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ABSTRACT 
 

CASE STUDY ON THE DEVELOPMENT OF ENGINEERING DESIGN MODIFICATION 
PROJECTS FOR U.S. NUCLEAR POWER PLANTS: A KNOWLEDGE RETENTION TOOL 

IN SUPPORT OF THE LONGEVITY AND RESILIENCE OF THE NUCLEAR POWER 
INDUSTRY  

 
Pamela M. Torres-Jiménez 

Old Dominion University, 2018 
Director: Dr. Adrian V. Gheorghe 

 
 

The nuclear power industry in the United States (U.S.) has gone through various changes 

throughout its history. Most recently, plans to grow the industry through the construction of new 

power plants have ceased. Because of this, the industry is at a period where the longevity and 

resilience of existing nuclear power plants are vital to its subsistence. 

One of the ways existing nuclear power plants can assure longevity and resilience is by 

performing engineering design modifications efficiently and at a lower cost. Strategic plans, such 

as the Delivering the Nuclear Promise, can support nuclear utilities to achieve this. Another 

strategy to accomplish longevity and resilience is to ensure individuals performing these projects 

possess the proper knowledge to complete tasks efficiently while being cost-effective. 

Knowledge retention is the main purpose of this research project.  

This doctoral dissertation develops a case study for engineering design modification 

projects at nuclear power plants, with the intention of it becoming a knowledge retention tool to 

support the longevity and resilience of the industry. A literature review of subjects such as an 

overview of nuclear power plants, license renewal, resilience, and knowledge management 

comprises the first part of this paper. The literature review is followed by the description of the 

research methodology and the results of the research. Three parts comprise the results section. 

Part one develops a work breakdown structure (WBS) for a design modification project. Part two 



   

 

provides a list of activity descriptions that need to be completed as part of a conceptual design 

package, including estimated person-hours and proposed durations for each activity. The third 

part performs a risk assessment using the Failure Modes and Effects (FMEA) tool. This section 

identifies potential failure modes for each activity, causes of failure, human performance tools 

that can help prevent or detect the failures, and recommends actions to address and mitigate the 

risks identified.  The results of this case study demonstrate how, with the correct knowledge, 

engineering design modification risks can be mitigated and activities can be accounted for when 

developing project estimates. This information can assist the future development of efficient and 

cost-effective projects within the nuclear industry.  
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CHAPTER 1 

INTRODUCTION  

 Much like any other industry in the world, the nuclear power industry in the United States 

(U.S.) deals with issues such as figuring out how to keep relevant knowledge within the industry 

and how to modify practices to increase overall success. Due to recent plant closures and matters 

related to ongoing new nuclear power plant builds, the industry is in need of improving processes 

with the purpose of completing projects in a shorter time and for a lower cost. This especially 

holds true for engineering design projects. The efficient and cost-effective development of 

engineering design modifications could safeguard the resilience and future of the industry.  

 Instead of building new nuclear power plants, the U.S. nuclear power industry should rely 

on alternative subsistence strategies. One of these strategies is the successful and cost-effective 

development and implementation of engineering design modifications to keep plants operating 

safely and reliably. If utilities can perform these projects in less time and for lower costs, they 

could become proactive in the enhancement of systems, structures, and components (SSCs). This 

strategy can, therefore, increase the longevity of nuclear power plants.   

 With the subsistence of the nuclear power industry in mind, this case study researches the 

history of nuclear power plants in the U.S., among other topics. Subjects such as governance of 

large multi-firm projects, project cost and schedule, risk, knowledge retention issues and 

strategies, initiatives within the industry, and the license renewal process, among others, are 

discussed.   
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1.1. Problem Background 

The U.S. nuclear power industry may require large-scale design modifications that call 

for a combination of engineering and project management knowledge and experience to be 

successful.  Project management consists of a comprehensive plan involving a well-defined work 

breakdown structure (WBS), clear timelines, available resources, and a broad understanding of 

potential risks. At the same time, technical knowledge in the engineering field is essential. Due 

to the uniqueness of nuclear power technology, vast regulation, and the continuous effort to 

maintain safety as paramount, engineering design projects can also be considered unique.  The 

uniqueness of engineering projects within this industry makes the documentation of knowledge 

an essential step towards subsistence. 

 

1.2. Research Problem Statement 

The development of an engineering design modification involves various elements such 

as experienced resources with knowledge of the problem and a comprehensive project plan. In 

situations like the 2011 Fukushima response, where the entire U.S. industry set goals to improve 

plants in specific time periods, it is likely that projects need to be developed in short periods of 

time and sometimes using less-experienced resources. As a result, and since at times the 

procedures to follow do not present a straightforward approach on how to accomplish individual 

activities, a clearly-defined example of an engineering design project is needed. In other words, 

the industry is in need of a guide on engineering modifications that can be used by experienced 

resources and entry-level resources alike.  

This paper focuses on the development of a case study for an engineering design 

modification for a nuclear power plant that can be used as an example for developing other 
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engineering projects. The study will focus on, not only explaining what activities need to be 

completed but how to accomplish them successfully.   

The results of this research will provide the nuclear industry with an innovative and 

reliable tool to be used to develop engineering design modifications in the future. The case study 

can later be used as an example to build case studies aimed at other industries. This new tool will 

not only benefit the nuclear industry but will also help others trying to develop a successful 

engineering design project. 

 

1.3. Purpose 

The primary purpose of this paper is to capture the knowledge related to the development 

of engineering design modification projects for nuclear power plants as a knowledge retention 

tool for the U.S. nuclear power industry and is achieved by: 

1. Developing a comprehensive work breakdown structure for an engineering design 

project, 

2. Providing descriptions of each activity, resources needed, and activity durations, 

and  

3. Identifying potential risks involved with each activity and providing a means to 

eliminate or mitigate those risks.  
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1.4. Research Framework 

This research project intends to build a case study for the project design phase of 

engineering design modifications. The resulting case study will serve as a guide for the 

development of successful engineering projects for nuclear power plants. The concepts described 

previously are shown graphically in Figure 1. 
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(Appendix D)
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Figure 1. Research Framework 
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1.5. Research Questions 

Once the purpose of the project is addressed, the following research questions will be 

answered: 

1. How is a comprehensive work breakdown structure for an engineering design 

project within the nuclear industry structured? 

2. What processes should take place to deliver a successful project? 

3. What risk(s) could be present? What is the recommended risk response? How can 

these risks impact the overall success of the project? 

The resulting case study will be a guideline that can be used to plan successful 

engineering design projects for nuclear power plants, specifically from the architectural 

engineering (AE) company’s standpoint, rather than from a utility standpoint. Ultimately, the use 

of the case study can decrease the learning curve needed to complete an engineering design 

project successfully, and consequently, reduce utilities' operating costs. This case study will, 

therefore, contribute to the Delivering the Nuclear Promise strategic plan (NEI, 2016). 

 

1.6. Data Collection 

The experimental procedure for this study is centered on providing different person-hour 

estimates and potential risks to different project activities. Data will consist of experience and 

feedback from peers in the nuclear power industry. 
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1.7. Expected Results and Criteria for Evaluating Results 

The final product consists of a scope-specific case study that can be customized for 

specific project scopes. A project work breakdown along with cost estimates and activity 

durations are provided. The criteria to be used to evaluate the results are as follows: 

1. Is the case study comprehensive enough that it can be used by an entry-level 

engineer to develop a design project? 

