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ABSTRACT
The turnover rate of producer biomass in aquatic ecosystems is gen-
erally faster than in terrestrial. That is, aquatic producer biomass
grows, is consumed, and is replaced considerably faster than terres-
trial. The WKL model describes the flow of phosphorus and carbon
through a grazer–producer system, hence varying themodel param-
eters allows for analysis of different ecosystems of this type. Here we
explore the impacts of the intrinsic growth rate of the producer and
the maximal ingestion rate of the grazer on these dynamics because
these parameters determine turnover rate. Simulations show that for
low intrinsic growth rate andmaximal ingestion rate, the grazer goes
extinct; for higher values of these parameters, coexistence occurs in
oscillations. Sensitivity analysis reveals the relative importance of all
parameters on asymptotic dynamics. Lastly, the impacts of changing
these two parameters in the LKE model appears to be quantitatively
similar to the impacts in the WKL model.
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1. Introduction

Earth has many diverse habitats. One of the more fundamental dichotomies in the bio-
sphere is between aquatic- and terrestrial-based ecosystems. These two groups vary greatly
in average scale, both spatially and temporally. For example, consider the difference
between an acacia tree, which grows at a rate of 44.2 cm per year [13] and feeds giraffes
with an average individual ingestion rate of 16.6–19.0 kg per day [14], and a microscopic
phytoplankton species which supports zooplankton grazers, both of which cannot be indi-
vidually discerned by the naked human eye. These two systems also vary in time scale,
particularly in the rate of turnover of the producer species at the base of these food chains.
While a cyanobacteria bloom on the surface of a lake can appear in a matter of days
or weeks, trees take years to reach maturity. But there are still fundamental similarities
between these two seemingly opposite systems which allow us to compare them at the
elemental level.

The framework of ecological stoichiometry was developed to study such interactions.
Ecological stoichiometry applies the law of conservation of mass to ecological interactions
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and studies the balance of the elements that make up life [16]. This approach quantifies
relationships between organisms made up of several measurable elements. These elements
can be neither created nor destroyed in ordinary chemical reactions, imposing a balance
on the amount in a closed biological system throughout its interactions and processes.
Consideration of this balance in mathematical modelling of ecological systems allows for
study of the flow of nutrients and energy in a system.

There are many elements that are required for growth, reproduction, and survival of
living organisms. The three main elements in biological structural molecules are car-
bon, nitrogen, and phosphorus, despite their scarcity in the Earth’s crust relative to other
elements. Carbon provides energy as well as structure, while nitrogen and phosphorus
are crucial constituents of proteins and nucleic acids [16]. However, due to different
requirements for biomolecules for structural, metabolic, and reproductive components,
the stoichiometric ratios of organisms vary. In general, herbivores are assumed to have
higher, more rigid nutrient requirements than the producer they consume [16]. This nutri-
ent imbalance means that grazers can be limited either by the quantity or quality of their
food. This adds a degree of complexity to modelling grazing.

A common application of ecological stoichiometry is in the study of grazer–producer
systems. Initially, these were modelled using the Lotka–Volterra predator–prey equa-
tions [4]:

dx
dt

= bx − axy

dy
dt

= cxy − dy

where x and y correspond to the prey and predator respectively, b is the net growth rate of
the prey in the absence of predators, d is the net death rate of the predators in the absence
of prey, and c/a is the conversion efficiency from prey to predator biomass (a> c).

The Lotka–Volterra predator–preymodel has been widely used tomodel predator–prey
and grazer–producer interactions, explaining examples such as the changes in fishing dur-
ing WWI that sparked Volterra’s interest in the topic, as well as cycles in the lynx and
snowshoe hair pelts traded in the 1840s by the Hudson Bay company [4]. However, there
are cases where considering all prey (e.g. producers) to be identical at the elemental level
fails to capture realistic dynamics.

For example, an experiment involving Daphnia and a green alga showed that at very
high light intensity, the algal population boomed due to increased photosynthetic rate,
but the grazer abundance remained low [5]. While the light-limited growth of the algae
at low light levels and the resulting low grazer abundance could be explained by the
Lotka–Volterra equations, the model cannot explain a case where high algal abundance
does not result in a high grazer abundance. This is because in any non-stoichiometric
form of the Lotka–Volterra equations, increased algal growth can only be beneficial to the
grazer. But, as experimentally demonstrated, this is not always true – when there is too
much growth of the algae, their more flexible nutrient requirements allow them to become
phosphorus-poor, and therefore they can limit grazer growth due to being poor quality
food relative to the requirement of the grazer.

One model developed using the framework of ecological stoichiometry to deal with
this counterexample is the LKE model [9], which is a predator–prey model. In this case,
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the ‘prey’ is a primary producer, such as phytoplankton, and the ‘predator’ is a zooplankton
grazer, such asDaphnia. This model tracks only two elements, carbon (C) and phosphorus
(P), where all others are assumed to be sufficiently abundant so as to be nonlimiting – that
is, there is enough in the environment for the requirements of the organisms considered.
Carbon is often included in ecological stoichiometry models, since it can be used to repre-
sent energy or biomass. The producer population is quantified by the density of carbon in
the producer, x, and the grazer population by the density of carbon in the grazer, y. In this
case, phosphorus was chosen as a focal nutrient since it is often a limiting nutrient in fresh-
water systems, and it is used in construction of several biological molecules for structure
and energy metabolism.

The LKE model [9] is

dx
dt

= bx
(
1 − x

min(K, (P − θy)/q)

)
− f (x)y

dy
dt

= êmin
(
1,

(P − θy)/x
θ

)
f (x)y − dy

where x and y are the producer and grazer carbon densities, b is the intrinsic growth rate
of the producer, d is the specific loss rate of the grazer (including respiration and death), K
is the constant light dependent carrying capacity, ê is the maximal production efficiency,
f (x) is the grazer’s ingestion rate, q is the minimum P:C in the producer, θ is the fixed P:C
of the grazer, and P is the total phosphorus in the system.

In the absence of the grazer, the producer exhibits logistic growth limited either by
energy or by the availability of phosphorus. On the other hand, the grazer carbon levels
undergo exponential decay in the absence of the producer. The growth of the grazer is
limited either by food quantity or food quality. That is, by either the amount of producer
carbon available or by the amount of producer phosphorus available relative to their needs.
This in particular allows for the model to exhibit such dynamics in the very high light case
as those presented by Elser and Kuang (2002) [5], where phosphorus limitation of the pro-
ducer growth causes the algae to become poor quality food for the grazer, and thus to limit
the grazer abundance.

This model’s applications are limited by one of its main assumptions, which states that
all phosphorus in the system is divided into two pools: phosphorus in the grazer and phos-
phorus in the producer. This requires immediate recycling of phosphorus and immediate
utilization by the producer, and does not allow for any free phosphorus in themedium. The
relaxation of this assumption yielded theWKLmodel [18], which is presented in Section 2
and is the basis for this work.

Despite the difficulty in analysing the nonsmooth LKE model, some analysis has been
completed. If f and g are assumed to be Holling type I functional responses, then the
system has no limit cycles and the internal equilibrium is globally asymptotically stable
[8]. With Holling type II functional responses, bifurcation analysis of the parameter K
revealed the potential for bistability and several bifurcations [8]. A global analysis of the
LKE model with Holling type II functional responses was also completed, revealing four
types of bistability as well as many possible bifurcations [21]. These analyses illuminate
the rich and complicated dynamics this relatively simple stoichiometric model [9] can
exhibit.
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There are several other possible applications of ecological stoichiometry, many of which
involve extensions of the LKEmodel. These are primarily focussed on looking at the effect
of food quality on population dynamics, since explicit consideration ofmore nutrients than
carbon allows other nutrient limitations to impact the model dynamics in realistic ways.
For example, there are models incorporating the stoichiometric knife edge – a theory that
there is an ideal nutrient richness, due to evidence that grazers are affected by both insuf-
ficient and excess food nutrient content [11, 12, 22]. There is also a model which explicitly
tracks phosphorus loading of the aquatic environment [1]. This is globally relevant because
of nutrient loading by humans due to agricultural fertilization and industrial emissions.

There is also evidence that elemental mismatches between trophic levels can influence
population growth and foraging behaviours. Ecological stoichiometry has been used to
capture this influence through consideration of varied energetic costs of foraging depen-
dent upon food nutrient content. Such models have been used to show that grazers can
benefit from compensatory feeding behaviours when consuming non-optimal food [10].

However, despite its global applications, stoichiometry comes with many associated
challenges. As with all models, one must balance the realisticness of the model with the
ease of analysis. Stoichiometric systems are often nonsmooth, and require consideration
of multiple cases due to applications of Liebig’s Law of the Minimum [22].

