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ABSTRACT
Wepresent a universalmethodology for boundingmultidimensional
ultimate ruin probabilities� in regime-switchingmodels. Some new
lower andupperboundson� aregiven. The consideredmethods are
applicable to several discrete- and continuous time riskmodels. As an
example, we construct a variety of new two-sided operator bounds
which converge to � with an exponential rate. Several numerical
examples are also provided.
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1. Introduction

The problem of ruin of an insurer has been a point of interest for many probabilists. In
the classical sense, it can be tackled by the methods of renewal theory as it was shown,
e.g. in Chapters XIII-XIV of Feller [6]. For other ideas and the detailed references to risk
theory, we refer the reader to Asmussen and Albrecher [2], Kyprianou [17], Rolski et al.
[24], among others.

In the present paper, we investigate the classical ruin problem in amore general regime-
switching framework in which a Markov chain is assumed to switch the amount and/or
waiting time distributions of claims. Regime-switching models have received considerable
attention recently, see, e.g. Q. Liu et al. [20], Jacka and Ocejo [15], Momeya [22], Xu et
al. [28], R.H. Liu [19], G. Wang et al. [27], Landriault et al. [18], Chen et al. [4], Guillou
et al. [13], Lu [21], Asmussen [1], Gajek and Rudź [9–12] and the references therein for
an overview of selected developments and applications of Markov-modulated models and
related problems.

We will focus our attention on bounding multidimensional ultimate ruin probabilities
in the following regime-switching Sparre Andersen model. By a claim we understand an
individual claim, or a total claim after a given number of claims, or a total claim from a
given period of time, respectively.

Let a random variable Xm denote the amount of the mth claim, T1 – the moment
when the first claim appears and Tm – the time between the (m − 1)th claim and themth
one. Clearly, An = T1 + · · · + Tn, n � 1, is the moment when the nth claim appears with
A0 = 0. Let {I0, I1, I2, . . .} be a time-homogeneous Markov chain with a finite state space
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S = {1, 2, . . . , s} such that the probabilities pi = P(I0 = i) are positive and pij = P(Im+1 =
j|Im = i) are non-negative for all i, j ∈ S. The jump from Im−1 to Im can change the distri-
bution of Tm and/orXm at themomentAm only (cf. the discussion in Gajek and Rudź [9, p.
237]), so one can interpret {I0, I1, I2, . . .} as ‘switches’. We assume that a random variable
Cm = c(Im−1), where c is a known positive function defined on S, denote the insurance
premium rate during the time interval [Am−1,Am). The conditional distribution of X1
(respectively T1), given the initial state i and the state j at the moment A1, will be denoted
by Fij (respectively Gij, see Section 2 for details).

Let u � 0 denote the insurer’s surplus at the moment A0. LetR be the set of all measur-
able functions defined on [0,∞) and taking values in the interval [0,1] almost everywhere.
The symbolRs denotes the Cartesian product {(ρ1, . . . , ρs) : ρi ∈ R for every i ∈ S} and
its elements will be written in bold. We call L : Rs → Rs the generalized Volterra risk
operator if Lρ(u) = (L1ρ(u), . . . , Lsρ(u)), where

Liρ(u) =
s∑

j=1
pij

∫ ∞

0

∫
(0,u+c(i)t]

ρj(u + c(i)t − x) dFij(x) dGij(t)

+
s∑

j=1
pij

∫ ∞

0

∫ ∞

u+c(i)t
dFij(x) dGij(t) (1)

for all i ∈ S, ρ = (ρ1, . . . , ρs) ∈ Rs and u � 0, see Taylor [26] for a special case of the oper-
ator (1) in the classical non-switching Cramér–Lundberg model. Let us denote Mi(r) =∑s

j=1 pij
∫ ∞
0

∫ ∞
0 exp(−r(c(i)t − x)) dFij(x) dGij(t) for all i ∈ S and r ∈ R. Assume that

there exists (see Lemma 2.4 for details) the adjustment vector (r1, . . . , rs) with positive
coordinateswhich satisfy the equationsMi(ri) = 1, i ∈ S. Set�(u) = (�1(u), . . . ,�s(u)),
where � i(u) = �(u, i) is the conditional ultimate ruin probability, given the initial state
i of the Markov chain, considered as a function of u (see Section 2 for details). Let ρ =
(ρ1, . . . , ρs) ∈ Rs and ξ = (ξ1, . . . , ξs) ∈ Rs. To simplify the notation, we will write ρ � ξ

if and only if ρi(u) � ξi(u) for all i ∈ S and u � 0.
The paper is arranged as follows. In Section 2, we briefly sketch some useful facts about

the risk operator L, the adjustment vector (r1, . . . , rs) and the vector (M1, . . . ,Ms) of gen-
eralized moment generating functions. In Section 3, we present the main results of the
paper. We prove that any function ρ ∈ Rs that satisfies

Lρ � ρ

is an upper bound for � (see Theorem 3.1 for details). Surprisingly enough,

ρ � Lρ

does not imply that ρ � � and a sufficient condition for bounding � from below is more
complex (see Theorem 3.2 and Remark 3.3 for details). An important reason lies in the fact
that the vector� is not the unique fixed point of L. Indeed, the unit function 1 inRs or, in
general, any convex combination of� and 1 constitutes a fixed point of L as well. Thereby,
the risk operator L has in general infinitely many fixed points.

