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Quantitative assessment of full field deformation of right ventricle during open heart 
surgery
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aTampere University, Faculty of Engineering and Natural Sciences, Tampere, Finland; bTampere University Hospital Heart Center, Tampere, Finland; 
cTampere University, Faculty of Medicine and Life Sciences, Tampere, Finland

ABSTRACT
A mathematical method is introduced for quantifying full field deformation images of right ventricle (RV) 
of the heart. These images are acquired from the RV of the heart during open-heart surgery and analysed 
using digital image correlation (DIC). The high degree of complexity of the deformation of the heart, 
especially for the patients who require heart surgery emphasises the importance of a method to analyse 
the visible section of the surface of the RV. This is difficult with conventional heart-monitoring methods, 
which rely on describing the overall deformation of the area of interest by measuring the deformation 
between two points only and discarding all other relevant information contained in the area of interest. In 
this work, we decomposed the full field deformation images of the visible section of RV into shape 
descriptor vectors and used the Euclidian distance between two shape descriptor vectors obtained from 
the reference image and the analysed image to quantify the full field deformation by a single number. 
The Euclidian distance was used to compare the motion and deformation state of the heart at various 
stages during the operation. We demonstrate that the Euclidian distance is a more robust indicator 
describing the overall function of the heart than an individual strain value, especially in case of poor- 
quality images from which the strain is derived.
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Introduction

Monitoring and analysing the functions of the heart is an 
important aspect of open-heart surgery. Since the functions 
of the heart are closely related to its deformation and move-
ments (Smiseth et al. 2016), various echocardiography methods 
have been developed to measure and analyse the movements, 
deformation, strain, and strain rate of the heart (Dandel et al. 
2009). These methods include Tissue Doppler Imaging (TDI) 
(Sutherland et al. 1999; Krishna and Thomas 2015) and 
Speckle Tracking Echocardiography (STE) (Blessberger and 
Binder 2010; Bansal and Kasliwal 2013). While these methods 
have their own set of advances and shortcomings (Teske et al. 
2009), what they have in common is that they can only take 
into account the deformation on a planar area (2D deforma-
tion). In reality, the heart deforms in a rather complex manner, 
and there are significant out of plane movements and rotations 
that are difficult to analyse from a 2D image. Additionally, TDI 
and STE results are limited to pre-selected areas/directions of 
the heart that are chosen before the measurements. 
Consequently, only a portion of the potential data is available 
for analysis at a time. However, the deformation of the heart is 
very complex and far from uniform. This fact is even more 
exacerbated when the heart of the sick patient is already 
functioning in a non-optimal manner, therefore necessitating 
the surgery in the first place. During the open-heart surgery 
and cardiopulmonary bypass (CPB), the functions of the heart 
are temporarily performed by the CPB circuit. After the surgical 
repairs and during the weaning process, the heart resumes its 

functionality and therefore, the deformation of heart is far from 
normal. This high complexity in deformation of the heart neces-
sitates the study of the full field deformation over the visible 
section of the ventricle or atrium. While this area does not fully 
cover the entire RV, it is usually enough to represent the RV 
movement. The deformation is most likely very anisotropic and 
non-uniform, but it still is a common practice to describe the 
function of the RV by a single scalar strain value. For example, 
the modern ultrasound techniques typically use segmentation 
to analyse strains of different parts of the heart, but the strain 
itself is a simple engineering strain that describes only the 
deformation between two selected points and ignores informa-
tion encoded in all other image points.

We previously have demonstrated that Digital Image 
Correlation (DIC) can be an effective tool for analysing the 
deformations of the right ventricle (RV) of the heart (Soltani 
et al. 2018). DIC is an image analysis method that relies on visual 
access to the target surface. Consequently, using DIC to monitor 
the deformation of the RV is possible because this section of the 
heart is visible during an open-heart surgery. In its simplest form, 
DIC measures the displacement by tracking features across the 
target surface in consecutive images (Planca et al. 2015). DIC can 
generate displacement vectors at such high spatial resolution 
that in practice, the analysis produces a full field deformation 
image of the selected area of interest. Since the full field defor-
mation images can contain the deformation information of each 
pixel in the entire region of interest, it is virtually impossible to 
quantitatively analyse the differences between two deformation 
images or to quantitatively interpret the changes in several 
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consecutive full field deformation images of the target. By 
visually inspecting these full field deformation images, one can 
generally perceive the differences and changes from one image 
to other, but obviously it is not scientifically quantifiable.

