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ABSTRACT

AN INVESTIGATION INTO THE ANALYSIS OF TRUNCATED STANDARD
NORMAL DISTRIBUTIONS USING HEURISTIC TECHNIQUES

John Walter Ralls
Old Dominion University, 2014
Director: Dr. C. Ariel Pinto

Standard normal distributions (SND) and truncated standard normal distributions
(TSND) have been widely used and accepted methods to characterize the data sets in
various engineering disciplines, financial industries, medical fields, management, and
other mathematic and scientific applications. For engineering managers, risk managers
and quality practitioners, the use of the standard normal distribution and truncated
standard normal distribution have particular relevance when bounding data sets,
evaluating manufacturing and assembly tolerances, and identifying measures of quality.
In particular, truncated standard normal distributions are used in areas such as component
assemblies to bound upper and lower process specification limits.

This dissertation presents a heuristic approach for the analysis of assembly-level
truncated standard normal distributions. This dissertation utilizes unique properties of a
characteristic function to analyze truncated assemblies. Billingsley (1995) suggests that
én inversion equation aids in converting the characteristic functions for a given truncated
standard normal distribution to its corresponding probability density function. The
heuristic for the inversion characteristics for a single doubly truncated standard normal
distribution uses a known truncated standard normal distribution as a probability density

function baseline. Additionally, a heuristic for the analysis of TSND assemblies building



from the initial inversion heuristic was developed. Three examples are used to further
demonstrate the heuristics developed by this dissertation.

Mathematical formulation, along with correlation and regression analysis results,
support the alternate hypotheses presented by this dissertation. The correlation and
regression analysis provides additional insight into the relationship between the truncated
standard normal distributions analyzed. Heuristic procedures and results from this
dissertation will also serve as a benchmark for future research.

This research contributes to the body of knowledge and provides opportunities for
continued research in the area of truncated distribution analysis. The results and
proposed heuristics can be applied by engineering managers, quality practitioners, and

other decision makers to the area of assembly analysis.



This dissertation is dedicated to my wife, family and friends whom have loved and
supported me throughout the course of this research process and whose continual
encouragement enabled my success.



vi
ACKNOWLEDGMENTS

I would like to thank my dissertation advisors Dr. C. Ariel Pinto and Dr. Shannon
Bowling for their support, guidance, and patience throughout the course of this research.
Their expertise in their respective fields was invaluable. Additionally, there were several
individuals and staff members of Old Dominion University whom have contributed to the
successful completion of this dissertation, thank you. I would also like to specifically
thank my guidance committee members Dr. Resit Unal and Dr. Charles Daniels for their
insights, and professionalism.

I am thankful for the support of my family and for their patience with me as I
worked to complete this dissertation. To my wife Lindsey, thank you for your
encouragement and support. To my parents Stephen and Laura Ralls, thank you for
keeping me on task and for setting the example. To other family members and friends,
thank you for enduring with me on this journey. |

Finally, I thank God for providing me the strength, discipline, knowledge and
perseverance to finish this work and for providing me with the needed support along the

way.



cdf

pdf

USL

LSL

@)

a

Note — This nomenclature list provides a representative sample of nomenclature used

NOMENCLATURE
Cumulative Distribution Function

Probability Density Function

Standard Score (i.e., z-score) = o

Upper Specification Limit
Lower Specification Limit
Sample Size

Mean

Truncated Mean

Standard Deviation
Truncated Standard Deviation
Variance

Truncated Variance

A Random Variable

Characteristic Function

Infinity

significance level

vii

within this dissertation. The scope of this dissertation is not intended to include general,

referenced, or other nomenclature common to this field. Please refer to applicable
references for nomenclature details beyond the scope of this work.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

Engineering, manufacturing, financial analysis, risk management, insurance and
numerous other industries deal with assembly relationships when assessing their specific
areas of interest. Whether that area of interest deals with the assembly of machined parts
having an upper and lower spéciﬁcation, financial and portfolio analysis, or analysis
variables affecting insurance (e.g., weather conditions, location, age, risk factors, etc.),
these areas deal in assessment of truncated standard normal distributions. Numerous
probability distributions have been utilized across these fields to accurately describe
phenomena readily seen in typical, everyday occurrences.

Research in truncated standard normal distribution assemblies is lacking. As a
result, heuristics and analysis methods are limited or non-existent, and the practical
application of data or tools in this field is not readily identifiable. The use of the
assembly-level truncated standard normal distributions have particular relevance when
bounding data sets, evaluating tolerances, identifying quality measures, and for decision
makers. Also lacking are assembly-level truncation tables for varying assembled
truncated standard normal distributions for two pair combinations.

While an assembly may have numerous parts, the subassembly portions can
generally be simplified and reduced to a manageable size. In their sim;;lest form
assemblies should be able to be reduced into at least two parts. Therefore, one of the

initial problems addressed by this research is focused on providing decision makers a



heuristic to analyze the assembled truncated standard normal distributions for two parts.

This research question and others are presented in the next section.

1.2 Research Questions

This research is designed to address the following questions:

1. What are the research gaps relative to truncated standard normal distribution
analysis and is there an opportunity to address a portion of these gaps?

2. Does the analysis of two truncated standard normal distributions (i.e.,
assemblies) provide a quality indicator and/or an enhanced understanding of
characteristics of truncated distributions with respect to assemblies?

3. To what extent can heuristic techniques be employed to aid in truncated
standard normal distribution analysis? What relationships can be inferred from
the analysis of truncated standard normal distributions?

4. Can qualitative or quantitative data sets be developed to assist decision
makers and/or quality practitioners with an enhanced understanding of
truncated standard normal distributions (single and assemblies)?

5. Will correlations, goodness-of-fit, or other testing methods provide
meaningful data from truncated standard normal distribution (single and/or

assemblies) and other known distributions?



1.3 Research Contributions to the Body of Knowledge

This research addresses important gaps in the body of knowledge including:

A lack of understanding relatéd to the distribution characteristics resulting
from the assembly of two truncated standard normal distribution (e.g., final
assembly characteristics between two piece parts for identical TSND).

A lack of heuristics or other methods/frameworks for engineering managers,
quality practitioners and other decision makers.

The characteristics/relationships between assembled parts utilizing truncated
standard normal distributions (e.g., via correlation and regression analysis).
Qualitative or quantitative data often found in quality tables or other ‘
properties for truncated standard normal distributions (using characteristic

functions).

This research contributes to the body of knowledge by:

Providing a practical heuristic based method for characteristic function
inversion of a single doubly truncated standard normal distribution.
Providing heuristic and mathematical formulations associated with assembly-
level truncation between at least two distributions.

Providing an approach to the assembly-level truncated standard normal
distribution analysis through the inversion of the distributions assembled
characteristic function. This approach provides an alternative method for
engineering managers, quality and other practitioners to analyze and respond

to process variation decision making.



Expounding on the relationship between truncated standard normal
distributions and their assembly using empirical analysis methods (e.g.,
mathematical formulation, characteristic function evaluations, heuristics, etc.).
Providing decision makers and quality practitioners with qualitative and
quantitative data for analysis of data sets using truncated distribution
assemblies.

Providing observations and evaluations relative to the additive relationship of
truncated distributions (e.g., graphical, by inspection, etc.).

Providing correlation and regression analysis results for a given truncated
standard normally distributed sub-assembly and a truncated final assembly.
These forms of analysis aid in identifying relationships between the analyzed

distributions.



CHAPTER 2

BACKGROUND OF THE STUDY

2.1 Literature Review Overview

An extensive literature review was performed in the following primary areas of
research: truncated distributions, selective assembly, heuristics, and assembly
sequencing. The review is primarily centered on my interest in assembly and design.
Specifically, this research interest included a review of methodologies that could be
utilized by an engineering manager, quality practitioner, or other decision maker. While
researching these topics it became evident that assembly methods and sequencing
spanned multiple interdisciplinary fields with numerous secondary areas of consideration
for this research topic. The primary areas of research that were examined dealt with
applications that were associated with assemblies and decision making.

Secondary’areas of literature review included tolerance design, optimal target
setting, extreme value thebry (EVT), storage management systems, inventory
management systems, and a limited review of simulation methods. These secondary
areas of investigation are addressed in limited capacity in this literature review and
provide context and application insight to this research.

Hart (2005) states that research can generally be classified according to its design
features and its intended outcomes. Hart (2005) also identifies that the literature review
is important because without it you will not acquire an understanding of your topic. The
literature review aided in the completion of a comparative review of scholarly works to

assess research gaps and to gain insight into TSNDs and other areas of application.



Hart (2005) described the following research techniques which were utilized as
part of this dissertation:
- Construction of parameters for the review topic (e.g., literature mapping)
e Identification of issues in research design (e.g., research gap analysis)
¢ Identification if an approach for the literature review process
® Presentation of methods, fallacies in arguments, and/or identification of other
aspects for the literature review process.

The literature review for this dissertation began its focus in three main areas with
the purpose of identifying knowledge gaps. The initial focus of my review was on
assembly selection and sequencing techniques. Findings from that review were generally
reduced to two major areas: assembly selection/sequencing/systems (i.e., physical
methods) and applications (i.e., industrial and/or academic application). That review
idéntified and assisted in bounding the context and scope of this research.

Given the interrelated nature of the literature review the second main area for my
review involved the evaluation of heuristics/frameworks/methods used as part of
assembly selection. The primary reason for this was to identify decision making,
sequencing, or other methods that have been used in various applications and to identify
predominant methods used in assembly assessments.

Finally, the most extensive portion of my review and a significant portion of this
research centered on the analysis of methods associated with assemblies. The primary
focus of this research being with truncated standard normal distribution and their
analysis. Secondary insights revealed numerous other analysis methods such as dynamic

modeling, EVT, simulation, and robust design techniques.



The literature review identified that a knowledge gap exists relative to the
relationship associated with the assembly of truncated portions of standard normal
distributioné. It also identified the applied use of the characteristic function as a means to
determine the probability density for a truncated standard normal distribution. Additional
gaps exist relative to comparative analysis of truncations, approximation methods,
heuristics and application methods were also evaluated. The literature review that
follows identifies a breakdown and high-level review of an extensive sample of scholarly
works from this field.

An overview of the literature mapping performed for this dissertation is shown in

Figure 1. The research method for this work is addressed in Chapter 3.
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2.2 Assembly Selection and Applications
2.2.1 Selective Assembly, Sequencing, Systems and Applications

Work in the area of subassembly design information appears to be very limited.
Selective assembly appears to be the predominant literature available regarding assembly
selection design. Several works initially appeared to be relevant or near relevant to this
field of research, they are:

Whitney (2005) was identified as a scholar in the area of mechanical assembilies.
This work is comprehensive and describes the methods of designing workstations and
systems for assemblies. Whitney’s work provided some insight in subassemblies but
focused primarily on mechanical assemblies, part interrelationships, assembly
sequencing, design for assembly techniques, and product architecture. The utility of this
work in this dissertation came in the form of general assembly insight and enhanced
understanding of mechanical assemblies.

Kannan and Jayabalan (2001) proposed a method for lot partitioning using
selective assembly groups. They also examined an example of three mating parts with
different standard deviations and provided steps for group tolerances of these assembled
parts. This particular work did not address assembled parts or associated truncation
analysis addressed by this work.

Selective Assembly is a means by which high-precision assemblies may be
fabricated from relatively low precision components (Pugh, 1986). In Pugh’s conference
preceding on the partitioning of selective assembly he introduces the idea of partitioning
a component population into groups prior to random assembly. Later Pugh discusses

how these selective assemblies can be used to assemble components that could not meet
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specifications if they were not selected in such a fashion. Pugh (1986) indicates that
selective assembly works by dividing component distributions into two or more groups,
randomly choosing components and limiting their group creation by discarding groups
beyond three standard deviations.

Cittolin (1997) used filter and assembly sequencing methods to group and
sequence assembly cbmbination. Review of this literature was limited to applications of
methods dealing with the selection of relevant possibilities associated with assembly
sequencing minimization. This study did not address truncations. The paper also
compares its approach with other methods.

Pugh (1992) identifies the use of statistical selective assembly as a means to
pfoduce high-precision assemblies from relatively low-precision components. Pugh
(1992) also elaborates on the random selection of cornpbnents from with a group
assembly as a means to meet speciﬁcation when a group of components has a high
variability. In this paper Pugh discusses the systematical truncation and normal
distributions in addressing component distributions. Other author such as Desmond and
Setty (1961) and Mansoor (1961) have also provided input with regard to selective
assembly. Selective assembly partitioning (e.g., truncation) was identified as a primary
area of consideration within this dissertation.

In 1994, Malakooti’s study identified that one of the problem’s in design of
assembly line balancing (ALB) dealt with the allocation of work elements. This problem
was termed assembly line balancing and specifically documents that the failure of
workstations and other unforeseen circumstances can result in unnecessary idling of the

production line. This particular study addresses aspects of ALB through the use of single
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and multiple decision making criteria which included quantities of stations, buffer size,
cycle time, and total cost of operation. ‘Assembly line balancing has potential
applications of truncation émalysis with assemblies. In this work Malakooti also provides
several examples with computational experiment results. As a result, it can then be
inferred that an applications of truncation analysis toward this knowledge gap would
support improvements in the area of assembly line buffering.

As a contrast to Malakooti, Lee 1994 presents a method for the automatic
generation of assembly sequencing. Lee’s work states that by adjusting the assembly
coefﬁcienfs of subassembly selection indices according to a given assembly environment,
an optimal assembly sequence can be generated. Truncation analysis application in the
area of assembly planning was not identified by Lee.

So and Scott (1994) studied a production control model for a-product comprised
of matching components (i.e., a heart valve). The study addressed aspects of part
assemblies assuming “N” possible categories. In their study So and Scott identify high
level concepts of assembly but did not include aspects or discussion of truncation, EVT,
or other specific work assembly methods. A greedy heuristic sequencing rule for other
general cases was used by the authors.

Whitney (2006) identifies key characteristics associated with mechanical
assemblies, data flow chains and tolerance analysis. His research focuses on utilizing key
characteristics for conveying design intent. Whitney (2006) focused on complex
assemblies at the design level.

In 2007, Lee and Shin presented a method for the automatic determination of

assembly partial orders from a liaison graph representation. This work identified an
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approach for the extraction of subassemblies. The application of this literature to this
dissertation was limited to knowledge gap identification and insight into industry
assembly and subassembly methods. Additionally, Agard and Kusiak (2004) utilized
data mining algorithms for the selection of subassemblies. Neither of these works
appeared to address the knowledge gap addressed by this dissertation.

Kwon, Kim, and Chandra (1999) identified a selective assembly procedure for
components composed of two mating parts. While this product focuses on product
clearance, the focus of this research dealt with component characteristics of a normal
distribution with equal variance. This study presented limited application to truncated
portions or assembilies.

De Fazio, Rhee and Whitney (1999) presented an assembly sequence analysis
(ASA) for applications involving design-for-assembly (DFA). The paper detailed
subassembly partitioning based on criterion based searches. The paper also identified
genetic algorithm search techniques for us in assembly sequencing.

Al;e, Murayama, Oba, and Narutaki (1999) reviewed part removal verifications
associated with disassembly sequences related to assembly planning systems. Their
research focused on reducing verification times associated with subassemblies.A As part
of their research, they employed a genetic algorithm and heuristics to aid in the
generation of assembly sequencing. While not specifically focused on truncation
assembly analysis, Abe et al. (1999) provided application insight and documentation of
industry use of heuristics as part of subassembly analysis.

Lee and Saitou (2007) presented a systematic approach to early product design in

order to achieve a cost-effective design. Their work identified that critical dimensions
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were adjusted through subassembly partitioning as part of the assembly process. The
paper also identified that a genetic algorithm was used in selection processes. The
application of this literature to this dissertation was limited to knowledge gap
identification and insight into assembly sequencing. Truncation analysis methods

presented in this work could potentially be applied in this area.

2.3 Assembly Analysis -
2.3.1 Truncated Distributions

Work in the area of truncated distributions continues to progress. Research and
studies in this area aid quality practitioners, engineers, and decision makers in multiple
fields. For example, Johnson and Thomopolous (undated) presented reference tables for
use by works for left-truncated normal distributions. Similarly, Khasawneh, Bowling,
Kaewkuekool, and Cho (2005) presented greater detail on Truncated standard -
distributions for singly truncated and doubly truncated cases in two separate scholarly
works. In another work Johnson and Thomopoulos (undated) provided a siightly
different approach toward addressing an approximation method for doubly-truncated
cases using a computer model. None of these works utilized a distributions characteristic
function or addressed assembly level distribution approaches.

Dhrymes (2005) developed the moments of truncated distributions in dummy
endogenous variable models. An interesting aspect of this study to this research was the
approach to normalization of a truncated distribution used within the study. Dummy

endogenous variables were also used to address the mean and variance of the distribution.



14

Finally, the author formulated theoretical equations for determination of the moments of
truncated distributions.

In a study in 2003 Ostermeier examined incremental truncations as a method for
pairing DNA. As part of this literature review a myriad of industries were included for
relevant aspects of truncation and assembly, in this case DNA. A Key point made in this
scholarly work was that the experimental determination of the distributions used would
require extensive, cost-prohibitive, sequencing. Additionally, the author examined the
use of incremental truncation libraries and also a uniform distribution of truncation
lengths. The author also provided a comparative review of different truncation methods
along with comparison of different DNA truncations.

Horrace (2005) formalized analytical results on the n-dimensional multivariate
truncated normal distributions. His paper focused on one-sided truncations at arbitrary
points and provided results related to linear transformations along with supporting proofs
and mathematical theory. The application of this document was directed toward the field
of economics. The specific application of Horrace (2005) to this research was with

respect to the comparative review and research gap identification support.

2.3.2 Characteristic Functions and Inversion Theorems

A literature review in the area of Characteristic functions and their inversion was
the result of the EVT study. As part of this review the details related to a distributions
characteristic function were identified. Relevant equations from this review are identified
in Appendix A. Billingsley (1995) provided over-arching support for both characteristic

functions and general inversion principles. S. Sheffield (2011) amplified the work
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provided by Billingsley (1995). Abadir and Magdalinos (2002) provided specific insight
into the characteristic function of a singly doubly truncated normal distribution and
applications.

Shéphard (1992), Kawata (1969), Bernadic and Candel (2012), and Abate and
Whitt (1991) provided examples for ihe application and inversion of a Characteristic
function. Inversion principles in these references along with inversion formulas
identified by Billingsley (1995) were ‘utilized in Appendix A and adapted for the
evaluation of assemblies. Billingsley (1995) and S. Sheffield (2011) identify that
characteristic function for the sum of two characteristic functions is the product of their

respective characteristic functions (i.e., similar to moment generating functions).

2.3.3 Extreme Value Theory (EVT) and Value At Risk (VaR)

Castillo, Hadi, Balakrishnan, and Sarabia (2005) provided overarching insight in
the area of Extreme Value Theory. 'Use of this resource with a sampling of journal
articles and other literature enabled knowledge gap identification and served as
grounding for technical fundamentals in the area of truncated distribution analysis (i.e.,
through principles identified in scholarly reviews regarding EVT).

Raschke (2012) examined right truncation exponential distributions and an
estimator for finite sample sizes of truncation points. Raschke also introduced the use of
an inverse mean squared error to evaluate the estimator’s behavior. Raschke comments
on EVT as it relates to truncated distributions as it relates to sample size. Monte Carlo
simulations and examples were used by the author to examine different truncation points

and sample sizes.
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Blanchet and Liu (2012) introduced change of measure techniques for rare-event-
analysis of heavy tailed. Monte Carlo simulations were used by the authors to aid in the
estimation of rare event probabilities and to present a “good” Markovian approximation
of conditional distribution of the rate event being analyzed.

Kuwahara and Mura (2008) used a weighted stochastic simulation algorithm
(SSA) and a Monte Carlo simulation method to analyze rare events of biochemical
systems. Case studies are used to analyze the proposed method and effectiveness along
with an explanation of the proposed algorithm using weight (SSA).

Drees et al. (2005) estimated the far tail portions of distributions functions using
EVT as a framework. The authors developed weighted approximations to the tail of the
distribution and other empirical data.’ An Anderson-Darling type test of the null
hypothesis was used to demonstrate that the distribution belongs to an EVT domain of
attraction. |

Using Monte Carlo experiments Stoyanov and Rachev (2007) reviewed the
impacts of tail behavior for varying sample sizes (in addition to value-at-risk). The
effects on the tail distributions were further analyzed along with the convergence rate as
part of their analysis. The authors concluded that a simple tail truncation improves the
convergence rate and that asymptotic distribution reliability improves with large sample
sizes (e.g., 5000+) for specific cases.

Peng and Qi (2009) studied maximum likelihood estimates of extreme value
indices between -1 and -1/2. They also generalized irregular cases and cases of an
unknown extreme value index. Peng et al. (2009) in addition to Chavez-Demoulin and

Roerhl (2004) provided a general overview on the understanding and application of EVT.
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Bermudez and Kotz (2009) examined varying methods for the use of the
generalized Pareto distribution (GPD) and their application to estimation methods. This
literature focused on applications to EVT and its approach was to review and identify
options of GPD parameter estimation. The first paper focused on methods such as
maximum likeiihood (ML), method of moments (MOM), aﬁd probability weighted
moments (PWM). The second paper (a continuation) focused on the application of
methods to real world data.

Brazauskas and Kleefeld (2009) proposed a method for fitting generalized Pareto
distribution (GPD) associated with trade-offs between robustness and efficiency. Using a
“trimmed moments” method as a basis the authors used simulations and their method to
fit GPD to historical data. Utility was provided following application to areas of risk
measurement and ratemaking. The authors utilized a large sample size to provide a mean
and relative efficiency between various methods.

Carpinteri, Cornetti, and Puzzi (2005) used extreme value theory in the form of a
statistical model to evaluate materials. Prior comparisons using EVT and a Multi-
Fractional Scaling Law (MFSL) are used in their evaluation. A model and correlation
between for their area of interest is drawn (e.g., fracture energy and crack surface
parameters). The authors further used experimental data available in literature to confirm
their approach. The utility of this work toward this dissertation was relative to problem
solving and decision making approaches.

Brooks, Clare, Dalle Molle, and Persand (2005) examined various EVT models
for VaR. The authors used GPD, ML and a semi-nonparametric methodology in their

reviews. Comparative analysis was performed by the authors including nonparametric



18

tail index estimates of GPD threshold levels. The relevance of this literature to this
dissertation was in application and understanding of sample and comparative approaches.
Simulation was further used in data analysis as part of the authors approach.

Debolt, Guillou, and Rached (2005) used a generalized probability weighted
moment method (GPWM) to study the asymptotic behavior of estimation tools presented.
The authors provided proofs and generalized weighted moment estimators. This work
was used in conjunction with Bermudez and Kotz (2009) to better understand research
gaps that exist in assembly methods. An understanding of the extremes was intended to

better support an understanding of TSNDs.

2.3.4 Simulation

Yanoff and Weirich (2010) discuss the philosophical and epistemological
implications of simulation, simulation representation, and policy decisions. The paper
argued that simulation is “‘an important new tool for the social sciences” and that
simulation “shares features with both models and experiments.” The key purpose of
review of this literature was in expanding my breadth of knowledge in the philosophical
approaches that could be applied to this research.

Bradley and Gupta (2004) analyzed data associated with the sum of “n”
indepehdent non-identically distributed uniform random variables. In this work the
authors use Fourier theory to derive an explicit formula for this approach by inverting the
characteristic function. This research is one example associated with approaches used in
the summation of a uniform distribution. However, no research has been identified in the

areas of TSND assembly analysis using characteristic function inversion heuristics.
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In a 1999 study Kosfeld and Quinn evaluated storage and retrieval system
strategies to improve production throughput capabilities. The study identified that the
use of simulation models allowed prioritization and performance prediction for different
strategies. From the proceedings of this winter simulation conference, the authors
addressed a method of locating empty bins for storage in order to increase throughput.
Although, this research did not address subassembilies it did address storage system
rhodeling and throughput. The study base lined simulations using known parameters to
benchmark their model. The study then performed throughput simulations to estimate
performance improvement from their methods. These approaches were considered when
developing the research approach for this dissertation.

Bates, Buck, Riccomagno, and Wynn (1996) identified experimental design and
modeling as part of optimization and sensitivity analysis of large systems. The study
provides an example for simulation (i.e., emulation) in large system analysis.

Breedis (2001) presented a simplified approach to subassembly design using
Monte Carlo analysis. The primary focus of this review was on the author’s methods and
problem approach. The study identified key variables for evaluation of the simulations

performed.

-2.3.5 Dynamic Modeling
Dynamic Variation Reduction was developed by R. Musa (2007) as part of a
dissertation relating to strategic and dynamic variation reduction for assembly lines.
Musa (2007) proposed a method to reduce variation for assemblies by developing

inspection plans based on:
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e Historical data for existing products, or simulated data for newly developed

products

® Monte Carlo Simulation and Optimization Search Techniques

e Sought to minimize the cost function for the total of inspection, rework, scrap,

and failure costs

Musa’s research developed methods to utilize data in near real time to
dynamically reduce variation by assigning the inspected subassembly parts together and
he also proposed mating inspected subassembly items through the use of dynamic rolled
yield throughput maximization (DTM). Musa (2007) also proposed heuristics for
inspection based DTM.

Musa, Sturges, and Chen (2006) identified an inspection methodology for
inspection planning using CAD data and simulation. The author proposed a methodology
for out-of-tolerance quality characteristics for subassembly. Monte Carlo simulation was
used as part of their model development.

Musa and Chen (undated and 2006) presented work on a dynamic throughput
maximization study performed after inspection of a batch of subassemblies. This work
presented the authors’ approach using meta-heuristic algorithms. The study also
compared ant colony heuristics to simulated annealing (SA) algorithms. The primary
focus of this review was toward a review of the heuristic application used in subassembly
design.

‘Musa, Chen, and Ghoniem (undated) extended previous work from Musa et al.

(2006) regarding dynamic variation reduction and throughput via development of a
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mathematical part matching model for variation reduction. In this study the authors
propose a 3-rule heuristic and another model for throughput maximization.

Huang, Liu, and Musa (2004) proposed a method for process plan evaluation to
provide rapid evaluation for process plan decision making. The authors approach uses
Monte Carlo simulation to ’aid in the analysis through analysis of deviations assuming
normal or uniform distributions. This research did not address truncated distributions or
their assembly.

Das and Sarin (1988) used a dynamic programming approach along with a
heuristic procedure to address part arrival dates in a multi-job stochastic assembly
system. Application of this literature was limited to review of the heuristic approach by
the authors.

Seidmann and Tenenbaum (1-994) developed a dynamic part-allocation policies
for a Flexible Manufacturing System (FMSs) having finite storage capacity. The paper
evaluates modeling approaches to evaluate part-routing policies. Additionally, several
closed-loop heuristic policies were proposed and provide near optimal FMS performance
results. This journal article was examined for application to truncation analysis and part
allocation.

Gutierrez, Hausman, and Lee (1995) studied a matching problem and dynamic
control rules relative to optimal system performance. The authors proposed a heuristic
and provided examples of performance improvements relative to their proposed heuristic.
The authors identified a computationally infeasible dynamic programming formulation
along with a myopic control procedure for general application to sorting and matching

problems.
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Selection techniques for a dynamic model framework along with alternative
model framework for multistage stochastic programming models were reviewed (Puelz,

2002). The author used empirical test from historical data to benchmark the framework.

2.3.6 Robust Design

Carlson and Doyle (2002) studied aspects of robust design and complexity
dealing with highly optimized tolerance (HOT). This particular study focuses on highly
structured and robust designs. This work also ‘performed a comparative review by
leveraging examples and model systems.

In a 2001 study by Caleb Li and Chou the optimal process mean and associated
variables were identified to aid in minimizing the expected quality loss for the works
identified parameters. The variables considered by these authors were those quality
characteristics typically associated with quality (e.g., smaller-the-better, nominal-the-
best, etc). The approach examined direct and indirectly measurable quality

characteristics.

2.3.7 Optimal Target Setting

This dissertation reviewed the area of Optimal Target setting for general oversight
and applicability to TSNDs. In general the techniques used in optimal target setting
could have applicability at the application level. The following articles and summaries

expand current knowledge in the area of optimal target setting:
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Bouchard, Elie, and Imbert (2010) studied Markovian optimal stochastic control
problem under stochastic target constraints. The direct approach was merely reviewed
for applicability and bounding of the research gap from this dissertation.

In Yang, Gui, Kong, and Wang‘(2009) the authors present a quality prediction
model for optimal-setting control of a manufacturing process in a metallurgical industry.
Yang et al. (2009) identifies the use of a kind of hierarchical strategy for determination of
an optimal set point for raw material portioning. The authors compare the efficiency
improvement to an example system in an alumina smelting. |

In 2003, Bai and Kwong studied the use of target setting values and heuristics to
develop “inexact” optimal target settings. In this particular approach the authors utilized
a fuzzy optimization model for target value determination and an inexact genetic
algorithm was used to solve the problem. Both heuristics and optimal target setting were
used as part of this work.

Ohtsubo (2004) evaluated risk minimization for Markov decisions with a target
set. Ohtsubo’s study considered the risk associated threshold probability along with the
passage time for a target set. The papef also identified the use of value iteration methods
and presented a pplicy improvement method (e.g., a heuristic).

Kim, Michekena, and Papalambros (2003) used target cascading to model a multi-
level optimization problem. The authors utilized design targets (cascaded to lower
levels) by partitioning their problem into small sub-problems. The authors then
formulated an optimization model to rrﬁnimize deviations from their propagated targets.
While the authors do not specifically cite the use of heuristics or a specific simulation

technique the authors presented a coordination strategy (e.g., essentially a heuristic) to



24

address their problem. The authors took steps toward simplification of their models (e.g.,
smaller model structures) and to reduce their model and analysis complexity.

Krzysztofowicz (1990) presented a critique of a target setting problem with
exponential utility. The framework of this critique was reviewed in consideration as part
of this dissertation. The utility and reason for review was primarily with respect to the
application and decision steps/considerations as part of the problem formulation and
qnalysis.

In a 2006 work Cooper, Georgiopoulos, Kim, and Papalambros utilized
“analytical target setting” to perform target setting within the context of an enterprise.
The paper addresses a partitioned decision making process. The paper was reviewed as
part of an introspective approach for the comparative review and heuristic development
for this dissertation.

Huang, Cheung, and Liang (2006) utilized a multi-agent system to solve for
optimal design using analytical target cascading. This approach and methodology was
cited as having gained more ground as a methodology for an optimal design approach.
The primary use of this literature was to identify other gaps and approaches which may
lend insight into the research gaps from this dissertation.

Li’s (2004) research focused on optimal manufacturing settings to minimize
quality loss for the identified production system. The author’s work found that the use of
smaller tolerances fof both sides or adjustment of the process mean were unsuccessful at
minimizing the quality loss. The author also used a pokayoke procedure and truncated
quadratic loss function to solve the soluﬁon when setting the process mean at an optimal

point to minimize the expected quality loss.
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Bisgaard (1997) explored the experimental determination of tolerance limits of
mating components of an assembled product. Bisgaard provided a functional approach
for setting tolerances in assembly when applied to high-volume products. The research
concluded that the application may be reasonable for setting tolerances when the data can
be reasonably amortized or in higher risk applications. It is important to note that while
this study did address tolerance design it did not address the use of truncated distributions
in any aspect of its application.

Ramirez-beltran (1995) demonstrated a real-world application of an integer
programming problem. The focus of this study was on finding an optimal solution for a
labor cost problem. The paper utilized a matrix method for optimization and a branch
and bound heuristic algorithm. The author utilized a numerical example to demonstrate
the utility of the method (and its effectiveness).

Baykasoglu (2001) used mathematical programming tools to model multiple
objective optimization problems. Baykasoglu’s study cites a trend in industry to solve
these types of mathematical problems using heuristic optimization techniques (e.g., Tabu
search, genetic algorithm, and simulated annealing). A multi-objective Tabu search
heuristic was proposed in this study and results presented demonstrate the proposed
heuristics utility.

Nussbaum, Sepilveda, Singer, and Laval (1998) studied approximation ‘
methodologies for sequencing and resource allocation problems. The authors presented a
declarative problem solving framework for specification and sequencing problem
solving. A focus of this study was on optimization heuristics and procedures and their

parameterization.
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2.3.8 Other Methods and Applications

Mease, Nair, and Sudjuanto (2004) described a statistical formulation for
determination of optimal binning strategies for various loss functions and distributions
and compare the results to heuristics. This research provides direct insight into the
knowledge gap existing among truncated distribution along with binning and quality
applications that could be applied in future expansion of the research presented by this
dissertation.

Moorhead and Wu (1998) addressed parameter design methodology by
developing a model and data-analysis strategy for a general loss function. The authors
presented a methodology that utilized a location-scale model and their study cited
approximation as a form of utility in substantiating their model performance. The authors
also identified that the utility of their method extended the scope of parameter design of
nominal-the-best to include a more general loss function (including subjective
interpretation of improved generality).

Xiaoping and Jingjing (2009) presented a model and algorithm for evaluation
storage bins for a transport problem. Binning applications have relevance to assembly
techniques and the case study presented by this work utilized existing (known) outcomes
to approach the idea of storage bin availability improvement. In Xiaoping and Jingjing
(2009) also studied the control of optimization methodologies related to storage bin
capacity in transport problems. Relevance of these papers to this dissertation was
primarily in approaches used for identification and review of the heuristic.

Zhu and Oommen (1997) studied a problem in which a detection function was

used to evaluate an object with “N” locations (bins) for the purpose of maximizing
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resource allocations. One of the main observations from this study is that the target
distribution is assumed to be unobservable, where as prior research focus on known target
distributions. The relevance of this is in understanding prior approaches considered when
attempting to understand evaluations of unknown distributions. Here the authors seek to
obtain “good” rather than optimal selection criteria for their process.

Jun, Jacobson, and Swisher (1999) used discrete event simulation to improve
patient flow and for resource allocation. The paper used modeling techniques relative to
discrete-event-simulation. Liu and Cheung (1997) also studied continuous review
inventory models. The focus included feview of exponentially distributed variables along
with other key operating characteristics for the inventory model. The authors utilized
numerical examples to validate their model and provided a level of demonstratio/n of its
effectiveness.

Mazzola and Schantz (1995) developed an optimal allocation model of a single
facility production environment. Branch and bound heuristics along with Tabu Search
heuristics were utilized in their approach. The primary utility of this study was the
understanding and review of definitions employed with heuristics employed in the
author’s research.

Wilson and Roach (2000) identified a methodology for the automatic generation
of computerized solutions to the container stowage problem. The methodology presented
heuristic rules for “good” but not optimal solutions. The primary focus of this literature
review was for application to assembly planning and heuristics. A re-occurring trend in
the application of heuristics in these areas appears to be relative to practical application

(i.e., good solutions versus optimal).
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Pourbabai (1992) utilized a mixed non-Markovian queuing network with infinite
capacity nodes to model an automated assembly system problem. The study focused on
identifying the minimum required local storages by using a stochastic optimization model
and a heuristic algorithm to solve for and approximate results for the simulation study.
Pourbabai (1992) also discusses a strategy for the selection of a required amount of local
storages for workstations of a flexible assembly line system. While this research is
relevant to this research topic, it does not specifically address the research gap identified
by this area of research.

Pourbabai (1989) described the design of a finite capacity assembly model and
quality control station that used a Markovian queuing system performance model and an
optimization model to select optimal storage sizes. This study also utilized a Poisson
arrival process as part of the performance model. The paper identifies a simulation
model and focuses on observations noted as part of the simulation results; ﬁndings’
presented suggest that explicitly considering random variables dependencies makes

performance analyses of a complicated stochastic network difficult.
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2.4 Heuristics, Frameworks, and Other Methodologies
Heuristics téchniques can be broadly characterized as exploratory problem

solving techniques. Merriam-Webster.com identifies the following heuristic definition:

“Involving or serving as an aid to learning, discovery, or problem-solving by

experimental and especially trial-an-error methods.”

Heuristics is a very broad knowledge base that aids in effective problem solving
and serves as a way to “frame new problems” (Michalewicz and Fogel, 1998). A review
of Michalewicz et al. (1998) uncovered various useful problem-solving heuristics and
approaéh techniques. The development of a heuristic or improving heuristics could
include a variety of techniques found similar to prior heuristic research, such as:

Michalewicz et al. (1998) provided insight in the area of heuristics. This literature
provided insight into heuristics such as simulated annealing, tab search, model
overviews; various search methods, and other algorithms that served as a foundational
basis for numerous aspects of this research. For the purpose of this paper the basis of
numerous heuristic definitions were cited from this source.