Theorem 3.1 and Corollary 3.4 provide some new useful and effective methods for
bounding � from above and below. As an example, we will use it to prove the following
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two-sided bound for � :

A∗Q0 � � � A∗R0,

where r∗ = min{ri : i ∈ S}, r∗=max{ri : i ∈ S}, Ri0(u)= exp(−r∗u), Qi
0(u) = exp(−r∗u),

R0(u) = (R10(u), . . . ,R
s
0(u)),Q0(u) = (Q1

0(u), . . . ,Q
s
0(u)), i ∈ S, u � 0, and the constants

A∗ and A∗ are properly chosen (see Section 3 and Theorem 3.5 for details).
SetDi

0(u) = A∗Qi
0(u),U

i
0(u) = A∗Ri0(u) andM∗(r) = max{Mi(r) : i ∈ S}. LetDn(u)=

(D1
n(u), . . . ,Ds

n(u)) andUn(u) = (U1
n(u), . . . ,Us

n(u)) be the nth iteration of L onD0(u) =
(D1

0(u), . . . ,D
s
0(u)) and U0(u) = (U1

0 (u), . . . ,U
s
0(u)), respectively. The following new

two-sided bounds for the vector � :

Dn � � � Un

hold for any n ∈ N (see Theorem 3.6 for details). Moreover, for any i ∈ S, the sequences
{Di

n}n∈N and {Ui
n}n∈N converge monotonically, as n → ∞, to� i with the exponential rate

of convergence:
∣∣Ui

n(u) − Di
n(u)

∣∣ � A∗ e−ru[M∗(r)]n, i ∈ S, n ∈ N, r ∈ (0, r∗), u � 0 (2)

(cf. Theorem 3.6 and Corollary 3.7). Inequality (2) may provide bounds more general as
well as sharper than some existing results (see Remark 3.8 for details).

In Example 4.1, we use Theorem 3.1 to obtain other upper bounds formultidimensional
ultimate ruin probabilities � . Inequality (20) improves as well as generalizes some known
results (see Example 4.1 for details).

A distinct mathematical methodology for obtaining the unique fixed point of the
risk operator, based on Banach Contraction Principle, can be found in Gajek and Rudź
[10]. Some stochastic developments of Banach-type fixed point theorems are discussed in
Saipara et al. [25]. Some asymptotic results for ruin probabilities can be found in Cheng
and Yu [5], J. Peng and D.Wang [23], Guo et al. [14], Yang and Li [29], Konstantinides and
Li [16], Cai and Dickson [3], among others.

2. An overview of basic properties of the risk operator, the adjustment
vector and the vector of generalizedmoment generating functions

To make the paper self-contained, we briefly outline the model and some basic prop-
erties concerning the risk operator L, the adjustment vector (r1, . . . , rs) and the vector
(M1, . . . ,Ms) of generalized moment generating functions.

Assume first that all stochastic objects considered in the paper are defined on a prob-
ability space (�,F ,P). As usual, N and R denote the set of all positive integers and the
real line, respectively. We will use the following notation: R+ = (0,∞), R0+ = [0,∞) and
R+ = (0,∞]. The random variables Cm, Tm and Xm, m ∈ N, are assumed to be positive
almost surely and their distributions – to have no singular parts. Let U(n, u) denote the
insurer’s surplus at the moment An. The surplus process {U(n, ·)}n∈N is defined then as
U(n, u) = u − ∑n

m=1 Zm, where Zm = Xm − c(Im−1)Tm, m ∈ N. Amore thorough inter-
pretation of the abovemodel, including the detailed simulation scheme for it, can be found
in Gajek and Rudź [11]. Selected special cases of this regime-switching model are given
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in Gajek and Rudź [10, p. 46] with the detailed references, including Markov additive
processes.

As usual, the time of ruin τ = τ(u) = inf{n ∈ N : U(n, u) < 0} is the first moment
when the insurer’s surplus becomes negative with τ = ∞ if U(n, u) � 0 for every n ∈ N.
For the convenience of the reader, wewritePi(B) = P(B|I0 = i),Pij(B) = P(B|I0 = i, I1 =
j) if pij > 0, or 0 otherwise and, consequently, Fij(x) = Pij(X1 � x), Gij(t) = Pij(T1 � t)
and � i(u) = �(u, i) = Pi(τ (u) < ∞) for all B ∈ F , i, j ∈ S and t, x ∈ R+. Moreover,
� i

n(u) = �n(u, i) denotesPi(τ (u) � n), i.e. the conditional probability of ruin at or before
the nth claim, n ∈ N, given the initial state i, considered as a function of u, with � i

0(u)
equal to zero for all i ∈ S and u � 0. The ruin probabilities�1(u), . . . ,�s(u) (respectively
�1

n(u), . . . ,�s
n(u)) form a vector �(u) (respectively �n(u)).