Orthogonal decomposition techniques such as Zernike 
(Teague 1980) and Tchebichef (Mukundan et al. 2001) are emer-
ging methods for quantifying the deformation field images. 
Orthogonal decomposition decomposes the high-resolution 
images into shape descriptors that can then be used to recon-
struct the original image. Usually a higher number of such shape 
descriptors leads to better reconstruction of the original images 
with fewer errors. This reliable method can quantify an image 
with a manageable number of numerical data. The shape 
descriptors can be considered as a vector that typically has 
relatively low number of elements. If one considers two images 
that are decomposed into shape descriptor vectors, the vectors 
are quite similar if the two images were originally similar, but if 
the images are very different, then the resulting vectors are 
different as well. The difference between the two shape descrip-
tor vectors can be quantified by simply calculating the mathe-
matical distance between the two vectors. This distance is called 
the Euclidian distance and it can be used to quantify the differ-
ences between various images by a single number. The Euclidian 
distance includes the information from the whole image that 
was input into the decomposition process (Figure 2(a)). The 
viability of this process has already been represented in a few 
studies. For example, Sebastian et al. (Sebastian et al. 2012) 
validated the orthogonal decomposition for modelling deforma-
tion field of a few sample tensile tests. In a more practical study, 
Christian et al. (Christian et al. 2018) used the same method to 
assess the strain field in DIC images of a composite material.

The aim of this work is to develop and demonstrate 
a methodology based on the orthogonal image decomposition 
for the quantitative analysis of the mechanical behaviour and 
functionality of the RV during open-heart surgery. The images 
were obtained, and image analysis was used at different stages 
during the operation to compare the movements and deforma-
tion of the heart. The results show the potential of a more com-
prehensive deformation analysis method in the field of heart 
monitoring. The orthogonal decomposition can fully characterise 
the deformation of the RV in a concise, robust, and simple man-
ner, which may assist the medical staff to better understand the 
functions of the heart during and after an open-heart surgery.

Materials and methods

The DIC setup used in this work comprised two 5-megapixel E-lite 
cameras with 50 mm Nikon lenses. The space directly above the 
surgery table is highly controlled sterile environment and any 
interference with it is against regulations. Thus, the DIC cameras 
were mounted on the side of the surgery table using a custom- 
made vertical rod, overlooking the patient`s chest at a ~ 65 
degrees angle and ~2 metres distance. A comprehensive descrip-
tion of the test setup, practical limitations, error sources, and 
several examples can be found in our previous publication 
(Soltani et al. 2018).

The target surface needs to have a random high-contrast 
speckle pattern (Jones and Ladicola 2018). Since in most 
cases the heart of the patients is covered with a thin layer 

of fat, the natural contrast of the heart does not provide 
enough contrast for DIC image analysis (Ruixiang et al. 
2017). In this work the surface of the heart was patterned 
with random dots applied using a non-toxic medical marker 
(Methylene blue). This pattern is a compromise between 
accurate DIC measurements, and the practical limitations 
imposed by the environment. The ink must be sterile and 
non-toxic, and applying the pattern must not interfere with 
the medical procedure too much. Figure 1 shows an example 
of such pattern for one of the surgeries of this study. In our 
previous work, we have presented details of the application 
of the pattern, the effect of the pattern quality on the spatial 
and strain resolution of the measurements and discussed the 
changes of the pattern quality between different stages of 
the surgery. For further details please see (Hokka et al. 2015a; 
Soltani et al. 2018).

