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ABSTRACT
In confirmatory clinical trials, it has been proposed to use a simple iterative graphical approach to construct
and perform intersection hypotheses tests with a weighted Bonferroni-type procedure to control Type I
errors in the strong sense. Given Phase II study results or other prior knowledge, it is usually of main interest
to find the optimal graph that maximizes a certain objective function in a future Phase III study. In this article,
we evaluate the performance of two existing derivative-free constrained methods, and further propose
a deep learning enhanced optimization framework. Our method numerically approximates the objective
function via feedforward neural networks (FNNs) and then performs optimization with available gradient
information. It can be constrained so that some features of the testing procedure are held fixed while
optimizing over other features. Simulation studies show that our FNN-based approach has a better bal-
ance between robustness and time efficiency than some existing derivative-free constrained optimization
algorithms. Compared to the traditional stochastic search method, our optimizer has moderate multiplicity
adjusted power gain when the number of hypotheses is relatively large. We further apply it to a case study
to illustrate how to optimize a multiple testing procedure with respect to a specific study objective.
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1. Introduction

Most clinical trials performed in drug development contain
multiple endpoints to assess the effects of the drug and to
document the ability of the drug to favorably affect one or
more disease characteristics (Kelly et al. 2015; Kazda et al.
2016; Food and Drug Administration 2017). Adequate multiple
testing procedures (MTPs) are required to protect the family-
wise error rate (FWER), which is the probability of reject-
ing at least one true null hypothesis. Proper MTPs should be
employed to reflect relative importance of multiple endpoints
and different study objectives. A variety of weighted Bonferroni-
based test procedures have been proposed, for example, the
weighted or unweighted Bonferroni–Holm procedure (Holm
1979), fixed sequence tests (Westfall and Krishen 2001), the
fallback procedure (Wiens 2003), and gatekeeping procedures
based on Bonferroni adjustments (Dmitrienko, Offen, and
Westfall 2003).

Those aforementioned approaches usually need to specify a
large number of intersection hypotheses tests according to the
closure principle (Marcus, Eric, and Gabriel 1976). It is often
difficult to apply those methods in practice, especially when the
number of endpoints is relatively large. Taking a study with 10
hypotheses as an example, there are 210−1 = 1, 023 intersection
hypotheses in the full closure. Bretz et al. (2009) proposed a
graphical approach to represent a wide range of MTPs with
weighted Bonferroni tests for intersection hypotheses. Based
on the monotonicity for local significance levels, the graphical
approach essentially establishes a shortcut to the closure test

CONTACT Tianyu Zhan tianyu.zhan@abbvie.com Data and Statistical Sciences, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL 60064.

procedure and leads to a sequentially rejective procedure with
up to m steps, where m is the number of null hypotheses
to be tested. The graphical representation of this approach is
easier to communicate with clinical teams and facilitates the
discussion of different strategies to fulfill distinct study objec-
tives. However, choosing a graph in complex testing situations
can still be overwhelming. While practical considerations for
achieving the most desired drug label may take precedence over
the most efficient graphical testing procedure, the decision of
which graphical testing to choose will be served well by being
informed of the optimal graph with respect to an objective
function.

Since graphical approaches analytically control FWER at a
desired level in the strong sense (Bretz et al. 2009), can we
further identify an optimal graph in a confirmatory trial with
respect to certain objective functions based on prior knowledge
such as from Phase II studies? Rubin, Dudoit, and Van der
Laan (2006) and Wasserman and Roeder (2006) studied the
power function for the weighted Bonferroni procedure, but the
graphical approach we considered is more general. As can be
seen later in this article, it is difficult to evaluate the objective
function and its derivatives in closed forms due to the com-
plex correlations between the decision functions from differ-
ent endpoints. The stochastic search method (SSM; Zabinsky
2013) is popular in practice due to its ease of implementation.
This approximating approach is to find the graph with the
maximum working objective function among a certain number
of randomly simulated candidates under constraints. However,
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this method is very likely to miss the optimal target when the
number of endpoints is relatively large, as demonstrated later in
this article.

Another stream is to adopt existing derivative-free con-
strained optimization methods. The ability to handle both
bounded and inequality constraints is desired to accommodate
different study objectives and the constraints in the graphical
approach. There are vast numbers of those approaches available
in the field of machine learning, but their performances in find-
ing either global or local optima vary depending on the problem
at hand (Kramer, Ciaurri, and Koziel 2011). In this article, we
evaluate the performance of the improved stochastic ranking
evolution strategy (ISRES; Runarsson and Yao 2005) and the
constrained optimization by linear approximations (COBYLA;
Powell 1994) on optimizing graphical approaches by simulation
studies. They are readily implemented in the R package nloptr
(Ypma 2018). As an alternative, we propose an optimization
framework based on deep learning with moderate power gain
and tolerable extra computing time.