Chiang, Kouvelis, and Urban (2002) developed optimal and heuristic solutions
methodologies for evaluation of workflow interference. The paper focused on
application of these methodologies from a facility layout perspective by examining
branch and bound heuristics along with Tabu search heuristics. While facility
applications are reievant to assembly (i.e., storage of assemblies) the primary utility of

this study dealt with application and heuristics approaches.
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Lozano, Adenso-Diaz, Eguia, and Onieva (1999) used a Tabu search heuristic in a
cellular manufacturing design. The heuristic proposed systematically explored feasible
machine cell configurations in part family determinations. The heuristic was
benchmarked against two simulated annealing approaches and other heuristics.

A 1997 study by Salhi developed a constructive heuristic for a location problem.
The author tested the proposed heuristic agains£ other location problem methods.

Cao and Ho (1987) model a production line with limited storage capacity as a
cyclic network with finite buffers. In this analysis Cao and Ho identify a new technique
called “perturbation analysis of discrete event dynamic systems.” The paper identifies
that its main purpose is to investigate perturbation analysis of a closed queuing network
with blocking and its application to the optimization of the system throughput in a
tandem production line with a finite storage capacity. The simulation results identified
that the estimate of the derivative of the throughput and the estimate of the derivative of
the time required to complete a finite number of services is unbiased. Finally, the paper
also utilized Monte Carlo simulation as a viable method for this optimization approach.

Rochat and Semet (1994) evaluated a vehicle routing problem using two proposed
heuristics to find a “good” solution. This study was considered to fuﬁher evaluate
heuristics in a similar application and for evaluation techniques used to compare the
heuristic against a baseline configuration.

Naddor (1975) identified heuristic decisions for inventory policy. The heuristic
involved knowledge of the mean, standard deviation of demand along with other
variables for the model. This brief article provides an overview of the heuristic and

limited application.
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Park, Kang, and Park (1996) proposed an algorithm associated with integer
programming formulation of a bandwidth packing problem. A heuristic was proposed
and utilized a column generation technique as part of the algorithm. The authors further
tested the algorithm using random problems. Of particular interest is that the authorg
‘compare their heuristic to a previously benchmarked method. The authors also provide a
brief discussion of “good” vs. optimal solutions.

Patterson and Rolland (2002) explored network design and presented a heuristic
with a methodology that utilized an adaptive reasoning technique. The authors also
generalized their formulation and measured its effectiveness. The primary utility of this
study toward this research dealt with the heuristic approach methodology.

Zhang, Wang, Cheok, and Nee (2003) proposed a knowledge-based selection
procedure/rules (e.g., heuristic) to provide a unique name based search mechanism geared
toward component reuse (i.e., reapplication).

Meller and Bozer (1996) presented a heuristic (i.e., simulated annealing) for
facility layout. The significance of this particular study with respect to this dissertation
was the approach method for performance comparison and application utility of the study
toward heuristic and algorithm development. This study primarily focused on production
facilities and achieving a good solutions for a series of 200 plus problem sets and
provided a relatable and practical application and approach for the methods developed by
the authors.

Thakur, Nair, Wen, and Tarasewich (2000) used Beam Search (BS) based
heuristics to identify optimal or near optimal product lines. The authors test their

heuristic on 300 simulated problems with applications. They also compare their search
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technique with a Genetic Algorithm (GA) based heuristic and conclude that their BS
based heuristic is more effective than the GA used in identifying optimal or near optimal
solutions quickly. The authors provide examples to illustrate their heuristic and their
model.

Coverdale and Wharton (1976) identified an improve heuristic for a Nonlinear
Cutting Stock Problem. This particular study focuses on the cutting operations by
constraining material cutting patterns to improve residual scheduling via pattern
enumeration. The results of the paper also compare heuristic performance using different
methods for the analysis.

Rubin (1990) proposed a mixed-integer model and suggested heuristips to obtain
a suboptimal but “good” solution to reduce computational cost using linear programming.
A linear programming heuristic based method was the second method used as part of this
review. The results were compared using a Monte Carlo simulation with Gaussian data.

Kulm (1977) identified that the absences of theoretical or empirical hypothesis
raised questions on two different problem-solving heuristics. The critique also raised
questions on understanding a clear or consistent meaning of the term heuristic.

Nair, Thakur, and Wen (1995) ﬁsed beam search heuristics to improve upon prior
heuristics for the product line design and selection. Nair et al. used computations from
over 400 simulations to demonstrate improvement in five defined performance measures.
Their solutions resulted in improve optimality for the design simulation resulting in
“good” solutions.

Barish (1962) examined the present and future scopes of management science,

operations research, and industrial engineering. The framework and approach used to
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identify conceptual relations between provided useful backgrounds to the author on
similar comparative approaches used in these fields. Application of this literature review

was primarily from an introspective approach for this dissertation.

24.1 Sgarch Methods (Local and Exhaustive)

Exhaustive search methods are those methods that “check each and every solution
in a search space until the best global solution has been found (Michalewicz and Fogel,
1998). Michalewicz et al. also suggest that exhaustive search methods are usually not
practical for real world applications due to the large search areas, potential quantity of
feasible search possibilities, and uncertainty in obtaining knowing whether the best
solution has been found for a given search. They later note that local search
methods/algorithms present a more reasonable alternative to exhaustive search techniques
for providing satisfying results from defining the current solution, transformation and
formulation of a new solution and its merit evaluation, solution exchange or retention,

repetition of technique until no transformation improves the current solution.
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2.4.2 Algorithm and Optimization Techniques

Michalewicz et al. (1998) identify a Greedy Algorithm as a type of algorithm that
attacks “a problem by constructing complete solutions in a series of steps.” The
simplicity of this type of algorithm lends itself to greater application. They indicate that
Greedy Algorithms perform the following:

® Assign Values for all of the decision variables

e Make the best available decision based on an assumed heuristic and available

information

e Shortfalls — local optimum at each step may not result in a global optimum

Aggarwal, Orlin, and Tai (1997) explored applications of genetic algorithms to
demonstrate the utility of knowledge based mechanisms. Application of this study was
limited to understanding the utility of genetic algorithms in a given application and
heuristic comparisén methods.

A 1994 study by Park and Kim developed a heuristic algorithm to address aspects
of production planning problems for an assembly system. The particular focus of this
study was on assembly systems operating on a make-to-order basis. In particular, this
study utilized packaging examples of automobile subassemblies toward the minimization
of inventory holding costs. This review considered the process and application of
heuristics which were considered to better understand the type and application of specific
heuristics dealing with assembly line systems.

Kannan, Jayabalan and Jeevanantham (2003) utilized genetic algorithms to find

the best combination of the selective assembly groups necessary to minimize assembly
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vafiation. This method focused on linear assembly. The paper itself focuses on
minimizing component tolerances and variation.

Ponnambalam, Aravindan, and Rao (2003) presented a mixed model sequencing
problem using genetic algorithms for assembly lines. Their focus was the investigation
of genetic algorithms and also performed a comparison of exiting vs. proposed GA’s by
consideration of variation at multiple assembly levels (e.g., raw materials, product,
subassembly, etc.). The dissertation application of this study was primarily focused on
the method and heuristic approach by the authors.

Sanderson (1997) used a tolerance model to estimate part configurations based on
maximum likelihood using a filter algorithm. Sanderson then stated that the resulting
configurations could then be used to evaluate the ability to assemble as it relates to
clearance likelihood from the problem constraints. This was also applied to the ability to
assemble of subassemblies.

Kwok, Driessen and Phillips (2002) utilized a matching algorithm to address a
problem associated with multiple-target-multiple-agent scenarios. The study was
primarily focused towards robotics; however, focus was applied to optimal assignment
algorithms. The paper also addresses heuristics on a limited basis. Klincewicz (1990)
solved a freight transportation problem using facility location techniques. Of specific
interest from this review was the method employed by the author in heuristic evaluation.
Since facility location problems are potentially derivative of the large assembly
sequencing or selection process this paper provided relative insight to support the

approach for this dissertation. A flow chart of the basic heuristic model was developed
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and computational efforts were performed to identify the impacts when compared to a

known optimal solution.

2.4.3 Branch and Bound

Branch and Bound is a heuristic that works on the idea of successive partitioning
of the search space (Michalewicz et al., 1998). The authors also find that this type of
heuristic eliminates areas of interest by evaluating successive partitions of a search space
and eliminating a bounded region that does is beyond the constraints of the next branch
being compared within the problem. Michalewicz et al. (1998) also note that the
heuristic allows for the search to be minimized without performing a detailed analysis of

a portion of the problem.

2.4.4 Simulated Annealing

Bohachevsky, Johnson and Stein (1986) was reviewed for initial applicability and
potential to this research. Bohachevsky et al. (1986) described generalized simulated
annealing for the “optimization of functions having many local extrema” and methods for
improved optimums of other problerﬂs. This paper identifies simulated annealing as an
optimization derived from “the annealing process of metals in which final crystalline
configurations are possible depending on the rate of the cooling process.”

Ohlemiiller (1997) used simulated annealing for solving a minisum location
problem. Tabu search was utilized in this study. Efficiency of the method was presented
along with results relative to the expected deviation. Finally, the author’s study is

consistent with other approaches of finding “good” solutions (e.g., vs. optimal).
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2.4.5 Tabu Search

Tabu search (TS) is a meta-heuristic that is “based on the premise that problem
solving, in order to qualify as intelligent, must incorporate adaptive memory and
responsive exploration (Glover and Laguna, n.d.).” In Glover and Laguna’s short article
in their 1997 book they indicate that the “adaptive memory feature of TS allows the
implementation of procedures that are capable of searching the solution space
economically and effectively.” It is interesting to note that Tabu search heuristics are not
memory less like some semi-random search processes. Glover and Laguna (n.d.)
identifies that

Fred Glover is generally regarded as the originator of Tabu Search meta-
heuristics. Glover’s search name “Tabu” is aptly named because the memory attributes
“forces the search to explore new areas of the search space (Michalewicz et al, 1998).”

Glover and Laguna (1997) presented one of the earliest comprehensive looks at
Tabu search. Given the re-occurrence of Tabu-search in other literature this work was
reviewed to gain insight into this meta-heuristic approach and its application to problem
solving and decision making.

Glover (1990) examined the characteristics of heuristic procedures used as
frameworks for analyzing difficult optimization problems. While the research included
the review of several types of heuristics the author focused specific attention on Tabu
search heuristics. Glover (1990) discusses four major heuristic methods (e.g., neural
networks, simulated annealing, genetic algorithms, and Tabu search). The author also

discussed target analysis as a method for determining good decision rules as a means to
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improve heuristic effectiveness. Markland (1990) summarized glovers work relative to
these four major areas.

Punnen and Aneja (1995) studied a resource-constrained assignment problem and
developed a Tabu search heuristic. The primary utility of this work to this dissertation
was in expansion of heuristic test method understanding. The authors used
computational results to demonstrate the effectiveness of their method from other
algorithms.

Gendreau, Hertz, Laporte (1996) developed a Tabu search heuristic for a
stochastic vehicle routing problem with random demands and probabilities. Tabu search
heuristics proposed were compared against a known optimal solution. The authors
provided a model confidence factor ahd aVerage deviation to an optimal solution (e.g.,
“good” vs. optimal). Similarly, Gendreau, Hertz-and Laporte (1994) described a Tabu
search heuristic for vehicle routing problem with various restrictions. The heuristic
utilized a generalized procedure and performed numerical test on a set of benchmark
problems to demonstrate the viability of their heuristic.

Logendran and Sonthinen (1997) developed a Tabu search heuristics and
statistical experimentation to present a ‘“‘good” solution for solving a problem within a
flexible manufacturing system. In their work they identify a six part Tabu-search
heuristic. The application of this study to this literature review was primarily focused on
heuristic development and application ov¢rview in the area of flexible manufacturing
systems.

Dell’ Amico (1996) analyzed the performance of lower and upper bounds for a

flow-shop problem with two machines. This study used a Tabu search algorithm and
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proved the effectiveness of the proposed bounds through computational results.
Although this study was focused on machine scheduling the applications relevance was
targeted toward the understanding of knowledge gaps related to assemblies.

Moccellin and Nagano (1998) evaluated the relative performance of Tabu search
procedures. Their focus was in the area of flow shop sequencing (which has application
to assemblies). Moccellin et al. (1998) presented methods to improve heuristics by
obtaining an initial solution using the traveling salesman problem and then Tabu search
methods to improve the initial solution.

Consiglio and Zenios (1999) presented a multimodal Tabu search procedure with

empirical results.

2.4.7 Additional Techniques

Finite-Element and Difference Methods were investigated for applicability and
references such as Grieme (2011), Sirﬁpson (2008), and [96] Asvadurov, Druskin,
Guddati and Knizhnerman (2003) were explored for further relevance to this dissertation.

Brown and Spillane (1989) déscribed a knowledge-based design aid for
fabrication of a low-cost boiler component. Of particular interest in this study was that
the design approach they used was a pseudo-random search technique to improve the
design cost (Brown et al, 1989). Application to this research was focused on the
heuristics and their use of “applications” as part of testing their design aid.

Bracker and Pearson (1986) developed a planning process with comparison to a

specified area of interest. The authors used multivariate analysis of variance in their
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determinations. The primary use of this study in this dissertation was relative to gaining
insight into approaches and hypothesis testing examples.

Kozan (2000) developed an analytical framework for the examination of
inventory strategies for an assembly plant‘. The model addressed minimization strategy
along with material management efficiency. Kozan (2000) leveraged this work off of
prior work in the area of vehicle routing problems and used a genetic algorithm in its
implementation. Historical data was used to measure the heuristic efficiency.

Phoomboplab and Ceglarek (2007) proposed a design synthesis framework for
dimensional management of a multi-stage assembly system. Applications from this work
included tolerance optimization, fixture layout, and part-to-part joint design. Of note, this
work presented a methodology to illustrate a subassembly design configuration and

framework (e.g., heuristic for part assembly).
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2.5 Research Hypotheses

The null and alternate hypotheses for this research are:

Ho: No relationship/correlation exists to assess the additive relationship of a
truncated standard normal distribution with another identical distribution.

Hi: Analysis of the relationships between additive truncated standard normal
distributions and a given truncated standard normal distribution will provide
meaningful correlation data.

H,: Regression analysis between an additive truncated standard normal
distributions and a given truncated standard normal distribution will provide
meaningful data regarding the relationship between these distributions.

Hs: A heuristic based approach for the analysis of a truncated standard normal

distributions using its characteristic function and inversion factor can produce

zZ | S
. )
results equivalent to f(z)dz = e ? dz.
q f ZI =

These hypotheses will be tested in a later chapter along with the establishment of
a heuristic framework/approach for the assembly of truncated normal distributions, and
compilation of a comparative analysis of the subject matter. In addition to these research
hypotheses, a comparative review will be performed to identify the dominant methods

identified in the literature review along with relevant research gaps.
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CHAPTER 3

METHODOLOGY

3.1 Research Method Overview

The research approach for this dissertation employs a literature review,
comparative analysis, truncated standard normal distribution analysis, application
demonstrations, heuristic development and hypotheses testing. An overview of the
process employed for this research is depicted in Figure 2.

In this dissertation the literature review follows the initial development of the
research questions. These reviews aid in the development of the research hypotheses
identified in Chapter 2. Further analysis/comparative reviews aid in the identification of
knowledge gaps to substantiate the research hypotheses. Mathematical formulations,
correlation and regression analysis tests, along with observation and inspection provide
insight into the research questions poged by this dissertation.

This research provides an alternative approach and techniques for solving single
doubly truncated standard normal distributions through use of its characteristic function.
Mathematical formulations of this phenomenon dsing an inversion factor are presented in
Appendix A. This approach provides new evidence and performs empirical analysis not

previously identified by prior work.



Figure 2: Research Process Overview
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Eighty-one combinations of a single doubly truncated normal distribution will be

evaluated and a baseline inversion factor will be developed to baseline the analysis

results to methods identified by Khasawneh, et al. (2005). These combinations were

evaluated in 0.1 increments ranging from an USL =4 to a LSL = -4. Combinations for

the assembly of identical doubly truncated standard normal distributions will use the

same range with an overall assembly USL =8 and LSL = -8 (i.e. two assembled

distributions each with an USL =4 and LSL =-4).

The analysis results are evaluated mathematically and compared against known

TSND baselines using correlation and regression analysis. Mathematical inspection and
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analysis observations provide further quantitative and qualitative data. The results of the
analysis will be documented in Appendix B through H, as applicable.

Testing of the research hypotheses is performed following the data analysis. The
heuristics and data analysis results serve to “reject” or “fail to reject” the null hypothesis
of this research. Alternate hypotheses evaluations were also conducted to determine if
there was sufficient or insufficient data to “support” the final conclusions for each
hypothesis.

Specifically, this research investigates analysis methods and heuristics for a
truncated standard normal distributions’ characteristic function and seeks to provide an
approach to test the results. The research hypothesis test approach is addressed further in
Section 3.4.

The research approach employed by this dissertation primarily utilized a
quantitative research along with deductive and inductive modes of reasoning to
investigate TSNDs. Creswell (2003) identifies that elements of a quantitative approach
involve “reduction to specific variables and hypotheses and questions” in addition to
“measurement and observation, and the test of theories.” Creswell (2003) also identifies
the characteristics associated with deductive and inductive modes of reasoning. The
quantitative data analysis techniques utilized in this research include mathematical
formulations and their associated statistical analysis. Example data was also generated
and evaluated as part of this approach using various analysis techniques. Other
evaluations included comparative reviews, data interpretation, and heuristic development.
Refer to Sections 3.2, 3.3 and 3.4 for additional details related to research gap

identification, TSND analysis and hypothesis testing.
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3.2 Comparative Review and Research Gaps

A comparative review was performed of a sample of more than 100 relevant
scholarly works in the areas pertaining to assembly, truncated standard normal
distributions, heuristics, EVT and other applicable subsets of this dissertation. A
comprehensive review of these results is shown in Appendices F and G.

The comparative review aided in classifying and categorizing a representative
sample of scholarly works for the purpose of identify truncation methods, heuristics and
analysis methods relevant to TSND within the body of knowledge. In general the
categorization of comparative review was based on the judgment of the author. Attempts
were made to group and categorize literature as objectively as practical. Appendix E
categorization information aided in the réview and comparative analysis of the literature
reviewed. Scholarly works were categorized and grouped based on concepts presented
explicitly and implicitly. For example, in some cases a scholarly work may have
addressed heuristic steps without explicitly sighting a procedure or approach as a
heuristic. As a result, those instances were categorized using good judgment with
objective intentions. A primary focus of this review was to identify research and
knowledge gaps in this engineering management discipline. The following general areas
were analyzed:

e Comparative Review — Selective Assembly/Heuristics/Truncation with specific
categorization based on data source.
e Comparative Review Heuristics/Benchmarking/Truncation with specific

categorization based on a benchmarking emphasis.
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Comparative Review — Heuristic Type with specific emphasis toward testing
methods.

Comparative Review — Testing Methods & Truncated Assembly.
Comparative Review — Heuristic Data Sources of Truncated Assembly

The results shown in Figures 3 through 7 and Appendices F and G identify

observations of various data partitions for the review variables evaluated. The following

observations are made from the data:

Heuristic procedures represent a knowledge generation method (28% from
Appendix G, Table G.1) and widely used problem solving/approach techniques
used to expand the body of knowledge. Beyond heuristic procedures,
examples/case studies also serve as a widely used and accepted methods for
knowledge creation. Of the benchmarking methods identified in Appendix G,
Table G.1, 43% were involved heuristics in a broader level of review.
Statistical means to benchmark quantitative and/or qualitative results (e.g.,
correlation), and efficiency improvements all represent examples for testing
problems in this knowledge area.

Appendix G, Tables G.2 and G.4 identify that the majority of testing methods
identified in the literature review was performed using some form of
mathematical computafions/model and/or via comparative analysis. Table G.6
identifies heuristics and models as primary analysis techniques for the research.
Appendix G, Table G.3 reinforces the knowledge gap relative to
truncation/selective assembly and heuristics and although data is limited data

sources leveraged “example” data as a means of analysis.
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e Simulation, historical data, or example data are also widely used data sources for
analyses (i.e. Appendix G, Table G.5).

A review of Appendices F and G also shows that in the area of truncated standard
normal distribution analysis that there is little data related to heuristics, analysis for
truncation of assemblies, and alternative methods for truncated standard normal
distribution using characteristic functions. Figures 3 through 7 provide results for

comparative review compilations for select areas of focus in this dissertation.
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Figure 3: Comparative Review — Selective Assembly/Heuristics/Truncation
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Figure 5: Comparative Review — Heuristic Type & Testing Methods
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Figure 7: Comparative Review — Heuristic Data Sources of Truncated Assembly
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3.3 Truncated Standard Normal Distribution Analysis

One facet of this dissertation research focuses on the analysis of truncated
standard normal distributions. As part of this research the literature mapping identified a
gap in analytical approaches for the computation of a truncated distribution using a
distributions characteristic function. Original work presented by this dissertation
provides an empirical basis for the proposed approximation of a truncated standard
normal distribution assembly using an inversion factor. Heuristic procedures are
developed by this research and documented in Appendices I and J. A summary-level of
these heuristics are shown in Figures 8 and 10.

Unique aspects of a distributions characteristic function are leveraged by this
research in the analysis of truncated standard normal distributions. P. Billingsley (1995)
identifies that for a given “characteristic function ¢ uniquely determines the measure of p
it comes from.” Therefore, it can be inferred that an inversion formula can be used to
identify the result of two doubly truncated normal distributions. This research uniquely
identifies a means to obtain the result of such an inversion of a truncated standard normal
distribution and provides inversion factors for this inversion with a baseline against
known truncated standard normal distributions. This research also proposes an
evaluation method to compute the result of two assembled truncated standard normal
distributions through the use of the inversion of the combination of their respective
characteristic functions and proposes the use of inversion factors established for a given
truncated standard normal distribution upper and lower specification limit.

Appendix I documents a baseline inversion heuristic for a truncated standard

normal distribution from a characteristic function. Appendix J expands Appendix I
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heuristic at the assembly level (for identical distributions). Figure 9 provides a simplified
visual representation of two assemblies with a given upper and lower specification.
Equations and relevant calculations are found in Appendix A. Examples of
computational results are found in Appendix D. Analysis results for single and
assembled TSND parameters are identified in Appendix B. Section 3.4 addresses the
analysis testing (e.g. correlation and regression analysis) that was investigated beyond

observations and inspections from the mathematical results.

Figure 8: Heuristic - Analysis for Truncated Standard Normal Distribution
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Figure 9: Truncation Assembly-level Example (Simplified)
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3.4 Hypothesis Testing

This section outlines the hypothesis testing steps performed as part of this
dissertation for each research hypothesis. Various elements of the analysis of the
truncated standard normal distributions are performed mathematically and serve as a
logical axiom and baseline for this research (i.e., Appendix I heuristic logic). For
example, the analysis testing in Appendix H for truncated standard normal distributions
(single distribution) using inversion techniques for its characteristic function was
established using a known TSND baseline. Logically this method is applied to
assemblies by expanding on the mathemafical formulations in Appendix A.

This dissertation indentified null and alternative hypotheses to be tested.
Mathematical formulation in addition to the structure hypothesis tests aid in the
investigation into the analysis of truncated standard normal distributions. This
dissertation uses National Institute of Standards and Technology (NIST) 2014 guidance
that identifies “the p-value is the probability of the test statistic being at least as extreme
as the one observed given that the null hypothesis is true.”

Hypothesis tests will be performed for each hypothesis as follows:

1. Hp will be tested by developing identical distributions for combinations of
distributions with specification limits ranging from -4 to 4. Distributions
combinations increments will be analyzed at increments of 0.1 per distributions
(i.e., 81 combinations of two identical distributions). The assembled distributions
will be analyzed in increments of 0.2 for specification limits ranging from -8 to 8.
The Appendix A equations were used to identify the characteristic function and

other equation inputs and results. Correlation analysis (i.e. Pearson’s correlation
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coefficient) and regression analysis will be performed to assess the relationship
and linear relationship between variables. P-values were also analyzed as part of
statistical testing. Statistical testing will be performed with commonly accepted
statistical software (Minitab® et al.). The final assessment of this hypothesis will
be made following evaluation of the alternative hypotheses. In addition the
correlation analysis and regression analysis from those tests would serve to
“reject” or “fail to reject” this null hypothesis.

a. NIST (2014) identifies that “The choice of a is somewhat arbitrary,
although in practice values of 0.1, 0.05, and 0.01 are common.” As a
result, a significance level of a = 0.05 was assumed for the analysis
performed in this dissertation.

b. Data results will be reviewed against the evaluation criteria in addition to
the results of the alternate hypotheses to evaluate the hypothesis test
results.

H; will be tested by following the generation of identical distributions for
combinations of distributions with specification limits ranging from -4 to 4. The
distributions combination increments will be analyzed at increments of 0.1 per
distributions (i.e., 81 combinations of two identical distributions). Assembled
distributions will be analyzed in increments of 0.2 for specification limits ranging
from -8 to 8. This hypothesis will be tested by generating the distributions for a
TSND (with adjusted standard deviation) and TSND (using Khasawneh et al.

2005 methods) and evaluating these distributions using TSNDs assemblies (using
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characteristic function inversion). These distributions will be compared as
follows: |
a. Direct comparison by correlation between a TSND (e.g., fT(z) - adju
stdev) and TSND assembly based on its characteristic function.
Evaluations will be performed using Pearson’s correlation coefficient,
regression analysis, p-value, and via mathematical formulation and
observation/inspection.
b. Correlations will also be performed between Ratiol and Ratio 2 as shown
in Appendices B and C. Correlations will also be performed between
Ratio 3 and Ratio 4 as shown in Appendices B and C. The ratios represent
ratios between TSND assembly-level truncated distributions (with a
standard deviation of 1 and an alternative which utilizes a standard
deviation of square root of the sum of the squares of each distributions
standard deviation).
c. A significance level of a = 0.05 was assumed based on NIST (2014)
guidance.
d. Data results will be reviewed against the evaluation criteria to evaluate the
hypothesis test results.

3. H, will be tested by following the generation of identical distributions for
combinations of distributions with specification limits ranging from -4 to 4. The
distributions combination increments will be analyzed at increments of 0.1 per
distributions (i.e., 81 combinations of two identical distributions). Assembled

distributions will be analyzed in increments of 0.2 for specification limits ranging
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from -8 to 8. This hypothesis will be tested by generating the distributions for a
TSND (with adjusted standard deviation) and TSND (using Khasawneh et al.
2005 methods) and a evaluating these distributions usiﬁg TSNDs assemblies
(using characteristic function inversion). These distributions will be evaluated as
follows:
a. Regression analysis between a TSND (e.g., fT(z) - adju stdev) and TSND
(e.g.. fT(z) —assy) assembly based on its characteristic function.
b. Regression analysis between a TSND (e.g., fT(z) - standard) and TSND
(e.g.. fT(z) — assy) assembly based on its characteristic function.
c. A significance level of a = 0.05 was assumed based on NIST (2014)
guidance.
d. Data results will be reviewed against the evaluation criteria to evaluate the
hypothesis test results.
4. Hi: A heuristic based approach for the analysis of a truncated standard normal

distributions using its characteristic function and inversion factor can produce

Z | IR
. 1
results equivalent to f(z)dz = e’ dz.
ZJ; N27

a. This research hypothesis will be verified by demonstrating the results are
equivalent. Correlation and regression analysis will further confirm that
the values have a strong correlation. Regression models will confirm that
the data model equations are equivalent.

b. A significance level of a = 0.05 was assumed based on NIST (2014)

guidance.
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CHAPTER 4

RESULTS

This chapter will discuss the results of the mathematical formulations,

correlations, regression analysis and heuristics developed as part of this research.

4.1 TSND Analysis Results and Heuristics

Appendix A provides a summary of the equations utilized as part of this research
to investigate the analysis of truncated standard normal distributions. Appendices I and J
provide the final heuristics developed as part of this research. Mathematical axioms are
leveraged as part of the formulation applications to truncated standard normal distribution
assemblies. Correlation analysis and regression analysis identify relationships between
various distributions. These methods of evaluation only aid in identifying distribution
relationships between the alternative analysis formulation presented and other methods

for a single doubly truncated normal distributions.

4.2 Hypothesis Testing Results

Mathematical formulation and observation along with statistical analysis software
(Minitab® et al.) were used to test the research hypotheses of this dissertation.
Correlations were used as a means to compare different distribution results and to gain
insight into any observations between distributions. Regression analysis was used to
provide additional insight the relationship between distribution analysis methods.

Hypothesis testing was performed using a significance value of a = 0.05 along in



59

conjunction with mathematical formulatiohs, observation, and inspection. While an a =
0.05 was specified for analysis testing the results of this dissertation generally indicate
that the results were significant to the 0.01 level (e.g., p < 0.001).

The testing of each research hypothesis involved data analysis, observation, and
interpretation. Hypothesis testing results are documented in an Appendix C, D, and H.

The research hypotheses were tested as follows:

Ho: No relationship/correlation exists to assess the additive relationship of a
truncated standard normal distribution with another identical distribution.

This null hypothesis is rejected. Mathematical formulation along with correlation
and regression analysis performed as part of alternate hypothesis analysis generally
indicate a statistically significant and strong positive relationship (p < 0.001) for all
distributions analyzed (where a p-value could be calculated). Additionally, observations
and inspections of mathematical formulations support this conclusion. Regression
analysis provides further insight into the relationship between assembly-level truncation
analysis (using two different methods). R-values ranging from 99.13% to 100% for cubic
line model plots further support this conclusion. Appendices B and C document the

results and other corresponding analysis.

H,: Analysis of the relationships between additive truncated standard normal
distributions and a given truncated standard normal distribution will provide meaningful

correlation data.



60

Mathematical formulations presented in Appendix A along with correlation
analysis testing results support alternate hypothesis H;. Correlation data generally
indicates a statistically significant and strong positive relationship (p < 0.001) for all
analyzed distributions (where a p-value could be calculated). Meaningful results are
defined as either a statistically significant relationship, positive correlation/relationship,
or any other observed, calculated, or identified parameter which provides data or
indications not previously understood by the body of knowledge. Additionally,
observations and inspections of mathematical formulations support this conclusion.

Appendices B and C document the results and other corresponding analysis.

Ha: Regression analysis between additive truncated standard normal distributions
and a given truncated standard normal distribution will provide meaningful data
regarding the relationship between these distributions.

Mathematical formulations presented in Appendix A along with regression
analysis testing results support alternate hypothesis H,. Regression analysis generally
indicates a statistically significant and strong positive relationship (p < 0.001) for all
analyzed distributions (where a p-value could be calculated). Meaningful results are
defined as either a statistically significant relationship, positive correlation/relationship,
or any other observed, calculated, or identified parameter which provides data or
indications not previously understood by the body of knowledge. Additionally,
observations and inspections of mathematical fqrmulations support this conclusion.

Appendices B and C document the results and other corresponding analysis.
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Hi: A heuristic based approach for the analysis of a truncated standard normal

distributions using its characteristic function and inversion factor can produce results

. o)
equivalent to f(z)dz = I e dz ..
Z

2z

Mathematical formulations presented in Appendix A along with Appendix H
analysis support alternate hypothesis H4. Appendix H results confirm that the baseline
mathematical formulations via correlation and regression analysis. Appendix H
regression results confirm that the results of the equations for a given X value are
equivalent. This is confirmed graphically as wéll as through the examination of the
fitted line plot equation for cubic model from the regression analysis. In addition to these
results the correlation and regression analysis generally indicates a statistically significant
and strong positive relationship (p < 0.001) for the distributions analyzed (i.e., -1 to 1, -2
to 2, -3 to 3, and -4 to 4). Additionally, observations and inspections of mathematical
formulations support this conclusion. Appendix H documents the results and other

corresponding analysis.

4.3 Simulation Examples

Examples of mathematical formulations used in this dissertation were developed
using industry software (i.e., NtRand). This industry software was utilized for the
purpose of generatihg three examples of random data sets with a population of 10,000
samples for a given USL, LSL, standard deviation, and mean. These data sets were then
analyzed using mathematical formulations presented in Appendix A and using statistical

software (Minitab® et al.).
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The simulations performed were for sample distributions generated from -4 to 4, -3 to
3, and -2 to 2. Identical truncated standard normal distribution assemblies were used for
each analysis of assemblies. Combination of these assemblies was performed using the
distributions characteristic function. Results of this analysis are found in Appendix D. A

summary of the results is also identified below in Tables D.1-D.9.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

For engineering managers, risk managers and quality practitioners, the use of the
standard normal distribution and truncated standard normal distribution have particular
relevance when bounding data sets, evaluating manufacturing and assembly tolerances,
and identifying measures of quality. In particular, truncated standard normal
distributions are used in areas such as component assemblies to bound upper and lower
process specification limits. This research provided an alternative approach to the
analysis of TSNDs using an inversion factor and applied that insight to address the
relationship of truncated distributions.

Heuristic procedures were developed to characterize the approach of this
dissertation along with mathematical formulation and data analysis. The heuristics,
correlations, regression analysis and other investigations performed provided additional
insight into these distributions. Appendix A also documents the equations that form a
part of the heuristic procedures in Appendices I and J. Additionally, truncation assembly
data was provided in Appendix B to address two pair TSND combinations.

This dissertation presents a heuristic approach for the analysis of assembly-level
truncated standard normal distributions. Specifically, this dissertation utilized the unique
properties of a distributions characteristic function as method for the analysis of truncated
assemblies. A comparative review was performed to aid in the identification of

traditionally accepted analysis and evaluation methods dealing with part truncation.



In addition to the mathematical formulations for TSND assemblies in this
dissertation practical application of the theory was also presented. Three examples of
varying specification limits for a sample size of n = 10,000 were developed to reinforce
the research framework presented. The analysis results for these examples are presented
in Appendix D.

In general, the mathematical formulations performed in conjunction with the
correlation and regression analysis results support the alternate hypotheses of this
research. The approach presented also provides a framework and baseline for future
efficiency and heuristic improvements along with conceptual expansion toward the

potential application to other distributions.

5.1 Research Question Conclusions
The research questions, literature review, comparative analysis, TSND analysis,
hypothesis testing, and other evaluations assisted with interrogatory review. The

following statements and conclusions are provided:

Research Question 1: What are the research gaps relative to truncated standard
normal distribution analysis and is there an opportunity to address a portion of these
gaps?

e This question poses a contextual question aimed at addressing TSND research
gaps. The question was posed as a means to narrow the focus of this research

(relative to assemblies) and to initiate a framework for future expansion of this

work. The literature review and comparative analysis results confirmed the
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existence of research gaps as compared to the sample population of scholarly

works reviewed.

Research Question 2: Does the analysis of two truncated standard normal

distributions (i.e., assemblies) provide a quality indicator and/or an enhanced

understanding of characteristics of truncated distributions with respect to assemblies?

This research question focused on the analysis of two truncated standard normal
distributions as a means to gain insight into assemblies. An assembly in its
simplest form contains at least two pieces. This is important to engineering
managers and other decision makers as it serves as the foundation for
understanding more elaborate assemblies. Baseline and assembly level TSND
mathematical formulations along with correlation and regression analysis provide

insight into the relationships analyzed.

Research Question 3: To what extent can heuristic techniques be employed to aid

in truncated standard normal distribution analysis? What relationships can be inferred

from the analysis of truncated standard normal distributions?

As identified earlier in this dissertation a heuristic serves as an aid for learning,
discovery and problem-solving. The use of heuristics was considered as a method
of knowledge generation. Development of a “heuristic” provides a method for
which analysis of truncated standard normal distributions could be performed by

the practitioner. Heuristics provide a method of solving problems.



66

Understanding the TSND analysis relationships also serves as a benchmark for

future efficiency improvement or expanded evaluations and comparisons.

Research Question 4: Can qualitative or quantitative data sets be developed to
assist decision makers and/or quality practitioners with an enhanced understanding of
truncated standard normal distributions (single and assemblies)?

e This question was initially focused on capturing a framework of assemblies and
single truncated analysis using CF. Qualitative data would come from a
“comparative review” or possible graphs whereas quantitative data is apparent in
the analytical portions of the Appendices in this dissertation. Both of these
approaches provide practical methods of enhancing TSND knowledge by a

practitioner.

Research Question 5: Will correlations, goodness-of-fit or other testing methods
provide meaningful data from truncated standard normal distribution (single and/or
assemblies) and other known distributions?

¢ Correlation and regression analysis testing was performed in addition to the
mathematical formulations, observations, and data inspections of TSNDs.

