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ABSTRACT
p-Values are viewed by many as the root cause of the so-called replication crisis, which is characterized
by the prevalence of positive scientific findings that are contradicted in subsequent studies. The spectrum
of proposed solutions includes redefining statistical significance, abandoning the concept of statistical
significance, or eliminating the use of p-values altogether. The unintended consequence of these proposals
has been confusion within the scientific community, especially in the absence of consensus or clear
alternatives. The goal of this article is to reframe the perceived replication crisis. I argue that this crisis is to a
large extent the result of excessive optimism based on unknowingly (and sometimes knowingly) overstated
evidence. As a remedy, I suggest a four-part guide to navigating statistical inference with p-values that is
accessible for scientists. Examples taken from pharmaceutical drug development for heart failure illustrate
key concepts.
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1. Introduction

I was recently called upon to explain why a pivotal clinical
trial had failed, after an earlier trial with the same assessment
in a similar design was “statistically significant” according to
p < 0.05. The findings of the earlier trial had been promptly
published in a top-tier medical journal and funding was secured
for a second confirmatory trial. The research team was surprised
to observe p = 0.386 for the primary assessment in the subse-
quent trial. Understanding why the second trial failed required a
discussion of how p-values measure evidence, what constitutes
strong evidence, and how evidence can be overstated to create
an unrealistic expectation of future replication. Unfortunately,
excessive optimism for the replication of positive initial findings
has led many to believe that science is suffering from a replica-
tion crisis.

To address the growing perception of a replication crisis, the
American Statistical Association (ASA) recently published 43
articles on the misuses of p-values in statistical inference. The
adjoining editorial (Wasserstein, Schirm, and Lazar 2019) rec-
ommended that scientists stop using the term “statistically sig-
nificant” entirely, but noted the articles “do not sing as one” and
reflect “deep dissonance.” The current ASA president (Kafadar
2019) cautioned that the editorial and special issue may have had
the unintended consequence of creating confusion among non-
statisticians, even leading some to “abandon statistical methods
altogether.” In contrast to the ASA, the New England Journal of
Medicine (Harrington et al. 2019) recommended, “despite the
difficulties they pose, p-values continue to have an important
role in medical research, and we do not believe that p-values and
significance tests should be eliminated altogether.” An editorial
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in the journal Clinical Trials (Cook et al. 2019) also cautioned
that “there is still a place for significance testing in clinical
trials.”

The objective of this article is to offer a guide for the role of
p-values in judging whether the strength of evidence reflected in
a set of data is persuasive. I begin by reframing the replication
crisis as the consequence of excessive optimism, and follow
with a brief summary of p-values versus fixed significance levels
and the relationship with false discoveries. After a short note
on interpreting p-values, I provide four recommendations for
judging the strength of evidence. Although I focus on p-values, it
is important to note that other statistical tools such as confidence
intervals and Bayes factors are also prone to misuse. Two case
studies from heart failure drug development help illustrate these
concepts.

1.1. Replication Crisis or Excessive Optimism?

Replication is the deliberate repetition of an initial experiment
to confirm its findings, and is a cornerstone of the scientific
method. Ioannidis (2005a) suggested there is a crisis in scien-
tific replication based on a statistical model for false positive
findings, concluding that “most published research findings are
false.” Goodman and Greenland (2007) noted in their corre-
spondence that Ioannidas’ model “dramatically diminishes a
study’s evidential impact,” driving the circular conclusion that
most findings are false. However, the model was not the reason
this article would be downloaded over 2.9 million times and give
rise to the popular perception of a crisis in replication. The arti-
cle connected to the emotional disappointment experienced by
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so many scientists when a promising initial finding disappears
in the next study.

The popular perception of a replication crisis has caused
many to focus on p-values as the main problem. Siegfried (2010)
suggested that contradicted scientific findings are more preva-
lent because scientists depend on p-values to declare their results
significant. The journal of Basic and Applied Social Psychology
(BASP) banned the use of p-values and null hypothesis signif-
icance testing (Trafimow and Marks 2015). The ASA issued a
statement on best practices for p-values (Wasserstein and Lazar
2016). This was followed by a series of proposals to either
redefine statistical significance (Benjamin et al. 2018), remove
statistical significance (Amrhein and Greenland 2018; Wasser-
stein, Schirm, and Lazar 2019), or require researchers to justify
their level of significance (Lakens et al. 2018).

A deeper examination of replication failures, such as highly
cited positive clinical trials that were contradicted or attenuated
in follow-up trials (Ioannidis 2005b), reveals four drivers of
the excessive optimism that feed the perception of a crisis.
Investigating a multiplicity of research questions on the same
data causes selective inference and inflates the evidence. Pub-
lishing only successful studies, in particular those with very
small sample size, exaggerates the effect size. Reporting p-values
without the effect size clouds the actual strength of evidence.
Ignoring the distinction between exploratory and confirmatory
research also inflates the evidence. Bans on p-values and signif-
icance tests have no effect on the economic and career-related
incentives to overstate evidence from scientific investigations
(Fricker et al. 2019). As Amrhein, Trafimow, and Greenland
(2019) aptly stated, “there is no replication crisis if we don’t
expect replication.”

1.2. p-Values Versus Fixed Significance Levels

To understand the controversy around null hypothesis signifi-
cance testing it is helpful to review its origins (Lehmann 1993;
Hubbard and Bayarri 2003; Christensen 2005). The p-value is
usually credited to Pearson (1900), but it was Fisher (1925)
who developed significance testing as a procedure to validate
a hypothesis using proof by contradiction. A null hypothesis is
simply a “straw man,” such as the hypothesis of no effect, and
there is no reference to any alternative hypothesis. An observed
effect that is large enough to be highly improbable when there
is actually no effect would suggest that the null hypothesis is
not valid. The p-value is the probability of seeing an effect as
large as or larger than the observed effect assuming that the null
hypothesis is true. A small p-value indicates that either we have

observed something highly unusual or that the null hypothesis
is not true.