Deep learning has made substantial success in various
domains such as image recognition and natural language pro-
cessing (Goodfellow, Bengio, and Courville 2016), and is also
receiving attention from the pharmaceutical industry. For exam-
ple, Liang, Ye, and Fu (2018) proposed a novel outcome
weighted deep learning algorithm to estimate individualized
optimal combination therapy; and Zhan and Kang (2019) con-
structed test statistics based on deep neural networks to increase
power in sample size reassessment adaptive clinical trials. In this
article, we use feedforward neural networks (FNNs) to approx-
imate the underlying complex objective function and further
identify the optima with available gradient information. Our
method has several distinguishing features. First of all, flexible
utility functions can be defined to accommodate different study
objectives. Moreover, our method is able to perform optimiza-
tion when certain structures in the graph are fixed. Additionally,
gradients are readily available from the fitted FNN, and do
not need to be computed from the complex objective function,
which is often not feasible even with numerical methods. Com-
pared with the two derivative-free optimization approaches,
our FNN-based optimizer offers a better balance between
time efficiency and robustness. More details are provided in
Section 4.

The remainder of this article is organized as follows. In Sec-
tion 2, we review the graphical approach for multiple hypotheses
testing and further define the objective function to optimize.
In Section 3, we introduce our optimizing methods via deep
learning techniques. Simulations under multiple scenarios are
conducted to evaluate the performance of our procedures in
Section 4. In Section 5, we implement our method in a case
study. Finally, concluding remarks are provided in Section 6.

2. The Graphical Approach to Sequentially Rejective
Multiple Testing Procedures

In this section, we first review the graphical approach as an
MTP which strongly controls the FWER at a nominal level α

in Section 2.1. It is essentially a shortcut to the closed testing
procedure with the weighted Bonferroni test for intersection

hypotheses. In Section 2.2, we introduce an objective function
to evaluate the performance of a specific graph.

2.1. Review of the Graphical Approach

Suppose in a clinical trial, we are interested in testing m elemen-
tary null hypotheses, H1, H2, . . . , Hm, with observed unadjusted
p-values p = (p1, p2, . . . , pm). Let α denote the one-sided
FWER (usually α = 0.025 in practice). An MTP is said to
control the FWER at α in the strong sense that the probability
of rejecting at least one true null hypothesis does not exceed
α under any configuration of true and false null hypotheses.
The MTPs can be derived from the closure principle (Marcus,
Eric, and Gabriel 1976), which requires 2m − 1 local α-level
tests of each non-empty intersection hypothesis H(I) = ∩i∈IHi,
where I ⊆ M = {1, 2, . . . , m} (Tamhane and Gou 2018). An
intersection hypothesis H(I) is rejected if and only if all H(J)
for J ⊇ I are rejected by their α-level tests. As a shortcut, if the
local tests are consonant (Gabriel 1969), then the corresponding
MTP requires only up to m local tests. For example, the Holm
MTP uses Bonferroni tests as the local tests for all intersection
hypotheses (Holm 1979).

The graphical approach defines a shortcut MTP for a closed
testing procedure with weighted Bonferroni tests for the inter-
section hypotheses to strongly control the FWER at α. Specifi-
cally, the weighted Bonferroni rejects H(I) if

{
mini∈I

(
pi/wi

)} ≤
α, where

∑|I|
i=1 wi = 1 and |I| denotes the number of elements

in I. To specify a graph, one needs to define two components:
the initial alpha allocation vector α and the transition matrix T.
Let α = (α1, α2, . . . , αm) denote the initial assignment of overall
significance level under the constraint,

m∑
i=1

αi = α. (1)

Note that the equality sign in (1) is to make full use of all
available significance levels to gain the highest power. It can be
replaced by the sign “≤” while still controlling FWER at α. The
transition matrix T is an m × m matrix, where each element
Tij specifies the proportion of local significance level αi that is
passed to Hj if Hi is rejected at αi. For all i, j = 1, 2, . . . , m, Tij
has to satisfy the following conditions:

0 ≤ Tij ≤ 1, Tii = 0,
m∑

k=1
Tik = 1. (2)

We further use g(α, T) to denote a graph with vector α and
matrix T. The graphical approach g(α, T) can represent a variety
of weighted Bonferroni-based test procedures.

Consider a motivating example of a Phase III clinical trial
with two doses (high and low) and two endpoints (primary
and secondary) in each dose. The team may want to consider a
design represented by the graphical procedure in Figure 1. One
first tests the primary endpoint in each dose with 0.5 × α; 80%
of it will be passed to the secondary endpoint and 20% to the
primary endpoint in the other dose if rejected. Once rejected,
the significance level of the secondary endpoint can also be fully
recycled to the primary endpoint in the alternative dose. In this
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Figure 1. A motivating example of a graphical approach for multiplicity control of
two doses and two endpoints.

case, the initial alpha allocation vector α is (0.0125, 0, 0.0125, 0)

and the transition matrix T is given by

T =

⎛
⎜⎜⎝

0 0.8 0.2 0
0 0 1 0

0.2 0 0 0.8
1 0 0 0

⎞
⎟⎟⎠ .