2. Can the case study be modified to accommodate different applications or scopes? 
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CHAPTER 2 

LITERATURE REVIEW 

The literature review for this doctoral dissertation focuses on subjects such as the history 

of nuclear power plants in the U.S., projects, knowledge, risk, and resilience. Each topic is 

reviewed to gain the necessary background to develop and justify this research project. 

The Nuclear Power Plants Overview section gives a broad synopsis of nuclear power 

plants in the U.S. and a brief description of plant designs such as pressurized water reactors and 

boiling water reactors. The primary purpose of this section is to provide the reader with the 

necessary background information to follow this research project. The Accidents in the Nuclear 

Industry section discusses the nuclear events that have shaped the U.S. nuclear industry; the 

Three Mile Island (1979), Chernobyl (1986), and most recently, the Fukushima Daiichi (2011) 

event, are discussed. The License Renewal section provides a brief description of the license 

renewal process in the U.S. and outlines how it is addressed by nuclear utilities. The governance 

of large multi-firm projects section describes the interaction of multiple firms working on a 

single project for nuclear power plants. The project cost and schedule section provide an 

overview of how educated guesses on cost and schedule affect project's overall risks. The 

strategic fit section discusses how strategic fit affects the success of a company. The subsequent 

sections focus on the topic of resilience and how it relates to economic effects, human 

performance, and the human reliability analysis. These sections are followed by a discussion of 

risk for multi-unit nuclear power plants. The topic of knowledge management within the nuclear 

industry is later discussed. This literature review concludes by considering the Delivering the 

Nuclear Promise strategic plan and the Standard Design Process, which is the focus of this 

research project's case study.  
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2.1. Nuclear Power Plants Overview 

Nuclear Power Plants (NPP) are power generating stations that use radioactive material 

(i.e., uranium) to produce heat in a nuclear reactor. There are two types of NPPs in operation 

within the United States (U.S.): boiling water reactors (BWRs) and pressurized water reactors 

(PWRs). There is a total of 99 NPPs licensed to operate in the U.S. of which 34 are BWRs and 

65 are PWRs (NRC, 2017). The locations of the plants are shown in Figure 2. 

 

 

 
Figure 2. Location of U.S. Operating Commercial Nuclear Power Reactors (NRC, 2017) 
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BWR plants consist of one thermodynamic cycle composed mainly of a reactor, reactor 

coolant pumps, feed pumps, turbines, condenser, and a generator. Within the reactor water is 

boiled, therefore the term BWR, and steam is produced. Since there is only one cycle the steam 

used to move the turbine is contaminated (i.e., radioactive). A PWR plant consists of two 

thermodynamic cycles. The first cycle includes the reactor, reactor coolant pumps, feed pumps, 

steam generators, and a pressurizer. The second cycle consists of the steam generators, turbines, 

condenser, and the generator. Water is heated to elevated temperatures in the reactor and 

maintained at high pressure by the pressurizer to avoid boiling. The steam generators use the hot 

water (i.e., reactor coolant) to produce steam. The reactor coolant flows through the inside of the 

steam generator tubes, and the steam flows through the outside of the tubes; therefore, the 

contamination of the reactor coolant is not transferred to the steam.  

Nuclear power is considered clean and reliable energy since no greenhouse gases are 

released, and power is generated at high-efficiency levels. Because of its highly radioactive fuel 

and significant consequences in case of an accident, safety is the foremost important aspect of 

nuclear technology. 

 

2.2. Accidents within the Nuclear Power Industry 

In the history of NPPs, there have been a series of accidents that have shaped the 

industry. The most significant being Three Mile Island (1979), Chernobyl (1986), and most 

recently, Fukushima Daiichi (2011). 
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 Three Mile Island (1979) – The Three Mile Island (TMI) NPP is a two (2) unit 

PWR plant located near Middletown, PA (Figure 3). The TMI unit 2 accident is 

so far the most serious nuclear accident in the history of the United States. The 

cause of the accident was a combination of personnel error, design deficiencies, 

and component failures (NRC, 2014), which created a deficiency in the plant’s 

cooling system that led to a partial meltdown of the reactor core and a small 

release of radioactivity. 

 

 

 

Figure 3. Three Mile Island Plant Layout (NRC, 2014) 
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 Chernobyl (1986) – The Chernobyl NPP was a 4 unit pressurized water-cooled 

reactor plant (unique soviet RBMK-1000 design) located in Chernobyl, Ukraine 

(Figure 4). The Chernobyl Unit 4 accident caused by a sudden surge of power, 

destroyed the reactor and released massive amounts of radioactive material into 

the environment (NRC, 2014). 

 

 

 

Figure 4. Chernobyl RBMK 1000 Plant Layout (NEA and OECD; 2002) 
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 Fukushima Daiichi (2011) – The Fukushima Daiichi NPP is a 6-unit BWR plant 

located in the Futaba District of Fukushima Prefecture, Japan (Figure 5). The 

cause of the Fukushima accident was a 9.0 magnitude earthquake that created a 

15-meter tsunami. The events caused loss of offsite power to the station and 

eventually the partial meltdown of 3 reactors and off-site release of radioactive 

material. 

 

 

 

Figure 5. Fukushima Daiichi Accident (FEPC, 2018) 
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The Fukushima Daiichi event in 2011 is the most recent nuclear event. In 

March 2011 a 9.0 magnitude earthquake created a 15-meter tsunami that struck 

the shore of Japan. At the time of the earthquake, 11 reactors from four plants 

were in operation in Japan. All of the reactors proved to be seismically robust by 

automatically shutting down and following emergency procedures. Right after the 

earthquake, the 15-meter (i.e., 49.2-ft) tsunami struck. The flooding caused a loss 

of offsite power at the Fukushima Daiichi plant. As a result, the emergency diesel 

generators took over powering the plant and supporting the plant cooling efforts. 

The tsunami caused flooding which eventually took the diesel generators out of 

service, impeding the cooling efforts. Even though alternate methods were 

implemented, such as dumping sea water in the damaged reactors, the strategies 

were not sufficient. The lack of cooling water caused the fuel to overheat and 

eventually caused a core meltdown which later initiated the release of radioactive 

material. Most of the radioactive releases were created by the lack of cooling 

water on fuel stored in the spent fuel pool.  

As a result of the Fukushima event, the U.S. NRC activated and staffed its 

Emergency Operations Center in Maryland to closely monitor the Japan events 

and assess the potential impact on U.S. nuclear plants and materials (NRC, 2015).  

The NRC also established a taskforce to determine lessons learned from the 

accident and determine if any NRC regulations needed additional measures to 

ensure the safety of nuclear power plants in the U.S. This taskforce created a 

series of recommendations which consist of a series of walkdowns and 

modifications to be done at the nuclear power plants. As a result of the taskforce 
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recommendations, the NRC issued the first regulatory requirement based on 

lessons learned from the Fukushima event in the form of Order EA-12-051, 

“Issuance of Order to Modify Licenses with Regard to Reliable Spent Fuel Pool 

Instrumentation”. Since then, projects have been developed, and are being 

implemented, at nuclear power plants to comply with this NRC order. 

All of the described accidents have a shared variable; they all shaped the U.S. nuclear 

industry we have today. The Three Mile Island accident resulted in the establishment of the 

Institute of Nuclear Power Operations (NRC, 2014), founded in December 1979 (INPO, 2017). 