Statistically significant strong positive relationships were identified in analyses

performed. Regression analysis and correlation analysis for various ratios of

assembly distributions were also evaluated for normal distributions. The test
methods presented (e.g. regression analysis) aid in identifying relationships

between distributions analyzed. Further evaluations beyond TSND distributions
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were considered outside the scope of this work and provide an avenue for future

research in this area.

5.2 Research Assumptions and Limitations
This research includes various assumptions and limitations that form an integral
part of the research. The following assumptions and/or limitations apply to this research:

e This research focuses on truncated standard normal distributions. While this
phenomenon generally exists in many engineering, financial and related industries
it is important to also understand that that sample distributions may be normal
even though the population as a whole may be better characterized by another
distribution. This limitation could also be the focus of future research in this
field.

¢ General statistical analysis tools were utilized in this research (e.g., Minitab®,
NtRand, etc.); however, this software is assumed to be a reliable tool used within
industry that provides consistent and repeatable results.

e This research scope was limited to the evaluation of identical doubly truncated
standard normal distributions.

e Sample size evaluations were limited and represent a future research opportunity
to provide additional research fidelity and improved accuracy through focused
sample sizes in specific truncation areas of evaluation (e.g. sample sizes with
increments smaller than 0.1 or 0.2).

e Statistical Significance values assumed an a = 0.05 as a generally accepted

significance level per NIST (2014).
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e For the purposes of evaluating “fr(z) - adj. stdev”, ac = 4/0,” +7,° = 1.414214

was assumed based on similar guidance by Weisstein, EW (1994-2014).

e The research analysis was limited to mathematical formulation, correlation
analysis, and regression analysis. As a result statistical analysis and significance
(e.g., p < 0.001) does not imply that x causes y.

e It is not the intent of this research to attempt to characterize the population or
variations, permutations or other circumstances that may exist in nature.

e Mathematical formulations assumptions were based on mathematical axioms
concerning the baseline inversion of a CF using a typical TSND and its

application.

5.3 Future Research Opportunities
Elements of this dissertation research provide various opportunities for continued

or further research in the area of truncated distribution analysis. While this research
focused on the analysis of truncated standard normal distributions expansion of this work
toward the evaluation of other distributions could be considered. This research could also
be further expanded by:

e Enhancement and improvement of the heuristics developed by this work.

e Refinement of the data as a function of sample size.

e Evaluation of the application of normalization concepts to concepts presented.

e Investigation into the inversion factors for alternative distributions (e.g.,

Weibull).
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The research analysis was limited to mathematical formulation, correlation
analysis, and regression analysis. Alternative analysis methods could be
considered to further investigate the analysis of TSNDs.

Expansion to part binning and storage assembly of truncated piece parts.
Further expansion into mathematical inversion of CF beyond the concepts
presented in this research.

Expansion of heuristic approach to include search techniques such as Tabu,
beam, and/or other heuristic techniques.

Expansion of comparative reviews to identify interrelationships between various

methods (e.g. benchmarking, testing, heuristic type, etc).



70

REFERENCES
Abadir, K., & Magdalinos., T. (2002). The characteristic function from a family of

truncated normal distributions. Econometric Theory, 18(5). 1276-1287.

Abate, J., & Whitt, W. (1991). The Fourier-Series Method for Inverting Transforms of
Probability Distributions. Retrieved from the Pennsylvania State University,
CiteSeer*; Website:
http://citeseerx.ist.psu.edu/viewdoc/download ?doi=10.1.1.94.9058&rep=rep1 &type=

pdf

Abe, S., Murayama, T., Oba, F., & Narutaki, N. (1999). Stability check and reorientation
of subassemblies in assembly planning. Systems, Man, and Cybernetics, 1999. IEEE
SMC '99 Conference Proceedings. 1999 IEEFE International Conference on, 2, 486-

491.

Agard, B., & Kusiak, A. (2004). Data mining for subassembly selection. Journal of

Manufacturing Science and Engineering, 126, 627-631.

Aggarwal, C.C., Orlin, J.B., & Tai, R.P. (1997). Optimized crossover for the independent

set problem. Operations Research, 45(2), 226-234.


http://citeseerx.ist.psu

71

Asvadurov, S., Druskin, V., Guddati, M., & Knizhnerman, L. (2003). On optimal finite-
difference approximation of PML. Siam Journal of Numerical Analysis, 41(1), 283-

305.

Bai, H., & Kwong, C.K. (2003). Inexact genetic algorithm approach to target values
setting of engineering requirements in QFD. International Journal of Production

Research, 41(16), 3861-3881.

Barish, N.N. (1963). Operations research and industrial engineering: the applied science

and its engineering. Operations Research, 11(3), 387-398.

Bastes, R.A., Buck, R.J., Riccomagno, E., & Wynn, H.P. (1996). Experimental design
and observation for large systems. Journal of the Royal Statistical Society, 59(1), 77-

94.

Baykasoglu, A. (2001). Goal programming using multiple objective Tabu search.

Journal of the Operational Research Society, 52, 1359-1369.

Bermudez, P.D.Z, & Kotz, S. (2010). Parameter estimation of the generalized Pareto

distribution — Part I. Journal of Statistical Planning and Inference, 140, 1353-1373.

Bermudez, P.D.Z, & Kotz, S. (2010). Parameter estimation of the generalized Pareto

distribution — Part II. Journal of Statistical Planning and Inference, 140, 1374-1388.



72

Bernadic, M., & Candel, J. (2012). The doubly truncated function of indices on discrete

distributions. Srat Papers, 53, 177-193.

Billingsley, P. (1995). Probability and Measure (3" ed.). New York, NY: John Wiley

and Sons, Inc.

Bisgaard, S. (1997). Designing experiments for tolerancing assembled products.

Technometrics, 39(2), 142-152.

Blanchet, J., & Liu, J. (2012). Efficient simulation and conditional functional limit
theorems for ruinous heavy-tailed random walks. Stochastic Processes and their

Applications, 122, 2994-3031.

Bohachevsky, IO Johnson, ML.E., & Stein, M.L. (1986). Generalized simulated

annealing for function optimization. Technometrics, 28(3), 209-217.

Bouchard, B., Elie, R., & Imbert, C. (2010). Optimal control under stochastic target

constraints. Siam Journal on Controls and Optimization, 48(5), 3501-3531.

Bracker, J.S., & Pearson, J.N. (1986). Planning and Financial Performance of Small,

Mature Firms. Strategic Management Journal, 7, 503-522.



73

Bradley, D. M., & Gupta, R.C. (2002). On the distribution of the sum of n Non-
Identically Distributed Uniform Random Variables. Annals of the Institute of

Statistical Mathematics, 54(3), 689-700.

Brazauskas, V., & Kleefeld, A. (2009). Robust and efficient fitting of the generalized
Pareto distribution with actuarial applications in view. Insurance: Mathematics and

Economics, 45, 424-435.

Breedis, J.B. (2001). Monte Carlo tolerance analysis of a passively aligned silicon
waferboard package. Electronic Components and Technology Conference, 2001.

Proceedings., 51st, 247-254.

Brooks, C., Clare, A.D., Dalle Molle, J.W., & Persand, G. (2005). A comparison of
extreme value theory approach for determining value at risk. Journal of Empirical

Finance, 12, 339-352.

Brown, D.E., & Spillane, A.R. (1989). A Knowledge-based design aid for superheaters
employing pseudo-random search. Journal of the Operational Research Society,

40(6), 539-550.

Caleb Li, M.H. (2004). Optimal target selection for unbalanced tolerance design. The

International Journal of Advanced Manufacturing Technology, 23, 743-749.



74

Caleb Li, M.-H., & Chou, C.-Y.(2001). Target selection for an indirectly measurable
characteristic in unbalanced tolerance design. The International Journal of Advanced

Manufacturing Technology, 17, 516-522.

Cao, X., & Ho, Y. (1987). Sensitivity analysis and optimization of throughput in a
production line with blocking. IEEE Transactions on Automatic Control, AC-32(11),

959-967

Carlson, J.M., & Doyle, J. (2002). Complexity and robustness. Proceedings of the

National Academy of Sciences of the United States of America, 99(1), 2538-2545.

Carpinteri, A., Cornetti, P., & Puzzi, S. (2005). Scale effects on strength and toughness of
grained materials: an extreme value theory approach. Strength and Fracture

Complexity, 3, 175-188.

Castillo, E., Hadi, A., Balakrishnan, N., Sarabia, J. (2005). Extreme Value and Related
Models with Applications in Engineering and Science. Hoboken, NJ: John Wiley &

Sons, Inc.

Chavez-Demoulin, V., & Roehral, A. (2004). Extreme Value Theory can save your neck.
Retrieved from approximity.com Website:

http://www.approximity.com/papers/evt_wp.pdf


http://www.approximity.com/papers/evt_wp.pdf

75

Chiang, W-C., Kouvelis, P., & Urban, T.L. (2002). Incorporating workflow interference
in facility layout design: the quartic assignment problem. Management Science,

48(4), 584-590.

Cittolin, A. (1997). Selection of assembly sequences using universal filtering methods.
Emerging Technologies and Factory Automation Proceedings, 1997. ETFA '97., 1997

6th International Conference on, 195-200.

Consiglio, A., & Zenios, S. (1999). Designing portfolios of financial products via

integrated simulation and optimization models. Operations Research, 47(2), 195-208.

Cooper, A.B., Georgiopoulos, P., Kim H.M., & Papalambros, P. Y. (2006). Analytic
target setting: an enterprise context in optimal product design. Transactions of the

ASME, 128(4), 4-13.

Coverdale, 1., & Wharton, F. (1976). An improved heuristic procedure for a nonlinear

cutting stock problem. Management Science, 23(1), 78-86.

Creswell, J. (2003). Research design qualitative quantitative and mixed methods

approaches. Thousand Oaks, CA: Sage Publications, Inc.

Das, S.K., & Sarin, S.C. (1988). Selection of a set of part delivery dates in a multi-job

stochastic assembly system. IIE Transactions, 20(1), 4-11.



76

De Fazio, T.L., Rhee, S.J., & Whitney, D.E. (1999). Design-specific approach to design
for assembly (DFA) for complex mechanical assemblies. IEEE Transactions on

Robotics and Automation, 15(5), 869-881.

Dell’ Amico, M. (1996). Shop problems with two machines and time lags. Operations

Research, 44(5), T77-787.

Desmond, D. J., & Setty, C.A. (1961). Simplification of selective assembly.

International Journal of Production Research, 1(3), 3-18.

Dhrymes, P. J. (2005). Moments of truncated (normal) distributions. Retrieved from the
Columbia University, Department of Economics Web site:

http://www.columbia.edu/~pjd1/mypapers/mycurrentpapers/dummytruncated.pdf

Diebolt, J., Guillou, A., & Rached, I. (2005). Approximation of the distribution of excess
using a generalized probability weighted moment method. C. R. Acad. Sci. Paris, |

340, 383-388.

Drees, H., de Haan, L., & Li, D. (2006). Approximations to the tail empirical distribution
function with application to testing extreme value conditions. Journal of Statistical

Planning and Inference, 136, 3498-3538.


http://www.columbia.edu/~pjdl/mypapers/mycurrentpapers/dummytruncated.pdf

77

Gendreau, M., Hertz, A., & Laporte, G. (1994). A Tabu search heuristic for the vehicle

routing problem. Management Science, 40(10), 1276-1290.

Gendreau, M., Laporte, G., & Séguin, R. (1996). A Tabu search heuristic for the vehicle
routing problem with stochastic demands and customers. Operations Research,

44(3), 469-477.

Glover, F. (1990). Artificial intelligence, heuristic frameworks and Tabu search.

Managerial and Decision Economics, 11, 365-375.

Glover, F., & Laguna, M (undated). Tabu Search. Retrieved from the Pennsylvania State
University, CiteSeer*; Website:
http://citeseerx.ist.psu.edu/vieroc/download?doi=10. 1.1.69.7798&rep=repl &type=

pdf

Grieme, N. (2011). Derivation, general solution, and application of the Finite-Element
Method. Retrieved from the University of Minnesota, Mathematics Discipline’'s Web
site: http://facultypages.morris.umn.edu/math/Ma4901/Sp2011/Near/NickGrieme-

near.pdf

Griine-Yanoff, T., & Weirich, P. (2010). The philosophy and epistemology of simulation:

a review. Simulation and Gaming, 41(1), 20-50.


http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.69.7798&rep=repl&type=
http://facultypages.morris.umn.edu/math/Ma4901/Sp2011/Near/NickGrieme-

78

Guffin, J. (2010). The Characteristic Function. Retrieved from the Pennsylvania State
University, Website:

http://www.math.upenn.edu/~guffin/teaching/fall10/lectures/lecture-25.pdf

Gutierrez, G.J., Hausman, W.H., & Lee, H.L. (1995). Dynamic control of imperfect

component production for assembly operations. /IE Transactions, 27, 669-678.
Hart, C. (2005), Doing a Literature Review. Thousand Oaks, CA: Sage Publications, Inc.

Heuristic. (2014). In Merriam-Webster.com. Retrieved January 20, 2014, from

http://www.merriam-webster.com/dictionary/heuristic

Horrace, W.C. (2005). Some Results on the Multivariate Truncated Normal Distribution.
Retrieved from Syracuse University, Surface Website:

http://surface.syr.edu/cgi/viewcontent.cgi?article=1149&context=ecn

Huang, G.Q., Qu, T., Cheung, D. W.L., & Liang, L. (2006). Extensible multi-agent
system for optimal design of complex systems using analytical target cascading. The

International Journal of Advanced Manufacturing Technology, 30, 917-926.

Huang, S.H., Liu, Q., & Musa, R. (2004). Tolerance-based process plan evaluating using
Monte Carlo simulation. International Journal of Production Research, 42(23), 4871-

4891.


http://www.math.upenn.edu/~guffin/teaching/falll0/lectures/lecture-25.pdf
http://www.merriam-webster.com/dictionary/heuristic
http://surface.syr.edu/cgi/viewcontent.cgi?article=

79

Johnson, A., & Thomopoulos, N.T. (undated). Characteristics and Tables of the Left-
Truncated Normal Distribution. Retrieved from the Illinois Institute of Technology,
Faculty Whitepapers Website:
http://business.iit.edu/shared/shared_stuartfaculty/whitepapers/thomopoulos_char-

left.pdf

Johnson, A.C., & Thomopoulos, N.T. (undated). Characteristics and tables of the doubly-
truncated normal distribution. Retrieved from Illinois Institute of Technology,
Website:
http://business.iit.edu/shared/shared_stuartfaculty/whitepapers/thomopoulos_char-

doubly.pdf

Jun, J.B., Jacobson, S.H., & Swisher, J.R. (1999). Application of discrete-event
simulation in health care clinics: a survey. Journal of the Operational Research

Society, 50, 109-123.

Kannan, SM., & Jayabalan, V. (2001). A new grouping method to minimize surplus
parts in selective assembly for complex assemblies. International Journal of

Production Research, 39(9), 1851-1863.

Kannan, SM., Jayabalan, V., & Jeevanantham, K. (2003). Genetic algorithm for
minimizing assembly variation in selective assembly. International Journal of

Production Research, 41(14), 3301-3313.


http://business.iit.edu/shared/shared_stuartfaculty/whitepapers/thomopoulos_char-
http://business.iit.edu/shared/shared_stuartfaculty/whitepapers/thomopoulos_char-

80

Kawata, T. (1969). On the inversion formula for the characteristic function. Pacific

Journal of Mathematics, 31, 81-85.

Khasawneh, M.T., Bowling, S. R., Kaewkuekool, S., & Cho, B.R. (2005). Tables of a
truncated standard normal distribution: a singly truncated case. Quality Engineering,

17, 33-50.

Khasawneh, M.T., Bowling, S.R., Kaewkuekool, S., & Cho, B.R. (2005). Tables of a
truncated standard normal distribution: a doubly truncated case. Quality Engineering,

17, 1-15.

Kim, H.M., Michelena, N.F., & Papalambros, P.Y (2003). Target Cascading in Optimal

System Design. Transactions of the ASME, 125, 474-480.

Klincewicz, J.G. (1990). Solving a freight transport problem using facility location

techniques. Operations Research, 38(1), 99-109.

Klum, G. (1977). Teaching problem-solving heuristics a critique of two studies. Journal

for Research in Mathematics Education, 8(2), 153-155.

Kosfeld, M.A., & Quinn, T.D. (1999). Use of dynamic simulation to analyze storage and

retrieval strategies. Proceedings of the 1999 Winter Simulation Conference, 736-741.



81

Kozan, E. (2000). An integrated material handling system for a truck assembly plant.

Journal of the Operational Research Society, 51, 263-271.

Krzysztofowicz, R. (1990). Target-setting problem with exponential utility. /EEE

Transactions on Systems, Man, and Cybernetics, 20(3), 687-688.

Kuwahara, H., & Mura, 1. (2008). An efficient and exact stochastic simulation method to

analyze rare events in biochemical systems. The Journal of Chemical Physics,

129(165101), 1-10.

Kwok, K.S., Driessen, B.J., & Phillips, C.A. (2002). Analyzing the multiple-target-agent
scenario using optimal assignment algorithms. Journal of Intelligent Robotic Systems,

35, 111-122.

Kwon, H-M, Kim, K-J, & Chandra, M. J. (1999). An economic selective assembly
procedure for two mating components with equal variance. Naval Research Logistics,

46, 809-821.

Lee, B., & Saitou, K. (2007). Assembly synthesis with subassembly partitioning for
optimal in-process dimensional adjustability. Artificial Intelligence for Engineering

Design, Analysis and Manufacturing, 21, 31-43.



82

Lee, S. (1994). Subassembly identification and evaluation for assembly planning. IEEE

Transactions on Systems, Man, and Cybernetics, 24(3): 493-503.

Lee, S., & Shin, Y.G. (1990). Assembly Planning Based on Subassembly Extraction.
Robotics and Automation, 1990. Proceedings., 1990 IEEE International

Conference on, 3, 1606-1611.

Liu, L., & Cheng, K.L. (1997). Service constrained inventory models with random

lifetimes and lead times. Journal of the Operational Research Society, 48, 1022-1028.

Logendran, R., & Sonthinen, A. (1997). A Tabu search-based approach for scheduling
job-shop type flexible manufacturing systems. Journal of the Operational Research

Society, 48, 264-277.

Lozano, S., Adenso-Diaz, B., Eguia, 1., & Onieva, L. (1999). A one-step Tabu search
algorithm for manufacturing cell design. Journal of the Operational Research

Society, 50, 509-516.

Malakooti, B.B. (1994). Assembly line balancing with buffers by multiple criteria

optimization. International Journal of Production Research, 32(9), 2159-2178.

Mansoor, E.M. (1961). Selective assembly — it’s analysis and applications. International

Journal of Production Research, 1(1) 13-24.



83

Markland, R.E. (1990). Commentary discussant’s comments: ‘artificial intelligence,
heuristic frameworks and Tabu search. Managerial and Decision Economics. 11,

377-378.

Mazzola, J.B., & Schantz, R.H. (1995). Single-facility resource allocation under capacity-

based economies and diseconomies of scope. Management Science, 41(4), 669-689.

Mease, D., Nair, V., & Sudjianto, A. (2004). Selective assembly in manufacturing:

statistical issues and optimal binning strategies. Technometrics, 46(2), 165-175.

Meller, R.D., & Bozer, Y.A. (1996). A new simulated annealing algorithm for the facility

layout problem. International Journal of Production Research, 34(6), 1675-1692.

Michalewicz, Z., & Fogel, D. (1998). How to Solve it: Modern Heuristics (2™ ed.). New

York, NY: Springer.

Moccellin, J.V., & Nagano, M.S. (1998). Evaluating the performance of Tabu search
procedures for flow shop sequencing. Journal of the Operational Research Society,

49, 1296-1302.

Moorhead, P.R., & Wu, C.F.J. (1998). Cost-driven parameter design. Technometrics,

40(2), 111-119.



84

Musa, R. (2007). New Strategic and Dynamic Variation Reduction Techniques for
Assembly Lines (Doctoral dissertation). Available from:
http://scholar.lib. vt.edu/theses/available/etd-04192007-

114716/unrestricted/DissRMusa3.pdf

Musa, R., & Chen, F.F. (2008). Simulated annealing and ant colony optimization
algorithms for the dynamic throughput maximization problem. International Journal

of Advanced Manufacturing Technology, 37, 837-850.

Musa, R., & Chen, F.F. (undated). Hybrid implementation of agile inspection planning
and dynamic throughput maximization. Virginia Polytechnic Institute and State

University, 1-12.

Musa, R., Chen, F.F., & Ghoniem, A. S. (undated). Dynamic variation reduction and
throughput maximization in assembly lines after batch inspection. Virginia

Polytechnic Institute and State University, 1-6.

Musa, R., Sturges, R. H., & Chen, F. F. (2006). Agile inspection planning based on CAD-

data. Computer-Aided Design & Applications, 3(1-4), 69-78.

Naddor, E. (1975). Optimal heuristic decisions for the s, s inventory policy. Management

Science, 21(9), 1071-1072.


http://scholar.lib.vt.edu/theses/available/etd-04192007-

85

Nair, S.K., Thakur, L.S., & Wen, K-W (1995). Near optimal solutions for product line

design and selection: beam search heuristics. Management Science, 41(5), 767-785.

NIST/SEMATECH e-Handbook of Statistical Methods. (2014). Product and Process
Comparisons. Retrieved from:

http://www.itl.nist.gov/div898/handbook/toolaids/pff/prc.pdf

Nussbaum, M., Sepulveda, M., Singer, M., & LavalFE. (1998). An architecture for
solving sequencing and resource allocation problems using approximation methods.

Journal of the Operational Research Society, 49, 52-65.

Ohlemiiller, M. (1997). Tabu search of large location-allocation problems. Journal of the

Operational Research Society, 48, 745-750.

Ohtsubo, Y. (2004). Optimal threshold probability is undiscounted markov decision

processes with a target set. Applied Mathematics and Computation, 149, 519-532.

Ostermeier, M. (2003). Theoretical distribution of truncation lengths in incremental

truncation libraries. Biotechnology and Bioengineering, 82(5), 565-577.

Park M.W., & Kim Y.D. (1999). A heuristic algorithm for a production planning problem

in an assembly system. Journal of the Operational Research Society, 50, 138-147.


http://www.itl.nist.gov/div898/handbook/toolaids/pffrprc.pdf

86

Park, K., Kang, S., & Park, S. (1996). An Integer Programming Approach to the

Bandwidth Packing Problem. Management Science, 42(9), 1277-1291.

Patterson, R.A., & Rolland, E. (2002). Hybrid Fiber Coaxial Network Design. Operations

Research, 50(3), 538-551.

Peng, L., & Qi, Y. (2009). Maximum likelihood estimation of extreme value index for

irregular cases. Journal of Statistical Planning and Inference, 139, 3361-3376.

Phoomboplab, T., & Ceglarek, D. (2007). Design synthesis framework for dimensional
management in multistage assembly system. CIRP ANNALS-Manufacturing

Technology, 56(1), 153-158.

Ponnambalam, S.G., Aravindan, P., & Rao, M.S. (2003). Genetic Algorithms for
sequencing problems in mixed model assembly lines. Computer & Industrial

Engineering, 45, 669-690.

Pourbabai, B. (1989). Optimal selection of the local storage sizes of an assembly system.

International Journal of Production Research, 27(9), 1625-1636.

Pourbabai, B. (1992). Minimum required local storages of an automated assembly

system. Journal of the Operational Research Society, 43(2), 95-109.



87

Puelz, A.V. (2002). A stochastic convergence model for portfolio selection. Operations

Research, 50(3), 462-476.

Pugh, G.A. (1986). Partitioning for selective assembly. Computers & Industrial

Engineering, 11 (1-4), 175-179.

Pugh, G.A. (1992). Selective assembly with components of dissimilar variance.

Computers and Industrial Engineering, 21(1-4), 487-491.

Punnen, A.P., & Aneja, Y.P. (1995). A Tabu search algorithm for the resource —
constrained assignment problem. Journal of the Operational Research Society, 46,

214-220.

Ramirez-Beltran, N.D. (1995). Integer programming to minimize labour costs. Journal of

the Operational Research Society, 46, 139-146.

Raschke, M. (2012). Inference for the truncated exponential distribution. Stochastic

Environmental Research and Risk Assessment, 26, 127-138.

Rochat, Y., & Semet, F. (1994). A Tabu search approach for delivering pet food and flour

in Switzerland. Journal of Operational Research Society, 45(11), 1233-1246.



88

Rubin, P.A. (1990). Heuristic solution procedures for a mixed-integer programming

discriminant model. Managerial and Decision Economics, 11, 255-266.

Salhi, S. (1997). A perturbation heuristic for a class of location problems. Journal of the

Operational Research Society, 48, 1233-1240.

Sanderson, A.C. (1997). Assemblability based on maximum likelihood configuration of

tolerances. IEEE Transactions on Robotics & Automation, 15(3), 568-572.

Seidmann, A., & Tenenbaum, A. (1994). Throughput maximization in flexible

manufacturing systems. //E Transactions, 26(1), 90-100.

Sheffield, S. (2011). MIT Open Courseware, 18.440, Lecture 27, Moment Generating
Functions and Characteristic Functions. Retrieved from MIT, Website:
http://ocw.mit.edu/courses/mathematics/18-440-probability-and-random-variables-

spring-2011/lecture-notes/MIT18_440S11_Lecture27.pdf

Shephard, N.G. (1992). From characteristic function to distribution function: a simple

framework for the Theory. Econometric Theory, 7, 519-529.


http://ocw.mit.edu/courses/mathematics/18-440-probability-and-random-variables-

89

Simpson, D. P. (2008). Krylov subspace methods for approximating functions of
symmetric positive definite matrices with applications to applied statistics and
anomalous diffusion (Doctoral dissertation). Available from

http://eprints.qut.edu.au/29751/

So, K.C., & Scott, C.H. (1994). Optimal production sequence for a product with

matching components. Operations Research, 42(4), 694-708.

Srinivasa Varadhan, S.R. (2000). Characteristic Functions. Retrieved from New York
University, Mathematics Department Website:

http://www.math.nyu.edu/faculty/varadhan/course/PROB.ch2.pdf

Stoyanov, S., & Rachev, S. (2008). Asymptotic distribution of the sample average value-

at-risk. Journal of Applied Functional Analysis, 3(4), 443-460.

Thakur, L.S., Nair, S.K., Wen, K-W, & Tarasewich, P. (2000). A new model and solution
method for product line design with pricing. Journal of the Operational Research

Society, 51, 90-101.

Weisstein, E.W. (1999-2014). Normal Sum Distribution. Retrieved from MathWorld--A

Wolfram Website: http://mathworld. wolfram.com/NormalSumDistribution.html


http://eprints.qut.edu.au/29751/
http://www.math.nyu.edu/faculty/varadhan/course/PROB.ch2.pdf
http://mathworld.wolfram.com/NormalSumDistribution.html

90

Whitney, D. E. (2004), Mechanical Assemblies. New York, NY: Oxford University Press,

Inc.

Whitney, D. E. (2006).‘ The role of key characteristics in the design of mechanical

assemblies. Assembly Automation, 26(4), 315-322.

Wilson, I.D., & Roach, P.A. (2000). Container stowage planning: a methodology for
generating computerized solutions. Journal of Operational Research Society, 51,

1248-1255.

Xiaoping, B. & Jingjing, M. (2009). Research on availability model and algorithm of
complex storage bin belt transportation system; Electronic Commerce and Business

Intelligence, 2009. ECBI 2009. International Conference on, 180-183.

Xiaoping, B. & Jingjing, M. (2009). Study of Control Optimization Methodologies for
Storage Bin Capacity in Transport System. Industrial Mechatronics and Automation,

2009. ICIMA 2009. International Conference on, 72-75.

Yang, C., Gui, W., Kong, L., & Wang, Y. (2009). Modeling and optimal-setting control
of blending process in a metallurgical industry. Computers and Chemical

Engineering, 33, 1289-1297.



91

Zhang, W.Z., Wang, G.X., Cheok, B.T., & Nee, A.Y.C. (2003). A functional approach
for standard component reuse. International Journal of Advanced Manufacturing

Technology, 22, 141-149.

Zhu, Q., & Oommen, J. (1997). On the optimal search problem: the case when the target
distribution is unknown. Computer Science Society, 1997. Proceedings., XVII

International Conference of the Chilean, 268-277.



92

APPENDICES
APPENDIX A: EQUATIONS
This appendix documents thf; equations utilized as part of the truncated standard
normél distribution analysis used by the research. This section provides general and
specific equations used for the evaluation of truncated standard normal distributions and
corresponding assemblies. The following equations were generally or specifically applied

in this dissertation and heuristic procedures documented in Appendices I and J.

General Equations:

I J“"—f*(-g——d ,ZLS2 <17, (EQUATION 1)

,z‘[Tf(z)dzJ

Equation 1 Reference: Khasawneh et al. (2005)

][
f(D= Ji—ﬂje( 2 ) (EQUATION 2)

Equation 2 Reference: Khasawneh et al. (2005)

f(2dz= ZIU 5y,
NEY

€

7

f(2)dz= j ! eLAE*ZthZ (EQUATION 3)
Z,

2z

Equation 3 Reference: Khasawneh et al. (2005)

x— U
7= (EQUATION 4)
(o
Equation 4 Reference: Khasawneh et al. (2005)
ZU|
U ()= IZle(Z)dZ (EQUATION 5)
2y
Equation 5 Reference: Khasawneh et al. (2005)
v {Eiﬁ)
fsu,o)= e’ (EQUATION 6)

N27mo



Equation 6 Reference: Johnson et al.(undated) and Billingsley (1995), adapted

o) =9,(1) = Ele™ |= Te"‘ﬂ(dx)

Equation 7 Reference: Billingsley (1995)

e |= cos(e) +isin(r)
Equation 8 Reference: Sheffield (2011)

1 r ur
¢y(7)3=’m£fx(u)€ du

Equation 9 Reference: Abadir et al. (2002)

¢X +Y = ¢x ¢y
Equation 10 Reference: Sheffield (2011) and Billingsley (1995), adapted

o1”
r———

b R
o= f e du = "2

Equation 14 Reference: Srinivasa Varadhan (2000)

CF Inversion Equations:

1 [
lr) W_!fx(u)e du

“F

Equation 15 Reference: Adapted from Equation 9 with slight nomenclature change

22
. ot
wmr—

olr)=—

F.(b)-F.(a)

X X

Equation 16 Reference: By inspection a combination of Equations 11 and 12

| B
(x)=— |e ™ p(r)dt
=2 [l
Equation 17 Reference: Billingsley (1995)

F(b)-F,(a)

X

oo

1 —itx
fo= 5}-{-{ e dt

Equation 18 Reference: By inspection the incorporation of Equation 13 into Equation 14
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(EQUATION 7)

(EQUATION 8)

(EQUATION 9)

(EQUATION 10)

(EQUATION 1 1)

(EQUATION 12)

(EQUATION 13)

(EQUATION 14)

(EQUATION 15)
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2.2
g'x

— <2 | where Crc= L
F(b)-F.(a)| re 2z (EQUATION 16)

X X

1
f(x)= E;(Cn

Equation 16 Reference: Solved by the author by setting Equation 1 equal to Equation 15. Crc = Equation
15 results/ Equation 1 results for a given z value. See Equation 17

s 3
0" 7"

1 2 :
f,(2) zZr_(CTC F(—Z-j-;—l-:—(g; =~ j—z-:&—dz (EQUATION 17)

) o ff(z)dz

X

1
. where Crc =

NGY2

Equation 17 Reference: Set Equation 16 equal to Equation 1. This baselines this equation by this author
and identifies Cy¢

For an Assembly:

Given Equation 14

1 T ur 1 f .
A d T := lufd ' lufd
e ot (—Fx B-Fan " )[ Fo-F @t J e
Equation 18 Reference: Solved by applying equation 10 and 12 and via inspection. @, = @y . @y

22 12

. “z
iur-

_1_ oje—itx e dt
2z F,(b)-F(a)| | F.(b)-F.(a) (EQUATION 19)

Z

Q
t

Then f, (z)am,z

dl d2
Equation 19 Reference: Solved by applying Equations 14 and 21 and via inspection. Where dl is
distribution one and d2 is distribution two.

32
oo ot

R A ¢4 ss;—l—( 1 )J.e" e *||e ! (EQUATION 20)
R 4 (F(b)—l‘;(a))dl*(F (b)_ﬁ(a))dz

x * = dl d?

Equation 20 Reference: Continuation of Equation 19

L) 22
ot ot

1 T ~itx iu -
Where f(x)=2—ﬂ—_J‘e “le ? |dt=e ? (EQUATION 21)

Equation 21 Reference: Applied from Billingsley (1995), Equation 11, and Equation 14. For comparison
o=1 would result in a inversion of CF similar to Billingsley (1995) Equation 26.21. Adjust for z.
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1
P (0 at 42 , where Crc = —— (EQUATION 22
B Cr (F (b)_F (a))dl *(F (b)_F (a))dz N2 )

Equation 22 Reference: Solved by this author by applying the Equation 17 approach with Equation 20 and
21. Assumes Crc remains constant given Equations 10 and 11. Given the values for ¢ =1, p=0 the values
of x and z and therefore are interchangeable in the notation for this example.

Appendix B, Table B.1 identifies the following variables not cited in the Nomenclature

Section of this work. They following calculated variables are identified:

“fr(z) Standard” is identified as a truncated standard normal distribution where (=1, p = 0).
Results in this column reflect calculations using Equations 1-5 in Appendix A.

“ft(z) — ASSY” is identified as a truncated standard normal distribution assembly, where (o= 1, p
=0)

“fr(z) - adj. stdev” is identified as a truncated standard normal distribution assembly where (c =

Jo +0,7 = 1414214, 1=0)

“NORMPDFASSY” is identified as a normal distribution (i.e., Equation 2), where (c =1, p = 0).

“PDFASSY” is identified as a normal distribution (i.e., Equation 2),where (¢ = 1/ 0’,2 + 0'22 =

1.414214, u = 0).

“Ratio 1” is identified as ft(z) - ASSY/NORMPDFASSY
“Ratio 2” is identified as fT(z)/NORMPDFASSY

“Ratio 3” is identified as fT(z)/ft(z) — ASSY

“Ratio 4” is identified as ft(z) - ASSY/PDFASSY

“Ratio 5” is identified as fT(z)/PDFASSY
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APPENDIX B: TSND ANALYSIS RESULTS
This appendix documents the results summary for TSND analysis performed as
part of this dissertation. The results include mathematical results and also evaluate
various ;atios generated using the equations and research steps from Appendix A.
Tabular results include the combinatorial rang of assemblies for identical truncated
standard normal distribution combinations ranging from specification limits of -4 to 4.

Table B.1 summarizes the TSND results of this research.



