On regular subgraphs of augmented cubes

Amruta Shinde \& Y. M. Borse

To cite this article: Amruta Shinde \& Y. M. Borse (2020) On regular subgraphs of augmented cubes, AKCE International Journal of Graphs and Combinatorics, 17:3, 734-743, DOI: 10.1016/ j.akcej.2019.12.007

To link to this article: https://doi.org/10.1016/j.akcej.2019.12.007

© 2020 The Author(s). Published with
license by Taylor \& Francis Group, LLC

Published online: 27 Apr 2020.

Submit your article to this journal

Article views: 110

View related articles

View Crossmark data \triangle

On regular subgraphs of augmented cubes

Amruta Shinde and Y. M. Borse
Department of Mathematics, Savitribai Phule Pune University, Pune, India

Abstract

The n-dimensional augmented cube $A Q_{n}$ is a variation of the hypercube Q_{n}. It is a $(2 n-1)$-regular and $(2 n-1)$-connected graph on 2^{n} vertices. One of the fundamental properties of $A Q_{n}$ is that it is pancyclic, that is, it contains a cycle of every length from 3 to 2^{n}. In this paper, we generalize this property to k-regular subgraphs for $k=3$ and $k=4$. We prove that the augmented cube $A Q_{n}$ with $n \geq 4$ contains a 4-regular, 4-connected and pancyclic subgraph on / vertices if and only if $8 \leq I \leq 2^{n}$. Also, we establish that for every even integer I from 4 to 2^{n}, there exists a 3 -regular, 3 -connected and pancyclic subgraph of $A Q_{n}$ on / vertices.

KEYWORDS

Augmented cube; hypercube; regular subgraph; pancyclicity; connectivity

1. Introduction

The interconnection networks play an important role in parallel computing and communication systems. The underlying topology of the interconnection network is represented by a graph. The hypercube is a popular network topology because of its good properties, such as strong connectivity, small diameter, symmetry, relatively small degree, bipancyclicity and regularity. Choudum and Sunitha [4] proposed a new variation of the hypercube Q_{n} called augmented cube $A Q_{n}$ of n-dimension as an improvements over hypercubes. The augmented cube $A Q_{n}$ is a $(2 n-1)$-regular and $(2 n-1)$-connected graph with 2^{n} vertices and it has diameter $\lceil n / 2\rceil$-diameter. Several results available in literature shows that the augmented cube is a good candidate for computer network topology design; see [4-6, 8, 10, 11, 15].

A graph G is pancyclic if it contains a cycle of every length from 3 to $|V(G)|$, whereas G is bipancyclic if it contains a cycle of every even length from 4 to $|V(G)|$. Moreover, G is nearly pancyclic if it contains a cycle of every length from 3 to $|V(G)|$ except possibly for one value. Cycles are fundamental networks for parallel and distributed computing as they are suitable for designing simple algorithms with low communication cost [7]. Pancyclicity of a network is an important factor in determining whether the network topology can simulate cycles of various lengths. Connectivity is a crucial parameter for interconnection networks as it measures the stability of a network. Pancyclicity and connectivity properties for augmented cubes are studied in $[6,8,15]$.

The augmented cube $A Q_{n}$ is pancyclic. Therefore cycles of every length from 3 to 2^{n} can be embedded into it. Thus $A Q_{n}$ contains a 2 -regular and 2 -connected subgraph on l vertices for every integer l with $3 \leq l \leq 2^{n}$. It is natural to
think of generalizing this fundamental property of the augmented cubes to the existence of k-regular, k-connected and pancyclic subgraphs. This will be useful to get subgraphs of $A Q_{n}$ with less number of vertices which retain the important properties of $A Q_{n}$ such as regularity, pancyclicity and high connectivity. For hypercubes, this problem is studied in [2, 3, 14].

Mane and Waphare [12] investigated for the existence of a k-regular, k-connected and bipancyclic subgraph of the hypercube Q_{n} with 2^{n} vertices for given k. Lu et al. [9] considered the similar problem for the Cartesian product of cycles. Ramras [14] proved that the hypercube Q_{n} contains a 3-regular subgraph with l vertices for even integer l from 8 to 2^{n} except 10. Borse and Shaikh [2] improved this result by proving that for such values of l there exists a 3-regular subgraph of Q_{n} with l vertices which is 3-connected and bipancyclic too. Similar results for the classes of the Cartesian product of cycles and the Cartesian product of paths are obtained in [1] and [13], respectively. For the existence of 4-regular subgraphs, Borse and Shaikh [3] established that there exists a 4-regular, 4-connected and bipancyclic subgraph on l vertices in the hypercube Q_{n} if and only if $l=16$ or l is an even integer with $24 \leq l \leq 2^{n}$.

In this paper, we generalize the property of pancyclicity to the existence of 3-regular subgraphs and 4-regular subgraphs in augmented cubes. Since $A Q_{n}$ is simple and the total degree of a 3-regular graph is even, the number of vertices of every 3-regular subgraph of $A Q_{n}$ is even and at least 4.

The following are the main results of the paper.
Theorem 1.1. Let $n \geq 2$ and l be integers such that l is even and $4 \leq l \leq 2^{n}$. Then there exists a 3-regular, 3-connected

Figure 1. Augmented cubes.
and nearly pancyclic subgraph of the augmented cube $A Q_{n}$ with l vertices.

Theorem 1.2. Let $n \geq 4$ and l be integers. Then the augmented cube $A Q_{n}$ contains a 4-regular, 4-connected and pancyclic subgraph with l vertices if and only if $8 \leq l \leq 2^{n}$.

The paper is organized as follows. In Section 2, we obtain some lemmas which are used in the proofs in the subsequent sections. Theorem 1.1 is proved in Section 3. The proof of Theorem 1.2 is divided in two sections, Section 4 deals with the case $27 \leq l \leq 2^{n}$, whereas the remaining cases are covered in Section 5. Also, in Section 5, we prove a result about the non-existence of 4-regular subgraphs with $l<7$ vertices.

2. Preliminaries

In this section, we provide the definition of the augmented cube $A Q_{n}$, and obtain some results regarding pancyclicity, connectivity and the existence of particular types of cycles in $A Q_{n}$ which are used in the subsequent sections.

For a graph G, let $V(G)$ and $E(G)$ denote its vertex set and edge set, respectively. By a k-cycle, we mean a cycle of length k, denoted by C_{k}. A path with vertices $a_{1}, a_{2}, \ldots, a_{n}$ in order is written as $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ and cycles are also written similarly. The Cartesian product $G \square H$ of two graphs G and H is a graph with vertex set $V(G) \times V(H)$, where any two vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent if $u_{1}=u_{2}$ and v_{1} is adjacent to v_{2} in H, or $v_{1}=v_{2}$ and u_{1} is adjacent to u_{2} in G. The n-dimensional hypercube Q_{n} is the Cartesian product of n copies of the complete graph K_{2}.

An n-dimensional augmented cube, for $n \geq 1$, denoted by $A Q_{n}$, contains 2^{n} vertices, each labeled by an n-bit binary string $a_{n} a_{n-1} \cdots a_{1}$. We define $A Q_{1}=K_{2}$. For $n \geq 2, A Q_{n}$ is obtained by taking two copies of the augmented cube $A Q_{n-1}$, denoted by $A Q_{n-1}^{0}$ and $A Q_{n-1}^{1}$, and adding 2^{n} edges between the two as follows: Let $V\left(A Q_{n-1}^{0}\right)=\left\{0 a_{n-1} \cdots a_{1}\right.$: $a_{i}=0$ or 1$\}$ and $V\left(A Q_{n-1}^{1}\right)=\left\{1 b_{n-1} \cdots b_{1}: b_{i}=0\right.$ or 1$\}$. A vertex $0 a_{n-1} \cdots a_{1}$ of $A Q_{n-1}^{0}$ is adjoined to a vertex $1 b_{n-1} \cdots b_{1}$ of $A Q_{n-1}^{1}$ iff for every $i, 1 \leq i \leq n-1$, either
(i) $a_{i}=\underline{b_{i}}$ or
(ii) $a_{i}=\overline{b_{i}}$.