The Chernobyl accident resulted in improvements to nuclear reactors’ operating and emergency 

procedures. The Fukushima accident resulted in the issuance of order EA-12-049, Issuance of 

Order to Modify Licenses with Regard to Mitigation Strategies for Beyond-Design-Basis 

External Events, on March 12, 2012. This order imposes the need for guidance and strategies to 

prevent fuel damage in the reactor and spent fuel pool (SFP) with a loss of power, motive force 

and normal access to the Ultimate Heat Sink. The NRC provided an acceptable approach which 

was outlined in Interim Staff Guidance JLD-ISG-2012-01 issued in August 2012. The Interim 

Staff Guidance endorses the methodologies described in NEI 12-06 Revision 0, Diverse and 

Flexible Coping Strategies (FLEX) Implementation Guide, with exceptions, additions, and 

clarifications. Plants in the U.S. approached the order differently but all developed FLEX 

strategies to implement it.  

The process of updating plants to support these strategies required extensive project 

management efforts and collaboration between organizations and firms. The following section 

discusses the governance of large multi-firm projects such as FLEX. 
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2.3. Governance of Large Multi-Firm Projects 

The 2011 paper, “A new governance approach for multi-firm projects: Lessons from 

Olkiluoto 3 and Flamanville 3 nuclear power plant projects,” by Ruuska et al., focuses on the 

construction projects of the Olkiluoto 3 plant in Finland and the Flamanville 3 plant in France. 

Both plants are turnkey plants supplied by Areva, a French nuclear company. For the projects to 

take place, in both instances, various other entities or companies were involved including the 

builders, owner, regulating agencies, and turbine suppliers. One of the essential aspects discussed 

in this paper is how relationships between the entities involved in the project affect the overall 

result of the project. Figure 6 and Figure 7 show the supply networks of the Olkiluoto 3 and 

Flamanville 3 projects. Even though the Flamanville 3 network is more complex (i.e., more 

relationships) the project was more successful than the Olkiluoto 3. The reason for this mainly 

was the good relationship between Électricité de France (EDF), the owner and architect/engineer, 

and Areva, the nuclear supplier. Both of these are French companies that have worked together 

on previous projects. Therefore, they understand how one another work, and they work together 

to deliver a successful project. In the case of Olkiluoto 3, Teollisuunden Voina (TVO), the 

owner, had never worked with Areva, making this a first-of-a-kind relationship.  
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Figure 6. The supply network of the Olkiluoto 3 project (Ruuska et al., 2011) 

 
 

 

 
Figure 7. The supply network of the Flamanville 3 project (Ruuska et al., 2011) 
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The paper concludes by giving four implications for changes in governing large projects 

that may possess the potential for enhancing both effectiveness and efficiency within large and 

complex projects (Ruuska et al., 2011). These are (Ruuska et al., 2011):  

1. shift focus from a hierarchical contact organization to a supply network 

organization,  

2. project governance should shift from price and mechanism to relationships and 

self-regulation,  

3. view large multi-firm projects as incorporated in the business interest and not as 

temporary endeavors, and  

4. focus on an open system view of managing projects instead of a narrow view.  

The application of these implications to a design modification can improve the efficiency of such 

projects. At the same time, some of the potentials risks involved with the interaction of various 

firms can be mitigated or even eliminated, therefore improving the project’s cost and schedule.   

 

2.4. Project Cost and Schedule 

In his 2014 paper, “In the Land of the Blind the One-Eyed Man is King: Using Advanced 

Scheduling and Simulation Techniques to Control Project Risk,” Shannon describes how 

estimating cost and schedule are all educated guesses (2014), and not accurate or realistic 

representations of how long the projects are going to last, or how much they are going to cost. He 

also describes how the accuracy can be enhanced by dividing a big project into smaller 

manageable scopes. Therefore, by better “guessing” the smaller scopes we can come up with 

better “guesses” for the overall project, just by adding the smaller scopes up. The downside of 
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following this approach is that rounding up errors are accumulated and can inflate the final 

estimates for the projects.  

Later, Shannon describes how errors in estimation can be introduced into project 

estimates by using the following project management methods: analogy, parametric estimates, 

historical data, expert opinion, and the “Delphi” technique. All of these methods are likely to 

introduce errors due to, most commonly, lack of data appropriate to the domain being estimated 

(Shannon, 2014). The best way to overcome this issue is to not use single-value data; instead, 

data ranges are most appropriate. Shannon describes that data ranges should consider a minimum 

value, a most likely value, and a pessimistic “worst case” value (2014).  

All of the errors discussed that could be introduced into an estimate, build up into the 

uncertainty of that estimate. Another uncertainty is added by risks. These risks can be 

categorized as technical, cost, and schedule risks. These risks can be managed by the following 

six steps:  

1. identify the risks,  

2. document the risks,  

3. characterize the risks,  

4. prioritize the risks,  

5. develop risk management strategies, and  

6. monitor and control risks.  

Regarding identifying risks, considering risk scenarios instead of single risks gives results 

that are closer to reality (T.-H. Nguyen et al., 2013). After these steps are followed, a more 

comprehensive estimate for cost and schedule can be developed that includes the effects of the 

identified risks. This results in better estimates that are more than just “educated guesses.” 
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2.5. Representations of Nuclear Risk 

In the paper, “Environments, Risks, and the Limits of Representation: Examples from 

Nuclear Energy and Some Implications of Fukushima,” Kinsella (2012) discusses how risks in 

the nuclear industry, concerning unusual events, are often not represented correctly. Because of 

this, some of the events are sometimes under or overestimated. An example given, not directly 

related to nuclear power, is the production of nuclear warheads for the Cold War. The number of 

warheads needed was considerably overestimated (Kinsella, 2012). Under or overestimation can 

mainly occur when there is not enough knowledge on a topic to model, or estimate, the work.  

Regarding nuclear power, Kinsella continues by discussing the effects of the Fukushima 

events on the industry. He explains how lessons learned from the Fukushima events only focus 

on the triggering events of earthquake and tsunamis but fail to identify other possible events due 

to the lack of knowledge. Therefore, the representation of this risk is limited only to the known 

information.  

 

2.6. Strategic Fit 

Van Aduard de Marcedo-Soares et al. (2009) discuss in their paper, “Strategic Fit of 

Project Management at a Brazilian State-Owned Firm: The Case of Electronuclear,” how project 

management strategic fit affect the success of a firm or company. In the paper, Van Aduard de 

Marcedo-Soares et al. give the example of the Brazilian nuclear firm Eletrobrás Termonuclear 

S.A. – Eletronuclear, or just Eletronuclear. The article shows how the lack of strategic fit ends up 

having a negative impact [on a company’s] performance and competitiveness (Marcedo-Soares 

et al., 2009). The research focused on employee interviews to understand the firm’s 

organizational culture and characterize employee’s perception of strategic fit. Various 
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weaknesses on the organization were identified. One of those weaknesses is the lack of project 

management culture, involving policies, procedures and best project management practices 

(Marcedo-Soares et al., 2009). Within the nuclear industry, procedure use and adherence is one 

of the human performance safety culture’s most important behaviors.  

 

2.7. Resilience and Economic Effects 

Dalziell and McManus describe the economic effects of events on organizations in their 

2004 paper on resilience, vulnerability, and adaptive capacity. They also emphasize the need for 

resilient organizations to have resilient communities. The first step to evaluate these 

organizations is to apply a system analysis since organizations are dynamic complex systems. 

The most important aspect is not to isolate components; instead, analyze components as a whole 

since understanding the relationships between various components in a system is the best way to 

analyze the system. System resilience is composed of two main terms, vulnerability and adaptive 

capacity. 

