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On regular subgraphs of augmented cubes

Amruta Shinde and Y. M. Borse

Department of Mathematics, Savitribai Phule Pune University, Pune, India

ABSTRACT
The n-dimensional augmented cube AQn is a variation of the hypercube Qn: It is a ð2n� 1Þ-regular
and ð2n� 1Þ-connected graph on 2n vertices. One of the fundamental properties of AQn is that it
is pancyclic, that is, it contains a cycle of every length from 3 to 2n: In this paper, we generalize
this property to k-regular subgraphs for k ¼ 3 and k ¼ 4: We prove that the augmented cube AQn

with n � 4 contains a 4-regular, 4-connected and pancyclic subgraph on l vertices if and only if
8 � l � 2n: Also, we establish that for every even integer l from 4 to 2n, there exists a 3-regular,
3-connected and pancyclic subgraph of AQn on l vertices.
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1. Introduction

The interconnection networks play an important role in par-
allel computing and communication systems. The underly-
ing topology of the interconnection network is represented
by a graph. The hypercube is a popular network topology
because of its good properties, such as strong connectivity,
small diameter, symmetry, relatively small degree, bipancy-
clicity and regularity. Choudum and Sunitha [4] proposed a
new variation of the hypercube Qn called augmented cube
AQn of n-dimension as an improvements over hypercubes.
The augmented cube AQn is a ð2n� 1Þ-regular and
ð2n� 1Þ-connected graph with 2n vertices and it has diam-
eter dn=2e-diameter. Several results available in literature
shows that the augmented cube is a good candidate for
computer network topology design; see [4–6, 8, 10, 11, 15].

A graph G is pancyclic if it contains a cycle of every
length from 3 to jVðGÞj, whereas G is bipancyclic if it con-
tains a cycle of every even length from 4 to jVðGÞj:
Moreover, G is nearly pancyclic if it contains a cycle of every
length from 3 to jVðGÞj except possibly for one value.
Cycles are fundamental networks for parallel and distributed
computing as they are suitable for designing simple algo-
rithms with low communication cost [7]. Pancyclicity of a
network is an important factor in determining whether the
network topology can simulate cycles of various lengths.
Connectivity is a crucial parameter for interconnection net-
works as it measures the stability of a network. Pancyclicity
and connectivity properties for augmented cubes are studied
in [6, 8, 15].

The augmented cube AQn is pancyclic. Therefore cycles
of every length from 3 to 2n can be embedded into it. Thus
AQn contains a 2-regular and 2-connected subgraph on l
vertices for every integer l with 3 � l � 2n: It is natural to

think of generalizing this fundamental property of the aug-
mented cubes to the existence of k-regular, k-connected and
pancyclic subgraphs. This will be useful to get subgraphs of
AQn with less number of vertices which retain the important
properties of AQn such as regularity, pancyclicity and high
connectivity. For hypercubes, this problem is studied in [2,
3, 14].

Mane and Waphare [12] investigated for the existence of
a k-regular, k-connected and bipancyclic subgraph of the
hypercube Qn with 2n vertices for given k. Lu et al. [9] con-
sidered the similar problem for the Cartesian product of
cycles. Ramras [14] proved that the hypercube Qn contains a
3-regular subgraph with l vertices for even integer l from 8
to 2n except 10. Borse and Shaikh [2] improved this result
by proving that for such values of l there exists a 3-regular
subgraph of Qn with l vertices which is 3-connected and
bipancyclic too. Similar results for the classes of the
Cartesian product of cycles and the Cartesian product of
paths are obtained in [1] and [13], respectively. For the
existence of 4-regular subgraphs, Borse and Shaikh [3] estab-
lished that there exists a 4-regular, 4-connected and bipan-
cyclic subgraph on l vertices in the hypercube Qn if and
only if l¼ 16 or l is an even integer with 24 � l � 2n:

In this paper, we generalize the property of pancyclicity
to the existence of 3-regular subgraphs and 4-regular sub-
graphs in augmented cubes. Since AQn is simple and the
total degree of a 3-regular graph is even, the number of ver-
tices of every 3-regular subgraph of AQn is even and at
least 4.

The following are the main results of the paper.

Theorem 1.1. Let n � 2 and l be integers such that l is even
and 4 � l � 2n: Then there exists a 3-regular, 3-connected
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and nearly pancyclic subgraph of the augmented cube AQn

with l vertices.

Theorem 1.2. Let n � 4 and l be integers. Then the aug-
mented cube AQn contains a 4-regular, 4-connected and pan-
cyclic subgraph with l vertices if and only if 8 � l � 2n:

The paper is organized as follows. In Section 2, we obtain
some lemmas which are used in the proofs in the subse-
quent sections. Theorem 1.1 is proved in Section 3. The
proof of Theorem 1.2 is divided in two sections, Section 4
deals with the case 27 � l � 2n, whereas the remaining cases
are covered in Section 5. Also, in Section 5, we prove a
result about the non-existence of 4-regular subgraphs with
l < 7 vertices.

2. Preliminaries

In this section, we provide the definition of the augmented
cube AQn, and obtain some results regarding pancyclicity,
connectivity and the existence of particular types of cycles in
AQn which are used in the subsequent sections.