Type (i) edges are hypercube edges while Type (ii) are complement edges, and their sets are denoted by E_{h} and E_{c}, respectively. Thus, we have $A Q_{n}=A Q_{n-1}^{0} \cup A Q_{n-1}^{1} \cup E_{h} \cup$ E_{c}. Note that E_{h} and E_{c} are perfect matchings between $A Q_{n-1}^{0}$ and $A Q_{n-1}^{1}$ and further, $A Q_{n}-E_{c}$ is isomorphic to $A Q_{n-1} \square K_{2}$. The augmented cubes of dimension 1, 2, 3 and 4 are illustrated in Figure 1.

We need the following results.
Lemma 2.1. [16] Let H_{i} be an n_{i}-regular and n_{i}-connected graph for $i=1,2$. Then the graph $H_{1} \square H_{2}$ is $\left(n_{1}+n_{2}\right)$-regular and $\left(n_{1}+n_{2}\right)$-connected.

Lemma 2.2. [8] For $n \geq 2$, the augmented cube $A Q_{n}$ is edge-pancyclic.

Lemma 2.3. [12] If P and Q are non-trivial paths and one of them has even number of vertices, then $P \square Q$ is bipancyclic.

Corollary 2.4. If C_{1} and C_{2} are two cycles and one of them has even length, then $C_{1} \square C_{2}$ is bipancyclic.

Corollary 2.5. If C is a cycle, then $C \square K_{2}$ is bipancyclic.
We obtain the following two results about pancyclicity of particular types of graphs.
Lemma 2.6. If C is an odd cycle of length m, then $C \square K_{2}$ is bipancyclic and m-pancyclic.

Proof. Let $G=C \square K_{2}$. Then the graph G contains two ver-tex-disjoint cycles, say $C=\left\langle a_{1}, a_{2}, \ldots, a_{m-1}, a_{m}, a_{1}\right\rangle$ and $C^{\prime}=$ $\left\langle b_{1}, b_{2}, \ldots, b_{m-1}, b_{m}, b_{1}\right\rangle$ such that a_{i} is adjacent to b_{i} for $i=$ $1,2, \ldots, m$ (see Figure 2(a)). By Corollary 2.5, G is bipancyclic. The graph G contains a cycle C of length m. Replacing the edge $\left\langle a_{1}, a_{2}\right\rangle$ of C by the path $\left\langle a_{1}, b_{1}, b_{2}, a_{2}\right\rangle$ we get a cycle C_{m+2} in G of length $m+2$ as shown in Figure 2(b). We continue replacing the edge $\left\langle a_{2 i-1}, a_{2 i}\right\rangle$ of the cycle $C_{m+2(i-1)}$ by the path $\left\langle a_{2 i-1}, b_{2 i-1}, b_{2 i}, a_{2 i}\right\rangle$ of length three to get a new cycle $C_{m+2 i}$, for $i=1,2, \ldots,(m-1) / 2$. Thus G contain cycles of all odd length from m to $2 m-1$. Hence G is bipancyclic and m-pancyclic.

We prove below that adding a path of length two to adjacent vertices of a ladder gives a pancyclic graph.
Lemma 2.7. Let $m \geq 4$ be an integer and let C be an m-cycle. Suppose the graph H is obtained from the ladder $C \square K_{2}$ by

Figure 2. Odd cycles in $C_{m} \square K_{2}$.

(a): C_{3}

(b): C_{5}

(c): C_{7}

Figure 3. Odd cycles in H .
identifying the end vertices of a path of length two to a pair of adjacent vertices of the cycle C. Then H is pancyclic.

Proof. We can write $C \square K_{2}=C \cup C^{\prime} \cup M$, where $C=$ $\left\langle a_{1}, a_{2}, \ldots, a_{m-1}, a_{m}, a_{1}\right\rangle$ and $C^{\prime}=\left\langle b_{1}, b_{2}, \ldots, b_{m-1}, b_{m}, b_{1}\right\rangle$ and $M=\left\{\left\langle a_{i}, b_{i}\right\rangle: i=1,2, \ldots, m\right\}$. Due to symmetry in $C \square K_{2}$, we may assume that $H=\left(C \square K_{2}\right) \cup P$, where P is a path $\left\langle a_{1}, c, a_{2}\right\rangle$, (see Figure 3(a)). By Corollary 2.5, $C \square K_{2}$ is bipancyclic. Therefore H contains a cycle of every even length from 4 to 2 m . Clearly, $\left\langle a_{1}, c, a_{2}, a_{1}\right\rangle$ is a 3 -cycle C_{3} in H. On replacing the edge $\left\langle a_{1}, a_{2}\right\rangle$ of C_{3} by the path $\left\langle a_{1}, b_{1}, b_{2}, a_{2}\right\rangle$, we get a 5 -cycle C_{5}. To get a 7 -cycle C_{7} from C_{5}, we replace the edge $\left\langle a_{2}, b_{2}\right\rangle$ by a path P of length 3 where $P=\left\langle a_{2}, a_{3}, b_{3}, b_{2}\right\rangle$. We continue replacing an edge $\left\langle a_{i}, b_{i}\right\rangle$ of an odd cycle C_{r} by a path $\left\langle a_{i}, a_{i+1}, b_{i+1}, b_{i}\right\rangle$ to get a cycle of length $r+2$. This procedure gives cycles in H of all odd length from 3 to $2 m+1$. Hence H is pancyclic.

The next two results are about the existence of special types of cycles in $A Q_{n}$, and they are used in the construction of 3-regular and 4-regular subgraphs in $A Q_{n}$ in the subsequent sections.

Lemma 2.8. Let $n \geq 3$ and l be integers such that $7 \leq l \leq$ $2^{n}-1$. Then there exists a cycle $C=\left\langle u_{1}, u_{2}, \ldots, u_{l}, u_{1}\right\rangle$ in $A Q_{n}$ and a vertex $v \in V\left(A Q_{n}\right)-V(C)$ such that
(i) $\quad v$ is adjacent to $u_{1}, u_{2}, u_{3}, u_{k}$ for some $4<k<l$.
(ii) $\left\langle u_{1}, u_{3}\right\rangle$ and $\left\langle u_{2}, u_{k}\right\rangle$ are chords of C.

Proof. We prove the result by induction on n. A cycle of length 7 in $A Q_{3}$ satisfying the properties (i) and (ii) is shown in Figure 4(a), whereas such a cycle of length 8 in $A Q_{4}$ is shown in the Figure 4(b). Hence the result holds for $n=3$, and also it holds for $l=7$ and $l=8$ when $n \geq 4$.

Suppose $n \geq 4$ and $l \geq 9$. Assume that the result holds for $n-1$. Write $A Q_{n}=A Q_{n-1}^{0} \cup A Q_{n-1}^{1} \cup E_{h} \cup E_{c}$.

If $7 \leq l \leq 2^{n-1}-1$, then by induction, $A Q_{n-1}^{0}$ and so $A Q_{n}$ contains a cycle of length l as desired. Suppose $2^{n-1} \leq$ $l \leq 2^{n}-1$. Then $l=2^{n-1}-1+k$ for some k with $3 \leq k \leq$ 2^{n-1}. Let C be a cycle on $l=2^{n-1}-1$ vertices satisfying the properties (i) and (ii), choose an edge $f=\langle a, b\rangle$ of C such
that $a, b \notin\left\{u_{1}, u_{2}, u_{3}\right\}$. Let $f^{\prime}=\left\langle a^{\prime}, b^{\prime}\right\rangle$ be the corresponding edge in $A Q_{n-1}^{1}$. Then $\left\langle a, a^{\prime}\right\rangle$ and $\left\langle b, b^{\prime}\right\rangle$ are hypercube edges of $A Q_{n}$. Clearly, $(C-f) \cup\left\{f^{\prime},\left\langle a, a^{\prime}\right\rangle,\left\langle b, b^{\prime}\right\rangle\right\}$ is a cycle of length $2^{n-1}+1$ satisfying (i) and (ii). By Lemma 2.2, $A Q_{n-1}^{1}$ contains a cycle C_{k} of length k containing the edge f^{\prime}. Therefore $(C-f) \cup\left(C_{k}-f^{\prime}\right) \cup\left\{\left\langle a, a^{\prime}\right\rangle,\left\langle b, b^{\prime}\right\rangle\right\}$ is a cycle in $A Q_{n}$ of length $2^{n-1}-1+k=l$ satisfying (i) and (ii). (See Figure 4(c).)