Vulnerability – the human product of any physical exposure to a disaster that 

results in some degree of loss, combined with the human capacity to withstand, 

prepare for and recover from that same event (Dalziell and McManus, 2004). 

Adaptive Capacity – reflects the ability of the system to respond to changes in its 

external environment, and to recover from damage to internal structures within 

the system that affect its ability to achieve its purpose (Dalziell and McManus, 

2004). 
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Dalziell and McManus (2004) also describe resilience as the overarching goal of a system 

to continue to function to the fullest possible extent in the face of stress to achieve its purpose, 

where resilience is a function of both the vulnerability of the system and its adaptive capacity. 

They also describe vulnerability and adaptive capacity as the ease with which the individual, 

community or organization is pushed into this new state is a measure of their vulnerability, while 

the degree to which they can cope with that change is a measure of their adaptive capacity. These 

concepts are shown in Figure 8. The relationship between resilience and recovery is also 

discussed. Figure 9 describes the relationship. 

 

 

 
 

Figure 8. Relationship between vulnerability and adaptive capacity of a system in relation to a 
disaster event (Dalziell and McManus, 2004) 
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Figure 9. Relationship between organizational resilience and recovery (Dalziell and McManus, 

2004) 
 

 

Overall system resilience is then evaluated using an organization’s key performance 

indicators (KPIs) and the effects of changes in those indicators as a relationship of time. The area 

under the ΔKPI versus time curve is designated as the organization’s (i.e., the system’s) 

resilience (Figure 10).  
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Figure 10. Impact on KPIs as a measure of system resilience (Dalziell and McManus, 2004) 

 

 

For Nuclear Power Plants the term Key Performance Indicator is directly related to the 

concept of Human Performance (HU). 

 

2.8. Resilience and Human Performance 

Resilience engineering suggests that a company must recognize, adapt to, and absorb 

challenges that fall outside the scope of its design and historical experiences (Huber et al., 2008). 

This is also the main purpose of Human Performance (HU). As shown in INPO’s Performance 

Improvement (PI) Model (INPO, 2006), Figure 11, the main areas of HU are performance 

monitoring (finding gaps); analyzing, identifying, and planning solutions (analyzing actions); 

and finally implementing solutions (fixing results).    
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Figure 11. INPO’s Performance Improvement Model (INPO, 2006) 

 

 

McManus, Seville, Vargo, and Brunsdon (2008) define resilience of an organization as a 

function of the overall situation awareness, management of keystone vulnerabilities, and 

adaptive capacity of an organization in a complex, dynamic, and interdependent environment. As 

mentioned previously, a nuclear power plant is a complex, dynamic, and interdependent 

environment. Now, let’s look closely at this definition of organizational resilience and the 

various HU tools that satisfy it.  
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2.8.1. Overall Situational Awareness  

Tools such as task-review, technical task review, job-site review, questioning attitude, 

and three-way communications, all under the fundamental HU tools for workers, engineers and 

knowledge workers, describe the overall situational awareness variable. When looking at INPO’s 

PI model, we can locate resilience overall situational awareness under the performance 

monitoring area.  

 

2.8.2. Management of Keystone Vulnerabilities  

Tools such as pre-job briefing, concurrent verification, turnover, and post-job reviews, all 

under the conditional and verification HU tools for workers, engineers and knowledge workers, 

address the management of keystone vulnerabilities variable. This variable is the analyzing, 

identifying, and planning solutions under INPO’s PI model. This variable also involves the 

tracking and trending of HU KPIs. 

 

2.8.3. Adaptive Capacity 

Adaptive capacity is closely related to the communication of HU KPIs and is the 

implementing solutions area under INPO’s PI model. By communicating HU events and HU 

clock resets, personnel become aware of the HU status in their plant and/or department and 

become more conscious of error likely situations. By doing this, events can be prevented. 

Through communication, interim solutions and corrective actions to previous events are also 

shared.  

Human Performance can be incorporated into the analysis of resilience by integrating it 

to the Human Reliability Analysis (HRA). HRA is characterized by the NRC (2005) as the lack 
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of consistency among practitioners on the treatment of human performance in the context of a 

probabilistic risk assessment (PRA). 

 

2.9. Resilience and Human Reliability Analysis 

Resilience is directly related human reliability analysis (HRA). Boring (2010) defines 

human error as any action or inaction on the part of an individual that decreases the safety of the 

system with which he or she is interacting. HRA consists of three different stages: 

 Modeling of the potential contributors to human error 

 Identification of the potential contributor to human error, and 

 Quantification of human errors 

In the human factors world, HRA is considered unique since it focuses on prediction 

rather than description. HRA predicts vulnerabilities in human actions. These vulnerabilities are 

then analyzed to establish recovery actions which feed into resilience engineering. Boring (2010) 

considers resilience engineering as a young field that has attracted considerable attention already 

and is being heralded as a significant way of thinking about safety. He also describes the basis of 

resilience engineering as a science to optimize safety, not to undermine existing safety.  

Resilience engineering is a complementary undertaking of HRA. HRA’s primary purpose 

is the human recovery to achieve system safety, which is the main purpose of resilience 

engineering. Boring (2010) describes what each of the methods brings to the other.  

 What HRA brings to resilience: 

 Quantitative emphasis 

 Performance shaping factors 

 Systemic view 
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What resilience brings to HRA: 

 Unexampled events 

 Dynamic events 

The interactions between resilience and HRA are the characterization of system safety. 

Overall, by improving the HRA terms within a PRA model, the resilience of a nuclear power 

plant can be achieved. 

 

2.10. Multi-Unit Nuclear Power Plant Risk  

Multi-unit risk has recently become a topic of interest when it comes to PRA and is also 

known as multi-unit probabilistic risk assessment (MUPRA). Kim et al. (2016) define multi-unit 

risk as the risk associated with multiple units regardless of the types of radiological sources (i.e., 

reactor or spent fuel pool).   

Based on a recent study of U.S. license event reports (LERs) submitted to the NRC 

between 2000 and 2011, 9% of the LERs submitted affected multiple sites with the most 

common cause of these events being organizational dependencies. This percent accounted for 

41% of the total 9% (Kim et al., 2016).  Some of the organizational dependencies that are 

directly related to the design phase of a project include (Kim et al., 2016): 

 Design issue that affects multiple units 

 Incorrect calculation that is used on multiple units 

 Incorrect technical specifications that have been mirrored for multiple units 

 Incorrect engineering judgment that has been applied to multiple units 

 Poor safety culture which leads to errors of judgment and execution across the 

organization 
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 Latent failures present in the site systems, structures, and components (SSCs) 

(e.g., design issues or incorrect engineering analysis applied to multiple units, 

maintenance errors repeated on several units). 

Even though all of the mentioned organizational dependencies are relevant to the design 

phase of nuclear projects, latent failures in the site SSCs might be the most important one. Aside 

from natural events that can affect multiple units, regardless of the site, common SSCs between 

units pose the greatest risk of failure and can be the cause of the rest of the organizational 

dependencies.  

Out of the 100 NPPs licensed to operate in the U.S., 25 are single-unit sites, nine units are 

part of a three-unit site (3 sites), and 66 units are part of dual-unit sites (33 sites) (NRC, 2017). 

