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ABSTRACT
Pharmacokinetic (PK) studies are conducted to learn about the absorption, distribution, metabolism, and
excretion processes of an externally administered compound by measuring its concentration in bodily tissue
at a number of time points after administration. Two methods are available for this analysis: modeling and
non-compartmental. When concentrations of the compound are low, they may be reported as below the
limit of quantification (BLOQ). This article compares eight methods for dealing with BLOQ responses in the
non-compartmental analysis framework for estimating the area under the concentrations versus time curve.
These include simple methods that are currently used, maximum likelihood methods, and an algorithm
that uses kernel density estimation to impute values for BLOQ responses. Performance is evaluated using
simulations for a range of scenarios. We find that the kernel based method performs best for most situations.
Supplementary materials for this article are available online.
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1. Introduction

In pharmacokinetic (PK) studies, the objective is to learn
about the absorption, distribution, metabolism, and excretion
(ADME) processes of an externally administered compound
by measuring the concentration in bodily tissue such as blood
or plasma at a number of time points after administration.
However, some of these concentrations are reported as below
the limit of quantification (BLOQ) of the assay. The limit of
quantification (LOQ) is defined by Armbruster and Pry (2008)
as “The lowest concentration at which the analyte can not only
be reliably detected, but at which some predefined goals for bias
and imprecision are met.” Observations that are below the LOQ
are often referred to as “BLOQ” or “BQL” and require special
attention in the data analysis.

Dealing with BLOQ observations when modeling is used
has been vastly explored in the literature. The most notable of
which is the contribution from Beal (2001), describing seven
key methods for fitting PK models when BLOQ observations
are present. Wang (2015) discusses the implications of such
methods from the FDA perspective, an important contribution
since the handling of such values must be regulated in prac-
tice. Further, regulatory requirements (Gabrielsson and Weiner
2001; Reisfield and Mayeno 2013; Dykstra et al. 2015) require
many PK studies to use non-compartmental analysis (NCA), yet
statistical methods for dealing with BLOQ observations in NCA
are very much lacking.

The two strategies of PK analysis, modeling (e.g., David-
ian and Giltinan 1995; Bonate 2006) and NCA (Gibaldi and
Perrier 1982; Cawello 2003; Jaki and Wolfsegger 2012) differ
in their approach on a number of levels. While the model-
ing approach offers the advantage of unstructured sampling
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schemes (i.e., fewer restrictions on the sparsity and structure
of the sampling schedule), this comes at the cost of uncer-
tainty over the model choice and potential technical diffi-
culties in fitting the PK model. Many of the methods dis-
cussed by Beal (2001) involve either discarding BLOQ obser-
vations, replacing them with LOQ/2 or replacing them with
0 before proceeding to fit a PK model using such methods
as maximum likelihood or least squares regression. Assump-
tions must be made about the underlying ADME process to
use these approaches, as PK modeling involves representing
the body as various compartments and modeling the flow of
the compound between these compartments using differential
equations. The number of compartments and hence complex-
ity of the model used depends on the compound itself. Fur-
ther, assumptions on the rate of flow between compartments
must also be made and therefore the model choice is heav-
ily dependent on assumptions on the compound being stud-
ied. In NCA, however, no such assumptions must be made,
although some kind of approximation, usually linear or expo-
nential decay, of the concentrations between observed time
points is used. The purpose of both approaches is to esti-
mate PK parameters such as the area under the concentration
versus time curve (AUC), a measure of total exposure of the
compound, or the maximum concentration of the compound
(Cmax).

Figure 1 shows an illustration of a motivating example from
a PK study of seven rats given an oral dose of a compound. The
large gray numbers indicate that a response is reported as BLOQ,
when the LOQ is defined at 5. This gives 5 BLOQ values in the
dataset, out of 42 total observations. Here, a linear approxima-
tion between the observations at consecutive timepoints.
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Figure 1. An example dataset.

When there are a large number of responses BLOQ, and those
responses that are above have low concentration values, the con-
tribution of the BLOQ responses will vastly affect any estimate
of the AUC and its variance; this is the PK parameter that is most
affected by how BLOQ responses are dealt with. Johnson (2018)
consider methods building on those introduced by Beal (2001)
for example with small numbers of BLOQ values, including the
potential to use the actual reported concentration values that
are BLOQ. The residual error model that must be assumed for
this method is not appropriate however for examples with larger
numbers of BLOQ values. Conventional methods for dealing
with missing data such as those introduced by Rubin (1987) and
further explored by Little and Rubin (2002) are not applicable
in this setting since the mechanism for the missingness does
not follow the standard settings. In the following, we introduce
eight methods for including BLOQ observations in NCA for
PK studies, and hence make as few assumptions on the data as
possible.