The coarse contrast pattern shown in Figure 1 necessitates 
the use of large subsets. The displacement vectors are calcu-
lated by dividing the original image into smaller subset images 
and tracking the movement of the subsets in consecutive 
images. The subset must contain enough distinguishable 
image data so it can be reliably identified in the consecutive 
images. Therefore, if the contrast pattern is coarse, or the dots 
are big and far from each other, then the size of the subset must 
be also large enough so that it includes at least three identifi-
able features (Jones and Ladicola 2018). The spatial resolution 
of the DIC also depends on the size of the subset, and the 
resolution decreases with larger subsets. Even if one places 
a subset at each pixel location, the large subsets will simply 
overlap significantly, and they will largely contain the same 
image data. Therefore, the independent displacement mea-
surements can only be obtained from subsets that are sepa-
rated from each other by a distance, which increases with the 
size of the subset. The subset may also deform and rotate 
between the images. Mathematically this can be considered 
by using shape functions that allow the shape of the subset to 
change between the images. Large subsets are prone to non-
linear deformations inside the subsets, and therefore the use of 
mathematically more complex shape functions is required 
(Jones and Ladicola 2018). Using a second order nonlinear 

Figure 1. Speckle patterns applied to the two cases used in this work.
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shape functions significantly improves the strain resolution and 
reduces the negative impact of the increasing subset size on 
the spatial resolution (Ruixiang et al. 2017). For full mathema-
tical description of the subset tracking and the shape functions, 
please refer to (Sutton et al. 2009).

This paper presents the results of the open-heart surgery from 
two patients as examples of the proposed image analysis 
method. Our goal is not to give in-depth medical relevance nor 
statistically meaningful data on the conditions of the patients, 
but to demonstrate the benefits of the new method with data 
obtained from two randomly selected patients. The patients 
involved in the study gave written consent acknowledging 
their participation and receiving the information regarding the 
risks of the study. The study protocol was reviewed and 
approved by the European Union Drug Regulating Authorities 
Clinical Trials (2016–000575-24). Both surgeries were imaged 
during three stages: Native (after sternotomy), Post- 
cardiopulmonary bypass or CPB (after the repairs of the heart), 
and inotrope (a theophylline bolus to increase the contraction 
force of the heart). During each stage, a sequence of approxi-
mately 200 images was recorded, which corresponds to approxi-
mately 15 heartbeats. Images were analysed offline using 
LaVision Davis 8.4 software. Table 1 shows how the DIC calcula-
tions were carried out. The longitudinal strain of the right ven-
tricle was measured across the visible surface of the heart using 
a virtual extensometer. The strain presented in this paper is the 
engineering strain, which is the change in the length of the 
virtual extensometer divided by its original length in the first 
(reference) image. This definition of strain is too simple on its 
own to describe the complex full field deformation and motion 
of the heart, as will be demonstrated later in this paper. The 
engineering strain, however, is typically used in the ultrasound 
technology, and therefore, it was used in this work as 
a ‘reference’ or standard strain definition. Majority of the results 
presented in this work focus on the analysis of the full field 
displacement data.

The quantitative comparison of the deformation of the heart 
in different images was carried out using the full field displace-
ment field images. The displacement information, or the length 

of the displacement vector, does not depend on the orientation 
of the cameras or the selected coordinate system. Figure 2 shows 
an example of a displacement field overlaid on the original 
image (Figure 2(a)) and with a simple black background (Figure 
2(b)). The example is from the native stage of surgery#1, and it 
shows an average deformation of 100 mm during the expansion 
phase of heartbeat (diastole). The displacement field images with 
only the displacement information (without the background 
image) were used for the orthogonal decomposition.