As of early 2018 there are no sites with more than 3 operating units in the U.S. Soon, as early as 

2020, with the construction of the Units 3 and 4 at Vogtle in Georgia, the U.S. will count with 25 

single-unit sites, 62 units in dual-unit sites (31 sites), 9 units in three-unit sites (3 sites), and 4 

units in a four-unit site (1 site), not accounting for any plant closures in the near future. This new 

scenario will make Vogtle a one of a kind site in the U.S.  

With the soon to be U.S. nuclear fleet panorama, multi-unit risk (see Figure 12 for 

example) is more relevant than ever. Human errors made during the design phase of projects, 

while they are less influential than the general external events in terms of area and scope (Heo et 

al., 2016), still pose a great risk of latent failures. Measures need to be put in place to identify 

these risks early in the design process.  

 

 



   

 

30 

Unit 1 Unit 21&2

Unit 3

1&3 2&4All

Unit 43&4

 
 

Figure 12. Example of Multi-Unit Risk 
 

 

2.11. Nuclear Knowledge Management  

Knowledge is the correct interpretation of data (Yanev, 2013). The management of 

nuclear knowledge has become an ongoing issue in the commercial nuclear power industry. This 

issue emerges from the fact that the nuclear power workforce is aging. The most knowledgeable 

workers within the industry, many of whom have dedicated their entire professional careers to 

nuclear and have been around since the design and construction of the majority of nuclear power 

plants in the U.S., are retiring and taking with them years of knowledge and experience.  

Even though processes within the nuclear industry are usually captured in documents 

such as industry guidelines and procedures (i.e., explicit knowledge (IAEA, 2004)), tacit 

knowledge is not captured. The International Atomic Energy Agency (IAEA, 2004) defines tacit 

knowledge as knowledge that is held in a person’s mind. This knowledge is not typically 

captured or documented and is easy to lose. This tacit knowledge is typically kept by retiring 

employees and is rarely transferred to new or upcoming employees.  The safety of existing and 
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new power plants will directly depend on how we preserve, transfer and further grow nuclear 

knowledge and expertise worldwide (Yanev, 2013).    

One way of retaining tacit knowledge within an organization is to create programs that 

facilitate the transfer of knowledge. This information can be transferred through training or 

mentoring. Even though the new nuclear workforce is required to have formal training, this 

training or education is just the beginning of the training process and much hands-on practical 

experience is also necessary to gain the required competence (Yanev, 2013) to operate a nuclear 

power plant safely. On the other hand, mentoring is a key approach to knowledge transfer, which 

allows for both the explicit and tacit aspects of knowledge to be transferred (Pollack, 2012). 

Another way of capturing tacit knowledge is by documenting the knowledge, which is the 

purpose of this case study, to capture the knowledge related to the development of engineering 

design projects as a knowledge retention tool for the U.S. nuclear power industry.  

 

2.12. Delivering the Nuclear Promise and the Standard Design Process  

Delivering the Nuclear Promise is a strategic plan developed by nuclear energy facilities 

in the U.S. and led by the Nuclear Energy Institute (NEI) to strengthen the industry’s 

commitment to excellence in safety and reliability. It assures future viability through efficiency 

improvements, and drives regulatory and market changes so that nuclear energy facilities are 

fully recognized for their value (NEI, 2017). In the strategic plan three focus strategies are 

identified: maintain operational focus, increased value, and improve efficiency (NEI, 2016). As a 

result of these strategies, four building blocks were developed. These are (NEI, 2016): 

 Building Block 1: Analyze cost drivers and identify opportunities to improve 

efficiency. 
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 Building Block 2: Leverage federal and state policies to ensure monetary 

recognition of nuclear energy’s value. 

 Building Block 3: Redesign nuclear power plant processes to improve efficiency 

while advancing the fundamentals of safe, reliable operation. 

 Building Block 4: Implement a communications strategy to ensure industry 

engagement in the initiative. 

This case study is directly related to building block 3. One of the objectives of this 

building block is to develop procedures and processes to facilitate discrete industry efficiency 

initiatives (NEI, 2016). One of these processes is the engineering design process.    

As part of the Delivering the Nuclear Process strategy, NEI has issued a series of more 

than 40 efficiency bulletins (NEI, 2017) including graded approach to walkdowns (EB 16-02), 

optimizing FLEX equipment preventive maintenance strategies (EB 16-17), standardization of 

in-processing training (EB 16-26b), and standard design change process (EB 17-06), among 

others. Efficiency Bulletin 17-06 (NEI, 2017), Implement Standard Design Process, provides a 

detailed description of this efficiency opportunity. One of the reasons for implementing this 

change, which applies to the entire industry, is to address the administrative burden and 

complexity for developing design changes (i.e., streamline the design process), and avoid 

increased costs and project delays. As it pertains to AE companies, one of the reasons to 

implement this change is to avoid having to maintain unique procedures and training to each 

fleet or site. The selection of design change types is also addressed. This study focusses on full 

design changes.  

The Standard Design Process (SDP) is described in Nuclear Industry Procedure IP-ENG-

001 (2017), issued by the Standard Design Process Steering Committee (SDPSC). This 
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procedure is meant to be used in conjunction with site-specific procedures and is based on 

standard industry guidance, expectations, and operating experience (SDPSC, 2017). The SDP 

covers guidance for the: 

 Initial Scoping Phase 

 Conceptual/Common Design Phase  

 Detailed Design Phase (i.e., for Design Equivalent Change, Commercial Change, 

and Design Phase) 

 Planning Phase 

 Installation/Testing Phase, and 

 Design Closure Phase 

The scope of this case study will focus on the Initial Scoping Phase, the 

Conceptual/Common Design Phase, and the Detailed Design Phase for a full design change since 

it is the most comprehensive of all the change types. This new process will be incorporated into 

Chapter 4 of this case study.   

 

2.13. Nuclear Power Plant License Renewal 

In the United States, nuclear power plants were originally licensed for 40 years. This 

licensing time limit was chosen as default and was a result of the projected lifetime of fossil 

plants (Weinberg, 2004), which was the closest benchmark available. Later, the industry 

determined that nuclear plants were suited to operate for more than 40 years. This resulted in the 

publication of the original license renewal rule by the Nuclear Regulatory Commission (NRC) in 

1991, 10 CFR Part 54. An amended license renewal rule was later issued in 1995.  
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The license renewal rule governs the issuance of renewed operating licenses and renewed 

combined licenses for nuclear power plants licensed pursuant to Sections 103 or 104b of the 

Atomic Energy Act of 1954, as amended, and Title II of the Energy Reorganization Act of 1974 

(NRC, 2017). This rule allows nuclear power plants to renew their operating licenses for an 

additional period of 20 years. The rule also allows for subsequent renewals of 20-year intervals. 

By the time this report is issued, 84 plants have completed their license renewal application 

process, leaving 15 plants with applications under review, as future submittals, or with no intent 

to submit. Appendix A shows a detailed list of nuclear power plants licensed to operate in the 

U.S. and their license renewal status.  

The scope of a plant’s license renewal is determined by performing an Integrated Plant 

Assessment (IPA). This assessment identifies the SSCs (and their functions) requiring aging 

management to ensure they will be managed to maintain the current licensing basis (CLB) and to 

ensure that there is an acceptable level of safety during the period of extended operation (NRC, 

2017). These SSCs are (NRC, 2017): 

1) Those relied upon to remain functional during and following design-basis events 

(as defined in 10 CFR 50.49 (b)(1)) to ensure the following functions: 

i. The integrity of the reactor coolant pressure boundary; 

ii. The capability to shut down the reactor and maintain it in a safe shutdown 

condition; or 

iii. The capability to prevent or mitigate the consequences of accidents which 

could result in potential offsite exposures comparable to those referred to 

in § 50.34(a)(1), § 50.67(b)(2), or § 100.11 of 10 CFR, as applicable. 
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2) All nonsafety-related systems, structures, and components whose failure could 

prevent satisfactory accomplishment of any of the functions identified in 1). 