2. Methods

We introduce eight methods for dealing with values BLOQ and
subsequently focus on how each of the methods impacts the esti-
mate of the AUC, ̂AUC, and its variance. We focus on complete
sampling designs in our evaluations, although the methods may
be extended to sparse sampling schemes, see Section 4, without
further complication. The first two methods are simple impu-
tations, replacing the BLOQ observations with 0 and LOQ/2
and proceeding with the NCA approach. These are the current
approaches applied in practice (Hing et al. 2001) and hence the
benchmark upon which we wish to improve on. The remaining
six methods use varying techniques to either impute values onto
BLOQ responses or to approximate the summary statistics of the
non-compartmental approximation of the concentration versus
time curve. It is worth noting that although in the following
descriptions, we use a linear approximation between observa-
tions of consecutive timepoints, that is, the trapezoidal rule,
one may also use the log-linear trapezoidal rule. In fact, any
appropriate approximation between observations may be used

as none of the following methods make any assumptions on
this relationship. However, when approximating the variance of
the ̂AUC obtained through such methods, this is easily approxi-
mated from estimates using the trapezoidal and log-trapezoidal
rule, as described by Gagnon and Peterson (1998) and may not
be so easily estimated for alternative approximations.

For all methods, two different error structures, additive and
multiplicative are considered. We assume concentrations from
n subjects, labeled i = 1, . . . , n, are observed at J timepoints tj
for j = 1, . . . , J.

2.1. Additive Error Model

The additive error model is defined as

yij = μj + εij,

where yij is the observed response for subject i at the jth time-
point. The μj represents the population mean response at the
jth timepoint. εij is the difference between the yij and μj and
is assumed to be normally distributed. In this case, we use the
arithmetic mean ȳj = 1

n
∑n

i=1 yij as the basis for estimating
the AUC. Assuming all observations were above the LOQ, the
estimate of the population AUC is written as

̂AUC
(A) =

J∑
j=1

ωjȳj, (1)

where ȳj is defined as above and ωj are weights defined as

ωj = tj+1 − tj−1

2
for j = 1, 2, . . . , (J − 1),

= tJ − tj−1

2
for j = J.

The variance approximation of the ̂AUC for batch designs
(Jaki and Wolfsegger 2012) can be used:

var
(
̂AUC

(A)
)

=
B∑

b=1

s2
b

nb
, (2)

where

s2
b = 1

nb − 1

nb∑
i=1

⎛
⎝∑

j∈Jb

ωjyij − 1
nb

nb∑
k=1

∑
j∈Jb

ωjykj

⎞
⎠2

with Jb ⊆ {1, . . . , J} the indices of time points investigated in
batch b = 1, . . . , B and nb the number of subjects in batch b. In
batch sampling, the subjects are divided into batches with each
batch of subjects all sampled at the same time points with no
other subjects sampled at any of these time points (hence the
time points for each batch form a partition of the set of all time
points). Alternative sampling methods such as serial sampling,
where restrictions on blood volume limit sample to one per
subject and complete sampling where all subjects are sampled at
all timepoints (allowed by innovative blood sampling methods
such as microsampling (Chapman et al. 2014; Barnett et al. 2018)
are often used. These are special cases of batch sampling, and
hence this generalized form of the variance approximation can
also be used in these cases.
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2.2. Multiplicative Error Model

It is often more typical for the assumption on the errors to be
multiplicative. In this scenario, the arithmetic mean for the data
is no longer a satisfactory measure of central tendency of the
concentration at each time point, since it does not conform
with the error model. Instead, we will use the geometric mean
(Gagnon and Peterson 1998) defined for time tj with n observa-
tions as

(∏n
i=1 xij

) 1
n or equivalently e

1
n

∑n
i=1 log xij . The model is

then:

yij = μjeεij ,

which we can rewrite as

log yij = log μj + εij,

where yij is the observed response for subject i at the jth time-
point. The μj represent the population mean response at the
jth timepoint. The εij are the differences between the log yij
and log μj and are assumed to be normally distributed. Letting
cij = log yij, we have the geometric mean of the observations
per time point ec̄j where c̄j = 1

n
∑n

i=1 cij and use this as our
measure of central tendency of the response per timepoint when
estimating AUC. Assuming all observations are above the LOQ,
the estimate of the population AUC is

̂AUC
(G) =

J∑
j=1

ωjec̄j , (3)

with ωj and c̄j defined as previously. Using the variance approx-
imation of the ̂AUC for batch designs and a first-order Taylor
approximation results in

var
(
̂AUC

(G)
)

=
B∑

b=1
s2
b
(G), (4)

where

s2
b
(G) = (ωbec̄b)TV̂b(ωbec̄b), (5)

where ωbec̄b is a vector of length |Jb| with the jth element equal-
ing ωjec̄j and V̂b is the variance-covariance matrix of observed
log transformed data cij for j ∈ Jb. The denominator of nb
is not included in this form of (4) compared to (2) as the
population estimate s2

b
(G) (as opposed to the individual estimate

s2
b previously) includes this multiplicative factor.