The decomposition of the displacement images was done 
using a Matlab-based software originally developed by 
Patterson and Christian (Christian and Patterson 2018). The 
software decomposes the input image into Tchebichef polyno-
mials and returns the polynomial vector for further processing. 
The detailed mathematical description of the process is pro-
vided in detail in Mukundan et al. (2001), and only a brief 
summary is given here to help the readers. Using a series of 
Tchebichef polynomials T i; jð Þ the displacement image I i; jð Þ is 
decomposed into: 

I i; jð Þ ¼
XN

k¼0

skI i; jð Þ (1) 

Where the coefficients sk is: 

sk ¼
Xn

i;j

I i; jð ÞTk i; jð Þ (2) 

Figure 2. Displacement field map of the heart (a) overlaid on the original image and (b) without the background.

Table 1. DIC analysis details.

Imaging frequency 15–20 Hz

Subset size 79 pixels
Subset shape function Nonlinear 2nd order
Step size 10 pixels
Pixel size ~0.03 mm
Calibration error ~0.1 mm
Interpolation method 6th order spline function
Strain calculation method for 

engineering strain
Virtual extensometer

Displacement calculation method Sum of differentials
Reference frame A new reference frame was selected for 

each heartbeat

COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 3



Here sk is the shape vector of I(i,j), n is the number of data 
points in the displacement field, and N is the selected number 
of shape descriptors. The shape descriptors describe the 
decomposed images quantitatively, and they can also be 
used to reconstruct the original image. Therefore, the differ-
ence in the moments can be used to quantitatively describe the 
difference between two images. If the image descriptors are 
simply used as vectors, the Euclidian distance between two 
shape descriptor vectors describing two images can be used 
to quantitatively describe the differences between the two 
images. If the images are very similar, then the moment vectors 
are very similar, and therefore the Euclidian distance is very 
small. On the other hand, if the images are very different, the 
Euclidian distance describing the difference between the two 
images will increase as well. The Euclidian distance d between 
two shape descriptor vectors p and q in the N-dimensional 
space can be calculated as: 

d p; qð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XN

i¼1

pi � qið Þ
2

v
u
u
t (3) 

The quality of the decomposition process can be evaluated by 
reconstructing the image using intensity shape descriptors. The 
accuracy of decomposition process can be assessed by com-
paring the intensities of the original image with the recon-
structed images: 

Er ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Xn

i;j

Î i; jð Þ � I i; jð Þ
� �2

v
u
u
t (4) 

Here n is the number of original images, ̂I i; jð Þ is the intensity of 
a pixel in the reconstructed and I i; jð Þ the intensity in the 
original image. For a more detailed description of Equations 1 
to 4 please refer to ref. (Sebastian et al. 2012). Any Er greater 
than 3 is an indication of poor reconstruction process. The Er is 
directly influenced by the number of decomposition shape 
descriptors (N), with higher values resulting in better recon-
struction result and lower errors.

The decomposition of the displacement images can use raw, 
smoothed or greyscale images as a source. The smoothing 
process for the smoothed images consists of applying 
a bilinear interpolation between the neighbouring vectors 
when available. Average value of available vectors is used 

when any are missing. Figure 3(a–c) shows the raw, smoothed 
and greyscale displacement field images for the native stage of 
surgery #2.

Results and discussion

Figure 4 shows the Euclidian distance obtained for several 
heartbeats for the smoothed, non-smoothed, and greyscale 
displacement images. The full field displacement image 
includes a very comprehensive description of the motion and 
deformation of the heart, but the quantitative comparison of 
two images is very difficult. The Euclidian distance between two 
image descriptor vectors describes the difference between the 
two by one single numerical value. For a single heartbeat, the 
first full field displacement image in the series can be used as 
the reference, and the rest of images in the sequence are 
compared to this image. Since the movement of the heart in 
one heartbeat is always somewhat cyclic, the reference or the 
first image should look very much like the last image. In one 
heartbeat, the displacement fields of the first and the second 
images are only slightly different, and thus the Euclidian dis-
tance is small. The difference between the displacement fields 
increases to a maximum value corresponding to the maximum 
contraction (end systole). As the heart relaxes and expands 
again towards the diastole, the displacement field images 
become more like the original reference image, leading to the 
Euclidian distance becoming smaller and eventually close to 
zero.