Table B.1 — TSND Analysis Results

DISTRIBUTION 1 ~ DISTRIBUTION 2 ASSY
Range ¥ =0, o=1, Ctc = 0.39894228, # =0, 0=1, Ctc = 0.39894228, #=9, o=1, Ctc = 0,39894228, RATIOS
USL/LSL (unless otherwise noted) USL/LSL (unless otherwise noted) USL/LSL (unless otherwise noted)
- =) - adj. ‘Ralm VI. . Ratio 2 Rano 3 Rato 4 Ratio 5
"l{',::"";"’,"'" x ol ofwpds) | fuo ¥ lf otwpta) | firo X | etwpte | O :"f‘a o NORMEL L pprassy f":){”‘)g:f;’ o _ﬂ(;)trgy) - |- ol
o=14142 PDFASSY SSY o - -

1 -4 | 000013383 | 0.00033548 | 000013384 [ -4 | 0.00013383 | 0.00033548 | 000013384 | -8 | 11255E-07 | 4.49E.08 | 3 1746E-08 | 5.05E-15|5.05227E-15| 3.1746E-08 | 1.12521E-07 | 1.59149E-07 | 1. 125218-07| 1 59149E-07 | 0.999999985
2 -39 | 000019866 | 0.00049799 | 0.00019867 | -3.9 | 0.00019866 | 0.00049799 | 6.00019867 | -7.8 | 2.4799E-07 [0 893F-08] 6.9948E-08 |2 4SE-14]2 45286E-14 | 6 .9948E-08 §2.47928E-07 | 3.50668E-07 | 2.47928E-07] 3.50648E-07 { 0.999999985
3 -318 | 000029195 | 0.00073185 | 000029197 | -3.8 | 0.00029195 | 0.00073185 | 0.00029197 | -76 | 5356E-07 [2137E-07] 151076-07 | 1.14E-13 [ 1.14416E-13 | 15107E-07 } 5 35467E-07 | 7.57361E-07 | 5. 3546 TE-07] 7.57301E-07 | 0.999999985
4 -3.7 | 000042478 | 000106483 | 000042481 | -3.7 | 0.00042478 | 0.00106483 | 0.00042481 | -74 | 1.1339E-06 |4 523E-07| 3.1982E-07 |5 13E-13 |$ 12775E-13 | 3.1982E-07 }1.13358E-06 | 1.60333E-00 | 1.13358E-O0| 1.60333E-06 [ 0.999999985
5 236 | 00006119 | 000153391 | 000061194 | 36 | 00006119 | 000153391 | 0.00061194 | -72 | 2.3529E06 |9 387E-07] 6.6365E-07 |2 21E-12{220799E-12] 6 6365E-07 | 2 35228E-06 | 3 32704E-06 |2 35228E-06 | 3 32704E-06 | 0.999999985
6 35 | 0.00087268 | 0.00218763 | 000087274 | -3.5 T 000087268 | 000218763 | 000087274 | -7 | 4.7857E-06 [1 909E-06| 13499E-06 |9.13E-12]9.13472E-12] | 3499E-06 | 4.78451E-06 | 6 76718E-06 |4 78451E-06] 6 76718E-06 | 0 999999985
7 -3.4 | 000123222 | 0.00308891 | 0.0012323 | -3.4 | 000123222 | 0.00308891 | 0.0012323 | -6 8 | 9.5414E-06 |3 BOGE-06 2 6912E-06 |3 63E-11]3 63096E-11 | 2 6912E-06 | 9.53895E-06 | 1.34918E-05 [9.53895E-06 | 1 34918E-05 | 0.999999985
[] -33 | 000172257 | 000431811 | 000172268 | -33 | 000172257 | 0.00431811 | 000172268 | 66 | +B646E-0S |7 439E-06 52593E-06 | 1 39E-10]1.38668E-10] 5.2593E-06 | t 86414E-05 | 2 63662E-05 | 1 86414E-05 | 2 63662E-05 | 0.999999985
9 -3 | 000238409 | 00059764 | 000238424 | -32 | 000238409 | 00059764 | 000238424 | 64 | 3 5717E05 |1 425E-05] 1.0074E-05 |5 09E-10 ]S 08814E-10| 1 0074E-35 | 3.57083E-05 | 5 05056E-05 |3 57083E-05] 5.05056E-05 | 0.999999985
10 -3.1 | 600326682 | 000818922 | 000326703 | -3.1 { 000326682 | 000818922 | 0.00326703 | ©2 | 6.7063E-05 |2 675E-05] 1.8916E-05 |1 79E-09 1 79378E-09 | 18916E-05 | 6 70463E-05 [ 9.48298E-05 [6.70463E-05| 9 48298E-05 | 0.999999985
[ -3 | 0.00443185 | 00111097 | 000443213 | -3 | 000443185 | 00111097 | 000443213 | -6 | 000012343 |4 924B-05] 3 4813E-05 ] 6.08E-09|6.07588E-09 | 3.4813E-05 |0.000123394 [ 0.000174528 | 0.000123394] 0.000174528 | 0 999999985
12 29 | 000595253 | 001492173 | 000595291 | -29 | 000595253 | 061492173 | 0.00595291 | -58 | 0.00022266 |8 883E-05] 6.2803E-05 ] 1.98E-08 | 197732E-08 | 6 2803E-05 | 0000222602 [ 0 0003 14846 |0 000222602 0.0003 14846 { 0.999999985
13 228 | 6.00791545 | 0.01984235 | 000791595 | -28 | 0.00791545 | 0.01984235 | 0.00791595 | 56 | 6.00039372 J0 0001571} 0.00011105 ] 6.18E-08 | 6.18262E-08 | 0.00011105 | 0.000393619 | 0.000556732 |0.000393619{ 0.000556732 | 0.999999985
14 -2.7 [ 001042093 | 0.02612300 { 001642159 | -27 | 6.01042093 | 0.02612306 | 0.0104215¢ | -5.4 | 0.00068241 [0 0002722} 0.00019248 ] 1.86E-07] 1.85736E-07 | 0.00019248 | 0.000682242 | 0 000964958 |0 000682242 | 0.000964958 | 0.999999985
15 226 | 001358297 | 0.0340496¢ | 001358383 | -26 | 0.01358207 | 6.03404961 | 001358383 | -5.2 | 0.00115938 |0 0004625} 000032701 | 5 36E-07 | 5 36104E-07 | 0.00032701 | 0001159082 0.001639398 [0.001159082] 0.001639398 | 0.999999985
o =25 | 00175283 | 004393972 | 001752941 | -2.5 | 00175283 | 004393972 | 001752041 | -5 | 00019307 {6 0007702 000054457 | t 49E-06 | 1.48672E-06 | 0.00054457 | 0.00193021 | 0002730074 | 0.00193021 |0.002730074 | 0.999999985
17 -24 | 002239453 | 005613832 | 002239595 | 24 | 0.02239453 | 0.05613832 | 002239595 | 4.8 | 0.00315151 Jo 0012573 000088891 |3 96E-06 | 3. 9613E-06 | 0.00088891 J0.003150712 | 0 004456345 [0.003150712] 0004456345 | 0 999999985
18 =23 | 002832704 | 007100985 | 002832883 | -23 | 6.02832704 | 0.07100985 | 002832883 | 4.6 | 00050424 |0.0020116] 0 00142225 |1 01E-05 | 1 61409E-05 | 6.00142225 ] 0005041122 |0 007130126 |0 005041122| 0 007130126 | 0 999999985
19 =22 | 003547450 | 0.08892725 | 003547684 | -22 | 0.03547459 | 008892725 | 0.03547684 | 4.4 | 0.00790806 0 0031549] 0.00223054 |2 49E-05 [ 2.49425E-05 | 000223054 {0 007906052 [0 011182263 {0007906052] 0 011182263 | 0 999999985
20 21| 00439836 | 0 11025751 | 004398638 | -21 | 00439836 | 0.11025751 | 004398638 | 4.2 | 001215672 [0.0048498| 000342891 | 5 89E-05 [ 5 8943 1E-05 | 0.00342891 0612153639 0017190018 {0 012153639} 0017190018 | 6 999999985
21 -2 | 005399097 | 0.13534386 | 005399439 | -2 { 005399097 | 013534386 | 005399439 [ 4 | 001831796 10.0073078] 0 00516675 [0.000134| 000613383 | 000516675 |0.018313319| 0025902225 [0 018313319} 0.025902225 | 0 999999985
2 -19 | 006561581 | 0 16448488 | 006561997 | -19 | 006561581 | 0 16448488 | 006561997 [ -3 8 { 0.02705527 j0.0107935] 000763119 [0.060292 [0.066291947 [ 0.00763119 | 0 02704842 { 0038257088 [ 0 62704842 | 0 038257088 | 0.999999985
23 -18 | 007895016 | 019791124 | 0.07895510 | -1.8 | 0.07895016 | 0.19791124 | 0.07895510 | -3 6 | 0.03916886 100156261 0.01104793 | 0000612 ]0.000611902] 0.01104793 | 6039158934 0055386111 [0039158934{0.055380111 ] 0.999999985
24 -1.7 | 009404908 | 0.23576101 | 0.09405504 | -1.7 | 0.09404508 | 0.23576101 | 009405504 { -3.4 | 0.05558325 {0.0221745] 0.01567776 [0.001232]0 001232219} 0.01567770 §0 055509172 [ 0078596632 [0 0555069172] 0.078596632 | 0.999999985
25 <16 | 611002083 | 0.27805401 | 041092786 | -to | 0.11092083 | 0.27805491 | 06.11092786 | -3.2 | 007731453 J0.030844 | 002180726 0002384 0002384088 | 0.02180726 } 0077294947 [0 109325411 [0.077294947] 0.109325411 [ 0.999999085
26 15 | 61295170 1032467303 | 01295258 | -15 | 01295176 | 0.32467303 | 01295258 | -3 | 0.10541258 }0.0420535] 002973257 [ 0604432 [0.604431848] 0.02573257 J0.105385872 | 0.14905701 1 [0.105385872] 0 149057011 | 0.999999985
27 -1.4 | 014972747 ] 0.37533487 | 0.14973695 | -14 | 014972747 | 037533487 | 0.14973695 | -2.8 | 0.14087627 {0.0562015] 0.03973543 }0.007915]0.607915452 1 0.03973543 ] 0.140840577 | 0. 199203886 10.140840577] 0.199203886 | 0.999999985
28 -13 1017136859 | 042058457 | 017137945 | -1.3 | 0.17136859 [ 042958457 | 017137945 | -26 | 01845429 [0.073622] 0052052 ]0.013583]0.013582969] 0.052052 10184496149 | 0.260950009 |0.184496 149 0 260950000 | 0.999999985
29 -1.2 | 019418605 | 048678309 | 019419836 | -12 | 0.19418605 | 048678309 | 019419836 | 24 | 023695778 [0.0945325] 0 06683609 [0.622395 | 002239453 | 0.06683609 | 0.236897744 | 0.335066444 [0 236897744] 0335066444 | 0.999999985
30 =11 1021785218 | 0.54610902 | 021786598 | -11 | 021785218 | 0.54610902 | 0.21786598 | -2.2 | 0.29823506 |0.1189786] 0.0841199 J0035475]0035474593] 00841199 J0.298159504 [ 0.42171463 |0.298159504( 04217146 |0.999999985
31 -1 | 0.24197072 | 0.60656908 | 0 24198605 | -1 | 0.24197072 | 0.60656908 | 0.24198605 | -2 | 0.36792605 01467813} 0 10377688 ]0.053991|0.053990967 | 0 10377687 | 0.367832838 | 6.520260087 |0.367832838} 0 520260087 | 0.999999985
32 09 | 026608525 | 0.66701906 | 026610211 | -09 | 0.26608525 | 066701906 | 026610211 | -1 8 | 0.44491443 Jo 1774952] 0 12549215 | 007895 |0.078950158 | 012549214 ]0.444801711 0629124301 [0.444801711]0.629124301 | 0.999999985
33 -08 | 028969155 [ 0.72619504 | 02897099 | 0.8 [ 0.28969155 | 0.72619504 | 02897099 | -1.6 | 052735923 0.2103859] 0 14874645 §0.110921 10.110920835 | 0.14874645 [ 0.527225626 | 0 745704086 |0.527225626| 0.745704086 | 0.999999985
34 -0.7 | 031225393 | 0.78275412 | 031227371 | 0.7 | 0.31225393 | 0.78275412 | 0.31227371 | -1.4 | 0.6127040] 0.2444335] 0 17281872 10.149727{0.149727466 | 0.17281872 | 0612548786 | 0 866384542 |0.612548786] 0866384542 | 0.999999985
35 06 { 03332240 | 083532312 | 033324571 | 06 | 03332246 | 083532312 | 033324571 | -1.2 | 0.69776472 [0.2783678| 0.19681086 ]0.1941806 {0.194186055 | 0.19681086 | 0.697587944 | 0.986663307 |0.697587944] 0986663307 | 0.999999985
o 05 | 035200533 | 088255281 | 035208763 | -0.5 | 035206533 | 0.88255281 | 035208763 | -1 | 0.77889945 [0.3107359] 0.21969565 | 0.241971[0.241970725 | 0.21969564 ]0.778702124 | 1 101390613 |0 778702124 1.101390613 | 0.999999985
37 -0.4 | 036827014 | 092317482 | 036829347 | -04 | 0.36827014 | 0.92317482 { 036829347 | 0.8 | 0.85225175 |0.3369903{ 0.24038533 | 0289692 |0 289691553 | 0.24038532 [ 0.852035839 | 1 205113285 |0.852035839] 1.205113285 [ 0.999999985
18 -0.3 | 038138782 | 0.95605804 | 0.38141198 | -0.3 | 038138782 | 0.95605804 | 038141198 | 0.6 | 0.91404698 [0 364652 | 0.25781523 0.333225]0.333224603 | 0.25781523 | 0.913815408 | 1.292493857 [ 0.913815408 | 1.292493857 [ 0.999999985
39 02 | 039104260 | 098026077 | 039106747 | 02 | 0.39104269 | 098026077 ] 039106747 | -0.4 | 096001117 {0.3833481 02710337 ] 036827 | 036827014 | 0.2710337 0960667725 | 1 358761434 |0.960667725] 1 358761434 0.999999985

L6



40 -0.1 § 0.39695255 | 099507551 | 0.39697769 | -0.1 | 0.39695255 | 0.99507551 | 0.39697769 | -0.2 | 0.99017527 10,3950228I 027928791 | 0.391043 10.391042694 | 0.2792879 ]0.989924413 [ 1400141881 {0 989924413} 1 400141881} 0.999999985
41 0 | 039854228 | 100006335 | 039896755 | 0 | 0.39894228 | i 00006335 | 0 39896755 0 1.6001267 l{) 39899‘18] 0.2820948 | 0398942 | 0 39894228 | 0.28209479 | 0.9998733{9 | 1 414211541 |0 999873319 1 414213541 [ 0 399999985
42 01 | 0.39695255 | 099507551 { 039697769 | 0.1 | 039695255 | 0.99507551 | 0.3969776% | 02 | 099017527 10 3950228| 027928791 | 0.391043 |0.391042694 | 0.2792879 |0.989924413 | 1 400141881 [0.989924413] 1 400141881 | 0 999999985
43 02 | 039104269 | 098026077 | 039106747 | 02 | 039104269 | 098026077 | 039106747 | 04 | 096091117 jo. 3833481 02710337 | 036827 | 036827014 | 02710337 [0 960667725] 1 358761434 |0.960667725] 1 358761434 | 0 999999985
44 03 | 038138782 | 095605804 | 038141198 | 03 | 038138782 | 095605804 | 038141168 | 0.6 | 091404698 0.364652] 0.25781523 ]0.333225[0.333224603 | 0.25781523 J0 913815408 | 1 292493857 |0 913815408 1 292493857 | 0 999990985
45 04 [ 036827014 | 092317482 | 036829347 | 04 | 036827014 | 092317482 | 036829347 | 08 | 085225175 {0 3399993| 0.24038533 | 0.289692 | 0.289691553 [ 0 24038532 | 0.852035839 | 1 205113285 |0 852035839 | 205113285 | 0 999999985
46 05 | 035206533 | 088255281 | 035208763 | 0S5 | 035206533 | 088255281 | 0 35208763 1 0 77889945 10.3107359] 0.21969565 |0 241971 0241970725 | 0.21969564 |0 778702124 |1 1061390613 |0.778702124] 1 101390613 |0 999999985
47 0o | 03332240 | 683532312 | 033324571 | 06 | 03332246 | 0.83532312 | 033324571 | 12 | 0.69776472 {0.2783678] 0.19681086 [0.194186 | 0.194186055 | 0.19681086 §0.697587944 | 0986663307 [0.697587944] 0 586663307 | 0 999999985
48 0.7 | 031225393 | 0.78275412 | 031227371 | 07 | 031225393 ] 0.78275412 | 031227371 | 14 | 061270401 {0.2444335] 0.17281872 | 0.149727[0.149727466 | 0.17281872 §0.612548786 | 0 806384542 [0.612548780| 0 866384542 | 0.999999985
49 08 | 028969155 | 0.72619504 | 02897099 | 0.8 | 0.28969155 | 0.72619504 | 02897099 1o | 052735923 {0.2103859] 0.14874645 | 0.110921 [0.110920835 | 0.14874645 0527225626 | 0 745704086 [0 527225620 0 745704086 | G 999999585
S0 0.9 | 026608525 | 0.66701906 | 0.26610211 | 09 | 026608525 | 0.66701906 | 0.26610211 | 18 | 0.44491443 |0.1774952 0.12549215 ] 0.07895 |0.078950158 | 0.12549214 104448017110 629124301 |0.444801711 [ 0629124301 | 0 999999985
51 1 0.24197072 | 0.60656968 | 0.24198605 1 0.24197072 | 0 60656908 | 0.24198605 2 036792605 [0.1467813] 0.10377688 ]0.053991]0.053990967 | 0.10377687 §0.367832838 | 0.520260087 [0 367832838 | 0.520260087 |0 999999685
52 11 10621785218 | 054610902 | 021786598 | 11 | 021785218 | 054610902 | 621786598 | 22 | 020823506 01189786} 00841199 |0035475]0.035474593{ 0.0841199 §6.298159504| 6.42171463 ]0.298159504] 042171463 |0.999999985
53 12 | 619418605 | 048678309 | 019419836 | 12 | 019418605 | 048678309 | 019419836 | 24 |-023695778 [0.0945325] 0 06683609 |0 022395] 002239453 | 0 06683609 §06.236897744 | 0.335066444'[0 236897744 6 335060444 | 0 999999985
54 13 | 017136859 | 042958457 | 0.17137945 | 1.3 | 0 17136859 | 042958457 | 0 17137945 6 | 0.1845429 |0073622| 0.052052 }0013583}0.013582969] 0.052052 }0.184496149 | 0.260950009 [0 1844961490 260950009 | 0 999999985
85 14 ]| 614972747 | 037533487 | 0 14973695 | 14 | 014972747 | 037533487 | 0 14973695 | 28 | 014087627 00562015} 003973543 J0.007915 0 007915452 003973543 J0.140840577 | 6199203880 |0.140840577]0.195203886 } 0 999999985
56 1.5 ] 01295476 | 032467303 | 01295258 15 | 01295176 { 032467303 | 0.1295258 3 0 10541258 {0.0420535| 0.02973257 |0 004432 |0.004431848 | 0.02973257 0.105385872 | 0 149057011 {0.105385872] 0 149057011 | 0 999999985
§7 16 | 011092083 | 027805491 | 0 11092786 { 16 | 011092083 | 027805491 { 011092786 | 32 | 607731453 | 0030844 | 002180726 §0.002384]0.002384088 | 002180726 [ 0077294947 |0 109325411 |0 077294947]0 109325411 | 0 999999985
58 17 | 009404908 | 023576101 | 6 09405504 | 17 | 009404908 | 023576101 | 009405504 { 34 | 005558325 [0.0221745] 0 01567776 10.001232]0.001232219] 001567776 [0.055569172 1 6 078596632 |0 055569172} 0 078596632 | 0 999999985
59 18 | 007895016 | 019791124 | 007895516 | 18 | 007895016 | 019761124 | 0.07895516 | 3.0 | 003916886 [0.0156261] 0.01104793 {0.000612 }0.000611902} 0.01104793 }0.039158934 | 6 055386111 [0.039158934}0 055386111 | 0 999599985
ol 1.9 | 006561581 | 0.16448488 | 0.00561997 | 19 /| 0.06561581 | 0 16448488 | 0.06561957 | 38 | 0.02705527 [0.0107935] 0.00763119 {0.000292 0.000291947} 0.00763119 | 0.02704842 | 0038257088 | 0.02704842 | 0 038257088 | 0999999985
ol 2 [ 005399097 | 0.13534386 | 005399439 | 2 | 0.05399097 | 0.13534386 | 0.05399439 4 0.01831796 0.0073078§ 0.00516675 ] 6.000134 1 0 00013383 | 0.00516675 | 0.018313319 | 0.02590G2225 |0.018313319]0.025902225 | 0 999999985
02 21 | 00439836 | 011025751 | 604398638 | 21 | 00439836 | 011025751 [ 004398638 | 42 | 001215672 |0 0048498} 0.00342851 |5 89E-05 | 5.89431E-05 | 000342891 J0.012153639|0.017190018 |0.012153639] 0.017190018 | 0 999999985
o3 2.2 | 003547459 | 0.0B892725 | 6.03547684 | 2.2 | 0.03547459 | 0.08892725 ] 0.03547684 | 4.4 | 0.00790806 |0.0031549] 0.00223054 §2.49E-05 | 2.49425E-05 | 0.06223054 ] 0.007906052 | 0011182263 |0 0079060521 0.011182263 | 0.999999985
o4 23 | 0.02832704 | 0.07100985 | 0.02832883 | 23 | 002832704 | 007100985 | 0.02832883 | 46 | 00050424 {0.00201i6] 0.00142225 | 1.01E-0S | 1.01409E-05 | 0.00142225 00050411220 007130126 §0.005041122]0.007130126 | 0 999999985
65 24 | 602239453 | 005613832 | 002239595 | 24 | 002239453 | 005613832 | 002239595 | 4.8 | 000315151 [0.0012573] 0 00088891 | 3 96E-06 | 3 9613E-06 | 0.00088891 ] 0.003150712 | 0.004456345 {0 003150712} 0 004456345 | 0 999999985
66 2.5 | 00175283 | 004393972 | 001752941 | 25 | 0.0175283 | 004393972 { 0.01752941 5 0.0019307 [0.0007702] 0.00054457 | 1 49E-06 | | 48672E-06 | 0 00054457 ] 0.00193021 | 0002730074 | 0 00193021 {0 002730074 | 0 999999985
67 26 | 001358297 § 003404961 | 001358383 | 26 | 001358297 | 003404961 | 001358383 § 52 | 000115938 [00004625| 000032701 |5 36E-07]5.36104E-07| 0.00032701 10.001159082 | 0 001639398 {0.001159082} 0 001639398 | 0 999999985
68 27 | 001042093 | 002612306 | 001042159 | 27 | 001042093 | 002612306 | 001042159 | 5.4 | 0.00068241 |0 0002722| 6 00019248 | 1 86E-07 | 1. 85736E-07| 0.00019248 |0 000682242 | 0 000964938 |0 000682242 | 0 600964958 | 0 999999985
69 28 | 000791545 | 001984235 | 000791595 | 28 | 000791545 [ 001984235 { 000791595 | 3.6 § 000039372 [60001571] 6.00011105 | o IBE-0B |6.18262E-08 | 0.00011105 ]6.000393619 | 0 000556732 {0 00039361910 006556732 | 0.999999985
70 29 {0.00595253 | 001492173 | 000595291 | 2.9 | 000595253 [ 0.01492173 | 000595291 | 5.8 | 0.00022266 [8.883E-05| 6.2803E-05 | 1 98E-08 | 1.97732E-08 | 6.2803E-05 ]0.000222602 | 0 0003 14846 }0.000222602 | 0.0003 14846 | 0.999999985
71 3 000443185 | 00111097 | 000443213 3 0.00443185 | 0.0111097 | 000443213 6 |-000012343 |4.924E-05] 3 4813E-05 | 6 08E-09 [ 6.07588E-09 | 3 4813E-05 ] 0000123394} 0.00017452810.000123394}0 000174528 |0 999999985
T2 3.1 §{ 000326682 | 0060818922 | 000326703 | 31 | 000326682 | 600818922 | 000326703 | 6.2 | 6.7063E-05 |2 67SE-05{ 1.8916E-05 | 1.79E-09 [ } 79378E-09 | 18916E-05 | 6.70463E-05 i 9 48298E-03 16 70403E-05 | 9 4§208E-05 | 0.999999985
73 32 {000238409 | 0.0055764 | 000238424 | 32 | 0.00238409 | 6.0059764 | 000238424 | 6.4 | 357I7E-0S |1.425E-G5] 1.0074E-0S | 5.09E-10)S.08814E-10| 1 00T4E-05 | 3.57083E-05 | 5.05056E-05 |3 S7083E-05] S 050S6E-0S {0.999999985
74 33 § 000172257 | 000431811 | 000172268 | 33 | 000172257 | 600431811 | 000172268 | 6.6 | 18646E-05 |7.439E-O0f 5.2593E-06 | 1.39E-10] 1.38068E-10] 5.2593E-06 | 1.86414E-05 | 2 63602E-05 | 1 86414E-05] 2 63662E-05 | 0999999985
75 3.4 1000123222 | 000308891 | 00012323 | 3.4 | 000123222 | 0.00308891 | 00012323 | 6.8 | 95414E-06 |3.806E-Oo| 2.6912E-06 | 3.63E-i1]3.63096E-11] 2.6912E-06 |9 5389SE-0o | 1.34518E-08 |9 53895E-06 1.34918E-05 §0.999999985
7o 3.5 | 0.00087268 | 0.00218763 | 0.00087274 | 3.5 | 0.00087268 | 0.00218763 | 0.00087274 7 4.7857E-06 |1 909E-006] 1.3499E-06 | 9.13E-12{9.13472E-12| 1.3499E-06 | 4.78451E-00 | 6.76718E-00 [4.78451E-U6 | 6 7671BE-06 | 0.999999985
77 36 | 00006119 | 000153391 | 000061194 | 36 | 0.0006119 | 0.00153391 | 000061194 | 72 | 23529E-06 |9.387E-07] 6.6365E-07 | 2.21E-12]2.20799E-12 | 6.6365E-07 | 2.35228E-06 ] 3 32704E-06 | 2.35228E-06] 3 32704E-06 | 0 999999985
78 3.7 | 000042478 | 600106483 | 000042481 | 3.7 | 600042478 | 000106483 | 0.00042481 | 7.4 | 1 1339E-06 {4.523E-07| 3.1982E-07 |5 13E-13]15.12775E-13 | 3 1982E-07 ]| 1.13358E-06 | 1.60333E-06 } 1 13358E-06] 1 60333E-06 ] 0.999999985
19 38 | 000029195 | 0.00073185 | 000029197 | 38 | 000029195 | 000073185 | 060029197 | 7.6 | 5356E-07 |2.137E-07] 15107E-07 | 1.14E-13 ] 1.14416E-13 | 15107E-07 ] 5.35467E-07 | 7.57361E-07 [ 5 35467E-07} 7 57361E-07 ] 0.999999985
80 39 | 000019866 | 6.00049799 | 000019867 | 39 | 000019866 | 000049799 | 000019867 | 7.8 | 24799E-07 [9.893E-08] 6.9948E-08 | 2.45E-14 | 2.45286E-14] 6.9948E-08 {2.47928E-07 [ 3.50668E~07 | 2.47928E-07] 3 50668E-07 | 0 999999985
81 4 ] 000013383 | 000033548 | 000013384 | 4 | 0.00013383 | 0.00033548 | 0.00013384 8 1 1255E-07 {4 49E-08 | 3.1746E-08 |5 05E-15 |5 05227E-15 | 3.1746E-08 | 1.12521E-07| 1.59149E-07 | 1.12521E-07{ 1 59149E-07 | 0 999999985
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APPENDIX C: CORRELATION AND REGRESSION ANALYSIS
This appendix documents the correlation testing and regression analysis
performéd as part of the scope of this dissertation. Tables C.1 through C.5 summarize the
correlation and regression results identified in Figures C.1 through C.120. The results are

as follows.



Table C.1 - Pearson Correlation for ft(z) - ASSY, fT(z) - standard

=1 u=0 Correlations:
n =281 ft(z) - ASSY, fT(z) - standard
Pearson correlation of
USL | LSL | f(7)- ASSY and fT(z) - adju stdev P-Value
8 -8 0.968 p <0.001
7.8 -7.8 0.968 p <0.001
7.6 -1.6 0.968 p <0.001
7.4 -7.4 0.968 p <0.001
7.2 -7.2 0.968 p <0.001
7 -7 0.967 p <0.001
6.8 -6.8 0.967 p <0.001
6.6 -6.6 0.967 p <0.001
6.4 -6.4 0.967 p <0.001
6.2 -6.2 0.967 p <0.001
6 -6 0.967 p < 0.001
5.8 -5.8 0.968 p < 0.001
5.6 -5.6 0.968 p < 0.001
5.4 -5.4 0.968 p < 0.001
5.2 -5.2 0.968 p < 0.001
5 -5 0.968 p <0.001
4.8 -4.8 0.968 p < 0.001
4.6 -4.6 0.969 p < 0.001
4.4 -4.4 0.969 p < 0.001
4.2 -4.2 0.970 p < 0.001
4 -4 0.971 p < 0.001
3.8 -3.8 0.972 p < 0.001
3.6 -3.6 0.974 p < 0.001
3.4 -3.4 0.976 p < 0.001
3.2 -3.2 0.978 p < 0.001
3 -3 0.980 p < 0.001
2.8 -2.8 0.983 p < 0.001
2.6 -2.6 0.985 p < 0.001
2.4 -2.4 0.988 p < 0.001
2.2 2.2 0.991 p < 0.001
2 -2 0.993 p <0.001
1.8 -1.8 0.995 p < 0.001
1.6 -1.6 0.997 p < 0.001
1.4 -1.4 0.998 p < 0.001
1.2 -1.2 0.999 p < 0.001
1 -1 0.999 p <0.001
0.8 -0.8 1.000 p < 0.001
0.6 -0.6 1.000 p < 0.001
0.4 -0.4 1.000 p < 0.001
0.2 -0.2 1.000 Note 1

Note I: For values referencing this note the p-value could not be calculated
Note 2:  Standard deviation is 1, unless otherwise noted in Appendix B
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Table C.2 - Pearson Correlation for ft(z) - ASSY, fT(z) - adju stdev

6=l p=0 Correlations:
n=81 ft(z) - ASSY, fT(z) - adju stdev
Pearson correlation of
USL LSL ft(z) - ASSY and fT(z) - P-Value
standard
8 -8 1 Note 1
7.8 -7.8 1 Note |
7.6 -7.6 1 Note |
7.4 -7.4 1 Note |
7.2 -7.2 1 Note 1|
7 -7 1 Note 1
6.8 -6.8 I Note 1
6.6 -6.6 o1 Note 1
6.4 -6.4 1 Note 1
6.2 -6.2 1 Note 1
6 -6 1 Note 1
5.8 -5.8 1 Note 1
5.6 -5.6 1 Note 1
5.4 -54 1 Note 1
52 -5.2 1 Note 1
5 -5 1 Note 1
4.8 -4.8 1 Note 1
4.6 -4.6 1 Note 1
4.4 -4.4 1 Note 1
4.2 -4.2 1 Note 1
4 -4 1 Note 1
3.8 -3.8 1 Note 1
3.6 -3.6 1 Note 1
3.4 34 1 Note 1
3.2 -3.2 i Note 1
3 -3 1 Note 1
2.8 -2.8 1 Note 1
2.6 2.6 1 Note 1
2.4 -2.4 1 Note 1
2.2 -2.2 1 Note 1
2 -2 1 Note 1
1.8 -1.8 1 Note 1
1.6 -1.6 1 Note 1
1.4 -1.4 1 Note 1
1.2 -1.2 1 Note 1
1 -1 1 Note 1
0.8 -0.8 1 Note 1
0.6 -0.6 1 Note 1
0.4 -0.4 1 Note 1
0.2 -0.2 1 Note 1

Note 1: For values referencing this note the p-value could not be calculated
Note 2: Standard deviation is 1, unless otherwise noted in Appendix B
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Table C.3 - Pearson Correlation of Analysis Ratios

c=1 M=0 Correlations: Correlations:
n =81 RATIO 1, RATIO 2 RATIO 3, RATIO 4
Pearson correlation of P- Pearson correlation of

USL | LSL | pATIO 1 and RATIO2 | Value | RATIO 3 and RATIO4 | ©-Y2lue
8 -8 1 Note 1 1 Note 1
7.8 -7.8 1 Note 1 1 Note |
7.6 -1.6 1 Note 1 1 Note 1
7.4 -74 1 Note | 1 Note |
7.2 -7.2 1 Note 1 1 Note |
7 -7 1 Note 1 1 Note 1
6.8 -6.8 1 Note | 1 Note |
6.6 -6.6 1 Note 1 1 Note |
6.4 -6.4 1 Note 1 1 Note 1
6.2 -6.2 1 Note 1 1 Note 1
6 -6 1 Note 1 1 Note 1
5.8 -5.8 1 Note 1 1 Note 1
5.6 -5.6 1 Note 1 1 Note 1
5.4 -5.4 1 Note 1 1 Note 1
5.2 -5.2 1 Note 1 1 Note 1
5 -5 1 Note 1 1 Note 1
4.8 -4.8 1 Note 1 1 Note 1
4.6 -4.6 1 Note 1 1 Note 1
4.4 -4.4 1 Note 1 1 Note 1
4.2 -4.2 1 Note | 1 Note 1
4 -4 1 Note 1 1 Note 1
3.8 -3.8 I Note 1 i Note 1
3.6 -3.6 1 Note 1 1 Note 1
34 -3.4 1 Note 1 1 Note 1
3.2 -3.2 1 Note 1 1 Note 1
3 -3 1 Note 1 I Note 1
2.8 -2.8 1 Note 1 1 Note 1
2.6 -2.6 1 Note 1 1 Note 1
2.4 -2.4 1 Note | 1 Note 1
2.2 -2.2 I Note 1 1 Note 1
2 -2 1 Note 1 1 Note |
1.8 -1.8 1 Note 1 1 Note 1
1.6 -1.6 1 Note 1 I Note 1
1.4 -1.4 1 Note 1 ] Note 1
1.2 -1.2 1 Note 1 1 Note 1
| -1 1 Note 1 1 Note 1
0.8 -0.8 1 Note 1 1 Note 1
0.6 -0.6 1 Note 1 1 Note 1
0.4 04 1 Note | 1 Note |
0.2 -0.2 1 Note 1 1 Note 1

Note 1: For values referencing this note the p-value could not be calculated
Note 2: Standard deviation is 1, unless otherwise noted in Appendix B
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Table C.4 — Regression Analysis for ft(z) - ASSY, fT(z) - standard

103

o= p=0 Regression for:
Note 2 | n=8I1 ft(z) - ASSY, fT(z) - standard
UsL | LSL | ﬁ'dsj‘; P-Value Fitted Line Plot Equation for Cubic Model
8 -3 99.14% | p<0.001 | Y = 0.007522 + 2.915 X - 10.14 X**2 + 13.46 X**3
7.8 78 | 99.14% | p<0.001 | Y = 0.007806 + 2.908 X - 10.10 X**2 + 13.41 X**3
7.6 76 | 99.14% | p<0.001 | Y = 0.008111 + 2.901 X - 10.06 X**2 + 13.35 X**3
74 74 | 99.13% | p<0.001 | Y = 0.008441 + 2.893 X - 10.02 X**2 + 13.29 X**3
7.2 72 | 99.13% | p<0001 | Y = 0.008800 + 2.885 X - 9.973 X**2 + 13.22 X**3
7 -7 99.13% | p<0.001 | Y = 0.009190 + 2.876 X - 9.923 X**2 + 13.14 X**3
6.8 68 | 99.13% | p<0.001 | Y = 0.009616 + 2.865 X - 9.869 X**2 + 13.06 X**3
6.6 6.6 | 99.13% | p<0.001 | Y = 0.01008 + 2.854 X - 9.810 X**2 + 12.97 X**3
6.4 64 | 99.13% | p<0.00] | Y= 0.01060 + 2.842 X - 9.744 X**2 + 12.88 X**3
6.2 62 | 99.13% | p<0.001 | Y= 001117 +2.829 X-9.671 X**2 + 12.77 X**3
6 6 99.14% | p<0.001 | Y = 0.01180 + 2.814 X - 9.590 X**2 + 12.65 X**3
58 58 | 99.14% | p<0.001 | Y = 0.01251 +2.797 X - 9.500 X**2 + 12.51 X**3
5.6 56 | 99.15% | p<0.001 | Y= 0.01331 +2.778 X - 9.398 X**2 + 12.36 X**3
54 54 | 99.16% | p<0.001 | Y = 0.01422 +2.757 X - 9.283 X**2 + 12.19 X**3
5.2 52 | 99.17% | p<0.001 | Y = 0.01525 + 2.732 X - 9.152 X**2 + 11.99 X**3
5 5 99.19% | p<0.001 | Y = 0.01642 + 2.705 X - 9.002 X**2 + 11.77 X**3
43 48 | 99.21% | p<0.001 | Y= 0.01778 + 2.672 X - 8.830 X**2 + 11.51 X**3
46 46 | 99.24% | p<0.001 | Y = 0.01934 + 2.635 X - 8.630 X**2 + 11.21 X**3
44 44 | 9928% | p<0.001 | Y= 0.02116 +2.593 X - 8.399 X**2 + 10.87 X**3
42 42 | 9933% | p<0.001 | Y = 0.02327 + 2.543 X - 8.131 X**2 + 1047 X**3
4 4 9939% | p<0.001 | Y = 0.02572 + 2.485 X - 7.820 X**2 + 10.00 X**3
38 3.8 | 9946% | p<0.001 | Y = 0.02857 + 2.418 X - 7.460 X**2 + 9.468 X**3
3.6 36 | 99.54% | p<0.001 | Y = 0.03186 + 2.341 X - 7.048 X**2 + 8.855 X**3
34 34 | 99.62% | p<0.001 | Y = 0.03564 +2.254 X - 6.581 X**2 + 8.161 X**3
3.2 32 | 99.71% | p<0.001 | Y = 0.03994 +2.156 X - 6.061 X**2 + 7.390 X**3
3 -3 99.79% | p<0.001 | Y = 0.04478 + 2.048 X - 5.496 X**2 + 6.558 X**3
2.8 28 | 99.86% | p<0.001 | Y= 0.05017 + 1.933 X - 4.899 X**2 + 5.685 X**3
2.6 26 | 99.92% | p<0.001 | Y = 0.05607 + 1.813 X - 4.291 X**2 + 4.807 X**3
2.4 24 | 99.95% | p<0.001 | Y = 0.06244 + 1.692 X - 3.696 X**2 + 3.962 X**3
2.2 22 | 99.98% | p<0.001 | Y= 0.06919 + 1.574 X - 3.137 X**2 + 3.186 X**3
2 2 99.99% | p<0.001 | Y = 0.07622 + 1.462 X - 2.633 X**2 + 2.508 X**3
18 1.8 | 100.00% | p<0.001 | Y = 0.08339 + 1.359 X - 2.196 X**2 + 1.942 X**3
1.6 1.6 | 100.00% | p<0.001 | Y = 0.09056 + 1.266 X - 1.829 X**2 + 1.490 X**3
1.4 14 | 10000% | p<0.001 | Y = 0.09755 + 1.185 X - 1.532 X**2 + 1.142 X**3
1.2 712 | 100.00% | p<0.001 | Y= 0.1042 + 1.115 X - 1.295 X**2 + 0.8829 X**3
1 -1 100.00% | p<0.001 | Y= 0.1103 + 1.057 X - 1.112 X**2 + 0.6942 X**3
0.8 0.8 | 100.00% | p<0.001 | Y = 0.1157 + 1.009 X - 0.9725 X**2 + 0.5600 X**3
0.6 0.6 | 100.00% | p<0.001 | Y = 0.1203 + 0.9714 X - 0.8702 X**2 + 0.4670 X**3
0.4 204 | 100.00% | p<0.001 | Y= 0.1471 + 0.7627 X - 0.3293 X**2
0.2 0.2 | 100.00% | p<0.001 | Y = 0.1985 + 0.5026 X