Given the observed unadjusted p-value vector p, the graph-
ical approach establishes a sequentially rejective test procedure
that is illustrated in Algorithm 1. Basically, one tests the most
significant hypothesis with its nonzero local significance level. If
it is rejected, then update the graph according to the prespecified
rules. We further define a decision function Di

(
α, T, p

)
for

endpoint i, which takes value 1 if its null hypothesis is rejected
under a graphical approach g(α, T), and 0 otherwise.

Algorithm 1 Graphical approaches (Bretz et al. 2009)
0. Set I = M.
1. Let j = argmini∈I pi/αi.
2. If pj ≤ αj, then reject Hj; otherwise stop.
3. Update the graph:

I → I \ {j}
αl =

{
αl + αjTjl, l ∈ I
0, otherwise

Tlk =
⎧⎨
⎩

Tlk + TljTjk

1 − TljTjl
, l, k ∈ I, l �= k

0, otherwise

4. If |I| ≥ 1, go to step 1; otherwise stop.

Since all graphs under constraints (1) and (2) and defined by
Algorithm 1 control FWER at α in the strong sense, then a natu-
ral question for drug development is how to obtain the optimal
one based on the results from a previous study. Before diving
into this optimization problem, we first define an objective
function to evaluate different graphs in the following section.

2.2. An Objective Function to Evaluate Performance

Remember that in the previous section, we use p to denote the
unadjusted p-value vector for m endpoints. Given this underly-
ing multivariate data-generating mechanism, we further define
an objective function O (α, T) to measure the performance of

a graphical procedure with initial alpha vector α and transition
matrix T,

O (α, T) =
m∑

i=1
vi Ep

{
Di

(
α, T, p

)}
, (3)

where the expectation is with respect to the multivariate dis-
tribution of p, and vi is prespecified to represent the relative
importance of endpoint i with the constraint

∑m
i=1 vi = 1. As

a starting point, we focus on the objective function defined in
(3) for illustration. In the case study in Section 5, we generalize
this objective function to be more clinically meaningful based
on the study’s objective. We denote the stack of vi’s with the
vector v. If vi = 1/m for all i’s, then (3) is interpreted as the
average of multiplicity adjusted power from all endpoints. In the
motivating example, the team can set v = (0.4, 0.2, 0.3, 0.1)′ if
they treat H1 as the most important target.

Let A denote the parameter space of α, and correspondingly
T for T’s. The space A and T should satisfy the conditions of
a valid graphical approach as in (1) and (2), and be constrained
under a specific study design. For example, only α1 and α3 in
the motivating example are allowed to be nonzero with sum
equal to one-sided FWER α. Therefore,A = {(α1, 0, α3, 0); α1 ∈
[0, α], α3 ∈ [0, α], α1 + α3 = α}. The α1 is a free parameter
to be optimized, and further, set α3 = α − α1. Denote all free
parameters in α and T as ᾱ ∈ Ā and T̄ ∈ T̄ , respectively. In this
motivating example, we have Ā = {α1; α1 ∈ [0, α]}. There is no
inequality constraint on α1 ∈ Ā in this simple problem because
α3 is excluded from Ā. In the simulation studies considered in
Section 4 and the case study in Section 5 with more endpoints,
both bounded and inequality constraints exist.

The goal of our optimization task is to find the optimal graph-
ical approach with αopt and Topt within their corresponding
parameter spaces that maximize the object function O (α, T) in
(3), {

αopt, Topt} = argmax
α∈A,T∈T

O (α, T) . (4)

However, O (α, T) in (3) does not necessarily have a closed form
solution due to: (1) the underlying correlation structure in the
multivariate distribution of p and (2) the additional dependence
in the decision function Di

(
α, T, p

)
among endpoints intro-

duced by Algorithm 1. In practice, a Monte Carlo approach can
be implemented to estimate O (α, T). By simulating n sets of
unadjusted p-values pj = (pj1, pj2, . . . , pjm), j = 1, 2, . . . , n,
for m endpoints based on prior knowledge, one can use the
following working objective function to estimate (3) empirically,

Ô (α, T) = 1
n

m∑
i=1

vi

n∑
j=1

Di
(
α, T, pj

)
. (5)

Some standard softwares, for example, R package gMCP
(Rohmeyer and Klinglmueller 2018), can calculate Di

(
α, T, pj

)
given each set of simulated unadjusted p-values pj. By the law of
large numbers, we have

Ô (α, T) = O (α, T) + op(1). (6)

The approximation error of estimating O (α, T) by Ô (α, T)

can be arbitrarily small to satisfy practical numerical preci-
sion requirements by choosing a sufficiently large n in the
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Monte Carlo method. In the next section, we introduce our
proposed optimization algorithm by using FNN to approximate
Ô (α, T), and then conduct optimization with available gradient
information.

3. FNN-Based Optimizer

In Section 3.1, FNNs in deep learning are briefly reviewed
as powerful representations of complex objective functions. In
Section 3.2, we illustrate our proposed FNN-based optimization
method in detail. It takes advantage of FNN to characterize
the nonconvex working objective function Ô (α, T) and then
performs constrained optimization with gradient information.