Fisher regarded p-values as a measure of evidence against the
null hypothesis, the smaller the p-value, the greater the evidence.
He wanted scientists to make their own determination as to
how small the p-value must be to establish sufficient evidence to
disprove the null hypothesis, a threshold referred to as the level
of significance (denoted by α). Fisher (1926) suggested the level
of 5% (one in twenty), or more rigorous thresholds such as 1%
(one in a hundred), depending on the research objectives. Fisher
(1956) also advised that “no scientific worker has a fixed level of
significance at which from year to year, and in all circumstances,
he rejects (null) hypotheses; he rather gives his mind to each
particular case in the light of his evidence and his ideas.” Reach-
ing a threshold does not confer any scientific importance, it is
merely a gatekeeper that invites a deeper examination of all the
data in the context of the experiment. When the observed data
are insufficient to refute the null hypothesis, this is not taken as
proof that the null is true.

Consider a sample of patients from a target population that
are randomly assigned to receive active treatment or placebo in
a 1:1 ratio, resulting in n patients per group and a continuous
outcome with common known variance σ 2. The null hypothesis
is expressed as no difference in the mean response for the two
groups, H0: μ1 − μ2 = 0. The observed means x̄1 and x̄2
are estimates of the unknown population means μ1 and μ2
for the two groups, respectively. The sampling distribution of
the observed difference δobs = x̄1 − x̄2 when the null is true
is a normal distribution with mean zero and variance 2σ 2/n,
and determines what is unusual when there is no effect. A two-
sided significance test is illustrated in Figure 1, which shows the
sampling distribution under the null hypothesis for n = 40 and
σ 2 = 2. The two-sided p-values corresponding to observed
differences of δobs = 0.6 and δobs = 0.8, are p = 0.0578
and p = 0.0114, respectively. For example, differences as large
as |δobs| ≥ 0.8 have only a 1.14% probability (1 in 88) and
are unexpected if there is no effect, and thus, suggest evidence
against H0.

Neyman and Pearson (1928a, 1928b) proposed a decision
framework for choosing between two competing hypotheses,
the null hypothesis (H0) and alternative hypothesis (H1). A
scientist can commit two errors in this framework, namely the
Type I error of rejecting the null hypothesis of no effect when
it is true (a false positive), or the Type II error of failing to
reject the null hypothesis when it is false (a false negative). The
significance level α in this framework is the probability of a Type
I error, and β is the probability of a Type II error. Scientists fix

Figure 1. Significance tests for observed effects δobs = 0.6 and 0.8, based on n = 40 and σ 2 = 2, result in p = 0.0578 and 0.0114, respectively.
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Figure 2. Hypothesis tests based on n = 40 per group, assuming σ 2 = 2 and α = 0.05 (2-sided), with 47.5% and 81.2% power to detect minimum differences of δ = 0.6,
and 0.9, respectively. H0 is rejected in favor of H1 when observed differences fall in the upper or lower rejection region, each with area 0.025.

α in advance and plan experiments with adequate power 1 − β

to correctly reject H0 for an effect size of interest. The rejection
region is defined by (α, 1 − β) and determines which observed
effects are large enough to reject H0. The previous example is
illustrated in Figure 2 as a decision between H0: μ1 − μ2 = 0
versus H1: μ1 − μ2 �= 0. A sample size of n = 40 per group,
assuming σ 2 = 2 and α = 0.05, provides 47.5% and 81.2%
power to detect minimum effect sizes of δ = 0.6 and 0.9,
respectively.

The ubiquitous bright line of p < 0.05 originated with
the Neyman–Pearson concept of prespecifying a fixed level of
significance, an arbitrary choice to control risk of false positives.
The relative attitudes toward false positives versus false negatives
depend on the consequences of wrong decisions and where one
is in the research continuum. The goal of exploratory research is
to generate questions, whereas the goal of confirmatory research
is to definitively answer a question (De Groot 2014). The impact
of too many false positives in the exploratory phase is to waste
resources on chasing too many false discoveries, while too many
false negatives results in passing over meaningful discoveries too
quickly.

1.3. The 5% Level and False Discoveries

The 5% level for “statistical significance” emerged in the 19th
century before Pearson or Fisher (Stigler 2008), when economist
Francis Edgeworth used values such as 1.5%, 3.25%, and 7% “as
a criterion for how firm evidence should be before considering
a matter seriously.” Although Fisher advised against using the
same fixed level of significance in every circumstance, the tables
of quantiles in his famous 1925 book offered a limited number of
choices due to the absence of a computer to calculate them and
the constraints of space on the printed page. The 5% level was a
simple way to convey evidence against the null as an unusual
finding expected only 1 in 20 times when there is no effect,
or alternatively as an observed effect that is approximately two

standard deviations from the null effect. Scientists were depen-
dent on printed tables before the era of personal computers, and
so 5% became the traditional criterion for firm evidence.

The common use of the 5% significance level led to the
practice of publishing only those findings meeting the p < 0.05
criterion, resulting in a binary division of all research findings
as either positive (significant) or negative (nonsignificant). The
drive in academia to “publish or perish” moved the focus away
from a continuous measure of evidence to a binary measure of
academic success. While the probability of a Type I error is the
risk of a false positive finding for an individual study, the risk
of publishing false research findings from thousands of studies
depends on the prevalence of true effects as well as the power
and fixed significance level for each study.

Suppose we investigate 1000 experimental medicines in inde-
pendent clinical trials each designed with 80 power to detect
some specified effect versus placebo. Assume the prevalence
of real effects is 10 (with effect size being exactly the same
as the one used in the respective power calculation), and a
threshold of p < 0.05 is used to screen trials for publication,
as illustrated in Figure 3. The false discovery proportion (FDP)
is the proportion of false positive research findings among all
positive research findings (Staquet, Rozencweig, and Von Hoff
1979; Simon 1982; Oakes 1986; Benjamini and Hochberg 1995;
Sterne and Smith 2001). Here, the FDP is 0.05∗900

0.05∗900+0.8∗100 =
45/ (45 + 80) = 36%. The effects of low power, multiplicity,
and selective inference can drive the FDP considerably higher.
A more rigorous threshold (e.g., p < 0.001) might be a tempting
solution to reduce the FDP; however, this requires a major
increase in sample size to maintain the same level of power.

