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ABSTRACT 
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Commercial transport aircraft of today vary greatly from early aircraft with regards to how 

the aircraft are controlled and the feedback provided from the machine to the human operator.  

Over time, as avionics systems became more automated, pilots had less direct control over their 

aircraft.  Much research exists in the literature about automation issues, and several major accidents 

over the last twenty years spurred interest about how to maintain the benefits of automation while 

improving the overall human-machine interaction as the pilot is considered the last line of defense.    

An important reason for maintaining or even improving overall pilot situation awareness 

is that the resulting improved situation awareness can assist the human pilot in rapidly solving 

unanticipated, novel problems for which no computer logic has been written.  It is essential for the 

pilots to obtain cues to make appropriate decisions under time pressure. However, to date, no 

studies have directly examined the approach of reinforcing the relevant flight and automation 

status cues during flight to increase the pilot’s situation awareness when a failure unexpectedly 

occurs. 

Attitudes toward, and issues with automated systems from the pilots’ perspectives were 

studied using a survey completed by commercial air transport pilots. The survey results were used 

as the framework for designing a simulation analysis, using a small group of commercial airline 
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pilots, to assess the benefits of a reinforced cue detection model.  A phenomenological assessment 

of open ended questions asked at the conclusion of each simulation showed, subject to the limits 

of the relatively small sample size, that the “Reinforced Cue Detection Model” implemented in the 

form of asking the pilots situational awareness questions during the flight, can help to reduce 

pilot’s complacency, increase situation awareness, and make automation a better team member.  

Pilots also found reinforced cues to be helpful in the event of unexpected system failure.  The 

current research supports literature regarding pilots’ opinions towards automated systems and 

indicates that there are benefits to be gained from improving the pilot automation integration.  The 

Reinforced Cue Detection Model, albeit tested on a small sample size, supported improvement of 

the pilots’ situation awareness. 
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CHAPTER I 

INTRODUCTION 

 

 Pilots in early aviation continuously controlled the flight path of their aircraft by moving 

the yoke, rudder pedals, and throttles.  This placed significant physical demands on pilots, but they 

benefitted from constant feedback through the controls exerting forces on their hands and feet.  As 

aircraft designs and engine technology improved, pilots flew new planes with greater range and 

service ceilings.  This increased flight times and the need for mechanical assistance to the pilot in 

order to maintain the desired flight path.  Early automated systems helped to maintain a given 

heading and altitude, which not only reduced pilot fatigue but also reduced feedback from machine 

to human (Popular Science, 1930).  The First and Second World Wars spurred rapid advances in 

airplane technology, and this included advances in autopilot and navigation systems (Clarke, 2004; 

Trueman, 2019).  These allowed airplanes to fly more precisely when flying to targets.  Ground 

based navigation aids using radio beacons were developed as well as the Inertial Navigation 

System (INS), and these were later tied to autopilot systems (Cutler, 2017).  Aircraft automation 

improved operational precision and efficiency with each new generation.   

The unrecognized trade off, however, was loss of aircraft state feedback to pilots as more 

of the flight path management duties were handled by the autopilot.  Inevitably, pilots had less 

direct control over their aircraft.  Edwards (1977) warned of potential problems with automated 

cockpits.  He stated that modern cockpit technology requires pilots to use their psychomotor skills 

rarely, and they are mostly processing information and controlling automated systems with buttons 

and switches.  Edwards stated that the development of cockpit automation was centered on 

engineering and economic study, rather than a systematic doctrine considering the role of humans 
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in automated systems. His concerns have only been amplified over time.  Exponential growth in 

computer technology in the 1960s and 1970s laid the groundwork for computerization of cockpits.  

By the late 1980s and early 1990s, very advanced flight management computers (FMC) were 

commonplace in commercial transport aircraft.  Current generation commercial aircraft transports 

have 80% of their functionality enabled by software whereas aircraft from the 1960s had 10% 

(Marburger & Kvamme, 2007).  These systems included the Flight Management System (FMS), 

navigation database, and position-determining sensors, such as INS, GPS, VOR, DME, and auto 

throttle controls.  These were often developed in an ad hoc fashion without consideration of how 

sub-components interact and with little consideration for the principles of systems engineering 

(Chialastri, 2012).  Degani and Wiener (1997) studied the airline cockpit as a complex human-

machine system and discussed the impact of operational management of the organization on it. 

Airline organizations have developed detailed, voluminous procedures that pilots follow in order 

to carry out tasks based on operational management’s expectations.  The intent of these procedures 

has been to set forth a standardized means of achieving common flight tasks in a logical and 

efficient manner.  Degani and Wiener’s study found that in spite of this organizational doctrine, 

flight procedures carried out on a daily basis varied greatly in some cases from the mandates of 

the organization.  They found fault in the way the procedures were developed but less so in pilots’ 

actions.  Standard operating procedures (SOP) have an important role in the cockpit.  Overreliance 

on SOP’s, however, can reduce the role of the human operator and thus reduce the benefit of one 

of the most valuable assets in the system; human judgment.  They implored systems designers to 

be aware of these issues. Degani and Wiener’s findings have become more relevant as the role of 

pilots has shifted more from that of direct controller to that of monitor of automated flight systems.   



 

 

3 

Accident and incident reports since early 1990s cite more problems with the human-

machine interaction in these advanced aircraft and terms such as “automation surprises” (Sarter, 

Woods, & Billings, 1997) joined the aviation vernacular.  Calls were made for changes to training 

protocols to better prepare pilots to use advanced automated systems.  Cockpit automation had 

been given more autonomy and authority but not designed in such a way to provide adequate and 

unambiguous feedback to the human operator about intended actions relative to aircraft state.  

More or different training has failed to fully compensate for accidents related to human-automation 

interaction deficiencies.  Accidents that cite pilot error do not always acknowledge that automated 

systems sometimes do not clearly relate their actions to the human crew.  Humans and machines 

will never be infallible, but improved designs of cockpit automation systems can better reinforce 

situation awareness in pilot-automation interactions. 

  

Theoretical and Applied Formulation 

Major Commercial Aircraft Manufacturers 

There are two primary manufacturers of commercial transport aircraft today.  

Consolidation in the US market over the last 20 years left Boeing as the primary manufacturer of 

commercial aircraft in North America.  In Europe, the birth of Airbus in the early 1970s brought a 

strong competitor to Boeing.  Automation related accidents and incidents have affected both 

manufacturers.  Though each company uses automation in their aircraft, their design philosophies 

vary to such an extent that an analysis of the human-machine interface in each company’s aircraft 

requires separate discussions in some cases.  In both current designs, automation can override or 

resist the pilot at the outer limits of the flight envelope.  Airbus has a marginally greater number 

of these override systems and they activate slightly sooner.  Boeing and Airbus systems will both 
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throttle back in an overspeed condition.  The Boeing yoke uses a stick shaker when a stall is 

imminent and will push forward automatically in the event of a stall.  The Airbus sidestick does 

not do this and when operating in normal law with no system failures, it will not let the pilot bring 

the plane into a stall condition.  It does provide auditory alarms in a stall event that may occur after 

system failures.  Airbus was an early adopter of fly-by-wire technology that removed the pilot 

from direct control of the aircraft and, also created a greater level of automation authority in the 

form of flight envelope protections.  This arrangement is designed to limit pilot input during 

manual control if programmed rules regarding maximum pitch and roll attitude are violated by the 

pilot’s actions.  Significantly, in the event of several systems failures, most fly-by-wire protections 

are lost after the system goes into a mode known as alternate law.  The hard control limits of the 

computer are removed, and this may create confusion if the pilot does not know alternate law has 

been activated.  The Airbus sidesticks do not move when the autopilot is in control and hence 

provide less feedback than the Boeing design.  They are also not slaved together and thus one pilot 

cannot know what inputs the other pilot is providing during manual flight.  The Boeing yokes 

always move when automation is flying the plane or if one pilot is providing manual control input. 

In the Airbus design, if one pilot pushes the sidestick forward and the other pilot pulls the sidestick 

backwards, the computer takes the average of the two inputs.  This scenario would be impossible 

in a Boeing plane as the yokes always move in tandem.  The Airbus design has hard limits on pilot 

inputs that exceed airframe G limits.  Generally, Boeing’s approach to design is more pilot-

centered.  Boeing computer G limits are less restrictive in that it will let a pilot “bend” the plane 

but not break it as might be required to avoid hitting a mountain in an emergency.  
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Regulatory Environment 

Regulators and operators of commercial aircraft have many specific requirements 

regarding the procedures and performance standards for the human operators of cockpit 

automation but much less so regarding the performance and design expectations of the automation 

itself.  A Federal Aviation Administration (FAA) report published in 1996 (FAA Report, 1996) 

cited problems with automation designs, saying they did not reflect a human centered approach.  

The report also stated that existing regulations and guidance from the FAA to the manufacturers 

did not provide criteria that encouraged or mandated companies to adapt a flight deck design 

process that focuses on human performance considerations.  Only workload considerations were 

formally addressed under the then current rules, and the FAA had no criteria or methods needed 

to conduct an evaluation of human performance issues associated with the design of automated 

cockpit systems.  In reality, regulatory officials evaluate flight deck design late in the development 

cycle, typically during the testing phase, and it was often too late to make desirable design changes 

recommended during the evaluation.  Pilot surveys published in 1995 and 1999 noted problems 

with governance relating to automated cockpits (Hutchins, Holder, & Hayward, 1999; Tenney, 

Rogers, & Pew, 1995).  Pilots of the Airbus A320 expressed surprise that their plane did not notify 

them or intervene automatically when their aircraft descended below 10,000 feet at a speed higher 

than 250 knots.  This might occur when the pilot selects airspeed higher than 250 knots and forgets 

to adjust this setting later.  FAA regulation §91.117 specifies this speed rule, but automation is not 

required to comply.  Indeed, the automated systems in commercial transport aircraft are not 

designed to conform to the official aviation rules of any particular country and thus fail to warn 

the pilot or intervene otherwise (Sarter & Woods, 1997).  FAA regulations regarding flight 

guidance systems were updated in 2006 and are covered in §25.1329.  Fourteen specific rules are 
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laid out in the regulation and include requirements such as the need to have an autopilot 

disengagement control on the control yoke or equivalent for each pilot.  Subsection (i) includes 

specific design requirements for automation as follows: 

“The flight guidance system functions, controls, indications, and alerts must be designed to 

minimize flight crew errors and confusion concerning the behavior and operation of the flight 

guidance system.  Means must be provided to indicate the current mode of operation, including 

any armed modes, transitions, and reversions.  Selector switch position is not an acceptable means 

of indication.  The controls and indications must be grouped and presented in a logical and 

consistent manner.  The indications must be visible to each pilot under all expected lighting 

conditions” (FAA Regulation §25.1329).  Line operation reports indicate this regulation does not 

adequately address the problems with human-machine collaboration in the cockpit (Geiselman, 

Johnson, & Buck, 2013).  

 

Regulations for Crew 

Crew Resource Management (CRM) was introduced decades ago in response to accident 

reports citing poor collaboration among pilot team members in the cockpit (Taylor, 2018).  On 

December 28, 1978, United Airlines Flight 173 crashed 6 miles short of the runway.  The crew 

had been circling the airport for one hour while they sorted out a landing gear anomaly.  The First 

Officer and Flight Engineer repeatedly warned the Captain that their fuel was running low, but he 

was preoccupied with the landing gear warnings and the plane ran out of fuel.  The National 

Transportation Safety Board (NTSB) assigned an aviation psychologist to the investigation, and 

his contribution to their report was the impetus for the creation of CRM (Aircraft Accident Report 

AAR-79-7, 1979).  In 1998, the Commercial Aviation Safety Team (CAST) was formed with 
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representatives from government organizations, industry leaders, and aerospace companies with 

two objectives: reduce the US commercial aviation fatal accident rate by 80 percent over a 10 year 

period ending in 2007 and work with airlines and international aviation organizations to reduce 

the global commercial aviation fatal accident rate.   

Parasuraman and Miller (2004) stated automation systems should effectively communicate 

its intentions and limitations to the humans monitoring them.  This is a basic tenet of CRM.  In 

2010, the FAA chartered the Performance-Based Operations Aviation Rulemaking Committee 

(PARC), which provides recommendations to the FAA to help globally harmonize and standardize 

technology in aviation.  PARC and CAST later jointly formed the Flight Deck Automation 

Working Group.  This group was charged with reviewing the operational use and training for flight 

path management systems in commercial transport aircraft.  They also analyzed accident and 

incident data and develop recommended guidelines for operational use, training, design, policy, 

and procedures relating to cockpit automation.  More recently, the aviation community has voiced 

their desire for cockpit automation to conform to the CRM principles pilots are expected to follow 

(Geiselman et al., 2013, Taylor; 2018). 

 

Research Purpose and Objectives 

This research aims to understand how pilots perceive and interact with current cockpit 

automation systems. Under the current CRM rules pilots must comply with many rules that 

automated systems do not need to follow.  The initial phase of this research was to understand how 

pilots view automated systems when they are working with them.  A survey was conducted in 

which questions included possible changes in the cockpit and how those changes could improve 

pilots’ interaction with automated systems.  The purpose of this was to identify commercial pilots’ 
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perceptions and expectations of current cockpit automation systems, and with this consideration, 

recommend guidance for the design of future cockpit automation systems.  To explain these 

phenomena, an experiment with a limited number of participants was included in this research to 

determine if some minor changes can make a difference in pilots’ situational awareness when they 

face failures during their flights.  The goal of this prototype experiment was to demonstrate that 

without a total redesign, it is possible to make small changes to increase the pilots’ vigilance and 

improve their situational awareness. 

 

Statement of the Problem 

Although the various shareholders view the issue through their own perspectives, there is 

a broad consensus among academics, regulators, designers, and operators of commercial transport 

aircraft that current cockpit automation systems are deficient in certain areas.  While hundreds of 

academic papers, journal articles, books, conference papers, study group briefings, FAA studies, 

NTSB accident reports and operator protocols have been published since the 1980s, a general 

pattern of concern can be seen throughout this large set of publications.  Their conclusions are 

supported by a vast amount of data gathered through various efforts to monitor flight safety.  Some 

of these include Line Operations Safety Audits (LOSA), the Aviation Safety Action Program 

(ASAP), the Flight Operational Quality Assurance (FOQA)/Flight Data Monitoring (FDM) 

program, and the U.S. National Aeronautics and Space Administration’s Aviation Safety 

Reporting System (ASRS).  The ASRS database contains over 900,000 voluntary narrative reports 

regarding aviation safety incidents reported by pilots, mechanics, Air Traffic Control (ATC) 

personnel, and cabin crew.  Several joint study ventures or working groups comprising most and 
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often all major stakeholders arrive at similar conclusions regarding problems with cockpit 

automation.  The core issues can be summarized as follows. 

• Humans are poor monitors of highly reliable automated systems (Parasuraman, Molloy, 

& Singh, 1993) 

• Pilot error is often the consequence of deeper issues with automation design (Dismukes, 

Berman, & Loukopoulos, 2007) 

• Automation tends to degrade the manual flying skills of pilots (Gillen, 2008) 

• The human is needed to maintain higher safety levels (Norman, 1990) 

• More or different training is the most common stakeholder reaction to acknowledged 

problems with cockpit automation (Casner, 2003; Pilot Training Compass, 2013; Jones, 

2011) 

• Autopilot mode awareness confusion is a common factor in automation related 

accidents (Sumwalt, Morrison, Watson, & Taube, 1997) 

• Future development of cockpit automation should take a human centered approach 

(Antonovich, 2008) 

• The current regulatory model governing cockpit automation/pilot interaction is 

outdated, ad hoc, fragmented, and may inhibit advances needed to improve safety 

(Harris, 2011)  

• Automation is not required to adhere to CRM rules (Taylor, 2018) 

Even in light of these issues, pilots are considered the last line of defense when it comes to 

safety in commercial aviation (FAA, Advisory Circular, 2004), but they are required to interact 

with opaque complex automated components and sub-components whose interactions and 

interdependences are difficult or impossible for humans to comprehend (Dekker, Cilliers & 
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Hofmeyr, 2011).  At the same time, automation has been designed with greater autonomy and 

authority, reducing the pilot’s understanding of the current and intended aircraft state and 

negatively impacting the pilot’s ability to intervene when automation fails and suddenly returns 

full control to the pilot.  Cockpit automation has not been burdened correspondingly with the 

responsibility or liability that comes with being in charge.  This has forced a reassessment of what 

is meant by pilot error. 

Current designs of pilot-automation interaction for ensuring efficient and safe operation of 

highly automated aircraft have some deficiencies.  Building an improved model of pilot-

automation interaction in commercial transport is essential.  It can be best realized through 

development of designs in which the automation better communicates its current and intended 

actions and alerts the pilot before it has reached its design limits or fails.  A better model would 

contribute to the elimination or reduction of “automation surprises” by providing effective 

feedback from automation to the human operators.  Additionally, it should not abruptly transfer 

full manual control to the pilot while providing little or no guidance to the pilot such as was seen 

and cited in the accident report for the Air France 447 crash in 2009 (BEA Final Report AF447, 

2012).  Current cockpit automation systems cannot operate without a human component.  

Automation designs are focused mostly on nominal conditions and may disengage when non-

nominal conditions manifest.  Several recent accidents indicate that when system failures occur, 

automation gives full authority to the pilots without providing aid regarding the last status of the 

aircraft.  Most phases of flight are in a high state of autonomous operation, and this reduces the 

pilot’s ability to intervene and take full control of the aircraft when needed.  A wholesale redesign 

of automated cockpits is not expected in the near future but an incremental improvement may be 

possible to address interaction issues in the short and mid term.  How can pilot-automation 
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interaction be redesigned to provide better feedback to the pilot to increase situation awareness 

and mitigate the risk of accidents in emergency situations is becoming a critical question.   

Pilots are the end users of these highly automated systems, and their input is usually not 

taken into consideration during the design phase.  The aircraft industry and regulators often take a 

reactive approach after an accident occurs as seen in the Air Inter crash in 1992 and more recently 

in the Lion Air 2018 (Official Report of Air Inter Crash, 1993, Ostrower, 2018).  Seeking pilots 

input regarding these systems and then making prototypes for validation is essential for the success 

of the industry as it works towards the greater automated environment known as NextGen and as 

air travel expands dramatically over the next twenty years.  Pilots are rarely forced to suddenly 

take full manual control of their transport aircraft, but, if the enviable record of aviation safety is 

to be further improved, pilots need automated systems that behave as a better partner than what is 

currently available. 

 

Purpose, Scope and Depth of the Research 

  This research intended to improve pilots’ situational awareness under time constrained 

critical failure situations.  Industry and pilots are already aware of them being out of the loop in 

normal flight conditions, especially on long haul flights, but there has not been much study done 

to reinforce or improve situation awareness.  With that goal in mind, this research aims to help 

pilots stay in the loop by improving their vigilance using a proposed Reinforced Cue Detection 

(RCD) model. 

  For the survey phase of the research, the QualtricsTM survey application allowed the survey 

to reach multinational regions via the internet, and made it possible to include a variety of pilots 

from different geographical regions.  Seventy-seven pilots were recruited from North and South 
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America, Europe, and West Asia.  Each held ATP licenses for various types of commercial 

transport aircraft from all the leading manufacturers.  The goal of this research was to understand 

the pilots’ perspectives of cockpit automation from a wide demographic range.   

 For the experimental phase of the research, a small-scale application of the Reinforced Cue 

Detection Model over naturalistic decision making was applied in a flight simulator to assess the 

effect of reinforcing cues on situation awareness.  Due to many limitations explained later in the 

paper, the experiment did not include a sufficient sample size to allow generalization of the results, 

but this effort indicated the initial results justify a larger scale research effort that will allow 

quantitative analysis. 

 

Significance of the Study 

 The survey included seventy-seven airline pilots who interact with automated systems in 

their daily work.  The respondents were from a wide geography including Europe, West Asia, and 

North and South America.  Findings of this research should be taken into the consideration for the 

future development of aircraft transport systems.  This survey also solicited pilots’ input regarding 

if any subtle changes can help improve their interaction in the human-automation collaborative 

systems such as applying CRM rules for the conduct of automated systems. 

This study introduces a new approach whereby the survey was conducted, and the results 

were used to design a small preliminary flight simulation experiment to test the proposition that 

asking reinforcing cue questions over the course of a flight regarding their flight status could 

enhance pilot vigilance and increase situation awareness.  Current cockpit automation designs 

make it difficult for pilots to intervene quickly when automation reaches its design limits or fails 

suddenly returning full aircraft control back to the pilot.  Several case studies of different accidents 
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show there is no transfer of last status from the automation before it disengages itself.  Pilots are 

the last line of the defense for safety (Li, 2014), but the operation of automation can be opaque, 

which leads to the paradigm of “pilots not in the loop.”  This research proposes a new Reinforced 

Cue Detection Model to increase situation awareness over current naturalistic decision-making 

models. 

 

Expected Research Contribution 

 Currently many engineering systems are designed by engineers with little input from the  

end users.  While aircraft makers often use niche test pilots with highly atypical backgrounds for 

feedback and validation, the airline industry is lowering the bar on entry level training programs.  

An air carrier announced a training cycle for new pilots that is recruiting trainees with no flight 

experience whatsoever (Rizzo, 2017).  A new generation of pilots is coming onboard that will have 

less manual flying experience than any generation of pilots that came before.  Cockpit automation 

is highly reliable, but during a catastrophic failure pilots face many different challenges. These 

challenges can be expected only to increase with the new NextGen air traffic control system, which 

will significantly reduce separation distance and allow for simultaneous landings on parallel 

runways (NextGen portfolio, 2017).  Line pilot opinions revealed in the survey portion of this 

research can guide further research projects toward improving the human-automation teaming and 

potentially justify small changes to current designs to improve pilot vigilance and reduce errors 

commonly cited in accident reports such as mode confusion. 

 In the survey, pilot input was obtained across five domains to better understand their 

perceptions of interacting with automation and if some changes might help reduce interface 

problems that have often been mentioned in the literature.  Also, a prototype flight simulator 
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experiment indicated some changes in the cockpit environment may be helpful by incorporating 

reinforcing cue questions to increase situation awareness.  Pilots being out of the loop is not a new 

phenomenon, but there are a few efforts taken to address this issue.  When failure occurs, the first 

response is to blame pilot error and require more training.  After an accident, the common reaction 

from industry and regulators is to focus on human errors.  An example for this situation was an 

accident that occurred under a cross wind landing in Poland (Report, A320-211, 1994). While the 

initial report focused on human error, after the Lufthansa pilot association conducted their 

investigation, it was revealed that Airbus design philosophy which limited the pilots’ ability to 

intervene manually by deploying spoilers and reverse thrust was a contributing factor (Beveren, 

1995). 

 While interviewing pilots who fly Boeing aircraft during the simulation experiments of this 

research, some pilots stated that recent Boeing models have a feature whereby if the pilot does not 

make any adjustments to the autopilot settings after a certain amount of time, the system will make 

a sound and the pilot only has to make some adjustment to the flight management system to satisfy 

the automation’s requirement to remain engaged. They said, these adjustments required no 

cognitive work and were viewed by them as Pavlovian.  This feature shows that Boeing is aware 

of the phenomenon of pilots being out of the loop, and they are taking some initiatives to address 

this issue.  However, Boeing’s approach requires little cognitive activity.   

 With this proposed model incorporating reinforcing cue questions, pilots’ naturalistic 

decision-making process may improve their situation awareness.  Thus, the proposed RCD model 

could lead to a larger scale research effort with benefits to the aircraft industry’s design of cockpit 

automation systems. 
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Expected Research Limitation 

This research is comprised of two components; a survey and a phenomenological approach 

(which explained in the methodology section) to evaluate flight simulator experiments.  The survey 

tool was written in English, and some survey respondents used English as a second language.  

Their response for some of the questions may have been impacted by this fact.  The survey was 

conducted following IRB regulations.  Although it was clearly defined to the pilots that their 

information was anonymous, some may have not answered questions relating to their company’s 

policies in a forthright manner.   

The simulator was a proof of concept experiment that indicates a larger study would be 

worthy of the greater resources required to carry it out.  The cost of paying pilot participants was 

the main constraint limiting the scope of the study.  Material limitations in the flight simulator 

research included, no first officer, no air traffic control, and lack of a companies’ dispatch system 

to provide guidance to test subject pilots.   

 

Research Overview 

The survey was designed to understand the pilots’ perceptions of cockpit automated 

systems in which they use on their routine flights.  As part of the consistency, only ATP license 

holding pilots were included.  The survey measured pilots’ perception about cockpit automation 

along five domains: 

• Reliance/Trust in Automated Systems 

• Monitoring Automated Systems 

• Governance and Policies about Cockpit Automation and its use  

• Training and Performance for Automated Systems  
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• Interface used by Automated Systems 

Survey analysis results were used to define flight test scenarios used in the simulation. 

A PC based flight simulation program, Prepare3D, was used to conduct simulated flights 

with the ATP test subject pilots to test the theory that reinforcing cues would increase their 

vigilance.   Pilots were tested with and without the reinforced cues, and all their flights were 

recorded.  At the end of the test session, their verbal inputs were solicited in a short interview to 

get their opinions if they felt reinforced cues made changes on their mental model, automation 

complacency, and vigilance.  
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CHAPTER II 

LITERATURE REVIEW 

 

A review and synopsis of the literature relating to cockpit automation provides a basis for 

understanding the evolution of cockpit automation and the major benefits and problems seen with 

each major revision.  Airplane technology has mirrored general technological advances in society 

while also demonstrating rapid periods of development in times of war.  The importance of aviation 

necessitated the establishment of regulatory bodies, accident investigative arms, airline companies, 

and personnel to design, build, fly, manage, and maintain hundreds and later thousands of aircraft.  

Many socio-technical components have also played important roles in the development, regulation, 

and operation of a commercial air transport system.  Boeing and Airbus are the two primary makers 

of commercial airliners, and their approaches will be compared and contrasted.  Crew Resource 

Management was developed to address various flight crew factors impacting flight safety.  The 

role of the pilot and the level to which pilots control their aircrafts has evolved over time.  The 

trend has been for less direct control although with no reduction in cognitive responsibility for the 

human operator.  Several key publications from the existing body of research are presented, and 

research areas lacking sufficient study are discussed in support of this research. 

 

History of Automation in Aviation 

Early aircraft systems included a pilot who moved the controls, which changed the control 

surface positions, thus changing airflow and causing the plane to exhibit a response through flight 

path changes.  This was a purely mechanical arrangement.  Later early autopilot systems were 

introduced to assist the pilot in maintaining headings and altitude targets.  This started the path 
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toward reducing the pilot’s direct control over the aircraft and placed a feedback barrier between 

the plane and its operator.  A new danger was born as the autopilot might fly the plane into a 

mountain without human intervention.  Later, controllers installed near the control surfaces were 

used to move them without pilot input to maintain more parameters of flight.  Last, flight 

management computers were introduced that required the pilots to program waypoints along the 

planned flight path and enter performance data such as the amount of fuel loaded, local barometric 

pressure readings, runway length, and wind, etc. Flight management computers were later tied to 

auto throttle controls.  With each new layer of automation the human operator lost more direct 

control of the plane and had more difficulties getting and interpreting feedback from the 

automation (Manningham, 1997).   

 

Regulatory History  

The US Army established a flying school near San Diego in 1912 and thus initiated the 

first organized oversight of aviation (Peck, 2006).  After World War I, Congress started an 

innovative postal program known as the Contract Air Mail Act of 1925 that would later serve as a 

model for commercial air operations (Baltazar, 2013).  President Franklin D. Roosevelt created 

the Civil Aeronautics Board (CAB) in 1940 and tasked it with safety rule making, investigation of 

accidents, and outlining the economic framework of airline operations.  The CAB was later 

replaced by the FAA and a separate investigative arm, the National Transportation Safety Board 

(NTSB), was created to determine accident causation (FAA, 2015).  The NTSB makes 

recommendations to the FAA regarding how to improve safety, but rulemaking has been solely in 

the domain of the FAA.  The FAA also oversees a certification process for new aircraft models 

and related subcomponents to ensure safety.  The 1978 Airline Deregulation Act was passed by 
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Congress to promote competitive market forces in the industry (Cong. Rec., 1978) and resulted in 

low cost carriers entering the market to challenge the legacy carriers such as American, United, 

Continental, Northwest, US Air, and Delta.   

 

Aeronautical Decision Making and Risk Management 

The FAA defines aeronautical decision-making (ADM) as the “Systematic approach to the 

mental process used by aircraft pilots to consistently determine the best course of action in 

response to a given set of circumstances” (Aeronautical Decision Making, 1991).  The FAA places 

ADM in the broader context of risk management.  Pilots are taught a simple framework to manage 

risk known as the 3-P model shown in Figure 1, taken from FAA Pamphlet (FAA Aeronautical 

Decision Making, 2008)  

Perceive: the given set of circumstances for your flight 

Process: by evaluating their impact on flight safety 

Perform: by implementing the best course of action 

 

 

 

 
 

Figure 1.  FAA’s 3-P Model from FAA “Aeronautical Decision Making” FAA-P-8740-69 
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Risk management is a decision-making approach created to identify hazards, determine the impact 

on risk, and make a judgment as to the best way to proceed.  A hazard is something that could 

cause an unwanted event, and risk is the impact of a hazard that is not mitigated (FAA Aeronautical 

Decision Making, 2008).  The level of risk created by a particular hazard is quantified by its 

severity and the likelihood that a hazard will cause some type of loss as illustrated in Figure 2.   