For a graph G, let V(G) and E(G) denote its vertex set
and edge set, respectively. By a k-cycle, we mean a cycle of
length k, denoted by Ck: A path with vertices a1, a2, :::, an in
order is written as ha1, a2, :::, ani and cycles are also written
similarly. The Cartesian product GwH of two graphs G and
H is a graph with vertex set VðGÞ � VðHÞ, where any two
vertices (u1, v1) and (u2, v2) are adjacent if u1 ¼ u2 and v1 is
adjacent to v2 in H, or v1 ¼ v2 and u1 is adjacent to u2 in
G. The n-dimensional hypercube Qn is the Cartesian product
of n copies of the complete graph K2:

An n-dimensional augmented cube, for n � 1, denoted
by AQn, contains 2n vertices, each labeled by an n-bit binary
string anan�1 � � � a1: We define AQ1 ¼ K2: For n � 2, AQn is
obtained by taking two copies of the augmented cube
AQn�1, denoted by AQ0

n�1 and AQ1
n�1, and adding 2n edges

between the two as follows: Let VðAQ0
n�1Þ ¼ f0an�1 � � � a1 :

ai ¼ 0 or 1g and VðAQ1
n�1Þ ¼ f1bn�1 � � � b1 : bi ¼ 0 or 1g:

A vertex 0an�1 � � � a1 of AQ0
n�1 is adjoined to a vertex

1bn�1 � � � b1 of AQ1
n�1 iff for every i, 1 � i � n� 1, either

(i) ai ¼ bi or
(ii) ai ¼ bi :

Type (i) edges are hypercube edges while Type (ii) are
complement edges, and their sets are denoted by Eh and Ec,
respectively. Thus, we have AQn ¼ AQ0

n�1 [ AQ1
n�1 [ Eh [

Ec: Note that Eh and Ec are perfect matchings between
AQ0

n�1 and AQ1
n�1 and further, AQn � Ec is isomorphic to

AQn�1 wK2: The augmented cubes of dimension 1, 2, 3 and
4 are illustrated in Figure 1.

We need the following results.

Lemma 2.1. [16] Let Hi be an ni-regular and ni-connected
graph for i ¼ 1, 2: Then the graph H1 wH2 is
ðn1 þ n2Þ-regular and ðn1 þ n2Þ-connected.
Lemma 2.2. [8] For n � 2, the augmented cube AQn is
edge-pancyclic.

Lemma 2.3. [12] If P and Q are non-trivial paths and one of
them has even number of vertices, then PwQ is bipancyclic.

Corollary 2.4. If C1 and C2 are two cycles and one of them
has even length, then C1 wC2 is bipancyclic.

Corollary 2.5. If C is a cycle, then CwK2 is bipancyclic.

We obtain the following two results about pancyclicity of
particular types of graphs.

Lemma 2.6. If C is an odd cycle of length m, then CwK2 is
bipancyclic and m-pancyclic.

Proof. Let G ¼ CwK2: Then the graph G contains two ver-
tex-disjoint cycles, say C ¼ ha1, a2, :::, am�1, am, a1i and C0 ¼
hb1, b2, :::, bm�1, bm, b1i such that ai is adjacent to bi for i ¼
1, 2, :::,m (see Figure 2(a)). By Corollary 2.5, G is bipancyclic.
The graph G contains a cycle C of length m. Replacing the
edge ha1, a2i of C by the path ha1, b1, b2, a2i we get a cycle
Cmþ2 in G of length mþ 2 as shown in Figure 2(b). We con-
tinue replacing the edge ha2i�1, a2ii of the cycle Cmþ2ði�1Þ by
the path ha2i�1, b2i�1, b2i, a2ii of length three to get a new
cycle Cmþ2i, for i ¼ 1, 2, :::, ðm� 1Þ=2: Thus G contain cycles
of all odd length from m to 2m� 1: Hence G is bipancyclic
and m-pancyclic. w

We prove below that adding a path of length two to adja-
cent vertices of a ladder gives a pancyclic graph.

Lemma 2.7. Let m � 4 be an integer and let C be an m-cycle.
Suppose the graph H is obtained from the ladder CwK2 by

Figure 1. Augmented cubes.
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identifying the end vertices of a path of length two to a pair of
adjacent vertices of the cycle C. Then H is pancyclic.

Proof. We can write CwK2 ¼ C [ C0 [M, where C ¼
ha1, a2, :::, am�1, am, a1i and C0 ¼ hb1, b2, :::, bm�1, bm, b1i and
M ¼ fhai, bii : i ¼ 1, 2, :::,mg: Due to symmetry in CwK2,
we may assume that H ¼ ðCwK2Þ [ P, where P is a path
ha1, c, a2i, (see Figure 3(a)). By Corollary 2.5, CwK2 is
bipancyclic. Therefore H contains a cycle of every even
length from 4 to 2m: Clearly, ha1, c, a2, a1i is a 3-cycle C3 in
H. On replacing the edge ha1, a2i of C3 by the path
ha1, b1, b2, a2i, we get a 5-cycle C5: To get a 7-cycle C7 from
C5, we replace the edge ha2, b2i by a path P of length 3
where P ¼ ha2, a3, b3, b2i: We continue replacing an edge
hai, bii of an odd cycle Cr by a path hai, aiþ1, biþ1, bii to get a
cycle of length r þ 2: This procedure gives cycles in H of all
odd length from 3 to 2mþ 1: Hence H is pancyclic. w

The next two results are about the existence of special
types of cycles in AQn, and they are used in the construc-
tion of 3-regular and 4-regular subgraphs in AQn in the sub-
sequent sections.

Lemma 2.8. Let n � 3 and l be integers such that 7 � l �
2n � 1: Then there exists a cycle C ¼ hu1, u2, :::, ul, u1i in
AQn and a vertex v 2 VðAQnÞ � VðCÞ such that

(i) v is adjacent to u1, u2, u3, uk for some 4 < k < l:
(ii) hu1, u3i and hu2, uki are chords of C.