False discoveries are an issue in drug development (FDA
2017), which consists of laboratory discovery, preclinical safety
testing, first in human trials of safety and tolerability (Phase 1),
dose ranging trials (Phase 2), and confirmatory testing of safety
and efficacy (Phase 3). DiMasi et al. (2010) surveyed 1738
development programs to estimate the probability of success
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Figure 3. False discovery rate using p < 0.05 as the screening threshold to test 1000 experimental drugs, assuming a real effect is prevalent in only 10%, based on clinical
trials designed with 80% power.

(POS) for transitions from Phase 1 to Phase 2, Phase 2 to
Phase 3, Phase 3 to submission, and submission to approval.
They reported the following estimated transition probabilities:
POS1,2 = 71%, POS2,3 = 45%, POS3,S = 64%, POSS,A = 93%,
and thus, POS1,A = 19% for the entire program. Hay et al.
(2014) and Wong, Siah, and Lo (2019) report similar transi-
tion probabilities. Benjamini and Hechtlinger (2014) suggested
1 − POS3,S = 36% as a plausible estimate of the confirmatory
phase FDR, since 36% of the Phase 3 studies failed to confirm
the successful results of Phase 2. Conversely, 64% estimates the
replication rate for Phase 2 findings.

1.4. The Bayes Factor Alternative

The Bayesian alternative to the p-value as a measure of evidence
is the Bayes factor (Jeffreys 1935, 1961; Kass and Raftery 1995;
Goodman 1999; Held and Ott 2018). The Bayes factor (BF)

measures the evidence provided by the observed data D against
the null hypothesis H0 and in favor of the alternative H1, and
is derived as a ratio of posterior and prior odds. The data D
are assumed to have originated under one of the two compet-
ing hypotheses according to a probability density P(D|H0) or
P(D|H1). Each hypothesis has a prior probability P(H0) and
P (H1) = 1−P(H0), and the posterior probabilities after observ-
ing the data are P (H0 |D ) and P (H1 |D ) = 1−P (H0 |D ). Using
Bayes’ theorem, the posterior probabilities can be expressed as

P (Hi |D ) = P (D |Hi ) P (Hi)

P (D |H0 ) P (H0) + P (D |H1 ) P (H1)
(i = 0, 1) .

From the ratio of posterior probabilities, the posterior odds are
obtained as follows

P (H1 |D )

P (H0 |D )
= P (D |H1 )

P (D |H0 )

P (H1)

P (H0)
.

The Bayes factor is given by B10 = P(D|H1)/P(D|H0). Since the
posterior odds = Bayes factor × prior odds, the Bayes factor is
the ratio of the posterior odds of H1 to its prior odds. Computing
the Bayes factor depends on the prior distribution under the
alternative hypothesis. If the competing hypotheses are equally
probable prior to observing the data, the Bayes factor is simply
equal to the posterior odds against H0 and in favor of H1 (Kass
and Raftery 1995). A Bayes factor of B10 = 100, for example,

suggests that the odds based on the observed data are 100 to 1
against the null hypothesis.

Benjamin and Berger (2019) recommend reporting p-values
together with the corresponding Bayes factor (upper) bound
(BFB), which is independent of any prior and easy to calculate.
They recommend the upper bound BF ≤ BFB ≡ 1/

(−e p ln p
)

for p < 1/e, and 1 otherwise, which is valid under gen-
eral conditions across a large class of reasonable alternatives.
The BFB is the largest odds against the null hypothesis that is
consistent with the data. Benjamin and Berger (2019) suggest
“converting a p-value into interpretable odds.” For example, the
Bayes factor bound for a p-value of 0.005 corresponds to odds of
at most 13.9 to 1 against the null hypothesis, whereas a p-value
of 0.05 corresponds to odds of at most 2.45 to 1 against the null
hypothesis.

Gelman and Carlin (2017) cautioned that simply replacing
p-values with Bayes factors is not a solution because “the use
of Bayes factors for hypothesis testing is also subject to many
of the problems of p-values when used for the same purpose.”
For example, Mandel and Rinott (2009) illustrated the chal-
lenges in adjusting for selection bias for both frequentist and
Bayesian methods. Goodman (2019) suggested that “the Bayes
factor alternative is attractive but may be the bitcoin equivalent;
people are not sure what it means, have little clue where it will
be accepted, and it has variations in value.” Their use, or the
use of a Bayes factor bound, to supplement p-values for better
interpretation of the evidence is up to the researcher.

2. Using p-Values to Judge the Strength of Evidence

This section begins with a note on interpreting p-values as a
continuous measure of evidence. This is followed by a four-
part guide for using p-values to judge the strength of evidence
without distorting the expectations for replication. Of course,
judging the evidence requires looking beyond p-values to exam-
ine the totality of all the data in the context of the design and the
quality and consistency of a study.

2.1. p-Values Measure Evidence on a Log Scale

Evidence is information indicating the degree to which a
proposition is valid. p-Values are random variables that measure
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Figure 4. The probability densities for − log10(p-value) corresponding to a two-sample test for four different alternative effect sizes (0.3, 0.6, 0.9, 1.2), based on n = 10
and 40, and σ 2 = 2. The open triangle represents the threshold of p < 0.05, and closed triangles represent the median p-value for each effect size.

evidence against the null hypothesis. The sampling distribution
of the p-value under the null hypothesis is well known to be
uniform over the unit interval [0,1] for a single point null
hypothesis and continuous test statistics. Under the alternative
hypothesis, the sampling distribution of p-values is highly
skewed and depends on both the sample size and effect size.
Lambert and Hall (1982) showed for large samples that the
sampling distribution of the p-value under the alternative
hypothesis is approximately lognormal, or equivalently that
− log(p) is asymptotically normal. The behavior of p-values
when the null hypothesis is false is essential to understanding
how to judge the evidence they convey.