 

 
Figure 2.     FAA’s Risk Matrix from FAA “Aeronautical Decision Making” FAA-P-8740-69 

  
 

Noyes, (2007) discussed the impact of complex automation on existing models of ADM.  

She stated “too much automation, and the human operator is not in the loop when failures and 

malfunctions occur.  Making decisions thus becomes problematic as crew are not fully aware of 

the situation.”  She went on to state “the challenge for system design concerns the development of 

systems, which provide an appropriate level of automation for a particular situation at a given time.”  

This view supports the development of adaptive automation in the cockpit. 
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Two Design Philosophies, Boeing vs. Airbus 

Though Boeing and Airbus are not the only makers of large commercial transport aircraft, 

they play a dominant role, and their design choices have great influence over other makers and 

tend to set standards.  In commercial aviation, the term “glass cockpit” refers to planes that replace 

analog gauges with computer displays, also utilize flight management computers (FMC), and 

utilize a programming hardware interface called a control display unit (CDU) (see Figure 3).  Pilots 

look down at the CDU and push keys to program their flight plan and input performance data.  

When Boeing introduced the glass cockpit 757 and 767 in the early 1980’s, they firmly committed 

their company’s design approach to one in which analog gauges would have a role only in 

supporting legacy aircraft. At the same time, they eliminated the position of flight engineer and 

established the safety and efficiency of twin engine, extended range, commercial transports.  After 

this, newer models of the 737 and 747 also utilized glass cockpits while their fly-by-wire 777 and 

787 reflect the state of the art in Boing’s advanced cockpit technology.  Boeing would later acquire 

McDonnell Douglas, a rival and pioneer in advanced cockpit avionics, which had produced 

variants of the MD-80 utilizing glass cockpits to compete with the 757 and 767.   
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Figure3.  Boeing’s Control Display Unit (CDU) from “Contribution of Flight Systems to Performance-

Based Navigation” (Miller, 2009) 

 
 
 

Aircraft could now navigate using satellites and on-board equipment.  This design allowed 

performance-based navigation (PBN), which reduced average flight times, improved fuel 

efficiency, and is widely credited with reducing accident rates compared to air transports operating 

with only ground-based navigation aids for navigation guidance (Nakamura & Royce, 2008, Miller, 

2009). 

Airbus introduced the first fly-by-wire airliner in 1988 with their A320.  The elimination 

of mechanical linkages from the cockpit to the control surfaces significantly reduced the airplane’s 

weight.  This design also allowed flight envelope protections programmed into the Flight 

Management Computer (FMC) to limit the pilot’s input when such input places potentially 

damaging G forces on the airframe or would lead to an angle of attack that would cause a stall 

event.  This technology has been in every Airbus model since the A320.  Airbus also boasts of 
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lowered maintenance costs and reduced training time when pilot’s transition from one Airbus 

model to another (Airbus, 2019). 

Boeing and Airbus have published automation philosophies.  Their differences can be 

summarized by taking a key point from each company’s policy. 

• Airbus – Within the normal flight envelope, the automation must not work against 

operator inputs, except when absolutely necessary for safety 

• Boing – The pilot is the final authority for the operation of the airplane.  Apply 

automation as a tool to aid, not replace the pilot (Reidemar, 2012) 

The approach of Airbus is illustrated in Figure 4 from their 2014 patent filing for an airliner design 

with no glass windows in the cockpit; the pilots instead using virtual displays to view outside their 

aircraft; U.S. Patent No.2014/0180508A1 (Zaneboni & Saint-Jalmes, 2014). 

 

 
Figure 4.  Airbus’ new design to eliminate pilot’s natural vision  (U.S. Patent No.2014/0180508A1, 2014) 

 
 
 

CRM and its Implications for Cockpit Automation 

Crew resource management has been a core element of initial and recurrent pilot training 

for decades.  It entails the crew working together as a team, not showing undue deference to a 
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senior pilot, and being willing to speak up when one thinks standard operating procedures (SOP) 

are not being followed (Helmreich, Merritt, & Wilhelm, 1999).  The opacity of automation and 

the lack of consistent feedback to the pilots have made it difficult to utilize CRM principles that 

include cockpit automation as part of the team.  Pilots can have trouble recognizing and recovering 

from automation failures and trying to do so increases cognitive workload significantly.  Studies 

and surveys have shown pilots are sometimes reluctant to challenge the autopilot’s actions 

secondary to the rarity of automation failure (Cockpit automation concerns, 2015).  In the 1990’s 

the CRM programs of many carriers underwent a redesign in light of the increasing responsibility 

granted to flight deck automation.  However, line operation reports indicate many pilots have not 

adopted CRM fully when interacting with automation (Helmreich et al., 1999).  

 

Previous Studies into Cockpit Automation 

Much research has been conducted relating to cockpit automation.  Studies fall into a 

handful of categories.  Notable research from each category is presented here.  One common theme 

has been how automation impacts workload.  The consensus is that automation reduces workload 

that is already low and increases it where it was already high as noted in the FAA report for 

operational use of flight path management systems (FAA-PARC, 2013).  (This also has been 

confirmed by a survey completed by 77 airline pilots; 97% of the pilots who took the survey 

agreed that automation made their job easier during normal procedures).   

This report from 2013 was the result of a joint effort involving the Performance-based 

Aviation Rulemaking Committee (PARC) and the Commercial Aviation Safety Team (CAST), 

which drew its members from representatives of manufacturing, government regulators, 

carriers, and academics as well as pilot associations.  Workload during normal operations is 
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reduced but during non-normal circumstances, such as a last-minute runway change from 

ATC, using the automated systems may increase task complexity and workload of the pilots.  

Another area of frequent study is how automation affects situation awareness (SA) of the 

human monitoring the automation.  Pilots sometimes lose understanding of what the 

automation is doing and what it will do next, leading to a phenomenon known as automation 

surprise.  Additionally, pilots can lose their cognitive model of what the plane is doing, and it 

is not uncommon to hear “I don’t know what is happening” on cockpit voice recorders in the 

course of accident investigations (Sarter, Woods, & Billings, 1997; Chialastri, 2012).  This SA 

problem is sometimes more narrowly focused in the literature as mode confusion referring 

to the myriad of possible mode configurations in the FMS.  Degani, Shafto, and Kirlik (1996) 

created the diagram in Figure 5 that portrays the complexity in FMS mode options from the 

start of a flight until its end.  The coefficients represent the relative frequency of using that 

particular mode configuration. 

Another concern frequently noted in studies over the last 20 years is the loss of manual 

flying skills for pilots operating their aircraft at a high level of automation most of the flight.  

Casner, Geven, Recker, and Schooler (2014) found that when pilots who operate often in a high 

automation configuration were tasked to manually track their aircraft’s position without access to 

a map display, their performance suffered.  Notably, they stated, “the retention of cognitive skills 

needed for manual flying may depend on the degree to which pilots remain actively engaged in 

supervising the automation”.  How to improve training to help pilots better utilize automation is a 

topic of long standing, but more recently Geiselman et al. (2013), emphasize that better training is 

only a partial solution.  They call for “a more context-aware automation design philosophy that 

promotes a more communicative and collaborative human-machine interface.”   
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Figure 5. Diagram of various autopilot mode configurations over the course of a flight, (Adapted from, 

Degani, Shafto, & Kirlik, 1996).   
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Last, inadequate governance has been identified as an obstacle to improving safety in highly 

automated commercial transports.  Reidemar (2012) highlighted the gap between operational 

policy and practices on the flight deck.  She emphasized that the manufacturers automation 

philosophy is only about design and says little about operations.  Poor guidance is being provided 

for training, procedures, and the division of labor.  This makes it harder for pilots to manage 

situations where no SOP applies.  She cites problems related to varying policies and cultures 

among different carriers and calls for a unified policy that “provides general principles for human-

automation interaction in the cockpit and all other aspects of operation.”   

 

Previous Studies of Pilot Cognition and Decision Making 

Decision-making is a process that leads to the selection of some action among available 

alternatives.  This cognitive activity has been the subject of broad research for decades, and more 

recently it has been applied to vertical domains such as how pilots make decisions during a flight.  

The FAA and NTSB have long recognized pilot decision-making and risk management as essential 

skills that must be trained.  These government agencies frequently produce policy papers and 

manuals that provide guidance and sometimes mandates in how pilots undergo primary and 

recurrent training relative to the cognitive process of decision-making.  In 1987, the FAA released 

six manuals covering decision-making protocols for pilots with different ratings.  Much of this 

material involves checklists for decision-making, bullet points, and rules of thumb when deciding 

to initiate a flight or make decisions when alternatives exist over the course of a flight.  An example 

of this is shown below in the FAA’s list of hazardous attitudes that can lead to poor decision 

making. 
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Figure 6.  FAA.  Aeronautical Decision-Making (ADM-FAA-P-8740-69, 2008) 

 

This area of decision-making is called Aeronautical Decision-Making (ADM).  Written 

doctrine produced by the FAA focuses little on the underlying core research conducted in a 

multitude of academic domains (ADM-FAA-P-8740-69, 2008), but instead focuses on actionable 

principles. 

More recently Hunter (2005) has studied different scale formats to measure hazardous 

thoughts among pilots in an effort to overcome limitations in current research.  Specifically, he 

wanted to address the problems with the ipsative scales where respondents chose one of two 

desirable options.  Hunter examined the Likert type response scale where respondents select the 

score which best represents the degree to which they agree with a particular statement.  He 

concluded the ipsative scale was suitable for training purposes but psychometrically inferior to any 

of the Likert scale attitude measuring protocols.  
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Many aviation accident reports cite poor pilot judgment as a causal factor in mishaps tied 

to pilot error (Wickens, Stokes, Barnett, & Hyman, 1993).  Previous research concerning pilot 

cognition and decision making have provided some clues as to how pilots make decisions and what 

variables may help or hinder their ability to solve complex and sometimes novel problems under 

stress.  Aeronautical decision-making (ADM) intersects with a broader constellation of related and 

ancillary disciplines.  These include aviation psychology, human factors, situation awareness, and 

crew resource management (CRM).  CRM is ADM for the multi-person cockpit found in 

commercial transports.  The human factors professionals study the interactions between machines 

and the people who operate them, by applying of human sciences within a systems engineering 

context.  Human factors specialists seek to design machines that can best utilize the capabilities of 

the people who will work with them.  Additionally, they examine methods to select and most 

effectively train users of these systems.  The priority is first making a system that reduces the need 

for training through better design and then selecting ideal users and developing training to 

compensate for any design short comings.  Human factors researchers consider a myriad of 

physiological aspects that might impact user performance such as stress, age, and workload.  

Another domain they study involves cognitive areas such as decision-making and memory (Jensen, 

1997).   

Dynamic decision-making implies opacity, complexity, and dynamic situations (the 

dependence of the system’s state on a previous state).  External factors outside the control of the 

decision maker combine with actions taken by the decision maker (i.e. endogenous factors) and 

this results in an outcome.  Complexity is related to how many interconnected sub-components 

exist in a system and increases as the number of sub-components rises.  This can result in a system 

whose behavior is hard to predict.  The decision maker’s ability also impacts the complexity of the 
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system.  How much opacity a system has varies with the decision maker’s knowledge of the system 

(Hardman, 2009).  In a highly complex system such as commercial aviation, both hard and soft 

components exist.  Human components of the aviation system are not only the operators in the 

cockpit but also designers, managers, regulators, and shareholders, etc.  Each holds a particular 

worldview and often has differing priorities (Keating, Sousa-Poza, & Kovacic, 2005, Taylor, 

Keating, & Cotter, 2017).   

One example is air carrier policies that mandate pilots fly using the automated systems 

most of the time in part to reduce fuel costs.  This creates a certain mental model amongst the 

pilots to adhere to their company’s policy and creates a predisposition in some aspects of their 

decision making.  This can also lead to unintended consequences and conflict between human and 

machine.  Billings (1997) cites an example of this regarding the use of automated vertical 

navigation where the computer determines the optimal point to begin descent which will reduce 

fuel costs.  This point can be closer to the airport than the pilots may want and force them to work 

hard to slow the plane sufficiently in a short amount of time.  Pilots have learned to “trick” the 

automation by inputting a false tailwind value, which causes the computer algorithm to begin 

descent earlier than it would otherwise.  Humans have always adapted the tools available to suite 

their goals, but conflict between man and machine can increase workload and the chance for error.   

Wickens et al. (1993) studied how anxiety might reduce the ability of pilots to make 

decisions leading to good outcomes.  They cited the difficulty of using post-accident analysis to 

understand how accident crews make their decisions.  The cloud of hindsight bias is difficult to 

neutralize.  Though stress can be listed as a degrading factor, it is hard to establish a correlation 

between decisions that lead to undesirable outcomes and level of stress when conducting post-

crash studies.  That stress can harm decision-making is long established (Keinan, Friedland, & 
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Ben-Porath, 1987).  Wickens et al.’s (1993) study used custom made software that displayed text 

and flight instruments to subject pilots and asked them to answer questions.  The flight instruments 

were not tied to flight controls, and the display was static at certain times and dynamic at others.  

Pilot decisions (answers to questions) had the potential to change which of the predefined screens 

were presented as the experiment progressed.  Time constraints and financial incentives were put 

in place to provide stress while giving incentives to complete the flight in an efficient and safe 

manner.  When compared to the control group, the stressed pilots demonstrated a decline in 

decision-making ability.  This work was significant because few prior experiments had shown a 

consistent pattern of stress related negative impacts specific to the aviation domain.  These impacts 

were greater for tasks with large spatial demands but not for those requiring significant use of 

long-term memory or working memory.   

Klein (1993) described the strategy to make fast decisions in dynamic environments as the 

recognition primed decision model (RPD).  His study of experts working in high risk and time 

critical areas such as firefighting revealed they would recognize certain patterns and react correctly 

instead of comparing various options when engaging in high-risk scenarios.   

Decision makers must have had previous training or experience in specific domains to 

make recognition primed decisions when later confronted with problem solving challenges in high-

risk, high-workload circumstances.  In a recent study, Gontar, Porstner, Hoermann, and Bengler 

(2015) analyzed pilots’ decision-making in the context of naturalistic decision-making (NDM). 

They concluded that test subject pilots more often used analytical methods of decision-making 

rather than recognition-primed.  This reflected an emphasis on checklists and SOP’s during initial 

and recurrent pilot training.  The authors raised concerns that this may mean pilots are less likely 
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to make good decisions in ambiguous and novel situations and they suggested pilot training be 

updated to include more unlikely or unforeseen challenges.   

Mosier (2002) suggested that new research recognize pilots’ tasks as “cognitive work” and 

that new cognitive methods are needed to achieve the goals in this environment.  Mosier stressed 

the need to determine if the automated cockpit is a mismatch for the pilot’s cognition.  Modern 

aircraft have shifted the task of pilots from looking out the cockpit window and manipulating 

controls to that of being automated systems managers, and thus the job became less about physical 

sensing of the aircraft’s state and more about integrating information from multiple electronic 

systems and maintaining a cognitive model of aircraft’s state.  The correspondence of judgments 

relates to the accuracy of the decision and how the decision lines up with the facts.  Sometimes 

pilots respond inappropriately to cues when they view all cues as having equal validity and 

reliability.  The prominence of a cue can cause the pilot to sometimes give it inordinate value 

compared to other cues that are also present.  It is thought that better pilot decision makers learn 

to use probabilistic cues more effectively which leads more often to accurate assessments and 

predictions on the part of the pilot  (Mosier, 2002). 

Coherence theories center on the rationality of the decision process.  The focus of 

coherence theories is on how rational the decision process was (Mosier, 2002).  The objective of 

coherence is to make judgments that are rational and consistent. Correspondence and coherence 

relate to the objectives of cognition and approaches used to complete these objectives.  A pilot 

could use correspondence during visual flight rules operations by looking outside the cockpit and 

use a coherence strategy by checking the displays inside the cockpit and confirming that they are 

consistent with one another and match expectations for a given circumstance.  Pilots use coherence 

competence when they scan their instruments and sub-systems indicators to confirm they cross 
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check with consistent readings.  Having coherence competence relates to someone’s aptitude to 

sustain logical consistency in his or her judgments (Mosier, 2002, 2009).  Since the 1970s much 

research on coherence has centered on how difficult it can be for humans to maintain coherence, 

and this approach to judgment research has focused on heuristics and biases.  Studies typically 

compare human judgment that relies on heuristics in the decision-making process with models 

based on mathematics.  Many of these studies concluded human decisions range from an 

approximate process down to an irrational one impacted by human bias.  (Mosier, 2002).  

Parasuraman and Riley (1997) observed that pilots of modern aircraft may take short cuts and over 

rely on automation without comprehending its limitations and may fail to monitor automation’s 

behavior.   

The cognitive skills required of modern commercial pilots differ markedly from those in 

earlier eras of aviation.  There has been a shift towards more analytical cognitive functions, as 

pilots must track large amounts of data.  Mode confusion and misplacing a decimal point when 

programming a flight management computer can cause an accident.  Pilots must understand the 

logic of a highly complex computer system with many interconnected parts that depend on sensors, 

which sometimes fail.  When this happens, they may be required to take manual control of their 

aircraft with no observable horizon, little to no guidance from the automated systems, and often 

little time to determine which action on their part will prevent loss of control of their aircraft.  

Ground school training manuals require three-way call outs to transfer control of the aircraft and 

do not allow for sudden transfer to the pilot monitoring without confirmation (Pilot’s handbook, 

2008).  This is not unlike what pilots experience when automation suddenly disengages and 

demonstrates a particular decision-making challenge for cockpit crews. (Mosier, 2002). 
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Woods (1996) noted that modern glass cockpits could appear straightforward to the pilots 

using them as these displays belie the deep complexity at work in the underlying avionic systems.  

When operators fail to monitor and analyze these systems correctly, small errors can rapidly grow 

into hazards impacting flight safety.  Sarter and Woods (2000) observed that pilots are less likely 

to notice their errors from looking at cockpit displays and more likely to respond after noticing 

some “surprising” or unwanted action regarding the plane’s flight path or configuration.  This is 

reflected in many investigation reports citing interrogatives used by pilots in the accident flight: 

• What is it doing now? 

• What will it do next? 

• How did I get into this mode? 

• Why did it do this? 

• I know there is some way to get it to do what I want. 

• How do I stop this machine from doing this? (Wiener, 1989; Sarter & Woods, 2000; 

Mosier, 2002).   

Woods (1996) stated that the modern cockpit can appear less complicated to the user than 

he or she realizes, and its complexity is better reflected in the cognitive processes demanded by 

the automated systems.  He emphasized the need for an analytical approach when operating these 

systems, which are often counterintuitive in their design.  The pilot’s need to maintain cognitive 

coherence is challenged by the disparity between the mental requirements of using this equipment 

and how information is displayed to the user.   This system opacity promotes pilot use of intuition 

while making analytical evaluations of system state difficult.  The incongruence between the need 

to analyze what cockpit automation is doing in order to configure and monitor it and the urge to 
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use intuition when a systems interface and feedback are inadequate must be addressed.  (Mosier, 

2002). 

Research showing that people exert less effort towards a task when part of a group 

compared to performing the task individually has spurred interest in the question of how people’s 

decision-making performance is impacted when they work collaboratively with automation.  

Social loafing and “slacking off” seen when people perform in groups also occurs when they share 

tasks with computers (Skitka, Mosier, & Burdick, 1999).  They may defer to automated aids and 

feel less need or pressure to perform with all due diligence.  Operators of automated systems may 

also show unwarranted deference to automated systems and consider them to have greater 

authority than they do.  This has been observed when the human operator has access to raw data 

that contradicted what the automated decision aid was doing or suggested doing.  This combination 

of influences have been linked to errors of omission and commission.  A 1972 airliner crash outside 

of Miami occurred when the crew became pre-occupied with troubleshooting a landing gear 

indicator light.  They had set the autopilot to maintain an altitude of 2000 feet while they sorted 

out the problem light.  A nudge on the control stick disengaged the autopilot and they failed to 

notice they were losing altitude with each passing moment.  They gave responsibility to maintain 

altitude to the automation and failed to monitor what it was or was not doing (Skitka et al., 1999). 

NASA conducted an experiment during which test crews had to decide which engine to 

shut down due to a fire.  The test crews using auto-sensing cues were much more likely to shut 

down the wrong engine as they ignored or failed to analyze basic data telling them which engine 

needed to be shut down.  Test subject crews using traditional paper checklists with no autosensing 

equipment were much more likely to turn off the correct engine.  They worked in the absence of 

an automation authority and this impacted their decision-making process (Skitka et al.,1999). 
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Automation bias can impact decision making when operators attribute greater authority to 

automated aids compared to other sources of information.  This could be caused by the automatic 

cues being prominent and potentially drawing the user’s attention from other important 

information that is not as salient.  Automation is intended to improve efficiency and facilitate 

human decision-making, particularly in safety conscious domains like aviation.  This can be 

realized only when used appropriately.  (Parasuraman & Manzey, 2010) 

In the context of everyday experience, human decision-making works by sequentially 

examining alternatives and selecting the first satisfactory one.  This happens usually without 

consideration of all possible alternatives.  This contrasts with the global models of rational choice 

in which every alternative is considered before a choice is made.  In some cases, no satisfactory 

alternatives are found so more alternatives will need to be sought (Simon, 1955).   

Decision makers will often act in a manner counter to the tenets of traditional normative 

theories.  This was observed in psychology experiments.  Researchers in the decision sciences who 

are primarily focused on normative models of decisions often dismiss empirical results as solely 

descriptive and therefore of little value (Weber & Coskunoglu, 1990).   

People have various constraints on their ability to process data.  When large amounts of 

information are provided, humans are unlikely to perceive all of it.  Humans tend to process 

information in a sequential fashion to reduce the mental task load and this may not result in prime 

outcomes.  Humans must rely on a memory system process known as reconstruction and, in 

contrast to computer memory, does not reference data in its original form.  Recognition of these 

constraints underlie Simon’s speculation of “bounded rationality” (Simon, 1955) being the basis 

for grading decision quality.  People have developed techniques and protocols to overcome 

limitations in the mental processing of information.  One of these involves the use of heuristics, 
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i.e., using basic rules to process information and arrive at the correct choice in the majority of 

circumstances.  The other involves reshaping the problem space.  These approaches can become 

second nature over time and are often applied when it would be preferable to use formal procedures 

or when using heuristics can bias the choices made.  As people gain experience and familiarity 

with an environment and its associated processes, they use heuristics when gauging the chance of 

an ambiguous event occurring.  They look for similarities and apply old knowledge to new findings.   

Klein, Calderwood and Clinton-Cirocco, (1986), determined that Fire Ground 

Commanders (FGC) seldom make decisions after considering the merits of every potential option.  

Their previous experience guides their response to the circumstances they encounter with each fire.  

The pros and cons of the available actions are not considered given the urgency of the situation.  

FGC’s make decisions after recognizing features of the current fire that they had observed in 

previous events.  They will also change their plan quickly when confronted with new facts (Klein, 

1989). 

Klein (2008) reported a history of studies supporting the notion that people approach 

decision-making based on the time available and will use more analytical methods when time 

affords but revert to using a process of recognizing and categorizing situations based on memories 

of earlier circumstances when scant time is available in a dynamic environment.  People build up 

a catalogue of patterns over time and they can more rapidly identify the relevant factors in 

subsequent situations.  This is central to the recognition-primed decision (RPD) making model.  

Seeing familiar patterns helps in choosing appropriate goals and leads one to match and employ a 

successful course of action.  This method lends itself to rapid decision-making and implementation 

of responses but is predicated on having a rich set of prior experiences. This is not to say that 

analytical methods have no role.  There is a continuum from intuitive to analytical approaches and 
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adjusting to allow use of each as the situation allows will be ideal.  Relying solely on intuition can 

cause one to follow a set of patterns to an improper action.  Drawn out deliberations while a school 

building burns will negate the benefits of choosing the perfect solution after the building has 

already been lost.  The model shown below in Figure 7 outlines the steps, information needed, and 

paths taken when using the RPD model.   

 

 
Figure 7. Model of recognition-primed decision making. (Adapted from Klein, 1993) 
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Naturalistic Decision Making (NDM) adherents consider intuition to be a manifestation of 

experience as people accumulate a set of experiences that help them quickly evaluate events and 

rapidly make choices without having to weigh many options (Klein, 2015).  Without experience, 

one can potentially know all the options but have little basis to select one over the others.  NDM 

researchers consider tacit knowledge a necessity when using intuition. Nonaka and Takeuchi 

(1995) exhaustively studied the value of tacit knowledge for organizations and how to increase 

tacit knowledge held by the organization’s members.  Klein (2015) suggested that increased 

situation awareness improves decision makers’ ability to sort out the events unfolding before them.  

Pattern matching is not the limiting factor as much as understanding what is happening.  In Klein’s 

model for RPD above, when the decision maker does not have sufficient familiarity with the 

situation he or she will seek more cues to improve their cognitive model for that situation.  The 

applicability for this model in aviation is not far from that seen in the FAA 3P model discussed in 

chapter 2.  The 3P portrays a broad concept, and, in contrast, the RPD model provides depth in 

analysis for the decision-maker with analytical and intuitive approaches. 

 Highly automated control systems can make it difficult for human monitors/operators to 

take manual control when needed due to the inherent characteristics these control systems exhibit, 

such as machine autonomy and complexity.  When the human in the system transitions from 

monitor to operator, they may have problems secondary to difficulties in tracking recent 

automation actions or understanding its planned actions.  Thus, expecting operators to manage 

automated systems by intervening primarily when the automation reaches its design limits or fails 

in some way, has its pitfalls.  (Woods, Johannesen, Cook, & Sarter, 1994).  According to Billings 

(1991) pilots flying planes with highly reliable automated systems naturally come to rely on them, 

and this can change pilot behavior when compared to those operating planes with no or little 
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automation.  Previous research has shown people exert more effort when operating individually 

compared to operating as part of a team (Karau & Williams, 1993).  Humans tend to become lazy 

when sharing tasks with other people or with automated systems (Nass, Fogg, & Moon, 1996).   

Modern commercial airliners may cause pilots to diffuse responsibility for tasks controlled by 

automation and may reduce their individual efforts and vigilance in the human/computer system 

(Skitka et al., 1999).  

Endsley (1988) described situation awareness (SA) as perceiving aspects of the 

environment across a particular scope of time and location, understanding their meanings, and 

predicting their status in the immediate future.  For pilots, SA requires they perceive critical 

features in their environment, process their meaning, and act accordingly to control their flight 

path in a safe and efficient manner.  Remaining engaged in this manner helps pilots understand 

what will happen in the system in the proximal future.  This engagement can be reduced by the 

automation of tasks formally performed by pilots.  Broadly, system operators of automated 

machines have a reduced capacity to notice system errors and are less likely to successfully 

intervene manually when needed.  A Northwest airliner crashed on take-off in 1987 when the pilots 

did not perceive that the configuration warning system had failed, thus denying them an automated 

warning that their aircraft configuration was incorrect for that particular take off.  Their reliance 

on this system may have reduced their engagement with aircraft systems and impacted their 

vigilance in ensuring all take off settings were correct (Endsley, 1999).  When pilots become out 

of the loop regarding their aircraft’s state, they can be slower to detect problems and may require 

additional time to assess system parameters, diagnose the automation problem, and assume manual 

control to affect a solution.  It has been hypothesized this happens because of the complacency 

that can accompany becoming a monitor of automated systems and from pilots passively receiving 
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information rather than being active processors of information (Endsley & Kiris, 1995).  Endsley 

and Kiris found that situation awareness decreases more during full automated phases versus 

partially automated phases (Endsley, 1999). 

The issue of operator complacency caused by using reliable automated systems has been 

discussed in previous research dating from the 1970s.  Wiener (1981) and Billings, Lauber, 

Funkhouser, and Huff (1976) described automation induced complacency (AIC) in terms of a 

psychological state with reduced suspicion resulting in reduced vigilance and a belief in system 

status without justification.  Farrell and Lewandowsky (2000) described AIC by emphasizing the 

correlation between monitoring and manual control, implying that complacency refers to a 

decrease in performance seen when humans transition from carrying out a task themselves to being 

passive observers of automation.  Many researchers describe how human behavior changes when 

they assume a supervisory role over highly reliable automated systems as seen in aviation, nuclear 

power plants, and medicine.  Parasuraman, Molloy, and Singh, (1993) scrutinized previous studies 

and Aviation Safety Reporting System (ASRS) reports and found support for this idea.  Accident 

reports have cited crew complacency in the past, and authors note that it has become more common 

as cockpit automation grows in sophistication, scope, and reliability (Casey, 1998).   This has 

spurred research to better understand this problem and how best to prevent it.  Parasuraman et al. 