In Lemma 2.1 below, we will assume that the following condition holds.

Condition C1: For all i, j ∈ S, m ∈ {2, 3, . . .} and t, x ∈ R+, Pij(T1 � t,X1 � x) =
Fij(x)Gij(t) and the conditional distribution of the random variables Z2, . . . ,Zm, given
(I0 = i, I1 = j,T1 = t,X1 = x), is the same as the conditional distribution of the random
variables Z1, . . . ,Zm−1, given I0 = j.

An important property is the upcoming relationship between �n+1, �1 and L:

Lemma 2.1: Let Condition C1 hold. Then

�n+1(u) = L�n(u) = Ln�1(u) (3)

for all n ∈ {0, 1, . . .} and u � 0.

Here and throughout the paper, L0�1 = �1 and L1�1 = L�1. For a simulation
scheme in which Condition C1 is satisfied, see Gajek and Rudź [11]. The proofs of
Lemmas 2.1, 2.4, 2.6 and Remark 2.3 can be found in Gajek and Rudź [10].

Let us define a linear operator �i : Rs → R, i ∈ S, by

�iρ(u) =
s∑

j=1
pij

∫ ∞

0

∫
(0,u+c(i)t]

ρj(u + c(i)t − x) dFij(x) dGij(t), u � 0,

anddenote the vector (�1ρ, . . . , �sρ)by �ρ. Clearly, �nρ(u) = (�1�
n−1ρ(u), . . . , �s�n−1ρ(u))

for all n ∈ N,ρ ∈ Rs and u � 0, with the understanding that �0ρ(u) = ρ(u) and �1ρ(u) =
�ρ(u).

Write Bn = {τ � n} for each n ∈ N. Clearly, the sequence {Bn}n∈N of events is non-
decreasing and {τ < ∞} = ⋃∞

n=1 Bn. Thus, the continuity and the monotonicity of con-
ditional probability, given the initial state i of the Markov chain, imply that {� i

n}n∈N

converges monotonically from below, as n → ∞, to � i.
From Lemma 2.1 and the above-mentioned convergence, it follows that the vector � is

a fixed point of the multidimensional risk operator L.

Corollary 2.2: Let Condition C1 hold. Then L�(u) = �(u), for every u � 0.
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Proof: By the definition (1) and Lemma 2.1,

Lρ(u) = �ρ(u) + �1(u) (4)

for all ρ = (ρ1, . . . , ρs) ∈ Rs and u � 0. Since {� i
n}n∈N converges, as n → ∞, to � i,

Equation (3) and the Lebesgue dominated convergence theorem imply that

� i(u) = lim
n→∞ � i

n+1(u) = lim
n→∞ �i�n(u) + � i

1(u)

=
s∑

j=1
pij

∫ ∞

0

∫
(0,u+c(i)t]

lim
n→∞ �

j
n(u + c(i)t − x) dFij(x) dGij(t)+� i

1(u)=Li�(u).

Since i ∈ S and u � 0 are arbitrary, the assertion follows. �

Clearly, the following remark also holds.

Remark 2.3: The functionMi : R → R+, defined by

Mi(r) =
s∑

j=1
pij

∫ ∞

0

∫ ∞

0
e−r(c(i)t−x) dFij(x) dGij(t),

is convex on R for any i ∈ S.

Let Vi, i ∈ S, denote the set {r � 0 : Mi(r) < ∞}. In Lemma 2.4 below, we will assume
that the following condition holds.

Condition C2: All the sets V1, . . . ,Vs are right-open and for every i ∈ S

s∑
j=1

pij
∫ ∞

0
x dFij(x) < c(i)

s∑
j=1

pij
∫ ∞

0
t dGij(t)

and Pij0(X1 > c(i)T1) > 0 for some j0 ∈ S.

The next lemma provides a sufficient condition for the existence of the adjustment vec-
tor. It generalizes the notion of the adjustment coefficient which is commonly used (cf.
Rolski et al. [24]) in ruin theory.

Lemma 2.4: Let Condition C2 hold. Then there exists the adjustment vector (r1, . . . , rs).

The following corollary will be used in the proof of Theorem 3.5 and in Example 4.1.

Corollary 2.5: Let Condition C2 hold and i ∈ S. Then Mi(εri) � 1 for ε ∈ [0, 1] and
Mi(εri) � 1 for ε � 1.