Note 1: For values referencing this note the p-value could not be calculated
Note 2: Standard deviation is 1, unless otherwise noted in Appendix B



Table C.5 - Regression Analysis for ft(z) - ASSY, fT(z) - adju stdev

c=1 pu=0 Regression for:
Note 2 | n=38l ft(z) - ASSY vs. fT(z) - adju stdev
USL LSL gdsj(; P-Value Fitted Line Plot Equation for Cubic Model
8 -8 100.00% Note | Y = - 0.000000 + 1.414 X + 0.000000 X**2
7.8 -7.8 100.00% Note 1 Y = - 0.000000 + 1.414 X + 0.000000 X**2
7.6 -1.6 100.00% Note 1 | Y= 0.000000 + 1.414 X + 0.000000 X**2
7.4 -7.4 100.00% Note 1 Y = 0.000000 + 1.414 X + 0.000000 X**2
7.2 -7.2 100.00% Note 1 Y = -0.000000 + 1.414 X
7 -7 100.00% | p<0.001 | Y= -0.000000+1.414X
6.8 -6.8 100.00% Note 1 Y = 0.000000 + 1.414 X - 0.000000 X**2
6.6 -6.6 100.00% Note 1 Y = 0.000000+ 1414 X
6.4 -6.4 100.00% Note 1 Y = - 0.000000 + 1.414 X - 0.000000 X**2
6.2 -6.2 100.00% Note 1 Y = -0.000000 + 1.414 X
6 -6 100.00% Note 1 Y = 0.000000+ 1414 X
5.8 -5.8 100.00% | p<0.001 | Y= 0.000000+1.414X
5.6 -5.6 | 100.00% | p<0.001 | Y= 0.000000+1414X
5.4 -5.4 100.00% | p<0.001 | Y= 0.000000+1414X
5.2 -5.2 100.00% | p<0.001 | Y= 0.000000+1414X
5 -5 100.00% | p<0.001 | Y= -0.000000+ 1.414 X
4.8 -4.8 100.00% | p<0.001 | Y= 0.000000+1414X
4.6 -4.6 100.00% | p<0.001 | Y= 0.000000+1414X
4.4 -4.4 100.00% | p<0.001 | Y= 0.000000+1414X
4.2 -4.2 100.00% | p<0.001 | Y= 0.000000+1414X
4 -4 100.00% | p<0.001 | Y= 0.000000+ 1.414X
3.8 -3.8 100.00% | p<0.001 [ Y= 0.000000+1414X
3.6 -3.6 100.00% | p <0.001 = 0.000000 + 1414 X
34 -3.4 100.00% | p<0.001 [ Y= 0.000000+1414X
3.2 -3.2 100.00% | p<0.001 | Y= 0.000000+1414X
3 -3 100.00% | p<0.001 | Y= 0.000000+1414X
2.8 -2.8 100.00% | p<0.001 | Y= 0.000000+ 1414 X
2.6 -2.6 100.00% | p<0.001 [ Y= 0.000000+1414X
2.4 -2.4 100.00% | p<0.001 | Y= 0.000000+1414X
2.2 -2.2 100.00% | p<0.001 | Y= 0.000000 + 1.414 X
2 -2 100.00% | p<0.001 | Y= 0.000000+ 1414X
1.8 -1.8 100.00% | p<0.001 | Y= 0.000000+1414X -
1.6 -1.6 100.00% | p<0.001 | Y= 0.000000+1414X
1.4 -1.4 100.00% | p <0.001 = 0.000000 + 1.414 X
1.2 -1.2 100.00% | p<0.001 | Y= 0.000000+ 1414 X
1 -1 100.00% | p<0.001 | Y= 0.000000+1.414X
0.8 -0.8 100.00% | p<0.001 | Y= 0.000000+ 1.414X
0.6 -0.6 100.00% | p <0.001 = (0.000000 + 1.414 X
0.4 -0.4 100.00% | p <0.001 = 0.000000+ 1414 X
0.2 -0.2 100.00% | p <0.001 = 0.000000 + 1.414 X

Note 1: For values referencing this note the p-value could not be calculated
Note 2: Standard deviation is 1, unless otherwise noted in Appendix B
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Figure C.1 - TSND Assembly Comparison (USL = 8, LSL = -8)

Wudmz)-Assv,fr(z)-aqjum,fr(z)-sta'mrdvsx_z

0.4

0.1

0.0

Variable
—&— fi(z) - ASSY
—8— fT(2) - adju stdev

-9 - fT(2) - sandard

-10 5 0

10

U -4

Figure C.2 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 8, LSL = -8)

Regression for ft(z) - ASSY vs fT(z) - standard

o R-3g (adf) = 99.14%
99.14% of the vaxistion in (z) - ASSY can be .
accounted for by the regression model

Summary Report
(1) - ASSY
£1(z) - standard
Fited Ling Phot for Cubic Model -
Y= 0.007522 + 2.915 X - 10.14 X**2 + 13.46 X**3
0.45
1s theve a relstionship betwesn Y and X? -
0.05 0:1 >05 e
< ; J >
Yi | Mo .30 e
L )
P = 0.000 . . Y
The relationship between R(z) - ASSY and T(z) - ¥ 015 . ®
standard & stataticaly sgnicant (p < 0.05). ¥ .
ol £
0.0 01 0.2 03 0.4
7(z)- standard .
w
The fited equation for the cubk modef that descrbes the
reltionship between Y and X s

Y = 0.007522 + 2.915 X - 10.14 X**2 + 13.46 X**3
If the model fts the data well, this equation can be used
to predict ft(z) - ASSY for a valie of fT(z) - standard, or
find the settings for fT(z) - standard that correspond to a
desired value or range of values for fi(z) - ASSY.

A statisticaly signficant reitionship does not imply that X
causes Y.
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Figure C.3 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 8, LSL =-8)

Regression for fit(z) - ASSY vs f1(z) - adju stdev
Summary Report

¥: R{z) - ASSY
X: F7{z) - adijo stev
. Rted Line Pit for Quadratic Model
¥ = -0,000000 + 1414 X + 0.000000 X**2
045
1s there & rebiisashilp betweas Y and X7 ®
0 005 01 >05 ; e *
vos NI N .
L
The p-valse cannot be catulsted. é -
. L J
& 0151 . .
L]
.0
ooo{
0.0 0.1 0.2
7 (2) - vdjw stbaw
Comments

% of variation accousted for by medel
0% 100%

The fited equation for the quadratt model that descrbes
the refationshp between Y and X is:

Y = - 0.000000 + 1.414 X + 0.000000 X**2
1f the model fis the data wel, this equation can be used
to predict t(z) - ASSY for a vale of 1T(2) - adju stdev, or

) R-sq (adj) = 100.00% find the settings for fT(z) - adju stdev that comespond to 3
100.00% of the variation in ft(2) - ASSY can be desred value or range of values for fi(2) - ASSY.
accourtoed for by the regression model.
A statisticaly signficant relationship does not imply that X
causes Y.
Figure C.4 - TSND Assembly Comparison (USL = 7.8, LSL = -7.8)
Scatterplot of ft(z) - ASSY, T(z) - adju std, fT(z) - standard vs X_2
- Variable
0.4 —&— fi(z) - ASSY
—- fT(2) - adju sidev
~ 4~ fT(2) - standard
0.34
g 0.2
oy
0.14
0.0+
-10 10
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Figure C. 5 - ft(z)-ASSY vs. fi(z) standard Regression (USL = 7.8, LSL = -7.8)

Regression for ft(z) -~ ASSY vs fT(z) - standard
Summmary Report

¥Y: R(z) - ASSY
X: Y(z) - ssandard

1s thare & relationshilp between ¥ and X7

005 04 >05
Y i Mo
P = 0.000
The relstionship batween R(2) - ASSY and f7(2) -
standanti s statisicaly signficant (p < 0.05).

% of veriation sccounted for by model
100%

. Resq (adf) = 99.14%
99.34% of the varistion b i(z) - ASSY can be
d for by the

Fitted Line Pot for Cubic Model
Y= 0.007806 + 2.908 X-10.10 X**2 + 13.41 X**3

0.45+
-

0.0 01 02 03 04
17(2) - standard

Comments

The fited equation for the cubk model that descrbes the
relationship between Y and X &:

Y = 0.007806 + 2.908 X - 10.10 X**2 + 13.41 X**3
¥ the model fts the data wel, this equation can be used
to predict f(z) - ASSY for a vale of fT{z) - standard, or
find the settings for f1(z) - standard that correspond to a
desred value or range of values for ft(2) - ASSY.

A statisticaly sgnificant rebationship does nat imply that X
causes Y.

Figure C.6 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 7.8, LSL = -7.8)

Regression for fi(z) - ASSY vs fT(2) - adju stdev
Summary Report

Y: f(2) - ASSY
X: 1(z) - adju stdev

1sthare » relntionship betwesn Y and X?
0 0.5 01 . > 0.5

The pvalse cannot be cakulited.

" Reaq (ad) = 100.00%
200.00% of the varistion b ft(z) - ASSY can be
d for by the model

FRtad Line Pt for Quadratic Model
Y x < 0.000000 + 1.414 X + 0.000000 X**2
045
r"
L 4
4 »
g 030 .
-
& .
M -
g 015 .
. -
-
0.001 /‘
00 0.1 0.2 03
11(z) - sdju stdov
Comments
The fited equation for the quadratic model that describes
the relationship between Y and X &:

Y = - 0.000000 + 1.414 X + 0.000000 X**2
¥ the model fis the data wed, this equation can be used
to predict f(z) - ASSY for a value of T(z) - adju stdev, or
find the settings for fT(z) - adju stdev that correspond to 2
desired vakie or range of values for (2} - ASSY.

A statisticaly significant rebtionship does not imply that X
causes Y.
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Figure C.7 - TSND Assembly Comparison (USL = 7.6, LSL = -7.6)

§ o
P

Scatterplot of ft(z) - ASSY, T(2) - adju std, fT(z) - standard vs X_2

0.4

0.3

0.1

Variable
—&— f(z) - ASSY
—&8— fT(z) - adju stdev
~ 4~ fT(2) - standard

Figure C. 8 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 7.6, LSL = -7.6)

Ragression for ft(z) - ASSY vs fT(z) - standard

’ R-5g (adj) = 99.14%
99.14% of the variition in ft(2) - ASSY can be
accounted for by the regression model.

Summary Report
¥: ft(z) - ASSY
%: f1(z) - gandard
Fited Line Pit for Cublc Model
Y= 0.008111 + 2.901 X- 10.06 X**2 + 13.38 X*3
0.45 -
1s thera 3 relutionship betwess Y and X? -
0 005 0.1 »>05 e«
Y o
. B T
P =0.000 : -t
The relationship betwesn R(z) - ASSY and 17(z) - . B osl . -
standard & statitically sorfcant (p < 0.05). €9 .
0.00 f
0.0 0.1 0.2 03 04
£7(x) - stondard
Commants
. The fitted equation for the cubic model that descrbes the
'bdmmbh—‘d reftionship between Y and X &:

Y = 0.008111 + 2.901 X - 10.06 X**2 + 13.35 X**3
I the model s the data well, this squation can be used
to predict ft(z) - ASSY for a vakie of fT(z) - standard, or
find the settings for f1(z) - standard that correspond o a
desired value or range of values for ft(z) - ASSY.

A statisticaly significant relationship does not imply that X
causes Y,
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Figure C.9 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 7.6, LSL = -7.6)

Regression for ft(z) - ASSY vs fT(z) - adju stdev
Summary Report :

1 thare 3 rebitionship betwesn Y and X?
0 005 G2 >05

vl ino

The pvalie cannct be cakulbed.

0% 100%
) R-s1 (adf) = 100.00%
100.00% of the varistion i t(z) - ASSY can be
accounted for by the regression model.

PRted Line Pot for ¢ Mode!
Y = 0000000 + 1.414 X + 0.000000 X**2

0.45

6.0 ol 02
1(2) - adju stdov

Commants

The fitad equation for the quadratic model that descrbes
the reltionship between Y and X is:

Y = 0.000000 + 1.414 X + 0.000000 X**2
If the model fi:s the data wel, this equation can be used
to predict ft(z) - ASSY for a value of T(2) - adju stdev, or
find the settings for fT(z) - adju stdev that correspond to a
desired value or range of values for 1(2) - ASSY.

A statistcally sgnificant relationship does not mply that X
causes Y.

Figure C.10 - TSND Assembly Comparison (USL =-7.4, LSL = -7.4)

Scatterplot of ft(z) - ASSY, fT(z) - adju std, fT(z) - standard vs X_2

0.4 1

0.1

0.0+

Variable
—— f(z) - ASSY
—— fT(2) - adju stdev
-4 - fT(2) - standard
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Figure C.11 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 7.4, LSL = -7.4)

Regression for fit(z) - ASSY vs fT(z) - standard
Summary Report

nm-“mvun
0 005 0.1 >05
v "o
P = 0.000
The relstionship between R(2) - ASSY and fT(2) -
standard is statistically signiicant (p < 0.05).

5% of varistion sccounted for by model

0% - 100%
R (adf) = 99.13%
'99.13% of the varition i f(z) - ASSY can be
accountad for by the regression madel

f{z)-

PRted Line Mot for Cubic Model
Y = 0.008441 +2.893 X - 10.02 X**2 + 1329 X**3

0.45

0.154 o

0.00 l.

0.0 0.1 0.2 03 0.4
17(2)~ standard

Commants

The fited equation for the cubic moded that descries the
refationship between Y and X &

Y = 0.008441 + 2.893 X - 10.02 X**2 + 13.29 X**3
If the moded fits the data wel,, this equation can be used
to predict t(z) - ASSY for a vakse of fT(z) - standard, or
find the ings for T(z) - that corresp: oa
desired valse or range of values for (z) - ASSY.

A statisticaly significant reltionship does not imply that X
causes Y.

Figure C.12 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 7.4, LSL = -7.4)

Regression for ft(z) - ASSY vs fT(z) - adju stdev

Summary Report
¥: &(2) - ASSY
X: f7(2) - 9dju sty
Mted Line Slot for Quadeatic Model
Y = 0.000000 + 1.414 X - 0.000000 X**2
0.45
Is there » relationship batwesn Y and X7 ®
o 005 0.1 >05 T
*
Yes i Mo 0.301 o
_— "
The p-vakie cannot be calculated. é o
.
& 0.154 . . »
..l.
A
0.0 0.1 0.2 03
17(2) ~ adju stilev
“ Commants
The fitted equation for the quadratic model that descrbes
: the refationship between Y and X &
o% 100% Y = 0.000000 + 1.414 X - 0.000000 X**2
R If the modei fits the data wel, this equation can be used
to predict ft(z) - ASSY for 3 vakie of fT(z) - adju stdev, or
R-2q (adj) = 100.00% find the settings for fT(z) - adju stdev that correspond to &
100.00% of the varistion in k(z) - ASSY can be : desired value or range of values for ft(z) - ASSY.
accounted for by the regression moded.
A statigtically significant relationship does not imply that X
causes Y.,
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Figure C.13 - TSND Assembly Comparison (USL = 7.2, LSL =-7.2)

Scatterplot of fi(z) - ASSY, fT(z) - adju std, fT(z) - standard vs X_2

0.4+

8
0.2
3
0.1

0.0+

Variable
—@— f(z) - ASSY

- @ — fT(2) - standard

~— fT(2) - adju stdev

Figure C.14 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 7.2, LSL = -7.2)

Regression for ftz) - ASSY vs fT(z) - standard

Summary Report
Y: &(2) - ASSY
X: 17(z) - standard .
FRtad Line Plt for Cubic Model
Y = 0.008800 + 2.885 X - 9.973 X**2 + 13.22 X**3
Cos 0.45
Is thare » restionship betwesn Y and X? - ®
0 005 01 >0S5 . .
ve i I T et
P = 0.000 D e
The relstionship between R(z) - ASSY and fT{(z) - § 0.154 .’
standard s statistically significant (p < 0.05). *
0.004 f
0.0 0.1 0.2 0.3 o4
¥(z) - standard
Conunants
The fited equation for the cubic model that describes the
%% of variation accounted for by model reftionship between Y and X is:

0% 100%
R-sq (adj) = 99.13%
99.13% of the varistion in R(z2) - ASSY can be
accounted for by the regression model

Y = 0.008800 + 2.885 X -9.973 X**2 + 13.22 X**3
If the modei fits the data wel, this equation can be used
to predict ft(z) - ASSY for a vabie of T(2) - standard, or
find the settings for fT(2) - standard that comrespond to &
desred value or range of values for fi(z) - ASSY.

A statisticaly signficant rebtionship does not mply that X
causes Y.
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Figure C.15 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 7.2, LSL = -7.2)

_Regression for Rt(z) ~ ASSY vs f7(z) - adju stdev
Summiany Report

Y: R{2) - ASSY
X: 11(2) - adj stdev

1s there » relationship betwess Y and X?
¢ 005 01 >0S8

. ves IR i w0

The pvalue connot be calculsted.

% of variition sctousted fer by model
0% 100%

R-sq (adf) = 100.00%
100.00% of the variation in ft(z) - ASSY can be
accounted for by the regression madel

Cosraiition between ¥ and X
Negative No correlstion

—

1
1.00

Postive

The postive correlation (r = 1.00) indicates that when
11(2) - adju sdev Increnses, R(z) - ASSY o tends to
incresee. :

Mtad Ling Pt for Lineer Mede!
Y = -0.000000 + 1.414 X
0.45
*
. ®
*
§ 0.30 e *
L
L] -
[ ]
g 0.15 3
L )
° L 4
L]
X
000 #°
) 0.0 01 02
11(z}) - adjn stdav
Commants
The fited equation for the Inear model that descrbes the
reltionship between Y and X s

Y = -0.000000 + 1.414 X
I the model fks the data well, this equation can be used
to predict f(2) - ASSY for a value of fT(z) - adju stdev, or
find the settings for f1(2) - adju stdev that correspond to a
desired value or range of vakses for ft{z) - ASSY.

A statsticaly significant rebtionship does not imply that X
causes Y.

Figure C.16 TSND Assembly Comparison (USL =7, LSL =-7)

Scatterplot of ft(z) - ASSY, 1T(z) - adju std, fT(z) - standard vs X_2
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Figure C.17 - ft(z)-ASSY vs. ft(z) standard Regression (USL =7, LSL =-7)

Is thare » rebtionship betwesn ¥ and X7

0 005 0.1 > 0S8
vef ne
P = 0.000 .

The relstionship between R(2) - ASSY and fT(z) -

standard is statisticaly signifcant (p < 0.05).

% of variation accounted for by medel
’ 100%

Reoqy (adf) = 99.13%
99.13% of the varition It ft(z) - ASSY can be
mvbrw the ragression model ’

Regression for ft(z) - ASSY vs fT(z) - standard
Sunwaary

Raport
FRted Line Pt for Coblc Model
Y = 0.009190 + 2.876 X - 9.923 X**2 + 13.14 X**3
0.45
-
.
S * -
§ 0.304 e
. »
= *
..
g 0151 ‘p
o’
wl £
0.0 0.1 0.2 03 o4
17(z) - stonderd
Comments
The fited equation for the cubic moded that describes the
refltionship between Y and X 5:

Y = 0.009190 + 2.876 X - 9.923 X**2 + 13.14 X**3
¥ the model fits the data wel, this equation can be used
to predict ft(z) - ASSY for a vakue of fT(z} - standard, or
find the settings for T(z) - standard that correspond to a
desred value or range of values for ft{(z) - ASSY.

A statistically signiicant reltionship does not imply that X
causes Y,

Figure C.18 -ft(z)-ASSY vs. ft(z) adju stdev Regression (USL =7, LSL =-7)

1.00

mmM(r- 1.00) ndcates that when
1(7) - adju stbev Increnses, f(2) - ASSY a0 tends to

Regression for ft(x) -~ ASSY vs fT(z) - adju stdev

Summary Report
¥: fi(z) - ASSY
X: 1T(2) - adju stdev
Fated Line Pt for Lisesr Mode!
Is there » rabtionship batwesn Y and X? Y= - 0.000000 + 1.414 X
0 005 0.1 >08 0.45
ves SN | iy L
The p-valse cannot be cakulted. 0.301 '/'/
g -
* ‘:' g
¥ 0.151 - -~
-
. o
. % of varistion accounted for by model 0.001 o ]
108% 00 01 02 03
17(2) - adju stdev
R-5q (adf) = 100.00%
100.00% of the varistion in Rt(z) - ASSY can be Commants
accounted for by the regression model. The fitted equation for the inear model that descrbes the

refationship between Y and X is:

Y = -0.000000 + 1.414 X
¥ the model fis the data wel, this equation can be used
to predict ft(z) - ASSY for a value of fT(2) - adju stdev, or
find the settings for f1(Z) - adju stdev that correspond to a
desired value or range of vakes for ft(z) - ASSY.

A statisticaly significant relstionship does not imply that X
_ | causesY,
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Figure C.19 - TSND Assembly Comparison (USL = 6.8, LSL = -6.8)

: |
Scatterplot of ft{2) - ASSY, fT(z) - adju std, fT(z) - standard vs X_2
Variable
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Figure C.20 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 6.8, LSL = -6.8)

Regression for ft(z) - ASSY vs fT(z) - standard
Summary Report )

. Y f{z) - ASSY
X: fT(2) - tandard
Firted Line Piot for Cubic Model .
Y = 0.009616 + 2.865 X - 9.869 X**2 + 13.06 X**3
. 0451
Is thers » rebtionship betwesn ¥ snd X? -
0 005 0.1 ’ >05 e
Y ! no 5 0.304 PR
- e
P = 0.000 s .
The relstionship between f(z) - ASSY and fT(2) - = 0.15. . E
standad s statisticaly signiicant (p < 0.05). & .-
ool £
0.0 [81 0.2 03 04
17(z) - standard
Comments

The ftted equation for the cubic modei that describes the
- | refationship between Y and X s:
100% : Y = 0.009616 + 2.865 X - 9.869 X**2 + 13.06 X**3
If the model fits the data wel, this equation can be used
- to predict ft(z) - ASSY for a value of fT(z) - standard, or
R-1q (adf) = 99.13% fing the settings for fT(z) - that correspond to 2
99.13% of the varistion in R(z) - ASSY can be desired value or range of values for fit(z) - ASSY.
accounted for by the regression model

A statistically signficant rebtionship does not imply that X
causes Y.




Figure C.21 - f{(z)-ASSY vs. ft(z) adju stdev Regression (USL = 6.8, LSL = -6.8)

Regression for it(z) - ASSY vs fT(2) - adju stdev
Sumsnary Report

Y: &(2) - ASSY
X: {7(2) - adju stdev
Pted Line Plst for Quadratic Mede!
Y= 0.000000 + 1.414 X - 0.000000 X**2
0.45
Is there & reiationshlp between ¥ and X? /.
0 005 01 >05 -
-~
ves I o § o =
“The grvalkie cannot be cakuisted. N s
. g 0.151 /'4,:
. '
."’.
-
0.001 /.
0.0 0.1 - 02 o3
€7(z) - adju stdov
Commants
The ftted eguation for the quadratcc model that descrbes
% of varistion accounted for by medel the reltionship between Y and X &
100% Y = 0.000000 + 1.414 X - 0.000000 X**2

i the model fits the data well, this equation can be used
to predict &(z) - ASSY for a vakue of {T(2) - adju stdev, or

100.00% of the varistion T ft(z) ~ ASSY can be
accounted for by the regression model

Resq () = 100.00%

find the settings for fT(2) - adju stdev that correspond to a
desired vakie or range of values for ft(z) - ASSY.

A statistically significant rebtionship does not imply that X
causes Y.

Figure C.22 - TSND Assembly Comparison (USL = 6.6, LSL = -6.6)

Scatterplot of ft(z) - ASSY, fT(z) - adju std, fT(z) - standard vs X_2

‘0.4 Variable
~—@— fi(z) - ASSY
—&— T(2) - adju stdev
|- - f1(2) - standard
0.3 1
i 0.2
>
0.1 1
0.0
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Figure C.23 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 6.6, LSL = -6.6)

Regression for ft(z) - ASSY vs fT(z) - standard
Summary Report i

Y: ft(2) - ASSY
X: f1(2) - standard .
) : * Fited Line Plot for Cublc Modal
Y = 0.01008 + 2.854 X - 9.810 X**2 + 12.97 X**3
A 0.45
Is theve & relstinashlp betwasn ¥ and X7 - ®
0 005 01 : >05 P
ve N L Tl e
e
P = 0.000 v .
The relstionship between ft(2) - ASSY and f1(2) - g 015 o ?
standard is statistically signikcant (p < 0.05). ot
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‘ - The fitted equation for the cubic mode that describes the
% of vartion accounted for by model rebationship between Y and X &:
o 100% Y = 001008 + 2.854 X - 9.810 X**2 + 12,97 X**3
; g f the model s the data well, this equation can be used
to predict ft(z) - ASSY for a value of fT(z) - standard, or
. R-5q (adf) = 99.13% fnd the settings for fT(2) - sandard that comespond to a
99.13% of the variation i (2) - ASSY canbe - . desired valie or range of values for ft(z) - ASSY.
sccountad for by the regression model
A statisticaly significant relationship does not mply that X
causes Y.

Figure C.24 - ft(z)-ASSY vs. fi(z) adju stdev Regression (USL = 6.6, LSL = -6.6)

Regression for ft(z) - ASSY vs fT(z) - adju stev
Summary Report

Y: R(z) - ASSY
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100.00% of the varition In R(z) - ASSY can be Comments
accounted for by the regression model The fited equation for the Inear moded that descrbes the
reltionship between Y and X s

Y = 0.000000 + 1.414 X
If the model fts the data wel, this equation can be used
to predict t(z) - ASSY for 3 vakie of fT(2) - adju stdev, or
find the settings for T(2) - adju stdev that correspond to a
desred vakie or range of values for ft(z) - ASSY.

" A statisticaly significant relationship does not imply that X
causes Y.

The pastive comelation (r = 1.00) dicates that when
17(2) - adjus Sy Increnges, f(2) - ASSY shio tends to
Incresse.




Figure C.25 - TSND Assembly Comparison (USL = 6.4, LSL = -6.4)
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Figure C.26 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 6.4, LSL = -6.4)

100%

T R-sq () = 99.13%
99.13% of the varistion i R(z) - ASSY can de
- accounted for by the regression model

Regression for ft(z) - ASSY vs fT(z) - standard

Summary Report
Y: R(z) - ASSY
X: fT{z) - sandard
. Fited Uing Plot for Cubic Mode!
Y = 0.01060 + 2.042 X - 9.744 XX*42 3. 12.88 X**3
0.45
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0 005 0.1 >05 ..
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. } e
P = 0.000 " .
The relationship between R(z) - ASSY and f1(z) - E sl .
standard is statisticaly significant (p < 0.05). € o
0.00 i
0.0 0.1 0.2 03 04
T(z) - standard
Comments
The ftted equation for the cubic model that describes the
9% of varintion sccounted for by model reltonship between Y and X k:

Y = 0.01060 + 2.842 X - 9.744 X**2 + 12.88 X**3
¥f the model fits the data well, this equation can be used
to predict f(z) - ASSY for a value of fT(Z) - standard, or
find the settings for fT(z) - standard that comespond to a
desired value or range of values for ft(z) - ASSY.

A statisticaly significant relationship does not imply that X
causes Y.
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Figure C.27 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 6.4, LSL = -6.4)
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The pvalue cannot be calculsted.

. - R-5q (adj) = 100.00%
100.00% of the vasistion in R{2) - ASSY can be
for by the reg madel

Regression for fi(x) - ASSY vs fT(z) - adju stdev
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Commants
The ftted equation for the quadratic moded that descrbes
the relationship between Y and X &5

Y = - 0.000000 + 1.414 X - 0.000000 X**2
I the moded fis the data well, this equation can be used
to predict ft(z) - ASSY for a value of fT(2) - adju stdev, or
find the settings for 1(2) - adju stdev that correspond to a
desired value or range of values for ft(z) - ASSY.

A statisticaly significant relationship does not imply that X
causes Y.

Figure C.28 - TSND Assembly Comparison (USL = 6.2, LSL = -6.2)

 Scatterplot of ft(z) - ASSY, fT(z) - adju std, fT(z) - standard vs X_2
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Figure C.29 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 6.2, LSL = -6.2)

u&nu““ Yand X?

standard i satisticaly significant (p < 0.05).

%% of varistion sccosnted for by sodel
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. R-5q (adf) = 99.13%
95.13% of the varistion in f(z) - ASSY can be
accountad ¢ by the regresson model
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© Therelstionship between ft(z) - ASSY and fT{2) -

Regression for ft(z) - ASSY vs fT(z) - standard
Summary Report
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17(z) - standard :
Commnts
The fitted equation for the cubkc model that descrbes the
reltionship between Y and X &

Y = 0,01117 + 2.829 X - 9.671 X**2 + 12.77 X**3
If the model fis the data well, this equation can be used
to predict f(z) - ASSY for a value of 1T(2) - standard, or
find the settings for fT(z) - standard that comaspond to a
desred valie or range of values for ft(2) - ASSY.

A statisticaly significant rebtionship does not imply that X
causes Y.

Figure C.30 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 6.2, LSL = -6.2)

Y: t(z) - ASSY
X 1T(2) - aty stdev
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The palue cannct be calcullited.

100%
Resq (adf) = 100.00%
100.00% of the varition i ft(z) - ASSY can be :
] accounted for by the regression model.
Coneltion batwess Y and X
No correlation

The postive corvelition (r = 1.00) indicates that when
“fT{2) - 33fu sdev increnses, ft(2) - ASSY also tends to
incresse.

ves SN -

Regression for fi(z) - ASSY vs fT(z) - adju stdev
Summary Report
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Commaents
The fited equation for the inear model that descrbes the

reltionship between Y and Xis:
= -0.000000 + 1.414 X
- { i the moded fis the data well, this equation can be used
to predict ft(z) - ASSY for a value of 1T(2) - adju stdev, or
find the settings for fT(2) - adju stdev that comespond to a
desred value or range of values for ft(z) - ASSY.

A statisticaly signficant rebtionship does not imply that X
causes Y.
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Figure C.31 - TSND Assembly Comparison (USL = 6, LSL = -6)

Scatterplot of fi(z) - ASSY, fT(z) - adju std, fT(z) - standard vs X_2
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Figure C.32 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 6, LSL = -6)

Regression for ft(z) - ASSY vs fT(z) - standard

Summaty Report
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Comments
. The fated equation for the cubic model that describes the
%% of veristion sccounted for by model relationship between Y and X &
0% 100% Y = 0.01180 + 2.814 X - 9.590 X**2 + 12.65 X**3
P 1f the model fits the data wel, this equation can be used
to predict ft(z) - ASSY for a value of T(2) - standard, or
R-sq (pdf) = 99.14% find the settings for fT(2) - standard that correspond to a
99.14% of the varistion in R(z) - ASSY an be : desired value or range of vakes for ft(z) - ASSY.
accounted for by the regression model
. A statisticaly signficant relstionship does not imply that X
causes Y.




Figure C.33 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 6, LSL = -6)

Y:R{2) - ASSY

100.00% of the varistion in #(z) - ASSY can be
accounted for by the regression model

The poskive comelation (r = 1.00) indicates that when
17(z) - ads stdev Incremses, R(z) - ASSY a0 tends to
incresse.
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Commants
The fitted equation for the inear moded that descrbes the
relstionship between Y and X is:

Y = 0.000000 + 1.414 X
I the model fis the data wed, this equation can be used
to predict (2} - ASSY for a value of fT(2) - adju stdev, or
find the settings for T(2) - adju stdev that correspond to a
desired value or range of values for ft(z) - ASSY,

A statistically signficant relationship does not imply that X
causes Y.

Figure C.34 - TSND Assembly Comparison (USL = 5.8, LSL = -5.8)

Scatterplot of fi(z) - ASSY, T(z) - adju std, fT(z) - standard vs X_2
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Figure C.35 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 5.8, LSL = -5.8)

Regression for ft(z) - ASSY vs fT(z) - standard
. Summary Report
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Commants
The fitted equation for the cubic moded that describes the
relationship between ¥ and X &:
0% 100% Y = 0.01251 +2.797 X - 9.500 X**2 + 12.51 X**3
g If the model fis the data well, this equation can be used
to predict ft(2) - ASSY for a vakue of fT(2) - standard, or
. R-oq (8df) = 99.14% find the settings for fT(z) - standard that comrespond to a
99.14% of the varietion in A(2) - ASSY can be desired value or range of values for ft(z) - ASSY.
] accountad for by the regression model
1 A statistically significant relationship does not mply that X
causes Y.

Figure C.36 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 5.8, LSL = -5.8)

Regression for ft(z) - ASSY vs 1T(z) ~ adju stdev
Summary Report -
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for by the reg model : The fited equation for the hear model that descrbes the
relationship between Y and X s

Y = 0.000000 + 1.414 X
I the model fits the data well, this equation can be used
to predict (z) - ASSY for a vale of fT(z) - adju stdev, or
find the seitings for fT(2) - adju stdev that comespond to a
desired value or range of values for fi{z) - ASSY.

A statisticaly significant relationship does not imply that X
causes Y.

The poattive cormelation {r = 1.00) indicates that when
7(z) - adju stdev icresses, ft(z) - ASSY slso tends to
incrunge.
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Figure C.37 - TSND Assembly Comparison (USL = 5.6, LSL = -5.6)

Scatbterplot of ft(z) - ASSY, T(z) - adju std, fT(z) - standard vs X_2
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Figure C.38 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 5.6, LSL = -5.6)

Regression for fi{z) ~ ASSY vs fT(z) - standard
Summary Report
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Comments
The fitted equation for the cubic model that describes the
%6 of veristion accounted fer by model reltionship between Y and X s
0% 100% Y = 0.01331 + 2.778 X - 9.398 X**2 + 12,36 X**3
e ¥ the model fits the data weld, this equation can be used
to predict ft(z) - ASSY for a vabe of f1(z) - standard, or
R-sq (adf) = 99.15% find the settings for T(z) - standard that correspond to a
99.15% of the varition i f(2) - ASSY can be desired vabie or range of valses for ft(z) - ASSY.
for by the regr maodel
. A statisticaly signiicant rebtionship does not imply that X
causes Y.
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Figure C.39 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 5.6, LSL = -5.6)

Regression for ft(z) - ASSY vs fT(z) - adju stdev
Summary Repert
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The fited equation for the Inear moded that descrbes the
relationship between Y and X is:

Y = 0.000000 + 1.414 X
¥ the model fis the data wed, this equation can be used

Corraistion between ¥ and X to predict ft(z) - ASSY for a valse of fT(z) - adju stdev, or
Negative No comeiation Postive fnd the settings for (T(2) - adju stdev that correspond to a
4 ° 1 desred valie or range of valses for ft(z) - ASSY.
T — A stattiay sgnficant relationship does not impl that X
1.00 causes Y.