Suppose $l=2^{n-1}$. As $l \geq 9$, we have $n \geq 5$. By induction, $A Q_{n-1}^{0}$ contains a cycle Z of length $l=2^{n-1}-2$ satisfying (i) and (ii). Choose an edge $g=\langle x, y\rangle$ of Z such that $x, y \notin$ $\left\{u_{1}, u_{2}, u_{3}\right\}$. If $g^{\prime}=\left\langle x^{\prime}, y^{\prime}\right\rangle$ is the edge in $A Q_{n-1}^{1}$ corresponding to g, then $(Z-g) \cup\left\{g^{\prime},\left\langle x, x^{\prime}\right\rangle,\left\langle y, y^{\prime}\right\rangle\right\}$ is a cycle of length l satisfying (i) and (ii). This completes the proof.

Similarly, we get the following result.
Lemma 2.9. Let n and l be integers such that $4 \leq l \leq 2^{n}$. Then there exists a cycle C on l vertices in $A Q_{n}$ with a chord e that forms a triangle with two edges of C.

Proof. Clearly, $n \geq 2$. We proceed by induction on n. The result obviously holds for $n=2$ as $A Q_{2}=K_{4}$ contains a 4 -cycle with a chord. Suppose $n \geq 3$. Since $A Q_{2}$ is a subgraph of $A Q_{n}$, the result holds for $l=4$. For $l \in\{5,6\}$, a required cycle of length l in $A Q_{3}$ and so in $A Q_{n}$, is shown in Figure 5.

Suppose $7 \leq l \leq 2^{n}-1$. By Lemma 2.8, we get cycle C of length l with a chord e which forms a triangle with two edges of C. Suppose $l=2^{n}$. Let Z be a cycle in $A Q_{n-1}^{0}$ of length 2^{n-1} containing two adjacent edges e_{1} and e_{2} that forms a triangle with a chord e of Z. Since $n \geq 3$, there is an edge $f=\langle x, y\rangle$ of Z different from e_{1} and e_{2}. Let Z^{\prime} be a cycle of $A Q_{n-1}^{1}$ corresponding to Z and let $f^{\prime}=\left\langle x^{\prime}, y^{\prime}\right\rangle$ be the edge of $A Q_{n-1}^{1}$ corresponding to f. Then $(Z-f) \cup\left(Z^{\prime}-\right.$ $\left.f^{\prime}\right) \cup\left\{\left\langle x, x^{\prime}\right\rangle,\left\langle y, y^{\prime}\right\rangle\right\}$ is a cycle of length 2^{n} with a chord e forming a triangle with two edges of this cycle. Hence the result holds for $l=2^{n}$. This completes the proof.

The next two results are about connectivity.
Lemma 2.10. Let G_{i} be a k_{i}-connected graph for $i=1,2$ with $V\left(G_{1}\right)=\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ and $V\left(G_{2}\right)=\left\{b_{1}, b_{2}, \ldots, b_{p}\right\}$. Then

Figure 4. Cycles of length I.

Figure 5. Cycles of length 5 and 6 .

Figure 6. The graph G.
the graph $G=G_{1} \cup G_{2} \cup M$ is $(k+1)$-connected, where $M=$ $\left\{\left\langle a_{i}, b_{i}\right\rangle: i=1,2, \ldots, p\right\}$ and $k=\min \left\{k_{1}, k_{2}\right\}$.

Proof. Since G_{i} is k_{i}-connected, it is k-connected and has at least $k_{i}+1 \geq k+1$ vertices. It is sufficient to prove that deletion of any k vertices from G leaves a connected graph. Let $S \subseteq V(G)$ with $|S|=k$. We prove that $G-S$ is connected. Suppose S is a subset of $V\left(G_{1}\right)$ or $V\left(G_{2}\right)$. If $S \subseteq$ $V\left(G_{1}\right)$, then $G-S$ connected as every component of $G_{1}-S$ has a neighbour in the connected graph G_{2}. Similarly, $G-S$ is connected if $S \subseteq V\left(G_{2}\right)$. Suppose S intersects both $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$. Let $S_{i} \cap V\left(G_{i}\right)$ for $i=1,2$. As $1 \leq\left|S_{1}\right|,\left|S_{2}\right|<k$, both $G_{1}-S_{1}$ and $G_{2}-S_{2}$ are connected and they are joined to each other by at least $p-k \geq 1$ edges of the matching M. Hence $G-S$ is connected.

Lemma 2.11. For $m \geq 7$, let H be a 3-regular graph on $2 m$ vertices consisting of two cycles $C=\left\langle a_{1}, a_{2}, \ldots, a_{m}, a_{1}\right\rangle$ and $C^{\prime}=\left\langle b_{1}, b_{2}, \ldots, b_{m}, b_{1}\right\rangle$ and a perfect matching $M=\left\{\left\langle a_{i}, b_{i}\right\rangle:\right.$ $i=1,2, \ldots, m\}$. Let N be a graph obtained from H by adding a vertex v and four new edges $\left\{\left\langle v, a_{1}\right\rangle,\left\langle v, a_{2}\right\rangle,\left\langle v, a_{3}\right\rangle,\left\langle v, a_{k}\right\rangle\right\}$ for some k with $4<k<m$. Then the graph $G=(N-$ $\left.\left\{\left\langle a_{1}, b_{1}\right\rangle,\left\langle a_{2}, b_{2}\right\rangle,\left\langle a_{3}, b_{3}\right\rangle,\left\langle a_{k}, b_{k}\right\rangle\right\}\right) \cup\left\{\left\langle b_{1}, b_{3}\right\rangle,\left\langle b_{2}, b_{k}\right\rangle\right\}$ is 3connected. (See Figure 6.)

(a): Subgraph on 8 vertices

(b): Subgraph W

Figure 7. 3-regular subgraphs of $A Q_{n}$.
Proof. Let $S \subseteq V(G)$ with $|S|=2$. It suffices to prove that $G-S$ is connected. There are at least $m-4-2 \geq 1$ edges between C and C^{\prime} in $G-S$. Let G_{1} and G_{2} be the subgraphs of G induced by $V(C) \cup\{v\}$ and $V\left(C^{\prime}\right)$, respectively. Then G_{1} and G_{2} are 2-connected.

Suppose S intersects both $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$. Let $S_{1}=$ $S \cap V\left(G_{1}\right)$ and $S_{2}=S \cap V\left(G_{2}\right)$. Then $\left|S_{1}\right|=\left|S_{2}\right|=1$. Hence $G_{1}-S_{1}$ and $G_{2}-S_{2}$ are connected and are joined to each other by at least one edge, giving $G-S$ connected.

Suppose $S \subseteq V\left(G_{2}\right)$. If $G_{2}-S$ is connected, then $G-S$ is connected as $G_{2}-S$ has a neighbour in the connected graph G_{1}. Suppose $G_{2}-S$ is disconnected. Then it has two components. Let $B=\left\{b_{1}, b_{2}, b_{3}, b_{k}\right\}$. Note that the degree of every member of the set $B-S$ is at least one in $G_{2}-S$. Since $m \geq 7$, it follows that every component of $G_{2}-S$ contains a vertex from $V(C)-B$ and so has a neighbour in G_{1}. This shows that $G-S$ is connected. Similarly, if $S \subseteq V\left(G_{1}\right)$, then every component of $G_{1}-S$ has a neighbour in the connected graph G_{2}. This completes the proof.

3. Existence of 3-regular subgraphs in $A Q_{\boldsymbol{n}}$

In this section, we prove Theorem 1.1.
The total degree of a graph is an even integer, the number of vertices of a 3-regular graph is always an even integer. Obviously, a 3-regular subgraph of the simple graph $A Q_{n}$ has at least 4 vertices.