Table 1 shows a summary of the eight methods considered in
this article.

Table 1. Summary of the eight methods for dealing with BLOQ values.

Method 1 Replace BLOQ values with 0
Method 2 Replace BLOQ values with LOQ

2
Method 3 Regression on order statistics (ROS) imputation
Method 4 Maximum likelihood per timepoint (summary)
Method 5 Maximum likelihood per timepoint (imputation)
Method 6 Full likelihood
Method 7 Kernel density imputation
Method 8 Discarding BLOQ values

2.3. Method 1: Replace BLOQ Values With 0

An easy strategy that is currently used is to replace any value
BLOQ by 0 (Hing et al. 2001) and proceed with traditional NCA
methods on the augmented data. When considering geometric
means this method is infeasible for calculating any estimate
of variance, as this involves estimating the variance of log-
transformed data, therefore any log-transformed BLOQ values
are undefined. The ̂AUC can be calculated using the definition
of geometric mean that does not involve log-transformation.

2.4. Method 2: Replace BLOQ Values With LOQ/2

Similar to Method 1; any value BLOQ is replaced by LOQ/2
(Hing et al. 2001) and traditional analysis methods are used.

2.5. Method 3: Regression on Order Statistics (ROS)
Imputation

Regression on order statistics is a semiparametric method of
dealing with censored data and has its origins in environmental
statistics. Described by Helsel (2012), it involves replacing the
censored values with different values, that is, for a dataset with
more than one BLOQ response, different values are imputed
onto these multiple responses, as opposed to Methods 1 and 2
which replace all BLOQ values with the same value. To apply this
method, we consider each time point in turn, starting with the
earliest time point where a BLOQ value is observed. If the error
model is multiplicative, transform the data by cij = log yij. The
premise of this method is to calculate plotting positions based
on quantiles from the Normal distribution for both observed
and censored observations, similar to a QQ plot, then using a
linear regression to impute values on the BLOQ observations.
The method proceeds in detail as follows:

1. Identify BLOQ values.
2. Start at the earliest time point for which a BLOQ value is

observed, labeled the jth timepoint. Define n − m as the
number of detected responses above or equal to the previ-
ously defined LOQ, and m the number of BLOQ values at this
time point. From this, we estimate the empirical exceedance
probability by the proportion of the sample greater than or
equal to the LOQ:

pe = n − m
n

.

3. We then calculate the plotting positions for each of the n−m
(ordered from lowest to highest) detected values:

pdj = (1 − pe) +
(

kd
n − m + 1

)
pe for kd = 1, . . . , n − m.

4. We also calculate the plotting positions for each of the m
censored BLOQ values:

pcj =
(

kc
m + 1

)
(1 − pe) for kc = 1, . . . , m.

5. Compute a normal quantile for each value of pdkd and pckc as

zd
kd

= �−1(pdkd), zc
kc

= �−1(pckc).
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Figure 2. Regression on order statistics example illustrates how imputed values are
calculated.

6. Construct a simple linear regression on the zd
kd

and the
(ordered from lowest to highest) ykd .

E(ykd) = α̂ + β̂zd
kd

.

7. Then we calculate imputed values for the BLOQ values:

yc
kc

= α̂ + β̂zc
kc

.

These are ordered by the ordering at the previous timepoint,
that is, the highest imputed value is assigned to the subject
that has the highest response value on the previous time
point.

8. This continues to the next time point until all BLOQ values
are imputed.

9. We transform back onto the observation scale if necessary
and compute the PK parameter on the augmented data.

Figure 2 shows an example of the application of this method
for a single time point. Proceed with NCA methods for AUC
estimation using Equations (1)–(4).

2.6. Method 4: Maximum Likelihood per Timepoint
(Summary)

This method does not impute values for the BLOQ observations,
but instead provides summary statistics for the concentration
at each timepoint under the assumption that each time point
is independent. For the jth timepoint, we consider a censored
likelihood of

L(μj
(A), σ (A)

j
2
) =

⎛
⎝�

⎛
⎝LOQ − μj(A)

σ
(A)
j

⎞
⎠
⎞
⎠m n−m∏

i=1

1
σ

(A)
j

√
2π

× exp

⎛
⎝−(yij − μj(A))2

2σ
(A)
j

2

⎞
⎠ ,

for the assumption of additive errors, and

L(μj
(G), σ (G)

j
2
) =

⎛
⎝�

⎛
⎝log LOQ − μj(G)

σ
(G)
j

⎞
⎠
⎞
⎠m n−m∏

i=1

1
ecijσ

(G)
j

√
2π

× exp

⎛
⎝−(cij − μj(G))2

2σ
(G)
j

2

⎞
⎠ ,

for the assumption of multiplicative error. We maximize over
μj and σ 2

j to obtain estimates μ̂j and σ̂j2 for each timepoint tj.
These estimates are then used in the calculation of the point
estimate of the AUC and its variance.