(1993) advocated for the notion that overconfidence in automation leads to complacency.  They 

observed that managers of automation often failed to detect automation errors when that 

automation only rarely failed.  Others stated that an operator choosing to rely on automation could 

be impacted by the relationship of their level of confidence in the system, their confidence in their 

abilities, and other factors (Prinzel, 2002). 
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Some have contended that terms such as situation awareness and complacency are 

inappropriate for use in scientific domains (Dekker & Hollnagel, 2004) while others refute this 

opinion and point to the growing amount of literature supporting elements of both constructs 

(Parasuraman, Sheridan, & Wickens, 2008).  Bagheri and Jamieson (2004) replicated an earlier 

study by Parasuraman et al. (1993) and found study subjects noticed more automation errors when 

the automated system had a low reliability rate than when it had a high reliability rate.  Their results 

also supported Parasuraman et al.’s observation that a system with varying degrees of reliability 

resulted in system monitors finding more errors compared to when they worked with automated 

systems having fixed reliability (Parasuraman & Manzey, 2010). 

While researchers differ with regard to the definition of AIC, it has been cited in fatal 

aviation accidents (Hurst & Hurst, 1982; NTSB 1973, 1988).  These accidents often have factors 

in common.  As automation assumes more control of a system, the supervisor of the system is less 

aware of the system state.  Additionally, humans are ill suited to monitoring complex systems that 

rarely fail (Wiener and Curry, 1980).  Thackray and Touchstone performed pioneering empirical 

research in complacency in 1989.  Their experiment used a simulated ATC system and compared 

the performance of controllers with and without an automated aid.  They observed no difference 

in the ability of two participant groups to detect deviations from ATC instructions.  This conflicted 

with their hypothesis and they suggested this may have resulted from the experiment being too 

short.  Research conducted by Parasuraman et al. in 1993 criticized previous research, and after 

several empirical studies they concluded that highly reliable automated systems may create 

overreliance for its operators therefore result in less monitoring (Bailey & Scerbo 2007). 

Users sometimes fail to operate automated systems properly for various reasons including 

decision-making bias and inadequate monitoring. This phenomenon is not limited to new or poorly 
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trained users.   Seasoned users have sometimes placed trust in automation that is not warranted 

given the limitations and pitfalls of the systems they are directing.  This is reflected in some ASRS 

reports as well as in previous research in which pilots cite failures in monitoring related to 

overreliance in automation (Parasuraman & Riley, 1997).  Trust rapidly approaches 100% when 

users believe the system they operate does not fail as compared to the same users who suspect the 

system is not reliable (Bliss, Hunt, Rice, & Geels, 2013). 

When people use automated systems, their role shifts from actively engaged operator to 

that of monitor and, their behavior can change.  They are more likely to rely on heuristics and give 

the automation undue deference.   The paradox is that in most situations, this will not result in 

failures or incidents, but in a very small number of scenarios leads to fatal accidents or significant 

material loss.  Operators may miss a problem with the system if the automation does not provide 

a cue.  Conversely, operators may act on erroneous information supplied by the automated system 

when they have no cognitive reference as to what the system status is as might be determined from 

consideration of raw data such as airspeed, angle of attack, and bank angle in the case of aircraft.  

When operators detect that raw data contradicts what the automation is doing, they may still fail 

to intervene secondary to habitual reliance on an automated system that has served them well most 

of the time.  Research has shown that pilots substitute watching for automated cues in place of the 

traditional method of scanning for data and forming a cognitive model of what is happening 

(Parasuraman et al., 1997).  

The RPD model is appropriate in complex scenarios with time constraints as seen in 

commercial aviation.  Experienced users build a library of occurrences over time and use cues to 

match future problem situations with historical patterns in order to arrive at a workable response 

in a short amount of time (Klein 1998, Klein, Calderwood, & Clinton-Cirocco, 2010).  One’s 
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emotional state while using the RPD model can impact cognitive activity.  Negative and positive 

emotional states have both been shown to influence cognitive performance.  The mechanism by 

which this occurs is not known (Jeon & Walker, 2011).  Experienced users build a library of 

occurrences over time and use cues to match future problem situations with historical patterns in 

order to arrive at a workable response in a short amount of time (Klein 1998, Klein et al., 2010).  

One’s emotional state while using the RPD model can impact cognitive activity.  Negative and 

positive emotional states have both been shown to influence cognitive performance.  The 

mechanism by which this occurs is not known (Jeon & Walker, 2011). 

 

The Gap Analysis 

The survey completed was the main instrument to understand automated systems’ 

deficiencies from the users’ perspective.  Though the majority of the respondents believe 

automation is helpful, they also agreed many aspects of automated systems are lacking in some 

respect.  The findings from the survey were used to develop the experiment. 

Recommendation four from the Operational Use of Flight Path Management Systems 

(FAA-PARC, 2013) document states that “research should be conducted on new interface designs 

and technologies that support pilot tasks, strategies and processes, as opposed to machine or 

technology driven strategies”.  Other recommendations from the same report called for better 

validation and verification for equipment designs that target failures and failure effects secondary 

to the high integration of sub-components.  Recommendation 12 called for designers to document 

their assumptions about how the equipment should be used in operation early in the design 

process. 
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Degani and Heymann (2000) criticized current techniques for designing and evaluating 

human-automation interaction as inadequate.  These methods do a poor job of covering all possible 

pilot-automation interactions.  They called for a more systematic approach when solving human-

automation problems that accounts for how the automation behaves when operated by the end user.  

The European Aviation Safety Agency (EASA) issued a policy brief in 2013 that outlines 

their automation policy by suggesting four steps to mitigating automation challenges (EASA 

automation policy, 2013): 

• Identify and group crew-automation interaction challenges 

• Bridge design and training principles 

• Prioritize issues 

• Assess risk mitigations in regulatory provisions 

The Human-Automation Relationship Taxonomy (HART) project released a report in 2011 

covering the current state of cockpit automation (Durso et al., 2011).  They cited research 

indicating that some intermediate level of automation fosters better vigilance and engagement than 

full automation.  Humans are better able to share control in an intermediate level of automation.  

They referred to research from Dao, Brandt, Battiste, Strybel, and Johnson (2009) that showed 

better pilot situation awareness in traffic conflict tasks if the pilots carried out the tasks 

interactively with the automation in contrast to full automation.  A research gap exists for how 

humans and automation interact collaboratively for a better decision-making process and what 

type of design changes make this interaction better for human operators while they are making 

their decision in human intelligence-machine intelligence (HI-MI) collaborative environments.    

Wiggins, Azar, and Loveday (2012) emphasized that utilization of cues relevant to the task 

is a critical factor in the progression toward decision making expertise.  Not only is the utilization 
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of cues important in developing decision-making expertise, but also, it is consistent with research 

findings from naturalistic decision making and the RPD model.  Jeon and Walker (2011) found 

that decision making expertise must also encompass the ability to determine the critical cues to 

detect and why they are important.  Additionally, Loveday, Wiggins and Searle (2014) found that 

decision making expertise must also include the ability to utilize cues as indicators for self and 

peer error management.  They found that decision makers who utilized relatively higher levels of 

cue utilization for feedback and control were significantly more likely to engage in behaviors 

associated with expert decision making. 

The literature review revealed problems with human-automated collaborative systems such 

as losing situation awareness due to over reliance on highly reliable systems.  This was also 

confirmed by pilots who took the survey in the initial phase of this research.  They said sometimes 

they are surprised by the actions automated systems take.  Based on this information the simulation 

experiment was designed with the goal of increasing situation awareness through applying the 

Reinforced Cue Detection model to fulfill this gap by addressing this concern.    
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CHAPTER III 

 
RESEARCH METHODOLOGY 

 
 
 

 The research methodology was based on a quantitative approach to analyze the participants’ 

responses to the survey followed by a qualitative approach to design a prototype experiment used 

for understanding if minor changes had any impact on pilots’ mental model by using the 

“phenomenology” method to have an overview about pilots’ situation awareness by conducting 

interviews after each experiment.    

Initially, each question under the survey was evaluated individually by exploratory data 

analysis followed by use of the Multivariate Joint Correspondence Analysis (MJCA) technique 

for detecting underlying structures in the survey.  At the same time, the Spearman’s rho 

analysis was used to understand if different demographics affect the answers participants 

provided.  The survey plan and the experiment were reviewed and approved by the Old 

Dominion University (ODU) Institutional Review Board (IRB).  The survey was conducted on 

active airline pilots to ascertain their opinions about various issues regarding the design, training 

for use, and operational use of cockpit automation.  This information also helped to shape the 

design of experimental test scenarios using test subject pilots.    

The survey was followed by a small study using a computer-based flight simulator for 

testing recognition primed decision making using reinforced cues model.  Phenomenology was 

selected as the method to analyze the experiment results since this was an initial exploration of a 

new phenomenon under the naturalistic decision-making process and conducted with a limited 

number of participants.  Pilots who participated in the experiment were interviewed after their 

experimental flight and their flight data and after flight interviews recorded.  
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Survey Methodology 

The survey was conducted with airline pilots to ascertain their opinions on the design, 

training, and operational use of cockpit automation.  The population consisted of all commercial 

pilots listed in the FAA Airmen Certification database who are certified to fly aircraft requiring a 

moderate to high degree of interaction with cockpit automation.  The population included 

commercial airline pilots, commercial transport pilots, and private pilots with ATP (Airline 

Transport Pilot) certificate.  Pilots for this survey were reached via electronic communication.  All 

data sets are maintained off line for security.  This information is stored on a CD and a USB 

memory stick for redundancy and secured by the researcher. The link to the online survey tool, 

QualtricsTM, was distributed by email or anonymous link provided by QualtricsTM, mostly via 

LinkedIn.  Survey participants did not receive monetary compensation.   

The survey presented every question with five response options, which ranged between 

strongly agree and strongly disagree.  The survey tool allowed only one answer per question.  Some 

questions were repeated in a negative form to verify response consistency. 

 Participants had the option to save their progress and return later and continue the survey.  

Also, they had the option to change their answers until they submitted their survey.  The survey 

was held open until the response rate declined to zero.  Four weeks after the last response was 

received, the survey was closed.  Seventy-seven (77) surveys were completed. 

The survey about cockpit automation was designed to measure five dimensions: 

• Reliance/Trust in Automated Systems 

• Monitoring Automated Systems  

• Governance and Policies about Cockpit Automation and its use 
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• Training and Performance for Automated Systems  

• Interface used by Automated Systems 

Responses were analysed using exploratory frequency distribution analysis, Spearman’s rho 

correlation analysis, and multivariate joint correspondence analysis methods. 

 

Validity and Reliability of the Survey Instrument 

For this research a questionnaire distributed as a survey was developed in QualtricsTM and 

completed online by pilots holding ATP licenses.  The survey respondents were taken directly 

from the target population being studied, and this supports the credibility of the study.   It used the 

Likert format for structuring answers for the survey questions as this is well known and lends itself 

well to statistical analysis.  The directions for completing the survey were clearly defined at the 

beginning of the survey.  No problems were reported by the survey respondents to the researcher 

based on its use.   

The validity of a survey also refers to how well this instrument measured what it is 

supposed to measure.  This survey used questions with little or no ambiguity, as they were directed 

as a statement.  The survey closed with two open ended questions giving the respondents the 

opportunity to provide feedback related to the automated systems in the cockpit.  Some of the 

respondents gave detailed answers, and some respondents did not provide any input at all.  Those 

questions are not included in the analysis since they were not in the Likert scale format.  Those 

questions provided respondents the opportunity to bring their own concerns from their perspectives.  

None of the respondents provided feedback stating the questions were unclear.  No concerns about 

ambiguity were relayed through the survey.  A wide range of demographics by age, flight hours, 

carrier, nationality, and aircraft type were reflected in the survey pool. 
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Content Validity 

The survey questions were structured around five domains identified in current literature 

related to cockpit automation and human interaction.  All the questions in those domains were 

populated from research findings that try to explain the problems relating to human-automation 

interaction and were directed at line pilot participants who use automated aviation systems every 

workday.  

  

Construct Validity 

Survey questions should have a unifying theme known as a construct and this determines 

what is to be measured by the survey.  A construct can be complex or simple and can vary greatly 

in how many questions are needed to form a picture about what is being measured.  Constructs 

may involve several dimensions if the subject matter is more abstract.  Careful design of the survey 

is needed to avoid answering the wrong question or gathering too little information about the 

construct (Dew 2008). 

The construct validity of survey research qualifies how accurately it has measured what it 

claims to have measured.  Survey results can be statistically analyzed to enhance their credibility 

and validity and support the researcher’s claim to have measured what the survey was seeking to 

find.  As an example, a simple analysis of this type could validate the responses given by various 

demographic segments (Lavrakas, 2008).  

The construct developed in this survey was aimed at understanding pilot’s perspectives in 

various dimensions.  The dimensions were synthesized from literature findings and a few questions 

from previous surveys including the survey developed and published under the title “Rethinking 

Pilot Attitudes Toward Automation” (Hutchins, Holder, and Hayward, 1999).  The survey 



 

 

51 

construct was composed of five different dimensions; different categorical questions summed up 

those dimensions.  As such, the survey’s construct validity was established through discriminant 

validity across the five dimensions.  Results were evaluated using various statistical approaches 

and the demonstrated dimensions were developed purposefully.  In addition, demographics were 

analyzed under each dimension.  

 

Reliability 

Surveys can be evaluated for their reliability, which relates to their consistency as a 

measuring tool.  Consistency is further broken down as falling into three types; test-retest 

reliability, internal consistency, and inter-rater reliability.  Internal consistency reliability was 

established in this survey by randomly selecting three questions and stating the negative direction 

of the relationship.  The results can be found in the consistency check section in Chapter 4. 

Test-retest reliability could not be established in this survey, because the survey could not 

be administered with the same group of airline pilots.  Further, it would be difficult to recreate the 

same demographics with another set of survey participants as that of the participants who took this 

survey.  Since there was not any change for the pilots as to how automation is designed, it should 

be expected that a similar survey with a similar population would show similar results, but that is 

unproven. 

 

Likert Scale for Rating the Answers 

The Likert Scale came from the psychologist Rensis Likert in an effort to measure the 

attitudes towards certain proposed statements conveyed in a survey. (Likert, 1932).  It has the 

advantage to of providing better resolution than surveys with only yes-no answers by providing 
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more options, usually with a 1 to 5 or 1 to 7 scale ranging from strongly agree to strongly disagree 

with choices in between.  It allows for a range of agreement or disagreement or even no opinion 

at all.  Although there is not much difference in the analysis of the results of a 5 level Likert scale 

versus a 7-level scale, it is recommended to use the smaller option if the survey includes multiple 

questions (Sauro, 2010).  Likert Scale is the most commonly used rating method for answers given 

in questionnaires such as the survey included in this research.  Although it categorized the answers 

as rank order, a common misconception is to assume all the intervals are equivalent (Blaikie, 2003).  

The scale used in this research is based on the meanings of the attributes described in Table 1. 

 

Table 1: Likert scale and its attributes. 
 

Likert Scale Meaning Detailed Description 

1 Strongly Agree There is no hesitance about 
accepting the proposed 
statement 

2 Agree The respondent agrees but 
with some reluctance 

 
3 

 
Neither Agree Nor Disagree 

Either they do not want to 
answer the question or do 
not have much idea about 
how to answer 

4 Disagree Respondent disagrees with 
some reluctance 

5 Strongly Disagree There is no hesitance about 
rejecting the proposed 
statement 
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Data Type and Structure 

Data type includes both Excel workbook, CSV (Comma Separated Values) and tab 

delimited.  

 

Data Acquisition, Integrity, and Quality 

Acquisition – The survey tool QualtricsTM allowed only one answer per question.  Some 

questions were repeated in a negative form to verify response consistency. 

Integrity – Data from QualtricsTM were exported to an Excel workbook format and saved 

in a USB memory stick and a CD as a backup.  Once the research and dissertation 

defense is completed, and publications are accepted, other researchers can obtain 

the data per their request from the author.   

Quality – For cyber security purposes, data will not be kept on computer hard drive or 

cloud storage systems.  It will be burned to write once, read many CD discs that 

cannot be changed once information is burned into the disc.  These will also be 

archival type CD’s manufactured by Kodak that are rated to last 300 years before 

any degradation of the media could be expected.  Copies of these discs will be kept 

at multiple secure locations to guard against damage from fire or flood and the like.   

Data masters and backups will be periodically checked and verified for readability.  

 
Privacy of Participants  
 

To provide privacy and encourage forthrightness of the participants, personal data 

including the participants’ race and nationality were not disclosed in the survey. Before the 

experimental study was initiated and before any pilots were recruited for the experiment, the IRB 

process was followed, and all the requirements requested by the ODU-IRB committee were met.  
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The only personal data collected was the age of the pilots.  Their data records were stored and each 

pilot was assigned a code to identify them instead of using their name. 

 

Phenomenology as Experimental Methodology for Reinforced Cue Detection Model  

 Phenomenology is an investigative approach to learn about what our life experiences mean. 

When the experiences of people are investigated and meanings applied to the phenomena of life, 

it falls under a research domain known as phenomenology (Bliss, 2016).  Any experience can be 

investigated under the domain of phenomenology. 

 A longstanding theory that objects in the environment are independent was refuted by 

Husserl when he espoused the idea that people can only be certain about the things that are 

observed in their location that have entered their consciousness.  This simplified view of the world 

and people’s interactions with it comprise the phenomena studied using the phenomenological 

research methodology.  Franz Bretano provided the foundation for phenomenology and influenced 

Husserl.  Other philosophers made contributions to phenomenology including significant works 

from Merleau-Ponty and Sartre (Groenewald, 2004). 

This approach was used to learn how the pilots perceived the situations they were placed 

in during their flight simulator trials by asking them open-ended questions during post flight 

interviews.  The goal was to get sight of possible deeper issues regarding the interactions of pilots 

with their automated cockpit systems, and if the cues presented during some of the flights helped 

their decision making and vigilance versus their flights with no cues.  Participants were assured 

anonymity and encouraged to speak freely.  This method captures the feelings of a group of 

individuals and, while it is difficult to generalize from such information, can indicate if further 

study is warranted.   
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Experimental Design 

Although prior studies have established the impediments to decision making by automation 

induced complacency in the cockpit and other studies within naturalistic decision making have 

established the importance of cues to decision making and error management, no studies have 

directly examined the application of automation cues to reinforce pilot decision making in the 

cockpit. This study seeks to advance and integrate prior work by examining the relationship 

between the effects of reinforcing cues within the RPD model of pilot decision making under 

normal and high-stressed, time-constrained failure situations.  Insertion of reinforcing cues, 

however, requires modification of the basic RPD model to a RCD-RPD model as shown in Figure 

8, because the inclusion of reinforcing cues modifies some of the assumptions underlying 

naturalistic decision making from which the RPD model was developed.   

With the inclusion of reinforcing cues, the focus of the RPD model changes from “situation 

familiarity” to operational state awareness and from “recognition” to “engagement” as shown in 

the “Engagement aspects” box in Figure 8.  Reinforcing cues force the creation of a real-time 

feedback loop between the pilot and the operational state of the aircraft through continual 

comparison of the actual operational state to plausible state goals.  Klein’s recognition primed 

decision-making model is predicated on the belief that decision makers look for cues after arriving 

at the area that decisions need to be made such as fire fighters arriving at a burning building.  The 

difference in this research is that pilots are already in the cockpit and they can potentially collect 

relevant cues necessary for them to make their decisions before a failure occurs.  Due to the out of 

the loop phenomena (Endsley, 1999) especially during long haul flights, implementing the 

reinforced cue detection model could provide vial input for the pilots. 
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Figure 8. Reinforced Cue Detection – Recognition Primed Decision (RCD-RPD) model. 
 
 

Setting up the Flight Simulator and the Experiment 

The analysis of the survey demonstrated that pilots are sometimes surprised with the 

actions that automated systems take.  These findings provided inspiration to develop a flight 

simulator experiment for ATP licensed pilots to test a novel method to help pilots maintain their 

vigilance and reduce their complacency during their flights.  To test this, a flight simulation setup 

was assembled using the equipment and software listed below.   
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A personal computer was custom built for flight simulation of the Boeing 737-800; the 

most widely used single isle commercial transport aircraft.  Hardware selection was based on 

optimization of frame rates as simulation software is more demanding of computing power than 

typical software applications.  The PC consisted of the following parts. 

• Gigabyte GA-X99-UD5 motherboard 

• Intel Core i7-5820K Haswell-E 6 Core 3.3 GHz LGA 2011 microprocessor 

• Intel 400 GB 750 Series solid state drive (NVMe) PCIE full height 

• Zotac GeForce GTX 980 AMP! 4GB graphics card 

• Corsair RM Series RM850 ATX12V Modular power supply 

• G.Skill Ripjaws 4 Series 32GM RAM modules (4 x 8GB) 

• Noctua NH-D15 CPU cooler 

• Samsung 859 EVO 2.5” 250GB SSD drive 

• LG 24X DVD burner 

• Corsair Obsidian Series 450D Steel ATX Mid Tower case 

 

Windows 8.1 was installed on the PC to serve as the operating system as it was the most compatible 

choice for the simulation software.  The base simulation platform chosen was Lockheed Martin’s 

Prepar3D.  PMDG 737, an add on module, was installed to simulate the Boeing 737-800.  A 

Samsung S34E790C 34-Inch Curved WQHD Cinema Wide monitor was used for the display.  One 

iPad mini displayed the CDU using the iOS app Virtual CDU.  Navigation data was maintained 

using a Navigraph subscription.  Some flights were recorded using a dedicated software tool called 

Flight Data Recorder which allowed flight replay using Google Earth and for the display of black 

box parameters in Excel which can be referred to in future research.  
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Figure 9.  Example virtual CDU screen on iPad (Virtual avionics store, 2018). 

 

Flight simulator equipment used in the research appears in Figure 10 including mode control 

panel, yoke, CDU simulated on iPad mini, and throttle quadrant. 
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Figure 10:  Flight simulator equipment used in the research 

 

Before each experiment started, test subjects signed consent forms and provided basic 

demographic information.  They were presented with an overview of the study and given an 

opportunity to review pre-flight paperwork as would be done before an actual flight.  Pilots were 

briefed about the operation of the Prepare3D flight simulator and how to interact with an iPad Mini 

displaying a representation of the CDU.  A hardware emulator of the B737 mode control panel 

was configured to work with the simulator.  Test subject pilots were familiar with this device as it 

worked identically to what they use in the cockpit.  The throttle quadrant hardware was adaptable 

to control either a 2 or 4 engine aircraft.  The B737-800 uses two engines, and the middle two 

throttle levers were configured to control the port and starboard engines.  The throttle quadrant 



 

 

60 

also had switches that were configured to raise the gear, invoke thrust reversers, and activate 

throttle cut.  The yoke had integral switches to provide elevator and rudder trim and raise or lower 

flaps. A TO/GA (take-off/go-around) button was located on the right yoke handle.  Pilots used the 

system with ease as shown in Figure 11. 

 

 

 
Figure 11: Test subject is adjusting the throttle before takeoff 

 

Yoke configuration allowed pilots to take off as they would in real flight by pulling the 

yoke back for nose up and pushing it forward for nose down as shown in Figure 12.  Rudder pedals 

were connected to the PC and operated as seen in actual aircraft. 
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Figure 12: Test Subject using the yoke to take off after V2 callout. 

 

Nine pilots were recruited and each was put through three flight scenarios on the simulator.  

Test subject pilot recruitment efforts included; direct solicitation of pilots disembarking at Norfolk 

International Airport (ORF), placement of flyers in pilot lounges at ORF and Baltimore-

Washington International (BWI) as well as recruitment of domestic and international pilots using 

their LinkedIn profiles and Twitter feeds.  Pilot participants were encouraged to refer their 

colleagues and most participants were paid from personal funds as compensation for their time.  

During these simulated flights, they encountered different failure scenarios.  At least one of the 

three flights included some questions posed to the test subject pilot relating to their flight.  The 

purpose of this exercise was for pilot participants to answer the questions asked of them and while 

doing that pilots gathered more information regarding the status of their aircraft.  All flights ended 

with some type of failure.  Three failures (one per flight) were applied in a random order for the 
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test scenarios for each pilot.  Every pilot faced the same three failures but the particular flight in 

which a given failure occurred varied.  Each flight lasted less than one hour.  Among the limitations 

of the study were an absence of ATC, lack of a first officer, and no other air traffic.  Budget 

constraints also limited the number of pilots who could be recruited.   

The questions asked during one or a maximum two out of the three flights were intended 

to help the pilot gather up cues regarding their aircraft’s status.  The questions were asked in 

random order at random intervals included the following: 

• What is the next waypoint? 

• What is the speed of the aircraft? (They normally answered for both air speed and 

vertical speed) 

• What is your divergent airport in case of emergency? 

• What is your current altitude? 

• What is the fuel flow? 

• What is the distance to your final destination? 

After the pilot’s simulated flights were completed, they were interviewed about their experience 

using questions related to their flights and any implications regarding their situation awareness 

and vigilance level. 

 

Validity of the Simulator.   

The fidelity of the hardware and software used to conduct simulated flights reflects the 

validity of this experiment.  The set up used a detailed simulation of the Boeing 737-800 developed 

by the software company PMDG.  Their product was created with technical support from Boeing 

and the engine and flight modeling is within 5% of actual Boeing aircraft performance charts, 
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including single engine operations.  Virtual cockpit models and textures were created from Boeing 

engineering diagrams and thousands of photos from onboard actual aircraft.  Sound accuracy was 

achieved through the recording of over 500 individual sounds from the real cockpit.  The simulated 

weather radar is a working simulation of the Collins WXR-200 weather radar and depicts 

precipitation returns and also allows full control over tilt, gain, and radar mode including 

turbulence and windshear detection.  The simulator’s flight management computer (FMC) 

depicted Required Navigation Performance (RNP), Lateral Navigation (LNAV) leg bypasses, and 

highly accurate Vertical Navigation (VNAV) speed and altitude predictions.  The set up featured 

Integrated Approach Navigation (IAN) and the full complement of scratchpad warning messages 

that a real crew could see.  A senior Boeing 777 Captain and trainer from a major carrier flew the 

set up and verified it as an accurate simulation of this model aircraft. None of the pilots tested 

complained of inaccuracies in the simulation and only required a short familiarization flight to 

operate the simulator successfully.  Three different failure scenarios were applied to each test 

subject in random order and random times.  At least one or two of the three flights included 

reinforced cues.  

 

Validity of the Experimental Flights 

Test subject pilots were recruited online and at local airports using the distribution of hand 

fliers in pilot lounges.  While all pilots held ATP licenses, they had a diverse background in terms 

of age, employer, experience level, and type rating.  Pilots were “self” selected other than the 

requirement they hold a valid air transport license.  Due to limited budget the number of airline 

pilots was less than needed to make statistically significant inference from the findings. 
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Unstructured Interviews for Evaluating the Phenomenology 

 Phenomenology is a research method focused on an individuals’ experience in a particular 

environment i.e., for explaining the phenomenon those individuals are experiencing. From a 

phenomenological vantage point, interviews are part of the tradition of Theoretical 

Phenomenology (Marshall & Rossman, 1995).  Under the domain of phenomenological research, 

interviews are also considered as the main tool to explore individuals’ descriptions of their 

experience (Kvale, 1996).  An unstructured interview can foster an exchange where the test 

subjects are more comfortable than they might be in a structured interview (Ramos, 1989). 

Unstructured interviews are conducted without a formal template for asking questions.  The 

interviewer asks broad questions of the test subject, and the exchange is not unlike an informal 

conversation.  This differs from a structured interview as one would likely experience in a job 

interview.  Unstructured interviews are not intended to evoke set answers and the interview is 

guided by the responses given by the interviewee.  There is only a general theme in the make-up 

of the questions.  This format is also known as unstandardized interviews and is predicated on the 

assumption that not much information exists about the topic of the interview, and this makes the 

use of predetermined questions inappropriate (Ryan, Coughlan, & Cronin, 2009).   

 This research already gathered sufficient information relating to how pilots feel about 

automated systems in the cockpit via the conducted survey, but an imagined experience can differ 

from a real experience.  In the experimental part of this research, the goal was to understand 

whether the new phenomenon of reinforcing cues that pilots had never experienced before would 

make any difference in their opinions.  This question could have been asked as part of the survey 

as well, but the reliability of the answers may not have been as strong compared to giving feedback 

immediately after they experienced it in a simulated flight.  Unstructured interviews began by 
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asking the pilots what they think about the reinforced cue detection model without referencing the 

model itself.  They were asked if they felt the questions posed during their flight made a difference 

in their vigilance and situation awareness.  Based on their answers, other questions were asked 

relating to the first answer; either asking them to elaborate on their first answer or continue with 

their comment to the first question.  As an example, if a pilot referred to workload, the questioning 

continued as to how it affected the workload. 