Proof: From Remark 2.3 and the equalities Mi(0) = 1 = Mi(ri), i ∈ S, it holds that
Mi(εri) � 1 for ε ∈ [0, 1] andMi(εri) � 1 for ε � 1. �
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Let us recall that ρ � ξ if and only if ρi(u) � ξi(u) for all i ∈ S and u � 0. To prove
Lemma 2.7, Theorems 3.1, 3.2, 3.6 and Corollary 3.7, we will use the monotonicity of the
risk operator L.

Lemma 2.6: Assume that ρ, ξ ∈ Rs satisfy ρ � ξ . Then Lρ � Lξ .

Under Condition C2, let us consider the adjustment vector (r1, . . . , rs) and recall that
r∗ = min{ri : i ∈ S}, Ri0(u) = exp(−r∗u) and R0(u) = (R10(u), . . . ,R

s
0(u)), where i ∈ S

and u � 0. Define iteratively a sequence {Rin(·)}n∈N byRin(u) = LiRn−1(u), whereRn(u) =
(R1n(u), . . . ,Rsn(u)) for all i ∈ S, n ∈ N and u � 0.We also recall thatM∗(r) = max{Mi(r) :
i ∈ S}.

The following lemma plays an important role in the proofs of Corollary 3.4 and
Theorem 3.6.

Lemma 2.7: Under Conditions C1 and C2,

(i) |Ri
n(u) − � i

n(u)| � e−ru[M∗(r)]n, n ∈ N, r ∈ (0, r∗),
(ii) limn→∞ Rin(u) = � i(u),

for all i ∈ S and u � 0.

Proof: Clearly, the assumed existence of the adjustment vector implies that r∗ is
well-defined. Since, by Equation (3),

Rin(u) − � i
n(u) = �i�

n−1R0(u), (5)

we claim that

�i�
n−1R0(u) � e−ru[M∗(r)]n, i ∈ S, r ∈ (0, r∗), u � 0. (6)

We will show first that it holds for n = 1. Indeed,

�i�
0R0(u) = �iR0(u) =

s∑
j=1

pij
∫ ∞

0

∫
(0,u+c(i)t]

e−r∗(u+c(i)t−x) dFij(x) dGij(t)

�
s∑

j=1
pij

∫ ∞

0

∫
(0,u+c(i)t]

e−r(u+c(i)t−x) dFij(x) dGij(t)�e−ruMi(r)�e−ruM∗(r).

Let us assume now that Inequality (6) holds for some n ∈ N. We will show that it holds for
n+ 1 as well. Indeed, note that

�i�
nR0(u) = �i(�1�

n−1R0(u), . . . , �s�n−1R0(u))

=
s∑

j=1
pij

∫ ∞

0

∫
(0,u+c(i)t]

�j�
n−1R0(u + c(i)t − x) dFij(x) dGij(t)

� [M∗(r)]n
s∑

j=1
pij

∫ ∞

0

∫
(0,u+c(i)t]

e−r(u+c(i)t−x) dFij(x) dGij(t)

� [M∗(r)]n e−ruMi(r) � e−ru[M∗(r)]n+1.
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By the principle of mathematical induction, Inequality (6) holds for every n ∈ N.
It follows from a counterpart of the Cramér–Lundberg bound (cf. Inequality (21)) that

� � R0. Therefore, by Corollary 2.2 and Lemma 2.6, � � Rn for every n ∈ N. On the
other hand, �n � � , n ∈ N, which results from the monotone convergence of {� i

n}n∈N.
Thus, the assertion (i) holds because of Equation (5) and Inequality (6).

Now, the assertion (ii) follows from (i), since M∗(r) < 1 for every r ∈ (0, r∗) and
limn→∞ � i

n(u) = � i(u) for all i ∈ S and u � 0. �

3. Main results

The first result gives a convenient method for bounding multidimensional ultimate ruin
probabilities � from above.

Theorem 3.1: Let Condition C1 hold and ρ be any function fromRs that satisfies

Lρ � ρ. (7)

Then

� � ρ.

Proof: Since ρ ∈ Rs, Equation (4) implies that �1 � Lρ and, consequently, by the
assumption (7), �1 � ρ. Applying Lemma 2.6 and Equation (3) gives �2 = L�1 � Lρ.
Thus, the assumption (7) yields �2 � ρ. By iterating the above steps, one can verify that
�n � ρ for every n ∈ N. Letting n → ∞ completes the proof because limn→∞ � i

n(u) =
� i(u) for all i ∈ S and u � 0 (see Section 2 for details). �

Theorem 3.1 can be successfully applied to obtain a variety of upper bounds for the
vector � . Selected several of them are considered in Theorems 3.5 and 3.6 and listed in
Example 4.1.