Proof. We prove the result by induction on n. A cycle of
length 7 in AQ3 satisfying the properties (i) and (ii) is
shown in Figure 4(a), whereas such a cycle of length 8 in
AQ4 is shown in the Figure 4(b). Hence the result holds for
n ¼ 3, and also it holds for l¼ 7 and l¼ 8 when n � 4:

Suppose n � 4 and l � 9: Assume that the result holds
for n� 1: Write AQn ¼ AQ0

n�1 [ AQ1
n�1 [ Eh [ Ec:

If 7 � l � 2n�1 � 1, then by induction, AQ0
n�1 and so

AQn contains a cycle of length l as desired. Suppose 2n�1 �
l � 2n � 1: Then l ¼ 2n�1 � 1þ k for some k with 3 � k �
2n�1: Let C be a cycle on l ¼ 2n�1 � 1 vertices satisfying the
properties (i) and (ii), choose an edge f ¼ ha, bi of C such

that a, b 62 fu1, u2, u3g: Let f 0 ¼ ha0, b0i be the correspond-
ing edge in AQ1

n�1: Then ha, a0i and hb, b0i are hypercube
edges of AQn: Clearly, ðC � f Þ [ ff 0, ha, a0i, hb, b0ig is a cycle
of length 2n�1 þ 1 satisfying (i) and (ii). By Lemma 2.2,
AQ1

n�1 contains a cycle Ck of length k containing the edge
f 0: Therefore ðC � f Þ [ ðCk � f 0Þ [ fha, a0i, hb, b0ig is a cycle
in AQn of length 2n�1 � 1þ k ¼ l satisfying (i) and (ii). (See
Figure 4(c).)

Suppose l ¼ 2n�1: As l � 9, we have n � 5: By induction,
AQ0

n�1 contains a cycle Z of length l ¼ 2n�1 � 2 satisfying
(i) and (ii). Choose an edge g ¼ hx, yi of Z such that x, y 62
fu1, u2, u3g: If g0 ¼ hx0, y0i is the edge in AQ1

n�1 correspond-
ing to g, then ðZ � gÞ [ fg0, hx, x0i, hy, y0ig is a cycle of
length l satisfying (i) and (ii). This completes the proof. w

Similarly, we get the following result.

Lemma 2.9. Let n and l be integers such that 4 � l � 2n:
Then there exists a cycle C on l vertices in AQn with a chord
e that forms a triangle with two edges of C.

Proof. Clearly, n � 2: We proceed by induction on n. The
result obviously holds for n¼ 2 as AQ2 ¼ K4 contains a
4-cycle with a chord. Suppose n � 3: Since AQ2 is a sub-
graph of AQn, the result holds for l ¼ 4: For l 2 f5, 6g, a
required cycle of length l in AQ3 and so in AQn, is shown
in Figure 5.

Suppose 7 � l � 2n � 1: By Lemma 2.8, we get cycle C of
length l with a chord e which forms a triangle with two
edges of C. Suppose l ¼ 2n: Let Z be a cycle in AQ0

n�1 of
length 2n�1 containing two adjacent edges e1 and e2 that
forms a triangle with a chord e of Z. Since n � 3, there is
an edge f ¼ hx, yi of Z different from e1 and e2: Let Z0 be a
cycle of AQ1

n�1 corresponding to Z and let f 0 ¼ hx0, y0i be
the edge of AQ1

n�1 corresponding to f. Then ðZ � f Þ [ ðZ0 �
f 0Þ [ fhx, x0i, hy, y0ig is a cycle of length 2n with a chord e
forming a triangle with two edges of this cycle. Hence the
result holds for l ¼ 2n: This completes the proof. w

The next two results are about connectivity.

Lemma 2.10. Let Gi be a ki-connected graph for i¼ 1, 2 with
VðG1Þ ¼ fa1, a2, :::, apg and VðG2Þ ¼ fb1, b2, :::, bpg: Then

Figure 2. Odd cycles in Cm w K2:

Figure 3. Odd cycles in H.
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the graph G ¼ G1 [ G2 [M is ðkþ 1Þ-connected, where M ¼
fhai, bii : i ¼ 1, 2, :::, pg and k ¼ minfk1, k2g:

Proof. Since Gi is ki-connected, it is k-connected and has at
least ki þ 1 � kþ 1 vertices. It is sufficient to prove that
deletion of any k vertices from G leaves a connected graph.
Let S � VðGÞ with jSj ¼ k: We prove that G – S is con-
nected. Suppose S is a subset of VðG1Þ or VðG2Þ: If S �
VðG1Þ, then G – S connected as every component of G1 � S
has a neighbour in the connected graph G2: Similarly, G – S
is connected if S � VðG2Þ: Suppose S intersects both VðG1Þ
and VðG2Þ: Let Si \ VðGiÞ for i ¼ 1, 2: As 1 � jS1j, jS2j < k,
both G1 � S1 and G2 � S2 are connected and they are joined
to each other by at least p� k � 1 edges of the matching M.
Hence G – S is connected. w

Lemma 2.11. For m � 7, let H be a 3-regular graph on 2m
vertices consisting of two cycles C ¼ ha1, a2, :::, am, a1i and
C0 ¼ hb1, b2, :::, bm, b1i and a perfect matching M ¼ fhai, bii :
i ¼ 1, 2, :::,mg: Let N be a graph obtained from H by adding
a vertex v and four new edges fhv, a1i, hv, a2i, hv, a3i, hv, akig
for some k with 4 < k < m: Then the graph G ¼ ðN �
fha1, b1i, ha2, b2i, ha3, b3i, hak, bkigÞ [ fhb1, b3i, hb2, bkig is 3-
connected. (See Figure 6.)