 

Why Unstructured Interviews 

Unstructured or non-directive interviews differ from structured interviews in that they do 

not contain a set of prearranged questions.  Reinforcing cues was a new experience that pilots had 

not been exposed to before, and it was decided not to limit their answers by using structured 

questions.  Setting limiting boundaries for those questions could limit respondents’ creativity, 

might bias their answers, and might prevent them from providing further recommendations to take 

into consideration.  This interview structure is one where the answer to the first question leads to 

the second question.  With this method the next question is structured according to the last answer 

they gave.  Researchers cannot have the same knowledge on this subject that pilots have learned 

through their professional life.  This fact limits the questions of the researchers using structured 

interviews.  Unstructured interview methods, in contrast, allowed the researchers to learn more 

from the pilots since it gave them the freedom to elaborate on their ideas.  At the same time, the 

researcher had the control to redirect the pilot if they started to wander far from the subject matter.  
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CHAPTER IV 
 

RESULTS OF THE SURVEY AND REINFORCED CUE DETECTION MODEL 
 

 

Exploratory Data Analysis of the Survey    

The survey opened with a Yes/No consent question.  If the pilot answered “Yes,” he or she 

continued to the survey questions but if the answer was “No” the survey terminated.  The next 

twelve questions were demographic: (2) Age category ranging from 20 to 65 in 5-year increments 

plus a “65 and above” category; (3) Beginning year as a pilot; (4) Number of years flight 

experience; (5) Retired – Yes/No; (6) Current aircraft flown; (7) If retired, last aircraft flown; (8) 

Primary language spoken; (9) Seat – CAPT(1) or F/O(2); (10) Years/Months since completion of 

initial training in current aircraft; (11) Total flight time; (12) Total flight time in current aircraft; 

(13) Time in FMS equipped aircraft (other than your current aircraft) by type with the 15 most 

widely used FMS equipped aircraft listed plus and other category.   

Questions 14 through 51 were Likert-style survey questions with anchors including, 1 – 

strongly agree, 2 – agree, 3 – neither agree nor disagree, 4 – disagree, to 5 – strongly disagree.  

Total of five domains are; Trust, Interface, Monitoring, Policies and Training-Performance, and 

were randomly selected for insertion of one negatively worded consistency question each to assess 

internal validity.  The questions are listed in the Appendices section. 

From an initial pool of 79 survey participants, two were eliminated since they did not 

answer 3 or more questions.  If the pilot omitted only one or two answers, the rest of their answers 

were included and the missing answers were assigned option 3; the neither/nor option.  For the 

seventy-seven (77) pilots who completed the survey, their demographics were as follows. 
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• Primary language: Turkish 26, English 18, Portuguese 13, German 5, Dutch 7, French 

3, Danish 1, Italian 2, Spanish 1, and Hungarian 1.  Thus, survey results may reflect 

the perceptions of primarily North and South American, European, and Middle 

Eastern pilots. 

• Age categories count: 20-25 age 1; 26-30 age 12; 31-35 age 28; 36-40 age 11; 41-45 

age 7; 46-50 age 11; 51-55 age 5; 56-60 age 1; and 61-65 age 1. 

• Years flight experience: minimum = 3, median = 9, average = 14.1, and maximum = 

45.  Years flight experience by age group: 26-30 age 6.67 years; 31-35 age 10.0 

years; 36-40 age 10.6 years; 41-45 age 20.4 years; 46-50 age 28.6 years; 51-55 age 

33.5 years; 56-60 age 34.0 years; and 61-65 age 45.0 years. 

• Flight time: minimum 250 hours, median 4,500 hours, average = 6,722, and 

maximum = 21,400 hours  

• Seat 1(Captain) – 24 and seat 2(F/O) – 53. 

 
Internal Consistency Reliability Check 

The questions analysed for consistency are summarized in Table 2. Question 14, 

“automation in the cockpit made my job easier”, was checked for consistency by question 19, 

“automation in the cockpit made my job harder”.  Responses were compared for two questions.  

When asked if  “ automation made the pilots’ lives easier” a total of 75 out of 77 pilots agreed or 

strongly agreed their job got easier while 69 out of 77 disagreed or strongly disagreed that 

“automation made their lives harder”. 

Question 34 was also cross checked by Question 37.  Question 34 was “response to visual 

warnings are better than aural (sound) alerts, and Question 37 “response to aural (sound) alerts are 
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better than visual warnings”.  While a total of 34 pilots disagreed or strongly disagreed that they 

respond to visual warnings better than sound alerts, a total of 37 pilots agreed or strongly agreed 

they respond to sound alerts better than visual alerts. This was one of the highest scored 

consistency checks which showed that most pilots prefer aural alerts over visual warnings.  

Question 47’s consistency was evaluated by Question 50.  While Q47 stated, “difficulties 

in understanding automation can be overcome solely by training”, Q50 stated “training is not the 

only answer for improving a pilot’s ability to understand cockpit automation”. A total of 56 pilots 

agreed or strongly agreed and a total of 15 pilots disagreed or strongly disagreed with Question 

47. For question 50, a total of 47 pilots agreed/strongly agreed and a total of 17 pilots disagreed, 

strongly disagreed.  Analysis of Kendall’s tau correlations and consistency rates can be found in 

Table 3.   

Table 2: Questions analysed for pilot response consistency. 

Question St. Agr. Agree Neither Disagree St.Dis. 
Q14 37 38 1 1 0 
Q19 0 5 3 42 27 
Q34 2 14 27 32 2 
Q37 7 30 26 14 0 
Q47 16 40 6 14 1 
Q50 7 40 13 13 4 

 

Table 3.  Confidence in pilot response consistency. 
 

Question 
Pair 

Consistency 
Rate 

Kendall’s 
Tau 

2_Sided p- 
value 

Q14-Q19 87.66% -0.619 1.3153e-08 
Q34-Q37 92.90% -0.647 8.8317e-11 
Q47-Q50 32.92% -0.371 0.0001774 
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Explaining the Consistency Rates: 
 

Q14-Q19: 
 

(69/75)(144/154)+(1/5)(6/154)+(1/3)(4/154)=87.66% 
 

Q34-Q37: 
 

(14/16)(30/154)+(34/37)(71/154)+(26/27)(53/154)=92.9% 
 

Q47-Q50: 
 

(17/56)(73/154)+(15/47)(62/154)+(6/13)(19/154)=32.92% 
 

Although the results for Q47-50 does not show significant consistency, having -0.371 

Kendall’s Tau value and 0.0001774 two-sided p value indicates statistical significance and it 

represents sufficient consistency. 

Exploratory Frequency Analysis for the Survey  

Table 4 presents the response percentage distributions by domain and question.  Bold-italic 

percentages identify the modal class.  Where two classes were within 5%, both are identified as 

modal classes. 

In the Trust domain, there was strong agreement or agreement with questions Q14T 

automation makes job easier, Q15T automation increases engagement, Q16T rely on automation, 

Q17T automated flight planning and workload, Q20T comfort with VNAV and LNAV autopilot 

controls, Q21T confusing communications from automation, and Q22T rely on flight envelope 

protection.  There was disagreement or strong disagreement for question Q18T “I trust automation 

more than myself”.   
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Table 4:  Response percentage distributions by domain (Bold-Italics = modal class). 
 

Domain Question Strongly 
Agree 

Agree Neither/Nor Disagree Strongly 
Disagree 

Trust 
 

14T 48.0519 49.3506 1.2987 1.2987 0 
15T 16.8831 40.2597 31.1688 11.6883 0 
16T 11.6883 42.8571 28.5714 14.2857 2.5974 
17T 29.8701 51.9480 3.8961 2.5974 11.6883 
18T 1.2987 11.6883 18.1818 33.7662 35.0649 
20T 0 5.1948 7.7922 54.5454 32.4673 
21T 2.5974 12.9870 27.2727 50.6493 6.4935 
22T 5.1948 31.1688 20.7792 28.5714 14.2857 

Monitoring 23M 31.1688 50.6493 11.6883 6.4935 0 
24M 51.9480 42.8571 2.5974 2.5974 0 
25M 24.6763 55.8441 15.5844 3.8961 0 
26M 1.2987 2.5974 18.1818 57.1428 20.7792 
27M 2.5974 35.0649 16.8831 41.5584 3.8961 
28M 1.2987 3.8961 11.6883 54.5454 28.5714 
29M 46.7532 44.1558 5.1948 2.5974 1.2987 
30M 0 6.4935 5.1948 53.2467 35.0649 
31M 12.9870 76.6233 10.3896 0 0 
32M 20.7792 61.0389 7.7922 10.3896 0 

Interface 33I 2.5974 3.8961 16.8831 57.1428 19.4805 
35I 48.0519 50.6493 1.2987 0 0 
36I 19.4805 63.6363 10.3896 6.4935 0 
37I 9.0909 38.9610 33.7662 18.1818 0 
38I 0 12.9870 16.8831 62.3376 7.7922 

Policies 39P 36.3636 57.1428 6.4935 0 0 
40P 18.1818 66.2237 5.1948 10.3896 0 
41P 15.5844 20.7792 19.4805 25.9740 18.1818 
42P 9.0909 40.2597 27.2727 22.0779 1.2987 
43P 33.7662 63.6363 2.5974 0 0 
44P 12.9870 55.8441 25.9740 5.1948 0 
45P 25.9740 46.7532 14.2857 10.3896 2.5974 

Training/Perf. 46R 49.3506 31.1688 14.2857 3.8961 1.2987 
48R 41.5584 31.1688 12.9870 10.3896 3.8961 
49R 46.7532 42.8571 6.4935 3.8961 0 
50R 9.0909 51.9480 16.88311 16.88311 5.1948 
51R 12.9870 77.9220 5.1948 3.8961 0 

 

 

Histogram for the Question 14 displayed below indicated majority of the pilots think 

automation in the cockpit made their lives easier. 
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Figure 13: Answers for Q14 
 

Answers for question 15 indicated more than 16% of the pilots strongly agreed and more 

than 40% of them agreed that automation kept them engaged throughout their flights; a 

good portion (31%) of the pilots were hesitant, neither agreeing nor disagreeing to this 

question.  

 
 

Figure 14: Answers for Q15 
 

The majority of the pilots (43%) agreed that they rely on automation to keep them safe while 28% 

chose not to give a clear answer to this question by choosing neither to agree or disagree on 

Question 16.   
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Figure 15: Answers for Q16 
 
 

The answers given for Question 17 favored the use of automation with a majority of pilots strongly 

agreed or agreed that using flight management computers for flight planning lowered their 

workload.  Almost 52% of them agreed on this with nearly 30% of the pilots strongly agreeing 

while almost 12% of the respondents strongly disagreeing. Results are illustrated by the histogram 

below. 

 
 

Figure 16: Answers for Q17 
 
 

Up to this point although a majority of pilots agreed that automation is beneficial in many respects, 

they do not trust automation more than they trust themselves. Results are illustrated below for 

Question 18 as expressed “I trust automation more than I trust myself”.  
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Figure 17: Answers for Q18 
 

Question 19 was designed to check the consistency of participants’ answers; we did not include 

those answers since it provided a consistency of 87.66%.  Question 20 asked conversely as follows: 

I don’t feel comfortable when autopilot controls vertical and horizontal flight paths (VNAVs and 

LNAVs).  Results shown below. The majority of pilots disagreed or strongly disagreed to this 

statement and it reflects their overall positive attitude for these automated systems.  A total of 87% 

of participants opposed the statement in this question. 

 

 
 

Figure 18: Answers for Q20 
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Question 21 stated “The biggest obstacle to overall flight safety is ad-hoc and confusing 

communication from automated systems in the cockpit” and again the majority of pilots (50.6%) 

disagreed and over 6% strongly disagreed however there was a large percentage of the pilots who 

chose the neither/nor option with over 27%.   

 
 

Figure 19: Answers for Q21 
 

Question 22 indicated varying results, 31% of the pilots agreed while almost 28% of them 

disagreed in their response to this question, “when equipped, I rely on flight envelope protection 

to protect my aircraft and passengers in case I make any mistake”.  Mixed responses indicate 

contradictory feelings amongst the pilots regarding flight envelope protection on their aircraft. 

Results are displayed in Figure 20 below. 

 
Figure 20: Answers for Q22 
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In summary, in the Trust domain of the survey, pilots reported that automation is beneficial, makes 

piloting easier, and increases their engagement with and reliance on automation, but pilots do not 

trust automation over their own judgment.  

Questions between 23 and 32 were designed to understand pilots’ attitude for cockpit 

automation regarding “Monitoring” of automated systems.  The answers for Question 23 indicated 

great consensus amongst pilots as they agreed or strongly agreed that they always check their next 

waypoints and are aware of pending heading changes with a total of 81.8% as displayed by the 

histogram in Figure21. 

 

 
 

 
Figure 21: Answers for Q23 

 
 

Question 24 about checking the primary flight display very often brought similar answers as shown 

below in Figure 22. 
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Figure 22: Answers for Q24 
 

 
Most pilots agreed/strongly agreed again on question 25 which stated “Information represented 

on the Control Display Unit (CDU) is clear and easy to understand”; almost 56% of them agreed 

and nearly 25% strongly agreed on this statement. 

 

 
 

Figure 23: Answers for Q25 
 

Question 26 projected a reverse attitude towards automation by stating “Automation increased my 

workload, created more need to monitor”; 57% disagreed and 20% strongly disagreed while 18% 

chose neither/nor option for this question.  Again, pilots did not think automation increased their 

workload. 
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Figure 24: Answers for Q26 
 
 

One the most interesting results came out of the answers for Question 27 which stated, “During 

the automated flight phase, I am sometimes surprised by actions automation takes”, bimodal 

results indicated mixed feelings about “automation surprises”, while 35% of the pilots stated they 

were sometimes surprised, 41 % of them disagreed with this statement. 

 

 
Figure 25: Answers for Q27 

 

Question 28 was another reverse statement saying, “When I use autopilot to control HDG, SPD or 

ALT I feel automation creates distraction”.  As a consensus pilots disagreed or strongly disagreed 

about this with a total of more than 83% responses. 
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Figure 26: Answers for Q28 

 

The majority of pilots agreed/strongly agreed that they check the flight mode annunciator often to 

understand the autopilot modes as asked in Question 29.  Almost 47% of them strongly agreed, 

and 44% of them agreed.  A total of 91% positive responses indicated that the majority of the pilots 

are diligent in checking autopilot modes. 

 
Figure 27: Answers for Q29 

 
 

Question 30 was in the same direction as Question 28; statement made in a negative way to 

understand pilots’ input towards the autopilot control modes.  A total of 88% pilots disagreed or 

strongly disagreed to the statement “When I use autopilot to control HDG, SPD or ALT my 

understanding of the big picture diminishes”. Once again pilots’ answers were in support of 

automated systems.  Results are shown in the Figure 28 below. 
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Figure 28: Answers for Q30 
 

Pilots stated in Q31 (with 79% agreed and 13% strongly agreed) they could predict the behavior 

of the automation with ease; a histogram demonstrates the results in Figure 29. 

 

 
 

Figure 29: Answers for Q31 
 
 

They also had a consensus in Q 32, using autopilot to control HDG, SPD or ALT their workload 

becomes lower with a total of 82% positive responses. 
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Figure 30: Answers for Q32 
 

Questions between 33 and 38 were designed to understand pilots’ attitude towards the 

cockpit automated systems’ interface and how it relays information to the pilots. When the 

question 33 directed as “overall information on the aircraft is too much” almost 77% of the pilots 

disagreed or strongly disagreed. 

 

 
 

Figure 31: Answers for Q33 
 

Question 34 and reverse question 37 for the consistency check provides insight about how pilots 

think auditory warnings are a lot more useful for them versus visual warnings.  Since the 
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consistency rate was very high with 92.9%.  Kendall’s Tau value was -0.647 with 8.8317e-11 two-

sided p value.  Q 34 was eliminated and only, Q37 will be analyzed in upcoming paragraphs. 

Almost all the pilots confirmed that if a master caution alert occurs, it takes their attention 

immediately. Total of 98.7% of the respondents agreed or strongly agreed on this statement 

indicated by Q35. 

 

 
 
 

Figure 32: Answers for Q35 
 
 

Question 36 was about pilots’ trust for the master caution and warnings.  Over 83% of the pilots 

agreed or strongly agreed that they believe the caution alerts are real, 10% chose not to give a 

specific answer, while 6.5 % stated they do not think all those alerts are real by choosing the 

disagree option on the survey. 
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Figure 33: Answers for Q36 
 

Question 37 is one of the benchmarks for this research and it needs to be considered for future 

designs of the flight deck and any other human machine collaborative systems.  These answers 

also indicate great consistency when it was asked reversely in Q 34.  Pilots want more auditory 

feedback versus visual.  Histogram indicates the results for Q37 below in Figure 34. 

 

 
 

Figure 34: Answers for Q37 
 

Answers for Q38 reversely asked as “overall available information on the aircraft is not enough”; 

over 70% of the respondents disagreed or strongly disagreed about this. Pilots do not think the 

information is not enough, and, also with Q33, they do not think the information is too much; the 
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majority is satisfied with the amount of information displayed.  Questions between 33 and 38 were 

designed to understand pilots’ attitude towards the cockpit automated systems’ interface and how 

it relays information to the pilots. 

 

 
 

Figure 35: Answers for Q38 
 

Questions between 39 and 45 were designed to understand pilots’ attitude towards the 

policies applied by their companies and regulatory institutes.  Almost all of the respondents, a total 

of 93.5% agreed or strongly agreed they always follow SOPs when they were facing a problem, 

indicated in Q39. 

 
 

Figure 36: Answers for Q39 
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Majority of pilots agreed/strongly agreed that automation should prevent aircraft from exceeding 

its performance envelope as stated in Q40.  Though 84.5% of the pilots agreed or strongly agreed 

on this question, over 10% disagreed. 

 
 

Figure 37: Answers for Q40 
 

Question 41 was not an easy one to answer, although pilots’ personal information is kept 

anonymous, they might still have some skepticism about this assurance, since almost 20% of the 

pilots chose neither/nor option; while 36% of the pilots agreed or strongly agreed, 44% of them 

disagreed/strongly disagreed when the question directed as: 

 “My airline doesn’t allow me to fly manually; they force me to fly automated 

most or all of the time”.  

The results indicate significant variety amongst the pilots, a large portion agreed, and another big 

portion disagreed, which could be the result of different cultures in different airlines from different 

countries.  This might be related not only to their geographical culture but also a result of different 

companies following different rules and regulations.  Also, this may be the result of a newer 

generation of pilots who are learning to fly with automation integrated into their routine training 

versus older pilots who learned how to fly manually first and then integrated automated systems 

into their flying routines. Results of this question are shown in figure 38. 
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Figure 38: Answers for Q41 
 

Many respondents, almost 50%, agreed or strongly agreed that they try to understand the bigger 

picture before following the SOP’s when a problem develops in the cockpit as asked in question 

42.  Also notable in the responses of this question was the large number of pilots (27%) who did 

not want to answer this by choosing the neither/nor option; 23% disagreed or strongly disagreed 

on this. 

 
 

Figure 39: Answers for Q42 
 
 

There was a great consensus on the answers for Q43.  97.5 % pilots agreed or strongly agreed 

saying they always adhere to CRM rules, only 2.5 % chose neither/nor option.  No pilot chose 

the disagreed or strongly disagreed option. 
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Figure 40: Answers for Q43 
 

Question 44 was designed to understand pilots’ view regarding if automation should comply with 

CRM rules and 69% agreed or strongly agreed, almost 26% chose neither/nor option, and just over 

5 % of the pilots disagreed on this question. None of the pilots chose the strongly disagree option.  

This shows pilots believe automation in the cockpit should comply with CRM rules, as they are 

required to do.   

 
 

Figure 41: Answers for Q44 
 

Question 45 stated that pilots should be warned when exceeding flight envelope protections but 

not have their control restricted.  Answers for this question confirmed most of the pilots 
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agreed/strongly agreed on it with 72%, while only 13% disagreed or strongly disagreed, and just 

over 14% of the respondents chose neither/nor option. 

 

 
 

Figure 42: Answers for Q45 
 

Questions between 46 and 51 were designed to understand pilots’ concerns towards current 

training protocols required by their companies and rule makers such as FAA. Question 46 stated 

“a high level of competency in manual flying skills would benefit the industry”, over 82% of the 

pilots agreed or strongly agreed about this, 13% disagreed or strongly disagreed, and 14% chose 

neither/nor option.  Pilots’ responses aligned with current literature and research that emphasizes 

the importance of keeping manual flight skills proficient. 

 

 
Figure 43: Answers for Q46 
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Question 47 designed to check consistency for the responses of Q50 and therefore the responses 

for 47 will not be included.  Question 48 was an extension of the Q46. Over 72% of pilots 

believed that a number of recent airline accidents could have been avoided if pilots had been 

more proficient in manual flying skills, 13% disagreed or strongly disagreed, while 14% chose 

neither/nor. 

 

 
 

Figure 44: Answers for Q48 
 
 

Question 49 gathered pilot’s input regarding if airline companies should emphasize more training 

of manual flight skills to keep these skills current.  Almost 90% of the pilots agreed or strongly 

agreed on this statement while only 3.9 disagreed.  There was no strongly disagreed option 

chosen, and only 6.5 % of the respondents chose neither/nor option. 
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Figure 45: Answers for Q49 

 

Question 50 was designed to check the consistency of the Q47.  The question was written as 

“training is not the only answer for improving a pilot’s ability to understand cockpit automation”.  

A majority of the pilots, 61%, agreed or strongly agreed, and 21% of the pilots disagreed or 

strongly disagreed, while 16 % chose neither/nor option. 

 

 
 

Figure 46: Answers for Q50 
 
 

Question 51 was the last question of the survey in Likert scale and referred to pilots who trained 

in the last 15 years. It asked about learning the management of automation as an integral part of 

learning to fly an aircraft. Over 90 % of the pilots agreed or strongly agreed to this statement 
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while less than 4 % disagreed.  There was no strongly disagreed chosen for this question.  The 

histogram presented below in Figure 47. 

 

 

 

Figure 47: Answers for Q51 

 

As of summary of exploratory data analysis; in the Trust domain, there was strong 

agreement or agreement with questions Q14T automation makes job easier, Q15T automation 

increases engagement, Q16T rely on automation, Q17T automated flight planning, Q20T comfort 

with VNAV and LNAV autopilot controls, Q21T clear and orderly automation communications, 

and Q22T rely on flight envelope protection.  There was disagreement or strong disagreement for 

question Q18T, I trust automation more than myself.  In summary, pilots reported that automation 

communication is beneficial, makes piloting easier, and increases their engagement with and 

reliance on automation, but pilots tend to not trust automation over their own judgment. 

In the Monitoring domain, pilots were strongly agreed with Q24M checking primary flight 

display often and Q29M checking the flight mode annunciator often.  Pilots agreed with Q23M 

always check next waypoint, Q25M control display information is clear, Q26M automation does 
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not increase the workload (this question asked reversely), Q28M autopilot HDG, SPD, or ALT 

control does not create distraction (this question directed in the reverse way as well), Q30M 

autopilot HDG, SPD, and ALT control does not diminish their understanding (this was another 

reverse question directed as “when I use autopilot to control HDG, SPD or ALT my understanding 

of the big picture diminishes”), Q31M predict automation behaviour, and Q32M autopilot HDG, 

SPD, or ALT control reduces workload.  Q27M, surprised by automation, was bi-modal with 35% 

agreeing and 41% disagreeing.  These responses indicate that pilots interact with automation, 

believe they can predict its behaviour, think that autopilot and general automation control reduces 

their workload, increases understanding of their aircraft, and increases understanding of flight 

parameters.  However, significant portion of the pilots are sometimes surprised by automation 

actions, which is consistent with current literature. 

In the Interface domain, pilots’ agreed with Q35M master caution alerts get their attention 

immediately and with Q36M to trust master caution and warning alerts.  Pilots disagreed with 

Q33M available aircraft information is too much, and Q38M available aircraft information is not 

enough.  Combining end-anchoring points Q33M and Q38M, on average pilots consider aircraft 

information about right.  Pilots also disagreed with Q34M that they respond to visual warnings 

more than aural warnings and this was confirmed by their response to Q37M in which they agreed 

they react to aural alerts better than visual warnings.  

In the Policy domain, pilots agreed with Q39P always follow SOP when facing problems, 

Q40P automation should prevent exceeding performance envelope, Q42P understand broader 

picture before following SOPs, Q43P adhere to CRM principles, Q44P regulations should require 

automation to adhere to CRM principles, and Q45P automation should warn of flight envelope 
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exceedance but not restrict pilot control.  From the uniformly distributed responses to Q41P, 

airlines are not consistent in their view of policies requiring automated versus manual flight control. 

In the Training/Performance domain, pilots strongly agreed with Q46R high level of 

manual flying skills would be beneficial, Q48R recent accidents/incidence could have been 

avoided with more manual flying skills proficiency, and Q49R airlines should facilitate more 

training in manual flying skills.  Pilots disagreed with Q47R sole training can overcome difficulties 

understanding automation and they agreed with Q51R pilots trained in last 15 years learn to 

manage automation as part of learning to fly an aircraft.   

 

Correlations Between Answers and Demographics 
 

A summary of the Spearman’s rho analysis results is listed below in Table 5. This analysis 

was published earlier (Taylor & Cotter, 2017).  The majority of the questions showed little 

correlation to demographics while some presented significant values as in question 41 with its 

correlations in all demographic metrics. Some other questions presented significant values when 

their correlation was analyzed with certain demographics.  
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Table 5.  Spearman’s rho Analysis Results of Correlations, (Taylor and Cotter 2017) 
 

 AGE CORRELATION 
 

FLIGHT TIME 
CORRELATION 

 

SEAT CORRELATION 
 

Question P Value rho value P Value rho value P Value rho value 
14T 0.4435 -0.09649845  0.3614 -0.1148596  0.3318 -0.1220778  
15T 0.3202 0.1250285  0.04319* 0.2519175* 0.8869 -0.0179602  
16T 0.5583 -0.0737674  0.8297 -0.0271408  0.7818 -0.0349471  
17T 0.5853 -0.0687781  0.9951 0.00080337 0.03171* -0.267215* 
18T 0.5481 -0.0756889  0.4077 0.1042358  0.938 -0.0098359 
20T 0.5592 0.07360259  0.8818 0.01876821  0.6101 -0.0642827  
21T 0.5879 -0.0682990 0.9369 0.01000136  0.5361 -0.0779754  
22T 0.4776 -0.0894496  0.5731 0.07103051  0.1678 -0.172994 
23M 0.04345* 0.2516151* 0.6483 0.05750804  0.2598 -0.1415972  
24M 0.5449 0.07630008  0.3147 -0.1264407  0.1452 -0.1825885 
25M 0.2558 0.1427997 0.7 0.04859951  0.1564 -0.1777282 
26M 0.3989 0.1061991  0.3101 0.1276432  0.05153 -0.2428171 
27M 0.446 0.09597444  0.1787 0.1687076  0.6148 -0.0634507 
28M 0.4317 -0.099004 0.7136 -0.0463009 0.9408 0.009394 
29M 0.353 -0.116861  0.0577 -0.2368299 0.3799 -0.1105084  
30M 0.1669 -0.1733567 0.02365* -0.281050* 0.6862 -0.0509563  
31M 0.03671* 0.260065* 0.2806 0.1356485  0.1892 -0.1647623  
32M 0.1534 -0.1789733 0.1522 -0.1794904 0.9465 0.0084826 
33I 0.6624 0.0550644 0.99 0.0015979 0.09948 -0.206118 
34I 0.6101 -0.0642900  0.2133 -0.1562617  0.6852 0.0511191  
35I 0.588 -0.0682904 0.7578 0.0388974  0.2837 -0.1347652  
36I 0.9289 -0.0112800  0.7835 -0.0346698 0.9727 -0.0043356 
37I 0.87 0.0206588 0.5206 -0.0809387  0.3691 0.1130216  
38I 0.6135 0.0636755  0.6829 -0.0515121  0.4697 0.0910665 
39P 0.4703 -0.0909405  0.2352 -0.1491154  1   0  
40P 0.1731 -0.1708912  0.1959 -0.1623196  0.7852 0.0343832  
41P 0.01108* -0.314239* 0.03674* -0.260028* 0.007595* 0.329557* 
42P 0.3224 -0.1244548  0.5532 -0.0747318  0.9632 0.0058482 
43P 0.959 -0.0065038  0.4221 0.1010808  0.297 -0.1311213  
44P 0.09568 0.2084284 0.09762 0.2072422 0.188 -0.165213  
45P 0.7993 -0.0320841 0.355 -0.1163816  0.3255 -0.1236797  
46R 0.5701 -0.0715828 0.00345* -0.359411* 0.3839 0.1095972  
47R 0.05738 -0.2371291 0.2914 -0.1326616  0.7442 -0.0411555 
48R 0.7875 -0.0340155 0.02281* -0.282718* 0.339 0.1202913  
49R 0.9436 0.0089371 0.08947 -0.2123669 0.1349 -0.1873406  
50R 0.3504 0.1174969  0.9684 -0.0050142  0.2981 0.130825  
51R 0.9168 0.0132042 0.639 0.0591495 0.4091 -0.1039135  

 
 

Question 23M, “I always check my next waypoint and I’m aware of pending heading 

changes” was part of the Monitoring dimension and showed statistical significance when 

analyzed by age group.  This question indicated correlation with 0.04345 p-value and 0.25161 
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rho value.  Younger pilots more strongly agreed they always check their next waypoints and that 

they are aware of pending changes.  Another statistical significance was revealed in Question 31. 

Younger pilots more strongly agreed they could foresee the behavior of automation when 

compared to older pilots.  Though no survey respondents choose disagree or strongly disagree, 

there was a correlation between age and the remaining answers of strongly agree, agree, or neither 

nor.  For these alternatives, 12% strongly agreed, 79% agreed, and 9% choose the neither/nor 

option. Advances in automation and the emphasis on its benefits without adequate consideration 

of its limitations have resulted in airline companies requiring their crews to use automated systems 

throughout most of their flights.   The question broaching this issue brought the most variety of 

answers.   Question 41 stated “my airline doesn’t allow me to fly manually, they force me to fly 

automated most or all of the time” had variety of the answers selected.  Results of this question 

indicated older pilots were more likely to agree that their companies do not allow them to fly 

manually when compared to younger pilots’ responses. This could be a result of different training 

experiences for younger and older pilots regarding their interaction with cockpit automation.  The 

newer generation of pilots had automation integrated in their training early while older pilots 

learned to fly manually first and later added automation. More recently trained pilots see flying 

with highly automated cockpit systems as an expected and normal routine. They usually have 

much less experience conducting flights manually (Taylor & Cotter, 2017). 