Some analysis has already been completed for the WKL model [18]. The analysis is
focussed around K, the resource carrying capacity determined by light. This particular
parameter is controllable in a laboratory setting. However, there are other parameters
that remain to be investigated. These parameters help uniquely define the conditions both
within and surrounding the biological interaction we consider.

This paper intends to compare the dynamics in a terrestrial ecosystem versus those in
an aquatic ecosystem by specifically focussing on r and c. The maximal growth rate of
producers, r, tends to be higher in aquatic systems than in terrestrial [15]. Similarly, the
maximum ingestion rate tends to be higher in aquatic grazer–producer systems than ter-
restrial. There is evidence that producer biomass can be consumed at a rate four times
higher by aquatic grazers than terrestrial [15]. Comparison of the life cycle of an acacia
tree to that of a phytoplankton clearly exemplifies this phenomenon. Investigating these
parameters can allow us to rigorously compare such terrestrial and aquatic ecosystems,
despite the extensive biological differences.

Another related contrast in parameter values lies in the tradeoff between r and c. Often,
prey species must ‘choose’ between investing energy into their growth, increasing r, or
their defences against predation, decreasing c [6, 17]. For example, some Caribbean coral
reef sponges have been found to exhibit increased growth when they are not under the
threat of predation, even if the predation is prevented by cages [7]. Hence, we expect
to naturally see producers with low r and low c, and producers with high r and high c.
This is similar to the above contrast between terrestrial and aquatic ecosystems. Thus, the
investigative efforts within this paper can also allow for comparison between organisms’
survival/reproductive strategies.

2. Model formulation

The WKL model [18] tracks the amounts of carbon and phosphorus in the producer and
the grazer. The model uses the following assumptions:
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(1) The total mass of phosphorus in the entire system is fixed, i.e. the system is closed to
phosphorus but open to carbon.

(2) The phosphorus to carbon ratio (P:C) in the producer varies, but never falls below a
fixed minimum q (mg P/mg C); the grazer maintains a constant P:C ratio, denoted by
θ (mg P/mg C), which is known as homeostasis [16].

Let x be the density of carbon content in the producer and y be the density of carbon
content in the grazer, both measured in (mg C)/l. For phosphorus contents, we use p for
the density of phosphorus content in the producer and P for the density of free phosphorus
in the media, both measured in (mg P)/l. Hence, p/x is the P:C ratio of the producer. Note
that due to assumption 2, we do not explicitly track the phosphorus content in the grazers
– the instantaneous phosphorus content in the grazer is simply θy.

The resulting equations are

dx
dt

= rx
(
1 − x

min{K, p/q}
)

︸ ︷︷ ︸
producer growth limited by nutrient and light

− f (x)y︸ ︷︷ ︸
uptake by grazers

dy
dt

= êmin
{
1,
p/x
θ

}
f (x)y︸ ︷︷ ︸

grazer growth limited by food quality and quantity

− d̂y︸︷︷︸
grazer death and respiration loss

dp
dt

= g(P)x︸ ︷︷ ︸
P uptake by producer

− p
x
f (x)y︸ ︷︷ ︸

P loss due to grazing

− dp︸︷︷︸
P loss due to producer recycling

dP
dt

= −g(P)x︸ ︷︷ ︸
P uptake by producer

+ dp︸︷︷︸
P recycling from producer

+ θ d̂y︸︷︷︸
P recycling from dead grazer

+
(p
x

− êmin
{
θ ,

p
x

})
f (x)y︸ ︷︷ ︸

P recycling from grazer faeces

From assumption 1, the total phosphorus in the system is constant, i.e.

dT
dt

= 0

for T = p + P + θy. Thus, we can write P = T − p − θy, and we can reduce the system to
three equations [18]:

dx
dt

= rx
(
1 − x

min{K, p/q}
)

− f (x)y (1)

dy
dt

= êmin
{
1,
p/x
θ

}
f (x)y − d̂y (2)

dp
dt

= g(T − p − θy)x − p
x
f (x)y − dp (3)
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Table 1. The parameter (P) values (V) used for simulations [18].

P Description V Unit

r Intrinsic growth rate of the resource 0.1–2 day−1

K Resource carrying capacity determined by light 0.25–2 (mg C)/l
c Maximal ingestion rate of the grazer 0.1–2 day−1

ĉ Maximal phosphorus uptake rate of the producer 0.2 (mg P)/(mg C)/day
a Half-saturation constant of the grazer 0.25 (mg C)/l
â Phosphorus half-saturation constant of the producer 0.008 (mg P)/l
ê Maximal conversion rate of the grazer 0.74
d̂ Loss rate of the grazer 0.22 day−1

d Phosphorus loss rate of the producer 0.05 day−1

θ Constant P:C of the grazer 0.04 (mg P)/(mg C)
q Minimal possible P:C of the producer 0.004 (mg P)/(mg C)
T Total phosphorus in the system 0.03 (mg P)/l

The parameters are r, the intrinsic growth rate of the resource (day−1);K, the resource car-
rying capacity determined by light ((mg C)/l); q, the minimal possible P:C of the producer
((mg P)/(mg C)); ê, the maximal conversion rate of the grazer; θ , the homeostatic constant
P:C of the grazer; d̂, the loss rate of the grazer (day−1); and d, the phosphorus loss rate
of the producer (day−1). Due to the second law of thermodynamics, ê < 1, and in reality,
θ > q. The model also uses two functions: f(x), which is the ingestion rate of the grazers,
and g(P), which is the per capita P uptake by the producer:

f (x) = cx
a + x

g(P) = ĉP
â + P

Here both f(x) and g(P) are assumed to take the form ofHolling type II functional response.
In general, f and g are assumed to be bounded smooth functions that are zero at zero,
strictly increasing, and concave down. For the Holling type II functional responses chosen
here, let c be the maximal ingestion rate of the grazer (day−1); ĉ, the maximal phosphorus
uptake rate of the producer ((mg P)/(mg C)/ day); a, the half-saturation constant of the
grazer ((mg C)/l); and â, the phosphorus half-saturation constant of the producer ((mg
P)/l).

For analyses, parameter values from Wang et al. (2008) [18] are used, as shown in
Table 1. The baseline values used for r and c are 0.93 day−1 and 0.75 day−1 respectively.
Therefore, we consider values ranging from 0.1 to 2.0 for these two parameters, since this
provides us up to more than double the realistic parameters used previously. With these
analyses, all other parameters are assumed to be equal between terrestrial and aquatic
ecosystems, which clearly somewhat limits the applicability of the results. The system was
originally parametrized for a freshwater system. Hence, we consider the parameter values
for r and c less than the specified baseline values to represent terrestrial ecosystems, and
those greater than or equal to the baselines to represent aquatic.

3. Mathematical analysis

3.1. Invariant set

Wang et al. (2008) [18] presented the following theorem for forward invariance.



JOURNAL OF BIOLOGICAL DYNAMICS 7

Theorem 3.1: Solutions with initial conditions in the set

� = {(x, y, p) : 0 < x < min{K,T/q}, 0 < y, 0 < p, p + θy < T}

remain there for all forward times.

This is proven by way of contradiction. The full proof was provided by Wang
et al. (2008) [18] but in brief, one considers a solution X(t) with initial condition in �,
then assumes there is a time t1 such that X(t) touches or crosses the boundary of the clo-
sure of � for the first time. Then one considers cases for different segments of boundary
and reaches a contradiction in each case.

This set is biologically meaningful. Densities of elements cannot be negative, so we
require positivity, which we have here. Also, we know that growth of the producer is lim-
ited either by light (K) or by phosphorus availability relative to their needs (T/q). This is
Liebig’s Law of the Minimum – the resource which is least abundant relative to an organ-
ism’s needs becomes limiting [16]. Hence, the bounds on x in�make sense. The bounds on
phosphorus levels alsomake sense: the phosphorus contained in the producers and grazers
(p + θy) cannot exceed what is available in the system (T).

For the purposes of this paper, this set should be kept inmindwhen considering stability.
Equilibria outside of this set cannot be globally attracting, since no solution starting in this
set will ever leave it. Also, for numerical simulations, once a solution enters this set, we
know the general location of the solution for all forward times.

3.2. Equilibria

Wang et al. (2008) [18] found the equilibria for the model when f and g are Holling type
I functions, then analysed the stability of the boundary steady states. For this simplified
case, there were two boundary equilibria: the extinction equilibrium E0 = (0, 0, 0), and
the grazer extinction equilibrium E1 where the form depends on if light or nutrients are
limiting for the producer. E1 is given by(

K, 0,
TK

K + d/α

)
K <

T
q

− d
α(

T
q

− d
α
, 0, q

(
T
q

− d
α

))
K >

T
q

− d
α

where f(x) = βx and g(P) = αP [18].
As stated in Section 2, for themodel, f and g are always assumed to be bounded smooth

functions that are zero at zero, strictly increasing, and concave down. While the Holling
type I functional responses used in [18] do satisfy this requirement, they are not realistic.
Holling type I requires the assumption that there are no physical limits to the amount of
food the grazer can consume. Clearly metabolic restrictions make this unrealistic. Thus,
while Holling type I makes mathematical analysis more manageable, it limits applicability
of the results.