Since $A Q_{2}$ is a complete graph K_{4}, it is obviously a 3regular, 3-connected and pancyclic subgraph of $A Q_{n}$, for $n \geq 2$. Clearly, $C_{3} \square K_{2}$ is a 3-regular subgraph of $A Q_{3}$ on 6 vertices, where C_{3} is a 3 -cycle. This graph is 3 -connected by Lemma 2.1 and pancyclic by Lemma 2.6 and it is also a subgraph $A Q_{n}$ for $n \geq 3$. Moreover, by Lemma 2.1 and Corollary 2.5, $C_{4} \square K_{2}$ is a 3-regular, 3-connected and bipancyclic subgraph of $A Q_{3}$ on 8 vertices, where C_{4} is a 4 -cycle.

Figure 8. Cycles in W.

We now prove Theorem 1.1 which is restated below for convenience.

Theorem 3.1. Let $n \geq 2$ and l be integers such that l is even and $4 \leq l \leq 2^{n}$. Then there exists a 3-regular, 3-connected and nearly pancyclic subgraph of the augmented cube $A Q_{n}$ on l vertices.

Proof. As seen above, the result holds for $l=4$ and $l=6$. A 3-regular subgraph of $A Q_{3}$ on 8 vertices is shown in Figure 7(a). Clearly, this graph is pancyclic. Further deletion of any two edges from it leaves a connected graph. Hence it is 3edge connected and so, it is 3 -connected. Thus the result holds for $l=8$.

Suppose $10 \leq l \leq 2^{n}$. Then $l=2 m$ for some integer m with $5 \leq m \leq 2^{n-1}$. Write $A Q_{n}=A Q_{n-1}^{0} \cup A Q_{n-1}^{1} \cup E_{h} \cup E_{c}$. By Lemma 2.9, $A Q_{n-1}^{0}$ contains a cycle $C=\left\langle a_{1}, a_{2}, \ldots\right.$, $\left.a_{m}, a_{1}\right\rangle$, on m vertices such that $e=\left\langle a_{1}, a_{3}\right\rangle$ is a chord of C. Let $C^{\prime}=\left\langle b_{1}, b_{2}, \ldots, b_{m}, b_{1}\right\rangle$ be the corresponding cycle in $A Q_{n-1}^{1}$. Then a_{i} is adjacent to b_{i} for each $i, i=1,2, \ldots, m$. Let $W=C \cup C^{\prime} \cup D, \quad$ where $\quad D=\left\{\left\langle a_{2}, b_{2}\right\rangle,\left\langle a_{4}, b_{4}\right\rangle,\left\langle a_{5}, b_{5}\right\rangle, \ldots\right.$, $\left.\left\langle a_{m}, b_{m}\right\rangle\right\}$. Then W is a 3-regular subgraph of $A Q_{n}$ on $2 m$ vertices as shown in Figure 7(b).

Claim 1. W is nearly pancyclic.
We first show that W is bipancyclic. Note that W $\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}$ is a ladder on $2 m-6$ vertices and so, by Lemma 2.5 , it is bipancyclic. Hence W contains a cycle of every even length from 4 to $2 m-6$. Cycles $C_{2 m-4}, C_{2 m-2}$ and $C_{2 m}$ in W of lengths $2 m-4,2 m-2$ and $2 m$, respectively are shown in Figure 8(a), (b) and (c).

We now prove the existence of odd length cycles in W. The cycles C_{3} of length 3 and C_{7} of length 7 are shown in Figure 8(d) and 8(e), respectively. Replacing the edge $\left\langle a_{4}, b_{4}\right\rangle$ of C_{7} by the path $\left\langle a_{4}, a_{5}, b_{5}, b_{4}\right\rangle$ of length 3 gives a 9 -cycle C_{9} in W. Continuing this process of replacing an edge of a cycle by a path of length three, we get cycles of all odd length from 7 to $2 m-1$. Note that W does not contain a 5-cycle. Thus W is nearly pancyclic.

Claim 2. W is 3-connected.

Let $S \subseteq V(W)$ with $|S|=2$ vertices. We prove that $W-S$ is connected. There are at least $m-4 \geq 1$ edges between C and C^{\prime} in $W-S$. Suppose S intersects both $V(C)$ and $V\left(C^{\prime}\right)$. Let $S_{1}=V(C) \cap S$ and let $S_{2}=V\left(C^{\prime}\right) \cap S$. Then both $C-S_{1}$ and $C^{\prime}-S_{2}$ are connected, giving $W-S$ connected. Suppose $S \subseteq V\left(C^{\prime}\right)$. Let G_{1} be the subgraph of W induced by $V\left(C^{\prime}\right)$. Suppose $G_{1}-S$ has a component D with no neighbour in C. Then $V(D) \subseteq\left\{b_{1}, b_{3}\right\}$. The degree of each of b_{1} and b_{3} is 3 in G_{1}, the minimum degree of D is at least one as $|S|=2$. Hence D consists of only one edge $\left\langle b_{1}, b_{3}\right\rangle$. This shows that S contains the neighbours b_{2}, b_{4} and b_{m} of b_{1} and b_{3} in G_{1}. Hence $|S| \geq 3$ as $m \geq 5$, a contradiction. Thus every component of $G_{1}-S$ has a neighbour in the connected graph C and hence, $W-S$ is connected. Similarly, $W-S$ is connected if $S \subseteq V(C)$. Hence W is 3connected. This proves the claim.

Thus W is a 3-regular, 3-connected and nearly pancyclic subgraph of $A Q_{n}$ on l vertices. This completes the proof.

4. Existence of 4-regular subgraphs of $\boldsymbol{A Q _ { \boldsymbol { n } }}$

In this section, we prove Theorem 1.2 for $28 \leq l \leq 2^{n}$ by constructing a 4 -regular, 4 -connected and pancyclic subgraphs of $A Q_{n}$ on l vertices. We use the following notation in our proofs.

Notation: We write $A Q_{n}=A Q_{n-1}^{0} \cup A Q_{n-1}^{1} \cup E_{h} \cup E_{c}$. Then write $\quad A Q_{n-1}^{0}=A Q_{n-2}^{00} \cup A Q_{n-2}^{01} \cup E_{h}^{\prime} \cup E_{c}^{\prime} \quad$ and $\quad A Q_{n-1}^{1}=$ $A Q_{n-2}^{10} \cup A Q_{n-2}^{11} \cup E_{h}^{\prime \prime} \cup E_{c}^{\prime \prime}$. For convenience, we denote $A Q_{n-2}^{00}, A Q_{n-2}^{10}, A Q_{n-2}^{11}$ and $A Q_{n-2}^{01}$ by $A Q_{n-2}^{0}, A Q_{n-2}^{1}$, $A Q_{n-2}^{2}$ and $A Q_{n-2}^{3}$, respectively. Then $A Q_{n-1}^{0}=A Q_{n-2}^{0} \cup$ $A Q_{n-2}^{3} \cup E_{h}^{\prime} \cup E_{c}^{\prime} \quad$ and $A Q_{n-1}^{1}=A Q_{n-2}^{1} \cup A Q_{n-2}^{2} \cup E_{h}^{\prime \prime} \cup E_{c}^{\prime \prime}$. Note that the subgraph $A Q_{n-2}^{0} \cup A Q_{n-2}^{1} \cup A Q_{n-2}^{2} \cup A Q_{n-2}^{3} \cup$ $E_{h} \cup E_{h}^{\prime} \cup E_{h}^{\prime \prime}$ of $A Q_{n}$ is isomorphic to $A Q_{n-2} \square C_{4}$ where C_{4} is a cycle of length 4.

We select a copy of a cycle from each of the four copies of $A Q_{n-2}$ in $A Q_{n}$ and use them to construct a 4-regular subgraph (Figure 9).

Proposition 4.1. Let n and l be integers such that $n \geq 5$ and $28 \leq l \leq 2^{n}$. Then there exists a 4-regular, 4-connected and pancyclic subgraph H of $A Q_{n}$ on l vertices.

Proof. As $28 \leq l \leq 2^{n}$, we have $l=4 m$ with $7 \leq m \leq 2^{n-2}$, or $l=4 m+1,4 m+2$ or $4 m+3$ with $7 \leq m \leq 2^{n-2}-1$. In each of these four cases, we construct a 4-regular subgraph of $A Q_{n}$.