Crew Resource Management is a critical element of the Aeronautical Decision Making 

(ADM) process and discourages pilots from acting macho or being too obedient and encourages 

them to speak up freely when needed regardless of seniority or cultural differences (FAA Advisory 

Circular, 2004).  Complying with CRM by using standard call outs and sharing the work amongst 

the cabin crew is very important for any flight.  During the student pilots’ training they need to 
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follow these procedures.  A pilot flying cannot transfer the flight controls to the pilot monitoring 

without performing the necessary multi-way call-outs. Call-outs are very important in aviation to 

maintain situational awareness in the flight crew (Degani & Wiener, 1994). In contrast, the 

automated systems in the cockpit such as autopilot can disengage without these call-outs; a short 

sound from the autopilot and it assumes all the controls are transferred to the pilot (Taylor & 

Cotter, 2017).  These are some of the known current problems with automation and human 

interaction. The survey question related to CRM and the pilot’s responses is consistent with the 

current literature. Question 44 asked if Regulations should require cockpit automation to adhere 

to the principles of CRM when feasible. Majority of the participants agreed or strongly agreed, less 

than one fourth chose not to answer (neither agreed or disagreed) and only few pilots disagreed.   

There was no correlation between the answers and age groups in this question regarding if 

automated systems should adhere to CRM principles, but this question is important for the 

governance aspect of the human-machine interaction in the cockpit (Taylor, 2017). 

Question 15, “automation keeps me engaged throughout the flight”, showed some 

statistical significance regarding the correlation between pilot answers and flight time.  The results 

indicated pilots with less flight time were more likely to agree with the statement compared to 

pilots with more flight time.  Pilots with fewer flying hours more strongly agreed that automation 

keeps them engaged with their flight compared to pilots with more flight time.  A small percent of 

respondents strongly agreed while the largest block of them, agreed with this question.  

Surprisingly, one-third of the pilots taking the survey did not want to give a clear answer.  Current 

literature emphasizes the tendency for automation to create complacency (Parasuraman & Manzey, 

2010), which leads to pilots losing their situation awareness as seen in out of the loop phenomenon 
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(Endsley, 1999).  This could explain why one-third of the participants did not want to answer this 

question.  Only 12 % of them disagreed and there were no strongly disagreed answers.   

Question 30 indicates statistical significance with a p-value of 0.02365.  It demonstrates 

negative correlation between the flight time and respondent answers.  Pilots with more flight time, 

did not strongly agreed with the statement “…their understanding of the picture does not diminish 

when they use HDG, SPD or ALT as autopilot control inputs…” versus pilots with less flight time. 

The majority of the answers were positive regarding the automated systems but 7% of the pilots 

agreed that their overall understanding of the big picture diminishes.  Although 88% of pilots 

answered positively for automation, pilots with fewer flight hours placed more emphasis on 

automated systems in the cockpit. 

Question 41 brought the most varied answers as discussed earlier.  Pilots with more 

experience (flying years) agreed that their companies did not allow them to fly manually and are 

required to fly with automated systems most of their time in the air.  This issue was brought up in 

the Department of Transportation’s (DOT) January 2016 Audit Report, and their findings point 

out that pilots have few opportunities to practice their manual flying skills.  The FAA only suggests 

maintaining manual flying skills by flying without automated systems when feasible, but they do 

not currently mandate any protocol for manual flight operation.  Some pilots have difficulties when 

they must suddenly assume manual control when the autopilot disconnects unexpectedly.  

Currently no regulators mandate a specific protocol requiring airline pilots to have training in the 

monitoring of automation as well as how they should maintain manual flying skills.  The FAA 

does not monitor air carriers regarding how much manual flight time their pilots are getting. There 

is a need for specific auditing programs to ensure airlines have sufficient training programs in 
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place to develop and maintain manual flying skills for their pilots (Office of Inspector General 

Audit Report, 2016, Taylor & Cotter, 2017). 

Question 46 stated, “A high level of competency in manual flying skills would benefit the 

industry”, to which most respondents agreed with 49% of them strongly agreeing, 33% of them 

agreeing, 13% of them neither agreed or disagreed, whereas only 4% disagreed and 1% strongly 

disagreed.  Spearman correlation analysis indicated that pilots with more flight time were more 

likely to answer strongly agree than the pilots with less flight time.  

 A similar result was seen in question 48 “A number of recent airline accidents/incidents 

could have been avoided if the pilots had been more proficient in manual flying skills”, again, 

pilots with more flying hours more strongly agreed to this statement.  

Current commercial airliners use a two-pilot cockpit crew.  The captain, who has seniority 

for the aircraft they fly, and a first officer (F/O) who often has less flight time in that aircraft.  In 

some situations, the captain and first officer have a close number of total flight hours but the F/O 

may have significantly fewer hours for that specific aircraft model. 

In this survey during the analysis of the trust dimension, Question 17 stated “Through use 

of FMC (Flight Management Computer) for automated flight planning (e.g. planning of route, 

waypoints etc.) my overall workload is lower” a Spearman analysis indicated some significance 

with 0.03171 p-value, and the correlation was negatively related.  Captains were less likely to 

agree that their workload is getting lower compared to first officers.   There were not any 

significant correlations between seat positions and monitoring or interface and training dimensions 

but question 41 in the policies dimension indicated statistical significance with p value 0.007595.  

Question 41 stated, “… my airline doesn’t allow me to fly manually, they force me to fly automated 
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most or all of the time.”  First Officers more often agreed their companies do not allow them to 

fly manually versus Captains. 

 
 
Multivariate Joint Correspondence Analysis 
 

Based on the principle inertias (eigenvalues) the following data in Table 6 were extracted: 

Table 6.  Dimensions and eigenvalues 

Dimension Value % Cum% Scree 
Plot 

1 0.058953 27.3   27.3   ******** 
2 0.022531 10.4   37.7   *** 
3 0.013277   6.1 43.8   ** 
4 0.012667    5.9 49.7 ** 

 
 

Questions related to the five domains were analyzed by Multivariate Joint Correspondence 

Analysis using the R software tool. The first 4 dimensions accounted for approximately 50% of 

the variation in the response data.  Based on these four dimensions the results are presented as the 

relation between Dimension 1 and 2, Dimension 2 and 3, and Dimension 3 and 4.  Some of the 

outliers came as a result of the first two-dimensional relation explained below.  Q 14T:4, 17T:3, 

24M:3, 26M:2, 42P:5, 45P:5, and 48R:5 were not within the 95% prediction interval.  Their 

existence represented themselves on the X and Y axis, in Figure 48.  
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Figure 48: MJCA for Dimensions 1 and 2 
 

The study of the MJCA and the histogram in Figure 13 revealed that the disagreed response 

(option 4) in Question 14T created noise and should be omitted.  The resulting data supports a 

strong conclusion that the majority of pilots surveyed think automation in the cockpit made their 

job easier.  The consensus increased to 98.6% from 97.4 %.  Question 17T likewise suffered from 

noise created by the “disagreed” option and, when omitted, the strongly agreed/agreed option 

increased from 81.81% to 85%.  Question 24M also had noise associated with the answers for 

option 3 (neither/nor) and a recalculation showed 97.3% of pilots agreed they are checking their 

PFD very often during their flight; an increase of 2.5% after the noise was omitted.  MJCA of Q26 

revealed that option 4 (agreed) created noise and its omission showed 79.99% of the pilots 
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disagreed/strongly disagreed with the statement that automation increased pilots’ workload and 

created more to monitor.  This result was 77.92% previously.  MJCA indicated in Question 42P, 

option 5 (strongly disagreed) is a very minor outlier that, once omitted (strongly disagreed), 

slightly changed the results from 49.34% to 49.99% as the percentage of pilots who follow their 

SOP’s when a problem develops in the cockpit.   

Figure 49 shows in Dimension-2-3 that data point 49R:4 was also an outlier.  Option 4 

(disagree) answers were noise.  Its omission showed a stronger consensus that the majority of the 

pilots think that “Airline companies should facilitate more training to ensure that manual flying 

skills are kept current”, with the percentage raising from 89.61% to 93.24%. 

  
Figure 49: MJCA for Dimensions 2 and 3 
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MJCA results for dimension 3-4 are displayed below in Figure 50.  Several question 

components were found to be outliers in the diagram and omitted.  These included questions 22T 

and 33I, option 1 (strongly agreed) as well as question 43P option 3 (neither/nor option).  After 

omission of option 1 for question 22T, the results changed to 33.63% for option 2 (agreed) where 

it had been 31.16% before.  Answers for the strongly disagreed/disagreed option (option 4 and 5) 

increased from 42.85% to 45.2%.  Regarding question 33I, once the answers for option 1 (strongly 

agreed) were omitted, the results for disagreed/strongly disagreed increased to 76.61% from 

74.62%.  A similar evaluation for question 43 produced the strongest consensus of the survey from 

the pilots for this question.   

 

Figure 50: MJCA for Dimensions 3 and 4 
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Regarding question 33I, once the answers for option 1 (strongly agreed) were omitted, the results 

for disagreed/strongly disagreed increased to 76.61% from 74.62%.  A similar evaluation for 

question 43 produced the strongest consensus of the survey from the pilots for this question.  After 

eliminating answers for option 3 (neither nor), 100% of survey pilots agreed/strongly agreed to the 

statement “I always adhere to the principles of Crew Resource Management (CRM)”. 

Multiple joint correlation analysis results as included demographics displayed on 

Figure 51, Figure 52 and Figure 53.  Results indicated few outliers and generally the survey 

responses indicated overall stability.  From the responses a pilot with 300 hours flight time, 

another pilot with 5,600, one with 2,300, and another pilot with 1,700 flight hours 

demonstrated noise but this did not have a large impact on the analysis. 

 

 

Figure 51: MJCA with Demographics for Dimensions 1 and 2 
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 Figure 52: MJCA with Demographics for Dimensions 2 and 3 
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Figure 53: MJCA with Demographics for Dimensions 3 and 4 
 

 
The raw data extracted with R software for MJCA is included in Appendices G and H.  
 

Q52 and Q53 were optional open-ended questions designed to give the pilots a platform to 

speak freely about what they had to say relating to this subject.  Their responses are presented as 

they provided with only some spelling error corrections and included in Appendix I.  

 
Second Phase of the Research:  Experiment to Test Reinforced Cue Detection (RCD) 

Model 

Overview of the Experimental Design  

The current survey showed that pilots sometimes observe cockpit automation taking 

actions that surprise them.  Based on these findings, an experiment was designed using a PC 

based flight simulation system and working commercial airline pilots were recruited to test a new 
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technique to increase vigilance while operating aircraft that are under automated control during 

the majority of their flight time. 

 Different equipment failures were presented to the test subject pilots in each of the three 

flights that each pilot undertook.  Those three flights were different routes.  The flight routes 

chosen for the experiment were 5 hours in duration on average to increase the risk that the pilots 

would lose situation awareness.  Although longer flights could be more beneficial, the 737-800 

operational range was a limitation.  The CDU represented in the PMDG cockpit has a Failure 

menu that can be accessed, and different equipment can be programmed to fail after a certain 

amount of time.  This failure panel screen is shown in Figure 54.  One or two of the three flights 

also included questions for the pilot about the status of their flight parameters such as closest 

divergent airport.  The questions were designed to prompt the pilot to gather more information 

regarding the progress of their flight.  Every flight included some type of failure in the on-board 

navigation equipment.  Each pilot responded to one system failure for each of the three flights 

they conducted.   No flights lasted more than one hour. Only nine test subject pilots could be 

used. 

Pilots participating in the study had an average age of 41.1 with a standard deviation of 

6.22, minimum age of 33 with a maximum age of 50.  The average flight hours logged of those 

pilots were 6,800; standard deviation was 5143 with a minimum flight time of 1,000 and a 

maximum of 16,000.  There were eight male and one female pilot who participated. 

The questions asked during one or a maximum two out of the three flights were intended to help 

the pilot gather up cues regarding their aircraft’s status.  The five questions that were asked in 

random order at random intervals included the following: 

• What is the next waypoint? 
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• What is the speed of the aircraft? (They normally answered for both air speed and 

vertical speed) 

• What is your divergent airport in case of emergency? 

• What is your current altitude? 

• What is the fuel flow? 

• What is the distance to your final destination? 

 

 

 

 

Figure 54.  PMDG 737 software system failure option screen  

 

Experiment Preparation 

 To create a flight with no visual references, a weather control add on software program was 

configured to limit visibility from the cockpit.  All simulated flights took place at night.  The room 

in which the simulation was set up was dark with a dim light used to allow the pilots to see their 
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controls.  The first flight for each pilot was a familiarization flight.  The plane simulated was a 

737-800 but not all pilots were rated on this aircraft, however they were shown how to access 

controls in the cockpit and use the yoke, rudder pedals, throttle quadrant, and mode control 

hardware. 

 

Interviews with the Pilots who Participated in the Experiment 

Pilot #919631: Three flights were simulated, the first being NYC to Panama City, Panama.  The 

flight included questions to the pilot about his flight path, and state of his aircraft; he answered all 

questions.  Both FMC’s were failed using the PMDG failure control panel which can be accessed 

using the in-cockpit CDU.  Care was taken to prevent the test subject pilot from knowing when a 

failure would occur or what the failure would be.  He stayed on the flight plan by using the 

available data.  Second flight, no cues applied, it was from LAX to ORF, both IRS’s were failed.  

He stated that no communication with ATC was a limitation.  Third flight was from Dubai to IST, 

cues were applied, both FCC’s failed.  He continued to fly and when asked if questions related to 

flight path improved his vigilance, he said it improved his situation awareness.  Although the 

question was not specifically about situation awareness, he used that term to express his experience 

with the questions he had to answer.  Pilot was male, 46 years old at time of experiment and had 

16,000 + hours on FMC cockpits and flies as a captain.   

 

Pilot #743170:  The first flight was NYC to Panama City, Panama.  Both IRS’s were failed. He 

said he would use standby instrument to continue and ask ATC for vectors to closest airport.  He 

looked at instruments to determine which airport was closest.  Questions related to flight path were 

asked during the flight until the failure.  Second flight was from LAX to ORF, both FMC’s were 
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failed.  No cues applied.  Third flight was Dubai to IST.  Both FCC’s were failed.  No cues applied.  

Pilot stated questions gave him better situational awareness than he would have had. Pilot was 

male, 35 years old at time of experiment and had 7,000 hours on FMC cockpits and flies as a first 

officer. 

 

Pilot #808571:  The first flight was from NYC to Panama City, Panama. Questions were asked 

about flight status. Both FMC’s were programmed to fail.  He said he would get VOR’s to 

determine which heading to fly to.  He stated he would send a text message to dispatch that the 

FMC’s failed.  He said the questions asked of him during the flight related to flight path definitely 

helped his situation awareness (his own words).  The second flight was LAX to ORF.  Both the 

IRS’s failed as planned.  No cues were applied.  The third flight was Dubai to IST, both FCC’s 

were failed.  Cues applied again.  After the failure, pilot said he knows where he is and can hand 

fly although he might have an increased workload.  When asked if questions helped, he said yes.  

Pilot was 37 years old and had 6000 hours on FMC cockpits and flies as a first officer.   

 

Pilot #540385:  The first flight was from LAX to ORF with no cues applied.  Both FMC were 

failed.  The second flight was from NYC to Panama City, Panama.  No cues were applied.  Both 

FCC’s were failed.  The third flight was from Dubai to IST.  Questions related to flight path asked 

throughout the flight until the failure.  He said questions created distraction and he had to perform 

multitasking, he said the questions posed increased his situation awareness and agreed that he was 

more alert when the failure was induced.  Pilot was a 37 year old male with 9000 flight hours on 

FMC cockpits and was serving as a captain. 
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Pilot #801675:  The first flight was NYC to Panama City, Panama, with no cues applied.  Both 

FMC’s were failed.  The second flight was from LAX to ORF, no cues applied.  Both FCC’s were 

failed. The third flight was from Dubai to IST.  Questions related to flight path asked up until the 

time of FCC failure.  When asked if having questions asked on third flight compared to no 

questions on first two flights improved his vigilance, he said no but soon added he felt the alternate 

airport question may have helped because “I wasn’t really thinking about an alternate airport”. 

This particular pilot had experience with long haul flights, therefore a question was asked of him 

about longer flights; if he was flying long haul flights, would these questions increase his vigilance, 

he quickly said yes.  Long haul flights have a much greater cruise period between top of climb and 

top of descent and it may be harder for pilots to remain engaged with their aircraft’s status in this 

scenario.  Pilot was 42 year old male with 13,000 hours on FMC cockpits and serving as a captain. 

 

Pilot #259452: The first flight was NYC to Panama City, Panama. No cues were applied.  Both 

FCC’s were failed. The second flight was from LAX to ORF. No cues applied.  Both IRS’s failed.  

The third flight was Dubai to IST.  Questions related to flight path were asked throughout the flight 

until failure. Both the FMC’s failed.  Pilot said she needs to check the non-normal checklist.  She 

tried to re-engage autopilot then said it was not engaging.  When questioned if the queries asked 

during the flight increased her vigilance, she said probably not.  She said she normally would have 

a paper copy of the flight release and she would constantly go over that paper work.  Follow up 

questions were asked about long haul flights and if cues would help in that situation. She said she 

would still have to check along the route and they plot the waypoints on a separate map.  Pilot said 

she is always cross checking her plane’s position and status of the flight.  She keeps herself alert.  

When discussing about human dependence on automated systems and over reliance she said they 
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could over rely.  She asserted the worst flights for vigilance where 3-5 hour flights (not over water) 

that have a middle section with not as much to keep the crew busy. Operating in this flight scenario 

is harder to stay alert according to the pilot.  Pilot was a 33 year old female with 5000 flight hours 

in FMC cockpit.  She was currently on maternity leave during the experiment time.  She had served 

as a first officer before going on leave. 

 

Pilot #490817: First flight was NYC to Panama City, Panama. Both FMC’s failed.  Questions were 

asked over course of flight about flight path and aircraft status.  After the failure he said he needs 

to obtain the frequencies for VOR and radar vectors back to JFK.  Second flight was LAX to ORF.  

Both FCC’s stopped working.  No cues applied.  Third flight was from Dubai to IST.  Questions 

related to flight path asked over course of flight.  Both IRS’s failed.   He recognized the navigation 

failure. Pilot said he would use standby instruments and descend to get out of the minimum 

separation standard required at high altitude. He said he would notify ATC of instrument failure 

and use radar vectors to the nearest airport.  When asked if the questions during the flight helped 

his situation awareness at time of failure, he quickly said yes.  He said ATC will clear other aircraft 

from his area and he would use ball compass and standby attitude indicator.  He will leave reduced 

separation airspace.   Pilot was a 50-year old male with 3100 hours in FMC cockpit, retired from 

military, and serving as first officer. 

 

Pilot #783629: First flight was NYC to Panama City, Panama.  Both FCC’s malfunctioned.  No 

cues applied.  Second flight was from LAX to ORF.  Both IRS’s failed.  Cues presented over the 

course of the flight.  After failure, pilot said that he lost both navigation displays, noticed plane 

was climbing, and he moved the yoke to stop climb.  He said he would tell first officer to inform 
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ATC we lost all autopilot functions.  He then asked about using first officer display source to send 

data to his displays.  Said he would ask first officer to tell ATC we are declaring an emergency.  

Lost primary navigation and attitude indicator and ask ATC for lower or higher altitude to meet 

separation requirements.  He would ask ATC to clear traffic and ask ATC for a heading.  He would 

send his company messages that we declared emergency and where they want us to go.  Will look 

for a suitable airport.  Would seek out visual meteorological conditions (VMC) to reduce his 

dependence on instruments.  Third flight was from Dubai to IST.  Both FMC’s failed.  Cues applied 

as before with questions asked along the route.  He realized both FMC’s failed at the time of failure.  

He was asked if questions about flight path posed earlier had any impact on his vigilance?  He said 

he verified information asked in questions.  It made him more aware and prompted him to look 

and verify.  He said aviators should be checking all the time.  Stated questions helped a little to 

maintain vigilance.  Pilot said he does not fly long haul.  He said when asked these questions, his 

first thought was “what am I missing?”  Pilot was a 49-year old male, with 1100 hours on FMC 

cockpit and he flew as first officer.  He also had 3800 hours flying a F-18 fighter.  Made a statement 

that if he comes to a simulator at work, he is expecting to see some failures.   

 

Pilot #555687:  First flight was NYC to Panama City, Panama.  Both FMC’s failed.  Questions 

asked over course of flight regarding flight status.  He recognized he lost FMC.  Stated he would 

give airplane to first officer and get out the checklist.  He ascertained his location.  Would talk to 

company if ACARS still works.  Said he can navigate VOR to VOR.  He may not get to final 

destination.  He thinks he will not have a problem if he needs to land.  Pilot stated he will not 

declare an emergency, but I would change my destination.  Would check out max landing weight.  

Stated he would use checklist to check circuit breakers and the like.  Pilot would get NAV data 
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from his tablet.  He said the questions might have helped him respond better when the emergency 

happened.  He said he was already on alert as he expected failures while flying in a simulator.  

Second flight was from Dubai to IST, both IRS’s failed.  No cues applied.  He started talking on 

his own, referencing questions asked during his previous flight and he said the question about the 

diversion airport made him think.  At close to the end of his second flight, he started talking on his 

own.  He was referring to talking to other pilots in the cockpit in order to keep their brain busy.  

Navy taught him about the curve regarding being under tasked or over tasked and the benefit of 

being in the middle of the curve.  He needs other activities to do to engage himself such as talking 

to the other pilot.  This helps keep the mind engaged he said.  He spontaneously mentioned he 

needed something to keep him alert. Third flight was LAX to ORF.  Both FCC’s failed.  No cues 

applied.  Pilot was a 44-year old male, 1000 hours with FMC cockpit plus 2900 hours on F-18 in 

Navy. 

 

Evaluating the Results of the Experiment Using the Constant Comparative Method 
 

Glaser and Strauss (1967) laid the foundation of the constant comparative method (CCM) 

for qualitative types of analysis.  Constant comparative methodology compounded by comparing 

data established during qualitative research and built categories.  Glaser and Strauss’s constant 

comparative analysis is appropriate not only for new data but also for previously collected data 

(Glaser & Strauss, 1967).  Constant comparative analysis differs from analytic induction in that it 

can be used to build numerous categories relating to general problems.  CCM is more likely to be 

used in the study of qualitative information such as interviews, observations, etc. CCM consists of 

four stages: “(1) comparing incidents applicable to each category, (2) integrating categories and 
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their properties, (3) delimiting the theory, and (4) writing the theory” (Glaser & Strauss, 1967, p. 

105). 

 According to Boeije (2002) there is little specific guidance as to how to carry out a constant 

comparison.  She also stated that distinguishing between different types of comparison is not 

clearly explained in the literature.  Boeije emphasized all data should be matched with other 

applicable data.  Comparing data is a creative exercise and reflects the interaction between the 

researcher and the data over the course of data collection and interpretation (Strauss & Corbin, 

1998; Corbin & Strauss, 2008).  Interviews are transcribed and the data generated becomes input 

to support an analysis.  The goal is to ascertain the meaning of the data and reveal the perspectives 

of the group being studied (Boeije, 2002). 

After each simulated flight, test subject pilots were interviewed and their responses 

recorded.  Every pilot had flown with and without reinforced cues. These interviews were 

transcribed and the data analyzed.  Test subject pilot interviews were coded and placed in an Excel 

spreadsheet for pair-wise comparison of common theme agreement and theme disagreement 

between each pair of subjects.  Definitions of terms that evolved from the themes defined below: 

 

Communication (COM):  When a failure occurred, pilots were encouraged to talk out loud 

to reveal their mental model regarding how they will address the problem.  Some of them 

referenced talking to ATC immediately as they would like to gather as much information 

as is available outside the cockpit.  When pilots refer to “talking to ATC”, that action was 

coded as COM for communication.  The flight simulation did not include a simulation of 

ATC. 
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Situation Awareness (SA):  If the pilots referred Situation Awareness during or after flight 

simulation, the output was coded as SA. 

 

Navigation (NAV): After a failure, if pilots spoke about navigating without using the 

automated systems, it was captured as an input for the analysis and coded as NAV. 

 

Policy (P): If a pilot referenced communicating with his company’s dispatcher for decision 

support, this was captured as an input for the analysis and coded as P. 

 

Workload (WL): If a pilot referenced a change in his workload after a failure or anytime 

during the experiment this was captured as an input for the analysis and coded as WL.  One 

important experiment constraint was the lack of a First Officer so the pilot flying also had 

the duties normally handled by the pilot monitoring.  This naturally increased their 

workload.   

 

Abnormality Checks (AC): If a pilot referred to a checklist (normal or non-normal), that 

information was used as input and coded as AC.   

 

Cue Reinforcement (CR): If a pilot referenced the questions that were asked of them during 

the simulated flights with the goal of increasing their situation awareness, these comments 

were used as an input for the analysis with the code of CR. 
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Cue Distraction (CD):  If a pilot commented that answering the questions under the 

reinforced cue detection model might create distraction it was captured as input for the 

analysis and coded as CD. Again, not having a First Officer could have an impact because 

the test subject pilot had to fly the aircraft while answering the questions and may have 

been distracted but not talked about feeling distracted.  

 

Vigilance (V): If the pilots mentioned being vigilant during the interviews this data was 

recorded as input with the code of V. 

 

Automation Dependency (AD):  If the pilot discussed the issue of automation dependency 

during the interview this statement was considered an input and coded with AD. 

 

Table 7 and Table 8 indicate and summarize theme agreement and disagreement frequencies. 
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Table 7: Thematic Agreement and Disagreement from Pilot Interviews. 
 

Pilot Theme 
1 

Theme 
2 

Theme 
3 

Theme 
4 

Flight 
Reinfo
rcing 
Cues 

Benefi
cial 

Between 
Two 

Compariso
n 

Common 
Themes 

Discriminating 
Themes 

919631 COM SA V  Yes  743170 
 

COM, SA V 
808571 COM, SA NAV, WL, V 
540385 SA COM, CD, WL, 

V 
801675 SA COM, CR, V 
259452 SA COM, AC, 

NAV, AD, V 
490817 SA, COM NAV, V 
783629 SA, COM NAV, P, V 
555687 SA COM, AC, 

NAV, P, V 
743170 COM SA   Yes 808571 COM, SA NAV, WL 

540385 SA CD, COM, WL 
801675 SA COM, CR 
259452 SA AC, COM, 

NAV, AD 
490817 SA, COM NAV 
783629 SA, COM NAV, P 
555687 SA COM, AC, 

NAV, P 
808571 NAV COM SA WL Yes 540385 SA, WL CD, NAV, 

COM 
801675 SA CR, COM, 

NAV, WL 
259452 NAV, SA AC, COM, AD, 

WL 
490817 NAV,SA, 

COM 
WL 

783629 NAV, 
COM, SA 

P, WL 

555687 NAV, SA AC, COM, P, 
WL 

540385 CD WL SA  Yes 801675 SA CD, CR, WL 
259452 SA CD, AC, NAV, 

AD, WL 
490817 SA CD, NAV, 

COM, WL 
783629 SA CD, NAV, 

COM, P, WL 
555687 SA CD, WL, AC, 

NAV, P 
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Table 7: Thematic Agreement and Disagreement from Pilot Interviews (continued). 
 

Pilot Theme 
1 

Theme 
2 

Theme 
3 

Theme 
4 

Flight 
Reinfo
rcing 
Cues 

Benefi
cial 

Between 
Two 

Compariso
n 

Common 
Themes 

Discriminating 
Themes 

801675 CR SA   Yes 259452 SA NAV, AD, CR, 
AC 

490817 SA CR, NAV, 
COM 

783629 SA CR, NAV, 
COM, P 

555687 SA CR, AC, NAV, 
P 

259452 AC NAV SA AD Yes 490817 NAV, SA AC, COM, AD 
783629 NAV, SA AC, COM, P, 

AD 
555687 AC, NAV, 

SA 
P, AD 

490817 NAV COM SA  Yes 783629 NAV, 
COM, SA 

P 

555687 NAV, SA AC, COM, P 
783629 NAV COM P SA Yes 555687 NAV, P, 

SA 
AC, COM 

555687 AC NAV P SA Yes  555687   
 
 

 
Table 8: Summary of Common/Discriminating Themes. 

 
 

Total 
Common 
Themes 

Discriminating 
Themes 

SA 36 0 
COM 10 20 
NAV 10 20 

P 1 14 
WL 1 14 
AC 1 14 
V 0 8 

AD 0 8 
CD 0 8 
CR 0 8 

 
 
Interpretation 

A key finding from the survey results was that pilots are sometimes surprised by 

automation’s actions.  This could be because they are not able to follow the actions of automation 
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due to its design or whenever automation fails or reaches its design limits, pilots were already out 

of the loop due to their complacency to those systems.  Survey results framed the design of this 

experiment and input from the pilots participating in the flight simulations was consistent with the 

survey results.  It shows they believe they sometimes have a hard time following the automated 

systems’ actions. They think it is especially difficult during long flights. This supports the idea 

that the cue detection model could be useful. 