2.7. Method 5: Maximum Likelihood per Timepoint
(Imputation)

This method is, in essence, a hybrid of Methods 3 and 4. It
combines the superior estimation of the mean and variance per
time point that censored maximum likelihood brings (Byon,
Fletcher, and Brundage 2008), and retains the structure of the
between time point relationship that the imputation methods
uses. It begins with using maximum likelihood to obtain values
of μ̂j and σ̂ 2

j for each timepoint as in Method 4 and subsequently
uses these estimates to impute values onto the BLOQ responses
using ROS.

2.7.1. Additive Error
Estimate the probability of a response being BLOQ:

pBLOQ = P(Yj < LOQ) = �

⎛
⎝LOQ − μ̂

(A)
j

σ̂j
(A)

⎞
⎠ ,

where � is the cumulative distribution function of the standard
Normal distribution. We then equally space the probabilities for
the censored observations

pkc = kc
m + 1

pBLOQ for kc = 1, . . . , m.

Transform to response scale using the inverse Normal cumula-
tive distribution function, (�−1(·)).

yc
kc

= μ̂
(A)
j + σ̂j

(A)
�−1(pkc).

These imputed values are ordered in the same way as in M3 and
the PK estimate found on the basis of the imputed dataset.

2.7.2. Multiplicative Error
Estimate the probability of a response being BLOQ:

pBLOQ = P(Yj < log LOQ) = �

⎛
⎝ log LOQ − μ̂

(G)
j

σ̂j
(G)

⎞
⎠ ,

where Fj is the cumulative distribution function of the Normal
distribution with parameters μ̂

(G)
j and σ̂

(G)
j

2
. We then equally

space the probabilities for the censored observations

pkc = kc
m + 1

pBLOQ for kc = 1, . . . , m.

Transform to response scale using the inverse Normal cumula-
tive distribution function (�−1) and exponentiate.

yc
kc

= eμ̂
(G)
j +σ̂j

(G)�−1(pkc ).

These imputed values are ordered in the same way as in M3. Pro-
ceed with NCA methods for AUC estimation using Equations
(1)–(4).
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2.8. Method 6: Full Likelihood

This method takes into account correlation between responses
at different timepoints by considering all timepoints together.
In this approach, we estimate the covariance matrix of
observations assuming a multivariate Normal or Lognormal
distribution.

We consider that the data are n independent and identi-
cally distributed observations from a MVNJ(μ, �) distribu-
tion. Our objective is to obtain μ̂ and �̂, the maximum likeli-
hood estimates for the mean and variance of the observations
assuming a multivariate normal distribution. From these we
can then calculate the ̂AUC and its variance. For each subject
i = 1, . . . , n, we partition into censored and noncensored
observations:

y(c)
i = yi,{j:γij=1},

y(−c)
i = yi,{j:γij=0},

where γij is an indicator, taking the value 1 if the observation is
censored and 0 otherwise.

We then partition our parameters μ and �, with superscripts
(c) for censored parameters and (−c) for uncensored, with
�(c)(−c) the censored/uncensored covariance matrix.

Then the conditional (on the uncensored values) distribution
of the censored observations following Eaton (1983) is

MVN(μ(c) + �(c)(c)(�(−c)(−c))
−1

(y(−c) − μ(−c)),

�(c)(c) − �(c)(−c)�(−c)(−c)−1
�(c)(−c)T

)

and the log-likelihood can be found as

n∑
i=1

(
log

(
F(μ(c), �(c), LOQ)

)
+ log

(
f (μ(−c), �(−c), y(−c)

i )
))

,

where F and f are the cdf and pdf of the multivariate normal
distribution, respectively. This is maximized over μ and � to
give MLE μ̂ and �̂. The point estimate and variance of the
AUC can be estimated from this as follows, with ω defined as
previously in Equations (4) and (5):

̂AUC
(A) = ωTμ̂,

var
(
̂AUC

(A)
)

= ωT
̂�ω.

Similarly, one may construct exactly the same log-likelihood
but with the log-normal distribution. Here the parameter esti-
mates μ̂ and ̂� represent the mean vector and covariance matrix
of the log-transformed data. The point estimate and variance of
the AUC can be estimated from this as follows:

̂AUC
(G) = ωTeμ̂,

var
(
̂AUC

(G)
)

= (ωeμ̂)T
̂�(ωeμ̂).