Case (i). $l=4 m$
As in the above notation, express $A Q_{n}$ into four copies of $A Q_{n-2}$. Then $A Q_{n-2} \square C_{4}$ is a spanning subgraph of $A Q_{n}$.

As $7 \leq m \leq 2^{n-2}$, by Lemma 2.9, there exists a cycle $Z^{0}=\left\langle x_{1}, x_{2}, \ldots, x_{m}, x_{1}\right\rangle$ in $A Q_{n-2}^{0}$ on m vertices with a chord $\left\langle x_{1}, x_{3}\right\rangle$. Let $Z^{1}=\left\langle y_{1}, y_{2}, \ldots, y_{m}, y_{1}\right\rangle ; Z^{2}=\left\langle z_{1}, z_{2}, \ldots, z_{m}, z_{1}\right\rangle ;$ $Z^{3}=\left\langle w_{1}, w_{2}, \ldots, w_{m}, w_{1}\right\rangle$ be the corresponding cycles in $A Q_{n-2}^{1}, A Q_{n-2}^{2}$ and $A Q_{n-2}^{3}$, respectively. Then $\left\langle x_{i}, y_{i}\right\rangle,\left\langle y_{i}, z_{i}\right\rangle$, $\left\langle z_{i}, w_{i}\right\rangle$ and $\left\langle w_{i}, x_{i}\right\rangle$ are hypercube edges in $A Q_{n}$. Let

$$
H_{0}=Z^{0} \cup Z^{1} \cup Z^{2} \cup Z^{3} \cup\left\{\left\langle x_{i}, y_{i}, z_{i}, w_{i}, x_{i}\right\rangle: i=1,2, \ldots, m\right\}
$$

Then H_{0} is isomorphic to $Z^{0} \square C_{4}$, where C_{4} is a 4-cycle. Hence H_{0} is a 4-regular, 4-connected and bipancyclic subgraph of $A Q_{n}$ on $4 m$ vertices. We modify H_{0} to get a pancyclic subgraph H_{1} as follows. Let

$$
H_{1}=H_{0}-\left\{\left\langle x_{1}, w_{1}\right\rangle,\left\langle x_{3}, w_{3}\right\rangle\right\} \cup\left\{\left\langle x_{1}, x_{3}\right\rangle,\left\langle w_{1}, w_{3}\right\rangle\right\} .
$$

(See Figure 10(a).) Clearly, H_{1} is a 4-regular subgraph of $A Q_{n}$ with $4 m$ vertices.

We now prove that H_{1} is 4-connected. Let L and R be the subgraphs of H_{1} induced by $V\left(Z^{0} \cup Z^{3}\right)$ and by $V\left(Z^{1} \cup\right.$ Z^{2}), respectively. Since R is isomorphic to $Z^{2} \square K_{2}$, it is 3connected. Also, as in proof of Theorem 1.1, L is 3-connected. There is a perfect matching in H_{1} joining L and R. Hence, by Lemma 2.10, H_{1} is 4 -connetced.

Figure 9. $A Q_{n-2} \square C_{4}$.

(a): H_{1}

To prove pancyclicity of H_{1}, let $P=\left(Z^{0}-\left\langle x_{1}, x_{m}\right\rangle\right) \cup$ $\left(Z^{1}-\left\langle w_{1}, w_{m}\right\rangle\right) \cup\left\{\left\langle x_{m}, d_{m}\right\rangle\right\}$ be a path on $2 m$ vertices in L and let Q be the corresponding path in R. Then $W=$ $P \cup Q \cup M$ is a ladder on $4 m$ vertices, where $M=$ $\left\{\left\langle x_{i}, y_{i}\right\rangle,\left\langle w_{i}, z_{i}\right\rangle: i=1,2, \ldots, m\right\}$. Let C_{3} be the triangle $\left\langle x_{1}, x_{2}, x_{3}, x_{1}\right\rangle$ in H_{1}. Then, by Lemma 2.7, $W \cup C_{3}$ is a pancyclic graph. Since $W \cup C_{3}$ is a spanning subgraph of H_{1}, the graph H_{1} is also pancyclic.

Thus we have constructed a 4-regular, 4-connected and pancyclic subgraph in Case (i).

Suppose $l=4 m+1,4 m+2$ or $4 m+3$ with $7 \leq m \leq$ $2^{n-2}-1$. As in Case (i), express $A Q_{n}$ into four copies $A Q_{n-2}^{0}, A Q_{n-2}^{1}, A Q_{n-2}^{2}$ and $A Q_{n-2}^{3}$ of $A Q_{n-2}$. Since $7 \leq$ $m \leq 2^{n-2}-1$, by Lemma 2.9, there exists a cycle $C^{0}=$ $\left\langle a_{1}, a_{2}, \ldots, a_{m}, a_{1}\right\rangle$ in $A Q_{n-2}^{0}$ of length m which has two chords $\left\langle a_{1}, a_{3}\right\rangle$ and $\left\langle a_{2}, a_{k}\right\rangle$ for some $4<k<m$ and there is a vertex $v_{0} \in V\left(A Q_{n-2}^{0}\right)-V\left(C^{0}\right)$ with four neighbours a_{1}, a_{2}, a_{3} and a_{k} on C^{0}. Let $C^{1}=\left\langle b_{1}, b_{2}, \ldots, b_{m}, b_{1}\right\rangle, C^{2}=$ $\left\langle c_{1}, c_{2}, \ldots, c_{m}, c_{1}\right\rangle$ and $C^{3}=\left\langle d_{1}, d_{2}, \ldots, d_{m}, d_{1}\right\rangle$ be the corresponding cycles in $A Q_{n-2}^{1}, A Q_{n-2}^{2}$ and $A Q_{n-2}^{3}$, respectively. Let v_{i} be the vertex of $A Q_{n-2}^{i}$ corresponding to v_{0} for $i=1,2$.

Let

$$
H=C^{0} \cup C^{1} \cup C^{2} \cup C^{3} \cup\left\{\left\langle a_{i}, b_{i}, c_{i}, d_{i}, a_{i}\right\rangle: \quad i=1,2, \ldots, m\right\}
$$

Then H is a 4-regular, 4-connected and bipancyclic subgraph of $A Q_{n}$ on $4 m$ vertices. We use this graph to construct 4-regular subgraphs on $4 m+1,4 m+2$ and $4 m+3$ vertices.

Case (ii). $l=4 m+1$
Let M_{1} be the subgraph of $A Q_{n}$ with vertex set $\left\{v_{0}, a_{1}, a_{2}, a_{3}, a_{k}\right\}$, with $4<k<m$ and edge set $\left\{\left\langle v_{0}, a_{1}\right\rangle\right.$, $\left.\left\langle v_{0}, a_{2}\right\rangle,\left\langle v_{0}, a_{3}\right\rangle,\left\langle v_{0}, a_{k}\right\rangle\right\}$. Define

$$
\begin{aligned}
H_{2}= & H \cup M_{1}-\left\{\left\langle a_{1}, d_{1}\right\rangle,\left\langle a_{2}, d_{2}\right\rangle,\left\langle a_{3}, d_{3}\right\rangle,\left\langle a_{k}, d_{k}\right\rangle\right\} \\
& \cup\left\{\left\langle d_{1}, d_{3}\right\rangle,\left\langle d_{2}, d_{k}\right\rangle\right\}
\end{aligned}
$$

(See Figure 10(b).) Then H_{2} is a 4-regular subgraph of $A Q_{n}$ on $4 m+1=l$ vertices.

Case (iii). $l=4 m+2$

(b): H_{2}

Figure 10. 4-regular subgraphs of $A Q_{n}$.

(a): H_{3}

Figure 11. 4-regular subgraphs of $A Q_{n}$.

(a): $l=4 m+2$

Figure 12. Cycles in H_{3} and H_{4}.