Using the phenomenological approach, the goal of this experimental design was limited to 

understanding the test subject pilots’ experiences when flying with and without the cue detection 

model.  For this reason, rather than asking a broad spectrum of questions, they were only 

interviewed regarding their experience with this additional model.  Overall, the results indicated 

that the majority of study pilots found the new model (asking them questions related to their flight), 

increased their situation awareness. They were more aware about the status of their aircraft when 

a failure was induced.  Generally, this new model helped them to remain engaged by increasing 

their vigilance.  CCM analysis indicated pilots are particularly concerned with SA since all pilots 

in the experiment referenced the need to maintain SA in some way.  Some of the pilots 

spontaneously mentioned there is a need to keep them alert while they are flying.  Some of them 

discussed their own solutions such as chatting with the other pilot in the cockpit.  Some of the 

pilots said the cue detection model was not needed, because they are expected to be aware of the 

status of their aircraft at all times.   However, when interviewed about long haul flights over land, 

the same pilot said more effort is required to stay alert in that scenario.  The consensus of all pilots 

who contributed to this research as a test subject was that long-haul flights require more effort to 

remain alert.  The Reinforced Cue Detection Model worked for its intended purpose.  Since this 

was a small-scale research, it could only be interpreted as an initial indication of the benefits of 
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the cue detection model, and it should be expanded to a larger scale research to allow for 

quantitative analysis.  This research should be viewed as reflecting pilots’ preference and not pilot 

performance.  

Pareto analysis of common theme agreement indicates that situation awareness (SA) was 

the most common with 36 pair-wise instances, followed by communication and navigation each 

with 10 pair-wise agreement instances each.  However, there were 20 pair-wise disagreements 

where pilots did not refer to communication or navigation as part of their information gathering 

and decision-making process.  Other information-gathering and decision-making pair-wise 

disagreements were policy, workload and abnormality checks with 14 each, vigilance, automation 

dependency, cue reinforcement, and cue distraction with 8 each.  Interestingly, there were 8 pair-

wise theme disagreements on the effects of cue reinforcement and cue distraction for maintenance 

of situation awareness.  The 8 pair-wise agreements and disagreement arose from two test pilot 

subjects.  One stated that cues were distracting, but the other indicted that cues helped maintain 

situation awareness.  However, when directly questioned about the usefulness reinforcing cues 

during flight to help maintain situation awareness upon encountering failures, all nine pilots replied 

that cues were useful in increasing decision-making vigilance under failure. 

In summary, all test subject pilots gathered information to maintain situation awareness for 

decision making; however, they varied in their approaches and techniques.  This observation 

agrees with finding in survey questions 23, checking waypoints, and 24, checking primary flight 

displays often, as part of information gathering for situation awareness.  Such variation strongly 

suggests that differences in natural cognitive processes and prior training contribute to how pilots 

gather information and apply it in flight and failure situation decision-making.  The disagreement 

on cue reinforcement, one test subject pilot, versus cue distraction, one test subject pilot, reflect 
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the differences in responses to survey question 37, response to auditory warnings are better than 

to visual warnings.  For question 37, 47% agreed or strongly agreed, 33.8% were neither, and 

18.2% disagreed.  This strongly suggests that cue reinforcement must be designed to accommodate 

information gathering preferences.   
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CHAPTER V 

 
ANALYSIS AND SUMMARY OF THE RESULTS 

 

 

Overview of Findings 

The survey indicated pilots favored automated cockpit systems and believe their job is 

made easier through their use.  Most also think their workload was lowered with the help of 

automated systems, but, when asked, they reported that they do not trust automated systems more 

than they trust themselves.  They also gave some divergent responses when they indicated they are 

sometimes surprised by actions that automation takes.  This finding aligns with the literature.  They 

think the information displayed is neither too much nor too little.  One of the important findings 

from the survey was pilot agreement that they respond to aural feedback better than visual feedback.  

This should be taken into consideration when designing future cockpits; pairing visual alerts with 

sound alerts.  The “Bitchin Betty” warning system model from the Navy might be applicable for 

commercial air transports.   

Another controversial result came from the question if their airline does not allow them to 

fly manually, i.e., they are forced to fly using automated systems most or all the time.  A large 

percentage of survey takers agreed or strongly agreed while another large percentage disagreed or 

strongly disagreed.  This could be the result of several factors, one of them being concerned about 

stating they are rarely allowed to fly manually and possibly upsetting their employer despite the 

anonymity assured them in the consent form.  Another factor could be cultural differences found 

in different nations as well as the culture of the company they are flying with and varying company 

policies.  For instance, during the flight simulation research it was observed that some of the 

regional airline pilots prefer to fly manually and they stated their companies allow them to fly 
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manually if they chose to.  Another factor for these controversial answers could be the fact that the 

younger generation of pilots are learning how to fly with automation since the beginning of their 

training.  They might not feel they are being forced by their companies, or it could be their 

preferred method to fly with automated systems most of the time.   

One of the major findings of this research was how to take advantage of crew resource 

management (CRM) and apply it in a broader context whereby automated systems are expected to 

conform to CRM rules, as human pilots are required to do.  CRM has become a key method to 

resolve issues in the cockpit.  CRM was developed as a reaction to several accidents where 

crewmembers did not work collaboratively, and bad outcomes resulted.  Every student pilot in 

ground school is taught to comply with CRM rules.  Currently, CRM rules apply only to human 

crews.  Development of automated systems in the cockpit over the last 30 years has made those 

systems more independent and capable and has raised concerns about the human-automation team 

as reflected in the literature over the same time frame.  As autonomous systems were developed, 

those systems became more human like, started making their own decisions, and sometimes 

overrode human decisions.  Autonomous automation systems are acting more human-like, but they 

are not complying with the requirements specified in CRM rules.  Survey questions were directed 

to line pilots, who are the end users and work with those systems routinely.  Only 5% of the survey 

participant pilots disagreed that automation should comply with CRM rules.  This should be an 

indication in the future development of autonomous automation systems.  Specifically, they should 

have the same responsibility if they are acting as a team member.  Currently, automated systems 

have great authority but are lacking responsibility.   

Pilots also emphasized that keeping manual flight skills current is very important.  They 

are also aware that, over last few decades, pilots are learning how to fly with automation as an 
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integral part of their flight training.  Pilots are sometimes surprised by the actions taken by 

automated systems, and this implies they do not understand every action taken by automation.   

 

Research Implications 

Current literature of “pilots being out of the loop”, “automation complacency”, and 

“overreliance on automated systems”, as well as their direct feedback in this survey supports a 

need to continue the research on how to help pilots when they are working with those automated 

systems.  With the equipment explained above in the methodology section, a simulator was 

constructed with adequate fidelity to emulate a flight similar to the test subject pilots’ routine flight 

experience.  This research strove to develop a solution to reduce, if not eliminate, the being out of 

the loop situation for the pilots.  Over the long term the overarching goals should be to create a 

new cockpit design that communicates to its human partner as they take actions and make decisions.  

Generating a whole new cockpit design is costly, and it is not practical to retrofit the large number 

of planes in use with new cockpits.  This research aimed to see if a small addition such as reinforced 

cue detection model will make a difference for the pilots when they face a failure after being out 

of the loop.  Pilots are more likely to get out of the loop during long haul flights.  The budget 

constraint prevented bringing a pilot for testing multiple times in this study.  Rather, they had to 

fly three different scenarios back to back over one session.  Nonetheless, this research indicates 

that future research could measure pilot performance based on the reinforced cue detection model 

in a larger scale and that could be beneficial for the industry.  Human pilots are usually left as the 

authority for the final decision making when a failure happens, and, when they are making those 

decisions under time constraints, they use their own knowledge based on their experience 

employing the first best solution that comes to mind.  Because pilots will be the final decision 
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making authority, providing them some support should be emphasized, and this could be beneficial 

for the pilots and for industry.  Future research should include a simulation set up using the same 

pilots making several flights in different dates.  In addition to having a small number of pilot 

participants, the research flight runs made it apparent the test subject pilots would frequently look 

to ATC and dispatch services to aid them in their decision making.  The lack of ATC was a 

significant limitation to the simulation research. 

 

Research Limitations 

Pilot responses to the survey questions may have been affected by their company’s culture 

and indoctrination.  This impact is hard to measure. 

Air Traffic Control (ATC) is an integral part of the civil aviation system.  Ground based 

controllers monitor and provide guidance regarding the movement of aircraft in the air as well as 

on the ground.  The ATC system is made up of different control centers that pass control of aircraft 

as they progress through their flight, from the loading gateway to the disembarking gateway.  The 

types of ATC include tower, approach and departure, and en route controllers.  Takeoff and landing 

instructions are conveyed to pilots, and ATC informs the cockpit crews of updates involving 

weather, runway conditions and closures, and any other information that could impact the safety 

of a flight or its efficiency (Bureau of Labor Statistics, 2018).  

Increases in air traffic have inspired upgrades in the technology used in ATC.  One new 

technology is known as Automatic Dependent Surveillance-Broadcast (ADS-B) will semi-

automate some aspects of aircraft separation, allow for narrower minimum vertical separation 

requirements, and allow two planes to land on parallel runways simultaneously among other 

changes.  The ability for aircraft to “self-separate” without direct guidance from ATC is a 
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significant milestone in aviation development (Safety Management System FAA, 2013).  ADS-B 

will be a change from radar-based surveillance to a satellite based global positioning system, and 

it will increase flight crew awareness of other traffic on the ground and in the air (Richards, 

O’Brien, & Miller, 2010). 

Commercial airline flight crews utilize support from ATC in routine flights and often 

contact ATC when a malfunction of equipment occurs.  Communication with ATC could be a 

mundane matter or something impacting safety.  When onboard navigation systems fail, crews will 

quickly contact ATC to ask for the space around them to be cleared of traffic and for frequent 

updates as to their position.  Planes flying at high altitude may need to descend to a lower altitude 

because of the requirements to use automated altitude control equipment at high altitude.  It is 

difficult to maintain the required separation margin when manually flying an airliner.   Descending 

to a lower altitude reduces efficiency because of air density and associated increases in drag and 

thus fuel management issues may require the plane to land before it reaches its destination airport.  

Depending on the severity of the emergency, a crew may ask for vectors to the closest alternate 

airport and for emergency vehicles to be made ready.   

Test subject pilots were made aware before the experimental flights that no simulation of 

ATC would be provided.  There are some simulated ATC environments such as PilotEdge in use 

among PC flight simulator hobbyist, but this was not practical to employ in the simulator setup.  

Use of these systems implies the presence of traffic in the airspace the test subject pilots would be 

flying in and this would have undoubtedly raised the fidelity of the experiment but at increased 

cost and complexity in terms of managing the experimental flights.  One alternative would have 

been to have ATC “light” with a dedicated controller managing only the test subject flight but able 

to interact with the pilot in real time and in a manner for which they are trained.  There are also 
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some add on software products for Prepar3D that use artificial intelligence to simulate ATC 

interaction. These options could be explored in future research.  Eight pieces of software were 

needed to manage each flight in a Microsoft Windows environment and one concern was stability 

of the software as crashes of component parts or “blue screens of death” could have ruined a test 

flight.  As it was, all test flights were completed without any software failures.   

Lack of ATC did impact the flight simulation experiments and results should be considered 

with this in mind.  Test subject pilots would vocalize their intent to contact ATC and describe how 

an ATC interaction might go and how this would impact their decision-making process.  They 

frequently referred to ATC after an equipment failure and described the information they would 

be seeking and specific assistance they would request.  Lacking this information from ATC, they 

could not respond to the situation in the same manner as they might on an actual flight.  Modern 

airliners have redundancy in navigation methods, but they require maps, VOR frequencies, and 

reference charts that were not available to them and, thus, using ground-based navigation aids was 

problematic.  This is not to say the experiments lack validity.  Adding ATC would have increased 

the complexity of the design greatly and added to the cost.  One benefit of the absence of ATC is 

the pilots “thought out loud” more concerning their decision making and this may have revealed 

more about their thought processes than might have been observed otherwise. 

 The aircraft simulated in the experiment normally operates with two pilots but in the 

research only one pilot could be tested, and this increased their workload.  To adjust for this the 

test subject pilots verbalized what their instructions to a copilot would have been and expressed 

their mental model of how they would have reacted in an actual flight.   

Budget constraints required each test subject to conduct all flights in one session instead 

of over multiple days.  No flights without failure could be run in this circumstance and flight times 
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were also shorter than they would have been otherwise.  Lack of no failure flights increased their 

conditioning in that they expected a failure on each flight. 
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CHAPTER VI 

 
CONCLUSIONS 

 
 
 

Primary Contributions of This Study 

The survey in this research aligned with the majority of the findings in the literature.  The 

major contribution of the survey was how pilots perceive automated systems relative to CRM 

requirements.  This question was never considered before from the pilots’ perspective in terms of 

including the automated systems as a team member who will comply with CRM rules.  Many 

accident investigations cite pilot error as the primary causal factor.  With automated systems 

becoming more autonomous and making their own decisions while sometimes limiting human 

decisions, it should be regarded as a powerful team member with important input in the decision- 

making process.  CRM currently only refers to interactions among human crewmembers.  

Autonomous systems have grown in sophistication over the last few decades, giving them greater 

authority but not commensurate responsibility, and this created an imbalance in the decision 

equation.  Industry and regulators should consider a fresh approach for including automated 

systems as part of CRM rules.  

Another significant finding of the survey was that there is a consensus among pilots that 

aural warnings are needed more than visual warnings.  This input should be considered by the 

industry when designing cockpit automation systems.  Aircraft designers might consider pairing 

more visual warnings with aural warnings.  Pilots not only agreed with this as part of survey Likert 

scale questions but also spontaneously mentioned this when answering the survey open ended 

questions. They said that when they are overwhelmed with many other tasks, they are more likely 
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to miss visual cues, but, if visual warnings are paired with aural alerts, they stated that they will 

more likely pay attention to those warnings. 

The major contribution of this research is trying to find a solution for mitigating pilot 

complacency by increasing situation awareness.  Many accidents that involve impact with terrain 

happen within minutes of the first indication of a failure.  In this case, pilots do not have a lot of 

time to review the Quick Reference Handbook (QRH) and find a solution that they can reference 

from a SOP.  Some of the accidents cannot be described in a SOP, because they are novel, and no 

SOP exists yet.  In these cases, pilots have to improvise a novel solution for the problem.  Pilots 

are ultimately responsible for finding a solution for these catastrophic events.  Having pilots out 

of the loop is not a new phenomenon, but it has not been addressed specifically.  The usual 

approach was more training or more automation (on a path to eliminating the pilot).  Until the air 

transport system reaches a full autonomous level, we should explore how to maximize the benefits 

of both parties, human and automation.  Since pilots often have a very limited time to make their 

decision to prevent a crash, keeping their vigilance high throughout the flight is important.  Klein’s 

naturalistic decision-making model refers to making decisions under time constraints and most 

pilots apply this model if they don’t have any SOP’s from their memory.  That is why this research 

tries to strengthen human decision-making under time pressure by supporting their naturalistic 

decision making with collecting cues.  These research interviews indicated reinforcing cues could 

be beneficial.  

 

Generalizability of the Research  

Raja Parasuraman was a prominent researcher in the area of human factors with automated 

systems and published a paper in 1997 stating:  
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“System designers, regulators, and operators should recognize that overreliance 

happens and should understand its antecedent conditions and consequences.  

Factors that may lead to overreliance should be countered” (Parasuraman & Riley, 

1997).  

So far the aviation industry’s response has not taken the pilots out of the button pusher mode. 

Boeing recognized this problem and programmed some of their aircraft such as B777, B787, and 

newer models of B737 to prompt the pilots to touch a button or knob if a certain amount of time 

passes with no interaction with the control systems.  Pilots are a vital and unique asset in the 

cockpit and their contribution to safe flight should not be as a lab animal responding to a bell.  

Pilots have acknowledged that it can be difficult to stay cognizant of their aircraft’s status and have 

developed their own coping mechanisms, however the aircraft industry should work to design a 

system that helps them focus on maintaining situation awareness while still providing the benefits 

of automation.  As an industrial leader Boeing has a philosophy that supports pilots and their 

initiative to help them remain engaged.  This initiative should be recognized, but the solution 

should be more function oriented. 

Automation complacency is not limited to aircraft pilots.  Any highly-reliable automated 

systems, such as nuclear power plants, highly automated trains, and highly automated cars using 

driver assist technology, etc., create complacency.  A 2016 report from the NTSB regarding a fatal 

crash in Florida of a Tesla automobile cited the driver’s overreliance on vehicle automation as a 

contributing factor to the accident (NTSB, 2017).  If an operator is managing a system for long 

periods of time, such as a 3 to 5 hour shift, it is more likely he or she will get out of the loop and 

become a less effective monitor of the automated systems.  Other industries that use highly reliable 



 

 

131 

automated systems can use the proposed reinforced cue detection model over the naturalistic 

decision making to help their operators when they face unexpected events with time constraints.  

 

Future Research  

This research used a small number of pilots due to budget constraints.  This model should 

be re-tested with larger sample size.  As previously noted, the pilot’s inability to communicate 

with ATC in the event of a failure inhibited the realism of the cockpit simulation.  Future research 

should include ATC and dispatch in the simulation.  This will increase the fidelity, and, therefore, 

results could be measured quantitatively.  The small sample size of only nine pilots in the cockpit 

simulation may have limited the scope and depth of the test of reinforcing cues.  A larger sample 

of pilots in the simulated tests would yield more reliable inferences.  The time limitation 

necessitating three test flights in a single experimental setting may have affected experimental 

results.  A staggered test schedule with several days or weeks in between test flights for every pilot, 

four flights per pilot, longer flights of 3-5 hours each, and the inclusion of “non-failure” flights 

would be more realistic.  With a sufficient amount of funding, this research would be more 

beneficial for the industry.  A full time, high level subject matter expert (ATP license holder) that 

could help in the development of test flight failure scenarios and verify their applicability to the 

research would be beneficial.   This expert could also help evaluate the actions of the test subject 

pilots and help in post flight interviews.  
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APPENDIX E. Pilot-Automation Interaction Questionnaire 
 
Q1 Your personal information will not be associated with the answers that you give in this 
survey. Your personal information will be protected by the regulations of IRB Process.  Will you 
consent for this survey? 
 Yes (1) 
 No (2) 
If No Is Selected, Then Skip To End of Survey 
 
Q2 Your age bracket 
 
 20-25 
 26-30 
 31-35 
 36-40 
 41-45 
 45-50 
 51-55 
 56-60 
 61-65 
 65 and above 
 
Q3 Year you started to fly as a pilot 
 
Q4 Number of years you're flying 
 
Q5 Are you currently retired? 
 Yes (1) 
 No (2) 
 
Q6 Current Aircraft 
 
Q7 If retired, last aircraft flown 
 
Q8 Primary language spoken 
 
Q9 Seat (choose one) 
 CAPT (1) 
 F/O (2) 
 
Q10 Years/Months since completion of initial training in current aircraft 
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Q11 Total Flight Time 
 
Q12 Total Flight Time in your "current" aircraft 
 
Q13 Time in FMS (Flight Management System) equipped aircraft (other than your current 
aircraft) by type 
 B737-400 (1) ____________________ 
 B737-800 (2) ____________________ 
 B737--900 (3) ____________________ 
 B747-400 (4) ____________________ 
 B777 (5) ____________________ 
 MD 80-88 (6) ____________________ 
 MD 11 (7) ____________________ 
 A 320 (8) ____________________ 
 A 330 (9) ____________________ 
 A 340 (10) ____________________ 
 A 350 (11) ____________________ 
 A 380 (12) ____________________ 
 ERJs' (13) ____________________ 
 ATR 42-72 (14) ____________________ 
 Dash 8 (15) ____________________ 
 Other (16) ____________________ 
 
Q14 Automation in the cockpit made my job easier 
 Strongly Agree (1) 
 Agree (2) 
 Neither Agree nor Disagree (3) 
 Disagree (4) 
 Strongly Disagree (5) 
 
Q15 Automation keeps me to engaged throughout the flight 
 Strongly Agree (1) 
 Agree (2) 
 Neither Agree nor Disagree (3) 
 Disagree (4) 
 Strongly Disagree (5) 
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Q16 I rely on automation to keep me safe                                                                    
 Strongly Agree (1) 
 Agree (2) 
 Neither Agree nor Disagree (3) 
 Disagree (4) 
 Strongly Disagree (5) 
 
Q17 Through use of the FMC (Flight Management Computer) for automated flight planning (e.g. 
planning of route, waypoints etc) my overall workload is lower. 
 Strongly Disagree (1) 
 Disagree (2) 
 Neither Agree nor Disagree (3) 
 Agree (4) 
 Strongly Agree (5) 
 
Q18 I trust in automation more than I trust in myself    
 Strongly Disagree (1) 
 Disagree (2) 
 Neither Agree nor Disagree (3) 
 Agree (4) 
 Strongly Agree (5) 
 
Q19 Automation in the cockpit made my job harder 
 Strongly Disagree (1) 
 Disagree (2) 
 Neither Agree nor Disagree (3) 
 Agree (4) 
 Strongly Agree (5) 
 
Q20 I don’t feel comfortable when autopilot controls vertical and horizontal flight paths 
(VNAVs and LNAVs) 
 Strongly Disagree (1) 
 Disagree (2) 
 Neither Agree nor Disagree (3) 
 Agree (4) 
 Strongly Agree (5) 
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Q21 The biggest obstacle to overall flight safety is ad-hoc and confusing communication from 
automated systems in the cockpit. 
 Strongly Disagree (1) 
 Disagree (2) 
 Neither Agree nor Disagree (3) 
 Agree (4) 
 Strongly Agree (5) 
 
Q22 When equipped, I rely on flight envelope protection to protect my aircraft and passengers in 
case I make any mistake 
 Strongly Disagree (1) 
 Disagree (2) 
 Neither Agree nor Disagree (3) 
 Agree (4) 
 Strongly Agree (5) 
 
Q23 I always check my next waypoint and I‘m aware of pending heading changes 
 Strongly Disagree (1) 
 Disagree (2) 
 Neither Agree nor Disagree (3) 
 Agree (4) 
 Strongly Agree (5) 
 
Q24  I check my primary flight display very often throughout the flight 
 Strongly Disagree (1) 
 Disagree (2) 
 Neither Agree nor Disagree (3) 
 Agree (4) 
 Strongly Agree (5) 
 
Q25 Information represented on the Control Display Unit (CDU) is clear and easy to understand 
 Strongly Disagree (1) 
 Disagree (2) 
 Neither Agree nor Disagree (3) 
 Agree (4) 
 Strongly Agree (5) 
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Q26 Automation increased my workload, created more need to monitor 
 Strongly Disagree (1) 
 Disagree (2) 
 Neither Agree nor Disagree (3) 
 Agree (4) 
 Strongly Agree (5) 
 
Q27 During the automated flight phase, I am sometimes surprised by actions automation takes 
 Strongly Disagree (1) 
 Disagree (2) 
 Neither Agree nor Disagree (3) 
 Agree (4) 
 Strongly Agree (5) 
 
Q28 When I use autopilot to control HDG, SPD or ALT I feel automation creates distraction. 
 Strongly Disagree (1) 
 Disagree (2) 
 Neither Agree nor Disagree (3) 
 Agree (4) 
 Strongly Agree (5) 
 
Q29 I check the flight mode annunciator very often to understand which mode the autopilot 
flight director system is in (what autopilot is doing) 
 Strongly Disagree (1) 
 Disagree (2) 
 Neither Agree nor Disagree (3) 
 Agree (4) 
 Strongly Agree (5) 
 
Q30 When I use autopilot to control HDG, SPD or ALT my understanding of the big picture 
diminishes 
 Strongly Disagree (1) 
 Disagree (2) 
 Neither Agree nor Disagree (3) 
 Agree (4) 
 Strongly Agree (5) 
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Q31 I can predict the behavior of the automation with ease 
 Strongly Disagree (1) 
 Disagree (2) 
 Neither Agree nor Disagree (3) 
 Agree (4) 
 Strongly Agree (5) 
 
Q32 When I use autopilot to control HDG, SPD or ALT my workload gets lower. 
 Strongly Disagree (1) 
 Disagree (2) 
 Neither Agree nor Disagree (3) 
 Agree (4) 
 Strongly Agree (5) 
 
Q33 I think the overall amount of information available on my aircraft is too much. 
 Strongly Disagree (1) 
 Disagree (2) 
 Neither Agree nor Disagree (3) 
 Agree (4) 
 Strongly Agree (5) 
 
Q34 My response to visual warnings is better than aural (sound) alerts 
 Strongly Disagree (1) 
 Disagree (2) 
 Neither Agree nor Disagree (3) 
 Agree (4) 
 Strongly Agree (5) 
 
Q35 When a master caution and warning alert occurs; it gets my attention immediately 
 Strongly Disagree (1) 
 Disagree (2) 
 Neither Agree nor Disagree (3) 
 Agree (4) 
 Strongly Agree (5) 
 
Q36 When a master caution and warning alert occurs; I trust the alert signals are a real event 
 Strongly Disagree (1) 
 Disagree (2) 
 Neither Agree nor Disagree (3) 
 Agree (4) 
 Strongly Agree (5) 
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Q37 My response to aural (sound) alerts is better than visual warnings 
 Strongly Disagree (1) 
 Disagree (2) 
 Neither Agree nor Disagree (3) 
 Agree (4) 
 Strongly Agree (5) 
 
Q38 I think the overall amount of information available on my aircraft is not enough 
 Strongly Disagree (1) 
 Disagree (2) 
 Neither Agree nor Disagree (3) 
 Agree (4) 
 Strongly Agree (5) 
 
Q39 When I face a problem in the cockpit I always follow the SOP’s  (Standard Operating 
Procedure) before trying another approach to solve the problem 
 Strongly Disagree (1) 
 Disagree (2) 
 Neither Agree nor Disagree (3) 
 Agree (4) 
 Strongly Agree (5) 
 
Q40  In most cases an automatic system should prevent the aircraft from exceeding its 
performance envelope 
 Strongly Disagree (1) 
 Disagree (2) 
 Neither Agree nor Disagree (3) 
 Agree (4) 
 Strongly Agree (5) 
 
Q41 My airline doesn’t allow me to fly manually; they force me to fly automated most or all of 
the time. 
 Strongly Disagree (1) 
 Disagree (2) 
 Neither Agree nor Disagree (3) 
 Agree (4) 
 Strongly Agree (5) 
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Q42 When a problem develops in the cockpit, I always try to understand the broader picture 
before I follow the SOP’s. 
 Strongly Disagree (1) 
 Disagree (2) 
 Neither Agree nor Disagree (3) 
 Agree (4) 
 Strongly Agree (5) 
 
Q43 I always adhere to the principles of Crew Resource Management (CRM) 
 Strongly Disagree (1) 
 Disagree (2) 
 Neither Agree nor Disagree (3) 
 Agree (4) 
 Strongly Agree (5) 
 
Q44 Regulations should require cockpit automation to adhere to the principles of CRM when 
feasible. 
 Strongly Disagree (1) 
 Disagree (2) 
 Neither Agree nor Disagree (3) 
 Agree (4) 
 Strongly Agree (5) 
 
Q45 In most cases an automatic system should warn the crew of flight envelope exceedance but 
not restrict pilots’ control 
 Strongly Disagree (1) 
 Disagree (2) 
 Neither Agree nor Disagree (3) 
 Agree (4) 
 Strongly Agree (5) 
 
Q46 A high level of competency in manual flying skills would benefit the industry 
 Strongly Disagree (1) 
 Disagree (2) 
 Neither Agree nor Disagree (3) 
 Agree (4) 
 Strongly Agree (5) 
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Q47 Difficulties in understanding automation can be overcome solely by training 
 Strongly Disagree (1) 
 Disagree (2) 
 Neither Agree nor Disagree (3) 
 Agree (4) 
 Strongly Agree (5) 
 
Q48 A number of recent airline accidents/incidents could have been avoided if the pilots had 
been more proficient in manual flying skills. 
 Strongly Disagree (1) 
 Disagree (2) 
 Neither Agree nor Disagree (3) 
 Agree (4) 
 Strongly Agree (5) 
 
Q49 Airline companies should facilitate more training to ensure that manual flying skills are kept 
current. 
 Strongly Disagree (1) 
 Disagree (2) 
 Neither Agree nor Disagree (3) 
 Agree (4) 
 Strongly Agree (5) 
 
Q50 Training is not the only answer for improving a pilot’s ability to understand cockpit 
automation 
 Strongly Disagree (1) 
 Disagree (2) 
 Neither Agree nor Disagree (3) 
 Agree (4) 
 Strongly Agree (5) 
 
Q51 Most pilots trained in the last 15 years learn the management of automation as in integral 
part of learning to fly an aircraft. 
 Strongly Disagree (1) 
 Disagree (2) 
 Neither Agree nor Disagree (3) 
 Agree (4) 
 Strongly Agree (5) 
 
Q52 Please describe your overall experience with automated systems in the cockpit and how it 
affects your piloting skills. 
 