2.9. Method 7: Kernel Density Imputation

This method differs from the previous ones in that it does
not assume a specific error distribution, but estimates it from

the data. We do still however consider the two cases, using
arithmetic (comparable to additive error assumptions) and geo-
metric (comparable to multiplicative error assumptions) means
of the responses to estimate the AUC and its variance. The basis
of this method uses kernel density estimation (Silverman 1986),
which, given Yi and a kernel function K, estimates the density
of the Yi as follows:

f̂ (y) = 1
nh

n∑
i=1

K
(

y − Yi
h

)
,

where h is a parameter known as the bandwidth, which can
be prespecified or optimized over. In the following, we use a
Gaussian Kernel, K(t) = 1√

2π
e−(1/2)t2 , and use Silverman’s

“Rule of Thumb” (Silverman 1986) to calculate the bandwidth
parameter, h = 1.06σ̂n

1
5 . This h is calculated each time the

density f̂ is re-estimated, so that each f̂ has a recalculated
bandwidth h. For each timepoint with BLOQ observations, to
gain one imputed value:

1. Calculate f̂0 based on uncensored data y(−c).
2. Compute k0 = Ef̂0(Y|Y < LOQ).
3. Initialize i = 1.
4. Append ki−1 to the uncensored data y(−c) and recalculate f̂i.
5. Compute ki = Ef̂i(Y|Y < LOQ).
6. Let i = i + 1.
7. Repeat Steps 4–6 until |ki − ki−1| < ε for some very small

prespecified value ε. This ki is the value to be imputed.

For a timepoint with m BLOQ values, this process is repeated
m − 1 further times to get the m imputed values needed. On
each subsequent repetition, the previous imputed value is now
appended to the uncensored data. Figure 3 shows an example of
the application of this method. Proceed with NCA methods for
AUC estimation using Equations (1)–(4).

2.10. Method 8: Discarding BLOQ Values

A final method for consideration is that of simply discard-
ing all responses that are BLOQ, and continuing to use NCA
on the remaining data. The point estimate for the ̂AUC is
straightforward to calculate, whether considering additive or
multiplicative errors. Although not in the case where all mea-
surements at a given time point are reported BLOQ. However,
the variance is not always available in an analytic form as the
discarding of BLOQ values results in an unstructured sparse
sampling scheme, often where individual sampling times are not
repeated. The number of observations is often reduced so much
that a jackknife or bootstrap estimate would give inaccurate
results.

2.11. Example Application

As an illustration of the eight methods, we apply them to the real
example dataset introduced in Section 1.

There is a wide range of values for ̂AUC and its standard
error, all for the same dataset. In both the cases of assumptions
of arithmetic and geometric mean, Method 1 unsurprisingly
has the lowest ̂AUC. In the case of using geometric means,
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Figure 3. A graphical illustration of the KD algorithm. Black circles indicate a new ki calculated based on the current f̂i . Gray squares indicate previous ki values. The dashed
line indicates the LOQ.

this is severely lower than all other methods. Method 4 has
the lowest variance in each case (apart from the invalid results
of Method 6), as expected. When assuming an additive error
model, Method 6 failed to produce any results as the assump-
tions deviated too far from the characteristics of the dataset.
When assuming a multiplicative model, although giving results,
the optimization was accompanied by a warning regarding the
convergence and hence are not viewed as valid results. Method
8, as expected, has the largest ̂AUC as it has discarded low
values. The variance is intractable as some subjects have unique
individual sampling times once the BLOQ responses have been
discarded.

3. Simulations

To evaluate the performance of the eight methods previously
discussed, they are all applied to simulated data. Following
an example from Beal (2001), the following model is used to
generate data at time t:

y(t) = C(t) exp(e(t)), (6)

where C(t) is the PK model and e(t) is the error model. The PK
model is a one-compartment IV dose model:

C(t) = dose
Vd

exp(−CL · t), (7)
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Figure 4. Illustration of example from Beal (2001), the gray numbers indicate the number of observations that are BLOQ for that time point.

Table 2. The application of the eight methods to the example dataset illustrated in
Figure 1.

Arithmetic means Geometric means

ÂUC SE(ÂUC) ÂUC SE(ÂUC)

Method 1 337.14 97.74 286.27 NA
Method 2 346.25 93.63 327.68 78.93
Method 3 345.66 94.65 325.86 80.07
Method 4 342.67 65.52 332.88 55.96
Method 5 344.08 95.24 340.53 79.88
Method 6 NA NA 347.41∗ 33.39∗
Method 7 348.19 92.87 331.22 79.46
Method 8 368.50 NA 354.67 NA

NOTE: The LOQ is defined at 5.∗The optimization procedure produced invalid results.

where CL is the clearance, and Vd is the volume of distribution.
The error model is Normally distributed e(t) ∼ N(0, h(t)) with

h(t) = 0.03 + 0.165
C(t)−1

C(1.5)−1 + C(t)−1 . (8)