Consider the subgraph H_{2} of Case (ii). Let M_{2} be the graph with vertex set $\left\{v_{1}, b_{1}, b_{2}, b_{3}, b_{k}\right\}$ and edge set $\left\{\left\langle v_{1}, b_{1}\right\rangle,\left\langle v_{1}, b_{2}\right\rangle,\left\langle v_{1}, b_{3}\right\rangle,\left\langle v_{1}, b_{k}\right\rangle\right\}$. Let

$$
\begin{aligned}
H_{3}= & H_{2} \cup M_{2}-\left\{\left\langle b_{1}, c_{1}\right\rangle,\left\langle b_{2}, c_{2}\right\rangle,\left\langle b_{3}, c_{3}\right\rangle,\left\langle b_{k}, c_{k}\right\rangle\right\} \\
& \cup\left\{\left\langle c_{1}, c_{3}\right\rangle,\left\langle c_{2}, c_{k}\right\rangle\right\}
\end{aligned}
$$

(See Figure 11(a).) Clearly, H_{3} is a 4-regular subgraph of $A Q_{n}$ on $4 m+2$ vertices.

Case (iv). $l=4 m+3$
We construct a graph H_{4} on l vertices from the graph H_{3} of Case (iii) and the graph M_{3} whose vertex set $\left\{v_{2}, c_{1}, c_{2}\right.$, $\left.c_{3}, c_{k}\right\}$ and edge set $\left\{\left\langle v_{2}, c_{1}\right\rangle,\left\langle v_{2}, c_{2}\right\rangle,\left\langle v_{2}, c_{3}\right\rangle,\left\langle v_{2}, c_{k}\right\rangle\right\}$. Let

$$
H_{4}=H_{3} \cup M_{3}-\left\{\left\langle c_{1}, c_{3}\right\rangle,\left\langle c_{2}, c_{k}\right\rangle\right\}
$$

(See Figure 11(b).) Clearly, H_{4} is a 4 -regular subgraph of $A Q_{n}$ on $4 m+3$ vertices.

We now prove that the graphs H_{2}, H_{3} and H_{4} constructed above are pancyclic and 4-connected.

Claim 1. The graphs H_{2}, H_{3} and H_{4} are pancyclic.
Let $i \in\{2,3,4\}$. Since $m \geq 7$, there exists a vertex a_{r} of C^{0} such that $a_{r} \notin\left\{a_{1}, a_{2}, a_{3}, a_{k}\right\}$. Hence $\left\langle a_{r}, d_{r}\right\rangle,\left\langle b_{r}, c_{r}\right\rangle \in$ $E\left(H_{i}\right)$. The graph H_{i} contains the ladder $L=P \cup Q \cup M$, where

(b): H_{4}

(b): $l=4 m+3$

$$
\begin{aligned}
P & =\left(C^{0}-\left\langle a_{r}, a_{r+1}\right\rangle\right) \cup\left(C^{3}-\left\langle d_{r}, d_{r+1}\right\rangle\right) \cup\left\{\left\langle a_{r}, d_{r}\right\rangle\right\} \\
Q & =\left(C^{1}-\left\langle b_{r}, b_{r+1}\right\rangle\right) \cup\left(C^{2}-\left\langle c_{r}, c_{r+1}\right\rangle\right) \cup\left\{\left\langle b_{r}, c_{r}\right\rangle\right\} \\
M & =\left\{\left\langle a_{i}, b_{i}\right\rangle,\left\langle c_{i}, d_{i}\right\rangle: i=1,2, \ldots, m\right\}
\end{aligned}
$$

Then $L \cup C_{3}$ is a subgraph of H_{i} on $4 m+1$ vertices, where $C_{3}=\left\langle a_{1}, v_{0}, a_{2}, a_{1}\right\rangle$. By Lemma 2.7, $L \cup C_{3}$ is pancyclic. Hence H_{i} contain a cycle of every length from 3 to $4 m+1$. A cycle $C_{4 m+2}$ of length $4 m+2$ in H_{3} and so in H_{4} is shown in Figure 12(a) while a cycle in H_{4} of length $4 m+3$ is shown in Figure 12(b). Thus H_{2}, H_{3} and H_{3} are pancyclic.

Claim 2. The graphs H_{2}, H_{3} and H_{4} are 4-connected.
For $i \in\{2,3,4\}$, let

$$
\begin{aligned}
& L_{i}=H_{i} \cap\left(A Q_{n-2}^{0} \cup A Q_{n-2}^{3} \cup E_{h}\right) \text { and } \\
& R_{i}=H_{i} \cap\left(A Q_{n-2}^{1} \cup A Q_{n-2}^{2} \cup E_{h}\right) .
\end{aligned}
$$

By Lemma 2.11, the graphs L_{2}, L_{3}, L_{4} and R_{3} are 3-connected. Since R_{2} is isomorphic to $C_{m} \square K_{2}$, it is also 3-connected by Lemma 2.1. Further, as in proof of Lemma 2.11, the graph R_{4} is 3-connected.

Let $S \subseteq V\left(H_{i}\right)$ with $|S|=3$. We prove that $H_{i}-S$ is connected. In $H_{i}-S$, there are at least $2 m-|S| \geq 2 m-3 \geq 10$ edges between L_{i} and R_{i}. Suppose S intersects with both $V\left(L_{i}\right)$ and $V\left(R_{i}\right)$. Let $S_{1}=S \cap V\left(L_{i}\right)$ and $S_{2}=S \cap V\left(R_{i}\right)$. Then both $L_{i}-S_{1}$ and $R_{i}-S_{2}$ are connected and are joined

Figure 13. Cycles in $A Q_{4}$.
to each other and so, $H_{i}-S$ is connected. Suppose $S \subseteq$ $V\left(L_{i}\right)$. As the degree of v_{0} in L_{i} is 4 , it is not an isolated vertex in $L_{i}-S$. Therefore, every component of $L_{i}-S$ has a neighbour in the connected graph R_{i}. Therefore $H_{i}-S$ is connected. Similarly, every component of $R_{i}-S$ has a neighbour in the connected graph L_{i} if $S \subseteq V\left(R_{i}\right)$ and hence, $H_{i}-S$ is connected. Thus H_{i} is 4 -connected. This proves the claim.

Thus, in each case, we have constructed a 4-regular, 4 -connected and pancyclic subgraph of $A Q_{n}$ on l vertices.

5. 4-Regular subgraphs of smaller size

We complete the proof of Theorem 1.2 in this section. In the previous section, we constructed 4-regular subgraphs of $A Q_{n}$ on l vertices for $28 \leq l \leq 2^{n}$. Now in this section, we construct such subgraphs of $A Q_{n}$ on l vertices for $7 \leq l \leq$ 27. We obtain the following lemmas to construct 4-regular subgraphs in $A Q_{4}$ and $A Q_{5}$.
Lemma 5.1. Write $A Q_{4}=A Q_{3}^{0} \cup A Q_{3}^{1} \cup E_{h} \cup E_{c}$. Suppose $m \in\{4,5,6\}$. Then there exists an m-cycle C containing a path $\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ in $A Q_{3}^{0}$ and a vertex $v \in V\left(A Q_{3}^{0}\right)-V(C)$ such that
(i) $\quad v$ is adjacent to a_{1}, a_{2}, a_{3};
(ii) $\quad v$ is adjacent to the vertex b_{3} of $A Q_{3}^{1}$ corresponding to a_{3}.
Proof. In $A Q_{4}$, the vertex set of $A Q_{3}^{0}$ is $\{0000,0001$, $0011,0111,0101,0100,0110,0010\}$. Let $v=0000, a_{1}=0001$, $a_{2}=0011, \quad a_{3}=0111, a_{4}=0101, \quad a_{5}=0100$ and $a_{6}=$ 0110. Then $\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ is a path in $A Q_{3}^{0}$ and v is adjacent to a_{1}, a_{2}, a_{3}. The vertex v is also adjacent to the vertex $b_{3}=$ 1111 of $A Q_{3}^{1}$ corresponding to a_{3}. Observe that $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{1}\right\rangle, \quad\left\langle a_{1}, a_{2}, a_{3}, a_{5}, a_{4}, a_{1}\right\rangle$ and $\left\langle a_{1}, a_{2}, a_{3}, a_{6}, a_{5}\right.$, $\left.a_{4}, a_{1}\right\rangle$ are cycles in $A Q_{3}^{0}$ of length 4,5 and 6 , respectively, and avoids the vertex v. (See Figures 13(a), (b), (c).) Then C contains the path $\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and it is a required cycle. This completes the proof.