Proof. Let S � VðGÞ with jSj ¼ 2: It suffices to prove that
G� S is connected. There are at least m� 4� 2 � 1 edges
between C and C0 in G� S: Let G1 and G2 be the subgraphs
of G induced by VðCÞ [ fvg and VðC0Þ, respectively. Then
G1 and G2 are 2-connected.

Suppose S intersects both VðG1Þ and VðG2Þ: Let S1 ¼
S \ VðG1Þ and S2 ¼ S \ VðG2Þ: Then jS1j ¼ jS2j ¼ 1: Hence
G1 � S1 and G2 � S2 are connected and are joined to each
other by at least one edge, giving G – S connected.

Suppose S � VðG2Þ: If G2 � S is connected, then G� S
is connected as G2 � S has a neighbour in the connected
graph G1: Suppose G2 � S is disconnected. Then it has
two components. Let B ¼ fb1, b2, b3, bkg: Note that the
degree of every member of the set B – S is at least one in
G2 � S: Since m � 7, it follows that every component of
G2 � S contains a vertex from VðCÞ � B and so has a
neighbour in G1: This shows that G – S is connected.
Similarly, if S � VðG1Þ, then every component of G1 � S
has a neighbour in the connected graph G2. This com-
pletes the proof. w

3. Existence of 3-regular subgraphs in AQn

In this section, we prove Theorem 1.1.
The total degree of a graph is an even integer, the num-

ber of vertices of a 3-regular graph is always an even integer.
Obviously, a 3-regular subgraph of the simple graph AQn

has at least 4 vertices.
Since AQ2 is a complete graph K4, it is obviously a 3-

regular, 3-connected and pancyclic subgraph of AQn, for
n � 2: Clearly, C3 wK2 is a 3-regular subgraph of AQ3 on 6
vertices, where C3 is a 3-cycle. This graph is 3-connected by
Lemma 2.1 and pancyclic by Lemma 2.6 and it is also a sub-
graph AQn for n � 3: Moreover, by Lemma 2.1 and
Corollary 2.5, C4 wK2 is a 3-regular, 3-connected and bipan-
cyclic subgraph of AQ3 on 8 vertices, where C4 is a 4-cycle.

Figure 4. Cycles of length l.

Figure 5. Cycles of length 5 and 6.

Figure 6. The graph G.

Figure 7. 3-regular subgraphs of AQn.
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We now prove Theorem 1.1 which is restated below for
convenience.

Theorem 3.1. Let n � 2 and l be integers such that l is even
and 4 � l � 2n: Then there exists a 3-regular, 3-connected
and nearly pancyclic subgraph of the augmented cube AQn on
l vertices.

Proof. As seen above, the result holds for l¼ 4 and l ¼ 6: A
3-regular subgraph of AQ3 on 8 vertices is shown in Figure
7(a). Clearly, this graph is pancyclic. Further deletion of any
two edges from it leaves a connected graph. Hence it is 3-
edge connected and so, it is 3-connected. Thus the result
holds for l ¼ 8:

Suppose 10 � l � 2n: Then l ¼ 2m for some integer m
with 5 � m � 2n�1: Write AQn ¼ AQ0

n�1 [ AQ1
n�1 [ Eh [ Ec:

By Lemma 2.9, AQ0
n�1 contains a cycle C ¼ ha1, a2, :::,

am, a1i, on m vertices such that e ¼ ha1, a3i is a chord of C.
Let C0 ¼ hb1, b2, :::, bm, b1i be the corresponding cycle in
AQ1

n�1: Then ai is adjacent to bi for each i, i ¼ 1, 2, :::,m: Let
W ¼ C [ C0 [ D, where D ¼ fha2, b2i, ha4, b4i, ha5, b5i, :::,
ham, bmig: Then W is a 3-regular subgraph of AQn on 2m
vertices as shown in Figure 7(b).

Claim 1. W is nearly pancyclic.

We first show that W is bipancyclic. Note that W �
fa1, a2, a3, b1, b2, b3g is a ladder on 2m� 6 vertices and
so, by Lemma 2.5, it is bipancyclic. Hence W contains
a cycle of every even length from 4 to 2m� 6: Cycles
C2m�4, C2m�2 and C2m in W of lengths 2m� 4, 2m� 2
and 2m, respectively are shown in Figure 8(a), (b)
and (c).

We now prove the existence of odd length cycles in
W. The cycles C3 of length 3 and C7 of length 7 are
shown in Figure 8(d) and 8(e), respectively. Replacing
the edge ha4, b4i of C7 by the path ha4, a5, b5, b4i of length
3 gives a 9-cycle C9 in W. Continuing this process of
replacing an edge of a cycle by a path of length three, we
get cycles of all odd length from 7 to 2m� 1: Note that
W does not contain a 5-cycle. Thus W is
nearly pancyclic.

Claim 2. W is 3-connected.

Let S � VðWÞ with jSj ¼ 2 vertices. We prove that W – S is
connected. There are at least m� 4 � 1 edges between C
and C0 in W � S: Suppose S intersects both V(C) and
VðC0Þ: Let S1 ¼ VðCÞ \ S and let S2 ¼ VðC0Þ \ S: Then both
C � S1 and C0 � S2 are connected, giving W – S connected.
Suppose S � VðC0Þ: Let G1 be the subgraph of W induced
by VðC0Þ: Suppose G1 � S has a component D with no
neighbour in C. Then VðDÞ � fb1, b3g: The degree of each
of b1 and b3 is 3 in G1, the minimum degree of D is at least
one as jSj ¼ 2: Hence D consists of only one edge hb1, b3i:
This shows that S contains the neighbours b2, b4 and bm of
b1 and b3 in G1: Hence jSj � 3 as m � 5, a contradiction.
Thus every component of G1 � S has a neighbour in the
connected graph C and hence, W – S is connected.
Similarly, W – S is connected if S � VðCÞ: Hence W is 3-
connected. This proves the claim.