3) All systems, structures, and components relied on in safety analyses or plant 

evaluations to perform a function that demonstrates compliance with the 

Commission's regulations for fire protection (10 CFR 50.48), environmental 

qualification (10 CFR 50.49), pressurized thermal shock (10 CFR 50.61), 

anticipated transients without scram (10 CFR 50.62), and station blackout (10 

CFR 50.63). 

The scope of the IPA typically becomes the scope of a plant’s Aging Management Program 

(AMP). 

A portion of the IPA for license renewal consists of component scoping and screening 

evaluation, and Aging Management Review (AMR), of a specific system. This is performed for 

mechanical components, electrical components, and structures. The component scoping and 

screening evaluation determines which passive long-lived system components are within the 

scope of the AMP and subject to an AMR. This is typically done by reviewing P&IDs (i.e., 

process and instrumentation drawings) and performing system walkdowns to confirm P&ID data. 

The AMR demonstrates that the effects of aging are adequately managed such that the 

component’s intended function will be maintained consistent with the CLB for the period beyond 

the 40-year plant design basis. The AMR does the following: 

1. Identifies components’ intended functions – For mechanical components intended 

functions may be pressure boundary and heat transfer, among others.  

2. Identifies components’ materials of construction – These may be divided into 

subcomponents depending on material types. For example, a valve may have a 
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carbon steel body subcomponent and a stainless steel bonnet subcomponent. A 

heat exchanger may be divided into shell, tubes, and tube sheet.  

3. Identifies components’ internal and external operating environments – Some of 

the environments typically applied are air, air with borated water leakage, raw 

water, treated water, lubricating oil, soil, and concrete.  

4. Assigns AMR groupings (i.e., material and environment combinations), both 

internal and external – These are identified using guidance from the Nuclear 

Energy Institute (NEI) described in NEI 95-10. An example of an AMR grouping 

may be carbon steel in treated water.  

5. Determines aging effects requiring management – Some of these are the loss of 

material (e.g., crevice corrosion, pitting corrosion, general corrosion, 

microbiological induced corrosion, and cracking, among others). 

6. Identifies the programs that will be employed to manage the aging effects – These 

are identified using guidance described in NUREG-1801 by the NRC, also known 

as the GALL Report (i.e., Generic Aging Lessons Learned). Some examples of 

the programs that may apply to mechanical components are Flow Accelerated 

Corrosion (i.e., XI.M17, referring to the GALL chapter), Boric Acid Corrosion 

(i.e., XI.M10), External Surfaces Monitoring of Mechanical Components (i.e., 

XI.M38), and Water Chemistry (i.e., XI.M2). 

The process just described is later used to implement an AMP at nuclear power plants. 

The AMP consists of a series of activities based on the format provided in NEI 95-10 for 

managing the effects of aging on components (INPO, 2015). The key aspects of the AMP are 

monitoring or inspecting parameters, acceptance criteria, detection of aging effects, preventive 
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actions, trending, and application of operating experience. As it pertains to engineering 

modifications, acceptance criteria are the most relevant aspects of the AMP. When acceptance 

criteria are not met, corrective actions, such as replacement through engineering modifications, 

need to be put in place to ensure that SSCs are maintained under all CLB design conditions 

during the period of extended operation, therefore ensuring the longevity of the nuclear power 

plant. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

The following sections describe the methodology to be used to develop a case study for 

the design phase of engineering projects for nuclear power plants. The research questions, 

research environment, and experimental procedures will be discussed.  

 

3.1. Methodological design and rationale for the design 

The development of this engineering design case study is divided in three parts. Part I 

(Section 4.1), Work Breakdown Structure, displays a comprehensive work breakdown structure 

for an engineering project. The information consists of a list of activities that will need to occur 

throughout the life of an engineering design modification project until completion of the design 

package. Each activity is descriptive and broken down into sub-activities. The activities range 

from the development of the project scope to the implementation and close-out of the project. 

Activities relevant to the development of a conceptual design package are later identified. These 

activities are the foundation of Part II. 

Part II (Section 4.2) of this case study, Activity Definitions and Estimates, consists of 

providing descriptions to the activities identified in Part I. Person-hour estimates are also 

assigned. The descriptions and estimates provided are based on a hypothetical project scope 

defined in Section 4.2 of this case study. This section provides information such as: 

 responsible resource,  

 estimated person-hours needed to complete the activity, 

 possible interactions with other resources, 

 required reviews or oversight, 
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 relationship to other activities, and 

 required procedures or forms to be completed. 

The results of Part II are captured in tables within Section 4.2 and in a project schedule 

developed using the Microsoft Projects software. This information can later be used to develop 

project costs and schedules for other projects. 

Part III (Section 4.3), Risks, consists of evaluating each activity described in Part II and 

identifying potential risks. The activities are evaluated using the Failure Modes and Effect 

(FMEA) risk assessment tool. The third phase will also evaluate the resilience of the overall 

project in order to identify potential cost and schedule obstacles.  

The described methodology relates to the research questions as follows: 

Research Question #1 – How does a comprehensive work breakdown structure for an 

engineering design project within the nuclear industry look like? 

In order to answer this question, a comprehensive list of activities has to be created. 

Some of these activities include: development of a scope summary, identification of impacted 

documents, installations instructions, development of drawings, and programs reviews. Sub-

activities should also be included in order to facilitate the development of person-hour estimate.  

Research Question #2 – What should take place to deliver a successful project? 

Each activity listed within the work breakdown structure should be supplemented with a 

description of what it entails. Industry documents and specific plant procedures can also be 

referenced within each activity description. Estimated person-hours required to complete each 

activity should also be included, including responsible resources. Each activity should also 

include, to the extent possible, lessons learned from industry documents or personal experience, 

among others.  
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Research Question #3 – What kind of risk could I face? What risk response can be identified? 

How can these risks impact the overall success of the project? 

The last portion of the case study will focus on what can go wrong with each individual 

activity. To the extent possible, mitigating strategies for those identified risks should also be 

provided. If mitigating strategies cannot be provided, then possible consequences of accepting 

risks should be discussed.  

 

3.2. Proposed Analysis 

The experimental procedure for this study is based on identifying activities to be 

completed within the development phase of an engineering design project in the nuclear industry, 

describing the activities in detail, providing person-hour estimates for each activity and 

identifying the potential risks each activity could encounter. The final product consists of a 

comprehensive case study that can be customized based on specific project applications. Data 

consists on experience and feedback from Subject Matter Experts (SMEs) in the nuclear 

industry. 

 

3.3. Research Design and Methods 

The design of the research and method to be applied is shown in Figure 1. The research 

consists of three major parts. A Subject Matter Expert (SME) review is performed after each part 

is developed.  
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3.4. Subject Matter Expert Reviews 

SME reviews consist of reviewing the content of a specific part. The scope of each 

review consists of: 

 SME Review #1 – Review Part I, Work Breakdown Structure, of the case study 

and provide comments and/or recommendations on how to improve the content 

based on your experience with design engineering projects. 

 SME Review #2 – Review Part II, Activity Definitions and Estimates, of the case 

study and provide comments and/or recommendations on how to improve the 

content based on your experience with design engineering projects. 