For the numerical analyses, we assume that f and g areHolling type II functions. Hence,
we find equilibria that will match our numerical analyses. Then, the equilibria (x̄, ȳ, p̄)
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satisfy

0 = x̄
(
r
(
1 − x̄

min{K, p̄/q}
)

− cȳ
a + x̄

)
≡ x̄F(x̄, ȳ, p̄) (4)

0 = ȳ
(
êmin

{
1,
p̄/x̄
θ

}
cx̄

a + x̄
− d̂

)
≡ ȳG(x̄, ȳ, p̄) (5)

0 = ĉ(T − p̄ − θ ȳ)x̄
â + (T − p̄ − θ ȳ)

− cp̄ȳ
a + x̄

− dp̄ ≡ H(x̄, ȳ, p̄) (6)

To find the equilibria, we split into cases based on the minimum functions included in
F(x̄, ȳ, p̄) and G(x̄, ȳ, p̄), given by

(i) p̄ < Kq and p̄ < θ x̄ : producer is nutrient limited and grazer is limited by food quality.
(ii) p̄ < Kq and p̄ > θ x̄ : producer is nutrient limited and grazer is limited by food

quantity.
(iii) p̄ > Kq and p̄ < θ x̄ : producer is light limited and grazer is limited by food quality.
(iv) p̄ > Kq and p̄ > θ x̄ : producer is light limited and grazer is limited by food quantity.

All four cases have between one and three boundary equilibria, the extinction equi-
librium E0 = (0, 0, 0), and the grazer extinction equilibrium/equilibria E1. As with the
Holling type I case, the form of E1 depends on what resource is limiting for the producer,
i.e. it is the same for case 1 as case 2, and the same for case 3 as case 4. When the producer
is nutrient limited, E1 is (

dq(â + T) − ĉT
q(dq − ĉ)

, 0,
dq(â + T) − ĉT

dq − ĉ

)

Note that for the above, x̄ = (p̄/q). Also, for the given baseline parameter values, this equi-
libria is non-negative and thus biologically feasible (E1 = (7.4980, 0, 0.0300)). When the
producer is light limited,E1 actually has two possible values of p̄, both of which are positive:(

K, 0,
(âd + Td + ĉK) ±

√
(âd + Td + ĉK)2 − 4dĉTK
2d

)

For cases 1 and 3, we also have an additional mathematically possible boundary equilib-
rium: (

0,−ad
c
,
d̂aθ
êc

)

However, this is not biologically feasible. All parameters are assumed to be positive and thus
for this equilibrium, ȳ < 0 which is not realistic since we cannot observe negative densities
of carbon. Also, this equilibrium would not satisfy the quality limitation condition if we
multiply the terms within the minimum by f (x), since f (0) = 0 < ((cp̄)/(aθ)) = d̂/ĉ.

For the parameter values used in the numerical simulations,K < (T/q) = 7.50 for allK
in 0.25 –2.00. Also, for K<7.5, Kq < p̄ for either form of the boundary equilibrium. Thus
for the range of K we consider and the values of T and q used, we will never have Kq > p̄
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and thus these equilibria will always fall in the producer light limited region of the phase
space. Hence we are restricted to cases 3 and 4 for the parameters given in Table 1. For the
condition that distinguishes case 3 from case 4, we note that x̄θ = Kθ . Also, p̄ does not
depend on r or c, thus we can fix r and c at their baseline values and check the condition
only varying K. Therefore, we only need to check the sign of p̄ − θ x̄ for our various values
of K, and for both of the grazer extinction equilibria (varying p̄). For the version of p̄ that
uses the plus sign, we observe that p̄ − θ x̄ > 0 for all K ∈ (0, 2]. Hence, this boundary
equilibrium is always in case 4. On the other hand, the equilibrium applying the negative
sign has p̄ − θ x̄ > 0 until a value of K between 0.74 and 0.75, when it becomes positive.
Hence, this boundary equilibrium is in case 4 until approximatelyK = 0.75, at which point
it switches to case 3.

Observe that in all cases, the forms of the biologically feasible boundary equilibria have
no explicit dependence on either r or c. Given our assumption that all other parameters
are the same between terrestrial and aquatic ecosystems, this means that the value of the
boundary equilibria will not depend on whether the ecosystem is terrestrial or aquatic.
However, the asymptotic state of the system will still depend on r and c, since they will
determine which equilibrium is stable.

Lastly, there may exist coexistence equilibria, which satisfy

0 = r
(
1 − x̄

min{K, p̄/q}
)

− cȳ
a + x̄

,

0 = êmin
{
1,
p̄/x̄
θ

}
cx̄

a + x̄
− d̂,

0 = ĉ(T − p̄ − θ ȳ)x̄
â + (T − p̄ − θ ȳ)

− cp̄ȳ
a + x̄

− dp̄,

i.e. F(x̄, ȳ, p̄) = 0, G(x̄, ȳ, p̄) = 0, andH(x̄, ȳ, p̄) = 0. Clearly there is likely to be an explicit
dependence on r and c for coexistence equilibria, although analytically determining the
explicit dependence is incredibly time consuming and may be impossible due to the
extensive nonlinearity.

The results of this section are summarized in the following theorem.

Theorem 3.2: Equations (1)–(3)with Holling type II functional responses possess the trivial
extinction equilibrium E0 = (0, 0, 0), up to two boundary grazer extinction equilibria E1,
and may have coexistence equilibria, where the boundary equilibria E1 have two possibilities:

(i) If p̄ < Kq, then there is one boundary equilibrium

E1 =
(
dq(â + T) − ĉT

q(dq − ĉ)
, 0,

dq(â + T) − ĉT
dq − ĉ

)

(ii) If p̄ > Kq, then there are two boundary equilibria

E1 =
(
K, 0,

(âd + Td + ĉK) ±
√

(âd + Td + ĉK)2 − 4dĉTK
2d

)
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3.3. Stability

For the extinction equilibrium, Wang et al. (2008) [18] proved a stability theorem for the
extinction steady-state. Here we improve upon the theorem, while following a very similar
proof:

Theorem 3.3: The extinction steady-state E0 = (0, 0, 0) in Equations (1)–(3) is globally
asymptotically stable if d > m̃g(T), where m̃ = min{x(0)/p(0), [1 + d/r]/q}.

Proof: Let u = x/p, then applying quotient rule as well as Equations (1)–(3)

du
dt

= d
dt

x
p

= (dx/dt)p − x(dp/dt)
p2

= dx/dt
p

− x
dp/dt
p2

= 1
p

(
rx
(
1 − x

min{K, p/q}
)

− f (x)y
)

− x
p2
(
g(T − p − θy)x − p

x
f (x)y − dp

)

= rx
p

(
1 − x

min{K, p/q}
)

− f (x)y
p

− x2

p2
g(T − p − θy) + f (x)y

p
+ dx

p

= ru
(
1 − x

min{K, p/q}
)

− f (x)y
p

− u2g(T − p − θy) + f (x)y
p

+ du

= ru
(
1 − x

min{K, p/q}
)

− u2g(T − p − θy) + du

Note that

min{K, p/q} ≤ p/q ⇐⇒ 1
p/q

≤ 1
min{K, p/q} ⇐⇒ − 1

min{K, p/q} ≤ − 1
p/q

Also, since g(0) = 0 and g′(P) > 0

−u2g(T − p − θy) ≤ 0

Thus

du
dt

≤ ru
(
1 − x

p/q

)
+ du = ru(1 − qu) + du

Then

du
dt

≤ ru(1 + d/r − qu)
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Therefore, u ≤ min{x(0)/p(0), [1 + d/r]/q} ≡ m̃. From Equation (3)

dp
dt

= g(T)x − p
x
f (x)y − dp

≤ g(T)x − dp

≤ g(T)m̃p − dp

= (g(T)m̃ − d)p

since u = x/p, and u ≤ m̃. Since we assume d > m̃g(T), and this implies g(T)m̃ − d < 0,
then p → 0 as t → ∞. �

Now, consider Equation (1)

dx
dt

= rx
(
1 − x

min{K, p/q}
)

− f (x)y

≤ rx
(
1 − x

p/q

)
= rx

(
1 − qx

p

)

Therefore, limsupt→∞x(t) ≤ p/q. Since p → 0 as t → ∞, then this implies x → 0 as t →
∞. Then as t → ∞ in Equation (2), the first term goes to 0 and thus y → 0.