Hung et al. (1997) derived the probability density of the p-
value under the alternative for the simple case of a large-sample
test of two means for given values of δ, σ , and n as gp

(
p
) =

φ(Zp−√
n/2δ/σ )/φ(Zp) for 0 < p < 1, where φ is the standard

normal density, � is the cumulative normal distribution, and
Zp = �−1(1 − p). The density of y = − log10(p) is thus

fδ
(
y
) = (

10−y)φ(Z10−y − √
n/2δ/σ )/φ(Z10−y) for y > 0,

and is displayed in Figure 4 for given values of δ, σ , and n. The
distribution of − log10(p) is increasingly bell-shaped for larger
effect sizes corresponding to more extreme departures from the
null, and for larger sample sizes. The concentration of extremely
small p-values increases as the effect size increases, and for well-
powered studies, it is relatively easy to observe p-values well
below 0.05 when the alternative is true. In fact, the median p-
value for a study planned with 90% power against any alternative
is 0.001, and thus, p = 0.05 might even be considered in this case
negative evidence of a true difference since it would be relatively
unusual to observe a p ≥ 0.05 (Hung et al. 1997).

p-Values are naturally interpreted on a log scale since
− log10(p) is approximately asymptotically normal. The p-value
can be expressed as p = c × 10−k so that − log10(p) =
− log10 (c) + k, where c is a constant and k is an integer,
which implies that only the magnitude k measures the actual
strength of evidence (Boos and Stefanski 2011). For example, a
scientist might assume the evidence associated with p = 0.02
is twice as strong relative to p = 0.04, since it is half the
size. However, this is misleading because they both have
the same magnitude on the log scale (k = 2). This would
suggest that p = 0.01(k = 2) could be interpreted as twice
the evidence of p = 0.10(k = 1). Working with raw p-
values or log-transformed p-values is up to the researcher,

what is important is understanding their behavior under the
alternative. It is worth noting the Bayes factor (upper) bound,
BFB ≡ 1/

(−e p ln p
)
, can also be expressed as a function of k

as BFB = 10k/[ec(k − log10 (c)) loge (10)]. This is perhaps why
Jeffreys (1961) suggested Bayes factors could be interpreted on
the log10 scale.

Reproducibility probabilities are another way of calibrat-
ing the strength of evidence measured by p-values. The repro-
ducibility probability (RP) is the probability of replicating the
statistically significant results of an initial study in a subsequent
identical study conducted under the same conditions (Good-
man 1992; Senn 2002). It is denoted by RP = P(pnew <

0.05), where pnew represents the p-value from an independent
replication of the original study. An estimate of RP is computed
by estimating the power of the subsequent trial conditioned
on the observed data from the initial trial (Goodman 1992;
Shao and Chow 2002; Boos and Stefanski 2011). The estimated
reproducibility probability for the simple case of a two-sample
test of means with known common variance σ 2 is given by

R̂P = power(zobs) = P
(
reject H0 |zobs

)

= 1 − P
(
Z < zα/2 − zobs

) + P
(
Z < −zα/2 − zobs

)
,

where zobs = δobs/
√

2σ 2/n based on the observed data from
the first study.

Since |zobs| = −�−1(pobs/2), the estimated reproducibility
probability is simply a monotone function of the observed p-
value. However, reproducibility probabilities do provide another
way to calibrate p-values and are often much lower than scien-
tists would expect. For example, the estimated reproducibility
probability given an initial finding of pobs = 0.05 indicates that
there is only a 50% probability that pnew < 0.05, suggesting
that pobs = 0.05 is relatively weak evidence. In contrast, the
estimated reproducibility probability given an initial finding of
pobs = 0.001 indicates that there is a 90% probability that
pnew < 0.05, suggesting that p = 0.001 is relatively strong
evidence. Estimated reproducibility probabilities for a range of
p-values are given in Table 1. Reproducibility probabilities do
not calibrate evidence below 0.001 as well as − log10(p-value)
and the Bayes factor bound.

2.2. The Force of a p-Value Depends on Effects of Interest

Kempthorne (1976) explained that “the force of an observed
p-value depends on the distribution of the p-value under
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Table 1. p-Values, Bayes factor bounds, and estimated reproducibility probabilities.

p-Value 0.10 0.05 0.01 0.001 0.0001 0.00001
BFB 1.6 2.5 8 53 399 3195
R̂P 0.38 0.50 0.73 0.91 0.97 0.99
− log10(p-value) 1 1.3 2 3 4 5

alternative hypotheses which are worth entertaining.” This
principle is illustrated in Figure 5, which shows the distribution
of − log10(p) under two different effect sizes for n = 40 and
σ 2 = 2. This design provides 88% power to detect effects as
small as δ = 1, and when the true effect is δ = 1 the distribution
of p-values is characterized by strong evidence against the null.
For example, 80% of the p-values are less than 0.01(k > 2),
53% of the p-values are less than 0.001(k > 3), and 29% of the
p-values are less than 0.0001(k > 4). The same design provides
only 47% power to detect effects as small as δ = 0.6, and this
effect size results in a distribution of p-values that represents
relatively weak evidence against the null. In this case, only 33%
of the p-values are less than 0.01 and only 11% are less than
0.001.

Betensky (2019) proposed judging the strength of a p-value
by the scope of meaningful effects that it supports for a given
study design. Instead of using p < 0.05 to rule out no effect, she
derives a p-value threshold for concluding a meaningful effect.
Solve p = 2[1 − �

(
Z ≤ √

n/2δobs/σ
)] for the observed effect

corresponding to the observed p-value δobs = Zp/2σ
√

2/n.
Substitute into the lower (1 − α) 100% confidence limit δ∗ =
δobs − Zα/2σ

√
2/n to obtain δ∗ = (Zp/2 − Zα/2)σ

√
2/n. Since

smaller p-values result in larger values of δ∗, define p∗ as the
value of p for which δ∗ represents a meaningful effect size. Reject
the null hypothesis of no effect in favor of a meaningful effect if
and only if p < p∗, or equivalently, when the lower limit of a
95% confidence interval exceeds the meaningful effect.