Thus W is a 3-regular, 3-connected and nearly pancyclic
subgraph of AQn on l vertices. This completes the proof. w

4. Existence of 4-regular subgraphs of AQn

In this section, we prove Theorem 1.2 for 28 � l � 2n by
constructing a 4-regular, 4-connected and pancyclic sub-
graphs of AQn on l vertices. We use the following notation
in our proofs.

Notation: We write AQn ¼ AQ0
n�1 [ AQ1

n�1 [ Eh [ Ec: Then
write AQ0

n�1 ¼ AQ00
n�2 [ AQ01

n�2 [ E0h [ E0c and AQ1
n�1 ¼

AQ10
n�2 [ AQ11

n�2 [ E00h [ E00c : For convenience, we denote
AQ00

n�2, AQ10
n�2, AQ11

n�2 and AQ01
n�2 by AQ0

n�2, AQ1
n�2,

AQ2
n�2 and AQ3

n�2, respectively. Then AQ0
n�1 ¼ AQ0

n�2 [
AQ3

n�2 [ E0h [ E0c and AQ1
n�1 ¼ AQ1

n�2 [ AQ2
n�2 [ E00h [ E00c :

Note that the subgraph AQ0
n�2 [ AQ1

n�2 [ AQ2
n�2 [ AQ3

n�2 [
Eh [ E0h [ E00h of AQn is isomorphic to AQn�2 wC4 where C4

is a cycle of length 4.
We select a copy of a cycle from each of the four copies

of AQn�2 in AQn and use them to construct a 4-regular sub-
graph (Figure 9).

Proposition 4.1. Let n and l be integers such that n � 5 and
28 � l � 2n: Then there exists a 4-regular, 4-connected and
pancyclic subgraph H of AQn on l vertices.

Figure 8. Cycles in W.
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Proof. As 28 � l � 2n, we have l ¼ 4m with 7 � m � 2n�2,
or l ¼ 4mþ 1, 4mþ 2 or 4mþ 3 with 7 � m � 2n�2 � 1: In
each of these four cases, we construct a 4-regular subgraph
of AQn:

Case (i). l ¼ 4m

As in the above notation, express AQn into four copies of
AQn�2: Then AQn�2 wC4 is a spanning subgraph of AQn:

As 7 � m � 2n�2, by Lemma 2.9, there exists a cycle
Z0 ¼ hx1, x2, :::, xm, x1i in AQ0

n�2 on m vertices with a chord
hx1, x3i: Let Z1 ¼ hy1, y2, :::, ym, y1i; Z2 ¼ hz1, z2, :::, zm, z1i;
Z3 ¼ hw1,w2, :::,wm,w1i be the corresponding cycles in
AQ1

n�2,AQ
2
n�2 and AQ3

n�2, respectively. Then hxi, yii, hyi, zii,
hzi,wii and hwi, xii are hypercube edges in AQn: Let

H0 ¼ Z0 [ Z1 [ Z2 [ Z3 [ fhxi, yi, zi,wi, xii : i ¼ 1, 2, :::,mg:

Then H0 is isomorphic to Z0 wC4, where C4 is a 4-cycle.
Hence H0 is a 4-regular, 4-connected and bipancyclic sub-
graph of AQn on 4m vertices. We modify H0 to get a pancy-
clic subgraph H1 as follows. Let

H1 ¼ H0 � fhx1,w1i, hx3,w3ig [ fhx1, x3i, hw1,w3ig:
(See Figure 10(a).) Clearly, H1 is a 4-regular subgraph of

AQn with 4m vertices.
We now prove that H1 is 4-connected. Let L and R be

the subgraphs of H1 induced by VðZ0 [ Z3Þ and by VðZ1 [
Z2Þ, respectively. Since R is isomorphic to Z2 wK2, it is 3-
connected. Also, as in proof of Theorem 1.1, L is 3-con-
nected. There is a perfect matching in H1 joining L and R.
Hence, by Lemma 2.10, H1 is 4-connetced.

To prove pancyclicity of H1, let P ¼ ðZ0 � hx1, xmiÞ [
ðZ1 � hw1,wmiÞ [ fhxm, dmig be a path on 2m vertices in L
and let Q be the corresponding path in R. Then W ¼
P [ Q [M is a ladder on 4m vertices, where M ¼
fhxi, yii, hwi, zii : i ¼ 1, 2, :::,mg: Let C3 be the triangle
hx1, x2, x3, x1i in H1: Then, by Lemma 2.7, W [ C3 is a pan-
cyclic graph. Since W [ C3 is a spanning subgraph of H1,
the graph H1 is also pancyclic.

Thus we have constructed a 4-regular, 4-connected and
pancyclic subgraph in Case (i).

Suppose l ¼ 4mþ 1, 4mþ 2 or 4mþ 3 with 7 � m �
2n�2 � 1: As in Case (i), express AQn into four copies
AQ0

n�2, AQ1
n�2, AQ2

n�2 and AQ3
n�2 of AQn�2: Since 7 �

m � 2n�2 � 1, by Lemma 2.9, there exists a cycle C0 ¼
ha1, a2, :::, am, a1i in AQ0

n�2 of length m which has two
chords ha1, a3i and ha2, aki for some 4 < k < m and there is
a vertex v0 2 VðAQ0

n�2Þ � VðC0Þ with four neighbours
a1, a2, a3 and ak on C0: Let C1 ¼ hb1, b2, :::, bm, b1i, C2 ¼
hc1, c2, :::, cm, c1i and C3 ¼ hd1, d2, :::, dm, d1i be the corre-
sponding cycles in AQ1

n�2,AQ
2
n�2 and AQ3

n�2, respectively.
Let vi be the vertex of AQi

n�2 corresponding to v0
for i ¼ 1, 2:

Let

H ¼ C0 [ C1 [ C2 [ C3 [ fhai, bi, ci, di, aii : i ¼ 1, 2, :::,mg:

Then H is a 4-regular, 4-connected and bipancyclic sub-
graph of AQn on 4m vertices. We use this graph to con-
struct 4-regular subgraphs on 4mþ 1, 4mþ 2 and
4mþ 3 vertices.