Our next theorem provides a general recipe to bound the vector � from below. It is not
an immediate counterpart of Theorem 3.1 because the symmetry is not complete here. The
reason is that one has to separate (see Remark 3.3 below) ‘inadmissible’ fixed points of L
(such as the unit function 1 inRs or, in general, any convex combination of � and 1, as it
was mentioned in Section 1).

We say that the sequence {ζ n}n�0 of elements ζ n = (ζ 1
n , . . . , ζ s

n) fromRs converges to
ζ = (ζ 1, . . . , ζ s) ∈ Rs if limn→∞ ζ i

n(u) = ζ i(u) for all i ∈ S and u � 0.

Theorem 3.2: Assume that there exists ξ 0 ∈ Rs such that the sequence ξn = Lξn−1 con-
verges to �. Let ρ be any function fromRs that satisfies

ρ � Lρ and ρ � ξ 0. (8)

Then

ρ � � .

Before we get to the proof, let us look at the following counterexample, which shows
that the assumption ρ � Lρ does not suffice to construct a lower bound for � .
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Remark 3.3: Assume that ρi(u) = 1 for all i ∈ S and u � 0. Clearly, ρ = (ρ1, . . . , ρs) ∈
Rs and Liρ(u) = ∑s

j=1 pij
∫ ∞
0

∫
(0,u+c(i)t] dF

ij(x) dGij(t) + ∑s
j=1 pij

∫ ∞
0

∫ ∞
u+c(i)t dF

ij(x)
dGij(t) = ρi(u). Let ξ 0 be an arbitrary function from Rs such that ρ � ξ 0. In the con-
sidered case, ξ i1(u) = Liξ 0(u) � 1, i ∈ S, and, consequently, ξ in(u) � 1 for every n ∈ N.
Although the assumption ρ � Lρ is satisfied, ρ is not a lower bound for ruin probabilities
� unless � = 1.

We will prove now Theorem 3.2.

Proof: By the assumptions (8) and Lemma 2.6, Lρ � Lξ 0 = ξ 1 and, consequently, ρ � ξ 1.
By iterating the above steps, one may notice that ρ � ξn for every n ∈ N. Letting n → ∞
completes the proof because, by the assumption, {ξ in}n∈N converges, as n → ∞, to � i,
i ∈ S. �

The question arises whether there exists a non-trivial sequence {ξ in(·)}n�0 satisfying the
assumptions of Theorem 3.2. Representative examples, i.e. ξ in = Rin or ξ in = Ui

n, are given
in Corollary 3.4 and Theorem 3.6, respectively.

Corollary 3.4: Let Conditions C1 and C2 hold. Let ρ be any function fromRs that satisfies

ρ � Lρ and ρ � R0. (9)

Then

ρ � � .

Proof: By Lemma 2.7, the sequence {Ri
n}n∈N converges, as n → ∞, to � i for every i ∈ S.

Hence, the assertion follows from Theorem 3.2. �

We will show now how to apply Theorem 3.1 and Corollary 3.4 in order to construct
new two-sided bounds for vector-valued ruin probabilities� . First of all, we will deal with
amultidimensional Lundberg–Taylor type bound (cf. Taylor [26]) which will subsequently
be used to obtain a variety of sharper operator bounds for � .

Let us denote:

Ai(r, u) =
s∑

j=1
pij

∫ ∞

0

∫ ∞

u+c(i)t
dFij(x) dGij(t)

/ s∑
j=1

pij
∫ ∞

0

∫ ∞

u+c(i)t
e−r(u+c(i)t−x)dFij(x) dGij(t),

where i ∈ S and r>0. The following convention will be used throughout the paper: if the
support of any Fij is bounded from above in the previous quotient, then we restrict our
consideration to all theseu � 0 forwhich the denominator is positive. Then 0 � Ai(r, u) �
1. Under Condition C2, let us recall that r∗ = min{ri : i ∈ S}, r∗ = max{ri : i ∈ S} and set

A∗ = inf
i∈S

inf
u�0

{Ai(r∗, u)} and A∗ = sup
i∈S

sup
u�0

{Ai(r∗, u)},

where the inner inf and sup in A∗ and A∗, respectively, runs over all non-negative u such
that the denominator of Ai(r∗, u) (respectively Ai(r∗, u)) is positive. Let us also recall that



STOCHASTICS 9

Qi
0(u) = exp(−r∗u),Q0(u) = (Q1

0(u), . . . ,Q
s
0(u)), i ∈ S, u � 0, and

� i
1(u) =

s∑
j=1

pij
∫ ∞

0

∫ ∞

u+c(i)t
dFij(x) dGij(t), i ∈ S, u � 0, (10)

by the definition (1) and Equation (3).
Theorem 3.1 and Corollary 3.4 can be applied to prove the following two-sided bound

for multidimensional ruin probabilities � .