At all stages and for both surgeries, the Euclidian distance 
obtained from the greyscale images shows higher peak values 
for each heartbeat compared to the data obtained from the 
smoothed and non-smoothed colour images. An example of 
this is shown in Figure 4(a) which contains the Euclidian dis-
tance as a function of image number for the smoothed, non- 
smoothed and greyscale image data for the native surgery 
stage of patient #1 with 21 shape descriptors. The Euclidian 
distance for the smoothed and non-smoothed images shows 
very similar peak values and overall behaviour. The values of 
the Er describing the quality of the decomposition process for 
all three input variants for all decomposed images are between 
~0.06 and 0.2, thus showing good correlation between the 
original and reconstructed images. Figure 4(b) shows an exam-
ple of error values for each image type shown in Figure 4(a). 

Figure 3. Displacement field images (a) raw (b) smoothed (c) greyscale.
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Overall, the pre-processing of the input image does not seem 
to have a very strong effect on the Euclidian distance calcula-
tion, and the comparison of the images seems very robust. The 
greyscale images, however, do show a slightly higher sensitiv-
ity, as the Euclidian distance of the greyscale images changes 
more during one heartbeat than the Euclidean distance of the 
colour images of the same heartbeat. Thus, the greyscale dis-
placement images may be more sensitive to observe small 
differences in the overall behaviour of the heart. This is in 
accordance with a well-known phenomenon in the digital 
image processing field, where greyscale images are less prone 
to noises and artefacts as the result of digital compression of 
data (Christian and Patterson 2018).

Figure 5(a,b) shows the effect of increasing the number of 
shape descriptors on the average of the highest Euclidian dis-
tance observed in the four heartbeats for patient #1 and #2, 
respectively. For both patients, increasing the number of the 
shape descriptors from two to 21 is accompanied by an 
increase of ~0.1–0.2 in average peak values. However, if the 
number of shape descriptors is increased to from 21 to 121 and 
221, the average peak values barely change. The change in the 
Er values are more pronounced when the number of the shape 
descriptors increases. Regardless of the stage of the surgery, 
the Er of the decomposition process decreases on the average 
from ~0.3 to 0.1 when the number of shape descriptors 

increases up to 121 and stays the same for an increase to 221 
shape descriptors.

If only two shape descriptors are used, the peak Euclidian 
distance is lower in the native stage compared to the same 
images being decomposed with 21 or more shape descriptors. 
This is also similar for the Post-CPB and inotrope stage mea-
surements. Therefore, it is quite obvious that using 21 shape 
descriptors significantly improves the sensitivity of the analysis, 
but on the other hand, using more than 21 shape descriptors 
does not improve the sensitivity much more.

The peak Euclidian distance values describe essentially the 
difference between the deformation at maximum volume of 
the heart and the deformation at minimum volume after the 
systolic compression stage. Therefore, higher peak values indi-
cate larger global deformation. Since the cardiac functions are 
highly complex, any change in the deformation of myocardium 
could be the result of abnormal functionality of the heart. In 
turn, the change in the deformation of the heart is directly 
related to parameters such as ejection fraction and volume 
change in each cycle among other ones, as these parameters 
play an important role in describing the functionality of the 
heart. Consequently, Euclidian distance values, which have the 
potential to act as a direct correlation to the deformation of the 
entire visible section of the heart, could also be used to assess 
the functionality of the heart given that enough such data are 

Figure 4. (a)The Euclidian distance as a function of input image number of smoothed, non-smoothed and greyscale images for the native stage of the surgery #1 (b) 
The Er values as a function of input image number of smoothed, non-smoothed and greyscale images for the native stage of the surgery #1.