The postive cormtltion (r = 1.00) indicates that when
11(z) - afiu stdev increases, f(2) - ASSY also tands to
ncresse.

Figure C.40 - TSND Assembly Comparison (USL = 5.4, LSL = -5.4)

Scatterplot of ft(z) - ASSY, fT(z) - adju std, T(z) - standard vs X_2
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Figure C.41 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 5.4, LSL = -5.4)

Regression for Ai{z) - ASSY vs fT(z) - standard
Summary Report

A statsticaly significant reltionship does not imply that X
causes Y.

Y: ft(2) - ASSY
X f(z) - standard
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Y= 0.01422 + 2.757 X - 9283 X**2 + 12.19 X**3
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Commaents
The fitted equation for the cubic model that describes the
% of varistion accowated for by model rebationship between Y and X is:

0% . 100% Y = 0.01422 + 2.757 X-9.283 X**2 + 12,19 X**3
¥ the model fis the data wel, this equation can be used

to predict ft(z) - ASSY for a vabse of fT(z) - standard, or

R-5q (ac) = 99.16% find the settings for T(z) - standard that correspond to a

99.16% of the varation in ft{2) - ASSY can be desred value or range of valses for ft(z) - ASSY.
accounted for by the regression model.

Figure C.42 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 5.4, LSL = -5.4)

Regrassion for ft(z) - ASSY vs fT(z) - adju stdev
: Summary Report

Y = 0.000000 + 1.414 X
¥ the modei fis the data wel, this equation can be used
to predict ft(z) - ASSY for a value of fT(2) ~ adju stdev, or
find the settings for 1T(z) - adju stdev that correspond to a
desired vakie or range of vakes for ft(2) - ASSY.

A statisticaly significant relationship does not imply that X
causes Y.

The poskive correlstion (r = 1.00) indicates that when
11(z) - adiu stdev increases, f(2) - ASSY also tends to -
incresse.
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X: f1(2) - adju stdev
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Is thare 2 relationship batwesn Y and X? Y = 0.000000 + 1.414 X
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Foss Pl
%% of varistion accounted for by model 0.00 /-' ]
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100.00% of the varieton in f(z) - ASSY can be Comments
_accounted for by the regression model. The fitted equation for the Inear model that descrbes the
reflationship between Y and X &:
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Figure C.43 - TSND Assembly Comparison (USL = 5.2, LSL = -5.2)

Scatterplot of ft{z) - ASSY, fT(2) - adju std, fT(z) - standard vs X_2
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Figure C.44 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 5.2, LSL = 45.2)

Regression for fit(z) ~ ASSY vs fT(z) - standard
t

Summary Repo!
¥: (z) - ASSY
X: f1(2) - standard
FRted Line Plot for Cublc Model
¥ = 0.01525 + 2.732 X~ 9.152 X**2 + 11.99 X**3
: 045
Is there & relstionship batween Y and X? -®
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Sandard is statiticaly sgriicant (p < 0.05). ¥ .
ool
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17(z) - standard
Comments
The fMited equation for the cubic model that describes the
%% of veriation accownted for by model refationship between Y and X is:

0% 100%
R-5q (9df) = 99.17%
99.17% of the varistion in ft(z) - ASSY can be
accounted for by the regression model.

Y = 0.01525 + 2.732 X - 9.152 X**2 4+ 11.99 X**3
¥ the modeifits the data wel, this equation can be used
to predict fi(z) - ASSY for 3 value of f1(2) - standard, or
find the settings for 1T(z) - standard that correspond to a
desred vakie or range of vales for ft(z) - ASSY.

A statisticaly significant refationship does not imply that X
causes Y.
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Figure C.45 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 5.2, LSL = -5.2)

Regression for ft(z) - ASSY vs fT(z) - adju stdev
Summary Report

. Y:(2) - ASSY

X 1T(2) - adiu tdev
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100.00% of the varistion in f(z) ~ ASSY can be
accountad for by the regression model.

" The postive comelstion (r = 1.00) indicates that when
11(2) - adju striev ncrenses, f(z) - ASSY also tands to
ncresee.
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Commants
The fited equation for the inear moded that descrbes the
refationship between Y and X is:

Y = 0.000000 + 1.414 X
¥ the model fits the data wel this equation can be used
to predict ft(2) - ASSY for a value of fT(z) - adju stdev, or
find the settings for 1T(2) - adju stdev that correspond to a
desired value or range of vakes for ft(z) - ASSY.

A statistically signiicant relationship does not imply that X
causesY,

Figure C.46 - TSND Assembly Comparison (USL = §, LSL = -5)

Scatterplot of fit(z) - ASSY, fT(z) - adju std, fT(z) - standard vs X_2
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Figure C.47 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 5, LSL =-5)

¥: R{z) - ASSY
X: fT(z) ~ standard

1s there 3 rebtionship betwess ¥ and X?

0 005 02 > 05
Yo | No
P = 0.000

The relstionship between ft(z) - ASSY and T(z) -

standnd s statisticaly spnicant (p < 0.05).

%% of wristhe accousted for by model

0% 100%
R-5q (adf) = 99.19%
99.19% of the varistion i ft(2) - ASSY can be
accounted for by the regression model

Regression for fit(z) - ASSY vs fT(z) - standard
Summary

Report

MRted Lina Mot for Cublc Medel
Y = 0.01642 + 2.705 X - 9.002 X**2 + 11.77 X**3
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0.00 ’
= .
1(z) - standard

Commants

o1 02 03 04

The fitted equation for the cubic model that descrbes the
refationship between Y and X is:

Y = 0.01642 + 2,705 X~ 9.002 X**2 + 11.77 X**3
¥ the mode fits the data wel, this equation can be used
to predict ft(z) - ASSY for a valse of fT(2) - standard, or
find the settings for T(z) - standard that correspond to a3
desired value or range of values for ft(2) - ASSY.

A statisticaly signfficant refationship does not imply that X
causes Y.

Figure C.48 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 5, LSL = -5)

¥: f(z) - ASSY
X:1(2) - adju stdev
Is there » reltionship batwasn Y and X?
¢ 005 0.1 >05
o -
P = 0.000

The relationship between (2) - ASSY and fT(2) - adju
- stdev s statistically sigrificant (p < 0.05).

% of veristhn accousted Jer by medel

0% 100%
. Req (3df) = 100.00%
100.00% of the varition in fi(x) - ASSY can be
accounted for by the regression model

The poskive correiation (r = 1.00) ndicates that when
T{z) - adju stdev increases, R(z) - ASSY also tands to
ncresse.

Regression for ft(z) - ASSY vs fT(z) - adju stdev
Summary Report '

PMited Line Pt for Linesr Model
Y = - 0.000000 + 1414 X
045 -
C 4
. *
. L ]
s 030 .
”*
‘:' ..
y ]
g 0.154 . . .
.,(
0.001 /.
0.0 0.1 02 03
11(x) - adlju stdaw
Commants
The fited equation for the inear model that describes the
rebstionship between Y and X &

Y = -0.000000 + 1.414 X
¥ the model fits the data wel, this equation can be used
to predict ft(z) - ASSY for a vakue of fT(2) - adju stdev, or
find the settings for T(z) - adju stdev that corespond to a2
desired vale or range of values for ft(z) - ASSY.

A statiticaly significant relationship does not imply that X
causesY.
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Figure C.49 - TSND Assembly Comparison (USL = 4.8, LSL = -4.8)
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Figure C.50 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 4.8, LSL = 4.8)

0% 100%
R-5q (actf) = 99.21%
99.21% of the varistion in R{z) - ASSY can be

accounted for by the regression model.

qu for fi{z) ~ ASSY vs fT(2) - standard

Y = 0.01778 + 2.672 X - 8.830 X**2 + 11.51 X**3
¥ the model fits the data well, this equation can be used
to predict ft(2) - ASSY for a value of fT(2) - standard, or
find the settings for fT(2) - standard that comespondto a
desired value or range of vabues for ft(2) - ASSY.

A statisticaly signiicant relationship does not smply that X
causesY.

Summary Report
¥: fi(2) - ASSY
X: (T{(z) - standard
Fittud Ling Piot for Cubic Modet
Y = 001778 + 2.672 X - 8.830 X**2 + 11.51 X**3
045
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standard is statisticaly sgn¥icant (p < 0.05). o oY
sanl
00 0.1 02 03 0.4
17(z) - standard
Commants.
) The fited equation for the cubic model that describes the
% of verbtion accounted for by model refotionship between Y and X &:
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Figure C.51 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 4.8, LSL = -4.8)

Regression for ft(z) - ASSY vs fT(2) - adju stdev
Summary Report

Y: fi(z) - ASSY

X: f7(z) - adju stdev ’
Fted Line Pt for Linear Model
Is there 2 rabtisnship betwasn Y and X7 Y = 0.000000 + 1414 X
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100.00% of the varistion in ft(z) - ASSY can be ) Comments :
accounted for by the regression model. The fited equation for the inear moded that descrbes the
- ’ refationship between Y and X &

Y = 0.000000 + 1.414 X
F the model fits the data wel, this equation can be used

Coerelation between ¥ and X to predict it(z) - ASSY for a vabe of T(2) - adju stdev, or
Negative No cornaistion Postive find the settings for fT(2) - adju stdev that correspond to a
a1 y o 1 desired value or range of vakes for i(z) - ASSY.

[ D | A statsticaly sgniicant rebtonshi does not mply that X
1.00 causes Y.
The postive comeltion (r = 1.00) indicates that when

17(2) - adju stdev incresses, it(z) - ASSY alo tends to
ncresse.

Figure C.52 - TSND Assembly Comparison (USL = 4.6, LSL = -4.6)

Scatterplot of ft(z) - ASSY, fT(z) - adju std, fT(z) - standard vs X_2
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Figure C.53 - ft(z)-ASSY vs. fi(z) standard Regression (USL = 4.6, LSL = -4.6)

Regression for fii(z) - ASSY vs fT(z) - standard
Summary Report

s thare & rebtionship betwes ¥ and X?

0 005 0.1 . > 05
v '~
P = 0.000
The relstionship between R{2) - ASSY and fT(2) -
standard is statistically signficant (p < 0.05).

. % of variation sccousted for by model

% 100%
R-sq (adf) = 99.24%
99.24% of the varistion in f(z) - ASSY can be
accountad for by the regression model

PRted Line Pot for Cobic Medal
Y = 0.01934 + 2.635 X - 8630 X**2 + 1121 X**3
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. I
® .
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.
ool
00 T0t 0.2 03 04
7(z) - standaed
" Commants
The fitted equation for the cubic model that describes the
relstionship between Y and X is:

Y = 0.01934 + 2.635 X- 8.630 X**2 + 11.21 X**3
¥ the model (s the data wel, this equation can be used
to predict ft{z) - ASSY for a value of fT(z) - standard, or
fnd the settings for fT(z) - standard that correspond to 2
desred value or range of values for ft(z) - ASSY.

A statistically significart refitionship does not imply that X
causesY.

Figure C.54 - ft(z)-ASSY vs, ft(z) adju stdev Regression (USL = 4.6, LSL = -4.6)

Regression for ft(z) - ASSY vs fT(z) - adju stdev

Summary Report
¥: fY(z) - ASSY
X: 1T7(2) ~ adju stdev
Fittad Uine Pt for Linear Model
‘1s there a rebbtionship betwaen Y and X? Y = 0.000000 + 1.414 X
0 005 0.1 »>05 0.45
Yy . No /'/.“
P = 0.000 . 0.304 (/,n
The relationstip between £(2) - ASSY and fT(z) - adis g o
stdev s statisticaly sgnificant (p < 0.05). - -
,.J'
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>
: >
% of variation accounted for by model 00l ~
o 10 00 o1 o2 03
B 11(2) - adju shdov
R-5q (adf) = 100.00% ¢ .
100.00% of the varistion in Rz} - ASSY can de :
accounted for by the regression model The fited equation for the inear model that descrbes the
rebtionship between Y and X &
Y= 0.000000 + 1.414 X
¥ the modd fts the data wel, this equation can be used
Corvation batween ¥ snd X to predict ft(2) - ASSY for 3 valse of fT(2) - adju stdev, or
Negative No comelation Postive find the settings for f1(z) - adju stdev that correspond to a

1.00

The postive comvelation (r = 1.00) indicates that when
Rz} - adju stdev incresves, t(2) - ASSY also tends to
ncresss.

desred value or range of valses for ft(z) - ASSY.

A gtatitcaly signiicant relationship does not imply that X
causes Y.
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Figure C.55 - TSND Assembly Comparison (USL = 4.4, LSL = -4.4)

Scatterplot of ft(z) - ASSY, f1(z) - adju std, IT(2) - standard vs X_2
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Figure C.56 - fi(z)-ASSY vs. ft(z) standard Regression (USL = 4.4, LSL = 4.4)

Regression for fi{z) ~ ASSY vs fT(z) - standard

Summary Report
Y: #&(z) - ASSY
X: fT(z) - stanctard
. FRted Line Plot for Cubic Model
. Y= 0.02116 + 2,593 X - 8399 X**2 + 10.87 X**3
045 s
1s thare » raibtionship betwean Y and X? : o
9 005 03 >05 e
v I No g 0301 e
P = 0.000 ' = °
The relstionship between R{z) - ASSY and f1(2) - = 0151 . L4
dard & iy 50 (p < 0.05). Eo. [
&
0.00 ’ - .
0.0 0.1 02 03 o4
17(2) - standerd .
Comments .
The ftted equation for the cubic model that describes the
% of vanistion accounted for by model relationship between Y and X &:

R-3q (adf) = 99.28%
99.28% of the varistion in £(z) - ASSY can be
d for by the regr model

Y= 002116+ 2.593 X - 8.399 X**2 + 10.87 X**3
¥ the model fts the data wel, this equation can be used
to predict ft(z) - ASSY for a value of fT(2) - standard, or
find the settings for fT(z) - standard that correspond to 3
desired value or range of vakies for R(z) - ASSY.

A statistically signficant relationship does not imply that X
causes Y.
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Figure C.57 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 4.4, LSL = -4.4)

Rmhﬂz)-mnﬂ(z);aﬂum
Summary Report

¥: R(z) - ASSY
X: fT(z) » adju e
1s there 3 relstionship betwesn Y and X7

0 005 01 >05

B { - Mo
# = 0.000
The relstionship between. &(z) - ASSY and 7(2) - adju
stdev i statiticaly significant (p < 0.05)

%% of verfation accounted for by model
0% 100%

T R-sq (adf) = 100.00%
100.00% of the varistion in ft(z) - ASSY can be
accounted for by the ragression model

Correlstion betwesn ¥ and X

The postive comeistion (¢ = 1.00) ndicates that when
7(2) - aciu stdev increases, f(z) - ASSY akbo tends to
increase.

Mited Line Mot for Linenr Model
Y = 0.000000 + 1.414 X
045
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o
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oo0{ &
00 0.1 02
1(2)~ adju stdev
Comunants .
The fitted equation for the Inear model that descrbes the
refationshp between Y and X s:

Y = 0.000000 + 1.414X
¥ the modelfits the data wel this equation can be used
to predict f(z) - ASSY for a valse of fT(2) - adju stdev, or
find the settings for fT(z) - adju stdev that correspond to a
desired value or range of vabes for ft(z) - ASSY.

A statistically significant reltionship does not mply that X
causes Y.

Figure C.58 - TSND Assembly Comparison (USL = 4.2, LSL = -4.2)

Scatterplot of ft(z) - ASSY, fT(2) - adju std, fT(z) - standard vs X_Ez
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Figure C.59 - ft(z)-ASSY vs. ft(z) standard Regression (USL =4.2, LSL = 4.2)

MMM:)-Mnﬂ(z)-MM
’ Summary

Report
¥: i(z) - ASSY
x = standard
Fitad Line Mot for Cubic Model
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o
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0.0 0.4 02 03 0.4
17(2) - standard
Comumnents
The ited equation for the cubc model that describes the
) % of varistion accounted for by model refationship between Y and X &:
0% 100% ¥ = 0.02327 + 2.543 X - 8.131 X**2 + 10.47 X**3
= s ¥ the model fis the data wel, this equation can be used
e to predict ft(z) - ASSY for a vake of fT(z) - standard, or
_ Re3q (adf) = 99.33% find the settings for fT(z) - standard that correspond to a
99.33% of the varistion i R(z) - ASSY can be . desired vakie or range of vakses for ft(z) - ASSY.
g for by the regression model
A statisticaly significant relationship does not mply that X
causes Y,

Figure C.60 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 4.2, LSL = -4.2)

Regression for ft(z) - ASSY vs fT(z) - adju stdev
' Summary Report
¥: fi(z) - ASSY
X: 11(2) - adju stdev :
Fittad Lins Plot for Linear Model
s there & rebtionship batwaan ¥ and X? Y = 0.000000 + 1.414 X
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ves o et
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R-sq (adf) = 100.00% - Comments
100.00% of the variition in A(z) - ASSY can be
for by the regr model The fited equation for the inear moded that descrbes the
i ” relationship between Y and X s
Y = 0.000000 + 1.414 X
¥ the model fits the data wel, this eguation can be used
Correlation betwesn ¥ and X to predict ft(z) - ASSY for a vakue of fT(2) - adju stdev, or
Negatve No coreistion Postive find the settings for fT(2) - adju stdev that correspond tc a
desired value or range of values for Rt(z) - ASSY.
A statisticaly signficant relationship does not imply that X
causes Y.
The postive comeiation (r = 1.00) indicates that when
17(z) - adju stdev increases, ft(z) - ASSY aigo tends to
incresse.
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Figure C.61 - TSND Assembly Comparison (USL = 4, LSL = -4)

Scatterplot of ft(z) - ASSY, fT(z) - adju std, fT(z) - standard vs X_2
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Figure C.62 - ft(z)-ASSY vs. fi(z) standard Regression (USL =4, LSL = -4)

Regression for fi(z) - ASSY vs f7(z) - standard

Summary Report
Y: i(z) - ASSY
X: fT(2) - standard
. Fited Line Plot for Cublc Model
¥ = 0.02572 + 2.485 X - 7.820 X**2 + 10.00 X**3
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1s there a relstionablp betwesn Y and X? -«
0 005 01 >05 e .-
"""""" No g 030 e
P = 0.000 3 et
The relationship between R(2) - ASSY and T(z) - A .
. y 50 ® < 0.05). ¥ 0.154 o
. L
.y 1
0.0 o1 - 02 03 04
17(x) - standord
Comments
The fitted equation for the cubic model that descries the
reltionship between Y and X i:

Y = 0.02572 + 2.485 X - 7.820 X**2 + 10.00 X**3
¥ the model fts the data wel, this equation can be used
to predict ft(z) - ASSY for a vabe of fT(z) - standard, or
. R-3q (adf) = 99.39% find the settings for fT(z) - standard that correspond to a
99.35% of the varistion in ft(z) - ASSY can be desired value or range of v akses for ft(z) - ASSY.
‘accounted for by the regression model.

A statistically signficant reltionship does not imply that X
causes Y.
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Figure C.63 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL =4, LSL = -4)

Regression for ft(z) - ASSY vs fT(z) - adju stdev
Summary R

eport
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Fited tine Piot for Linenr Model
Is there 3 relationship batwesn ¥ and X? ¥ = 0.000000 + 1.414 X
0 005 04 >05 045
v ‘ No /,0
P = 0.000 036 -
The relstionship bietween #(2) - ASSY and 17(2) - adfu g //
stdev s statisticaly sgrifcant (p < 0.05) 3 -
® e
¥ ous =4
4
. *
..
% of varistion accounted for by model 000 ” )
R 100% 00 0.1 02 03
7(z)- sdju stdev
R-sq (adf) = 100.00%
100.00% of the varistion in i(z) - ASSY can be Commants
accounted for by the regresson model. The fted equation for the Inear model that describes the
relationship between ¥ and X i:
Y = 0.000000 + 1.414 X
¥ the model fis the data wel, this equation can be used
Correintion between ¥ and X . to predict fi(z) - ASSY for a value of fT(2) - adju stdev, or
Negative No correistion Postive find the settings for fT(z) - adju stdev that correspond to a
4 ° 1 desired vakie or range of vabes for ft(z) - ASSY.
[ .| A statsticaly sgniicant rebtanship does not mply that X
' 1.00 causes Y.
The postive correstion (r = 1.00) ind that when
11(2) - adju stdev incronses, f{2) - ASSY also tands to
incresse.

Figure C.64 - TSND Assembly Comparison (USL = 3.8, LSL = -3.8)
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Figure C.65 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 3.8, LSL = -3.8)

Regression for ft(z) - ASEY vs fT(z) - standard
Summary

that when

(r = 1.00) Ind
T(2) - adjs stdev incresses, {(2) - ASSY also tends to
cresse.

The postive

Report :
¥: fi(z) - ASSY
X: f7(z) - standwd
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. The fitted equation for the cubic model that describes the
% of varistion accounted for by model refationship between Y and X is:
0% 100% Y = 0.02857 + 2.418 X - 7.460 X**2 + 9,468 X**3
¥ the modelfis the data wel, this equation can be used
[ to predict R(z) - ASSY for a vakie of fT(z) - standard, or
. R-9q (adf) = 99.46% find the settings for fT(2) - standard that correspond to a
$9.456% of the varistion in ft(z) - ASSY can be desired vakie or range of vakies for ft(z) - ASSY.
accounted for by the regression model
A statistically signficant reitionship does not imply that X
causesY,
Figure C.66 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 3.8, LSL = -3.8)
Regression for ft(z) - ASSY vs fT(z) - adju stdev
Summary Report
¥: (2} - ASSY
X: f1(2) - adju tdev
. Fittad Line Plot for Linese Model
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for by the regr model The fitted equation for the inear model that descrbes the
relationship between Y and X i:

= ~0.000000 + 1.414 X
¥ the moded fits the data weld, this equation can be used
to predict ft(z) - ASSY for a valse of fT(2) - adju stdev, or
find the sattings for f7(2) - adju stdev that correspond to a
desied vale or range of values for ft(z) - ASSY.

A statisticaly signficant relstionship does not imply that X
causes Y.
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Figure C.67 - TSND Assembly Comparison (USL = 3.6, LSL = -3.6)

Scatterplot of ft(z) - ASSY, T(z) - adju std, fT(z) - standard vs X_2
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Figure C.68 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 3.6, LSL = -3.6)

‘Regression for ft(z) - ASSY vs f1(z) - standard

; Summary Report
¥: A(3) - ASSY
X: fT(2) - standard
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The fitted equation for the cubic model that describes the
relationship between Y and X &:
 100% . Y = 0.03186 + 2.341 X - 7.048 X**2 + 8.855 X**3
¥ the model fts the data wel, this equation can be used
to predict ft(z) - ASSY for a vakie of fT(z) - standard, or
R-9q (ad) =~ 99.54% find the settings for fT(2) - standard that correspond to a
99.54% of the varistion in R(2) - ASSY can be desired valie or range of values for f(z) - ASSY.
sccountad for by the regression modal
A statistically significant relationship does not imply that X
causes Y.,
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Figure C.69 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 3.6, LSL = -3.6)

Regression for ft(z) - ASSY vs 1T(z) - adju stdev
Summary Report .

Y: g2} - ASSY -
x - sdev .
e adi Mited Line Pt for Linese Model
Is there & rebtisnchip batwesn ¥ and X? . Y = 0000000 + 1.414 X
¢ 005 01 >05 0.45
ve . L
P = 0.000 . 4 0301
. The refationship between #&(2) - ASSY and T(2) - adju //"
stdev & statiticaly sgnifcant (p < 0.05) & y
™ P
& 0.54 "’/1
,’.
% of veriution accounted for by aeodel 00 -’
100% 00 01 02 03
17(z) - adljm stbew
) R-5q (adf) = 100.00%
100.00% of the varistion In f(z) - ASSY can be Comments
axccounted for by the regresson model The fted equation for the Inear model that describes the
relationship between Y and X &

Y = 0.000000 + 1.414 X
¥ the model fis the data wel, this equation can be used
to predict ft(z) - ASSY for a value of T(2) - adju stdev, or
find the settings for fT(z) - adju stdev that correspond to a
desired value or range of vakes for f(2) - ASSY.

A statisticaly signiicart relationship does not mply that X
causes Y,

The postive correlation {r = 1,00) indicates that when’
1T(z) - adju stdev increases, ft(2) - ASSY ako tends to
ncrense.

Figure C.70 - TSND Assembly Comparison (USL = 3.4, LSL = -3.4)

- Scatterplot of ft(z) - ASSY, fT(z) - adju std, fT(z) - standard vs X_2
Variable
0.4 —— ft(a;)-ASSY
~—# fT(2) - adju sidev
- 4~ fT(2) - standard
'0.34
8
& 0.2
.
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0.0
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Figure C.71 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 3.4, LSL = -3.4)

Regression for fi(z) - ASSY vs f7(z) - standard
Summary Report

¥: R(z) - ASSY
X (T(z) - standard
PRted Line Pt for Cabic Madel
Y = 0.03564 + 2254 X - 6.581 X**2 + 8.161 X**3
045
Is there & rebtivnshlp bitwess Y and X? -
0 005 01 >05 "
 ( | No § 0301 e T
P = 0.000 . : . «
The relstionship between ft(z) - ASSY and T(2) - ® -
standand & satiticaly sgnfeant (p < 0.05). Foisy .
io
0.00+—, - v
00 . 0.1 02 03 04
17(z) - standard
Commants
The fitted equation for the cubic moded that describes the
relationship between Y and X is:
0% 100% Y = 0.03564 + 2.254 X - 6.581 X**2 + 8.161 X**3
I ¥ the model fis the data wel, ths equation can be used
F— . to predict ft(z) - ASSY for a valse of fT(2) - standard, or
R-5q {adf) = 99.62% find the settings for fT(2) - standard that comrespond to 8
99.62% of the variation in it(z) - ASSY can be desired valie or range of vakses for ft(z) - ASSY.
accounted for by the regression model.

A statiticaly sign¥ficant relationship does not imply that X
causes Y.

Figure C.72 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 3.4, LSL = -3.4)

Regression for ft(z) - ASSY vs fT(z) - adju stdev

Summary Report
Y: ft(2) - ASSY
X (T(2) - adju ey
Pited Lise Plot for Linesr Modal
Ts there » rebtionship batwaen Y and X? Y = 0.000000 + 1.414 X

0 005 0.1 >05 045
Yi i No . *
P = 0.000 030 o *

The relationship between R(2) - ASSY and fT(2) - adju 5 . °

stdev s statistcaly sgnificant (p < 0.05) s .

®
- & oi1s . "
-
. o«
% of veriation accounted for by model 000 ™~
100% 0.0 0.1 02 03
£7(2) - adjw shdev
R-sq (sdf) = 100.00%
100-00% of the varistion in ft(z) - ASSY can be Comments
accounted for by the regression model The fitted equation for the inear mode that describes the
relationship between Y and X is:

* The postive commelstion (r = 1.00) Indicates that when
T(2) -~ adju stdev incresses, f(2) - ASSY slso tends to
ncresee.

Y = 0.000000 + 1.414 X
¥ the model fits the dita wel, this equation can be used
to predict ft(z) - ASSY for a value of {T(z) - adju stdev, or
find the settings for 17(2) - adju stdev that correspond to
desired value or range of values for ft(z) - ASSY.

A statistically significant relationship does not imply that X
causesY.




Figure C.73 TSND Assembly Comparison (USL = 3.2, LSL = -3.2)

Scatterplot of ft(z) - ASSY, fT(z) - adju std, f7(z) - standard vs X_2
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Figure C.74 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 3.2, LSL = -3.2)

Regression for fi(z) - ASSY vs fT(z) - standard

: Rom (30) = 99.71%
99.71% of the varistion in ft(z) - ASSY can be
accoured for by the regression madel.

Y = 0.03994 + 2,156 X~ 6.061 X**2 + 7.390 X**3
¥ the model fis the data wel, this equation can be used
to predict ft(z) - ASSY for a value of fT(z) - standard, or
find the settings for fT(2) - standard that correspond to a
desired value or range of values for ft(z) - ASSY.

A statisticaly signiicant relationship does not imply that X
causes Y.

Summary Report
¥: figz) - ASSY .
X: 11(2) - tandard
FRted Ling Plot for Culiic Model
Y = 0.03994 + 2.156 X - 6.061 X**2 + 7,390 X**3
. . 0.45
Is thare a rebtionship between Y and X? o-”
0 005 01 >05 ,‘
" No 50.304 e T
. P =0.000 ) : «
The relstionship between ft(z) - ASSY and fT(z) - 8 ra
standard s statisticaly sgniicant (p < 0.05). & ous o
o
0.00
00 0.1 02 03 04
17(z) - standard
Comments )
The fited equation for the cubic moded that describes the
% of vasiation accounted for by model refationship between Y and X is:
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Figure C.75 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 3.2, LSL = -3.2)

Regression for R{x) - ASSY vs fT(z) - adju stdev
Summary Report

Y: R(z) - ASSY
X: Tz} - sdev
s Mited Line Pt for Linenr Model
1s theve & rubtionship betwess ¥ and X7 Y = 0.000000 + 1.414 X
0 005 0.1 R ) >05 045
! -
I = .
-
# = 0.000 0.30 -
The relstionship between &(2) - ASSY and f1(z) - adju 5 = L2
stdev i stathtically significant (p < 0.05) v L
§ 0.151 ,c"’.
]
° L 4
% of varistion sccountad for by sodel ."'
100% 0.00 y . r v
0.05 0.10 0.15 0.20 0.25
17(2) - sdjn stdew
R-sq (sdf) = 100.00% c "
100.00% of the varistion in fi(z) - ASSY can be
for by the regr model The fited equation for the Inear model that descrbes the

relationship between Y and X is:

Y = 0.000000 + 1.414 X
¥ the model fis the data weld, this equation can be used
to predict ft(2) - ASSY for a value of fT(2) - adju stdev, or
find the settings for fT(2) - adju stdev that correspond to a
desred value or range of vabes for ft(2) - ASSY.

A statisticaly sighficant reltionship does not imply that X
causes Y.

The postive correlation (r = 1.00) indicates that when
1T(z) - adju strdev increnses, ft{2) - ASSY also tends to
ncresse.

Figure C.76 - TSND Assembly Comparison (USL =3, LSL =-3)

Scatterplot of ft(z) - ASSY, fT(2) - adju std, T(z) -shndard’vs X2

0.4 Variable
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Figure C.77 - ft(z)-ASSY vs. ft(z) standard Regression (USL =3, LSL =-3)

Regression for ft(z) - ASSY vs fT(z) - standard
Summary Report
¥: fi(z) - ASSY
X: £T\z) - standard
PMRted Ling Mot for Cublc Medel
Y= 0.04478 + 2.048 X - 5.496 X**2 + 6.558 X*+3
045
1 thare 8 rebtionshlp batwesn ¥ and X? -
0 005 01 >05 e
ve S o o L
P=0000 - < . .
The relstionship between R(z) - ASSY and f7(2) - .
“standard is statisticaly sgnifcant (p < 0.05). goas] e
»
5
0.00
00 0.1 02" 03 04
17(2) - standard
Commants
The fited equation for the cubic model that describes the
relationship between Y and X is:
Y = 0.04478 + 2.048 X - 5496 X**2 + 6.558 X**3
¥ the model fis the data wel, this equation can be used
to predict ft(z) - ASSY for a vakse of {T(2) - standard, or
R-2q (ad) = 99.79% fnd the settings for fT(z) - standard that correspond to 3
99.79% of the varistion in ft{z) - ASSY can be desired value or range of values for ft(z) - ASSY.
accounted for by the regreasion model
A statisticaly signiicant reltionship does not Imply that X
causes Y.
Figure C.78 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 3, LSL = -3)
Reﬁnulon for ft(z) ~ ASSY vs fT(z) - adju stdev
Summary Report
¥: f(z) ~ ASSY .
X: 17(7) - adju stdev .
) Mited Line Piot for Linear Model
Iz thera a rebtionship batwesn ¥ and X? Y = -0,000000 + 1.424 X
0 005 01 . © >08 0.45
Yo ' No ',A’-
» . o
P = 0.000 030 s
The relationship between R(z) - ASSY and f7(2) - adju g -
stdev is statistically sgaificant (p < 0.05). . o
§ 0.151 . -~
..
> [ 4
.,.’
0.00- .
100% 005 010 015 020 028
_ 17(2) - atjw stdav
R-3q (adf) = 100.00% Commants
. 100.00% of the vasistion in ft(z) - ASSY can be
accounted for by the regression model ’ The fitted equation for the Inear moded that describes the
relationship between Y and X &:

The postive correiation (r = 1.00) ndicates that when
f1(2) - adiu stdev incresses, fi(2) - ASSY siso tends to
incresve.

Y = -0.000000 + 1.414 X
¥ the moded fits the data wel, this equation can be used
to predict ft(z) - ASSY for a vabse of fT(2) - adju stdev, or
find the settings for T(z) - adju stdev that correspond to a
desired vabie or range of values for t(z) - ASSY.

A statistcaly significant relationshp does not imply that X
causesY.
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Figure C.79 - TSND Assembly Comparison (USL = 2.8, LSL =-2.8)

Scatterplot of ft(z) - ASSY; fT(z) - adju std, fT(z) - standard vs X_2

Varable
—~—@— fi{z) - ASSY
—8— fT(z) - adju stdev
-4~ fT(z) - sandard

Figure C.80 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 2.8, LSL = -2.8)

Regression for ft(z) - ASSY vs fT(z) - standard

Summary Report
Y: /(2) - ASSY
X: i) - standard .
: Mitted Ling Plot for Cubic Model
Y= 0.05017 + 1.933 X - 4.899 X**2 + 5.685 X**3
uu-um“v-‘n o4 /’,”"
9 005 01 >05 T
) 03 L
ves NN ~ §
P = 0.000 S : e
The relationship between R{z) - ASSY and f1(z) - g 0.2 -
standard s statistically signficant (p < 0.05). o
0.1 -r'
]
®
6.0 0.1 0.2 03 04
.. 11(z)- standard
Comments
. The fited equation for the cubic modelthat descrbes the
9% of verfetion accountad for by model refationship between Y and X &:
0% : 100%
R-aq (ad]) = 99.86%
99.86% of the varistion in ft(z) - ASSY can be
M&wmwm

Y= 0.05017 + 1.933 X - 4.899 X**2 + 5.685 X**3
¥ the mode fits the data wel, this equation can be used
to predict ft(z) - ASSY for a value of fT(2) - standard, or
find the settings for {T(2) - standard that comespond to 3
desired value or range of values for ft(z) - ASSY.

A statistically significant relationship does not imply that X
causes Y.
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Figure C.81 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 2.8, LSL = -2.8)

Regression for ft(z) - ASSY vs fT(z) - adju stdev
i Summary Report

Y: R(z) - ASSY
©OX () - adju sdev
Is there 8 rebtisnship betwesn ¥ and X7
0 005 01 >05
o -
P = 0,000 .

The relstionship between R(z} - ASSY and f1(2) - adju
stdev s statiticaly sgrificant (p < 0.05).

% of variation accounted for by medel
0% . 100%

R-8q (adf) = 100.00%
100:00% of the varistion in i(2) - ASSY can be
‘accounted for by the regression model

Corrastion between ¥ and X
" Negative No cormeletion Poskive .

-1 1] 1

muﬁem«s 1.00) indicates that when
11(z2) - adju stdev incremses, ft(z) - ASSY akso tends to
ncresse.

1.00

04

03

R(x) - ASSY

0.1

Mted Line Pist for Linear Model
¥ = 0.000000 + 1.414X

0.05 0.10 0.15 020 025
() - sdjs stdbev

Commants

The fited equation for the inear modei that describes the
refationship between Y and X is:

Y = 0.000000 + 1.414 X
¥ the model fits the data wel, this equation can be used
to predict ft(z) - ASSY for 3 valse of fT(2) - adju stdev, or
find the settings for fT(2) - adju stdev that correspond to a
desred value or range of valses for ft(2) - ASSY.

A statistcally significant refationship does not imply that X
causesY,

Figure C.82 - TSND Assembly Comparison (USL = 2.6, LSL = -2.6)

Scatterplot of fi(z) - ASSY, fT1(z) - adju std, fT(x) - standard vs X_2
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Figure C.83 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 2.6, LSL = -2.6)

Regression for ft(x) - ASSY vs f1(z) - standard
Summary Report

The postive correlation (r = 1.00) indicates that when
17(2) - adjs stdev ncreases, R(z) - ASSY aleo tends to
ncremse.