Q53 What design improvements would you recommend to enhance the communication between 
automation and the pilots to increase flight safety? 
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APPENDIX F. Survey Questionnaire-Results Using the Survey Tool QualtricsTM  (Raw 
Data, As Is At The Moment Of Extraction) 

 
Q1 - Your personal information will not be associated with the answers that you give in this 
survey. Your personal information will be protected by the regulations of IRB Process.  
Will you consent for this survey? 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 

Your personal information 
will not be associated with 

the answers that you give 
in this survey. Your 

personal information will 
be protected by the 
regulations of IRB 

Process.  Will you consent 
for this survey 

1.00 2.00 1.02 0.13 0.02 163 

 
 
 

# Answer % Count 

1 Yes 98.16% 160 

2 No 1.84% 3 

 Total 100% 163 
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Q2 - Your age bracket 

 
 

# Field Minimum Maximum Mean Std Deviation Variance Count 

1 Your age bracket 1.00 9.00 3.94 1.69 2.87 79 
 
 
 

# Answer % Count 

1 20-25 1.27% 1 

2 26-30 16.46% 13 

3 31-35 36.71% 29 



 

 

163 

4 36-40 13.92% 11 

5 41-45 8.86% 7 

6 45-50 13.92% 11 

7 51-55 6.33% 5 

8 56-60 1.27% 1 

9 61-65 1.27% 1 

10 65 and above 0.00% 0 

 Total 100% 79 
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Q3 - Year you started to fly as a pilot 
 

Year you started to fly as a pilot 

1997 

2012 

1985 

2011 

1998 

2009 

.2010 

2000 

2010 

1999 

2007 

2006 

1991 

2011 

2009 

2011 

2007 

2005 

2010 

2007 

2009 

2003 

19 

2008 

2008 



 

 

165 

20 

2007 

2008 

2011 

2011 

16 

2005 

2005 

6 

2009 

2005 

2008 

2005 

2009 

2010 

2000 

2012 

1990 

1990 

2010 

1986 

2001 

2013 

1988 

2013 

1991 

2010 

2006 



 

 

166 

2005 

30 

1981 

1978 

1982 

1996 

1981 

2004 

1999 

1999 

1993 

1970 

2011 

1999 

2007 

1981 

2007 

18 

2007 

1982 

1999 

1986 

1992 

1985 

1986 

1979 
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Q4 - Number of years you're flying 
 

Number of years you're flying 

19 

4 

30 

5 

17 

6 

5 

16 

6 

16 

8 

9 

24 

5 

7 

5 

9 

10 

6 

9 

6 

10 

6 

7.5 

7 
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11 

8 

7 

4 

5 

26 

7 

11 

7 

6 

10 

8 

10 

6 

6 

16 

4 

26 

25 

5 

30 

15 

3 

31 

3 

25 

6 

9 
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10 

17 

34 

38 

33 

19 

34 

12 

16 

16 

22 

45 

5 

16 

8 

34 

8 

30 

8 

33 

8 

29 

23 

30 

29 

36 
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Q5 - Are you currently retired? 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 Are you currently 
retired? 1.00 2.00 1.99 0.11 0.01 78 

 
 
 

# Answer % Count 

1 Yes 1.28% 1 

2 No 98.72% 77 

 Total 100% 78 
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Q6 - Current Aircraft 
 

Current Aircraft 

B738 

Boeing777 

A-320 

B777 

B777 

B737-800 

B777 

AIRBUS 330 

B777 

B777 

B777 

Boeing 777 

MD-88 

B777 

Boeing 777 

Boeing 777 

B777 

B777 

B 777 

777 

B777 

777 

b777 

BOEING 777 

B77W 
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B777 

B777 

Boeing 777 

737 

B777 

B777/300ER 

B777 

Boeing 777 

B767 

777 

Boeing 777 

Boeing777 

77W 

B777 

B777 

A320 

B777/300ER 

Boeing 737 -300/-500/-700/-800 

Boeing 737-700/800/900 

B-777 

Boeing 737 

Airbus 320 

A330 

Airbus A320 

A-330 

Airbus 330 

C-130H 

757/767 
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B777 

MD-88, MD-90 

A320 

B737 

P210 

A-320 

Boeing 737 

Boeing 777 

Boeing 777 

A-320 

Dual qualified on A340-600 and A330-300 

C-152 

Kingair C90 

B737-800 

B737NG, Gulfstream GIV 

ATR 72-600 

B737NG 

C172 

B737 

B737NG 

B 737 

737-300 

C-172 

b757 

B737; PA46T 
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Q7 - If retired, last aircraft flown 
 

If retired, last aircraft flown 

NA 

/ 

Na 

- 

Nil 

I retired form the Army Aviation, but continue flying with the Airline 

- 

Na 

N/A 

- 
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Q8 - Primary language spoken 
 

Primary language spoken 

Turkish 

Turkish 

Turkish 

PORTUGUESE 

Hungarian 

Dutch 

Turkish 

TURKISH 

Turkish 

German 

Dutch 

Turkish 

English 

Turkish 

Turkish 

Dutch 

German 

Danish, English, Turkish 

Turkish 

FR 

French 

portuguese 

dutch 

TURKISH 

Turkish 
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French 

German 

Turkish 

Turkish 

Dutch 

Italian 

Dutch 

Turkish 

Turkish 

English 

English 

Turkish 

English 

Turkish 

Turkish 

German 

Turkish English 

English 

english 

Turkish 

Turkish 

Turkish 

turkish 

Turkish 

turkish 

Turkish, English 

Turkish 

English 
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English 

Spanish 

English 

English 

English 

English 

English 

german 

Portuguese 

English 

portuguese 

English 

Portuguese 

Portugueses 

Portuguese 

Portuguese 

Portuguese 

Portuguese 

Portuguese 

Portuguese 

Portuguese 

Portuguese 

italy 

English 

English 

English 
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Q9 - Seat (choose one) 

 
 

# Field Minimum Maximum Mean Std Deviation Variance Count 

1 Seat (choose one) 1.00 2.00 1.68 0.47 0.22 78 
 
 
 

# Answer % Count 

1 CAPT 32.05% 25 

2 F/O 67.95% 53 

 Total 100% 78 
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Q10 - Years/Months since completion of initial training in current aircraft 
 

Years/Months since completion of initial training in current aircraft 

8 

1 year 

8 years 

18 MONTHS 

1,5 years 

4 

2 

2015 DEC 

2,5 

1.5 years 

1.5 years 

6 years 

14 

2014/9 

4 years 8 months 

1 year / 3 months 

5 Years and 6 Month 

1 year 2 months 

2 years 

2 

2 years 1 month 

2 years 

2years 1 month 

2Y6M 

3 years 6 months 
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3 years 

2 years 

4.5 years 

30 

2,5 

2003/05 

2 years 

5 

2 

3 

2 years 

3 years 

2 

1 

3 

2 Years 

03/2014 

5 yrs 3 months 

20 

3/6 

6,5 years 

5/7 

2014 

28 months 

2015/8 

2 and a half year 

2012/06 

6 
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0/5 

4 

13, 6 

3/7 

22 years 10 months 

14 months 

4 years 

8 

2 years, 5 months 

3 years 10 months 

2 years 

A340 21 years, A330 3 years. 

2011 

6 

4 

12 

2 years 

3 years 

7 

2004 

5 

November/1997 

7 

30 

10 

10; 4 
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Q11 - Total Flight Time 
 

Total Flight Time 

7400 

1700 hr 

11000 

2800 

9400 

250hr 

+10000 

4500 

8000 

4000 

5600 

8500 

2400 

4400 

2960 

6700 

4500 

2300 

5000 

3500 

3000 

3350 

4000 

4200 

6200 
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4500h 

4600 

1500 

3000 

12700 

3700 

5800 

3500 

5000 

4300 

6000 

1800 

4100 

8500 

1300 

15,000+ 

17583 

3000 

18000 

6000 

1000 

12.500 

670 

3500 hours with A-330 and 5000 hours with the helicopters 

2500 

300 

~2500 hrs 

7200 
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19,700 

21000 

21,400 

1400 

15000 

7900 

8200 

10500 hours 

12.000 

Aprox 20,000 hrs 

200 

2.500 

4500 

15,000+ 

2000 

12000 

600 

10.000 

2074 

19.000 

6000 

4000 hours 

10200 

14000 
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Q12 - Total Flight Time in your "current" aircraft 
 

Total Flight Time in your "current" aircraft 

6000 

700hr 

6000 

800 

700 

40hr 

1500 

200 

2000 

1000 

1000 

4800 

6000 

1300 

3800 

700 

4300 

700 

1250 

200 

1250 

800 

1100 

1800 

2900 



 

 

186 

1800 

1200 

3900 

1500 

1100 

9700 

1200 

3900 

4500 

1100 

1200 

2400 

2000 

700 

2500 

1000 

600 

5000 

12117 

2700 

5500 

4500 

700 

1.800 

370 

Almost 2000 hours 

1800 

100 
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~200 hours 

3000 

9,600 

1000 

15,900 

100 

700 

5900 

1680 

3800 hoirs 

1.500 

Aprox 16,000 hrs 

1.500 

1300 

4,600+ 

700 

1800 

585 

4.600 

1173 

12.000 

3000 

500 hours 

5500 
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Q13 - Time in FMS (Flight Management System) equipped aircraft (other than your 
current aircraft) by type 

 
 

# Answer % Count 

1 B737-400 11.23% 21 

2 B737-800 21.93% 41 

3 B737--900 12.83% 24 

4 B747-400 1.60% 3 
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5 B777 11.76% 22 

6 MD 80-88 3.21% 6 

7 MD 11 2.14% 4 

8 A 320 6.42% 12 

9 A 330 4.81% 9 

10 A 340 1.60% 3 

11 A 350 1.07% 2 

12 A 380 1.60% 3 

13 ERJs' 3.21% 6 

14 ATR 42-72 1.60% 3 

15 Dash 8 2.67% 5 

16 Other 12.30% 23 

 Total 100% 187 
 
 
B737-400 

B737-400 - Text 

40 

100 

50 

/ 

1600 

300 

2200 

50 

400 

300 

100 hours 

100 
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0 

3.600 

2100 

100 

2 years 

- 

4.600 

11.000 

3000 
 
 
B737-800 

B737-800 - Text 

6000 

1000 hr 

7500 

900 

1900 

1700 

600 

450 

650 

/ 

1900 

750 

2000 

1500 

1950 

1900 
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1300 

1500 

3300 

500 hours 

1000 

100 

1900 

700 

3800 

1200 

1000 

1300 

3500 

150 

700 hours 

500 

0 

760 

0 

1800 

1173 

1000 
 
 
B737--900 

B737--900 - Text 

3 YEARS 

500 

100 



 

 

192 

300 

300 

1600 

/ 

160 

300 

100 

500 

1800 

2500 

1300 

300 

350 

100 

200 hours 

100 

0 

0 

- 
 
 
B747-400 

B747-400 - Text 

/ 

0 

- 
 
 
B777 
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B777 - Text 

700 hr 

1.5 YEARS 

1500 

2000 

4800 

700 

4300 

770 

1250 

1250 

1100 

2900 

1800 

1700 

1100 

1200 

2400 

0 

800 

- 
 
 
MD 80-88 

MD 80-88 - Text 

6000 

/ 

0 

3700 
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- 
 
 
MD 11 

MD 11 - Text 

/ 

2500 

0 

5200 
 
 
A 320 

A 320 - Text 

6000 

/ 

3000 

600 

6 yrs 

5 years 

700 

4000 

0 

1050 

- 
 
 
A 330 

A 330 - Text 

HONEYWELL 

/ 

1.800 
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2000 hours 

1800 

0 

1150 

- 
 
 
A 340 

A 340 - Text 

/ 

0 

- 
 
 
A 350 

A 350 - Text 

0 

- 
 
 
A 380 

A 380 - Text 

/ 

0 

- 
 
 
ERJs' 

ERJs' - Text 

/ 

100 

0 
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300 

- 

1.500 
 
 
ATR 42-72 

ATR 42-72 - Text 

/ 

0 

- 
 
 
Dash 8 

Dash 8 - Text 

7000 

/ 

2500 

0 

- 
 
 
Other 

Other - Text 

2000 

700 

2000 

1500 

Fokker 70 - 3100 

8 yrs 

12000 

2.400 
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500 hours 

100 

B767: 3600 

0 

12 

2000 

1290 

B767 - 6 + years as Capt 

2.500 

1,500 

8,700+ 

400 (B767) 

3500 

b757-200/300 
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Q14 - Automation in the cockpit made my job easier 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 
Automation in the 

cockpit made my job 
easier 

1.00 4.00 1.54 0.59 0.35 79 

 
 
 

# Answer % Count 

1 Strongly Agree 49.37% 39 

2 Agree 48.10% 38 

3 Neither Agree nor Disagree 1.27% 1 

4 Disagree 1.27% 1 

5 Strongly Disagree 0.00% 0 

 Total 100% 79 
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Q15 - Automation keeps me to engaged throughout the flight 

 
 

# Answer % Count 

1 Strongly Agree 16.25% 13 

2 Agree 42.50% 34 

3 Neither Agree nor Disagree 30.00% 24 

4 Disagree 11.25% 9 

5 Strongly Disagree 0.00% 0 

 Total 100% 80 
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Q16 - I rely on automation to keep me safe 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 I rely on automation to 
keep me safe 1.00 5.00 2.63 1.00 1.00 78 

 
 
 

# Answer % Count 

1 Strongly Agree 8.97% 7 

2 Agree 43.59% 34 

3 Neither Agree nor Disagree 28.21% 22 

4 Disagree 14.10% 11 

5 Strongly Disagree 5.13% 4 

 Total 100% 78 
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Q17 - Through use of the FMC (Flight Management Computer) for automated flight 
planning (e.g. planning of route, waypoints etc) my overall workload is lower. 

 
 

# Answer % Count 

1 Strongly Disagree 12.66% 10 

2 Disagree 2.53% 2 

3 Neither Agree nor Disagree 3.80% 3 

4 Agree 51.90% 41 

5 Strongly Agree 29.11% 23 

 Total 100% 79 
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Q18 - I trust in automation more than I trust in myself 

 
 

# Answer % Count 

1 Strongly Disagree 34.62% 27 

2 Disagree 34.62% 27 

3 Neither Agree nor Disagree 17.95% 14 

4 Agree 11.54% 9 

5 Strongly Agree 1.28% 1 

 Total 100% 78 
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Q19 - Automation in the cockpit made my job harder 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 
Automation in the 

cockpit made my job 
harder 

1.00 4.00 1.82 0.78 0.60 79 

 
 
 

# Answer % Count 

1 Strongly Disagree 34.18% 27 

2 Disagree 55.70% 44 

3 Neither Agree nor Disagree 3.80% 3 

4 Agree 6.33% 5 

5 Strongly Agree 0.00% 0 

 Total 100% 79 
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Q20 - I don’t feel comfortable when autopilot controls vertical and horizontal flight paths 
(VNAVs and LNAVs) 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 

I don’t feel comfortable 
when autopilot controls 
vertical and horizontal 

flight paths (VNAVs and 
LNAVs) 

1.00 4.00 1.85 0.76 0.58 79 

 
 
 

# Answer % Count 

1 Strongly Disagree 32.91% 26 

2 Disagree 54.43% 43 

3 Neither Agree nor Disagree 7.59% 6 

4 Agree 5.06% 4 

5 Strongly Agree 0.00% 0 

 Total 100% 79 
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Q21 - The biggest obstacle to overall flight safety is ad-hoc and confusing communication 
from automated systems in the cockpit. 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 

The biggest obstacle to 
overall flight safety is ad-

hoc and confusing 
communication from 

automated systems in the 
cockpit. 

1.00 5.00 2.54 0.90 0.80 76 

 
 
 

# Answer % Count 

1 Strongly Disagree 6.58% 5 

2 Disagree 51.32% 39 

3 Neither Agree nor Disagree 26.32% 20 

4 Agree 13.16% 10 

5 Strongly Agree 2.63% 2 

 Total 100% 76 
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Q22 - When equipped, I rely on flight envelope protection to protect my aircraft and 
passengers in case I make any mistake 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 

When equipped, I rely on 
flight envelope protection 
to protect my aircraft and 
passengers in case I make 

any mistake 

1.00 5.00 2.92 1.17 1.38 78 

 
 
 

# Answer % Count 

1 Strongly Disagree 12.82% 10 

2 Disagree 28.21% 22 

3 Neither Agree nor Disagree 19.23% 15 

4 Agree 33.33% 26 

5 Strongly Agree 6.41% 5 

 Total 100% 78 
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Q23 - I always check my next waypoint and I‘m aware of pending heading changes 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 

I always check my next 
waypoint and I‘m aware 

of pending heading 
changes 

2.00 5.00 4.06 0.82 0.68 78 

 
 
 

# Answer % Count 

1 Strongly Disagree 0.00% 0 

2 Disagree 6.41% 5 

3 Neither Agree nor Disagree 11.54% 9 

4 Agree 51.28% 40 

5 Strongly Agree 30.77% 24 

 Total 100% 78 
  



 

 

208 

Q24 - I check my primary flight display very often throughout the flight 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 
I check my primary flight 

display very often 
throughout the flight 

2.00 5.00 4.43 0.67 0.45 79 

 
 
 

# Answer % Count 

1 Strongly Disagree 0.00% 0 

2 Disagree 2.53% 2 

3 Neither Agree nor Disagree 2.53% 2 

4 Agree 44.30% 35 

5 Strongly Agree 50.63% 40 

 Total 100% 79 
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Q25 - Information represented on the Control Display Unit (CDU) is clear and easy to 
understand 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 

Information represented 
on the Control Display 

Unit (CDU) is clear and 
easy to understand 

2.00 5.00 4.01 0.74 0.54 79 

 
 
 

# Answer % Count 

1 Strongly Disagree 0.00% 0 

2 Disagree 3.80% 3 

3 Neither Agree nor Disagree 15.19% 12 

4 Agree 56.96% 45 

5 Strongly Agree 24.05% 19 

 Total 100% 79 
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Q26 - Automation increased my workload, created more need to monitor 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 
Automation increased my 

workload, created more 
need to monitor 

1.00 5.00 2.05 0.78 0.61 79 

 
 
 

# Answer % Count 

1 Strongly Disagree 21.52% 17 

2 Disagree 56.96% 45 

3 Neither Agree nor Disagree 17.72% 14 

4 Agree 2.53% 2 

5 Strongly Agree 1.27% 1 

 Total 100% 79 
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Q27 - During the automated flight phase, I am sometimes surprised by actions automation 
takes 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 

During the automated 
flight phase, I am 

sometimes surprised by 
actions automation takes 

1.00 5.00 2.90 1.00 1.00 79 

 
 
 

# Answer % Count 

1 Strongly Disagree 3.80% 3 

2 Disagree 41.77% 33 

3 Neither Agree nor Disagree 17.72% 14 

4 Agree 34.18% 27 

5 Strongly Agree 2.53% 2 

 Total 100% 79 
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Q28 - When I use autopilot to control HDG, SPD or ALT I feel automation creates 
distraction. 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 

When I use autopilot to 
control HDG, SPD or 

ALT I feel automation 
creates distraction. 

1.00 5.00 1.94 0.82 0.68 78 

 
 
 

# Answer % Count 

1 Strongly Disagree 29.49% 23 

2 Disagree 53.85% 42 

3 Neither Agree nor Disagree 11.54% 9 

4 Agree 3.85% 3 

5 Strongly Agree 1.28% 1 

 Total 100% 78 
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Q29 - I check the flight mode annunciator very often to understand which mode the 
autopilot flight director system is in (what autopilot is doing) 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 

I check the flight mode 
annunciator very often to 

understand which mode 
the autopilot flight 

director system is in (what 
autopilot is doing) 

2.00 5.00 4.33 0.75 0.56 78 

 
 
 

# Answer % Count 

1 Strongly Disagree 0.00% 0 

2 Disagree 3.85% 3 

3 Neither Agree nor Disagree 5.13% 4 

4 Agree 44.87% 35 

5 Strongly Agree 46.15% 36 

 Total 100% 78 
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Q30 - When I use autopilot to control HDG, SPD or ALT my understanding of the big 
picture diminishes 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 

When I use autopilot to 
control HDG, SPD or 

ALT my understanding of 
the big picture diminishes 

1.00 4.00 1.83 0.79 0.63 78 

 
 
 

# Answer % Count 

1 Strongly Disagree 34.62% 27 

2 Disagree 53.85% 42 

3 Neither Agree nor Disagree 5.13% 4 

4 Agree 6.41% 5 

5 Strongly Agree 0.00% 0 

 Total 100% 78 
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Q31 - I can predict the behavior of the automation with ease 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 
I can predict the behavior 

of the automation with 
ease 

3.00 5.00 4.03 0.48 0.23 79 

 
 
 

# Answer % Count 

1 Strongly Disagree 0.00% 0 

2 Disagree 0.00% 0 

3 Neither Agree nor Disagree 10.13% 8 

4 Agree 77.22% 61 

5 Strongly Agree 12.66% 10 

 Total 100% 79 
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Q32 - When I use autopilot to control HDG, SPD or ALT my workload gets lower. 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 

When I use autopilot to 
control HDG, SPD or 

ALT my workload gets 
lower. 

2.00 5.00 3.94 0.83 0.69 79 

 
 
 

# Answer % Count 

1 Strongly Disagree 0.00% 0 

2 Disagree 10.13% 8 

3 Neither Agree nor Disagree 7.59% 6 

4 Agree 60.76% 48 

5 Strongly Agree 21.52% 17 

 Total 100% 79 
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Q33 - I think the overall amount of information available on my aircraft is too much. 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 

I think the overall amount 
of information available 

on my aircraft is too 
much. 

1.00 5.00 2.16 0.88 0.77 79 

 
 
 

# Answer % Count 

1 Strongly Disagree 18.99% 15 

2 Disagree 55.70% 44 

3 Neither Agree nor Disagree 17.72% 14 

4 Agree 5.06% 4 

5 Strongly Agree 2.53% 2 

 Total 100% 79 
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Q34 - My response to visual warnings is better than aural (sound) alerts 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 
My response to visual 

warnings is better than 
aural (sound) alerts 

1.00 5.00 2.75 0.86 0.75 79 

 
 
 

# Answer % Count 

1 Strongly Disagree 2.53% 2 

2 Disagree 43.04% 34 

3 Neither Agree nor Disagree 34.18% 27 

4 Agree 17.72% 14 

5 Strongly Agree 2.53% 2 

 Total 100% 79 
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Q35 - When a master caution and warning alert occurs; it gets my attention immediately 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 

When a master caution 
and warning alert occurs; 

it gets my attention 
immediately 

3.00 5.00 4.46 0.52 0.27 79 

 
 
 

# Answer % Count 

1 Strongly Disagree 0.00% 0 

2 Disagree 0.00% 0 

3 Neither Agree nor Disagree 1.27% 1 

4 Agree 51.90% 41 

5 Strongly Agree 46.84% 37 

 Total 100% 79 
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Q36 - When a master caution and warning alert occurs; I trust the alert signals are a real 
event 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 

When a master caution 
and warning alert occurs; 
I trust the alert signals are 

a real event 

2.00 5.00 3.96 0.74 0.54 79 

 
 
 

# Answer % Count 

1 Strongly Disagree 0.00% 0 

2 Disagree 6.33% 5 

3 Neither Agree nor Disagree 10.13% 8 

4 Agree 64.56% 51 

5 Strongly Agree 18.99% 15 

 Total 100% 79 
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Q37 - My response to aural (sound) alerts is better than visual warnings 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 
My response to aural 

(sound) alerts is better 
than visual warnings 

2.00 5.00 3.41 0.88 0.77 79 

 
 
 

# Answer % Count 

1 Strongly Disagree 0.00% 0 

2 Disagree 17.72% 14 

3 Neither Agree nor Disagree 32.91% 26 

4 Agree 40.51% 32 

5 Strongly Agree 8.86% 7 

 Total 100% 79 
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Q38 - I think the overall amount of information available on my aircraft is not enough 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 

I think the overall amount 
of information available 

on my aircraft is not 
enough 

1.00 5.00 2.39 0.85 0.72 79 

 
 
 

# Answer % Count 

1 Strongly Disagree 7.59% 6 

2 Disagree 60.76% 48 

3 Neither Agree nor Disagree 17.72% 14 

4 Agree 12.66% 10 

5 Strongly Agree 1.27% 1 

 Total 100% 79 
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Q39 - When I face a problem in the cockpit I always follow the SOP’s  (Standard 
Operating Procedure) before trying another approach to solve the problem 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 

When I face a problem in 
the cockpit I always 

follow the SOP’s  
(Standard Operating 

Procedure) before trying 
another approach to solve 

the problem 

3.00 5.00 4.31 0.58 0.34 78 

 
 
 

# Answer % Count 

1 Strongly Disagree 0.00% 0 

2 Disagree 0.00% 0 

3 Neither Agree nor Disagree 6.41% 5 

4 Agree 56.41% 44 

5 Strongly Agree 37.18% 29 

 Total 100% 78 
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Q40 - In most cases an automatic system should prevent the aircraft from exceeding its 
performance envelope 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 

In most cases an 
automatic system should 
prevent the aircraft from 

exceeding its performance 
envelope 

2.00 5.00 3.94 0.80 0.64 79 

 
 
 

# Answer % Count 

1 Strongly Disagree 0.00% 0 

2 Disagree 10.13% 8 

3 Neither Agree nor Disagree 5.06% 4 

4 Agree 65.82% 52 

5 Strongly Agree 18.99% 15 

 Total 100% 79 
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Q41 - My airline doesn’t allow me to fly manually; they force me to fly automated most or 
all of the time. 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 

My airline doesn’t allow 
me to fly manually; they 

force me to fly automated 
most or all of the time. 

1.00 5.00 2.87 1.35 1.83 78 

 
 
 

# Answer % Count 

1 Strongly Disagree 19.23% 15 

2 Disagree 25.64% 20 

3 Neither Agree nor Disagree 19.23% 15 

4 Agree 20.51% 16 

5 Strongly Agree 15.38% 12 

 Total 100% 78 
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Q42 - When a problem develops in the cockpit, I always try to understand the broader 
picture before I follow the SOP’s. 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 

When a problem develops 
in the cockpit, I always 

try to understand the 
broader picture before I 

follow the SOP’s. 

1.00 5.00 3.32 0.97 0.94 78 

 
 
 

# Answer % Count 

1 Strongly Disagree 1.28% 1 

2 Disagree 23.08% 18 

3 Neither Agree nor Disagree 26.92% 21 

4 Agree 39.74% 31 

5 Strongly Agree 8.97% 7 

 Total 100% 78 
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Q43 - I always adhere to the principles of Crew Resource Management (CRM) 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 

I always adhere to the 
principles of Crew 

Resource Management 
(CRM) 

3.00 5.00 4.30 0.51 0.26 79 

 
 
 

# Answer % Count 

1 Strongly Disagree 0.00% 0 

2 Disagree 0.00% 0 

3 Neither Agree nor Disagree 2.53% 2 

4 Agree 64.56% 51 

5 Strongly Agree 32.91% 26 

 Total 100% 79 
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Q44 - Regulations should require cockpit automation to adhere to the principles of CRM 
when feasible. 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 

Regulations should 
require cockpit 

automation to adhere to 
the principles of CRM 

when feasible. 

2.00 5.00 3.79 0.73 0.53 76 

 
 
 

# Answer % Count 

1 Strongly Disagree 0.00% 0 

2 Disagree 5.26% 4 

3 Neither Agree nor Disagree 23.68% 18 

4 Agree 57.89% 44 

5 Strongly Agree 13.16% 10 

 Total 100% 76 
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Q45 - In most cases an automatic system should warn the crew of flight envelope 
exceedance but not restrict pilots’ control 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 

In most cases an 
automatic system should 

warn the crew of flight 
envelope exceedance but 
not restrict pilots’ control 

1.00 5.00 3.84 1.00 1.00 79 

 
 
 

# Answer % Count 

1 Strongly Disagree 2.53% 2 

2 Disagree 10.13% 8 

3 Neither Agree nor Disagree 13.92% 11 

4 Agree 48.10% 38 

5 Strongly Agree 25.32% 20 

 Total 100% 79 
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Q46 - A high level of competency in manual flying skills would benefit the industry 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 

A high level of 
competency in manual 

flying skills would 
benefit the industry 

1.00 5.00 4.23 0.92 0.84 78 

 
 
 

# Answer % Count 

1 Strongly Disagree 1.28% 1 

2 Disagree 3.85% 3 

3 Neither Agree nor Disagree 14.10% 11 

4 Agree 32.05% 25 

5 Strongly Agree 48.72% 38 

 Total 100% 78 
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Q47 - Difficulties in understanding automation can be overcome solely by training 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 

Difficulties in 
understanding automation 

can be overcome solely 
by training 

1.00 5.00 3.71 1.02 1.04 77 

 
 
 

# Answer % Count 

1 Strongly Disagree 1.30% 1 

2 Disagree 18.18% 14 

3 Neither Agree nor Disagree 7.79% 6 

4 Agree 53.25% 41 

5 Strongly Agree 19.48% 15 

 Total 100% 77 
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Q48 - A number of recent airline accidents/incidents could have been avoided if the pilots 
had been more proficient in manual flying skills. 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 

A number of recent airline 
accidents/incidents could 
have been avoided if the 

pilots had been more 
proficient in manual 

flying skills. 