Thus, the extinction steady-state is globally asymptotically stable if d > m̃g(T).
The original theorem from Wang et al. (2008) [18] had d > mg(T) with m =

min{x(0)/p(0), [1 + (d + f ′(0)T/θ)/r]/q}. Since we assume f is strictly increasing and all
parameters are assumed to be positive, then f ′(0)T/θ > 0, and thus

1 + (d + f ′(0)T/θ)/r]/q > [1 + d/r]/q.

Therefore, m ≥ m̃, and so there is a potentially larger range of values of d for which the
extinction equilibrium is stable if we use m̃ instead ofm.

This theorem was proven for the general forms of f and g, and thus applies for Holling
type II.We observe the possible dependence on r and c. However, for the parameter regime
considered here, this condition requiresm = x(0)/p(0) < 0.3167, which is highly unreal-
istic as it requires the initial cell quota of the producer to exceed 3.1579. However, this
condition is not necessary, and we may still observe stability of the extinction steady state.

It remains to investigate the stability of the other boundary equilibria. The Jacobian
matrix is

A =
⎡
⎣F + xFx xFy xFp

yGx G + yGy yGp
Hx Hy Hp

⎤
⎦

By Routh–Hurwitz criterion, all eigenvalues of A have strictly negative real parts if the
following conditions hold: trA < 0; detA < 0; and detA - (trA)(

∑3
k=1 Akk) > 0, where

Akk is the determinant of the matrix produced by removing row k and column k from
matrix A.
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We compute the Jacobian by computing the necessary terms:

∂F
∂x

= − r
min{K, p/q} + cy

(a + x)2
F+ xFx =

⎧⎪⎨
⎪⎩
r− 2rx

K
− acy

(a+ x)2
K < p/q

r− 2rqx
p

− acy
(a+ x)2

K > p/q

∂F
∂y

= − c
a + x

xFy = − cx
a + x

∂F
∂p

=
⎧⎨
⎩
0 K < p/q
rxq
p2

K > p/q xFp =
⎧⎨
⎩
0 K < p/q
rqx2

p2
K > p/q

∂G
∂x

=

⎧⎪⎪⎨
⎪⎪⎩

acê
(a + x)2

1 <
p/x
θ

− êpc
θ(a + x)2

1 >
p/x
θ

yGx =

⎧⎪⎪⎨
⎪⎪⎩

acêy
(a + x)2

1 <
p/x
θ

− cêpy
θ(a + x)2

1 >
p/x
θ

∂G
∂y

= 0 G + yGy =

⎧⎪⎨
⎪⎩

cêx
a + x

− d̂ 1 <
p/x
θ

cêp
θ(a + x)

− d̂ 1 >
p/x
θ

∂G
∂p

=

⎧⎪⎨
⎪⎩
0 1 <

p/x
θ

cê
θ(a + x)

1 >
p/x
θ

yGp =

⎧⎪⎨
⎪⎩
0 1 <

p/x
θ

cêy
θ(a + x)

1 >
p/x
θ

∂H
∂x

= ĉ(T − p − θy)
â + (T − p − θy)

+ cpy
(a + x)2

∂H
∂y

= − âĉθx
(â + T − p − θy)2

− cp
a + x

∂H
∂p

= − âĉx
(â + T − p − θy)2

− cy
a + x

− d

Therefore, for the four cases described in Section 3.2, we have different Jacobian matrices
for E1.

CASE 1: p̄ < Kq and p̄ < θ x̄: E1 = (p̄/q, 0, p̄)

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−r − cp̄
aq + p̄

r
q

0
cêp̄q

θ(aq + p̄)
− d̂ 0

ĉ(T − p̄)
â + T − p̄

− âĉθ p̄
q(â + T − p̄)2

− cp̄q
aq + p̄

− âĉp̄
q(â + T − p̄)2

− d

⎤
⎥⎥⎥⎥⎥⎥⎦
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CASE 2: p̄ < Kq and p̄ > θ x̄: E1 = (p̄/q, 0, p̄)

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−r − cp̄
aq + p̄

r
q

0
cêp̄

aq + p̄
− d̂ 0

ĉ(T − p̄)
â + T − p̄

− âĉθ p̄
q(â + T − p̄)2

− cp̄q
aq + p̄

− âĉp̄
q(â + T − p̄)2

− d

⎤
⎥⎥⎥⎥⎥⎥⎦

CASE 3: p̄ > Kq and p̄ < θ x̄: E1 = (K, 0, p̄)

A3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−r − cK
a + K

0

0
cêp̄

θ(a + K)
− d̂ 0

ĉ(T − p̄)
â + T − p̄

− âĉθK
(â + T − p̄)2

− cp̄
a + K

− âĉK
(â + T − p̄)2

− d

⎤
⎥⎥⎥⎥⎥⎥⎦

CASE 4: p̄ > Kq and p̄ > θ x̄: E 1 = (K, 0, p̄)

A4 =

⎡
⎢⎢⎢⎢⎢⎣

−r − cK
a + K

0

0
cêK
a + K

− d̂ 0
ĉ(T − p̄)
â + T − p̄

− âĉθK
(â + T − p̄)2

− cp̄
a + K

− âĉK
(â + T − p̄)2

− d

⎤
⎥⎥⎥⎥⎥⎦

To determine the stability of E1 for case i (i ∈{1, 2}) we need to find the trace and
determinant of Ai. However, this is not particularly illuminating mathematically – deter-
mining conditions such that A1 and A2 satisfy the Routh–Hurwitz criterion seems quite
complicated (see Appendix).

However, for cases 3 and 4, we can decompose the matrix to be a 2 × 2 sub-matrix and

one negative eigenvalue − âĉK
(â + T − p̄)2

− d < 0. The 2 × 2 sub-matrix is upper triangle

whose eigenvalues are−r < 0 andA22
i , i = 3, 4. The sign of the eigenvalueA22

i determines
the stability of E1.

Since all parameters are positive, then E1 is a stable node for

d̂ >
cêp̄

θ(a + K)

in case 3; and for

d̂ >
cêK
a + K

in case 4.
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Table 2. The value of c for the appearance of a zero eigenvalue in cases 3
and 4. Note that there are two possible values of p̄ for case 3, thus there is
a row for each of these equilibria.

Case K = 0.25 K = 0.75 K = 1.00 K = 2.00

3+ 0.0059 0.0040 0.0037 0.0033
3- 0.1998 0.3975 0.4965 0.8928
4 0.5946 0.3964 0.3716 0.3345

In the opposite situation, E1 is a saddle with a one-dimensional unstable manifold and
a two-dimensional stable manifold for

d̂ <
cêp̄

θ(a + K)

in case 3; and for

d̂ <
cêK
a + K

in case 4.
We can find the value of c such that d̂ is equal to the right hand side in our conditions for

a bifurcation to occur. The values are in Table 2. We observe that the sufficient condition
for stability of our equilibria involves a low maximal ingestion rate, which suggests that
terrestrial systems would be more likely to trend toward the grazer extinction equilibria
based purely on r and c.

The stability results for cases 3 and 4 are summarized in the following theorem.

Theorem 3.4: The following stability results hold for the grazer extinction equilibrium E1.

(i) If p̄ > Kq and p̄ < θ x̄, the boundary equilibrium E1 is a stable node for d̂ >

(cêp̄)/(θ(a + K)), is a saddle for d̂ < (cêp̄)/(θ(a + K)), and a bifurcation occurs when
d̂ = (cêp̄)/(θ(a + K)).

(ii) If p̄ > Kq and p̄ > θ x̄, the boundary equilibrium E1 is a stable node for d̂ >

(cêK)/(a + K), is a saddle for d̂ < (cêK)/(a + K), and a bifurcation occurs when
d̂ = (cêK)/(a + K).

4. Numerical dynamics and their implications

4.1. Numerical simulations

Using Matlab, the system was simulated using the parameter values in Table 1. Since the
model is nonsmooth, ode45 was not reliable for certain combinations of parameters. A sin-
gularity produced negative densities, thus a stiff solver ode23s was used instead. The initial
condition was always held at (x0, y0, p0) = (0.3, 0.3, 0.01), which is not in the invariant set
from Section 3.1 but is at least biologically feasible and orbits starting here can still enter
the set in time. This initial condition was selected since it was the one used in the paper
where the model was presented.