X: T(2) - skanderd
Pited Ling Plot for Cubic Model
Y= 0.05607 + 1.813 X - 4291 X**2 + 4,807 X**3
 Sethere s rebtionship between ¥ aad X? o4 e
o 005 01 >05 - .
veel NN -~ g .
- P = 0000 S . v .
The relationship between (z) - ASSY and fT(2) - % o2 e
" sandand & statieticaly sgnicart (p < 0.05). € .
’ o1 o
[
0.0 01 0.2 03 0.4
(z) - standard
Conuments
The fited equation for the cubic model that descrbes the
refationship between Y and X &:
Y= 005607 + 1.813 X - 4.291 X**2 + 4.807 X**3
" 1 ¥ the moded fts the data wel, this equation can be used
to predict ft(z) - ASSY for a value of fT(z) - standard, or
R-5q (8df) = 99.92% find the settings for T(z) - standard that comespond to a
99.92% of the variation in f(z) - ASSY can be desred value or range of vakes for ft(z) - ASSY.
accounted for by the regression model
A statistically signficant relationship does not imply that X
causes Y,
Figure C.84 ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 2.6, LSL = -2.6)
Regression for ft(z) - ASSY vs fT(z) - adju stdev
Summary Report
¥: f(2) - ASSY 3
X 17(2) - adju stdev
i Fted Line Plot for Linesr Model
1s there 2 relstionship betwean Y and X7 © Y= ~0.000000 + 1414 X
"0 005 01 >05- 04 o
| -
vel N i .
P = 0.000 03 -®
The relationship between f(2) - ASSY and f1(z) - adju 5 4
stdev is statiticaly sigpnicant (p < 0.05). ' -
§o2 -
-
-
,/. 4
% of vertion sccousted for by model b
O . 100% 005 0.10 015 0.20 025
] T(2) - sdjw stdev
R-3q (adf) = 100.00% Conments
100.00% of the varistion in ft(z) - ASSY can be-
accounted for by the regression model. The fited equation for the inear modei that descrbes the
. refationship between Y and X is:
= -0.000000 + 1.414 X
¥ the model fits the data wel, this equation can be used
Correlbtion butween ¥ ned X to predict ft(z) - ASSY for a value of 1T(2) - adju stdev, or
No correlation find the settings for fT(2) - adju stdev that correspond to a

desired valse or range of vakues for ft(z) - ASSY.

A statisticaly signficant rebtionship does not imply that X
causes Y.
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Figure C.85 - TSND Assembly Comparison (USL = 2.4, LSL = -24)

Variable
—&— fi(2) - ASSY
—&— f1(z) - adju stdev
~ @~ fT(z) - sandard

" Scatterplot of ft(z) - ASSY, fT(z) - adju std, fT(z) - standard vs X_2
0.4 1
0.34
s
8 0.2
>
0.1 4
0'0-1 T T T T T T
-3 -2 -1 0 1 2 3
x_2

Figure C.86 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 2.4, LSL = -2.4)

Regression for fi(z) - ASSY vs fT(2) - standard
Summary Report
¥: (x) - ASSY :
% f1(2) - standard
Fted Line Pht for Cubic Model
Y = Q.06244 + 1.692 X~ 3.696 X**2 + 3.962 X**3
04 -
Is there a ralstionship betwean Y and X? PO
g 005 0.1 : >05 .
1 ‘ .
Yo . | No 5 03 s
P = 0.000 ) [ 2
The relationship between ft(2) - ASSY and f1(z) - § 02 .
standard & statisticaly signficant (p < 0.05). 4
.
. -
0.1 .
0.0 01 02 03 04
1T(z) - standard
Commants
The fitted equation for the cubic model that describes the
relationship between Y and X
0% 100% Y = 0.06244 + 1.692 X - 3.696 X**2 + 3,962 X**3
s ¥ the model fits the data wel, this equation can be used
! to predct ft(z) - ASSY for a vakse of fT(2) - standard, or
R4 (38) = 99.95% ind the settings for £T(2) - standard that correspond to a
99.95% of the varistion in R{2) - AS5Y can be desred valie or range of valses for ft(z) - ASSY.
accounted for by the regression model.
: A statisticaly significant relationship does not mply that X
causes Y,
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Figure C.87 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 2.4, LSL = -2.4)

Regression for ft(z) - ASSY vs fT(z) - adju stdev
_ Summary Report
Y: R{z) - ASSY
X: 1(2) - adjks sidov
. Mted Line Plot for Lisenr Model
Is there a rebtisnship batween ¥ and X? ¥ = 0.000000 + 1.414 X
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. R-5q (adf} = 100.00% ¢ "
100.00% of the varistion in ft(z) - ASSY can be
for by the regy model. - The fted equation for the inear model that descrbes the
reflationship between Y and X &:
Y = 0.000000 + 1.414 X
. ¥ the modei s the data wel, this equation can be used
Corvelition betwean Y and X to predict ft(z) - ASSY for a vakse of (2} - adju stdev, or
Negative No cometion Poskive find the settings for f1(2) - adju stdev that correspond to 2
1 6 1 desired vakse or range of vakies for ft(z) - ASSY.
- A stattcaly signiicant relstonshp does not el that X
1.00 causes Y.
The postive correlation (r = 1.00) indicates that when
1T(2) - adju stdev increases, fi(z) - ASSY also tands to
ncresse.

Figure C.88 - TSND Assembly Comparison (USL = 2.2, LSL = -2.2)

Scatterplot of fi(z) - ASSY, fT(z) - adju std, fT(z) - standard vs X_2
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Figure C.89 - fi(z)-ASSY vs. ft(z) standard Regression (USL = 2.2, LSL = -2.2)

Regression for ft(zx) - ASSY vs fT(z) ~ standard
) Summary Report
Y: f(2) - ASSY
X: f1(z) - sandard
Mited Line Pist for Cublc Model
Y = 0.06919 + 1.574 X - 3.137 X**2 + 3.186 X**3
0.4 o
o thare 3 relitisnship betweasn Y and X? P R
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0.14, v v v v
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T(z) - standord
Comments .
The fited equaton for the cubic model that describes the
o, relationship between Y and X is:
0% 100% Y = 0.06919 + 1.574 X - 3.137 X**2 + 3,186 X**3
¥ the model fts the data wel, this equation can be used
to predict f(z) - ASSY for a vakse of fT(z) - standard, or
R-9q (adj) = 99.98% find the settings for fT(z) - standard that correspond to 2
99.98% of the variation in ft(z) - ASSY can be desired valie or range of vabes for ft(z) - ASSY.
accounted for by the regression model
A statisticaly significart rebtionship does not imply that X
causes Y.
Figure C.90 - f1(z)-ASSY vs. ft(z) adju stdev Regression (USL = 2.2, LSL = -2.2)
Regression for ft(z) - ASSY vs fT(z) - adju stdev
B Summary Report
¥: f(2) - ASSY
X: 11(2) - adju stdev L
FRted Line Piot for Linear Model
s thers 3 rebtionship betwaen Y and X? Y = 0.000000 + 1.414X
0 005 01 >05 0.44 e
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stdev is statisticaly sgnifcart (p < 0.05) . o
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. R-5q (adf) = 100.00% Commaents
100.00% of the varistion in fi(2) - ASSY can be N -
- accounted for by the regression madel The fited equation for the inear model that describes the
refationship between Y and X &
Y = 0.000000 + 1,414 X
¥ the model fits the data wel, this equation can be used
to predict ft(z) - ASSY for a vake of 1T(z) - adju stdev, or
find the settings for T(2) - adju stdev that comespond to a
desired value or range of vabes for ft(z) - ASSY.
A statisticaly signficant rebtionship does not imply that X
. 1.00 causesY.
The posktive comelation (r = 1.00) indicates that when
T(2) - adiu stdev incresses, ft{z) - ASSY also tends to
ncresse.
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Figure C.91 - TSND Assembly Comparison (USL = 2, LSL = -2)

Scatterplot of ft(z) - ASSY, fT(z) - adju st fT(z) - standard vs X_2
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Figure C.92 - ft(z)-ASSY vs. ft(z) standard Regression (USL =2, LSL =-2)

Regression for ft(z) - ASSY vs fT(z) - standard

Summary Report
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¥ the model fis the data wel, this equation can be used
to predict ft(z) - ASSY for a vabe of T(z) - standard, or
find the settings for fT(z) - standard that correspond to a
desred value or range of values for ft(z) - ASSY.

A statisticaly significant relationship does not imply that X
causes Y.
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Figure C.93 ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 2, LSL = -2)

Regression for ft(z) - ASSY vs fT(z) - adju stdev

Y: f(z) - ASSY
X fT(2) - adju stdev
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¥ = - 0.000000 + 1.414 X
¥ the madel fits the data wed, this equation can be used
to predict ft(z) - ASSY for a value of T(2) - adju stdev, ot
find the settings for fT(2) - adju stdev that correspond to a
desired vakse or range of values for ft(z) - ASSY.

A statisticaly significant relationshp does not imply that X
causes Y,

Figure C.94 - TSND Assembly Comparison (USL = 1.8, LSL =-1.8)
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Figure C.95 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 1.8, LSL = -1.8)

Regression for ft(z) - ASSY vs fT(z) - standard
Y: R(z) - ASSY
X 1T(2) - standard
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. The fited equation for the cubic model that describes the
%% of variation sccounted for by model reftionship between Y and X &:
100% Y = 0.08339 + 1.359 X~ 2.196 X**2 + 1.942 X**3
¥ the model fits the data wel, this equation can be used
- - to predict ft(z) - ASSY for a value of 1T(z) - standard, or
. R-sq (adj} = 100.00% find the settings for fT(z) - standard that correspond to a
100.00% of the varistion in ft(2) - ASSY can be desred value or range of vakses for t(z) - ASSY.
accounted for by the regression model
A statistically significant rebtionship does not imply that X
causesY.

Figure C.96 ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 1.8, LSL = -1.8)

Regression for ft(z) - ASSY vs fT(z) - adju stdev

Summary Report
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accounted for by the regression model The Mtted aquation for the inear model that descrbes the
relationship between Y and X i

Y = 0.000000 + 1.414 X
¥ the model fits the data wel, this equation can be used
to predict ft(z) - ASSY for a vakse of f7(z) - adju stdev, or
ind the settings for T(2) - adju stdev that correspond to a
desired value or range of values for ft(z) - ASSY.

A statisticaly significant refstionship does nat imply that X
causesY.

The postive comelation (r = 1.00) indicabes that when
" T{2) - adiu stdev incresses, R(2) - ASSY also tends to
incresse.




Figure C.97 - TSND Assembly Comparison (USL = 1.6, LSL = -1.6)

-Scatterplot of fi(z) - ASSY, fT(z) - adju std, fT(z) - standard vs X_2
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Figure C. 98 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 1.6, LSL =-1.6)

Regression for ft(z) - ASSY vs fT(z) - standard

Summary Report
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%% of variston accownted for by model
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R-sq (adf) = 100.00%
100.00% of the varition in ft(2) - ASSY can be
accounted for by the regression model

The fitted equation for the cubic mode! that describes the
refationship between Y and X &s:

Y = 0.09056 + 1.266 X - 1.829 X**2 + 1.490 X**3
¥ the model fis the data weld, this equation can be used
to predict ft(z) - ASSY for a value of fT(2) - standard, or
find the settings for fT(z) - standard that correspond to a
desired value or range of vakues for ft(z) - ASSY.

A statsticaly significant refationship does not imply that X
causesY.
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Figure C.99 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 1.6, LSL = -1.6)

Regrassion for fi(z) - ASSY vs fT(z) - adju stdev
Summary Report .

¥: R(2) - ASSY
X: T(2) - adjs stidew
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The fitted equation for the incar moded that descrbes the
refationship between Y and X is:

Y = - 0.000000 + 1.414 X
¥ the model fits the data wel, this equation can be used
to predict ft(z) - ASSY for a vabe of fT(2) - adju stdev, or
find the settings for fT(z) - adju stdev that correspond tc a
desired value or range of values for ft(z) - ASSY.

A statistically signficant refationship does not imply that X
causesY.

Figure C.100 - TSND Assembly Comparison (USL = 1.4, LSL =-1.4)
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Figure C.101 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 1.4, LSL = -1.4)

Regression for ft(z) - ASSY vs fT(z) - standard
Summary Report
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The Mited equation for the cubic model that describes the
relationship between Y and X is:
100% Y = 0.09755 + 1,185 X~ 1.532 X**2 + 1.142 X**3
¥ the model fits the data wed, this equation can be used
to predict ft(z) - ASSY for a vabse of fT(2) - standard, or
R-sq {ad}) = 100.00% find the settings for fT(z) - standard that correspond to a

100.00% of the varistion in it(2) - ASSY can be
ked for by the reg model

desired value or range of vakses for ft(z) - ASSY,

A statistically significant refationship does not mply that X
causesY,

Figure C.102 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 1.4, LSL. = -1.4)

Regression for ft(z) - ASSY vs fT(z) - adju stdev
Summary Report

¥: A(2)- ASSY
X £7¢2) - adju stdev .
: Mited Line Piot for Linens Model
Is there a rebtionship betwesn Y and X? Y = 0.000000 + 1.414 X i
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- e .
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Re5q (aci]) = 100.00%
100.00% of the variation in fi(z) - ASSY can be : Comments
accounted for by the regression modet. The fitted equation for the Inear model that describes the
relationship between Y and X ks

The poskive corvalition (¢ = 1.00) hdicates that when |
17(z) ~ adju stdev incresses, R(2) - ASSY also tends to
incresse.

Y = 0.000000 + 1.414 X
¥ the model fts the data wel, this equation can be used
to predict ft{z) - ASSY for a vabe of T(z) - adju stdev, or
find the settings for fT(z) - adju stdev that correspond to a
desred value or range of values for ®(z) - ASSY.

A statistically significant refationship does not imply that X
causes Y.
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Figure C.103 - TSND Assembly Comparison (USL = 1.2, LSL =-1.2)
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Figure C.104 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 1.2, LSL =-1.2)

Regression for ft(2) - ASSY vs fT(2) - standard

] Summary Report
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Comments
The fited equation for the cubic model that describes the
relationship between Y and X &:

Y = 0.1042 + 1.115 X - 1.295 X**2 + 0.8829 X**3
¥ the modei fts the data wel, this equation can be used
to predict ft(z) - ASSY for a vabe of fT(2) - standard, or
R-sq (adf) = 100.00% find the settings for 11(z) - standard that correspond to a
100.00% of the varistion in R(z) - ASSY can be desired valse or range of values for ft(z) - ASSY.
sccounted for by the regression model.

A statisticaly significant relationship does not Imply that X
causes Y.
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Figure C.105 - fi(z)-ASSY vs. ft(z) adju stdev Regression (USL = 1.2, LSL = -1.2)

‘ Y: ft(2) - ASSY
X T(z) - adju tdev
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Commants
The fited equation for the inear model that descrbes the
relationship between Y and X s:

. Y = 0.000000 + 1.414 X

- | ¥ the modelfits the dita wel, this equation can be used
to predict ft(2) - ASSY for a value of fT(2) - adju stdev, or
find the settings for fT(z) - adju stdev that correspond to a
desred value or range of values for ft(z) - ASSY.

A statisticaly significant reltionship does not imply that X
causes Y.

Figure C.106 - TSND Assembly Comparison (USL = 1.0, LSL = -1.0)

 Scatterplot of ft(z) - ASSY, fT(z) - adju std, fT(z) - standard vs X_2
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Figure C.107 - ft(z)-ASSY vs. ft(z) standard Regression (USL =1, LSL =-1)

Regression for ft(z) - ASSY vs fT(z) - standard
Summary Report
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The fited equation for the cub model that describes the
relationship between Y and X &:
100% . ¥ = 0.1103 + 1.057 X - 1.112 X**2 + 0.6942 X**3

¥ the model fis the data wel, this equation can be used
1o predict ft(z) - ASSY for a value of fT(z) - standard, or
R-sq {(acf) = 100.00% find the settings for T(z) - standard that correspond to a
100.00% of the variition in ft(z) - ASSY can be desired vakie or range of vakses for ft(z) - ASSY.
accounted for by the regression model

A statisticaly significant relationship does not mply that X
causes Y.

Figure C.108 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL =1, LSL =-1)

Regression for ft(z) - ASSY vs fT(z) - adju stdev

Summary Report
¥: fi(2) - ASSY :
X: f7(z2) - adju tdev
Fiited Line Piot for Linasr Model
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relationship between Y and X i:

Y = 0.000000 + 1.414 X
T the model fits the data wel, this equation can be used
to predict ft(z) - ASSY for a value of 1T(z) - adju Stdev, or
find the settings for fT(z) - adju stdev that correspond to a
desred valie or range of values for ft(z) - ASSY.

A statistically significant rebationship does not imply that X
causesY.

The postive dation (r =~ 1.00) that when
1T(z) - adfs sedey increnges, A(2) - ASSY ko tends to
incresee.
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Figure C.109 - TSND Assembly Comparison (USL. = 0.8, LSL = -0.8)

Scatterplot of ft(z) - ASSY, fT(z) - adju std, fT(z) - standard vs X_2
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Figure C.110 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 0.8, LSL = -0.8)

Regression for fiz) - ASSY vs fT(2) - standard
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co ¥ the moded fits the data wel, this equation can be used
to predict ft(z) - ASSY for a value of T(z) - standard, or
R-5q (adf} = 100.00% find the settings for T(z) - standard that correspond to a
100.00% of the varistion in f(z) - ASSY can be desired value or range of values for ft(z) - ASSY.
accounted for by the regression model

| A statisticaly significant redationship does not imply that X
causesY.




Figure C.111 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 0.8, ’LSL =-0.8)

Regression for R(z) - ASSY vs fT(z) - adju stdev
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d for by the regression modsl The fited equation for the Inear modei that descrbes the
rebationship between Y and X &

Y = 0.000000 + 1.414 X
¥ the model fits the data wel, this equation can be used
to predict ft(z) - ASSY for a vabe of fT(2) - adju stdev, or
find the settings for 1(2) - adju stdev that correspond to a
desred valie or range of vales for f(z) - ASSY.

A statistically significant reltionship does not imply that X
causesY.

The postive correlation (r = 1.00) indicates that when
11(z) - adju stdev increases, ft(2) - ASSY aleo tands to

incresse.

Figufe C.112 - TSND Assembly Comparison (USL = 0.6, LSL = -0.6)

Scatterplot of fi(z) - ASSY, fT(z) - adju std, fT(z) - standard vs X_2
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Figure C.113 - ft(z)-ASSY vs. fi(z) standard Regression (USL = 0.6, LSL = -0.6)
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¥ the model fits the data wel, this equation can be used
to predict ft(z) - ASSY for a value of fT(z) - standard, or
find the settings for fT(2) - standard that correspond to 2
desired valse or range of vabes for ft(z) - ASSY.

A statisticaly signiicant rebationship does not mply that X
causesY.

Figure C.114 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 0.6, LSL = -0.6)

Regression for ft(z) - ASSY vs fT(z) - adju stdev
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: - 17(z) - adjm stelaw
: R-sq (adj) = 100.60%
100.00% of the varistion in ft(z) - ASSY can be Comments
accourted for by the regression modd. The fited equation for the Inear modeithat descrbes the
reftionship between Y and X is:

Y = 0.000000 + 1.414 X
¥ the model fis the data wed, this equation can be used
to predict fi(z) - ASSY for a vake of fT(z) - adju stdev, or
find the settings for fT(2) - adju stdev that comespond to a
desired value or range of values for ft(z) - ASSY.

A statisticaly significant relationship does not imply that X
causes Y.
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Figure C.115 - TSND Assembly Comparison (USL = 0.4, LSL = -0.4)
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Figure C.116 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 0.4, LSL = -0.4)

Regression for ft(z) - ASSY vs fT(2) - standard
Summaty .

. Report
¥: i(z) - ASSY
X: fT(z) - standard

- Fited Line Plot for Quedsatic Model
Y = 0.1471 + 0.7627 X~ 03293 X**2
0400 -
s thers 3 ralationehip betwesn ¥ and X7 icad
: 005 0.1 " >05 -
: 0395+ .
.' : No ! ‘///
P'=0.000 ' " g
The relationship between ft(z) - ASSY and fT(z) ~ . R 0.3901
" standard & statiticaly signiicant (p < 0.05). ¥
0.385+
L J
037 038 033 0.40
1T(x}) - standurd
Comments
The fitted equation for the quadratic model that descrbes
% of vaeintion accownted fer by model ’ the refationship between Y and X is:
™% 100% Y = 0.1471 + 0.7627 X - 0.3293 X**2
s ¥ the model fits the data wel, this equation can be used
to predict ft(z) - ASSY for a value of fT(2) - standarg, or
R-9q (adf) = 100.00% find the settings for {T(z) - standard that correspond to a
100.00% of the varistion in ft(z) - ASSY can be desired vakie or range of values for ft(z) - ASSY.
accounted for by the regression model

A statisticaly significant relationship does not imply thak X
causes Y.
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Figure C.117 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 0.4, LSL = -0.4)

Regression for ft{z) - ASSY vs fT(z) - adju stdev
Symmary Report
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accountert for by the regression model The fitted equation for the Inear model that descrbes the
refationship between Y and X &
Y = 0.000000 + 1.414 X
¥ the modei fits the data wel, this equation can be used
Corvalbtion batwean Y and X to predict ft(2) - ASSY for a vale of fT(2) - adju stdev, or
Negative No cormelation Postive find the settings for T(z) - adju stdev that correspond to a
a4 ° 1 ! desired vakie or range of values for ft{2) - ASSY.
B S | A statstcaly sgnifcant rebtonshp does not o that X
. 1.00 causes Y.
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- fR2) - adju stdev Increases, A(2) - ASSY alio tands to
increpse.

Figure C.118 - TSND Assembly Comparison (USL = 0.2, LSL = -0.2)

‘Scatterplot of ft(z) - ASSY, fT(z) - adju std, fT(z) - standard vs X_2
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Figure C.119 - ft(z)-ASSY vs. ft(z) standard Regression (USL = 0.2, LSL = -0.2)

Y R(z) - ASSY
X: £T(2) - standard

Is thare » rebtionshiy betwean ¥ and X?
0 0.05 0.1 >05

= 0000 :
The relationship between (2) - ASSY and fT{z) -
standard s statisticaly signifcant (p < 0.05).

A
% of vesiation accounted for by medel
0’0 T 100%

R-sq (adj) =~ 100.00%
100.00% of the varistion in fi(z) - ASSY can be
accountad for by the regression model

. 1.00
The postive corrgstion (r = 1.00) indicates that when
iz) - standard incresses, R(z) - ASSY ako tends to
increase. .

v.-_ ‘Mo -

Regression for fi(z) - ASSY vs fT(z) - standand
: Summary Report

Fitted Line Plot for Linesr Model
Y= 0.1985 + 0.5026 X ,
. 03990 .
//
§ 039754 -7
P
? -
¥ 03960 L
o
0390 0392 0394  03%  0.398
17(z) - standerd
Commants
The fitited equation for the inear moded that descrbes the
relationship between Y and X i:

Y = 0.1985 + 0.5026 X
¥ the modei fis the data wel, this equation can be used
to predict ft(z) - ASSY for a value of fT(z) - standard, or
find the settings for fT(z) - standard that correspond to a
desired value or range of values for ft(z) - ASSY.

A statistically significant reltionship does not imply that X
causes Y.

Figure C.120 - ft(z)-ASSY vs. ft(z) adju stdev Regression (USL = 0.2, LSL = -0.2)

The postive comelation (r = 1.00) dicabes that when
1772) - adiu e incresses, A(z) - ASSY siso tends to
incresse.

Regression for ft(z) - ASSY vs fT(z) - adju stdev

Summary Report
Y: R(2) - ASSY .
X: T{(2) - 3dju Kdev
Fitted Line Piot for Lingar Model
T Ipthere s rebtionship betwesn Y and X7 Y= 0.000000 + 1414 X
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Yi ’ i No /
P =0.000 . 7
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Rdev & gatiticaly sgnitcart (p < 0.05) & -
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% of varistion sccounted fer by model o«
100% 027 0280 0.281 0.282
17(z) - adjm stebaw
R-sq (#0) = 100.00%
100.00% of the varistion in ft(z) - ASSY can be Commmants
accounted for by the regression model ’ The fitted equation for the Inear model that descrbes the

relationship between Y and X s

Y = 0.000000 + 1.414 X
¥ the modei fis the data wel, this equation can be used
to predict ft(z) - ASSY for a valse of 1T(2) - adju stdev, or
find the settings for fT(z) - adju stdev that correspond to a
desired vakie or range of vabses for £(2) - ASSY.

A statisticaly sgnificant reltionshp does not imply that X
causes Y.
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APPENDIX D: TSND ANALYSIS EXAMPLES

This appendix documents the analysis results for three simulated truncated
standard normal distribution assemblies. Various examples and their results demonstrate
the application of a truncated standard normal distribution characteristic function
inversion using an inversion factor. This example has been baselined against calculation
methods which employ methods found in References [104] and [105].

The three examples identified use the inversion factor verified from a single
truncated standard normal distribution. Inversion factors for truncated standard normal
distributions will be established for various combinations (i.e., USL = 8 to LSL = -8).
For the purpose of this example, identical combinations will be used due to the multitude
of combinations and to maintain simplicity in the calculations presented within the
framework for this research.

Refer to Section 4 for additional information.
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Simulation Input Parameters: p =0, 6 = 1, LSL = -2, USL = 2, n = 10,000 (sample size)

Table D.1 Truncated Distribution Simulation Range, 10,000 Samples (-2 to 2)

Bin Frequency Bin Frequency Bin | Frequency Bin Frequency

-4 0 -1.9 120 0.1 313 2.1 0
-39 0 -1.8 136 0.2 316 2.2 0
-3.8 0 -1.7 118 0.3 352 2.3 0
-3.7 0 -1.6 150 0.4 340 2.4 0
-3.6 0 -1.5 197 0.5 352 2.5 0
-3.5 0 -1.4 189 0.6 331 2.6 0
-3.4 0 -1.3 202 0.7 328 2.7 0
-3.3 0 -1.2 212 0.8 282 2.8 0
-3.2 0 -1.1 238 0.9 298 2.9 0
-3.1 0 -1 241 1 290 3 0

-3 0 -0.9 256 1.1 261 3.1 0
-2.9 0 -0.8 309 1.2 226 3.2 0
-2.8 0 -0.7 304 1.3 230 3.3 0
-2.7 0 -0.6 300 1.4 223 3.4 0
-2.6 0 -0.5 277 1.5 169 3.5 0
-2.5 0 -0.4 337 1.6 192 3.6 0
-2.4 0 -0.3 306 1.7 164 3.7 0
-2.3 0 -0.2 340 1.8 160 3.8 0
-2.2 0 -0.1 307 1.9 140 3.9 0

-991E-

-2.1 0 15 365 2 129 4 0

-2 0 More 0

Table D.2 - Pearson Correlation of Example 1
Pearson correlation of Pearson correlation of
ft(z) a- ASSY and ft(z) a- ASSY and
TSND RANGE ft(z) - standard ft(z) — adju stdev
USL=2,ILSL=-2 .973 1
Table D.3 - Regression Analysis of Example 1
TSND R-sq Fitted Line Plot Equation for Cubic

(USL =2, LSL =-2)

(adj) P-Value

Model

ft(z) a- ASSY and
ft(z) — standard

99.55% | p <0.001

Y = 0.03426 + 2.546 X - 7.524

X**2 + 0.334 X**3

ft(z) a- ASSY and
ft(z) — adju stdev

100% | p <0.001

Y = 0.000000 + 1.545 X




Figure D.1 - Truncated Distribution Histogram, 10,000 Samples (-2 to 2)
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Figure D.2 - ft(z)-ASSY vs. ft(z) standard Regression, 10,000 Samples (-2 to 2)

Regression for ft(x) - ASSY_1 vs fT(z) - Standard
Summary Report

Y: fi{x) - ASSY_1
X fT(2) - Standard

I thera & rebtionship betwasn ¥ and X?

0 005 0.1 >05
veoj N =
P =0.000
The relstionship between ft(x) - ASSY_1 and 1(2) -
Standard is statisticaly signficant (p < 0.05).

100%

R-sq (adf) = 99.55%
99.55% of the varstion in ft{x) - ASSY_1 can be
accounted for by the regression model

PRtad Line Plot for Cubic Model
Y = 0.03426 + 2.546 X - 7.524 X**2 + 9334 X**3

0.451

L)
g’ 0304

§ 0.15

0.00

0.0 01 02 03
£1(x) - Standard

Cowmnents

04

The Mited equation for the cubc model that describes the
refationship between Y and X is:

Y = 0.03426 + 2.546 X - 7.524 X**2 + 9.334 X**3
¥ the model fits the data wel, this equation can be used
to predict fit(x) - ASSY_1 for 2 vakie of f1(2) - Standard, or
find the settings for fT(2) - Standard that correspond to a
desied valie or range of vales for ft(x) - ASSY_1.

A statisticaly significant refationship does not imply that X
causes Y.
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Figure D.3 - ft(z)-ASSY vs. ft(z) adju stdev Regression, 10,000 Samples (-2 to 2)

Regression for ft{x) - ASSY_1 vs 1T(z) - adju stdev_1
Summary Report

¥: R(x)- ASSY_L
X: €T(2) - adju stdev_1
1s there a relstionship batween ¥ and X?

0 0.5 01 >0S
veol NN "
P = 0.000

The relstionship between ft(x) - ASSY_1 and 11(z) - adju

sidev_1 & statisticaly signifcant (p < 0.05).

% of varistios accounted for by modael
0% 100%

’ R-2q (adj) = 100.00%
100.00% of the varistion in fi(x) - ASSY_1 can be
d for by the reg model

The postive correlstion (1 = 1.00) indicates that when
7(z) -~ adjat stdev_1 increases, R(x) - ASSY_ 1 alw tends
to incresse.

Fited Line Pt for Linaar Model
Y = 0.000000 + 1.54% X

045

.3

0.30

g 0.15

0.00

0.0 01 02
17(z) - adje stdev_1
Comments

03

The fitted equation for the Inear model that descrbes the
reftionshp between Y and X &

Y = 0.000000 + 1.545X
¥ the model fits the data wel, this equation can be used
to predict ft(x ) - ASSY_1 for a value of fT(2) - adju
stdev_1, or find the settings for fT(2) - adju stdev_1 that
correspond to 3 desired vakie or range of values for ft(x) -
ASSY_L.

A statistically signfficant reltionship does not imply that X
causesY.
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Simulation Input Parameters: p =0, o = 1, LSL =-3, USL = 3, n = 10,000 (sample size)

Table D.4 Truncated Distribution Simulation Range, 10,000 Samples (-3 to 3)

Table D.5 - Pearson Correlation of Example 2

Bin Frequency Bin Frequency Bin Frequency Bin Frequency
-4 0 -1.9 57 0.1 365 2.1 57
-39 0 -1.8 67 0.2 386 2.2 39
-3.8 0 -1.7 60 0.3 401 2.3 37
-3.7 0 -1.6 100 0.4 392 24 29
-3.6 0 -1.5 129 0.5 371 2.5 18
-3.5 0 -1.4 156 0.6 365 2.6 14
-34 0 -1.3 153 0.7 315 2.7 18
-3.3 0 -1.2 186 0.8 321 2.8 11
-32 0 -1.1 192 0.9 303 29 7
-3.1 0 -1 228 1 259 3 6
-3 0 -0.9 242 1.1 221 3.1 0
-2.9 9 -0.8 266 1.2 215 3.2 0
-2.8 6 -0.7 326 1.3 188 3.3 0
-2.7 10 -0.6 337 1.4 138 34 0
-2.6 13 -0.5 338 1.5 156 3.5 0
-2.5 17 -04 321 1.6 123 3.6 0
-2.4 20 -0.3 374 1.7 106 3.7 0
-2.3 23 -0.2 361 1.8 88 3.8 0
-2.2 36 -0.1 392 1.9 89 3.9 0
-2.1 31 -9.9E-15 400 2 58 4 0
-2 54 More 0

Pearson correlation of
ft(z) a- ASSY and

Pearson correlation of
ft(z) a- ASSY and

TSND RANGE ft(z) - standard ft(z) — adju stdev
USL=3,LSL=-3 972 1
Table D.6 - Regression Analysis of Example 2

TSND R-sq

(USL =3,LSL =-3) (adj) P-Value Fitted Line Plot Equation for Cubic Model

ft(z) a- ASSY and ft(z) - Y = 0.02832 + 2.369 X - 7.014 X**2 4
standard 99.45% | p <0.001 | 8.675 X**3
ft(z) a- ASSY and ft(z) — adju Y = - 0.000000+1.422 X+0.000000 X**2 -
stdev 100% Note 1 0.000000 X**3

Note 1: For values referencing this note the p-value could not be calculated
Note 2: Standard deviation is 1, unless otherwise noted in Appendix B



Figure D.4 - Truncated Distribution Histogram, 10,000 Samples (-3 to 3)
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Figure D.5 - ft(z)-ASSY vs. ft(z) standard Regression, 10,000 Samples (-3 to 3)

Regression for ft(x) - ASSY_1 vs fT(z) - Standard

Summary Report
¥: fifx) - ASSY_1
X: 1T(2) - Standard .
ted Line Plot for Cublc Modal
Y = 0.02832 + 2.360 X - 7.014 X**2 + 8§.675 X**3
045
1s thave » relationship batwenn Y and X?
0 005 0.1 >08 -
' No 1 0.30
= 0.000 §
The relationship between ft{x} - ASSY_1 and 1{z) ~ M 0.15/
Standard & statisticaly sgnficant (p < 0.05). § ’
DMJ
0.0 0.1 02 0.3 04
17(x) - Standard
Commants
The fited equation for the cubic model that describes the
9% of verbtion accounted for by model refationship between Y and X &
0% 100% Y = 0.02832 + 2.369 X - 7.014 X**2 + 8.675 X**3

¥ the modelfits the data wel, this equation can be used
to predict ft(x) - ASSY_1 for a value of f1(2) - Standard, or
Reaq (ad)f) = 99.45% fnd the settings for 17(z) - Standard that correspond to a
99.45% of the varistion in K{x) - ASSY_1 can be desired value or range of values for ft(x) - ASSY_1.
accounted for by the regression model

A statisticaly significant refationship does not imply that X
causes Y.
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Figure D.6 - ft(z)-ASSY vs. ft(z) adju stdev Regression, 10,000 Samples (-3 to 3)

Regression for ft(x) - ASSY_1 vs T(z) - adju stdev_1

¥: fix) - ASSY_L
(1) adp ader FRtmd Line Piot for Cubic Model
¥ = -0.000000 + 1422 X + 0.000000 X**2 - 0.000000 X**3

0.45
Is thare » relationship betwesn ¥ and X?
0 005 0% >05 -
ves I . g
The pvakie cannot be cakulsted.
»
§ 0.15
0.00
0.0 0.1 02 03
7(2) - adin stdov_1
Comments
The fited equation for the cubic modet that describes the
% of varation accounted for by model relationship between Y and X is:
0% 100% Y = -0.000000 + 1,422 X + 0.000000 X**2 - 0.000000
y X**3
¥ the model fis the data wel, this equation can be used
R-sq (ad}) = 100.00% to predict ft(x) - ASSY_1 for a value of fT(2) - adju
100.00% of the varition in ft(x) - ASSY_1 can be stdev_1, or find the settings for fT(z) - adju stdev_1 that
® d for by the regr model correspond to a desired vakie or range of values for ft(x) -
ASSY_1.
A statisticaly signiicant rebtionship does not mply that X
causes Y.




