
dx ≤ C

N∑
i=1

∫
�

|ψi|2β+q dx.

Choosing ψ = ψR in the above inequality we obtain
∫
BR(0)

g(x)
(
1
u

)2β+q
dx ≤ CRN−2β−q, (23)

where C is a positive constant independent of R. Observe that, since M ∈ J we have 0 <
M < 4

N(N−1)(q−1) which implies N < 2l3 + q and hence

lim
β→l3

(N − 2β − q) = N − 2l3 − q < 0.

As a consequence, we can choose β ∈ (l1, l3) such that N − 2β − q < 0.
Therefore, letting R → ∞ in (23), we obtain

∫
�

g(x)
(
1
u

)2β+q
dx = 0,

which is a contradiction. Hence the Theorem follows. �
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