First the simulations were run for t ranging from 0 to 50 days, varying one of the two
focal parameters at a time. For eachK in {0.25, 0.75, 1.00, 2.00}, the systemwas numerically
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simulated for r in {0.1, 0.2, . . . , 2.0}, with c held constant at the baseline value 0.75. Then
the process was repeated with r held constant at 0.93 and c in {0.1, 0.2, . . . , 2.0}. The lower
values of r and c were used to represent the slower average turnover rate of terrestrial sys-
tems, and the higher parts of the ranges were used for the faster average turnover rate of
aquatic systems.

For the intrinsic growth rate of the producer (r), we see that as r increases with K held
at the following level:

• K =0.25: grazers benefit; producers harmed until they plateau; coexistence at a steady
state.

• K =0.75, 1.00: oscillations appear and then replaced by coexistence at a steady state.
• K =2.00: grazers benefit; producers harmed until a point where grazers go extinct.

For the maximal ingestion rate of the grazer (c), we see that as c increases with K held
at the following level:

• K =0.25, 0.75, 1.00: grazers benefit and producers harmed until oscillations appear.
• K =2.00: grazers do better until the lines cross and the system trends toward oscilla-

tions.

Figures 1 and 2 show the shifts in dynamics described above.
Then the simulations were run for t in 0 to 200, varying both of the focal parameters.

The time limit was extended since there appeared to be some dynamics that had not com-
pletely ‘settled’ by t = 50. The values of the focal parameters were selected based on the
previous simulations to align with where dynamics shifts occurred. Thus the simulations
were run for all possible combinations of K in {0.25, 0.75, 1.00, 2.00}, r in {0.1, 0.5, 1.0,
1.5, 2.0}, and c in {0.1, 0.5, 1.0, 1.5, 2.0}, again using ode23s in Matlab. The behaviour
at t = 200 was then classified according to the possible dynamics seen in prior papers
[9, 18]. The dynamics were classified as either grazer extinction; coexistence at a nonzero
steady state; coexistence with oscillations; or coexistence with oscillations with decreas-
ing amplitude, leading to coexistence at a steady state. Examples of the above dynamics
are shown in Figure 3. These observed dynamics were then used to develop classifica-
tions for two-parameter bifurcation diagrams and expectations for what dynamics may be
produced.

4.2. Sensitivity analysis

Local sensitivity analysis was completed for the various light intensities. ForK = 0.25, 1.00,
and 2.00, the baseline parameters produce a solution which tends to an equilibrium. After
visually assessing the dynamics for each of the required parameter combinations using a
plot inMatlab, the variables selected for sensitivity analysis for theseK values were x, y, and
p at 200 days. The normalized forward sensitivity indices for x(200), y(200) and p(200) for
all parameters were computed using the formula:

ϒu
ρ ≡ ∂u

∂ρ
× ρ

u
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Figure 1. Sample dynamics for various r values, r = 0.1, 1.0, 2.0, for K = 0.25, 0.75, 1.00, 2.00 and base-
line c (as well as all other parameters). For low to intermediate light, we observe that increasing r in
general increases the population densities for both producers andgrazers. In the high and very high light
cases, increasing r to 2.0 is detrimental to the grazer, likely due to nutrient limitation of grazer growth.

where u is the variable and ρ is the parameter [2]. To estimate the partial derivative, a
central difference approximation was used:

∂u
∂ρ

= u(par + h) − u(par − h)
2h

+ O(h2)

where u is the variable, ρ is the parameter, and par is the baseline values of the parameter, as
given in Table 1. For the parameters that vary between simulations, r = 0.93 and c = 0.75
were used for the baseline values. To approximate the values of x(200), y(200), and p(200)
for par+ h and par−h, ode23s was used, with all other parameters set at baseline values
except the one forwhich the indexwas calculated.hwas taken to be 1 percent of the baseline
value. The results for K = 0.25 are shown in Table 3. This was also repeated for K = 1.00
and K = 2.00, with the results shown in Table 4 and Table 5 respectively.
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Figure 2. Sample dynamics for various c values, c = 0.1, 1.0, 2.0, for K = 0.25, 0.75, 1.00, 2.00 and base-
line r (as well as all other parameters). In general, increasing c is detrimental to the producer population,
and beneficial for the grazer in all cases except low light.

For K = 0.75 (intermediate light), the baseline parameters produce a limit cycle.
Accordingly, local sensitivity indices were computed instead for the amplitude and period
of the oscillations in the variables, using the same formulas to estimate the partial deriva-
tive and the normalized forward sensitivity indices. Each of the necessary simulations was
run using ode23s, and the timespan [0, 200] was determined to be adequate to capture
the settled behaviour. The period of the oscillations was estimated to be between 25 and
30 days, and in order to make sure that enough troughs and crests existed in the tail for
each variable, the tail used was [≥ 140, 200], i.e. roughly the last 60 days, depending on the
intervals established by ode23s. Amplitude was determined by finding the maximum and
minimum values in the tail for the variable. The period was determined by first finding
places where the sign of the change in the variable value from one element of the array
to the next changed, then finding the time difference between the last and third last such



18 C. M. DAVIES AND H. WANG

Figure 3. Sample dynamics: (a) grazer extinction (terrestrial r and c); (b) coexistence oscillations to coex-
istence steady state (mixed r and c); (c) coexistence oscillations (aquatic r and c); (d) coexistence at a
steady state (mixed r and c).

point. The resulting sensitivity indices are shown in Table 6 and Table 7 for the amplitude
and period respectively.

For K = 0.25 (Table 3), we see that the intrinsic growth rate of the producer, r, ranks
fifth for x(200) and y(200), and seventh for p(200). For K = 0.75 (Tables 6 and 7), it ranks
sixth for the amplitude of oscillations x and seventh for the amplitude of y and p; it ranks
thirds, fourth, and second respectively for the periods of oscillations of x, y, and p. For
K = 1.00 (Table 4), it ranks fifth for x(200), and seventh for both y(200) and p(200). For
K = 2.00 (Table 5), it ranks eighth for x(200) and y(200), and eleventh for p(200).

Comparatively, the grazer ingestion rate c ranks second, fourth, and fourth forK = 0.25
x, y, and p respectively. It ranks first for all amplitudes of oscillation forK = 0.75, and fifth,
fifth, and sixth for the periods. For K = 1.00, c ranks third, third, and second. Finally, for
K = 2.00, c ranks third, fourth, and fourth for x, y, and p respectively. The above rankings
are summarized in Table 8.
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Table 3. The sensitivity of variables to the parameters, sorted from largest to smallest absolute value,
for low light (K = 0.25; ode23s).

Strength P S.I. x(200) P S.I. y(200) P S.I. p(200)

1 ê −1.6572 ê 2.5140 ê −1.3297
2 c −1.6572 d̂ −2.5130 d̂ 1.3294
3 d̂ 1.6568 K 1.9132 T 1.2674
4 a 1.000 c 1.5148 c −1.0321
5 r 4.4438e−10 r 1.0000 K −0.7885
6 K 2.1687e−10 a −0.9130 a 0.6225
7 T −1.7783e−10 T 6.54054e−11 r −0.4121
8 ĉ −1.3844e−10 ĉ 4.8559e−11 θ −0.2979
9 â 1.1039e−10 â −37830e−11 ĉ 0.1321
10 θ 8.0970e−11 θ −2.9463e−11 â −0.1015
11 d −3.9728e−13 d −1.5743e−12 d −0.0179
12 q 0 q 0 q 0

Table 4. The sensitivity of variables to the parameters, sorted from largest to smallest absolute value,
for high light (K = 1.00; ode23s).

Strength P S.I. x(200) P S.I. y(200) P S.I. p(200)

1 K 3.2753 θ −4.0834 θ 3.3279
2 θ 3.2020 T 4.0779 c −3.3247
3 c −3.1968 c 3.0786 K 2.3832
4 T −3.1953 K −2.1853 T −2.3250
5 r 1.6325 d̂ −2.0146 d̂ 2.1432
6 d̂ 1.5715 ê 2.0145 ê −2.1430
7 ê −1.5715 r −1.0892 r 1.1878
8 a 0.8625 a −0.8336 a 0.8999
9 ĉ −0.0357 ĉ 0.0458 ĉ −0.0260
10 â 0.0343 â −0.0440 â 0.0250
11 d 0.0050 d −0.0064 d 0.0036
12 q 0 q 0 q 0

Table 5. The sensitivity of variables to the parameters, sorted from largest to smallest absolute value,
for very high light (K = 2.00; ode23s).