We get a similar result for $A Q_{3}$ and $m=3$. (See Figure 13(d).)
Lemma 5.2. Write $A Q_{3}=A Q_{2}^{0} \cup A Q_{2}^{0} \cup E_{h} \cup E_{c}$. Then there exists a triangle $C=\left\langle a_{1}, a_{2}, a_{3}, a_{1}\right\rangle$ in $A Q_{2}^{0}$ and $v \in$ $V\left(A Q_{2}^{0}\right)-V(C)$ such that
(i) $\quad v$ is adjacent to a_{1}, a_{2}, a_{3};
(ii) $\quad v$ is adjacent to the vertex b_{3} of $A Q_{2}^{1}$ corresponding to a_{3}.

Lemma 5.3. Let l be an integer with $13 \leq l \leq 27$. Then there exists a 4-regular, 4-connected and pancyclic subgraph on l vertices (i) in $A Q_{4}$ if $l \leq 16$ (ii) in $A Q_{5}$ if $l>16$.

Proof. If l is a multiple of 4 , then, as in Case (i) of Proposition 4.1, there exists a 4-regular, 4-connected and pancyclic subgraph of $A Q_{4}$ with l vertices. Suppose l is not a multiple of 4 . Then $l=4 m+1,4 m+2$ or $4 m+3$ for some integer m such that $3 \leq m \leq 6$.

Let $n=4$ if $m=3$, and $n=5$ if $4 \leq m \leq 6$. As in the notation of Section 4, write $A Q_{n}=A Q_{n-1}^{0} \cup A Q_{n-1}^{0} \cup E_{h} \cup$ E_{c} with $A Q_{n-1}^{0}=A Q_{n-2}^{0} \cup A Q_{n-2}^{3} \cup E_{h}^{\prime} \cup E_{c}^{\prime}$ and $A Q_{n-1}^{1}=$ $A Q_{n-2}^{1} \cup A Q_{n-2}^{2} \cup E_{h}^{\prime \prime} \cup E_{c}^{\prime \prime}$. By Lemmas 5.1 and 5.2, there exists a cycle C^{0} of length m in $A Q_{n-1}^{0}$ containing a path $\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and a vertex $v_{0} \in V\left(A Q_{n-2}^{0}\right)-V\left(C^{0}\right)$ such that v_{0} is adjacent to a_{1}, a_{2}, a_{3} and d_{3}, where d_{3} is the vertex of $A Q_{n-2}^{3}$ corresponding to a_{3}. Let C^{1}, C^{2} and C^{3} be the cycles in $A Q_{n-2}^{1}, A Q_{n-2}^{2}$ and $A Q_{n-2}^{3}$ respectively, corresponding to C^{0}. Similarly, let b_{i}, c_{i}, d_{i} be the vertices of $A Q_{n-2}^{1}, A Q_{n-2}^{2}$, $A Q_{n-2}^{3}$, respectively, corresponding to a_{i} for $i=1,2,3$. Also, let the vertices of $A Q_{n-2}^{1}$ and $A Q_{n-2}^{2}$ corresponding to v_{0} be v_{1} and v_{2}, respectively. Let

$$
H=C^{0} \cup C^{1} \cup C^{2} \cup C^{3} \cup E_{h} \cup E_{h}^{\prime} \cup E_{h}^{\prime \prime}
$$

Then H is isomorphic to $C^{0} \square C_{4}$, where C_{4} is a cycle of length 4 . Hence H is a 4-regular, 4 -connected and bipancyclic subgraph of $A Q_{n}$ on $4 m$ vertices.

Case (i). $l=4 m+1$ with $3 \leq m \leq 6$.
We construct a 4 -regular graph H_{1} on $4 m+1$ vertices by adding a vertex to the above graph H. Let M be the subgraph of $A Q_{n}$ with vertex set $\left\{v_{0}, a_{1}, a_{2}, a_{3}, d_{3}\right\}$ and edge set $\left\{\left\langle v_{0}, a_{1}\right\rangle,\left\langle v_{0}, a_{2}\right\rangle,\left\langle v_{0}, a_{3}\right\rangle,\left\langle v_{0}, d_{3}\right\rangle\right\}$. Let

$$
H_{1}=H \cup M-\left\{\left\langle a_{1}, a_{2}\right\rangle,\left\langle a_{3}, d_{3}\right\rangle\right\} .
$$

(See Figure 14(a).) Then H_{1} is a 4-regular subgraph of $A Q_{n}$ with l vertices.

Case (ii). $l=4 m+2$ with $3 \leq m \leq 6$.
We construct a 4 -regular graph by adding a vertex to the graph H_{1}. Suppose N is the subgraph of $A Q_{n}$ with vertex set $\left\{v_{1}, b_{1}, b_{2}, b_{3}, c_{3}\right\}$ and edge set $\left\{\left\langle v_{1}, b_{1}\right\rangle,\left\langle v_{1}, b_{2}\right\rangle,\left\langle v_{1}, b_{3}\right\rangle\right.$, $\left.\left\langle v_{1}, c_{3}\right\rangle\right\}$. Define

(a): H_{1}

(b): H_{2}

(c): H_{3}

Figure 14. 4-regular subgraphs of $A Q_{5}$.

(a): $l=9$

(b): $l=10$

Figure 15. 4-regular subgraphs on / vertices.

$$
H_{2}=H_{1} \cup N-\left\{\left\langle b_{1}, b_{2}\right\rangle,\left\langle b_{3}, c_{3}\right\rangle\right\} .
$$

(See Figure 14(b).) Then the subgraph H_{2} of $A Q_{n}$ is 4-regular with l vertices.

Case (iii). $l=4 m+3$ with $3 \leq m \leq 6$.
Let L be the graph with vertex set $\left\{v_{2}, c_{1}, c_{2}, c_{3}\right\}$ and edge set $\left\{\left\langle v_{2}, c_{1}\right\rangle,\left\langle v_{2}, c_{2}\right\rangle,\left\langle v_{2}, c_{3}\right\rangle\right\}$ and let

$$
H_{3}=\left(H_{2} \cup L \cup\left\{\left\langle v_{1}, v_{2}\right\rangle\right\}\right)-\left\{\left\langle v_{1}, c_{3}\right\rangle\right\}
$$

(See Figure 14(c).) Clearly, the subgraph H_{3} of $A Q_{n}$ is 4regular with l vertices.

Claim 1. The graphs H_{1}, H_{2} and H_{3} are pancyclic.
Let $i \in\{1,2,3\}$. We prove that H_{i} is pancyclic. Let

$$
P=\left(C^{0}-\left\langle a_{1}, a_{2}\right\rangle\right) \cup\left(C^{3}-\left\langle d_{1}, d_{2}\right\rangle\right) \cup\left\{\left\langle a_{1}, d_{1}\right\rangle\right\}
$$

and let

$$
Q=\left(C^{1}-\left\langle c_{1}, c_{2}\right\rangle\right) \cup\left(C^{2}-\left\langle b_{1}, b_{2}\right\rangle\right) \cup\left\{\left\langle c_{1}, b_{1}\right\rangle\right\} .
$$

Then P and Q are vertex-disjoint paths in $A Q_{n}$ of length $2 m$ each. The perfect matching between them gives a ladder L on $4 m$ vertices. Clearly, L contains one edge of the triangle $\left\langle v_{0}, a_{2}, a_{3}, v_{0}\right\rangle$ in H_{i}. Hence, by Lemma 2.7, H_{i} is pancyclic.

Claim 2. The graphs H_{1}, H_{2} and H_{3} are 4-connected.
For $i \in\{1,2,3\}$. We prove that the graph H_{i} is 4 -connected.

$$
\begin{aligned}
& L_{i}=H_{i} \cap\left(A Q_{n-2}^{0} \cup A Q_{n-2}^{3} \cup E_{h}^{\prime}\right) \text { and } \\
& R_{i}=H_{i} \cap\left(A Q_{n-2}^{1} \cup A Q_{n-2}^{2} \cup E_{h}^{\prime \prime}\right) .
\end{aligned}
$$

By modifying Lemma 2.11, the graphs L_{1}, L_{2} and L_{3} and R_{2} are 3-connected. Since R_{1} is isomorphic to $C_{m} \square K_{2}$, it is

(c): $l=11$

(d): $l=7$
also 3-connected by Lemma 2.1. Further, as in proof of Lemma 2.11, the graph R_{3} is 3-connected.