 SME Review #3 – Review Part III, Risks, of the case study and provide 

comments and/or recommendations on how to improve the content based on your 

experience with design engineering projects. 

Three SMEs have been chosen to perform the reviews. Each SME has previous 

experience with design engineering projects within the U.S. nuclear power industry. SMEs are a 

combination of civil/structural engineer, electrical/instrumentation and controls (I&C) engineer, 

and project manager. A combination of these types of SMEs will guarantee reviews from 

different perspectives. As part of the review, SMEs provided professional tittle (including 

engineering discipline if applicable) and a brief description of their experience as it relates to 

design engineering projects. A form, see Table 1, is provided to each SME to record this 

information. A section for comments, including reference to applicable section of the report is 

also provided. Finalized forms include resolution of comments from the author. Results from the 

SME reviews are recorded in Appendix B (Part I), Appendix C (Part II), and Appendix D (Part 

III) of the report.  
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SME:  
SME Title:  
Description of SME Experience: 
 
 
 
Scope: Review Part I of the case study and provide comments and/or recommendations on 

how to improve the content based on your experience with design engineering projects. 
   
Section/Table/Figure Comment/Recommendation Resolution 
 
 

  

 
 

  

 
 

  

   
 

 
 

  

 
 

  

 
 

  

 
 

  

 
 

  

 
 

  

 
 

  

 
 

  

 
 

  

 
 

  

 
 

  

 
 

  

 
Table 1. Subject Matter Expert Review Form 
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CHAPTER 4 

RESULTS 

The results of this case study are organized in three parts. Part one (4.1) provides a 

detailed work breakdown structure (WBS) of the most common activities that would take place 

during the design phase of an engineering design modification project (i.e., detailed design 

phase). Part two (4.2) provides a specific scope of work for a nuclear power plant design 

modification and describes activities to be completed as part of a conceptual design. 

Recommended person-hour estimates and activity durations are assigned. The third and last part 

(4.3) uses the Failure Modes and Effects (FMEA) tool to identify and analyze potential risks for 

each activity described in part two. 

 

4.1. Part I: Work Breakdown Structure 

Engineering design modification projects at nuclear power plants are a combination of 

activities that range from the design of an SSC up to implementation. Various resources are 

typically involved in the development of a project. Some of the dedicated resources are the 

project manager (i.e., the overall project lead who focuses on schedule and budget), the 

responsible engineer (i.e., the technical lead who serves as the primary point of contact for the 

development of the design), and resource engineers (i.e., task or discipline-specific engineers, 

also known as design team members by the SDP). Each project starts with the identification of 

an issue. This issue is then evaluated by plant personnel to determine if a physical change to the 

plant is required. Once the problem is evaluated, and a decision is made to make changes to the 

plant, a request is sent to the engineering department to initiate a plant design modification. This 

modification request eventually becomes an engineering project. 
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If the required resources are available, nuclear power utilities typically perform design 

modifications “in-house.” If these resources are not available, utilities reach out to external 

companies to perform the work. This case study is based on an engineering design modification 

developed for a hypothetical nuclear power plant by an external engineering company. The focus 

of this case study is the development of a clearly-defined example of an engineering design 

modification project from the perspective of a responsible engineer that is in the planning or 

estimating stage of the technical portion of a conceptual design.     

The following is a list of activities that should be considered when developing the WBS 

for an engineering design modification project. This list is not comprehensive. Its primary 

purpose is to provide a basis for this case study. A formal process, such as the Standard Design 

Process (SDP) or a plant-specific design process should be followed to develop an accurate WBS 

for a realistic project. The WBS presented here includes activities to be performed as part of a 

detailed design change package (i.e., document). A portion of these activities is required to be 

completed as part of a conceptual design package. These activities are identified by placing an 

asterisk (*) next to each activity. Section 4.2 describes each of these activities. Section 4.2 also 

describes the differences between a detailed design and a conceptual design based on the SDP.  

A diagram of the WBS is presented in Figure 13 thru Figure 18. 
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WBS.1. Engineering Design Modification 

WBS.1.1. Define Project* 

WBS.1.1.1. Obtain input from Customer and Project Manager 

WBS.1.1.2. Problem Statement 

WBS.1.1.3. Identify Resources Needed 

WBS.1.1.4. Project Scope 

WBS.1.1.3.1. Mechanical Engineering Scope 

WBS.1.1.3.2. Electrical Engineering Scope 

WBS.1.1.3.3. Civil/Structural Engineering Scope 

WBS.1.1.3.4. Instrumentation and Controls (I&C)/Digital/Cyber Security 

Scope 

WBS.1.1.5. Proposed Design Change/Problem Resolution 

WBS.1.1.6. Design Inputs 

WBS.1.2. Identify New and/or Update Affected Design Documents* 

WBS.1.2.1. Obtain Input from Customer’s Design Engineering 

WBS.1.2.2. Identify Affected Design Documents 

WBS.1.2.3. Identify New Design Documents to be Generated 

WBS.1.2.4. Drawings 

WBS.1.2.4.1. Update/Generate Drawings 

WBS.1.2.4.2. Review/Approval 

WBS.1.2.4.3. Submit for Processing 

WBS.1.2.5. Calculations 

WBS.1.2.5.1. Update/Generate Calculations 
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WBS.1.2.5.2. Review/Verification/Approval 

WBS.1.2.5.3. Submit for Processing 

WBS.1.2.6. Technical Reports 

WBS.1.2.6.1. Update/Generate Technical Report 

WBS.1.2.6.2. Review/Verification/Approval 

WBS.1.2.6.3. Submit for Processing 

WBS.1.2.7. Specifications 

WBS.1.2.7.1. Update/Generate Specifications 

WBS.1.2.7.2. Review/Verification/Approval 

WBS.1.2.7.3. Submit for Processing 

WBS.1.2.8. Procedures (e.g., plant operating procedures) 

WBS.1.2.8.1. Update/Generate Administrative and Installation Procedures 

WBS.1.2.8.2. Review/Verification/Approval 

WBS.1.2.8.3. Submit for Processing 

WBS.1.2.9. Training Materials 

WBS.1.2.9.1. Update/Generate Training Materials 

WBS.1.2.9.2. Review/Verification/Approval 

WBS.1.2.9.3. Submit for Processing 

WBS.1.2.10. Design Basis Documents 

WBS.1.2.10.1. Update/Generate Design Basis Documents 

WBS.1.2.10.2. Review/Verification/Approval 

WBS.1.2.10.3. Submit for Processing 
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WBS.1.2.11. Other Documents (e.g., data sheets, components lists, supplier 

documents) 

WBS.1.2.11.1. Update/Generate Other Documents 

WBS.1.2.11.2. Review/Verification/Approval 

WBS.1.2.11.3. Submit for Processing 

WBS.1.3. Installation Instructions* 

WBS.1.3.1. Obtain Input from Installing Group or Vendor 

WBS.1.3.2. Detailed Instructions 

WBS.1.3.2.1. Obtain Input from Installing Group (i.e., constructability 

review) 

WBS.1.3.2.2. Obtain Input from Supplier/Manufacturer 

WBS.1.3.3. Bill of Materials 

WBS.1.3.3.1. Obtain Input from Customer (e.g., procurement, engineering, 

installing group) 

WBS.1.3.3.2. Obtain Input from Supplier/Manufacturer 

WBS.1.3.4. Testing Instructions 

WBS.1.3.4.1. Obtain Input from Customer (e.g., test group) 