Theorem 3.5: Let Conditions C1 and C2 hold. Then

A∗Q0 � � � A∗R0. (11)

Proof: Since Ai(r∗, u) � A∗, the formula (10) implies that

� i
1(u) � A∗Ri0(u)

s∑
j=1

pij
∫ ∞

0

∫ ∞

u+c(i)t
e−r∗(c(i)t−x) dFij(x) dGij(t),

i ∈ S, u � 0. Therefore, by the definition (1), the formula (10) and the inequalityMi(r∗) �
1 resulting from Corollary 2.5,

Li(A∗R0)(u) = A∗Ri0(u)
s∑

j=1
pij

∫ ∞

0

∫
(0,u+c(i)t]

e−r∗(c(i)t−x) dFij(x) dGij(t) + � i
1(u)

� A∗Ri0(u)M
i(r∗) � A∗Ri0(u), i ∈ S, u � 0, (12)

or, equivalently, L(A∗R0) � A∗R0. Clearly, the assumption (7) is satisfied for the vector
ρ = A∗R0 and, consequently,

� � A∗R0, (13)

by Theorem 3.1.
To apply Corollary 3.4 with ρ = A∗Q0, one has to bound it by R0 first. We have

A∗Q0 � Q0 � R0, (14)

because of A∗ � 1. Since Mi(r∗) � 1, by Corollary 2.5, and Ai(r∗, u) � A∗, similar argu-
ments show that

Li(A∗Q0)(u) � A∗Qi
0(u)M

i(r∗) � A∗Qi
0(u), i ∈ S, u � 0,

or, equivalently,

A∗Q0 � L(A∗Q0). (15)

By the properties (14) and (15), the assumptions (9) are satisfied for the vector ρ = A∗Q0.
Therefore, by Corollary 3.4,

A∗Q0 � � . (16)

Finally, the assertion (11) follows from the properties (13) and (16). The proof is complete.
�
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WriteDi
0(u) = A∗Qi

0(u),U
i
0(u) = A∗Ri0(u),D0(u) = (D1

0(u), . . . ,D
s
0(u)) andU0(u) =

(U1
0 (u), . . . ,U

s
0(u)), where i ∈ S and u � 0. For every i ∈ S, define iteratively sequences

{Di
n(·)}n∈N and {Ui

n(·)}n∈N by Di
n(u) = LiDn−1(u) and Ui

n(u) = LiUn−1(u), respec-
tively, where Dn(u) = (D1

n(u), . . . ,Ds
n(u)) and Un(u) = (U1

n(u), . . . ,Us
n(u)), u � 0. We

also recall that M∗(r) = max{Mi(r) : i ∈ S} and �iρ(u) = ∑s
j=1 pij

∫ ∞
0

∫
(0,u+c(i)t] ρj(u +

c(i)t − x) dFij(x) dGij(t) for all i ∈ S, ρ = (ρ1, . . . , ρs) ∈ Rs and u � 0 (see Section 2 for
details).

The next theorem provides new two-sided operator bounds converging to the vector �

with the rate which is exponentially bounded from above.

Theorem 3.6: Let Conditions C1 and C2 hold. Then

Dn � � � Un (17)

and ∣∣Ui
n(u) − Di

n(u)
∣∣ � A∗ e−ru[M∗(r)]n (18)

for all i ∈ S, n ∈ N, r ∈ (0, r∗) and u � 0.

Proof: By Theorem 3.5, D0 � � � U0 and, consequently, by Lemma 2.6, LD0 � L� �
LU0. Applying Corollary 2.2 and the definitions of D1 and U1 gives D1 � � � U1. By
iterating the above steps, one can verify that Dn � � � Un for every n ∈ N, so the
assertion (17) holds.

To prove Inequality (18), we will first show that
∣∣Ui

n(u) − Di
n(u)

∣∣ � �i�
n−1U0(u) (19)

holds for all i ∈ S, n ∈ N and u � 0. Indeed, by Equation (4) and the definitions ofD1 and
U1, Ui

1(u) − Di
1(u) = �iU0(u) − �iD0(u) � �iU0(u) = �i�

0U0(u) for all i ∈ S and u � 0.
Thus, Inequality (19) is valid for n = 1. Under the assumption that it holds for some n ∈ N,
we get

Ui
n+1(u) − Di

n+1(u)

�
s∑

j=1
pij

∫ ∞

0

∫
(0,u+c(i)t]

�j�
n−1U0(u + c(i)t − x) dFij(x) dGij(t) = �i�

nU0(u)

for all i ∈ S and u � 0. By the principle of mathematical induction, Inequality (19) holds
for every n ∈ N and, consequently, by the definition of U0 and Inequality (6),

|Ui
n(u) − Di

n(u)| � A∗�i�n−1R0(u) � A∗ e−ru[M∗(r)]n

for all i ∈ S, n ∈ N, r ∈ (0, r∗) and u � 0. Hence, the assertion (18) holds and the proof is
complete. �

The sequence {ζ n}n�0 of elements ζ n = (ζ 1
n , . . . , ζ s

n) from Rs is said to be non-
decreasing (respectively non-increasing) if ζ n � ζ n+1 (respectively ζ n+1 � ζ n) for every
n ∈ N.
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Property (17) implies the following corollary.