Figure 5. Average of the highest Euclidian distance for four heartbeats obtained with 2, 21, 121 and 221 shape descriptors for (a) surgery #1 and (b) surgery #2.
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available to establish the correlation. Of course, the deforma-
tion of the heart is very anisotropic (Soltani et al. 2019), which 
could result in localised expansion or contraction in the displa-
cement field images of the heart at the same volume. Thus, the 
Euclidian distance values of the two different states of the heart 
at the same volume could potentially be similar, despite loca-
lised deformation being different between the two. The 
Euclidian distance values describe the global deformation and 
motion, while the strain measurements describe the localised 
deformation of the heart. Considering the fact that in the 
mechanical analysis of the function of the heart, the changes 
in the deformation behaviour of the heart are of much more 
importance than the absolute values (Ho and Solomon 2006), 
quantifying the global deformation stage of the heart has the 
potential to provide information and indications of irregulari-
ties in the movements, deformation patterns, and mechanical 
functions of the heart.

Figure 5(a,c) shows the engineering longitudinal strain as a 
function of time for the three imaging stages for the patients #1 
and #2, and Figure 5(b,d) show the Euclidian distance calcu-
lated for the same image sequences, respectively. The Euclidian 
distance is calculated using the greyscale images and 21 shape 
descriptors. The red line inFigure 1 shows the location, direc-
tion, and length of the virtual extensometer used for strain 
measurements. While each heartbeat can be clearly identified 
from the strain data (Figure 5(a,c)), the shape of each cycle and 

the peak values vary from heartbeat to heartbeat. This is more 
evident for the data obtained for the patient #2, where for 
example, the inotrope stage cycles seem quite irregular. This 
inconsistency in the strain data is most likely related to the fact 
that the location of the virtual extensometer could be in the 
area that contains high number of calculation errors. The loca-
tion of the virtual extensometer is chosen in the reference 
image, and even if this is done extremely carefully placing the 
extensometer in an area with very low surface reconstruction 
(epipolar) errors, the same location may have high errors in the 
consecutive images of the sequence. Therefore, it is almost 
impossible to select a position of the virtual extensometer 
that always produces high-quality strain data in a sequence of 
50 or more images. After all the image quality in these challen-
ging imaging conditions is average at best. Finally, the displa-
cements are calculated as the sum of differentials or as a sum of 
differential displacements between consecutive images. 
Consequently, the errors will accumulate as the calculations 
advance in the sequence of images. For poor image quality 
and coarse patterns, this calculation method is significantly 
more robust than comparing the nth image to the reference 
image. Finally, the virtual extensometer only returns the rela-
tive length of the line, or the relative motion of the start and 
end points of the extensometer line. Therefore, it uses only two 
subset images to describe the strain of the heart and discards 
all other strain and displacement information decoded in the 

Figure 6. (a) Engineering strain and (b) Euclidian distance as a function of time for patient#1 and (c) engineering strain (d) Euclidian distance as a function of time for 
patient#2.

6 A. SOLTANI ET AL.



image. The image decomposition shape descriptors and the 
Euclidian distance, on the other hand, include the information 
of the whole full field displacement image.

The variations in both the overall shape of the plot and the 
maximum peak strain values are not so apparent in the Euclidian 
distance plots as they are in the strain plots. As shown in Figure 5 
(b,d) each cycle is very well defined and the peak values are 
relatively the same from one cycle to another. For the patient 
#1, the peak Euclidian distance decreases from native to Post- 
CPB stage while increasing again at the Inotrope stage (Figure 5 
(b)). This is not so clearly observed in the strain data (Figure 5 
(a)). Although there are cycles where strain peak values for the 
native stage are higher– (second and third heartbeats), the 
peak strain values for the Post-CPB are generally higher than 
in the Inotrope stage. The Euclidian distance for the patient #2 
(Figure 5(d)) is similar to those observed for the patient#1. The 
Euclidian distance drops in the Post-CPB stage and then 
increases again after the Inotrope (Native, inotrope and post- 
CPB). The same is somewhat true for the strain data shown in 
Figure 5(c). However, the strain data are more irregular com-
pared to the strain Data obtained for patient#1, especially for 
the Inotrope stage where the cycles are barely distinguishable.