Strength P S.I. x(200) P S.I. y(200) P S.I. p(200)

1 K 1.0014 d̂ −40.3478 T 0.9945
2 d̂ 0.0018 θ −34.2900 d̂ 0.0066
3 c −0.00157 T 34.1587 K 0.0058
4 θ 0.00156 c 33.4886 c −0.00551
5 T −0.00155 ê 33.0903 θ 0.00547
6 ê −0.0015 K −39.3316 ê −0.0054
7 a 1.7753e−04 a −3.7990 d −0.0010
8 r 7.5568e−05 r −0.6150 ĉ 9.9984e−04
9 ĉ −2.1494e−06 ĉ 0.0473 â −9.9613e−04
10 â 2.1034e−06 â −0.0463 a 6.2477e−04
11 d 1.5530e−06 d −0.0243 r 1.0118e−04
12 q 0 q 0 q 0

The sign of the indices corresponds to the direction of the relationship between the
parameter and the target value. We see that increasing r consistently increases the steady-
state producer carbon density; for low light, it increases the steady-state grazer carbon
density and decreases the steady-state producer phosphorus density, and vice versa for
(very) high light. This suggests that increasing the intrinsic growth rate of the producer
is consistently good for the producer, while it is only good for the grazer at low light and
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Table 6. The sensitivity of the amplitudeof oscillations to theparameters, sorted from largest to smallest
absolute value, for intermediate light (K = 0.75; ode23s).

Strength P S.I. x amp P S.I. y amp P S.I. p amp

1 c 3.9124 c 4.2797 c 5.7681
2 a −3.6197 T 4.0362 T 5.1911
3 θ −3.3473 θ −3.9980 a −4.1941
4 T 3.3446 a −2.9970 θ −4.0400
5 d̂ −2.0498 ê 2.4612 d̂ −3.0475
6 r −2.0058 d̂ −2.4329 ê 2.9610
7 ê 1.5260 r −2.0534 r −2.7508
8 K 1.3498 K 0.2578 K 0.1410
9 ĉ 0.1715 ĉ 0.2078 â −0.1270
10 â −0.1544 â −0.1908 ĉ 0.0372
11 d −0.0094 d −0.0108 d −0.0118
12 q 0 q 0 q) 0

Table 7. The sensitivity of the period of oscillations to the parameters, sorted from largest to smallest
absolute value, for intermediate light (K = 0.75; ode23s).

Strength P S.I. x pd P S.I. y pd P S.I. p pd

1 θ 1.2673 K 1.2723 K 1.2832
2 K 1.2498 θ 0.9735 r −1.0029
3 r 1.2461 T −0.6442 θ 0.9537
4 d̂ −1.1570 r 0.6073 d̂ −0.8080
5 c −0.6355 c −0.5824 T −0.6410
6 T −0.5347 ê −0.3794 c −0.5695
7 ê −0.4139 a −0.3253 ê −0.3749
8 a 0.1283 â −0.0576 a −0.2894
9 â −0.0867 ĉ 0.0570 â −0.0558
10 ĉ 0.0852 d̂ −0.0314 ĉ 0.0553
11 d 00019 d 0.0019 d 0.0019
12 q 0 q 0 q 0

Table 8. The ranking of r and c among the 12 parameters for the sensitivity indices. For K = 0.75, the
rankings are amplitude first, then period.

K r S.I. x r S.I. y r S.I. p c S.I. x c S.I. y c S.I. p

0.25 5th 5th 7th 2nd 4th 4th
0.75 6th/3rd 7th/4th 7th/2nd 1st/5th 1st/5th 1st/6th
1.00 5th 7th 7th 3rd 3rd 2nd
2.00 8th 8th 11th 3rd 4th 4th

harmful for higher light conditions. This is likely due to the resulting decrease in nutri-
ent quality of the producer with higher growth rates but limited phosphorus resources. At
intermediate light, increasing r decreases the amplitude of oscillations in all three variables,
while it increases the period for carbon but decreases the period for producer phosphorus.
This suggests that overall r has a dampening effect on oscillations. In this case, increasing
K consistently increases both amplitude and period of oscillations.

Overall, we notice that the system is more sensitive to the grazer ingestion rate than to
the intrinsic growth rate of the producer. Therefore, the grazer’s impact on the turnover
rate is more influential in the contrast between terrestrial and aquatic ecosystems than the
producer’s. In general, the sensitivity rank of r decreases as light intensity increases, and
the system is overall more sensitive to c for intermediate to high light levels. Given this
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is local sensitivity analysis, it is entirely dependent on the baseline parameters. Note that
for the parameters used, the systems with K = 0.25 and K = 1.00 approach the coexis-
tence equilibrium; K = 0.75 produces coexistence oscillations; and K = 2.00 approaches
the grazer extinction boundary equilibrium. Sincewe explicitly know the formof the grazer
extinction equilibrium, the sensitivity results for K = 2.00 are not unexpected. However,
the results forK = 0.25 andK = 1.00 give us insight into the coexistence equilibrium that
was not solved for explicitly.

4.3. Bifurcation analysis

Bifurcation analysis was performed using MatCont [3]. For all one parameter bifurcation
diagrams, a solid blue curve represents a stable equilibrium point; a magenta dashed curve
is an unstable equilibrium point; and a cyan dotted curve represents a stable limit cycle.

4.3.1. One parameter
In Figure 4, we see that the boundary equilibria are unstable for all r ∈ (0, 2]. The coexis-
tence equilibrium is always stable for K = 0.25, r ∈ (0, 2], and c held at its baseline value.
There is a Neutral Saddle Equilibrium that occurs at r = 0.0574999999999425, as well as
a branch point, a Hopf point, and another branch point which occur at numbers that are
e−13, e−11, and e−12 (i.e. essentially 0 and too small to continue in the two-parameter
diagrams).

In Figure 5, for K = 0.25, we see that there is a transcritical bifurcation, which occurs
at c = 0.594559616369951. At this bifurcation, the grazer extinction equilibrium becomes
unstable and the coexistence equilibrium becomes stable. Note that before this bifurcation
point, the coexistence equilibrium is not biologically feasible. In Section 3.3, we found that
the determinant of the Jacobian evaluated at the grazer extinction equilibrium changed
signs at c = 0.5946, since K = 0.25 falls under case 4. This validates our result.

Stable EP
Unstable EP

0 0.5 1 1.5 2
r

0

0.2

0.4

0.6

0.8

1

y

Stable EP
Unstable EP

Figure 4. One parameter bifurcation diagrams for r with low light (K = 0.25); c is held at its baseline
value. x is on the left and y is on the right. There are no bifurcations. The coexistence equilibrium is stable
throughout.



22 C. M. DAVIES AND H. WANG

Figure 5. One parameter bifurcation diagrams for c with low light (K = 0.25); r is held at its baseline
value. x is on the left and y is on the right. There is a transcritical bifurcationaround c = 0.59. For c < 0.59,
we observe a stable grazer extinction equilibrium; for c> 0.59, the coexistence equilibrium is stable.

As shown in Figure 6, the complete extinction equilibrium and the grazer extinction
equilibrium are both unstable for the full range of r values forK = 0.75. However, there are
several bifurcations. There is a saddle-node bifurcation at r = 1.151380, where an unstable
saddle coexistence equilibrium collides with a stable node coexistence equilibrium. There
is a Hopf bifurcation at r = 1.23910, where a stable limit cycle disappears, and a branch of
the coexistence equilibrium becomes stable. Then there is another saddle-node bifurcation
at r = 1.23951, at which this stable branch of the coexistence equilibrium collides with an
unstable branch. Note that this interval of stability is too small to see in the diagram. It
is possible that between r = 1.23910 and r = 1.23951 there is tristability. There is also a
neutral saddle equilibrium point, and a branch point at a very low parameter value.

FromFigure 7, forK = 0.75, the grazer equilibrium is stable until the transcritical bifur-
cation at c = 0.397464101826043, where the coexistence equilibrium becomes biologically
feasible and stable. There are two saddle-node bifurcations: the first is at c = 0.62783 and
the second is at c = 0.650870. Note that only the second is clearly visible in Figure 7. Also,
a stable limit cycle appears with an increasing amplitude at a Hopf bifurcation around
c = 0.62800. As with the bifurcation diagram for r, there is clearly an interval of bistability
between the Hopf bifurcation and the second saddle-node bifurcation, and there may be
an interval of tristability around c ∈ [0.62783, 0.62800]. In Section???, we found that the
determinant of the Jacobian evaluated at the grazer extinction equilibrium changed signs
at c = 0.3975, since K = 0.75 is in Case 3. This agrees with the transcritical bifurcation
point observed here.

For all values of r for K = 2.00, the grazer extinction equilibrium is stable, as shown in
Figure 8.