Corollary 3.7: Let Conditions C1 and C2 hold. Then

(i) {Dn}n�0 is a non-decreasing sequence which converges, as n → ∞, to � ,
(ii) {Un}n�0 is a non-increasing sequence which converges, as n → ∞, to �.

Proof: Since A∗ � 1 and A∗ � 0, U0 � R0, �0 � D0 and, consequently, by Lemma 2.6,
Un � Rn and �n � Dn for every n ∈ N. Therefore, by the property (17),

lim
n→∞Di

n(u) = � i(u) = lim
n→∞Ui

n(u)

because both the sequences {� i
n}n�0 and {Ri

n}n�0 converge, asn → ∞, to� i (see Section 2
for details). Moreover, the properties (12), (15) and Lemma 2.6 imply thatUn+1 � Un and
Dn � Dn+1 for every n ∈ N. The proof is complete. �

Remark 3.8: Theorem 3.6 improves as well as generalizes the following result to the
regime-switching framework. Assume that there exists the one-dimensional adjustment
coefficient r0, i.e. a positive solution ofM(r) = 1, whereM(r) = E exp(r(X1 − γ )) and γ

is the total amount of premiums received in each period for the non-switching discrete
time risk model. This can be obtained when s = 1, X1,X2, . . . are a.s. non-negative i.i.d.
random variables sharing a distribution function F and P(Tk = η) = 1, k ∈ N, so that
γ = cη for some positive constants c and η. Then superscripts i can be skipped and the
following inequality has been known:

|Un(u) − Dn(u)| � r0
r0 − r

sup
d�γ

A(d) e−ru[M(r)]n,

whereA(d) = ∫ ∞
d dF(x)/

∫ ∞
d exp(−r0(d − x)) dF(x) (see Gajek and Rudź [8] for details).

Since 1 < r0/(r0 − r) for r ∈ (0, r0), Theorem 3.6 may provide bounds more general as
well as sharper (even in the case of one-dimensional models) than some existing results
(cf. Gajek [7] or Gajek and Rudź [8]).

Remark 3.9: The two-sided bounds resulting from Corollary 3.7 might even be asymp-
totically exact under the assumption that the adjustment coefficient exists. As an appli-
cation, let us consider the following family of claim distributions. Under the notation of
Remark 3.8, set

F(x) =

⎧⎪⎨
⎪⎩
0, x < α

P2, x = α

1 − P1 exp(−β(x − α)), x > α,

where α ∈ R
0+, β ∈ R+, P2 ∈ [0, 1) and P1 = 1 − P2. Assume that γ ∈ (α + P1/β ,+∞)

satisfies for some r0 ∈ (0,β) the following equationP2 + βP1/(β − r0) = exp(r0(γ − α)).
Both the limits limn→∞ Dn(u) and limn→∞ Un(u) are equal to (β − r0) exp(−r0u)/β ,
which is the exact ultimate ruin probability �(u) = P(τ (u) < ∞) in the considered case
(cf. Gajek andRudź [8]). In particular, the property holds for exponential distributionswith
a probability mass P2 at zero (when α = 0) or exponential distributions shifted by α to the
right (when P2 = 0), including the case of exponential distributions (when P2 = α = 0).



12 L. GAJEK ANDM. RUDŹ

4. Examples

In this section, we highlight some other applications of our methodology. The next result
concerns several upper bounds for the vector � , which can be proven using Theorem 3.1.

Example 4.1: Let Conditions C1 and C2 hold. Then

� i(u) � inf
r∈(0,r∗]

{e−ruMi(r)} (20)

for all i ∈ S and u � 0.
The proof of Inequality (20) relies on applying Theorem 3.1 to the following vector-

valued function ρr = (ρr,1, . . . , ρr,s), where ρr,i(u) = exp(−ru)Mi(r) for all i ∈ S, r ∈
(0, r∗] and u � 0. For these i and r,Mi(r) � 1, by Corollary 2.5. Therefore, ρr ∈ Rs and,
by the definition (1) and the formula (10),

Liρr(u) =
s∑

j=1
Mj(r)pij

∫ ∞

0

∫
(0,u+c(i)t]

e−r(u+c(i)t−x) dFij(x) dGij(t) + � i
1(u)

�
s∑

j=1
pij

∫ ∞

0

∫ ∞

0
e−r(u+c(i)t−x) dFij(x) dGij(t) = ρr,i(u)

for all i ∈ S, r ∈ (0, r∗] and u � 0. Thus, Lρr � ρr and, by Theorem 3.1, � � ρr. Since
r ∈ (0, r∗] is arbitrary, Inequality (20) follows. It can also be proven using an inductive
approach discussed in Gajek and Rudź [11].