1.00 5.00 3.95 1.10 1.20 78 

 
 
 

# Answer % Count 

1 Strongly Disagree 2.56% 2 

2 Disagree 11.54% 9 

3 Neither Agree nor Disagree 12.82% 10 

4 Agree 34.62% 27 

5 Strongly Agree 38.46% 30 

 Total 100% 78 
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Q49 - Airline companies should facilitate more training to ensure that manual flying skills 
are kept current. 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 

Airline companies should 
facilitate more training to 
ensure that manual flying 

skills are kept current. 

2.00 5.00 4.31 0.76 0.58 77 

 
 
 

# Answer % Count 

1 Strongly Disagree 0.00% 0 

2 Disagree 3.90% 3 

3 Neither Agree nor Disagree 6.49% 5 

4 Agree 44.16% 34 

5 Strongly Agree 45.45% 35 

 Total 100% 77 
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Q50 - Training is not the only answer for improving a pilot’s ability to understand cockpit 
automation 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 

Training is not the only 
answer for improving a 

pilot’s ability to 
understand cockpit 

automation 

1.00 5.00 3.40 1.07 1.14 78 

 
 
 

# Answer % Count 

1 Strongly Disagree 6.41% 5 

2 Disagree 16.67% 13 

3 Neither Agree nor Disagree 16.67% 13 

4 Agree 51.28% 40 

5 Strongly Agree 8.97% 7 

 Total 100% 78 
  



 

 

235 

Q51 - Most pilots trained in the last 15 years learn the management of automation as in 
integral part of learning to fly an aircraft. 

 
 

# Field Minimum Maximum Mean Std 
Deviation Variance Count 

1 

Most pilots trained in the 
last 15 years learn the 

management of 
automation as in integral 
part of learning to fly an 

aircraft. 

2.00 5.00 3.97 0.62 0.38 78 

 
 
 

# Answer % Count 

1 Strongly Disagree 0.00% 0 

2 Disagree 5.13% 4 

3 Neither Agree nor Disagree 5.13% 4 

4 Agree 76.92% 60 

5 Strongly Agree 12.82% 10 

 Total 100% 78 
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APPENDIX G. Raw Data Output from R on MJCA For Questions 

 
 

Column Name  mass qlt inr k=1 cor ctr k=2 cor ctr 
1 Q14T:1 14    761     7 279 649 18 115 111 8 
2 Q14T:2 14  692 6 -260 625 16 -85 67 5 
3 Q14T:3 0 80 5 -177 16 0 351 64 2 
4 Q14T:4 0 313 109 -275 12 0 -1397 302 32 
5 Q15T:1 5 727 12 662 696 36 141 31 4 
6 Q15T:2 12 479 6 -185 306 7 139 172 10 
7 Q15T:3 9 170 6 -21 3 0 -150 167 9 
8 Q15T:4 3 385 6 -264 181 4 -280 204 12 
9 Q16T:1 3 593 8 578 579 19 89 14 1 

10 Q16T:2 12 349 4 -15 3 0 153 346 13 
11 Q16T:3 8 217 5 -125 128 2 -105 89 4 
12 Q16T:4 4 195 6 -140 71 1 -186 125 6 
13 Q16T:5 1 257 8 -212 19 1 -753 238 19 
14 Q17T:1 9 357 5 188 274 5 104 83 4 
15 Q17T:2 15 627 5 -219 622 12 21 6 0 
16 Q17T:3 1 457 11 -445 85 4 -930 372 43 
17 Q17T:4 1 148 7 481 113 3 -265 34 2 
18 Q17T:5 3 488 9 534 487 16 13 0 0 
19 Q18T:1 0 93 9 -252 12 0 -666 81 7 
20 Q18T:2 3 100 7 131 42 1 154 58 4 
21 Q18T:3 5 17 6 43 9 0 43 9 0 
22 Q18T:4 10 387 4 -50 28 0 178 358 14 
23 Q18T:5 10 433 5 -8 1 0 -220 433 22 
24 Q20T:2 1 116 7 -5 0 0 -345 116 8 
25 Q20T:3 2 374 7 -389 225 6 -317 149 10 
26 Q20T:4 16 634 5 -207 612 11 38 21 1 
27 Q20T:5 9 819 9 443 801 31 67 18 2 
28 Q21T:1 1 325 10 1037 325 14 -33 0 0 
29 Q21T:2 4 342 7 -323 257 7 -186 85 6 
30 Q21T:3 8 392 5 -160 215 3 -144 176 7 
31 Q21T:4 14 225 4 7 1 0 115 224 9 
32 Q21T:5 2 501 11 844 495 22 93 6 1 
33 Q22T:1 1 320 11 763 318 15 -53 2 0 
34 Q22T:2 9 101 4 32 11 0 90 90 3 
35 Q22T:3 6 253 6 -206 232 4 62 21 1 
36 Q22T:4 8 290 6 -174 197 4 -119 93 56 
37 Q22T:5 4 263 7 300 261 6 -28 2 0 
38 Q23M:1 9 329 6 231 328 8 -13 1 0 
39 Q23M:2 14 333 4 -103 211 3 78 122 4 
40 Q23M:3 3 334 6 -214 124 2 -278 210 11 
41 Q23M:4 2 14 6 77 10 0 -49 4 0 
42 Q24M:1 15 340 5 157 332 6 24 8 0 
43 Q24M:2 12 230 4 -131 228 4 12 2 0 
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44 Q24M:3 1 437 9 -382 53 2 -1026 384 35 
45 Q24M:4 1 342 6 -586 257 4 337 85 4 
46 Q25M:1 7 675 8 426 669 22 39 6 0 
47 Q25M:2 16 393 3 -129 385 5 18 8 0 
48 Q25M:3 4 145 6 -194 145 3 -6 0 0 
49 Q25M:4 1 133 9 -70 3 0 -488 131 12 
50 Q26M:1 0 194 7 702 143 3 -420 51 3 
51 Q26M:2 1 480 12 -454 52 3 -1307 428 56 
52 Q26M:3 5 293 7 -37 5 0 -286 288 19 
53 Q26M:4  16 693 4 -155 382 7 140 311 14 
54 Q26M:5 6 658 9 471 649 22 56 9 1 
55 Q27M:1 1 97 5 -289 84 1 -112 13 0 
56 Q27M:2 10 585 6 -45 16 0 -271 569 33 
57 Q27M:3 5 276 5 -100 48 1 218 228 10 
58 Q27M:4 12 320 4 17 5 0 146 316 11 
59 Q27M:5 1 343 10 850 343 14 20 0 0 
60 Q28M:1 0 52 7 414 47 1 -133 5 0 
61 Q28M:2 1 307 9 -459 116 4 -587 190 17 
62 Q28M:3 3 305 8 -225 103 3 -315 202 15 
63 Q28M:4 16 562 4 -156 375 6 110 188 8 
64 Q28M:5 8 731 9 433 731 26 4 0 0 
65 Q29M:1 13 482 6 215 433 11 -72 49 3 
66 Q29M:2 13 570 6 -230 484 11 97 87 5 
67 Q29M:3 1 162 6 314 128 2 162 34 2 
68 Q29M:4 1 262 8 -480 99 3 -614 163 12 
69 Q29M:5 0 20 7 -244 16 0 -124 4 0 
70 Q30M:2 2 437 8 -517 279 8 -390 159 13 
71 Q30M:3 1 77 7 -127 17 0 -241 60 4 
72 Q30M:4 15 552 4 -152 343 6 118 209 9 
73 Q30M:5 10 662 8 345 634 20 -72 28 2 
74 Q31M:1 4 682 11 688 682 30 -14 0 0 
75 Q31M:2 22 661 3 -116 459 5 77 202 6 
76 Q31M:3 3 466 9 -1 0 0 -552 466 40 
77 Q32M:1 6 732 10 559 725 32 53 7 1 
78 Q32M:2 17 529 4 -154 433 7 72 95 4 
79 Q32M:3 2 396 8 -1 0 0 -572 396 32 
80 Q32M:4 3 128 6 -211 104 2 -102 24 1 
81 Q33I:1 1 295 9 873 294 10 41 1 0 
82 Q33I:2 1 70 6 68 4 0 261 66 3 
83 Q33I:3 5 156 6 -41 7 0 -182 149 7 
84 Q33I:4 16 572 4 -158 475 7 71 97 4 
85 Q33I:5 6 496 7 369 456 13 -109 40 3 
86 Q35I:1 14 749 6 289 726 19 -52 23 2 
87 Q35I:2 14 739 6 -268 697 18 66 43 3 
88 Q35I:3 0 93     9  -252 12 0   -666   81 7 
89 Q36I:1 6 665 9 496 654 23 -13 0 0 
90 Q36I:2 18 518 3 -138 477 6 40 41 1 
91 Q36I:3 3 101 8 24 1 0 -235 100 7 
92 Q36I:4 2 68 5 -178 68 1 18 1 0 
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93 Q37I:1 3 522 10 697 520 21 -47 2 0 
94 Q37I:2 11 522 6 -242 495 11 56 27 2 
95 Q37I:3 10 77 6 98 76 2 -6 0 0 
96 Q37I:4 5 44 5 -12 1 0 -85 43 2 
97 Q38I:2 4 34 5 62 15 0 70 19 1 
98 Q38I:3 5 52 5 -42 10 0 -85 42 2 
99 Q38I:4  18 272 2 -74 218 2 37 53 1 

100 Q38I:5 2 443 9 579 385 13 -225 58 5 
101 Q39P:1 10 500 7 267 467 13 -71 33 2 
102 Q39P:2 16 469 4 -140 346 5 84 123 5 
103 Q39P:3 2 238 7 -258 86 2 -342 151 10 
104 Q40P:1 5 743 12 652 743 37 0 0 0 
105 Q40P:2 19 673 4 -152 481 7 96 191 8 
106 Q40P:3 1 159 8 -144 19 1 -388 140 10 
107 Q40P:4 3 386 7 -102 22 1 -416 364 23 
108 Q41P:1 4 372 7 -93 25 1 -343 346 23 
109 Q41P:2 6 25 5 15 1 0 59 24 1 
110 Q41P:3 6 302 5 -184 180 3 152 122 6 
111 Q41P:4 7 240 5 -52 22 0 166 218 9 
112 Q41P:5 5 455 7 335 359 10 -173 95 7 
113 Q42P:1 3 306 7 414 293 8 -88 13 1 
114 Q42P:2 12 389 4 -172 380 6 -27 9 0 
115 Q42P:3 8 44 5 49 22 0 -50 22 1 
116 Q42P:4 6 137 5 17 2 0 140 135 6 
117 Q42P:5 0 349 7 1086 344 7 121 4 0 
118 Q43P:1 10 754 9 413 725 28 -82 29 3 
119 Q43P:2 18 733 5 -216 681 14 59 51 3 
120 Q43P:3 1 66 8 -81 3 0 -385 63 5 
121 Q44P:1 4 154 7 167 75 2 -172 80 5 
122 Q44P:2 16 147 3 -41 48 0 59 99 2 
123 Q44P:3 7 128 5 90 64 1 -91 64 3 
124 Q44P:4 1 397 5 -423 296 5 248 102 4 
125 Q45P:1 7 387 7 117 67 2 -255 319 21 
126 Q45P:2 13 692 5 -198 410 9 164 282 16 
127 Q45P:3 4 235 5 232 225 4 -49 10 0 
128 Q45P:4 3 10 6 30 2 0 -58 8 0 
129 Q45P:5 1 332 10 1005 329 13 91 3 0 
130 Q46R:1 14 351 5 9 1 0 -170 350 18 
131 Q46R:2 9 572 5 -178 262 5 194 311 15 
132 Q46R:3 4 49 6 3 0 0 120 49 3 
133 Q46R:4 1 501 101 997 497 19 89 4 0 
134 Q46R:5 0 174 9 912 165 5 215 9 1 
135 Q48R:1 12 396 5 -25 6 0 -200 390 21 
136 Q48R:2 9 252 5 -25 6 0 -200 390 21 
137 Q48R:3 4 78 6 -112 37 1 118 41 2 
138 Q48R:4 3 219 6 33 3 0 269 216 10 
139 Q48R:5 1 524 13 1223 523 28 -64 1 0 
140 Q49R:1 13 213 4 2 0 0 -120 213 9 
141 Q49R:2 12 90 4 -34 19 0 66 71 2 
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142 Q49R:3 2 318 6 -224 89 2 360 230 11 
143 Q49R:4 1 312 9 725 304 10 117 8 1 
144 Q50R:1 3 158 6 259 141 3 -91 17 1 
145 Q50R:2 15 73 3 -42 50 0 28 23 1 
146 Q50R:3 5 273 7 -241 199 5 -147 74 5 
147 Q50R:4 5 122 5 82 44 1 110 78 3 
148 Q50R:5 1 234 7 484 234 6 -2 0 0 
149 Q51R:1 4 683 10 657 678 27 56 5 1 
150 Q51R:2 22 450 2 -90 444 3 10 6 0 
151 Q51R:3 1 73 7 10 0 0 -262 73 5 
152 Q51R:4 1 148 6 -397 146 3 -44 2 0 
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APPENDIX H. Raw Data Output from R on MJCA For Demographics 

 
 

Column Name mass qlt inr k=1 cor ctr k=2 cor ctr 
1 Q2:1 NA    50 NA -216 42 NA -94 8 NA 
2 Q2:2 NA 271  NA -113 42 NA -264 229 NA 
3 Q2:3 NA 232 NA 93 144 NA 73 88 NA 
4 Q2:4 NA 60 NA -106 52 NA 42 8 NA 
5 Q2:5 NA 55 NA 78 26 NA 81 28 NA 
6 Q2:6 NA 59 NA 80 34 NA 70 25 NA 
7 Q2:7 NA 62 NA -173 62 NA 7 0 NA 
8 Q2:8 NA 201 NA -548 116 NA -471 86 NA 
9 Q2:9 NA 14 NA 123 7 NA -123 7 NA 

10 Q9:1 NA 131 NA -94 100 NA 52 31 NA 
11 Q9:2 NA 131 NA 43 100 NA -24 31 NA 
12 Q11T:1000 NA 90 NA 504 74 NA 238 16 NA 
13 Q11T:10000 NA 148 NA -538 141 NA 120 7 NA 
14 Q11T:10200 NA 106 NA -224 19 NA 486 88 NA 
15 Q11T:10500 NA 70 NA 190 31 NA -212 39 NA 
16 Q11T:11000 NA 333 NA -359 94 NA 574 239 NA 
17 Q11T:12000 NA 26 NA 139 19 NA -84 7 NA 
18 Q11T:12500 NA 49 NA 298 48 NA -54 2 NA 
19 Q11T:12700 NA 234 NA -233 44 NA 483 190 NA 
20 Q11T:1300 NA 181 NA -532 59 NA -761 121 NA 
21 Q11T:1400 NA 477 NA -525 307 NA 391 170 NA 
22 Q11T:14000 NA 168 NA 585 139 NA -264 28 NA 
23 Q11T:15000 NA 29 NA -194 28 NA -26 0 NA 
24 Q11T:1500 NA 144 NA 637 144 NA -24 0 NA 
25 Q11T:15000 NA 100 NA 395 100 NA -19 0 NA 
26 Q11T:1700 NA 259 NA 1398 256 NA -142 3 NA 
27 Q11T:17583 NA 46 NA -222 43 NA 56 3 NA 
28 Q11T:1800 NA 90 NA -274 10 NA -774 80 NA 
29 Q11T:18000 NA 164 NA -573 112 NA 390 52 NA 
30 Q11T:19700 NA 201 NA -548 116 NA -471 86 NA 
31 Q11T:1900 NA 455 NA -532 281 NA 418 174 NA 
32 Q11T:2000 NA 110 NA -514 105 NA 123 6 NA 
33 Q11T:20000 NA 14 NA 123 7 NA -123 7 NA 
34 Q11T:2074 NA 207 NA -703 158 NA 392 49 NA 
35 Q11T:21400 NA 58 NA -354 58 NA -13 0 NA 
36 Q11T:21000 NA 75 NA 149 8 NA -424 67 NA 
37 Q11T:2300 NA 290 NA 1332 290 NA -25 0 NA 
38 Q11T:2400 NA 3 NA 68 1 NA 2 2 NA 
39 Q11T:250 NA 331 NA -602 207 NA 467 124 NA 
40 Q11T:2500 NA 112 NA 1 0 NA 360 112 NA 
41 Q11T:2800 NA 161 NA 860 160 NA 64 1 NA 
42 Q11T:2960 NA 55 NA -193 10 NA 407 45 NA 
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43 Q11T:300 NA 325 NA -300 11 NA -1623 314 NA 
44 Q11T:3000 NA 54 NA 120 17 NA 176 37 NA 
45 Q11T:3350 NA 50 NA -216 42 NA -94 8 NA 
46 Q11T:3500 NA 467 NA -358 53 NA -998 414 NA 
47 Q11T:3700 NA 121 NA -538 114 NA -141 8 NA 
48 Q11T:4000 NA 220 NA -388 218 NA 32 1 NA 
49 Q11T:4100 NA 196 NA -506 113 NA 434 83 NA 
50 Q11T:4200 NA 253 NA -413 115 NA 453 138 NA 
51 Q11T:4300 NA 171 NA 17 0 NA 508 171 NA 
52 Q11T:4400 NA 90 NA -349 78 NA -133 11 NA 
53 Q11T:4500 NA 55 NA 158 53 NA 26 2 NA 
54 Q11T:4600 NA 18 NA -5 0 NA 182 18 NA 
55 Q11T:5000 NA 6 NA 25 0 NA 87 6 NA 
56 Q11T:5600 NA 368 NA 1266 367 NA -56 -56 NA 
57 Q11T:5800 NA 18 NA 192 15 NA 94 3 NA 
58 Q11T:600 NA 81 NA -464 67 NA -207 13 NA 
59 Q11T:6000 NA 31 NA -109 20 NA -79 11 NA 
60 Q11T:6200 NA 432 NA -420 208 NA 435 224 NA 
61 Q11T:670 NA 154 NA 659 114 NA 392 40 NA 
62 Q11T:6700 NA 118 NA -591 116 NA 61 1 NA 
63 Q11T:7200 NA 18 NA -163 11 NA -126 7 NA 
64 Q11T:7400 NA 270 NA 1183 267 NA 140 4 NA 
65 Q11T:7900 NA 30 NA 158 15 NA 158 15 NA 
66 Q11T:8000 NA 19 NA 143 14 NA -87 5 NA 
67 Q11T:8200 NA 23 NA 175 20 NA -77 4 NA 
68 Q11T:8500 NA 87 NA 267 76 NA -102 11 NA 
69 Q11T:9400 NA 118 NA 90 2 NA -749 116 NA 
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APPENDIX I. Answers for Open Ended Questions (Q52-53) 
 
 Q52 - Please describe your overall experience with automated systems in the cockpit 

and how it affects your piloting skills. 

1. Automation is inevitable and saves life, prevents human error. 

2. Automation is good and means future for aviation 

3. Normal, Following the SOPs 

4. I am from the younger generation that 'grew up' with GPS and automation, so it's 

of great value to me and comes easily. I don't know any better than having these 

systems available. I think my workload would greatly increase having to work 

without them. 

5. In my opinion A/P allows us to check all system. This provides us to notice the 

small deviations beyond limits; this improves our piloting skills. 

6. Automation can be dangerous if you solely rely on it. Knowledge, situational 

awareness and manual flying skills are as important as knowing the FMC. 

7. In general it decreases my manual flying skills. We don't fly manual often. 

8. Good overall, can be a workload saver, but can also overcomplicate things as too 

many options can be available and it can take too long to make inputs. 

9. Automated systems are good and assist the pilot, but they have to be monitored 

closely and corrected manually when needed. 

10. Not enough exercise in manual flight during our daily business leads us to forget 

some basic flying skills 

11. Very good 
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12. We should be allowed to fly more manually as automation decrease our flying skills 

13. Reduces workload but increases complacency and erodes manually flying skills 

14. Automation is a great tool if it works properly and is properly understood, if not, 

we as pilots should still have to recourses to fall back on our flying skills sadly 

especially on the long haul we do not get sufficient practice of manual flying skills, 

this problem should be addressed 

15. Automation must be servant for a pilot but not a master. In many cases automation 

helps to reduce workload, helps you see big picture, helps improve SA but too much 

trust and to much usage of it get the things worsen sometimes you only need to fly 

your craft via the easiest way, with too much automation which you might be 

forgotten.  (forgeting manual flying skills) 

16. If you understand the automation, you can fly better, because you can plan better 

17. Make it easier, less practice of the skills can be problematic  

18. 6 years/4400 hours. Automation management should be considered part of piloting 

skills nowadays. Differentiating flying skills and piloting skills, if the question 

addresses manual flying skills, automation partially diminishes those skills. One 

advantage of automation is having much more observation time during normal 

operation, which is another type of important experience. 

19. It makes you less tired by reducing the workload. But in some cases pilots use it 

too much so they lose their manual skills. 

20. I started my career on full-automated aircraft (A320) and I've grown with the 

attitude to feel, understand and trust the automation. Even in rarely cases I had some 
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problem with it, I think it is the right way and the right device to improve air 

transport and safety 

21. In my company there is a general aversion against flying with A/P off and 

especially F/D or A/T off. this diminishes my flying skills greatly. I feel many 

colleagues are already lacking in skill and situational awareness.. 

22. Automation has always been a big part of my aviation knowledge, since a have 

started  flying b737-800 and then 777-300er, so I take automation as a big part of 

my automation, and I think general knowledge of automation is more important 

than the rest of skills. 

23. My company doesn't want us to fly manual and therefore we're losing competency 

in manual handling creating dangerous situations when the automation fails or has 

to be switched off 

24. Good experience, makes my life easier but I am getting worse in manual skills 

25. Automation helps reduce workload but kills manual flying skills 

26. Useful most of the time but needs to be monitored closely 

27. Less effort on flying the aircraft, more time for flight management 

28. It makes the job easier 

29. Automation has complacency factor. All we know it. Pilots coming from manual 

aircraft, are better than the new adding pilots in term of understanding big picture 

and interaction with aircraft systems if something goes wrong. 

30. Automation helps pilot to conduct the flight safely and prevents mishaps with 

applicable warning ,caution and envelope protection systems; on the other hand I 

realized that handling skills are getting weaker than before, and some young people 
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who are inappropriate for flying are joining fleets as cadets because of high level 

automation helps pilot to fly easily (i.e TAC helps pilot for engine failures) 

31. They are good, but must be monitored 

32. I've been using automation since I've started flying for airline. It has minor effect 

on my skills; you get less tired when you use automation. 

33. I like automation but it can diminish my vigilance during flight 

34. My last 5 year with autopilot. And it reduce my manual flight capability 

35. Facilitate my life to reduce workload 

36. Manuel flying also can be a appropriate level of automation.  Guidance of 

automation can affects of my piloting skills in a positive way. 

37. Automation is a high necessity in the Airline flying because the pilots are flying 

long flight hours for the one leg or also they are flying with the long crew duty 

times with the four legs in one day or night time... This can not be done without 

automation of the aircraft... That is why automation extends the flight times with 

the pilot monitoring... But, the automation of course is affecting the piloting skills 

in an adverse way which brings the need of training needs... 

38.  Ease my life 

39.  I have flown aircrafts that are both heavily automated and aircraft that generally 

lack automation. I’ve found I have better situational awareness when I hand fly. 

Additionally I have found automation presents the crew with a multitude of 

opportunities to make mistakes when inputting data into the FMS which will have 

a large impact on the flight and the safety of flight. It only takes one input error to 

potentially cause a serious safety of flight issue. I find I spend too much time 
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managing the system and it is often quicker and easier to just fly manually. My 

current aircraft has only basic automation and I much prefer it that way. I truly 

believe I am safer without it 

40.  After a fairly steep learning curve to understand proper use of automation, my 

workload is overall reduced.  I must be sure to take time to manually fly the aircraft 

from time to time, in order to keep my flying skills recent.  Almost all takeoffs and 

landings at this point are still flown manually. 

41.  Automation is a tool, not a crutch. It does not affect my skills, as I downgrade 

automation levels often to retain my skills. 

42.  I try and alternate between full auto, semi auto and manual 

43.  Automated systems compliment my flying skills 

44.  25 years of experience. It enhances my piloting skills 

45.  Most of the time the automation helps us very much to decrease workload when 

attention is needed more in other fields than controlling the aircraft. however all 

automation has to be crosschecked and monitored constantly. 

46.  Automation has certainly made my manual flying skills degrade over the years 

47.  They're an added tool 

48.  I've large experience with automated systems (boeing + airbus), and I usually fly 

manually to keep my piloting skills up to date. 

49.  I use the automatics to complement my piloting skills and practice manual flying 

when appropriate. 
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Q53 - What design improvements would you recommend to enhance the communication 

between automation and the pilots to increase flight safety. 

 
1. Software development and implementation of new safety features are very 

important. 

2.  Do it like IPad or IPhone as possible as much. 

3.  Nothing to Improve. 

4.  Some systems have not always got logical user interfaces. Current technologies 

allow for so much more options for input and data recovery (take the development 

of GPS systems and EFB for example) having to work with notepads to copy/paste 

information just seems “old-school”. 

5.  No idea. 

6.  If it's important it needs a sound.  Input needs to be made easier. 

7.  Some faults on the automated system (hold mode on B777) should be. improved. 

Generally its an issue of the SOP s of the companies which restricts the pilots. 

8.  Nothing. 

9.  Better interface, "plug & play concept”, meaning natural understanding of the 

graphic interface and information from all. 

10.  Standardization of new interfaces such as head up displays for both crewmembers 

but only for the PF. 

11.   First of all I think training is an important part in better communication between 

automation and pilots, teaching to scan the FMA and call out changes, teaching that 

FMC needs correct inputs, which FMC page to have open in which phase of flight 

etc. I think Boeing’s design of FMA and MCP etc. is very nice, but sometimes in 
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Boeing you notice that some crews don't realize what the airplane is doing in 

VNAV mode, because they don't realize what is in the FMC or what they put into 

the FMC, so I think Boeing could try to improve the awareness of crews in terms 

of what is in the VNAV climb cruise and descend pages. 

12.  Many combination of planning prompts and a better processor chip can be used. 

13.  Extra visual cues on FMA and instruments could be added. It is a long discussion 

for a short survey:) 

14.  Nothing. 

15.  The time is on our right ant the improvement in technology is getting better and 

better every day, so I think that an improvement in FMA messages in one of the 

right thing to do. Another think is an improvement in visual display like a HUD 

with higher levels of reliability for the flight path. 

16.  Simpler MCP design. 

17.  More visual. 

18.  NA. 

19.  Don’t know. 

20.  Continuous feedback would do so, not only visual but with aural. 

21.  Bigger screens, creative interfaces. 

22.  AoA indication on the flight deck. 

23.  Make less automation and program them easier not too complex. 

24.  Transponder codes maybe increased to communicate in comm. failure situation, 

for example; when in a comm. fail situation pilot sets 7600 and than we can use this 

feature for comm. by setting further codes like ;7601 "I'm following flight plan to 
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destination",7602 "I hear you but cannot xmit with you",7603 "I'm diverting to 

nearest airport" etc.  In 777 FMS we cannot put alt and spd constraints together, 

also we cannot create Defined way points it is also another weakness of 777 FMS. 

25.  Better alerts for important things, and less alerts for trivial things. More pilot 

involvement in automation & software design. 

26.  I like Airbus family automation rather than others. 

27.  Confirmation in absurd situation. 

28.  The aural warnings can be higher with the visual references or warnings... Because, 

when you are busy with something (meal, a problem at the cabin, a failure 

management, comm. with the ATC, talking with the cabin crew chief or paperwork 

etc..) in the cockpit, it is often hard to see the warning light or caution coming with 

the visual references... In this case, most of the visual warnings or cautions must 

come with the aural warnings to focus on immediately ... On the other hand, they 

can aural confirmations to FCU and FMA system like for exp.; when we set the 

ALT to FL 360, FCU system aural sounds may come " FL 360" but of course, I am 

not sure about how much is true to make a this kind of warning... It can make the 

cockpit mass as well... That is why, cockpit stabilization and ergonomy is very 

important to think over it many times with the specialist and the experienced pilots 

or test pilots... 

29.  Automation should never have the ability to override pilot inputs. For instance, 

many new aircraft prevent any input that will stall the aircraft. However, the 

computer cannot make decisions like a person. The pilot should have the ability to 

exceed the parameters of safe flight for unimagined emergency situations. 
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Additionally, systems that have various tiers of automation need to have clear 

indication of what mode the system is currently in and notify the crew when 

transitioning modes. Further the crew needs extensive training on what each mode 

entails, how it affects control inputs, and ultimately whats happening to the aircraft 

in each mode. 

30.  No specific improvements. 

31.  None. 

32.  None. 

33.  More spoken audio for FMA changes. 

34.  I would like to have a HUD and more up to date NAVIGATION DISPLAYS (like 

in modern business jet aircrafts) ENHANCED VISION (TERRAIN) - more 

sophisticated weather radar (vertical display of cloud layers etc.). 

35.  Standard HUDs mandatory. 

36.  Manuals (airbus) and applications user's friendly, to improve pilot's 

learning/training. 

37. Better integration of systems and improved displays 
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