3.1. Feedforward Neural Networks (FNNs)

We first review some basic knowledge of FNNs, which form a
very popular and useful set of deep learning models.

An FNN defines a mapping y = f (x; θ) and learns the
value of parameters θ that result in the best function approxi-
mation with input vector x and output y (Goodfellow, Bengio,
and Courville 2016). It typically has four essential components:
input data with corresponding targets, layers, loss function, and
optimizer (Chollet and Allaire 2018; Liang, Ye, and Fu 2018).
Figure 2 represents an FNN with two hidden layers, which have
three and two nodes, respectively. From left to right, input data
x, which is the vector stack of x1 and x2, are transformed by
two hidden layers and further mapped to output target Y . The
loss function represents the quantity that is minimized during
training, for example, the cross-entropy for binary classification
and mean squared error (MSE) for regression. We choose MSE
because our output Ô (α, T) ranges from 0 to 1. The optimizer
determines how the network will be updated based on the
loss function. The RMSProp algorithm (Hinton, Srivastava, and
Swersky 2012) modifies AdaGrad (Duchi, Hazan, and Singer
2011) to perform better in the nonconvex setting by changing
the gradient accumulation into an exponentially weighted mov-
ing average. It has been shown to be an effective and practical
optimization algorithm for deep neural networks (Goodfellow,
Bengio, and Courville 2016), and is used in this article.

Figure 2. Feedforward neural networks with two hidden layers.

For an FNN with L − 1 hidden layers and one output layer, it
can be recursively formulated as

f (x; θ) = f (L)
[
θ(L)′ . . . f (2)

{
θ(2)′f (1)

(
θ(1)′x + b1

)
+ b2

}
· · · + bL

]
. (7)

In the most inner layer, θ(1) is a weight matrix that transforms
input x to the first hidden layer. For example, the dimension of
θ(1) is 2 × 3 in Figure 2. The number of elements in bias vector
b1 is equal to the number of nodes in the first layer (i.e., 3). The
vector θ denotes a stack of all those weight and bias parameters.
There are many choices for the activation function f (1)(), for
example, the rectified linear unit or ReLU (Nair and Hinton
2010), the softplus function (Dugas et al. 2001), and the sigmoid
function.

The approximation error of an FNN f (x; θ) in approximating
the objective function O(x) in (3) is defined as

sup
x

∣∣∣f (x; θ) − O(x)

∣∣∣,
where x = (α, T). Previously, it has been shown that a
depth-2 neural network with sigmoid activation function can
approximate any continuous function to a desired accuracy,
with sufficiently large number of nodes (Cybenko 1989). Since
then, interest has shifted toward a deeper network, since the
multilayer feedforward architecture itself gives neural networks
the potential of being universal approximators (Hornik 1991).
Recently, Bach (2017) provided the uniform approximation
error of Lipschitz-continuous functions in the context of high-
dimensional nonlinear variable selection. The error bound for
approximation functions in Sobolev spaces by deep ReLU net-
works is studied by Yarotsky (2017).

As discussed in Section 2.2, theoretical properties of the
objective function O (α, T) in (3) are hard to study, mainly
due to the dependence between decision function Di

(
α, T, p

)
’s

introduced by Algorithm 1. In this article, we use simulation
studies to empirically check the MSE of modeling the working
objection function Ô(α, T) by FNN, with more details in the
following Section 3.2.4. Moreover, our algorithm has a last step
in Section 3.2.6 to fine tune the optimal solution obtained from
the FNN model to correct approximation errors.

3.2. Optimizing Procedures

In this section, we illustrate our optimizing procedures in six
steps.

3.2.1. Define an Objective Function
The first step is to specify an objective function O (α, T) to
measure the performance of the graphical procedure for MTP.
The vector v in (3) needs to be prespecified and reflects the
relative importance of different endpoints.

3.2.2. Obtain Training Data
The second step is to generate training data with B graphs and
their corresponding objective functions (3). In each graph b, one
randomly generates αb ∈ A and Tb ∈ T under conditions
(1) and (2), along with other constraints based on different
study objectives. In the motivating example, we have A =
{(α1, 0, α3, 0), α1 ∈ [0, α], α3 ∈ [0, α], α1 + α3 = α}. In this
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case, α1 can be sampled from a uniform distribution Unif(0, α)

and further set α3 = α − α1. The free parameter vector ᾱb
only contains α1 in this case. It is important to enforce these
constraints at this stage to achieve constraint optimization of the
graphical approach.