For example, the design of Figure 5 is based on n = 40 and
σ 2 = 2, with a minimum meaningful effect δ = 1. As one would
expect, excluding a zero effect δ∗ = 0 with 95% confidence
requires a p-value below p∗ = 0.05. Ruling out small nonnull
effects requires stronger evidence. To conclude a nonnull effect
size at least as large as δ∗ = 0.42 with 95% confidence would
require a p-value below p∗ = 0.001(k > 3), observed 53% of
the time with this design. Evidence of an effect at least as large
as δ∗ = 0.61 would require a p-value below p∗ = 0.0001(k > 4),
observed 29% of the time. Evidence of an effect at least as large as
δ∗ = 0.78 would require a p-value below p∗ = 0.00001(k > 5),

Figure 6. Ratio of the observed to expected effect size (δobs/δe), for observed p-
values corresponding to designs based on power of 60–90% with α = 0.05. The
horizontal dashed line represents a ratio of 1, and the vertical dashed line represents
the threshold of p < 0.05.

observed 13% of the time. Finally, evidence of an effect as large as
δ∗ = 1 would require a p-value below p∗ = 0.0000001(k > 7),
observed just 2% of the time.

Hung and O’Neill (2003) expressed the relationship between
the observed p-value and the ratio of the observed effect size
δobs to the expected (hypothesized) effect size δe assumed during
the design stage as δobs/δe = zp/(zα + zβ), where zp is the
standardized difference associated with the observed p-value.
Figure 6 shows the observed effect is smaller than the expected
effect when the observed p-value is not significant (i.e., p > α)
or is near the threshold (i.e., p ∼= α). For a study planned with
90% power to detect an expected effect size δe for α = 0.05 (2-
sided), the observed effect will be 60% of the expected effect for
p = 0.05, 50% of the expected effect for p = 0.10, and 40% of
the expected effect for p = 0.20. Conversely, the observed effect
associated with p = 0.001 will be 100% of the expected effect.
Marginal evidence in a well-powered study indicates an effect
size smaller than anticipated.

While researchers almost universally adopt the hypothesis of
no effect as their null hypothesis, it is important to realize that
quite often, as is the case in drug development, we know there is
some effect and the magnitude of the effect is the key question.
By the start of Phase 2, we usually have good reason to believe
the drug has some effect. However, if the effect is smaller than
we think, this changes the distribution of p-values. When results
are not confirmed in larger Phase 3 trials, it is often because
the effect is smaller than was predicted, and not because it was
zero.

Figure 5. The distribution of − log10(p-value) based on n = 40 and σ 2 = 2 under two alternative effect sizes (0.6, 1.0). The open triangle represents the threshold of
p < 0.05, and closed triangle represents the median p-value.
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2.3. Multiplicity and Selective Inference Inflate the
Evidence

Tukey (1977) cautioned against multiplicity and selective infer-
ence. He described this as “asking multiple questions and con-
centrating on the most favorable answers.” Clinical trials, for
example, often evaluate multiple endpoints between multiple
treatment groups among multiple subgroups of patients, result-
ing in a potentially large number of significance tests. Mul-
tiplicity refers to the risk of at least one false positive when
testing multiple research questions. Selective inference is the
biased practice of choosing the primary research question after
the experiment is completed from the most promising finding
among the data. While multiplicity inflates the Type I error rate,
the bias of selective inference affects p-values, point estimates,
confidence intervals, as well as Bayesian statistics. Both phe-
nomena exaggerate the evidence and increase the risk of initial
research findings that are contradicted in future research.

Multiplicity inflates the probability of making at least one
Type I error when performing a series of m independent hypoth-
esis tests, each at the significance level α. The family-wise error
rate (FWER) is the probability of at least one Type I error in a
single study with a family of m hypothesis tests, and is equal to
1−(1−α)m in the case of independent tests. For example, a clin-
ical study designed to test 10 hypotheses arising from multiple
treatment comparisons, endpoints, or populations, would result
in a FWER as large as 40%, which is concerning given that most
studies evaluate much larger numbers of hypotheses. Whatever
the FWER, if p < 0.05 is used to screen for real effects when the
actual rate of false positives is much higher than α = 0.05, then
the risk of false discoveries rises dramatically, and is exacerbated
further for underpowered studies, as shown in Table 2.

Bretz and Westfall (2014) illustrated the impact of selec-
tive inference when selecting the subgroup with the best effect
observed from among four nonoverlapping subgroups in an
initial study, and conducting a subsequent study focused on the
chosen subgroup as the new study population. This scenario
is often encountered in clinical drug development, where the
initial study is an exploratory study at the end of Phase 2,
and a promising subgroup finding is the basis for a subsequent
confirmatory Phase 3 study. Their simulations showed that the
effect sizes observed in the second study were on average much
smaller than the effect sizes observed in the initial study. This
shows the impact of selective inference not only on replicability
but also on estimating expected effects for a new study based on
effect sizes observed in an initial study that are exaggerated.

Benjamini (2019) warned that “selective inference is the
silent killer of replicability,” because it inflates the evidence,
making it appear stronger than it actually is unless the nature
of the selection is reported and adjusted for in the analysis. It is
important to realize that multiplicity and selective inference can

Table 2. FDR by power and significance levels inflated by multiple tests.

1 test 2 tests 4 tests 10 tests
Power FWER = 0.05 FWER = 0.10 FWER = 0.185 FWER = 0.40

30% 60% 75% 85% 92%
50% 47% 64% 77% 88%
80% 36% 53% 68% 82%
90% 33% 50% 65% 80%

Figure 7. Ratio of the observed to expected effect size (δobs/δe), for observed p-
values corresponding to designs based on power of 10–50% with α = 0.05. The
horizontal dashed line represents a ratio of 1, and the vertical dashed line represents
the threshold of p < 0.05.

impact any statistical method or tool, and not just p-values. For
example, Benjamini (2019) notes that “adjusting for selection
in estimation and confidence intervals is rarely practiced, even
when done for testing.” Greenland (2019) notes that “curtailing
selection biases will still require additional drastic measures
rather than just a change in inferential method.” Bauer (2017)
also cautions that “multiplicity seems to remain a serious
challenge for any type of statistical inference.”