Example 3:
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Simulation Input Parameters: p =0, o = 1, LSL = -4, USL =4, n = 10,000 (sample size),

Table D.7 Truncated Distribution Simulation Range, 10,000 Samples (-4 to 4)

Table D.8 - Pearson Correlation of Example 3

Bin Frequency Bin Frequency Bin Frequency Bin Frequency

-4 0 -1.9 57 0.1 369 2.1 52
-3.9 0 -1.8 61 0.2 388 2.2 37
-3.8 0 -1.7 59 0.3 411 2.3 38
-3.7 0 -1.6 90 0.4 398 2.4 25
-3.6 2 -1.5 123 0.5 372 2.5 14
-3.5 2 -1.4 158 0.6 370 2.6 19
-3.4 0 -1.3 156 0.7 315 2.7 11
-3.3 3 -1.2 182 0.8 317 2.8 12
-3.2 3 -1.1 191 0.9 301 2.9 6
-3.1 1 -1 221 1 253 3 7

-3 3 -0.9 241 1.1 223 3.1 3
-2.9 6 -0.8 274 1.2 221 3.2 4
-2.8 7 -0.7 326 1.3 188 3.3 3
-2.7 8 -0.6 337 1.4 143 34 2
-2.6 11 -0.5 344 1.5 142 3.5 0
-2.5 14 -0.4 330 1.6 122 3.6 0
-2.4 21 -0.3 371 1.7 101 3.7 0
-2.3 21 -0.2 363 1.8 85 3.8 1
-2.2 36 -0.1 399 1.9 87 3.9 0

-991E-

-2.1 28 15 403 2 56 4 0

-2 52 More 0

TSND RANGE

Pearson correlation of
ft(z) a- ASSY and
ft(z) - standard

Pearson correlation of
ft(z) a- ASSY and
ft(z) — adju stdev

USL=4,LSL=-4

972

1

Table D.9 - Regression Analysis of Example 3

TSND
(USL =4, LSL =-4)

R-sq P-

(adj) | Value Fitted Line Plot Equation for Cubic Model

ft(z) a- ASSY and ft(z) —
standard

99.45% | 0.001 | X**3

p< | Y= 002827 +2.352 X - 6.955 X**2 + 8.593

ft(z) a- ASSY and ft(z) - adju

stdev

Note | Y = 0.000000 + 1.414 X - 0.000000 X**2 +

100% 1 0.000000 X**3

Note 1: For values referencing this note the p-value could not be calculated
Note 2: Standard deviation is 1, unless otherwise noted in Appendix B
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Figure D.7 - Truncated Distribution Histogram, 10,000 Samples (-4 to 4)
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Figure D.8 - ft(z)-ASSY vs. ft(z) standard Regression, 10,000 Samples (-4 to 4)

Regression for ft(x) -~ ASSY_1 vs fT(z) - Standard

Summary Report
Y: fi{x) - ASSY_1
X: fT{z) - Standiard
Pitad Line Plot for Cubic Model
Y = 0.02827 + 2352 X - 6.955 X**2 + 8,593 X**3
0.45
Is thare » retionehip batwasn ¥ and X?
0 0.05 0.4 >05 -
Y ' No 1 030
P = 0.000 5
‘The relationship between ft(x) - ASSY_1 and f1(2) - = 0.15
Standard & statisticaly sgrificant (p < 0.05). § ’
0.001
0.0 01 02 0.3 04
11(x) - Standard
Comments
The fited equation for the cubic model that describes the
%% of varistion acosentes for by model relationship between Y and X is: ’
100% Y = 0.02827 + 2.352 X~ 6.955 X**2 + 8.593 X**3
¥ the model fis the data well, this equation can be used
to predict f(x) - ASSY_1 for 2 vabse of fT(2) - Standard, or
R-sq (ad)) = 99.45% find the settings for fT(2) - Standard that correspond to a
99.45% of the varistion in fit{x) - ASSY_1 can be desred value or range of values for ft{x) - ASSY_1.
accountad for by the regression model.
A statitically sgnificant relationship does not imply that X
causes Y.




Figure D.9 - ft(z)-ASSY vs. ft(z) adju stdev Regression, 10,000 Samples (-4 to 4)

Regression for ft(x) - ASSY_1 vs fT(z2) - adju stdev_1
Summary Report

1s thare & relitionship between Y and X?
0 005 01 >05

The p-value cannot be calculsted.

%% of variation accounted for by model
0% 100%

R-sq (adf) = 100.00%
100.00% of the varistion in ftfx) - ASSY_1 can be
ted for by the reg madel

Fited Line Pt for Cubic Model
Y = 0.000000 + 1.414 X - 0.000000 X**2 + 0.000000 X**3
0.45
0.30
0.00
0.0 0.1 0.2 03
17(2) - aju stdov_1
Comments
The fited equation for the cubic model that descrbes the
relationship between Y and X is:

Y = 0.000000 + 1.414 X - 0.000000 X**2 + 0.000000
X**3
1f the model fits the data well, this equation can be used
to predict ft(x) - ASSY_1 for a value of fT(z) - adju
stdev_1, or find the settings for fT(z) - adju stdev_1 that
correspond to a desired valie or range of valses for ft(x) -
ASSY_1,

A statisticaly significant relationship does not mply that X
causes Y.
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APPENDIX E: CATEGORIZATION INFORMATION

This appendix provides grouping information related to the comparative review
and literature review conducted as part of this research. Categorizations generally
focused on the primary method identified by the research in each field of categorization.
The analysis results for the comparative reviews performed are identified in Appendices
F and G. It is not the intent of this dissertation to define the general concepts presented in
this appendix. Refer to relevant references for insight into that level of evaluation which
is outside the scope of this dissertation. In order to reduce the degree of analysis
subjectivity, the following serves to contextualize the groupings performed in this

research:

Search Heuristics: Search Heuristic generally included beam search, pseudo random

search, and tab search heuristics. Refer to Michalewicz and Fogel (1998) for additional

heuristic summary information outside the scope of this work.

Heuristic Procedure: Heuristic procedures were generally grouped to include explicitly

identified heuristic procedure, knowledge based procedure, Taguchi procedures, and
other step by step instructions that are generally representative of a heuristic as defined

above.

Algorithm: Algorithm groupings generally included the references to assignment
algorithms, greedy algorithms, genetic algorithms, network based algorithms, and other
general reference to mathematical steps and formulations. Refer to Michalewicz and

Fogel (1998) for algorithm information which is outside the scope of this work.
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Optimization: The grouping and identification of optimization techniques was identified

if any of the following optimization methods were identified:

Any Colony Optimization

Perturbation Techniques

Keifer-Wolfwitz Optimization Procedure

Operations Research

Highly Optimized Tolerance (HOT)

Utility Maximization through Criteria Weighting

Optimization Model
Simplex Method (or variant)
Pattern Enumeration

Mixed Integer Programming
Attribute Level Driven
Linear

Policy Space Procedure
Mathematical formulation
Analytical Target Cascading
Simulated Annealing
Heuristic Based

Weighting

Function
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Benchmarking Methods:

An Example, Case Study, Design Specification, and Case Study Compared to design
specification: This benchmarking method was identified if the literature generally or
specifically involved examples, case studies, or design specifications as part of the
literature evaluations.

Heuristics or Other Methods: This grouping was identified if heuristic performance
or computational experiment comparisons were identified by the literature.

Historical or Collected Data Comparisons

Simulation Data or Study: Results of examples compared with simulation study or
other simulation/study comparison

Mathematical Formulation: Identified if the primary benchmarking method observed
dealt with mathematical formulations and related comparisons.

Inconclusive or Not Performed: No experimental comparisons were performed.

Data Source/Simulation:

Historical: Historical data was generally grouped or identified as data that was used
for analysis based on previously collected or possibly even analyzed data. Historical
data was pre-existing data. In some cases historical data was used to compére an
existing state with a proposed future or improved condition.

Data Generated: Any reference to data that was simulated, generated, randomly
created or proposed as part of a scholarly work. Example of data generation could

include such data as Monte Carlo Simulation or random number generation.
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Empirical data: Empirical data was generally identified as data which may have
involved real time results or other industry related data.

Sampled Data: Sample data groups consisted of those groups pulled from identified
sample data from a given process.

Example Data: Example data was grouped as that data which was used for
demonstration purposes. This field differs from data generation or historical data.

Inconclusive — Identified when the data source was not easily or readily identifiable.

Test Methods: Test methods were generally grouped into one of the following

categories:

Efficiency Improvement: Methods in which tests were performed to show an
improvement in efficiency over a given value, process, heuristic, or other measured
result.

Demonstration of “Good” Solution: This grouping included results which focused
not on optimization but on obtaining reasonably accurate or balanced solutions.
Comparative Analysis: Direct or interpreted tests by comparison

Simulation: A test method in which data may have been generated or developed as a
means to produce a data set or solve a solution.

Correlations: Statistical analysis such a Pearson’s Correlation Coefficient or other
general method of comparing the relationships of one variable to another.
Experiment: Test methods done by physical or theoretical method.

Error Ratio: Regression or other analysis in which error ratios were evaluated
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e Mathematical Model: A test method involving the evaluation or utilization of a
mathematical or analytical model.

e Commentary: Qualitative testing focused on interpretation and judgment

“Meaningful results” are defined as: either a statistically significant relationship, positive
correlation/relationship, or any other observed, calculated, or identified parameter which

provides data or indications not previously understood by the body of knowledge.
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APPENDIX F: LITERATURE REVIEW VARIABLES

This appendix provides variables utilized in the gap analysis of the subject dissertation.
Refer to Chapter 2 for the literature review variables reviewed (e.g., truncation, Selective
assembly, etc.). It should be noted that not all references were utilized in this review. An
“X” denotes that the literature identified an explicit or implied identification of the
literature review variable. Additionally, general calculation references, definitions,
duplicative or other references were excluded from this review. All review variables

analyzed are included in Table F.1. Refer to Chapter 2 for additional information.
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Table F. 1 ~ Literature Review Table
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APPENDIX G: CATEGORIZATION AND COMPARATIVE ANALYSIS

This appendix provides a categorization and comparative analysis of the literature
review variables for a sample set of data for the subject dissertation. It should be noted
that not all references were utilized in this review. For example, general calculation
references, definitions, duplicative or other references were excluded from this review.
All review variables analyzed are included in Table G.7. Refer to Chapter 2 and

Appendix E for additional information.
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Table G.1 - Comparative Review Results Heuristic Type/Benchmark Method
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Table G.3 - Comparative Review Results Sel. Assy, Heuristic Type, Data Source
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Table G.4 - Comparative Review Results Test Method

197

Testing Truncation Assy No Truncation Grand
(Primary Method) / Truncation Assy /Truncation Total
Commentary 0% 2% 2%
Comparative Analysis 5% 22% 27%
Correlations 0% 1% 1%
Demonstration of "Good” Solution 1% 11% 12%
Efficiency improvement 1% 11% 12%
Empirical 3% 1% 4%
Error Ratio 1% 1% 2%
Experiment 0% 3% 3%
Inconclusive or Not Applicable 2% 6% 8%
Mathematical Model or

Computational Result 9% 16% 25%
Simulation 1% 5% 6%
Grand Total 22% 78% 127

Table G.5 - Comparative Review Truncation and Data Source w/Heuristic

Truncation Heuristic

& Heuristic Type Not Grand
Data Source | Identified Identified Total
Data
Generated 5% 20% 24%
Empirical
Data 1% 8% 9%
Example
Data 7% 27% 34%
Historical 0% 8% 8%
Inconclusive
or Not
Applicable 9% 13% 23%
Sampled
Data 0% 2% 2%
Grand Total 22% 78% 127
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Table G.6 — Comparative Review Optimization Techniques

Optimization

Technique Total
Analytical Target Cascading 1%
Analytical Target Setting 1%
Attribute Level Driven 1%
Function 1%
Heuristic Based 11%
Highly Optimized Tolerance

(HOT) 1%
Inconclusive 2%
Keifer-Wolfowitz Optimization
Procedure 1%
Linear 1%
Markovian queuing network

model 1%
Mathematical Formulation 4%
Mixed Integer Programming 1%
Not Applicable 43%
Optimization Model 1%
Optimization Model 23%
Partitioned Decision Making

Model 1%
Pattern Enumeration 2%

Semi-Markovian model
generating such an optimal

(deterministic) routing scheme 1%
Simplex Method (or variant) 1%
Simulated Annealing

Optimization [%
Stochastic Model 1%
Target Setting 1%
Utility Maximization through

Criteria Weighting 1%
Value iteration and policy

improvement methods 1%
Weighting 1%
(blank) 1%

Grand Total 127
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able G.7 - Categorization Table from Comparative Review
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APPENDIX H: RESEARCH HYPOTHESIS H; TESTING RESULTS

This appendix documents the results of research hypothesis H3 testing. Given
that the CF inversion methods presented in this dissertation were developed using a
single doubly truncated standard normal distribution as a baseline, by logical inference
and inspections the results are identical. However, Tables H.1 and H.2 presented below
further reinforce this logical inference through correlation and regression analysis under
the varying USL and LSL’s presented (i.e., Ct = 0.39894228, Fx(b) = 0.9997, Fx(a) =
3.16712 E-05, n = 81). A Pearson’s correlation of 1 suggests a statistically significant
strong positive correlation. Regression analysis between the two distributions across
varying x-values identifies an adjusted R-square value of 100% at a p-value of <.001.
The corresponding fitted line plot equation confirms that the values are identical. Table

H.3 contains a summary of the hypothesis test table.

Table H.1 - H3 Hypothesis Pearson Correlation of fT(z) and ft(z) - CF

TSND RANGE Pearson correlation of fT(z) and ft(z) - CF
USL=4,LSL=-4 1
USL =3,LSL =-3 1
USL=2LSL=-2 1
USL=1,LSL = -1 1

Table H.2 - H3 Hypothesis Regression Results of fT(z) and ft(z) - CF

R-s
TSND RANGE (adj(; P-Value Fitted Line Plot Equation for Cubic Model
USL=4,LSL=-4 100% | p<0.001 Y = 0.000000 + 1.000 X - 0.000000 X**2
USL=3,LSL=-3 100% | p<0.001 Y = 0.000000 + 1.000 X
USL=2,LSL=-2 100% | p <0.001 Y = 0.000000 + 1.000 X
USL=1,LSL =-1 100% | p<0.00] Y = 0.000000 + 1.000 X




Table H.3 - H3 Hypothesis Test Summary Table

X pdf fT(z) o(w/u&a) ft(z) - CF
-4 0.00013383 | 0.00013384 | 0.00033548 | 0.00013384
-3.9 | 0.000198655 | 0.00019867 { 0.00049799 | 0.00019867
-3.8 | 0.000291947 | 0.00029197 | 0.00073185 | 0.00029197
-3.7 0.00042478 | 0.00042481 | 0.00106483 | 0.00042481
-3.6 | 0.000611902 { 0.00061194 | 0.00153391 | 0.00061194
-3.5| 0.000872683 | 0.00087274 | 0.00218763 | 0.00087274
-3.4 1 0.001232219 0.0012323 | 0.00308891 0.0012323
-3.3 | 0.001722569 | 0.00172268 | 0.00431811 | 0.00172268
-3.2 | 0.002384088 | 0.00238424 0.0059764 | 0.00238424
-3.1 | 0.003266819 | 0.00326703 | 0.00818922 | 0.00326703
-3 | 0004431848 | 0.00443213 0.0111097 | 0.00443213
-2.9 | 0.005952532 | 0.00595291 | 0.01492173 | 0.00595291
-2.8 | 0.007915452 | 0.00791595 { 0.01984235 | 0.00791595
-2.7 | 0.010420935 | 0.01042159 | 0.02612306 | 0.01042159
-2.6 | 0.013582969 | 0.01358383 | 0.03404961 | 0.01358383
-2.5 0.0175283 | 0.01752941 | 0.04393972 { 0.01752941
-24 0.02239453 | 0.02239595 | 0.05613832 | 0.02239595
-2.3 | 0.028327038 | 0.02832883 | 0.07100985 { 0.02832883
2.2 | 0.035474593 | 0.03547684 | 0.08892725 | 0.03547684
-2.1 | 0.043983596 | 0.04398638 | 0.11025751 | 0.04398638
-2 | 0.053990967 | 0.05399439 | 0.13534386 | 0.05399439
-1.9 | 0.065615815 | 0.06561997 | 0.16448488 | 0.06561997
-1.8 | 0.078950158 | 0.07895516 | 0.19791124 | 0.07895516
-1.7 1 0.094049077 | 0.09405504 | 0.23576101 | 0.09405504
-1.6 | 0.110920835 | 0.11092786 | 0.27805491 | 0.11092786
-1.5 1 0.129517596 0.1295258 | 0.32467303 0.1295258
-1.4 | 0.149727466 | 0.14973695 | 0.37533487 | 0.14973695
-1.3 | 0.171368592 | 0.17137945 | 0.42958457 | 0.17137945
-1.2 | 0.194186055 | 0.19419836 | 0.48678309 | 0.19419836
1.1 ] 0217852177 | 0.21786598 | 0.54610902 | 0.21786598
-1 1 0.241970725 | 0.24198605 | 0.60656908 | 0.24198605
-0.9 0.26608525 | 0.26610211 | 0.66701906 | 0.26610211
-0.8 | 0.289691553 0.2897099 | 0.72619504 0.2897099
-0.7 { 0312253933 | 0.31227371 | 0.78275412 | 0.31227371
-0.6 | 0.333224603 | 0.33324571 | 0.83532312 | 0.33324571
-0.5 | 0.352065327 | 0.35208763 | 0.88255281 | 0.35208763
-0.4 0.36827014 | 0.36829347 | 0.92317482 | 0.36829347
-0.3 ] 0.381387815 | 0.38141198 | 0.95605804 | 0.38141198
-0.2 1 0391042694 | 0.39106747 | 0.98026077 | 0.39106747
-0.1 | 0.396952547 | 0.39697769 | 0.99507551 | 0.39697769
0 0.39894228 | 0.39896755 1.00006335 | 0.39896755
0.1 | 0.396952547 | 0.39697769 | 0.99507551 | 0.39697769
0.2 | 0.391042694 | 0.39106747 | 0.98026077 | 0.39106747
0.3 | 0.381387815 | 0.38141198 | 0.95605804 { 0.38141198
04 0.36827014 | 0.36829347 | 0.92317482 | 0.36829347
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X pdf fT(z) o(w/p&o) ft(z) - CF
0.5 | 0.352065327 | 0.35208763 | 0.88255281 | 0.35208763
0.6 | 0333224603 | 0.33324571 | 0.83532312 | 0.33324571
0.7 1 0312253933 | 0.31227371 | 0.78275412 | 0.31227371
0.8 ] 0.289691553 0.2897099 | 0.72619504 0.2897099
0.9 0.26608525 | 0.26610211 | 0.66701906 | 0.26610211
11 0241970725 | 0.24198605 | 0.60656908 | 0.24198605
1.1 1 0.217852177 | 0.21786598 | 0.54610902 | 0.21786598
1.2 ] 0.194186055 | 0.19419836 | 0.48678309 | 0.19419836
1.3 0.171368592 | 0.17137945 | 0.42958457 | 0.17137945
1.4 ] 0.149727466 | 0.14973695 | 0.37533487 | 0.14973695
1.5 1 0.129517596 0.1295258 | 0.32467303 0.1295258
1.6 | 0.110920835 | 0.11092786 | 0.27805491 | 0.11092786
1.7 | 0.094049077 | 0.09405504 | 0.23576101 | 0.09405504
1.8 1 0.078950158 | 0.07895516 | 0.19791124 | 0.07895516
1.9 | 0.065615815 | 0.06561997 | 0.16448488 | 0.06561997
2| 0.053990967 | 0.05399439 | 0.13534386 | 0.05399439
2.1 1 0.043983596 | 0.04398638 | 0.11025751 | 0.04398638
2.2 | 0.035474593 | 0.03547684 | 0.08892725 | 0.03547684
2.3 | 0.028327038 | 0.02832883 | 0.07100985 | 0.02832883
2.4 0.02239453 | 0.02239595 | 0.05613832 | 0.02239595
2.5 0.0175283 | 0.01752941 | 0.04393972 | 0.01752941
2.6 1 0.013582969 | 0.01358383 | 0.03404961 | 0.01358383
271 0.010420935 | 0.01042159 | 0.02612306 | 0.01042159
2.8 | 0.007915452 | 0.00791595 | 0.01984235 | 0.00791595
2.9 | 0.005952532 | 0.00595291 | 0.01492173 | 0.00595291
3] 0.004431848 | 0.00443213 0.0111097 | 0.00443213
3.1 0.003266819 | 0.00326703 | 0.00818922 | 0.00326703
3.2 0.002384088 | 0.00238424 0.0059764 | 0.00238424
3.3 0.001722569 | 0.00172268 | 0.00431811 | 0.00172268
34| 0.001232219 0.0012323 | 0.00308891 0.0012323
3.5 | 0.000872683 | 0.00087274 | 0.00218763 | 0.00087274
3.6 | 0.000611902 | 0.00061194 | 0.00153391 | 0.00061194
3.7 0.00042478 | 0.00042481 | 0.00106483 | 0.00042481
3.8 | 0.000291947 | 0.00029197 | 0.00073185 | 0.00029197
3.9 0.000198655 | 0.00019867 | 0.00049799 [ 0.00019867
4 0.00013383 | 0.00013384 | 0.00033548 | 0.00013384

221



Figure H.1 - TSND Range (-4 to 4)

Scatterplot of 17(2), ft{z) - CF vs X
i Variable
0.4 —— fT(2)
—&— f{2)-CF
0.3
]
B o0.2-
1
>
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X
Figure H.2 - TSND Regression (-4 to 4)
Regression for fT(z) vs ft(2) - CF
Summary Report
¥: 11(z)
X: (2}~ CP
FRted Line Pt for Quasivaiic Model
¥ = 0.000000 + 1.000 X - 0.000000 X**2
045
Is there a relationship betwasn Y and X? ]
0 005 01 >0.5 P g
Y ' No _ 030 ,."' rs
P = 0,000 g .
The relation ship betwaen fT(z) and &(z) - CF & & 015 e
statigticaly signiicant (p < 0.05). - Lot
¢ g
0,004 / . ;
0.0 0.1 02 03 04
f(z)-CF
Comments
The fkted equation for the quadratc model that describes
the reltionship between Y and X is:
100% ¥ = 0.000000 + 1.000 X - 0.000000 X**2
¥ the model fis the data wel, ths equation can be used
to predict fT(z) for a vakie of ft(z) - CF, or find the settings
R-sq (adf) = 100.00% for f2(2) - CF that comespond to a desied vakie or range
100.00% of the varistion I fT(2) can be accounted for of values for fT(z).
by the regression modd
A statsticaly signficant refationship does not mply that X
causesY.
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Figure H.3 - TSND Range (-3to 3)

Scatterplot of fT(z2)_1, {z)~-CF_1vs X_1

The postive correlation (r = 1.00) indicates that when
R{z) - CF_1 increases, T(z)_1 ako tands to increase.
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Figure H.4 - TSND Regression (-3 to 3)
Regression for fT(z)_1 vs fit(z) - CF_1
Summary Report
Y: fi(z)_1
X: f(z) -CF 1
Fited Line Pt for Linear Model
15 thare » relationship betwean Y and X? Y= 0.000000 + 1,000 X
005 Ot 045
¥ -
. o ’/‘
P = 0.000 030 «”
‘The relstionship between fT(z)_1 and R(z)-CF_1 & - o *
statstically sgnficant (p < 0.05). & _
(3 -
0.15 g
- -
' 4
% of varistion accountad for by model 000 /" i i ]
¥e e 100% 0.0 01 02 03 04
f(z)- CF.3
R-sq (sdj) = 100.00%
100.00% of the varistion in 1Y(2)_1 can be sccourted Commants
for by the regression model. The fited equation for the inear model that describes the
relationship between Y and X s
-1 Y= 0.000000 + 1.000 X
¥ the model fis the data wel, this equation can be used
Correlation betwaen Y and X to predict f7(2)_1 for a vakue of ft(z) - CF_1, or find the
Negative No correlation Poskive settings for fi(z) - CF_1 that corespond to a desred value
4 0 1 or range of vales for fT(z)_1.
[ . | A statstcaly sgnfcant rebtionshi does ot mpl that X
1.00 causes Y,
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Figure H.5 - TSND Range (-2 to 2)

Scatterplot of fT(z)_2, ft(z) -CF_2 vs X_2
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Figure H.6 - TSND Regression (-2 to 2)

Regression for fT(z)_2 vs fit(z) - CF_2

Summaty Report
Y 12y 2
X f(z) -CF.2
Fitted Line Plot for Linesr Model
1s there a relstionship betwaen Y and X? Y = 0.000000 + 1.000 X
0 00S 0.1 <<<<<< ‘ ) >9.s 04 4."
P = 0.000 03 .
The reationship between fT(2)_2 and f(z) - CF_2 & ~ o«
statisticaly sgnficant (p < 0.05). O .
[ 02 . .
N 2
=
. 0.1 o®
% of varistion sccountad for by model g
100% o1 02 03 04
fR(z)-CF.2
R-2q (adf) = 100.00% Comments

100.00% of the varistion n fT(2)_2 can be accounted
for by the regression moddl. The fited equation for the inear model that describes the

relationship between Y and X &:

Y = 0.00000C + 1.000 X

¥ the model fits the data wel, this equation can be used

Cormelstion bebwaen ¥ and X to predict T(z)_2 for a value of ft(z) - CF_2, or find the

Negative No correlstion settings for f(z) - CF_2 that correspond to a desired vaie

The postive corralstion {r = 1.00) indicates that whan
R(z) - CF_.2 ncreases, T(2)._2 ako tends to increase.

or range of vakes for fT{z)_2.

A statistically significant relationship does not imply that X
causes Y,
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Figure H.7 - TSND Range (-1 to 1)

Scatterplot of T(z)_3,f(z) -CF_3vs X_3
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Figure H.8 - TSND Regression (-1to 1) 1
‘Regression for fT(z)_3 vs ft(z) - CF_3
Summary Report
Y: a3
X R{z)-CF_3
Fitad Line Plot for Linear Model
1s there a relstionship betwaen Y and X? Y = 0.000000 + 1.000 X
0 00S 01 >08 0.40 .®
\{ No g
P = 0.000 0.35 .
The relationship between fT(z)_3 and f(z) - CF_3 & g .
statisticaly signitcant (p < 0.05). .
E 03¢ -
»
. pe
% of variation accounted for by model 0251 -
100% 025 0.30 03s 040
fr(z)-Cr 3
Resq (adf) = 100.00%
100.00% of the variation in fT(z)_3 can be accounted Comments
for by the regression model The fited equation for the Inear model that descrbes the
relationship between Y and X &:
Y = 0.000000 + 1.000 X
- ¥ the model fits the data wel, this equation can be used
Comabtion betwesn ¥ and X to predict fT(z)_3 for a valie of ft(z) - CF_3, or find the
Negutive No correlation Postive settings for ft(z) - CF_3 that comespond to a desired value
Y [} 1 or range of values for fT(z) 3.
. ,,fi'jfﬁfﬁ— A statiticaly sgniicant rebationship does not mpy that X
‘ 100 causes Y.
The poskive correlstion (r = 1.00) indicates that when
R(2) - CF_3 incresses, 7(2)._3 ko tends to incremse.
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APPENDIX I: HEURISTIC - TSND BASELINE USING CF INVERSION
This appendix documents the heuristic procedure developed for the baseline
inversion of a characteristic function to a truncated standard normal distribution. The
general equations are presented in Appendix A. A high-level graphical summary of this

heuristic is found in Figure 8. The details for this heuristic are as follows:

Begin Heuristic:

Step 1: Initiate the General Parameters for the Truncated Standard Normal Distribution
1. Define Parameters ¢ = 1, u = 0, USL, LSL, x, n
Il. Define x as a variable between the USL and LSL
a. For a doubly truncated normal distribution (with CF inversion) per
Appendix A, Equations 1-5.
b. For a probability density function (PDF) refer to Appendix A,
Equation (6).
c. Calculate Z using Appendix A, Equation (4).

Step 2: Calculate the probability density function (PDF) — (for information)

I. Using Appendix A, Equation (6) from Billingsley (1995), adapted to notation

herein:
(=g
207

1
f(X;ﬂsa) = \/EEO'e

Step 3: Calculate the Truncated Standard Normal Distribution
1. Using the defined parameters from step 1 and Appendix A, Equations (1), (2),
(3), (4) and (5) from Khasawneh et al. (2005), calculate f(z) as follows:

Z
fr()= I——f(—zl—dz 2 <z=22z (APPENDIX A, EQUATION 1)
2y
“ [ fodz
2L
s
Where f(z)= e( 2 ) (APPENDIX A, EQUATION 2)

and
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Zle 2
1 |5

f (2)dz= j 6’( 2 )dz (APPENDIX A, EQUATION 3)

z, N2
Given that:

x—H

a z= (APPENDIX A, EQUATION 4)

(o2

ZU,

b. u ()= j r (Ddz (APPENDIX A, EQUATION 5)

-
2y

This establishes the baseline for the CF inversion. Khasawneh et al. (2005)
provides further insight into the calculation of a truncated standard normal
distribution using Appendix A, Equations (1) through (5).
Il. Calculate F\(b) and F (a) using Appendix A, Equation (6).
a. For F(b) the value of X = USL
b. For Fi(a) the value of X = LSL

Step 4: Calculate the CF ¢ for the given distribution (Appendix A, Equations 2 and 11)
(x-p} A

N ot
5 ur—
e * hasa oty =e ? then

. e e 1

1. Since a normal distribution =
N2mo
iuz’—g—:,;

o= f )" du = e

(Note: for a continuous distribution b = +o and a = -x)

II. Therefore for a truncated standard normal distribution (use Appendix A,
Equations 12 and 13)

X X

IR U DA SRR O BT
plr)= FO-F (a)_Ifx( Je“*d F(b)-F (a)( J F.(b)-F.(a)

ut- 3
e 2

l h —itx _ ____1__ —irx
1. ﬁ(x)-——?j;:[oe plr)dr = f,(t)_zﬂ_jme e |dt

F,(b)- F,(a)
a. Using Appendix A, Equations 11 and 15

Step 5: Calculate the truncated standard normal distribution by inversion of the
characteristic function using the inversion factor.
L. Set the results of Step 3.1 (for a given parameter set) equal to step 4.111. The
difference equates to the equation and inversion factor (Crc) in Step 5.11.
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1 e ? 1
1. f(x)=—\C;. ) ——~——— |, where Crc = ——
AR by ey Cre= ox
a. Noted as Appendix A, Equation 16
b. Where Crc = is a constant for USL and LSL.
Step 6: Baseline the results against a known truncated standard normal distribution
1. Generate a given distribution for a range of x value for a given sample size. For
the purpose of this dissertation increments of 0.1 were used for a given TSND
(e.g. USL/LSL from 4 to -4)
1l. Perform mathematical formulation in addition to correlation and regression
analysis. An example is identified in Appendix H.
End Heuristic

Note - Refer to Appendix A for additional information on equations, applications, and
references.
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APPENDIX J: HEURISTIC - TSND ASSEMBLY USING CF INVERSION
This appendix documents the heuristic procedure developed from the baseline
inversion heuristic developed in Appendix B. The general equations utilized by this
heuristic are presented in Appendix A. A high-level graphical summary of this heuristic

is found in Figure 10. The details for this heuristic are as follows:

Begin Heuristic:

Step 1: Define the general parameters for the Truncated Standard Normal Distribution
L. Define parameters ¢ =1, u =0, USL, LSL, x, n
Il. Define x as a variable between the USL and LSL

d. For a doubly truncated normal distribution (with CF inversion) per
Appendix A, Equations 1-5.

e. For a probability density function (PDF) refer to Appendix A,
Equation (6).

f. Calculate Z using Appendix A, Equation (4).

Step 2: Calculate the probability density function (PDF) — (for information)

I. Using Appendix A, Equation (6) from Billingsley (1995), adapted to notation
herein:

[le=p2®
207

1
D fou,o)= «/—2;0'6

Step 3: Calculate the Truncated Standard Normal Distribution
I. Using the defined parameters from step 1 and Appendix A, Equations (1), (2),
(3), (4) and (5) from Khasawneh et al. (2005), calculate fi(z) as follows:

fr(@@)= I——'—f—(—z)———dz 215252 (APPENDIX A, EQUATION 1)
* ( _f f (z)dz]
Where f(z)= L e(-%*zz) (APPENDIX A, EQUATION 2)
2z '

and
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z, 1, >
C 1 (39)
f()dz = j e dz (APPENDIX A, EQUATION 3)
z, NEY
Given that:
X—HU
c. = (APPENDIX A, EQUATION 4)
(o2

d. My ()= J-zfrl (z)dz (APPENDIX A, EQUATION 5)
This establishes the baseline for the CF inversion. Khasawneh et al. (2005)
provides further insight into the calculation of a truncated standard normal
distribution using Appendix A, Equations (1) through (5).

Il. Calculate F(b) and F,(a) using Appendix A, Equation (6).
e. For F(b) the value of X = USL
[ For Fy(a) the value of X = LSL

Step 4: Calculate the CF ¢ for the given distribution (using Appendix A, Equations 2 and
11):

_-p} o'

3 ut
e 27 hasa ¢(t) = e ? then

1. Since a normal distribution =

1
J2ro
iu T—a—,z

o= [ f(u)e"du = e

{Note: for a continuous distribution b = +o and a = -»)

1. Therefore for a truncated standard normal distribution (Appendix 12 and 13):

Plr) =t i Flw)e du = —— 1 )[e'”“d;r

“F.p)-F.()! F.(b)-F.(a

] " EB)-F.()

. o
wur—

. . 1 T —itx " — 1 T —itx
m. Given that f,(x)-ﬂ:[e ¢(r)dt, then = f,(t)——?j;__[e dt,

F.(b)-F,(a)

X

(Appendix A, Equations 11 and 12)
Step 5: Define the characteristic function for x as: The characteristic function of a
probability measure u is defined for real t by (repeat for two identical distributions):

A Q(t) =@, ([) = E[ei'x ]: jemﬂ(dX) {Appendix A, Equation 7)

-0

a. where [e"x ]: cos(t)+isin(z) (Appendix A, Equation 8)



231

b. where Px.y =P, ¢}. (Appendix A, Equation 10)

I1. Billingsley (1995) identifies that a Characteristic Function has 3 fundamental
properties as follows:
i. “Ifu;and pz have respective characteristic functions ¢(t) and

©2(t) then u;*us has characteristic function @;(t)*@(t).
Billingsley (1995) notes that “although convolution is essential
to the study of sums of independent random variables, it is a
complicated operation, and its often simpler to study the
products of the corresponding characteristic functions.

ii. The characteristic function uniquely determines the
distribution. This shows that in studying the products in (i), no
information is lost.

iii. From the pointwise convergence of characteristic functions
follows the weak convergence of the corresponding
distributions. This makes it possible, for example, to
investigate the asymptotic distributions of sums of independent
random variables by means of their characteristic functions.”

Step 6: Calculate the truncated standard normal distribution by inversion of the
characteristic function using the inversion factor.
1. Set the results of Step 3.1 (for a given parameter set) equal to step 4.111. The
difference equates to the equation and inversion factor (Crc) in Step 5.11.
o x”

1 e ? 1
8 z——C ey e sl h C = —F endix A, Equation
o f,(x) 27r( e Fx(b)-Fx(a) where Crc \/E (Appendix A, Equation 16)

a. Where Cyc = is a constant for USL and LSL

Step 7: Abadir, K., & Magdalinos., T. (2002) define the characteristic function for a
doubly truncated normal distribution as: “the variate where x is doubly truncated to ye
(a,b), where b>a, and its characteristic function is given by the integral (repeat for two
identical distributions :

1 o¢/(r)

1 f :
=——"F—| f.lu)e" du” (Appendix A, Equation 12)
o E@ e S
II. Then logically the sum of the characteristic functions for two doubly truncated
normal distributions is given Equation 10 and Step 7.11.a (Appendix A,
Equation 18)::

» el [F——_“ua)i ol ‘“’ei"rd“]( FoE@l ‘”’”"“J

X X a

Step 8: Using an inversion formula the sum of two doubly truncated normal distributions
can be used to determine the resulting probability density function for the combined
distribution. Given the following:
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. 1 I —itx
I. Since f(x) = —i-— je ! ¢’(t)dt (Appendix A, Equation 14)
/4

II. and Appendix A, Equation 10.

a9
o1 . [+
iur—-

ur—

dt

Step 9: Solve for f,(x)

X
dl
(Appendix A, Equation 19)

1

L f! ('x) assy =

(Appendix A, Equation 20)

o . 0.2'2 dltl
: ut—— —
i. Where Ie""" |:e 2 }dt =e ?

— Te-—ilx 4 e
il X3 F.(b)-F.(a)| | F.(b)-F

(a)

1 = (e
5}((& (6)-F.(a)),, *(F.(b)~ F.(a)),, jj: [{e

1
IL. fr(x)assyz'z—ﬂ__(CTr) (

(Appendix A, Equation 22)

d2

(Appendix A, Equation 21)

1
, where Cyc —
N2

Step 10: Baseline the results against a known truncated standard normal distribution

(final state)

1. Generate a given distribution for a range of X value for a given sample size. For
the purpose of this dissertation increments of 0.2 were used for a given TSND
(e.g. USL/LSL from 8 to -8. Two identical distributions with an USL (4) and LSL

(-4) were assembled. See Figure 9.

II. Perform mathematical formulation in addition to correlation and regression
analysis. Assembly results are identified in Appendix D, E, and H.

End Heuristic

Note - Refer to Appendix A for additional information on Equations, Applications and

References.
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