We further simulate n sets of unadjusted p-values pi =
(pi1, pi2, . . . , pim), i = 1, 2, . . . , n based on prior knowledge.
Suppose that the marginal powers of four endpoints are 95%,
88%, 92%, and 85%, which correspond to a test statistic’s mean
at e = (3.60, 3.13, 3.37, 3.00) with one-sided Type I error α =
0.025. We adopt a popular assumption that the test statistics
from m hypotheses follow a multivariate normal distribution
(Dmitrienko and D’Agostino Sr 2013; Bretz, Hothorn, and West-
fall 2016). Unit variance is assumed for demonstration. Without
loss of generality, by assuming that a larger statistic corresponds
to a better clinical outcome, the one-sided p-value is calculated
as the upper cumulative distribution function from a stan-
dard normal distribution. Having pi’s simulated, one calculates
Ô (αb, Tb) in (5) for each graph b. The input covariate vector x̄b
of FNN is (ᾱb, T̄b), while the output variable is Ô (αb, Tb). The
dimension of x̄b is equal to the number of input parameters of
FNN on the left hand side of Figure 2.

3.2.3. Select FNN Structure
The next step is to select the structure of FNN, specifically the
width (number of nodes), the depth (number of layers), and
the rate of the dropout technique, which randomly deactivates a
certain proportion of nodes in each iteration, to accommodate
the potential overfitting issue in FNN.

The most common practice is to perform a k-fold cross-
validation procedure on several reasonable candidate structures
(Goodfellow, Bengio, and Courville 2016). In cross-validation,
a partition of the dataset is formed by splitting it into k non-
overlapping subsets. On each trial i, for i = 1, . . . , k, the ith
subset of data is used as the validation set while the rest of the
data is used as the training set. The validation error is calculated
by averaging test error across k trials. We let k = 5 to implement
a 5-fold cross-validation. The final FNN structure is selected
as the one with the smallest training error among candidates.
Validation error or other measures can also be used, and the
performance of our method is consistent.

We recommend starting with an architecture with a rel-
atively large capability to reduce the training error (MSE)
under a desired level of tolerance, for example, 10−4. This
ensures that the functional space defined by the structure is
large enough to include the underlying objection function, or
a very good approximation of it. However, this structure may
be overwhelmed with a high validation error. Then we apply
the dropout technique as a regulation approach to prevent over-
fitting and to increase the generalizability of the model. In the
context of this article, exploratory simulations show that the
performance of our FNN-based optimizer is robust to different
choices of FNN structures, when both the training MSE and the
validation MSE are less than 10−4.

3.2.4. Train FNN
The following step is to train the FNN with structure obtained
in 5-fold cross-validation with input covariates x̄b and output

Ô(αb, Tb), b = 1, 2, . . . , B. Covariates x̄b are standardized to
achieve better performance of a gradient-based optimizer, and
are further transformed back to the original scale after fitting.
MSE is used as the loss function,

1
B

B∑
b=1

[
Ô(αb, Tb) − f (x̄b; θ)

]2 . (8)

The least squares estimator ̂θ is obtained from the RMSProp
algorithm discussed in Section 3.1 as the θ that minimizes
this loss function. The fitted FNN is denoted as f (x̄; θ̂). For a
specific problem, it is critical to check this MSE to evaluate the
approximation error of FNN empirically. The estimation error
between Ô(αb, Tb) and O(αb, Tb) is further controlled by using
a relatively larger n in (6). Before implementing our proposed
optimization method, it is critical to quantify the approximation
ability of FNN by checking the MSE in (8).

Since sigmoid functions saturate (have small gradients) when
input data are at two tails, we further normalize Ô(αb, Tb) to
a subset of [0, 1], for example, [0.3, 0.7]. The optimal solution
would be invariant under this transformation. The whole train-
ing process is implemented by the R interface keras (Allaire
and Chollet 2018; Allaire and Tang 2018) to a high-level neural
networks API Keras (Chollet 2015) with back-end engine Ten-
sorflow (Abadi et al. 2015) developed by Google Inc. We set the
training epoch as 103.

3.2.5. Perform Constrained Optimization
Up to this point, we have transformed the original optimization
problem in (4) to the following constrained minimization prob-
lem of identifying optimal solution x̄opt

b on −f (x̄b; θ̂),

x̄opt
b = argmax

ᾱ∈Ā,T̄∈T̄
f (x̄b; θ̂) = argmin

ᾱ∈Ā,T̄∈T̄

{−f (x̄b; θ̂)
}

. (9)

The optimal graph parameters αopt and Topt are further calcu-
lated from x̄opt

b .
Since −f (x̄b; θ̂) in (7) is not necessarily a convex func-

tion, then the Karush–Kuhn–Tucker (KKT) conditions (Karush
1939; Kuhn and Tucker 1951) are not sufficient for a point to
be globally optimal. Even with gradient information available,
finding the global optimal solution is still challenging depending
on the objective function at hand (Kramer, Ciaurri, and Koziel
2011). We turn to the augmented Lagrangian method (Hestenes
1969; Powell 1969), which seeks the solution by replacing the
original constrained problem by a sequence of unconstrained
subproblems (Nocedal and Wright 2006). This algorithm is
related to the quadratic penalty method (Courant 1943), but
reduces the possibility of ill conditioning of the subproblems
by introducing a Lagrange multiplier into the function to be
minimized.