Data are generated at times 0.5, 1, 1.5, 2, 2.5, 3 hr. Two scenarios
are considered, using fixed effects and using mixed effects. For
fixed effects, the parameters take values CL = 0.693, Vd = 1
and dose = 1 while for mixed effects, CL = C̃L exp(η1) and
Vd = Ṽd exp(η2), with C̃L = 0.693, Ṽd = 1, η1 ∼ N(0, ω2

1)
and η2 ∼ N(0, ω2

2), corr(η1, η2) = 0 and ω1 = ω2 = 0.2. An
example of such a dataset is illustrated in Figure 4. To explore
different levels of censoring, a case with a smaller clearance and
dose (CL = 0.231, dose = 0.25) is also considered, where
the contributions to the AUC will be more affected by how the
BLOQ observations are dealt with, illustrated in the motivating
example shown earlier in Figure 1. Many more responses are
BLOQ for this second example, with one subject having all
observed responses BLOQ.

When applying Method 6, we must restrict the dimension-
ality of the parameter space in order for it to be feasible to
realistically used. For example, for this particular set up with six
time points considered, there are 27 free parameters to optimize
over. This means that optimizing over the multivariate normal
log-likelihood takes a very long time and is often unsuccessful
or unstable. When performing the maximum likelihood pro-
cedure, we therefore now restrict the covariance elements of
the matrix for nonconsecutive timepoints to be 0. Hence the

variance matrix is tri-diagonal as follows:

� =

⎛
⎜⎜⎜⎜⎜⎜⎝

var1 cov12 0 0 0 0
cov12 var2 cov23 0 0 0

0 cov23 var3 cov34 0 0
0 0 cov34 var4 cov45 0
0 0 0 cov45 var5 cov56
0 0 0 0 cov56 var6

⎞
⎟⎟⎟⎟⎟⎟⎠

Despite their initial promise stemming from commonly used
procedures, in terms of applicability, Methods 1 (replace BLOQ
values with 0), 3 (ROS imputation), and 6 (full Likelihood) are
not suitable for all datasets and hence are less useful. Method 1
cannot compute any estimates when using geometric means as
summaries due to nonfinite values resulting from taking logs.
Method 3 requires fitting a linear regression on responses per
timepoint and hence is infeasible in scenarios with high levels
of censoring that can result in only one response above the LOQ
for a given time point. In the simulations, around 1% of the
simulated datasets did not result in an estimate. Method 6 is
even more unstable, not giving results at all when assumptions
on the distribution of the responses is incorrectly specified, and
even when the distribution is correctly assumed, up to 3% of
simulated datasets do not give results for the fixed effects model
and as much as 24% when using mixed effects. For analyzing
a single study, the failings of Method 6 are less so, as one may
manually tune the optimization. This may however be time
consuming and not straightforward. Method 8 is not suitable
for many datasets as the variance of the ̂AUC is intractable due
to the sparsity of sampling scheme induced by discarding BLOQ
values.

It is desirable for a method to approximate the non-
compartmental point estimate and variance of the AUC as
closely as possible to that which we would estimate were we
to know the true concentration for every response, regard-
less of a LOQ. Therefore as a measure of performance of
the methods in simulations, we use closeness to the full
non-compartmental estimates of these values for every sim-
ulated dataset, ̂AUCBLOQ − ̂AUCT and var

(
̂AUCBLOQ

)
−

var
(
̂AUCT

)
, where subscript BLOQ indicates one of the meth-

ods of dealing with BLOQ values has been used on the dataset,
and subscript T indicates the estimate has been calculated as if
we knew all observed values in the dataset, regardless of LOQ.
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This criteria of comparison is chosen as opposed to the devi-
ation from the true AUC from the PK model for one principal
reason. For a given dataset, the ̂AUCT as defined previously
will by definition, deviate from the underlying true population
AUC from the PK model, since it includes variation from the
data and is estimated using non-compartmental methods. The
non-compartmental methods not only depend on the support
points tj but also on the approximation between observations.
However, for any given dataset, this deviation is exactly the same
regardless of method of dealing with BLOQ values. Therefore
using the deviation of ̂AUCBLOQ from the true AUC from the
PK model is in effect measuring the sum of two deviations, one
of which is a constant across methods and therefore unnecessary
when the objective is to compare methods. In fact, the added
variability between datasets of including this extra deviation
may hinder the comparison, since when this composite devi-
ation is compared across all datasets, the two parts cannot be
distinguished from one another.

Likewise, one may also consider some “true” non-
compartmental estimate of ̂AUC to compare results to.
Although here the dependence on the support points tj is
no longer an issue, the downfall of effectively measuring the
sum of two errors mentioned previously still stands. It is of
course interest to have some numerical value for bias across
methods, and so if of interest to the reader, the appendix in the
supplementary materials contains tables giving the bias of each

method in varying scenarios using both the trapezoidal and
log-trapezoidal rule. The coverage of confidence intervals is also
given. Here the “true” value for the ̂AUC to calculate bias and
coverage is obtained by the expectation of the individual ̂AUC
for a given population model. It is worth reiterating that these
results are much less relevant from a practical perspective than
those presented in the main article, for the reasons discussed
previously. For any given dataset, the best approximation to
the “true” value for the ̂AUC is that which is obtained with the
full dataset and hence the fairest way to compare methods is a
measure of how close they come to this best approximation.