For K = 2.00 and c, the grazer extinction equilibrium is stable until the coexistence
equilibrium becomes biologically feasible and stable at c = 0.892787137713355 (Figure 9),
whichmatches the value found in Section 3.3. There is also a saddle-node bifurcation at c =
1.302372, and a neutral saddle equilibrium at c = 0.698479. Based on the dynamics, there
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Figure 6. One parameter bifurcation diagrams for r with intermediate light (K= 0.75); c is held at its
baseline value. x is on the left and y is on the right. There is a saddle-node bifurcation around r = 1.15,
a Hopf bifurcation around 1.23910, and another saddle-node bifurcation around r = 1.23951. For r <

1.23910, there is a stable limit cycle; for r > 1.15, there is a stable coexistence equilibrium. Theremay be
bistability between a coexistence equilibrium and a limit cycle for r ∈ (1.15, 1.23910).
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Figure 7. One parameter bifurcation diagrams for c with intermediate light (K= 0.75); r is held at its
baseline value. x is on the left and y is on the right. There is a transcritical bifurcation around c = 0.40,
saddle-node bifurcations at c = 0.62783, 0.65, and a Hopf bifurcation at c = 0.62800. For c < 0.40,
grazer extinction is stable; for 0.40 < c < 0.65, coexistence; and for c > 0.62800, oscillations.

should be another saddle-node bifurcation and a Hopf bifurcation between the unstable
coexistence equilibrium and the stable limit cycle (as in Figure 7), but they could not be
found using MatCont. Period doubling happens at the left end of the oscillations.

4.3.2. Two parameter
For Figure 10 (a), the vertical line is the transcritical bifurcation. The stable behaviour in
the regions is: (1) grazer extinction equilibrium; and (2) coexistence equilibrium.
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For Figure 10 (b), the vertical line is the transcritical bifurcation and the diagonal line
corresponds to the saddle-node bifurcation along the coexistence equilibria curve. There is
a cusp point where the two curves intersect. Note that from the one parameter analysis, we
know there should also be a Hopf branch, but it could not be continued in two parameters
usingMatCont. There should also be another saddle-node curve. There is probably a region
of bistability missing from this diagram, but the saddle-node bifurcation likely provides a
decent approximation of the transition between a stable coexistence equilibrium and stable

Figure 8. One parameter bifurcation diagrams for r with very high light (K = 2.00); c is held at its base-
line value. x is on the left and y is on the right. There are no bifurcation points. The grazer extinction
equilibrium is stable throughout.
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Figure 9. One parameter bifurcation diagrams for cwith very high light (K = 2.00); r is held at its base-
line value. x is on the left and y is on the right. There is a transcritical bifurcation around c = 0.89 and
a saddle-node bifurcation at c = 1.30. The grazer extinction equilibrium is stable for c< 0.89; then the
coexistence equilibrium is stable for 0.89 < c < 1.30; then there is a stable limit cycle for c> 1.30.
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3
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Saddle-node

4

Figure 10. Two-parameter bifurcation diagrams, varying K. Green solid curves correspond to transcriti-
cal bifurcations, andmagenta dashed curves to saddle-node bifurcations. For regional stable behaviour,
(1) corresponds to the grazer extinction equilibrium, (2) to a coexistence equilibrium, (3) to coexistence
oscillations, and (4) to coexistence oscillations.

coexistence oscillations. The regional stable behaviour is: (1) grazer extinction equilibrium;
(2) coexistence equilibrium; and (3) coexistence oscillations.

For Figure 10 (c), we see the similar curves and regions to Figure 10 (b). This is due to the
smaller difference between K = 0.75 and K = 1.00 relative to the other increments in K.
However, the shift in the saddle-node curve is sufficient to justify the different behaviours
observed at baseline for K = 0.75 and K = 1.00.

For Figure 10 (d), the vertical line is the transcritical bifurcation. The magenta curve
is from the saddle-node bifurcation along the coexistence equilibrium curve. The point
where the curves intersect is a cusp point. As in the one parameter bifurcation analy-
sis, there is likely a missing Hopf curve and a missing saddle-node curve. However, these
curves could not be located properly to be extended in the two parameter diagrams. The
regions are: (1) grazer extinction equilibrium; (2) coexistence equilibrium; (3) coexistence
oscillations; and (4) coexistence oscillations. Note that the lower part of the saddle-node
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branch does not appear as a limit point when one parameter bifurcation diagrams are
created for r, using c = 1.00 or c = 2.00.

We assumed that all parameters other than r and c are the same between terrestrial
and aquatic ecosystems. Since the baseline values for r and c (0.93 and 0.75 respectively),
were for an aquatic system, then we consider roughly the lower left hand corner of the dia-
grams to represent terrestrial ecosystems and the opposite to represent aquatic. Thus, in
low light conditions, we expect either grazer extinction or coexistence at an equilibrium for
terrestrial ecosystems, and coexistence at equilibrium for aquatic (Figure 10 (a)). For inter-
mediate to high levels, we would expect to see a variety of possible dynamics for terrestrial
systems including grazer extinction, coexistence at equilibrium, and coexistence oscilla-
tions; for aquatic, these results suggest coexistence would occur (Figure 10 (b)–(c)). Lastly,
for very high light levels, achievable only in a laboratory setting, we expect the terrestrial
grazer to die out completely, and the aquatic system to exhibit some form of coexistence
(Figure 10 (d)).

We observe that from the grazer equation with Holling type II:

dy
dt

< y ∗ (êc − d̂)

Since y ≥ 0 biologically, then thismeans that for c < d̂/ê = 0.2973, the grazer’s population
is decreasing, regardless of the size of the producer population or the light intensity. So for
low c, we can only ever see extinction of the grazer, as found in above diagrams. Given that
terrestrial populations persist, this would seem to suggest that the value of cmust be above
this threshold, even in terrestrial ecosystems. This may also suggest that the grazer’s loss
rate should also be lower in terrestrial populations than in aquatic.

4.4. WKL vs. LKEmodel

Wang et al. (2008) [18] found that solutions of the WKL model are almost identical to
those of the LKE model for small or large K, while they slightly differ for intermediate K.
However, whenK is near the homoclinic bifurcation point (K = 0.95), they are completely
different.

To investigate if there are any similar differences between the twomodels as c and r vary,
simulations were completed using ode23s for the WKL model and the LKE model for all
possible combinations of K in {0.25, 0.75, 1.00, 2.00, 0.95}, r in {0.1, 1.0, 2.0}, and c in {0.1,
1.0, 2.0}.

The two differ slightly quantitatively for

• K = 0.25: r = 1, c = 2; r = 2, c = 2.
• K = 0.75: r = 1, c = 1; r = 1, c = 2; r = 2, c = 1; r = 2, c = 2.
• K = 1.00: r = 1, c = 1; r = 1, c = 2; r = 2, c = 1; r = 2, c = 2.
• K = 2.00: r = 1, c = 1; r = 1, c = 2; r = 2, c = 2.
• K = 0.95: r = 1, c = 1; r = 1, c = 2; r = 2, c = 1; r = 2, c = 2.

We notice that there is never discernible differences for r = 0.1 or c = 0.1. Thus for
very low intrinsic growth rate and grazer ingestion rate, there is no noticeable difference
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between the two models, regardless of the value of K. For none of the simulated combi-
nations were there completely different dynamics as there were for the baseline values of
r and c, and K = 0.95. This indicates that the bifurcation point in K shifts for different
values of r and c.

The differences between the WKL and LKE models relate to the relaxation of the
assumption that there is no free phosphorus in the media. Given the above, we can con-
clude that this assumption matters more for aquatic ecosystems with intermediate to high
turnover rates than for terrestrial ecosystems. This is likely because at very low values of
c, the phosphorus-related quality of the producer is less likely to be the controlling fac-
tor in the grazer’s population since the inability to keep up with their death rate is more
important.

5. Discussion

Multiple mathematical models have been developed to study the flow of nutrients and
energy through a grazer–producer system. In particular, the WKL model allows for free
phosphorus in the media. The impact of changing the light dependent carrying capacity of
the producer on the dynamics of this system have been studied in the past. However, other
parameters are also of interest.

In particular, the intrinsic growth rate of the producer (r) and the maximal ingestion
rate of the grazer (c) vary between aquatic and terrestrial ecosystems, particularly for ter-
restrial systems with large producers and herbivores. In general, both rates are lower in
terrestrial ecosystems than aquatic, resulting in a slower turnover rate for producer biomass
in terrestrial-based than aquatic-based ecosystems. All other parameters are assumed to be
the same, regardless of whether the system is terrestrial or aquatic.

For very low r and c, extinction of the grazer is observed numerically; for very high r
and c, oscillatory coexistence or coexistence at a steady state is observed, depending on
the value of K. This seems to suggest that aquatic ecosystems are more prone to exhibiting
coexistence than terrestrial ecosystems.