This algorithm, as well as COBYLA and ISRES discussed
later on, is implemented by the R package nloptr (Ypma 2018),
which is the R interface to a nonlinear optimization library
NLopt (Johnson 2007; Conn, Gould, and Toint 1991; Birgin
and Martínez 2008). The fractional tolerance on the input data
is 10−5, which means that the algorithm terminates when the
changes of each parameter in one iteration are less than 10−5

multiplied by the absolute value of the parameter. The maxi-
mum number of iterations is 105.
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3.2.6. Fine Tune the Final Optimal Solution
As a final step, we fine-tune the solution with COBYLA, an
existing derivative-free optimization method that can handle
inequality constraints. Essentially, our optimal solution from the
previous step is used as the starting values in COBYLA. The
fractional tolerance on the input data is 10−4, and the maximum
number of iterations is 104.

4. Simulation Studies

Now we move on to a simulation study to evaluate the per-
formance of our proposed FNN-based optimizer against the
stochastic search method (SSM) and two derivative-free opti-
mization methods that can handle bound and inequality con-
straints: COBYLA and ISRES.

Suppose that the study objective is to identify the
optimal graphical procedure that maximizes a weighted
average of multiplicity adjusted power for m = 6
endpoints. One can work out that the input covariate
vector x̄ of FNN is (α1, α2, α3, α4, α5, T12, T13, T14, T15,
T21, T23, T24, T25, T31, T32, T34, T35, T41, T42, T43, T45, T51, T52,
T53, T54, T61, T62, T63, T64) with 29 elements. The constraints
are

0 ≤ αj ≤ α for j ∈ {1, 2, 3, 4, 5}, (10)∑
j∈{1,2,3,4,5}

αj ≤ α, (11)

0 ≤ Tij ≤ 1 for i ∈ {1, 2, 3, 4, 5}, j ∈ {1, 2, 3, 4, 5, j �= i},
0 ≤ T6j ≤ 1, j ∈ {1, 2, 3, 4}, (12)∑
j∈{1,2,3,4,5,j �=i}

Tij ≤ 1 for i ∈ {1, 2, 3, 4, 5}
∑

j∈{1,2,3,4}
T6j ≤ 1.

(13)

Condition (10) says that the initial significance level from each
of the first 5 endpoints is bounded between 0 and FWER at α,
while constraint (11) ensures this for the last endpoint because
α6 = α − ∑5

j=1 αj. Constraints (12) and (13) are the corre-
sponding constraints for each of the 6 rows in the transitional
matrix T.

We consider v = (0.3, 0.3, 0.1, 0.1, 0.1, 0.1) as the relative
importance in (3) in this section, and turn to a different v in the
Section 5 case study. As discussed in Section 3.2.2, we assume
that the test statistics from m endpoints follow a multivariate
normal distribution with unit variance and mean computed
from their corresponding marginal power under a one-sided
FWER at 0.025. The setup parameters are specified in Table 1
with varying marginal power, different correlation structures
and varying magnitudes of correlation.

For the FNN-based optimizer as described in Section 3.2,
we simulate B = 103 random graphs and n = 106 sets of p-
values to establish the training dataset. The size B = 103 is
sufficient to give us the training MSE and the validation MSE less
than 10−4 in all scenarios considered, but it can be increased in
more complicated cases. In cross-validation while selecting the
FNN structure, the following 6 sets of candidate structures are
considered: 2 layers with drop-out rate 0, 3 layers with rate at
0, 4 layers with rate 0, 2 layers with rate 0.3, 3 layers with rate
0.3, and 4 layers with rate 0.3. The number of nodes per layer

Table 1. Parameter specifications for simulations.

Scenario Marginal power Correlation structure Correlation
magnitude

L1 (0.8, 0.8, 0.6, 0.6, 0.4, 0.4) Compound symmetry 0
L2 0.3
L3 0.5

L4 (0.9, 0.9, 0.8, 0.8, 0.6, 0.6) Compound symmetry 0.3
L5 AR(1)
L6 Banded Toeplitz

L7 (0.9, 0.8, 0.7, 0.6, 0.5, 0.4) Compound symmetry 0.3
L8 (0.9, 0.9, 0.7, 0.7, 0.6, 0.6)

L9 (0.95, 0.95, 0.8, 0.8, 0.6, 0.6)

Table 2. Optimal Ô (α, T) identified by FNN, ISRES, COBYLA, and SSM with the
maximum solution highlighted in bold.

Scenario Optimal Ô (α, T) Convergence time (min)

FNN COBYLA ISRES SSM FNN COBYLA ISRES SSM

L1 55.9% 55.5% 47.8% 53.4% 25.0 13.8 – 3.6
L2 57.9% 57.4% 48.7% 55.6% 29.2 18.2 – 4.5
L3 59.1% 58.8% 48.2% 54.0% 30.8 20.2 – 3.8

L4 74.6% 74.4% 68.9% 72.6% 30.2 18.3 – 4.4
L5 74.0% 73.8% 69.7% 72.7% 28.0 17.4 – 4.5
L6 74.0% 73.7% 69.7% 72.9% 28.0 15.2 – 4.6

L7 64.2% 63.7% 55.6% 61.5% 30.7 18.7 – 4.1
L8 71.8% 71.6% 65.7% 69.3% 30.6 20.3 – 4.4
L9 79.4% 79.2% 74.6% 78.0% 34.3 23.8 – 4.7

is considered at 30. This cohort of FNN candidate skeletons are
used throughout this article.