As in Claim 2 of Proposition 4.1, the H_{i} is 4 -connected. This proves the claim.

Hence we get 4-regular, 4-connected and pancyclic subgraph of augmented cube on l vertices whenever $13 \leq l \leq 27$.

Lemma 5.4. For an integer l with $8 \leq l \leq 11$, there exists a 4-regular, 4-connected and pancyclic subgraph of $A Q_{4}$ on l vertices.

Proof. As in Case (i) of Proposition 4.1, there exists a 4regular, 4-connected and pancyclic subgraph of $A Q_{4}$ with l vertices if l is a multiple of 4 . Suppose l is not multiple of 4. Then $l \in\{9,10,11\}$. Figure $15(\mathrm{a}),(\mathrm{b})$ and (c) give 4regular subgraphs of $A Q_{4}$ on 9,10 and 11 vertices, respectively. It follows from Lemma 2.7 that these graphs are pancyclic. Also, it is easy to verify that they are 4-connected.

We now prove that no augmented cube contains a 4 regular subgraph with number of vertices less than 7 , however, there is unique 4-regular subgraph of an augmented cube on 7 vertices.

Proposition 5.5. For any integer l with $1 \leq l \leq 6$, there does not exist a 4 -regular subgraph with l vertices in an augmented cube.

Proof. Assume that there is an augmented cube $A Q_{n}$ containing a 4 -regular subgraph H with l vertices. Choose smallest n such that $A Q_{n}$ contains H. Clearly, $n \geq 3$, and $l \geq 5$ as H is simple. Now write $A Q_{n}=A Q_{n-1}^{0} \cup A Q_{n-1}^{1} \cup$ $E_{h} \cup E_{c}$. Then H is not a subgraph of $A Q_{n-1}^{i}$ for $i=0,1$. Let $H_{i}=H \cap A Q_{n-1}^{i}$ for $i=0,1$. Then $H_{i} \neq \emptyset$ and so its minimum degree is at least two. Therefore H_{i} contains a cycle
and thus has at least 3 vertices for $i=0,1$. This shows that $l=6$ and both H_{0} and H_{1} are triangles. Hence each vertex of H_{0} has two neighbours in H_{1} and vice versa.

Let $H_{0}=\langle 0 a, 0 b, 0 c, 0 a\rangle$. Then $\langle 0 a, 1 a\rangle,\langle 0 b, 1 b\rangle$, $\langle 0 c, 1 c\rangle \in E_{h}$. Hence $H_{1}=\langle 1 a, 1 b, 1 c, 1 a\rangle$. Further, each vertex of H_{0} has one more neighbor in H_{1}. Without loss of generality, we may assume that $\langle 0 a, 1 b\rangle,\langle 0 b, 1 c\rangle$ and $\langle 0 c, 1 a\rangle$ are edges in H. Therefore these three edges belong to E_{c}. This shows that $\overline{0 a}=1 b, \overline{0 c}=1 a$ and $\overline{0 b}=1 c$. Therefore $\bar{a}=b$ and $\bar{b}=c$ giving $a=c$. This is a contradiction. Hence the result holds.

Lemma 5.6. Every 4-regular subgraph of $A Q_{n}$ with 7 vertices is isomorphic to the graph shown in Figure 15(d).

Proof. Let n be the smallest integer such that the augmented cube $A Q_{n}$ contains a 4-regular subgraph H with 7 vertices. Write $A Q_{n}=A Q_{n-1}^{0} \cup A Q_{n-1}^{1} \cup E_{h} \cup E_{c} \quad$ and \quad let $\quad H_{i}=$ $H \cap A Q_{n-1}^{i}$ for $i=0,1$. Then the minimum degree of H_{i} is at least two and therefore H_{i} contains a cycle. Hence we may assume that H_{1} is a triangle and H_{0} contains a 4cycle. Consequently, every vertex of H_{1} has two neighbours in H_{0}. Thus there are exactly six edges between H_{0} and H_{1}. It follows that H_{1} is a 4 -cycle with one chord. This implies that H is isomorphic to the graph of Figure 15(d).

Now, we complete the proof of Theorem 1.2 formally. We restate this theorem here for convenience.

Theorem 5.7. Let $n \geq 4$ and l be integers. Then the augmented cube $A Q_{n}$ contains a 4-regular, 4-connected and pancyclic subgraph with l vertices if and only if $8 \leq l \leq 2^{n}$.

Proof. Suppose $A Q_{n}$ contains a 4-regular subgraph on l vertices. Then, by Proposition 5.5, $l \geq 7$. Also, by Lemma 5.6, every 4 -regular subgraph of $A Q_{n}$ on 7 vertices is isomorphic to the graph shown in Figure 15(d). However, this graph is pancyclic, 3-connected but not 4-connected. Hence $8 \leq l \leq\left|V\left(A Q_{n}\right)\right|=2^{n}$. Converse follows from Proposition 4.1.

Funding

The first author acknowledges Council of Scientific and Industrial Research, India, for the award of Junior Research Fellowship, file number 09/137(0572)/2017-EMR-I. The second author is supported by DST-SERB, Government of India through the project MTR/ 2018/000447.

References

[1] Borse, Y. M, Saraf, J. B. Existence of 3-regular subgraphs in Cartesian product of cycles. AKCE Int. J. Graphs Comb. 16 (3):332-342. doi:10.1016/j.akcej.2018.07.001.
[2] Borse, Y. M, Shaikh, S. R. (2015). On 3-regular bipancyclic subgraphs of hypercubes. Int. J. Comb. 2015:1-4.
[3] Borse, Y. M, Shaikh, S. R. (2017). On 4-regular 4-connected bipancyclic subgraphs of hypercubes. Discrete Math. Algorithm. Appl. 09(03):1750032.
[4] Choudum, S. A, Sunitha, V. (2002). Augmented cubes. Networks 40(2):71-84.
[5] Choudum, S. A, Sunitha, V. (2008). Automorphisms of augmented cubes. Int. J. Comput. Math. 85(11):1621-1627.
[6] Hsieh, S.-Y, Shiu, J.-Y. (2007). Cycle embedding of augmented cubes. Appl. Math. Comput 191(2):314-319.
[7] Leighton, F. T. (1992). Introduction to Parallel Algorithms and Architectures: Arrays Trees, Hypercubes. San Mateo, California: M. Kaufmann Publishers Inc.,
[8] Liu, H, Liu, Q. Edge-pancyclicity and edge-hamiltonian of augmented hypercube. In: Proc Fourth International Conference on Computational and Information Sciences, Chongqing, China, 2012,
[9] Lu, M., Zhang, S, Yang, W. (2018). Regular connected bipancyclic spanning subgraphs of torus networks. Parallel Process. Lett. 28(04):1850013. Article 1850013, pages.
[10] Ma, M., Liu, G, Xu, J.-M. (2008). The super connectivity of augmented cubes. Inf. Process. Lett 106(2):59-63.
[11] Ma, M., Song, Y, Xu, J.-M. (2013). Fault Tolerance of Augmented Cubes. AKCE Int. J. Graphs Comb. 101:37-55.
[12] Mane, S. A, Waphare, B. N. (2011). Regular connected bipancyclic spanning subgraphs of hypercubes. Comput. Math. Appl. 62(9):3551-3554.
[13] Miao, L, Yang, W. (2018). On 3-regular subgraphs in Cartesian products of paths. J. Inter. Net. 18(02n03):1850009-1850012.
[14] Ramras, M. (1999). Regular subgraphs of hypercubes. Ars Combin 52:21-32.
[15] Wang, H.-L., Wang, J.-W, Xu, J.-M. (2009). Fault-tolerant panconnectivity of augmented cubes. Front. Math. China 4(4):697-719.
[16] Xu, M., Xu, J.-M, Hou, X. (2005). Fault diameter of Cartesian product graphs. Inf. Process. Lett. 93(5):245-248.