Overall, local sensitivity analysis implies that r and c are not the most important param-
eters in determining the asymptotic behaviour of the system. Other parameters have
more influence over the results for this particular parameter regime, but these may dif-
fer in general between aquatic and terrestrial ecosystems. Generally c has more influence
than r, and changing K has more of an influence on the sensitivity of the system to r
than it does on c. We also observe that the grazer loss rate is more influential for inter-
mediate to high light levels, and that the system becomes more sensitive to the light
intensity dependent carrying capacity as it increases. Note that this is likely because at
(very) high light levels, the system for these parameter values reaches the grazer extinc-
tion equilibrium, where the prey population is at their light intensity dependent carrying
capacity.

Part of the reason that the analysis indicates that terrestrial populations should not per-
sist could be due to other parameters that should differ. As mentioned in the bifurcation
analysis, the grazer’s loss rate is likely to have a strong impact, which is reaffirmed by the
fact that it was one of the parameters the systemwas themost sensitive to at extreme values
ofK and the fact that it is part of the stability condition of the grazer extinction equilibrium.
Light intensity likely also differs considerably between terrestrial and aquatic ecosystems,



28 C. M. DAVIES AND H. WANG

and we see that the grazer extinction region shrinks with increasing K until a point and
then grows again. Intermediate light levels in terrestrial ecosystemsmay explain the persis-
tence of grazer populations observed naturally, while a lower grazer loss rate may explain
terrestrial grazer persistence in low light conditions (e.g. in the shade of a dense rainforest
canopy).

Future work could include examination of larger parameter ranges. During bifurca-
tion analysis, bifurcations were observed at higher values of the parameters in some cases,
but were not included due to the a priori parameter restrictions. It bears mentioning
that the baseline values used for r and c, which lie in the middle of the investigated
parameter ranges, are for an aquatic ecosystem. Further investigation of data to determine
other parameter regimes to test would help to more definitively contrast these ecosys-
tems. This could help with determining if there are other parameters that differ largely
that may contribute to the results observed naturally. Given the system’s sensitivity to
grazer loss rate, further explicit consideration of this parameter in addition to those exam-
ined here may help explain the unrealistic results implying that land herbivores cannot
persist. Global stability and sensitivity analyses focussing on r and c also have yet to be
completed.

Most stoichiometricmodels, including the onesmentioned here – LKE andWKL [9, 18]
– assume strict homeostasis for heterotrophs, that is, the grazer in the system must main-
tain a specific, fixed nutrient ratio within its cells, regardless of the nutrient availability in
its food [16]. This is in contrast to the larger variation in chemical content in the organ-
isms it consumes. However, this assumption is not completely realistic. It has been shown
to be reasonable when the stoichiometric variability of heterotrophs is sufficiently nar-
row, independent of variation in their food source, and to be not valid for herbivores
with small mortality rates [20]. Therefore, in the case that explicit consideration of grazer
loss rate is taken into account, a model may need to be used that relaxes or removes this
assumption [19].

There are several unsolved open mathematical problems for the nonsmooth WKL
model [18]. As mentioned previously, global stability analysis still has yet to be com-
pleted. Even within local stability analysis, there are cases where no conclusions could
be reached (see Appendix). The Holling type II functional responses used here produce
equilibria which depend on many parameters, as well as similarly complicated Jaco-
bian matrices. These complexities make local stability analysis challenging. A necessary
condition for stability of the extinction equilibrium may be intriguing to find, given
the one presented here is only sufficient. In addition, all bifurcation analysis was com-
pleted using the bifurcation software Matcont. As such, rigorous bifurcation analysis for
r and c still needs to be performed mathematically. Investigation of the higher codi-
mension bifurcations observed in the two-parameter bifurcation diagrams could also be
illuminating.
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A. Appendices

A. Appendix 1. stability analysis

A.1. Case 1: p̄ < Kq and p̄ < θ x̄: E1 = (p̄/q, 0, p̄)

Boundary equilibrium:

(
dq(â + T) − ĉT

q(dq − ĉ)
, 0,

dq(â + T) − ĉT
dq − ĉ

)

Jacobian:

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−r − cp̄
aq + p̄

r
q

0
cêp̄q

θ(aq + p̄)
− d̂ 0

ĉ(T − p̄)
â + T − p̄

− âĉθ p̄
q(â + T − p̄)2

− cp̄q
aq + p̄

− âĉp̄
q(â + T − p̄)2

− d

⎤
⎥⎥⎥⎥⎥⎥⎦

Let the entries of matrix A1 be labelled with 1–9 (left to right, then top to bottom). Then we have

1. = −r

2. = −c[dq(â + T) − ĉT]
q[a(dq − ĉ) + d(â + T)] − ĉT

3. = r
q

4. = 0

5. = cêq[dq(â + T) − ĉT]
θ(aq(dq − ĉ) + dq(â + T) − ĉT)

− d̂

6. = 0

7. = dq

8. = −θ(dq(â + T) − ĉT)(dq − ĉ)
âĉq

− cq[dq(â + T) − ĉT]
âdq + (aq + T)(dq − ĉ)

9. = −d2q2(â + T) + ĉT(ĉ − 2dq)
âĉq



JOURNAL OF BIOLOGICAL DYNAMICS 31

Then

Tr(A1) = 1. + 5. + 9

= −r + cêq[dq(â + T) − ĉT]
θ(aq(dq − ĉ) + dq(â + T) − ĉT)

− d̂ − d2q2(â + T) + ĉT(ĉ − 2dq)
âĉq

det(A1) = 5.(1. ∗ 9. − 3. ∗ 7.)

=
(

cêq[dq(â + T) − ĉT]
θ(aq(dq − ĉ) + dq(â + T) − ĉT)

− d̂
)(

r
(
d2q2(â + T) + ĉT(ĉ − 2dq)

âĉq

)
− rd

)
A11
1 = 5. ∗ 9.

=
(

cêq[dq(â + T) − ĉT]
θ(aq(dq − ĉ) + dq(â + T) − ĉT)

− d̂
)(

−d2q2(â + T) + ĉT(ĉ − 2dq)
âĉq

)
A22
1 = 1. ∗ 9. − 3. ∗ 7.

= r
(
d2q2(â + T) + ĉT(ĉ − 2dq)

âĉq

)
− rd

A33
1 = 1. ∗ 5.

= −r ∗
(

cêq[dq(â + T) − ĉT]
θ(aq(dq − ĉ) + dq(â + T) − ĉT)

− d̂
)

A.2. Appendix 2. Case 2: p̄ < Kq and p̄ > θ x̄: E1 = (p̄/q, 0, p̄)

Boundary equilibrium:

(
dq(â + T) − ĉT

q(dq − ĉ)
, 0,

dq(â + T) − ĉT
dq − ĉ

)

Jacobian:

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−r − cp̄
aq + p̄

r
q

0
cêp̄

aq + p̄
− d̂ 0

ĉ(T − p̄)
â + T − p̄

− âĉθ p̄
q(â + T − p̄)2

− cp̄q
aq + p̄

− âĉp̄
q(â + T − p̄)2

− d

⎤
⎥⎥⎥⎥⎥⎥⎦
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Let the entries of matrix A1 be labelled with 1–9 (left to right, then top to bottom). Then we have

1. = −r

2. = −c[dq(â + T) − ĉT]
q[a(dq − ĉ) + d(â + T)] − ĉT

3. = r
q

4. = 0

5. = cê[dq(â + T) − ĉT]
aq(dq − ĉ) + dq(â + T) − ĉT

− d̂

6. = 0

7. = dq

8. = −θ(dq(â + T) − ĉT)(dq − ĉ)
âĉq

− cq[dq(â + T) − ĉT]
âdq + (aq + T)(dq − ĉ)

9. = −d2q2(â + T) + ĉT(ĉ − 2dq)
âĉq

Then

Tr(A2) = 1. + 5. + 9.

= −r + cê[dq(â + T) − ĉT]
aq(dq − ĉ) + dq(â + T) − ĉT

− d̂ − d2q2(â + T) + ĉT(ĉ − 2dq)
âĉq

det(A2) = 5.(1. ∗ 9. − 3. ∗ 7.)

=
(

cê[dq(â + T) − ĉT]
aq(dq − ĉ) + dq(â + T) − ĉT

− d̂
)(

r
(
d2q2(â + T) + ĉT(ĉ − 2dq)

âĉq

)
− rd

)
A11
2 = 5. ∗ 9.

=
(

cê[dq(â + T) − ĉT]
aq(dq − ĉ) + dq(â + T) − ĉT

− d̂
)(

−d2q2(â + T) + ĉT(ĉ − 2dq)
âĉq

)
A22
2 = 1. ∗ 9. − 3. ∗ 7.

= r
(
d2q2(â + T) + ĉT(ĉ − 2dq)

âĉq

)
− rd

A33
2 = 1. ∗ 5.

= −r ∗
(

cê[dq(â + T) − ĉT]
aq(dq − ĉ) + dq(â + T) − ĉT

− d̂
)
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