In ISRES and COBYLA, fractional tolerance on the input
data is 10−4, which is consistent with the termination condi-
tion at our fine-tuning step at Section 3.2.6. The maximum
evaluation time is set as 1.5 times the fitting time of the FNN-
based optimizer as described in Section 3.2. The initial values
are randomly generated under the constraints in (10)–(13). We
consider a size of 103 for the random search in the SSM. This is
equal to the training size B in our method.

In Table 2, we summarize the optimal working objec-
tive function Ô (α, T) identified by the FNN-based optimizer,
ISRES, COBYLA and SSM along with their corresponding con-
vergence times in minutes based on a MacBook Pro with 2.3
GHz Intel Core i7. The average from five separate optimizations
are reported for FNN-based method, ISRES and COBYLA to
evaluate the robustness of their performance. Our method has a
smaller standard deviation at 0.14%, compared with COBYLA
at 0.72% and ISRES at 1.09%, averaging the standard devia-
tions across nine scenarios. In all scenarios evaluated, our FNN
method consistently identifies a graph with the highest Ô (α, T).
However, the performance of the other two methods is not
stable; for example, COBYLA finds 63.7% compared to 64.2%
from the FNN method in L7, and ISRES yields 48.2% compared
to 59.1% in L3. The SSM method can also lead to substantial
optimal power loss in some scenarios. For example, the deviance
can be as high as 5.1% compared to our FNN method in L3
(59.1% vs. 54.0%). As for convergence, SSM is the fastest, and
COBYLA is the second fastest, followed by our FNN-based
method, followed by ISRES. The convergence time of ISRES
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is missing because it does not converge before the maximum
wall time, which is the computational time of the FNN-based
optimizer multiplied by 1.5. Our FNN-based optimizer offers a
better balance between time efficiency and robustness in identi-
fying the optimal graphical approach.

We observe that ISRES does not converge within the given
wall time, and further delivers a low optimal value. A pos-
sible reason is that it takes longer for ISRES to comprehen-
sively walk through the whole parameter space in this setup
with a moderate dimension of x̄ at 29. The performance of
COBYLA is not stable in those settings, as demonstrated by the
relatively larger standard deviation and smaller mean optimal
values compared with FNN. The reason can be that COBYLA
is more likely to get stuck in the local optimal. Our proposed
method, on the other hand, first seeks a parametric surrogate
function approximating the working objective function in (5)
by FNN, and then performs optimization with available gradient
information. Therefore, our FNN-based optimizer consistently
achieves the highest power across all scenarios.

From a practical point of view, both FNN and COBYLA
have satisfactory performance based on this simulation study.
COBYLA takes a moderate computational time of approxi-
mately 20 min to deliver the solution. Our proposed FNN-based

method offers an alternative option to further enhance the
power. An extra 15 min is tolerable as compared with study
duration over years in confirmatory trials. Moreover, even a
fraction of a percent of power gain is nontrivial considering the
high cost of clinical trials. More discussions on this are provided
in Section 6.

In Figure 3, we visualize the performance of our FNN-based
method and the other three comparators. In each scenario, we
plot 800 training datasets in green in the order of their working
objective functions from small to large, and then 200 validation
datasets with blue in order. The maximum of both training
and validation datasets is the solution of SSM. The optimal
graph identified by ISRES in triangle, COBYLA in rhombus
and FNN in orange circle are plotted on the right. Next, we
evaluate the residuals of using FNN to approximate Ô(α, T),
which is Ô(α, T) − f (x̄; θ̂) as in (8). The residuals from the left
800 training datasets are generally smaller than those from the
right 200 validation datasets (Figure 4).

5. A Case Study

In this section, we apply our FNN-based optimizing approach
to a generic study with one primary endpoint, denoted as H1,

Figure 3. The optimal objective function identified by FNN, COBYLA, ISRES, and SSM.
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Figure 4. FNN residuals of estimating the working objective function.

and four secondary endpoints, denoted as H2, H3, H4, and
H5. This example is particularly relevant because while testing
the primary endpoint first is clear, the tactic for testing the
secondary endpoints can be flexible. Since the primary endpoint
is tested first, we fix the first element in α at the one-sided FWER
0.025 and the remaining components at 0. There is no element in
ᾱb to be optimized. In the transition matrix T, H1 can freely pass
its error rate to all secondary endpoints, and each secondary
endpoint can recycle theirs to the other 3 secondary endpoints
but not back to the primary endpoint since it must have been
rejected first. Therefore, there are 3 + 4 × 2 = 11 elements in
T̄b = (T12, T13, T14, T23, T24, T32, T34, T42, T43, T52, T53), and
each element is bounded between 0 and 1. The additional con-
straints are

T12 + T13 + T14 ≤ 1,
T23 + T24 ≤ 1,
T32 + T34 ≤ 1,
T42 + T43 ≤ 1,
T52 + T53 ≤ 1.