The upper bound (20) generalizes and improves (cf. Inequalities (22) below) the
following results. In particular:

(i) if there exists the one-dimensional adjustment coefficient r0 for the non-switching
discrete time risk model, then the ultimate ruin probability � can be bounded as
follows

�(u) � inf
r∈(0,r0]

{e−ruM(r)}, u � 0,

(see Gajek [7] for details),
(ii)

� i(u) � e−r∗uMi(r∗), i ∈ S, u � 0,

(see Gajek and Rudź [10] for the detailedmethodology based on Banach Contraction
Principle),

(iii)

� i(u) � e−r∗u, i ∈ S, u � 0, (21)

which is a counterpart of the well-known Cramér–Lundberg bound.

Since

inf
r∈(0,r∗]

{e−ruMi(r)} � e−r∗uMi(r∗) � e−r∗u, i ∈ S, u � 0, (22)

our methodology may provide bounds sharper than the ones obtained by some different
mathematical approaches.
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The infimum in Inequality (20) runs over all positive r that are not greater than r∗.
There are known bounds for ruin probabilities with the infimum being taken conversely,
i.e. for r � r∗. In the following example, we compare Inequality (20) with such a result. It
turns out that, depending on the parameters of themodel, the infinite-horizon formula (20)
can sometimes better approximate� i

n than a generalized Gerber-type inequality designed
especially for the valuation of finite-horizon ruin probabilities � i

n.
To be more precise, we compare Inequality (20) with the result (23) from [9,

Theorem 3.1, p. 239].

Example 4.2: Let us consider a discrete time regime-switching model obtained when
P(Tk = η) = 1 for every k ∈ N, so that the total amount of premiums in the kth period
of length η equals γk = γ (Ik−1) = c(Ik−1)η for some positive real η and a known posi-
tive function c which is defined on S. Then a.s. non-negative random variables X1,X2, . . .
denote the total sums of the claims during the consecutive periods.

Assume that: S = {1, 2}, the amount of premiums during the first period, γ1,
given the state i in the beginning, equals γ (1) = 3.15 or γ (2) = 4.15. Set p11 =
0.94, p12 = 0.06, p21 = 0.9, p22 = 0.1, F11(x) = F21(x) = (1 − exp(−β1x))I(0,∞)(x) and
F12(x) = F22(x) = (1 − exp(−β2x))I(0,∞)(x), where β1 = 1, β2 = 0.6 and I(0,∞)(x) = 1
if x>0 and 0 otherwise. In the considered case,

Mi(r) = pi1
∫
[0,∞)

e−r(γ (i)−x) dFi1(x) + pi2
∫
[0,∞)

e−r(γ (i)−x) dFi2(x)

= e−rγ (i)(pi1β1/(β1 − r) + pi2β2/(β2 − r)
)

for i ∈ {1, 2} and r < β2. ThenM∗(r) = M1(r) and r∗ = r1 ≈ 0.591.
We will compare Inequality (20) with a generalized Gerber-type bound

� i
n(u) � inf

r�r∗
{e−ruMi(r)[M∗(r)]n−1}, i ∈ S, n ∈ N, u � 0. (23)

Figure 1. exp(−ru)M1(r) (the solid line) and exp(−ru)M1(r)[M∗(r)]n−1 (the dotted line), as functions
of r, for the initial surplus u = 0.1 and n = 10.
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Figure 2. exp(−ru)M2(r) (the solid line) and exp(−ru)M2(r)[M∗(r)]n−1 (the dotted line), as functions
of r, for the initial surplus u = 0.1 and n = 10.

Inequality (23) can bemore accurate than other upper bounds for finite-horizon ruin prob-
abilities (see Gajek and Rudź [9,12] for details). Nevertheless, the bound (20) can be even
sharper than Inequality (23) in some situations. For instance, set n = 10 and u = 0.1. The
graphs of exp(−ru)Mi(r) and exp(−ru)Mi(r)[M∗(r)]n−1, as functions of r, are presented
in Figures 1 and 2. Although

inf
r∈R+

{e−ruMi(r)[M∗(r)]n−1} < inf
r∈R+

{e−ruMi(r)}

for both i = 1 and i = 2, the parameters of the model have been selected in such a way
that the infima over (0, r∗] are substantially smaller than over [r∗,∞). To be more precise,
we have

inf
r∈(0,r∗]

{e−ruM1(r)} = 0.441 < 0.943 = inf
r�r∗

{e−ruM1(r)[M∗(r)]n−1}

and

inf
r∈(0,r∗]

{e−ruM2(r)} = 0.286 < 0.738 = inf
r�r∗

{e−ruM2(r)[M∗(r)]n−1},

so Inequality (20) can give more accurate bounds of�1
10(0.1) and�2

10(0.1) than the finite-
horizon upper bound (23).
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