Figure 7 shows comparison of the images in the native and 
post-CPB stages. The comparison is shown as the Euclidian dis-
tance obtained as the distance between the shape descriptor 
vector of an image of the native stage and the corresponding 
image of the post-CPB stage (Delta Euc.). For example, the first 
image of the sequence in the Native stage is compared to the first 
image of the sequence of the Post-CPB sequence. The first image 
in each of the sequences is very similar to each other, and the 
Euclidian distance is therefore similar. In the further images, the 
Euclidian distance will either increase or remain the same depend-
ing if the displacement fields are similar or different in the con-
secutive images. Figure 8 shows an example of this behaviour. The 
first image of the native stage (Figure 8(a)) is similar to the corre-
sponding image in the post-CPB stage (Figure 8(d)). The same 
applies to the last image of the cycle for the native (Figure 8(c)) 
and post-CPB stage (Figure 8(f)). Consequently, the Delta Euc. 
values for these two image pairs are close to zero. However, the 
displacement image for the end-diastole state have vastly differ-
ent colour schemes between the native (Figure 8(b)) and post-CPB 

(Figure 8(e)) stages, which leads to a higher Delta Euc. value of 
~0.25. Some manual adjustments were made to the image 
sequences to have the same number of images in the native 
stage and in the post-CPB stage image sequence. For example, 
the image sequences of the patient #1 included 78 images in the 
native stage and 61 in the post-CPB stage. Consequently, the 
number of images had to be reduced by discarding a few data 
points during each cycle for the stage with the higher number of 
images. This was done by matching the maximum Euclidian dis-
tance in both image sequences and reducing some redundant 
images from the longer image sequence. If the displacements of 
the heart in the Native and Post-CPB stages were similar, the 
Euclidian distance between the two image sequences would be 
close to zero for all images. The Calculation of the Euclidian 
distance between the images in the two stages of the surgery 
reveals any changes in the displacements of the heart. Therefore, it 
can be considered ‘differential’ analysis, which is a quantitative 
measure for the effects of the surgical repairs, medicine, ventila-
tion settings, or other change that occurs during the surgery.

Conclusions

A mathematical image decomposition method was used to 
quantify the high-resolution full field displacement images 
acquired from DIC analysis. Based on the results the following 
conclusions can be summarised:

● The poor image quality of the acquired images is 
a major source of technical and practical difficulties 
in using DIC to measure the deformation of the 
heart. Some of these difficulties can be overcome by 
using controlled lighting in the surgery room and 
using a fixed DIC setup which contains cameras in 
a housing at fixed location. This way the cameras can 
be calibrated outside the surgery environment with 
the only variable being the distance between the 
entire setup and the subject of analysis.

● Decomposing these images into vectors makes it possible 
to compare the state of the deformation of the RV by 
calculating the Euclidian distance between two images.

Figure 7. Euclidian distance between native and post-CPB stages as the function of image number for (a) patient#1 (b) patient#2.
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● The decomposition method mitigates the negative effects 
of the technical and practical problems encountered in 
DIC analysis of deformation of the RV.

● Comparing the images of a single heartbeat to the first 
image of that heartbeat gives an estimate of the absolute 
deformation of the heart. The Euclidian distance in this 
instance describes the differences between the deforma-
tion at maximum and minimum volume states of the 
heart in a single heartbeat.

● Comparing images of heartbeats obtained at different 
stages of the surgery, for example images of a heartbeat 
of the Native stage to the images of a heartbeat of the 
Post-CPB gives a differential analysis of the change in 
deformation pattern of the heart. If the Euclidian distance 
is zero, then the global deformation of the heart has not 
changed during the surgery, but a higher value of the 
Euclidian distance indicates stronger change in the global 
deformation of the RV. This analysis also indicates when 
the differences occur, e.g., during systole or diastole.

● The Euclidian distance could be used as an index describing the 
global mechanical responsiveness and the change in deforma-
tion behaviour of the RV. This, however, requires much more 
work and needs to be confirmed for a broader number of 
patients than what was used in this work only aiming at 
demonstrating the new image analysis methodology.
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