Suppose that the study team assigns v2 = 0.6, v3 = 0.2, v4 =
v5 = 0.1 to the following objective function,

O′ (α, T) =
5∑

i=2
vi Ep

{
D′

i
(
α, T, p

)}
, (14)

where D′
i
(
α, T, p

) = 1 if both Hi and H1 are rejected by the
graphical approach g(α, T), and 0 otherwise, for i = 2, 3, 4, 5.

This reflects the clinical interpretation that the rejection of a
secondary endpoint is only meaningful if the primary endpoint
has been rejected. Note that we exclude the adjusted power of
the primary endpoint in Equation (14), because the optimizer is
equivalent given the constraints on α in the study setup.

We further assume that the test statistics follow a multivariate
normal distribution with a compound symmetric structure and
a common correlation at 0.5. The marginal power of the primary
endpoint is assumed to be 95%, and 90%, 85%, 65% and 60%
for secondary endpoints. The parameters in the FNN-based
optimizer, ISRES and COBYLA are the same as those specified
in Sections 3.2 and 4.

In Table 3, we list the optimal Ô′ (α, T) and the multiplicity
adjusted power of each endpoint from the FNN-based method,
ISRES, COBYLA, and SSM. Our method achieves the highest
objective function at 78.0%, which is approximately 0.6%–1.4%
higher than the other three methods. When it comes to con-
vergence time, COBYLA takes 4.0 min, which is shorter than
the 17.1 min from our method. ISRES does not converge in the
given wall time at 25.7 min. The optimal graphs identified by
the four methods are also visualized in Figure 5. To demonstrate
the reproducibility of our findings, we further perform 100
replications of this case study. Our method has the highest mean
of optimal Ô′(α, T) at 78.0%, compared with 77.0% from ISRES,
77.7% from COBYLA, and 76.4% from SSM. The results are
consistent with our report at Table 3. Our proposed method also
has a relatively small standard deviation at 0.04%, while ISRES
has 0.23%, COBYLA has 0.54%, and SSM has 0.03%.
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Table 3. Optimal Ô′ (α, T) and Êp
{

D′
i
(
α, T, p

)}
identified by FNN, ISRES, COBYLA, and SSM.

Method Ô′ (α, T) Êp
{

D′
1
(
α, T, p

)}
Êp

{
D′

2
(
α, T, p

)}
Êp

{
D′

3
(
α, T, p

)}
Êp

{
D′

4
(
α, T, p

)}
Êp

{
D′

5
(
α, T, p

)}
FNN 78.0% 95.0% 86.7% 78.4% 54.6% 48.5%
ISRES 77.4% 95.0% 86.6% 75.2% 56.8% 47.6%
COBYLA 77.2% 95.0% 84.7% 80.8% 54.5% 48.4%
SSM 76.6% 95.0% 84.0% 79.0% 54.4% 49.7%

Figure 5. Optimal graph identified by FNN, ISRES, COBYLA, and SSM.

6. Concluding Remarks

In this article, we propose an FNN-based optimization frame-
work for the graphical procedure of multiplicity control in
confirmatory clinical trials. This framework takes advantage of
the strong functional representation of deep neural networks
and further uses constraint optimization techniques to locate
the solution. Simulation studies show that our FNN-based opti-
mizer consistently identifies the optimal graph, and has a better
balance between robustness and time efficiency as compared

to two popular derivative-free optimization methods that can
handle bound and inequality constraints.

Our proposed method numerically approximates the optimal
graph from the graphical approach with respect to the objective
function under specified constraints. An optimal solution may
not be unique. Numerical approximation is deemed appropri-
ate due to the intractable nature of the underlying objective
function. Numerical precision needs to be considered case by
case because of the different number of simulated graphs (B)
and finite simulated p-values (n) in the training dataset. For
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increased precision of the approximate solution, one can further
increase B and n.

In practice, a relatively simplified graph may be more palat-
able for the clinical team, as compared to the numerically opti-
mized upper bound with respect to the objective function iden-
tified by our method. If the distance in the objective function
is relatively small, then this evidence adds more justification to
the usage of the proposed simple graph. On the other hand, if
power is of main interest, then our method has moderate power
gain as compared with the two existing derivative-free methods
and the SSM demonstrated by the simulation studies and the
case study. As shown in Table 2, the average multiplicity adjusted
power increase can be as high as 5.1% compared with the SSM
method, over 10% as compared with ISRES, and 0.5% compared
with COBYLA. This makes our proposed method appealing
in confirmatory studies where several secondary endpoints are
targeted for labeling purposes. Even though the gain in some
cases is merely a fraction of a percent of power, it is still worth the
additional computing time, which is never more than a couple
of minutes, especially if either the cost of the study is high or the
stakes are high based on participation of subjects with serious
afflictions.
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