2.4. Publication Bias and Low Power Exaggerate the Effect
Size

Publication bias (Sterling 1959; Rosenthal 1979) is a type of
selection bias in which only those studies that reach the con-
ventional threshold for statistical significance of p < 0.05 are
published. This results in a higher rate of false discoveries in
the literature. Lane and Dunlap (1978) showed that estimating
the effect size using only published studies can considerably
overestimate the true effect size, and lead to an under-powered
follow-up study. Advances in clinical trial registration, for exam-
ple, are reducing the selective publication of research outcomes
(Miller et al. 2017). The International Committee of Medical
Journal Editors (ICMJE) requires the registration of a clinical
trial in a public registry at or before the time of first patient
enrollment for the results of the completed trial to be considered
for publication. The sharing of protocols, statistical analysis
plans, and patient data will have an even bigger impact on the
transparency of research findings (Rockhold et al. 2019). These
principles of open science should be expanded to other scientific
disciplines.

Small studies with low power occur in many areas of science
and are prone to exaggerated observed effect sizes. Pereira,
Horwitz, and Ioannidis (2012) reviewed large treatment effects
reported in 85,002 comparative analyses of medical interven-
tions in the Cochrane Database, and found that most large
effects are observed in small studies and are usually attenuated
in follow-up trials. The Open Science Collaboration (2015)
conducted a large project to replicate findings in psychological
science, and reported that “replication effects were half the
magnitude of original effects.” The relationship between the
observed p-value and the ratio of the observed effect relative
to the expected effect δobs/δe = zp/(zα + zβ) is illustrated for
small and noisy studies with low power in Figure 7. Significant
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Figure 8. The standardized observed effect size
√

n/2δ/σ (z-score) versus the corresponding observed p-value for 1000 repeated trials with small samples (n = 20) and
low power to detect small effects (δ = 0.3, 0.6), with α = 0.05 and σ 2 = 2. The horizontal dashed line represents zero effect, and the vertical dashed line represents the
threshold of p < 0.05.

(p < α) effects observed in a study with low power, for example,
below 50%, are increasingly exaggerated relative to what was
expected as the power decreases.

The behavior of observed effects in studies with extremely
low power is also illustrated in Figure 8, which presents 1000
simulated two-sample tests for small effects ( δ = 0.3 and δ =
0.6) based on small samples of n = 20. Statistically significant
effects ( p < 0.05) are to the right of the vertical line, and may be
as much as two to six times larger than expected depending on
the magnitude of the p-value. Significant effects may even occur
in the wrong direction. Gelman and Carlin (2014) described
these types of misleading results as Type M (magnitude) errors
and Type S (sign) errors.

The observed effect size in a given study may be prone to
exaggeration due to low power or publication bias. Without
adjustment, the postulated effect size for a follow-up study may
result in an underpowered design, resulting in a diminished
or vanishing effect. For publication bias, Hedges (1984) pro-
posed a shrinkage method for correcting the estimated effect
size. For studies with low power, discounting is a common
adjustment (Chuang-Stein and Kirby 2014). Kirby et al. (2012)
recommended at least a 10% discount to the Phase 2 estimate of
treatment effect when planning a Phase 3 study. Wang, Hung,
and O’Neill (2006) recommended using the lower endpoint
of the observed 95% confidence interval from Phase 2 when
planning Phase 3.

2.5. Exploratory Versus Confirmatory Evidence

Tukey (1977, 1980) described exploratory research as a flexible
attitude that transforms an abstract idea into a well-formulated
question that is ready to be confirmed in a more rigorous study.
Exploratory research is focused on inquiry, data exploration,
hypothesis generation, modeling, and estimation. Hypothesis
tests in this setting are often data-driven and not predefined.
Drug development, for example, rarely begins with a focused
confirmatory question. Instead, the confirmatory question is
shaped by a series of exploratory studies. Exploratory objectives
include topics such as establishing whether the new drug has any
measurable effect, identifying biomarkers that predict response,
estimating a plausible range of anticipated effects, and charac-
terizing the shape of the dose–response curve. The hypotheses

and analysis methods for confirmatory testing are specified in
advance, based on the learnings of the exploratory phase (ICH
1998).

The regulated field of medical research operates under a
well-developed body of methods that maintains a distinction
between exploratory and confirmatory research (Wellek 2017).
Many other disciplines are not bound by such a framework.
Wagenmakers et al. (2012), for example, characterized psy-
chological research as a discipline that routinely extracts
confirmatory conclusions from exploratory findings. They note
that “almost without exception, psychologists do not commit
themselves to a method of data analysis before they see the
actual data.” This is confounded by condensing the research
continuum into a small single study. This has some similarity
to the early years of clinical research in which clinical trials
were routinely conducted without a protocol or an analysis plan
(Temple 2005). Although psychological research is changing,
the “one-and-done tradition of theory confirmation by a single
small randomized trial, while weakening, is still dominant”
(Goodman 2019). Bishop (2019) also describes progress but
notes the need to bring publication bias, low power, multiplicity,
and selective inference under control through improved rigor
and open science.

The appropriate standard of evidence for exploratory
research depends on the volume of questions, the prevalence of
interesting discoveries, and the tolerance for false discoveries.
Traditional methods for addressing multiplicity provide strong
control of the familywise error rate at the expense of losing
power and missing real differences. Benjamin et al. (2018)
suggested controlling the FDR in exploratory research by
requiring a higher level of evidence, namely α = 0.005.
If π represents the proportion of real effects (false null
hypotheses), then for a large number of questions FDR ≈
α(1 − π)/ [α(1 − π) + (1 − β) (π)]. Testing at α = 0.005
with 80% power when the prevalence of real effects is π = 10%
would limit the FDR to 5%, but at the expense of a 70% increase
in sample size and fewer studies within existing budgets. Alter-
natives include softer thresholds, or reduced power, or both.