The results for comparison of seven of the eight methods
are presented graphically in two ways: boxplots and color plots.
Individual simulation results for the variances for Method 8 are
not calculable and hence Method 8 (discarding BLOQ values)
is not included in the figures. Summary tables of more detailed
results for all eight methods can be seen in the appendix in the
supplementary materials. Here, the average of variances of the
̂AUC for Method 8 is approximated by taking the variance of the
̂AUC’s across the simulated datasets. The performance measures
are plotted over 1000 simulations, with standard deviations plot-
ted as opposed to variance for consistency in units. The boxplots
(Figures 5 and 6) show the spread of these measures over the
simulations. For the most appropriate methods, the color plots
(Figure 7) then show the relationship between the deviation
from the point estimate and the deviation from the standard

Figure 5. Results showing deviation from the non-compartmental ÂUC, its variance and coverage of confidence intervals with data generated from models with higher
dose and clearance. Results over 1000 simulations (10 subjects, 6 timepoints). (F) = Data generated using fixed effects model. (M) = Data generated using mixed effects
model. (A) = Analyzed using arithmetic means. (G) = Analyzed using geometric means.
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Figure 6. Results showing deviation from the non-compartmental ÂUC, its variance and coverage of confidence intervals with data generated from models with lower
dose and clearance. Results over 1000 simulations (10 subjects, 6 timepoints). (F) = Data generated using fixed effects model. (M) = Data generated using mixed effects
model. (A) = Analyzed using arithmetic means. (G) = Analyzed using geometric means.

deviation over all simulations. The number of simulations has
been chosen at 1000 as the more computationally intensive
methods, especially Method 6, can take up to 10 min for a single
dataset. For 1000 simulations, the coverage of 95% confidence
intervals can be classed as simulation error if between 93.65%
and 96.35%. In the detailed results in the appendix in the sup-
plementary materials, values outside of this are highlighted.

For many methods, Figures 5 and 6 show that the estimates of
the ̂AUC underestimates the true non-compartmental estimate.
Although Method 5 shows promising performance averaging
over the simulations, there is a wider spread over the simula-
tions reaching above and below the truth. For example in the
simulations using the mixed effects model with lower dose and
clearance analyzed using arithmetic means, the estimate of the
̂AUC has a standard error of 0.034 using Method 5 but 0.029
using Method 7.

Methods 2 (replace BLOQ values with LOQ/2), 3 (ROS
imputation), 5 (maximum likelihood per timepoint (imputa-
tion)), and 7 (kernel density imputation) show the most promis-
ing results and are therefore compared using the color plots. The
color plots in Figure 7 are a clear and direct comparison between
the four best performing of eight methods, with Method 7 a
clear front runner, as it gives the most consistent results across
all simulations and these differences are closest to zero.

As expected, Method 1 underestimates the non-
compartmental AUC. One may expect that by imputing

the same value onto all BLOQ responses, the estimate of the
variance would be underestimated. However, when applied
to datasets generated using the mixed effects models, this
method overestimates the variance of the ̂AUC. The more
the point estimate is underestimated, the more the variance
is overestimated. This is because as the imputed values draw
the point estimate of the ̂AUC toward 0, they also increase the
deviations of the individual observations from the mean value.
These poor estimations lead to poor coverage, especially when
applied to the datasets with lower dosage and clearance. This
method, as pointed out earlier, is unsuitable when considering
the geometric means as methods of summary.

Method 2 shows reasonable results, however, still underes-
timating the ̂AUC and overestimating the variance, especially
when the data are analyzed using geometric means. This is to be
expected as the imputation of LOQ/2 is based on assumptions
consistent with analysis using arithmetic means. The coverage
of the confidence intervals is noticeably lower than the nominal
level when the method is applied to the datasets with lower
dosage and clearance.

We see a similar trend as with Method 1 with Method 3
in the case of using arithmetic means, but in an even more
extreme way. This method underestimates the ̂AUC and over-
estimates the variance even more, especially when the data is
generated using the mixed effects model. This method assumes
a normal distribution of concentrations per timepoint when
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Figure 7. Results showing deviation from the noncompartmental ÂUC and its variance with data generated from both models. Results over 1000 simulations (10 subjects,
6 timepoints). (F) = Data generated using fixed effects model. (M) = Data generated using mixed effects model. (A) = Analyzed using arithmetic means. (G) = Analyzed
using geometric means.

analyzing using arithmetic means. This is a significant deviation
from the assumptions from the model used in data generation.
Although this method performs well for data generated using
a fixed effects model and analyzed using geometric means—
that is when the assumptions of the method are valid. However,
when we deviate from these assumptions, the method performs
poorly.