Case (ii). l ¼ 4mþ 1

Let M1 be the subgraph of AQn with vertex set
fv0, a1, a2, a3, akg, with 4 < k < m and edge set fhv0, a1i,
hv0, a2i, hv0, a3i, hv0, akig: Define

H2 ¼ H [M1 � fha1, d1i, ha2, d2i, ha3, d3i, hak, dkig
[ fhd1, d3i, hd2, dkig:

(See Figure 10(b).) Then H2 is a 4-regular subgraph of AQn

on 4mþ 1 ¼ l vertices.

Case (iii). l ¼ 4mþ 2

Figure 10. 4-regular subgraphs of AQn.

Figure 9. AQn�2 w C4:
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Consider the subgraph H2 of Case (ii). Let M2 be the
graph with vertex set fv1, b1, b2, b3, bkg and edge set
fhv1, b1i, hv1, b2i, hv1, b3i, hv1, bkig: Let

H3 ¼ H2 [M2 � fhb1, c1i, hb2, c2i, hb3, c3i, hbk, ckig
[ fhc1, c3i, hc2, ckig:

(See Figure 11(a).) Clearly, H3 is a 4-regular subgraph of
AQn on 4mþ 2 vertices.

Case (iv). l ¼ 4mþ 3

We construct a graph H4 on l vertices from the graph H3 of
Case (iii) and the graph M3 whose vertex set fv2, c1, c2,
c3, ckg and edge set fhv2, c1i, hv2, c2i, hv2, c3i, hv2, ckig: Let

H4 ¼ H3 [M3 � fhc1, c3i, hc2, ckig:
(See Figure 11(b).) Clearly, H4 is a 4-regular subgraph of
AQn on 4mþ 3 vertices.

We now prove that the graphs H2, H3 and H4 con-
structed above are pancyclic and 4-connected.

Claim 1. The graphs H2, H3 and H4 are pancyclic.

Let i 2 f2, 3, 4g: Since m � 7, there exists a vertex ar of C
0

such that ar 62 fa1, a2, a3, akg: Hence har, dri, hbr, cri 2
EðHiÞ: The graph Hi contains the ladder L ¼ P [ Q [M,
where

P ¼ ðC0 � har, arþ1iÞ [ ðC3 � hdr, drþ1iÞ [ fhar, drig,
Q ¼ ðC1 � hbr, brþ1iÞ [ ðC2 � hcr, crþ1iÞ [ fhbr , crig
M ¼ fhai, bii, hci, dii : i ¼ 1, 2, :::,mg:

Then L [ C3 is a subgraph of Hi on 4mþ 1 vertices, where
C3 ¼ ha1, v0, a2, a1i: By Lemma 2.7, L [ C3 is pancyclic.
Hence Hi contain a cycle of every length from 3 to 4mþ 1:
A cycle C4mþ2 of length 4mþ 2 in H3 and so in H4 is shown
in Figure 12(a) while a cycle in H4 of length 4mþ 3 is
shown in Figure 12(b). Thus H2, H3 and H3 are pancyclic.

Claim 2. The graphs H2, H3 and H4 are 4-connected.

For i 2 f2, 3, 4g, let
Li ¼ Hi \ ðAQ0

n�2 [ AQ3
n�2 [ EhÞ and

Ri ¼ Hi \ ðAQ1
n�2 [ AQ2

n�2 [ EhÞ:
By Lemma 2.11, the graphs L2, L3, L4 and R3 are 3-connected.
Since R2 is isomorphic to Cm wK2, it is also 3-connected by
Lemma 2.1. Further, as in proof of Lemma 2.11, the graph R4
is 3-connected.

Let S � VðHiÞ with jSj ¼ 3: We prove that Hi � S is con-
nected. In Hi � S, there are at least 2m� jSj � 2m� 3 � 10
edges between Li and Ri: Suppose S intersects with both
VðLiÞ and VðRiÞ: Let S1 ¼ S \ VðLiÞ and S2 ¼ S \ VðRiÞ:
Then both Li � S1 and Ri � S2 are connected and are joined

Figure 11. 4-regular subgraphs of AQn.

Figure 12. Cycles in H3 and H4.
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to each other and so, Hi � S is connected. Suppose S �
VðLiÞ: As the degree of v0 in Li is 4, it is not an isolated ver-
tex in Li � S: Therefore, every component of Li � S has a
neighbour in the connected graph Ri: Therefore Hi � S is
connected. Similarly, every component of Ri � S has a
neighbour in the connected graph Li if S � VðRiÞ and hence,
Hi � S is connected. Thus Hi is 4-connected. This proves
the claim.