Exploratory research with big data is often characterized by
the selection of a subset of variables or features, from hundreds
of thousands or millions of candidates, that are associated with
an outcome or trait of interest. Candes et al. (2018) described
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Table 3. Lack of replication in all-cause mortality results between PRAISE-I and PRAISE-II.

Amlodipine studies Placebo 10 mg HR (95% CI) p-Value

PRAISE-1 overall (N = 1153) 38.3% (223/582) 33.3% (190/571) 0.84 (0.69, 1.02) 0.07
PRAISE-1 ischemic (N = 732) 40.3% (149/370) 40.1% (145/362) 1.02 (0.81, 1.29) 0.87
PRAISE-1 nonischemic (N = 421) 34.9% (74/212) 21.5% (45/209) 0.54 (0.37, 0.79) <0.001
PRAISE-2 (N = 1654) 31.7% (262/827) 33.6% (278/827) 1.09 (0.92, 1.29) 0.33

this as “panning for gold.” Berger (2012) and Benjamin et al.
(2018) noted that early genome-wide association studies “almost
universally failed to replicate (estimates of the replication rate
are as low as 1%) because they were doing extreme multiple
testing at nonextreme p-values.” This led researchers to adopt
p ≤ 5 × 10−8 as a genome-wide significance threshold (Jannot,
Ehret, and Perneger 2015). The combination of average power
and strong evidence of association improved the replication of
identified associations in subsequent studies. Methods for con-
trolling the false discovery rate are also useful when screening
numerous endpoints, as they offer a compromise by reducing
the risk of too many false discoveries without overlooking too
many real differences (Benjamini et al. 2001).

A well-known standard for confirmatory evidence is the
requirement of two successful (two-sided p < 0.05, with
both estimates in the favorable direction) adequate and well-
controlled studies for new drug approval (FDA 1998). Adopting
0.05 was not a specific regulatory decision, it was simply
the “conventional” statistical practice followed by scientists
at the time (Kennedy-Shaffer 2017). Requiring two replicate
studies below p < 0.05 limits the false approval rate to no
more than 2 × (1/40) × (1/40) = 0.00125. This standard
of evidence is an order of magnitude higher than a decision
based on one study with p < 0.05 and illustrates the value of
independent replication. The replicate study does not have to
be identical and may employ a different design or population.
Regulatory approval is also possible based on a single study
with the same level of evidence of as the two-study paradigm,
namely p < 0.00125 (Fisher 1999; CPMP 2001). This is not an
absolute requirement, and a single study “in the neighborhood
of p = 0.001” might open the door for discussion (Temple
2005).

Pocock, McMurray, and Collier (2015) offered guidelines for
“using p-values wisely to assess the strength of evidence” in the
context of randomized clinical trials. They recommended using
the p-value together with an estimate of the treatment effect and
its 95% confidence interval to assess the magnitude of the effect,
the degree of uncertainty, and the strength of evidence that the
effect is genuine. Pocock and Stone (2016a) recommended p <

0.001 when proof beyond reasonable doubt is required. They
also offer guidelines for interpreting evidence when the primary
outcome of a trial fails to achieve statistical significance, noting
that it is “hard to think of an example in which an apparent
benefit in a subgroup in a trial with a negative outcome has led to
a confirmation in a subsequent trial (Pocock and Stone 2016b).”

3. Case Study: Heart Failure

Disappointing results in Phase 3 that fail to confirm the
promising results previously observed in Phase 2 are common
in the challenging field of heart failure drug development,

where there continues to be a high unmet need for effective
therapies. Vaduganathan, Butler, and Gheorghiade (2016) noted
that publication bias limits the availability of data from failed
programs in heart failure drug development. The following
section presents two case studies of how the perceived strength
of evidence plays a critical role in making decisions based on
promising initial results.

3.1. The Praise Trials

The PRAISE-1 trial randomized 1153 patients to receive
amlodipine 10 mg or placebo, stratified by ischemic or non-
ischemic heart failure (Packer et al. 1996). The prospectively
defined primary outcome was the combination of major
morbidity or mortality from any cause. The trial was designed
with 90% power to detect a 25% reduction in the primary
endpoint. The observed reduction in morbidity/mortality was
only 9% (p = 0.31), with a 16% (p = 0.07) reduction in
mortality. The nonischemic stratum was more compelling, with
a 31% reduction in morbidity/mortality (p = 0.04) and a 46%
reduction in mortality (p < 0.001). To confirm the mortality
finding in this stratum, 1654 patients with nonischemic heart
failure were enrolled in PRAISE-2 (Packer et al. 2013). The
primary outcome was mortality from any cause, and the trial
was designed with 90% power to detect a 25% reduction in
mortality. The results failed to replicate the mortality finding,
and the two studies are summarized in Table 3.

The failure of the PRAISE-2 trial illustrates the impact of
power, multiplicity, and selective inference on the perceived
level of evidence. PRAISE-1 suggested a reduction in mortality
in the nonischemic stratum, which was a finding in one of eight
different subgroups examined within a negative trial. PRAISE-
2 was designed with 90% power to confirm the reduction in
mortality, whereas the first trial was not powered to examine
mortality within a subgroup of only 36.5% of the patients. The
initial finding of a 46% reduction in mortality in the nonis-
chemic subgroup was exciting in the context of high unmet
medical need, but was likely an exaggerated effect subject to
selection bias. In planning the second trial, the investigators
adjusted for the inflated effect by powering the second trial to
detect a smaller reduction. Nevertheless, the small p-value in
PRAISE-1 overstated the true strength of evidence and lacked
adjustment for the number of subgroups explored within a trial
that did not meet its primary endpoint.