When applied to datasets generated using fixed effects mod-
els, Method 4 (maximum likelihood per timepoint (summary))
generally performs well. However, when applied to datasets
generated using mixed effects, this method severely underes-
timates the variance of the ̂AUC. This is because this method
assumes independence between timepoints, hence the covari-
ance of responses across timepoints is assumed to be zero. Since
these are in fact positively correlated, treating the responses at
timepoints as independent will underestimate the variance of
the ̂AUC. This gives this method very poor coverage, consis-
tently falling below the nominal level.

Method 5 performs reasonably well when data is generated
using the fixed effects model, and using the original parameter
values from Beal (2001), even when deviating from assumptions

on the distribution of concentrations per timepoint. However,
for datasets generated using mixed effects models, this method
does not perform as well, underestimating the ̂AUC and over-
estimating the variance—with a similar performance for the
adjusted model dose and clearance.

Although on a theoretical level Method 6 should perform
well, it shows sporadic results. As well as being significantly
more computationally intensive than all of the other methods,
it does not always give an output and when it does the values
are often questionable. Even with the restrictions imposed on
the covariance matrix, the high number of free parameters
makes the optimization unstable, and when there are deviations
from assumptions, the optimization often fails. This method is
therefore unsuitable for any realistic use.

Method 7 consistently performs well across all scenarios,
with good coverage over all scenarios. The estimates of ̂AUC
and its variance are very close to those which they would be
without censoring on BLOQ values. This is because this method
does not make assumptions on the distributions, however, does
use information from the uncensored observations to impute
different values onto the BLOQ responses. It is computationally
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efficient and can be applied to datasets even with high levels of
censoring. We therefore recommend this method as the most
appropriate NCA method of dealing with BLOQ responses.

Method 8 performs poorly, consistently overestimating the
̂AUC due to the omission of all BLOQ values in the NCA, hence
inducing a bias. The variance is underestimated, as expected,
since the method restricts the range of the responses.

4. Discussion

In this article, we have evaluated the performance of eight differ-
ent noncompartmental approaches to dealing with observations
BLOQ. The simple imputations of Methods 1 and 2, those cur-
rently used in practice, are compared to six alternative methods
in a number of different scenarios. These scenarios involve the
models used by Beal (2001) and also models with lower dose
and clearance.

For practical usage, the R package “BLOQ” has been devel-
oped and is available on CRAN (Nassiri et al. 2018). This pack-
age provides the tools to apply the methods discussed in this
article to a given dataset.

The results have shown that the simple imputation methods
perform very poorly, especially in scenarios with a large pro-
portion of BLOQ responses. Since these are the methods most
commonly used for handling BLOQ values, it is important to
note their shortcomings in scenarios that can frequently occur
in practice. Methods that use maximum likelihood also fail
to estimate the ̂AUC and its variance well. It is clear that the
method of kernel density imputation is the best performing
out of all the methods considered and is hence is the preferred
method for dealing with BLOQ responses in NCA.

The limitations of the method include the issue from which
all methods apart from simple imputation of a single value
suffer—the scenario where all responses at a given time point
are reported as BLOQ. In this case, since the only information
on responses at that time point is that they all lie between 0 and
LOQ, nothing is known about the distribution of the responses
and hence no kernel density estimation can be calculated. There
is also the scope to improve the method further by considering
alternative kernels to the one we have implemented.

Although in this article, we have only looked at studies
that have full sampling schemes, the kernel density imputation
method can easily be applied to sparse sampling schemes. The
imputation values are calculated in exactly the same way, it is
only the process of ordering of these values that will differ.

For serial sampling, where one blood sample is taken per
subject, the ordering at any given time point is of no concern and
hence can be assigned randomly. In batch designs, the ordering
can be based on the previous time point that the specific batch
was sampled at, instead of the previous time point. For more
flexible designs, the subjects are not separated into disjoint
batches by their time points, but for each individual set of sam-
pling times, there must be at least two subjects following this in
order for the variance of the non-compartmental estimate of the
̂AUC to be calculated. If all subjects with BLOQ responses are
on the same set of sampling times, the ordering will be based on
the responses at previous time point from those sampling times.
If all subjects are not on the same set of sampling times then
one may choose the allocation will be random or by some other

rule, for example, one based on gradients of linear interpolations
between responses at different time points.

This method is by no means limited to PK studies. It can
also be further extended to other scenarios where left-censored
values are present but no model fitting takes place. The scope
of the application of kernel density imputation is wide, and
the potential to extend to further more complicated settings is
promising.

Supplementary Materials

The Supplementary Materials contain an Appendix with tables of detailed
results from additional simulations.
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