Thus, in each case, we have constructed a 4-regular,
4-connected and pancyclic subgraph of AQn on l vertices. w

5. 4-Regular subgraphs of smaller size

We complete the proof of Theorem 1.2 in this section. In
the previous section, we constructed 4-regular subgraphs of
AQn on l vertices for 28 � l � 2n: Now in this section, we
construct such subgraphs of AQn on l vertices for 7 � l �
27: We obtain the following lemmas to construct 4-regular
subgraphs in AQ4 and AQ5:

Lemma 5.1. Write AQ4 ¼ AQ0
3 [ AQ1

3 [ Eh [ Ec: Suppose
m 2 f4, 5, 6g: Then there exists an m-cycle C containing a
path ha1, a2, a3i in AQ0

3 and a vertex v 2 VðAQ0
3Þ � VðCÞ

such that

(i) v is adjacent to a1, a2, a3;
(ii) v is adjacent to the vertex b3 of AQ1

3 corresponding
to a3:

Proof. In AQ4, the vertex set of AQ0
3 is f0000, 0001,

0011, 0111, 0101, 0100, 0110, 0010g: Let v ¼ 0000, a1 ¼ 0001,
a2 ¼ 0011, a3 ¼ 0111, a4 ¼ 0101, a5 ¼ 0100 and a6 ¼
0110: Then ha1, a2, a3i is a path in AQ0

3 and v is adjacent to
a1, a2, a3: The vertex v is also adjacent to the vertex b3 ¼
1111 of AQ1

3 corresponding to a3: Observe that
ha1, a2, a3, a4, a1i, ha1, a2, a3, a5, a4, a1i and ha1, a2, a3, a6, a5,
a4, a1i are cycles in AQ0

3 of length 4, 5 and 6, respectively,
and avoids the vertex v. (See Figures 13(a), (b), (c).) Then C
contains the path ha1, a2, a3i and it is a required cycle. This
completes the proof. w

We get a similar result for AQ3 and m ¼ 3: (See
Figure 13(d).)

Lemma 5.2. Write AQ3 ¼ AQ0
2 [ AQ0

2 [ Eh [ Ec: Then there
exists a triangle C ¼ ha1, a2, a3, a1i in AQ0

2 and v 2
VðAQ0

2Þ � VðCÞ such that

(i) v is adjacent to a1, a2, a3;

(ii) v is adjacent to the vertex b3 of AQ1
2 corresponding

to a3:

Lemma 5.3. Let l be an integer with 13 � l � 27: Then there
exists a 4-regular, 4-connected and pancyclic subgraph on l
vertices (i) in AQ4 if l � 16 (ii) in AQ5 if l > 16:

Proof. If l is a multiple of 4, then, as in Case (i) of
Proposition 4.1, there exists a 4-regular, 4-connected and
pancyclic subgraph of AQ4 with l vertices. Suppose l is not a
multiple of 4. Then l ¼ 4mþ 1, 4mþ 2 or 4mþ 3 for some
integer m such that 3 � m � 6:

Let n¼ 4 if m ¼ 3, and n¼ 5 if 4 � m � 6: As in the
notation of Section 4, write AQn ¼ AQ0

n�1 [ AQ0
n�1 [ Eh [

Ec with AQ0
n�1 ¼ AQ0

n�2 [ AQ3
n�2 [ E0h [ E0c and AQ1

n�1 ¼
AQ1

n�2 [ AQ2
n�2 [ E00h [ E00c : By Lemmas 5.1 and 5.2, there

exists a cycle C0 of length m in AQ0
n�1 containing a path

ha1, a2, a3i and a vertex v0 2 VðAQ0
n�2Þ � VðC0Þ such that

v0 is adjacent to a1, a2, a3 and d3, where d3 is the vertex of
AQ3

n�2 corresponding to a3: Let C1, C2 and C3 be the cycles
in AQ1

n�2, AQ2
n�2 and AQ3

n�2 respectively, corresponding to
C0: Similarly, let bi, ci, di be the vertices of AQ1

n�2, AQ2
n�2,

AQ3
n�2, respectively, corresponding to ai for i ¼ 1, 2, 3: Also,

let the vertices of AQ1
n�2 and AQ2

n�2 corresponding to v0 be
v1 and v2, respectively. Let

H ¼ C0 [ C1 [ C2 [ C3 [ Eh [ E0h [ E00h:

Then H is isomorphic to C0 wC4, where C4 is a cycle of
length 4. Hence H is a 4-regular, 4-connected and bipancy-
clic subgraph of AQn on 4m vertices.

Case (i). l ¼ 4mþ 1 with 3 � m � 6:

We construct a 4-regular graph H1 on 4mþ 1 vertices by
adding a vertex to the above graph H. Let M be the sub-
graph of AQn with vertex set fv0, a1, a2, a3, d3g and edge set
fhv0, a1i, hv0, a2i, hv0, a3i, hv0, d3ig: Let

H1 ¼ H [M � fha1, a2i, ha3, d3ig:
(See Figure 14(a).) Then H1 is a 4-regular subgraph of AQn

with l vertices.

Case (ii). l ¼ 4mþ 2 with 3 � m � 6:

We construct a 4-regular graph by adding a vertex to the
graph H1: Suppose N is the subgraph of AQn with vertex set
fv1, b1, b2, b3, c3g and edge set fhv1, b1i, hv1, b2i, hv1, b3i,
hv1, c3ig: Define

Figure 13. Cycles in AQ4.
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H2 ¼ H1 [ N � fhb1, b2i, hb3, c3ig:
(See Figure 14(b).) Then the subgraph H2 of AQn is 4-regu-
lar with l vertices.

Case (iii). l ¼ 4mþ 3 with 3 � m � 6:

Let L be the graph with vertex set fv2, c1, c2, c3g and edge set
fhv2, c1i, hv2, c2i, hv2, c3ig and let

H3 ¼ ðH2 [ L [ fhv1, v2igÞ � fhv1, c3ig:
(See Figure 14(c).) Clearly, the subgraph H3 of AQn is 4-
regular with l vertices.