3.2. The Elite Trials

The ELITE-1 trial randomized 722 elderly patients with chronic
symptomatic heart failure, untreated with ACE inhibitors, to
receive either the ARB losartan 50 mg once daily or the ACE
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Table 4. Lack of replication in all-cause mortality results between ELITE-I and ELITE-II.

Studies Captopril Losartan Estimate (95% CI) p-Value

ELITE-1 (N = 722) 8.6% (32/370) 4.8% (17/352) 0.46∗ (0.05, 0.69) 0.035
ELITE-2 (N = 3152) 15.9% (250/1574) 17.7% (280/1578) 1.13∗∗ (0.95, 1.35) 0.16

∗Risk reduction based upon Mantel–Haenszel adjusted (for age category) relative risk estimate.∗∗Hazard ratio based upon Cox regression. Final analysis adjusted, after several interim analyses, to 0.043 (two-sided) and 95.7% CI.

inhibitor captopril 50 mg three times daily for 48 weeks (Pitt
et al. 1997). The prospectively defined primary assessment was
a measure of renal dysfunction to evaluate tolerability, the sec-
ondary assessment was the composite of death and/or hospital-
ized heart failure, as well as five other assessments, including
mortality from any cause. The study was designed for an analysis
of renal dysfunction, and was not powered for an analysis of
mortality or the composite of death and/or hospitalized heart
failure. However, the observed risk reduction in death and/or
hospitalized heart failure was 32%

(
p = 0.075

)
and was driven

by an unexpected 46% (p = 0.035) reduction in mortality from
all causes.

The ELITE-2 trial was designed to confirm the finding of a
reduced risk of mortality from any cause with losartan com-
pared to captopril (Pitt et al. 2000). A total of 3152 elderly
patients with symptomatic heart failure were randomized to
either losartan 50 mg once daily or captopril 50 mg three times
daily, and followed for a median time of 1.5 years. The primary
and secondary assessments were prospectively defined as mor-
tality from any cause and the composite of sudden death or
resuscitated cardiac arrest. The study was designed with 90%
power to detect a relative 25% difference between treatments.
The results did not confirm the mortality benefit of losartan
observed in ELITE-1, and actually indicated a trend that sug-
gested the possibility of harm. There was also no significant
difference in composite of sudden death or resuscitated car-
diac arrest. The results of these two studies are summarized in
Table 4, and note that risk reductions were reported for ELITE-
1, whereas hazard ratios were reported for ELITE-2.

The failure of the ELITE-2 trial also illustrates the impact
of power, multiplicity, and selective inference on the perceived
level of evidence. While the initial finding of a 46% risk reduc-
tion in mortality (p = 0.035) seemed exciting, it is important to
view the evidence in a wider context. The investigators focused
selectively on one of multiple secondary endpoints that the
study was not designed to evaluate. The power of an unplanned
analysis of mortality in ELITE-1, based on only one tenth of the
events observed in the ELITE-2, would be extremely low and
prone to an exaggerated effect. The evidence is less compelling
when viewed in the context of multiplicity, selective inference,
and the limited length of follow-up.

4. Conclusion

It is not realistic to expect every interesting experimental finding
will be replicated, but it is natural for every scientist to hope
for it. When the apparent evidence is inflated by factors such as
multiplicity, selective inference, bias, and low power, the hope
for replication can develop into an unrealistic expectation. This
exacerbates the disappointment when promising initial findings
are not confirmed in a follow-up study. A view of the data in

the transparent light of factors that may distort the level of
evidence is the best remedy for the excessive optimism that can
lead to heightened disappointment. I do not believe there is a
replication crisis, but there are misunderstandings, and there is
always an opportunity to strive for the best scientific practice
in judging the strength of the data. As Bauer (2017) asked
rhetorically in his commentary on the p-value controversy, “is
there any statistical concept without the potential for being
misused?”

A proposal for the best practices for using p-values to judge
the persuasiveness of the evidence includes the following steps.
Illustrate the force of the p-value by the scope of nonnull effects
that it excludes for a given study design, and the range of mean-
ingful benefits that it supports. Apply the appropriate adjust-
ments for the effects of multiplicity and selective inference.
Discount the postulated effect size when planning a follow-up
study to account for the effects of publication and selection bias
and low power. Interpret the p-value as a continuous measure of
evidence on a log scale as − log10(p), where only the magnitude
of k is reliably determined as the measure of evidence (Boos
and Stefanski 2011). Finally, differentiate between exploratory
and confirmatory research and apply the appropriate standards
of evidence. Proof beyond a reasonable doubt is not required
in every setting, but it is critical to be transparent about the
true strength of evidence, and to avoid overstating the evidence
through omission of key details.

These key principles are not part of the curriculum taught
to students and scientists. Maurer et al. (2019) proposed a
framework for updating the introductory statistics curriculum
to include greater emphasis on the best practices for the use
and interpretation of p-values for statistical inference. This has
the potential to impact, for example, nearly one million stu-
dents in the United States who enroll each year in introductory
and upper level undergraduate statistics courses (Blair, Kirk-
man, and Maxwell 2018). Some of these students will go on
to become scientists and policy makers. Statisticians likewise
have an opportunity to step forward and assert their leadership
as they collaborate with multidisciplinary research teams to
develop the best designs and make decisions based on evidence
(Gibson 2019). As we collaborate, so must we continue to teach
and educate our partners in science.

Making decisions invariably leads to a judgment of whether
the evidence is persuasive enough to support an affirmative
decision. Scientific conclusions and business or policy decisions
should not be based simply on whether a p-value passes a
specific threshold. However, a p-value can serve as “a first line of
defense against being fooled by randomness,” like a gatekeeper
that opens the door to a deeper examination of the data in
terms of the benefits and risks (Benjamini 2016). The strength
of this “first line of defense” depends on whether the research
is exploratory or confirmatory and the consequences associated
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with making the wrong decision. Perhaps this is why Fisher
(1956) cautioned against using a fixed level of significance “in
all circumstances.”
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