Claim 1. The graphs H1, H2 and H3 are pancyclic.

Let i 2 f1, 2, 3g: We prove that Hi is pancyclic. Let

P ¼ ðC0 � ha1, a2iÞ [ ðC3 � hd1, d2iÞ [ fha1, d1ig
and let

Q ¼ ðC1 � hc1, c2iÞ [ ðC2 � hb1, b2iÞ [ fhc1, b1ig:
Then P and Q are vertex-disjoint paths in AQn of length
2m each. The perfect matching between them gives a ladder
L on 4m vertices. Clearly, L contains one edge of the tri-
angle hv0, a2, a3, v0i in Hi: Hence, by Lemma 2.7, Hi

is pancyclic.

Claim 2. The graphs H1, H2 and H3 are 4-connected.

For i 2 f1, 2, 3g: We prove that the graph Hi is 4-connected.

Li ¼ Hi \ ðAQ0
n�2 [ AQ3

n�2 [ E0hÞ and

Ri ¼ Hi \ ðAQ1
n�2 [ AQ2

n�2 [ E00hÞ:
By modifying Lemma 2.11, the graphs L1, L2 and L3 and

R2 are 3-connected. Since R1 is isomorphic to Cm wK2, it is

also 3-connected by Lemma 2.1. Further, as in proof of
Lemma 2.11, the graph R3 is 3-connected.

As in Claim 2 of Proposition 4.1, the Hi is 4-connected.
This proves the claim.

Hence we get 4-regular, 4-connected and pancyclic subgraph
of augmented cube on l vertices whenever 13 � l � 27: w

Lemma 5.4. For an integer l with 8 � l � 11, there exists a
4-regular, 4-connected and pancyclic subgraph of AQ4 on
l vertices.

Proof. As in Case (i) of Proposition 4.1, there exists a 4-
regular, 4-connected and pancyclic subgraph of AQ4 with l
vertices if l is a multiple of 4. Suppose l is not multiple of
4. Then l 2 f9, 10, 11g: Figure 15(a), (b) and (c) give 4-
regular subgraphs of AQ4 on 9, 10 and 11 vertices, respect-
ively. It follows from Lemma 2.7 that these graphs are
pancyclic. Also, it is easy to verify that they are 4-con-
nected. w

We now prove that no augmented cube contains a 4-
regular subgraph with number of vertices less than 7, how-
ever, there is unique 4-regular subgraph of an augmented
cube on 7 vertices.

Proposition 5.5. For any integer l with 1 � l � 6, there does
not exist a 4-regular subgraph with l vertices in an aug-
mented cube.

Proof. Assume that there is an augmented cube AQn con-
taining a 4-regular subgraph H with l vertices. Choose
smallest n such that AQn contains H. Clearly, n � 3, and
l � 5 as H is simple. Now write AQn ¼ AQ0

n�1 [ AQ1
n�1 [

Eh [ Ec: Then H is not a subgraph of AQi
n�1 for i ¼ 0, 1: Let

Hi ¼ H \ AQi
n�1 for i ¼ 0, 1: Then Hi 6¼ ; and so its min-

imum degree is at least two. Therefore Hi contains a cycle

Figure 14. 4-regular subgraphs of AQ5.

Figure 15. 4-regular subgraphs on l vertices.
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and thus has at least 3 vertices for i ¼ 0, 1: This shows that
l¼ 6 and both H0 and H1 are triangles. Hence each vertex of
H0 has two neighbours in H1 and vice versa.

Let H0 ¼ h0a, 0b, 0c, 0ai: Then h0a, 1ai, h0b, 1bi,
h0c, 1ci 2 Eh: Hence H1 ¼ h1a, 1b, 1c, 1ai: Further, each ver-
tex of H0 has one more neighbor in H1: Without loss of
generality, we may assume that h0a, 1bi, h0b, 1ci and
h0c, 1ai are edges in H. Therefore these three edges belong
to Ec: This shows that 0a ¼ 1b, 0c ¼ 1a and 0b ¼ 1c:
Therefore �a ¼ b and �b ¼ c giving a ¼ c: This is a contradic-
tion. Hence the result holds. w

Lemma 5.6. Every 4-regular subgraph of AQn with 7 vertices
is isomorphic to the graph shown in Figure 15(d).

Proof. Let n be the smallest integer such that the augmented
cube AQn contains a 4-regular subgraph H with 7 vertices.
Write AQn ¼ AQ0

n�1 [ AQ1
n�1 [ Eh [ Ec and let Hi ¼

H \ AQi
n�1 for i ¼ 0, 1: Then the minimum degree of Hi is

at least two and therefore Hi contains a cycle. Hence we
may assume that H1 is a triangle and H0 contains a 4-
cycle. Consequently, every vertex of H1 has two neigh-
bours in H0: Thus there are exactly six edges between H0

and H1: It follows that H1 is a 4-cycle with one chord.
This implies that H is isomorphic to the graph of Figure
15(d). w

Now, we complete the proof of Theorem 1.2 formally.
We restate this theorem here for convenience.

Theorem 5.7. Let n � 4 and l be integers. Then the aug-
mented cube AQn contains a 4-regular, 4-connected and pan-
cyclic subgraph with l vertices if and only if 8 � l � 2n:

Proof. Suppose AQn contains a 4-regular subgraph on l
vertices. Then, by Proposition 5.5, l � 7: Also, by Lemma
5.6, every 4-regular subgraph of AQn on 7 vertices is iso-
morphic to the graph shown in Figure 15(d). However,
this graph is pancyclic, 3-connected but not 4-connected.
Hence 8 � l � jVðAQnÞj ¼ 2n: Converse follows from
Proposition 4.1. w
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