WBS.1.3.4.2. Obtain Input from Supplier/Manufacturer 

WBS.1.3.5. Submit for Implementation 

WBS.1.4. 10 CFR 50.59/72.48 Review* 

WBS.1.4.1. Obtain Input from Licensing Group 

WBS.1.4.2. Safety Analysis Report (SAR) Impacts 

WBS.1.4.2.1. Identify Recommended Changes to the SAR 
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WBS.1.4.2.2. Review/Approval 

WBS.1.4.2.3. Submit for Processing 

WBS.1.4.3. Technical Specification Impacts 

WBS.1.4.3.1. Update Technical Specification 

WBS.1.4.3.2. Review/Approval 

WBS.1.4.3.3. Submit for Processing 

WBS.1.4.4. Operating License Impacts 

WBS.1.4.4.1. Identify Recommended Changes to the Operating License 

WBS.1.4.4.2. Review/Approval 

WBS.1.4.4.3. Submit for Processing 

WBS.1.4.5. Submit to Licensing Group 

WBS.1.5. Programs Impact* 

WBS.1.5.1. Obtain Input from Program Owners and/or System Engineers 

WBS.1.5.2. Cumulative Effects 

WBS.1.5.3. Database Changes 

WBS.1.5.4. Preventive Maintenance 

WBS.1.5.5. Additional Information to Support Design 

WBS.1.5.6. Other Site-Specific Requirements 

WBS.1.5.7. Review/Approval 

WBS.1.6. Project Activities 

WBS.1.6.1. Design Package Inter-Discipline Review/Verification 

WBS.1.6.1.1. Internal/SMEs* 

WBS.1.6.1.2. Customer/SMEs 
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WBS.1.6.1.3. Professional Engineer 

WBS.1.6.1.4. Human Performance/Risk 

WBS.1.6.1.5. Verification 

WBS.1.6.2. Meetings 

WBS.1.6.2.1. Pre-Job Briefs* 

WBS.1.6.2.2. Progress Updates 

WBS.1.6.2.3. Technical/SME 

WBS.1.6.2.4. Industry 

WBS.1.6.2.5. Design Presentations* 

WBS.1.6.3. Walkdowns* 

WBS.1.6.3.1. Pre-Design 

WBS.1.6.3.2.1. Obtain Input from Engineering 

WBS.1.6.3.2. Post-Design/Constructability 

WBS.1.6.3.2.2. Obtain Input from Implementing Group 

WBS.1.6.4. Incorporate comments into design 

WBS.1.6.5. Final signatures and approval  

WBS.2. Implementation Phase 

WBS.2.1. Work Order Creation/Support 

WBS.2.2. Minor Changes to Design due to Implementation 

WBS.2.3. Performance Test Acceptance Report Reviews 

WBS.2.4. Return SSC to Service 

WBS.2.5. Installation Support 

WBS.2.4.1. Outage 
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WBS.2.4.2. Non-Outage 

WBS.3. Close-Out/Completion Phase 

WBS.3.1. Tracking of Document Completion 

WBS.3.2. Additional Documentation 

WBS.3.3. Final Reviews/Approvals 
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Figure 13. Work Breakdown Structure Diagram – Overall  
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Figure 14. Work Breakdown Structure Diagram – Identify New and/or Update Affected Design 
Documents 
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Figure 15. Work Breakdown Structure Diagram – Installation Instructions  
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Figure 16. Work Breakdown Structure Diagram – 10 CFR 50.59/72.48 Review  
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Figure 17. Work Breakdown Structure Diagram – Programs Impact 
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Figure 18. Work Breakdown Structure Diagram – Project Activities  
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4.2. Part II: Activity Definitions and Estimates 

The scope of an engineering design project, especially for a plant modification, can be 

extensive, as shown in the WBS in Section 4.1. Therefore, projects are typically divided into 

phases. The Standard Design Process (SDP; SDPSC, 2017), shown in Figure 19, identifies six 

major design phases: initial scoping phase, conceptual/common design phase, detailed design 

phase, planning phase, installation/testing phase, and design closure phase. The case study 

presented here focuses on the SDP conceptual design phase (i.e., ~30% of the design (SDPSC, 

2017)) shown in Figure 20.  
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Figure 19. Standard Design Process Flowchart (SDPRC, 2017) 
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Figure 19. Continued 
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Figure 20. Conceptual/Common Design Phase Flowchart (SDPRC, 2017) 
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By the time a project is assigned to a responsible engineer, especially one external to the 

plant, the initial scoping phase has already been completed by plant personnel. The next phase is 

the conceptual/common design phase. The common design phase applies to nuclear fleet-level 

designs and evaluations (SDPSC, 2017) and will not be discussed since this case study is based 

on a single unit plant.  

Per the SDP (SDPSC, 2017), a conceptual design includes the following major elements: 

1. Identification of the design scope, 

2. Identification of team members, 

3. Development of the preliminary design inputs, requirements, and deliverables. 

During the conceptual design phase, the entire project structure can be delineated with more 

accuracy; therefore, estimates for future phases can be refined. There is a risk of over-estimating 

or under-estimating a project from beginning to end. Because of this, a phased approach is 

preferable.   

This case study describes a simplified WBS for a hypothetical project scope. It also 

develops project estimates and schedules for a design modification performed for a hypothetical 

nuclear power plant named Nuclear Plant 1. The purpose of this modification is to add a means 

to use filtered water from the Filtered Water Tank (FWT) for alternative or emergency purposes. 

The project focuses on the following overall scope: 

 Install a 6” drain line and valve to the FWT discharge line at Nuclear Plant 1, a 

single unit plant. The FWT is a non-nuclear safety related (NNS) tank containing 

filtered water. 

 The new line is classified as NNS. 
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 One P&ID is required to be updated. This P&ID is also a figure on the plant’s 

Safety Analysis Report (SAR). 

 One pipe support is needed to support the new line.  

 No wall penetrations are required.  

 The responsible engineer for the project will be a mechanical engineer. 

 One (1) civil/structural resource engineer will be involved in the project. 

 The conceptual design shall be completed in 12 weeks.  

 Project weeks are 40-hour weeks, five (5) days per week, and seven (7) hours 

each day (i.e., approximately 87% utilization). 

 25% of the total allotted time will be assigned to the resource engineer.  

The descriptions of each activity and person-hour estimates to complete the activities are 

discussed. As stated previously, this case study will focus on activity descriptions and person-

hour estimates for the development of a conceptual design. 

 

4.2.1. Pre-Job Brief 

As defined by Davenport (2005), knowledge workers have high degrees of expertise, 

education, or experience, and the primary purpose of their jobs involves the creation, 

distribution, or application of knowledge. The Institute of Nuclear Power Operations (INPO) 

classifies engineers as knowledge workers. In the 05-002 report, INPO provides a list of tools 

that can be applied to anticipate, prevent, and catch in-process errors (INPO, 2005). All of these 

tools are important to developing a high-quality product and should be applied throughout the 

life of a project. The pre-job briefing tool is an essential tool to apply at the beginning of any 

project and is discussed here.   
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A pre-job brief is a discussion held by the responsible engineer and their responsible 

supervisor to (INPO, 2005):  

1. To ensure the engineer is qualified to perform the assigned task,  

2. To prepare the engineer for what to accomplish, and  

3. To sensitize the engineer to what to avoid and to identify and compensate for 

error-likely situations that could lead to the product jeopardizing the plant or 

person.  

The pre-job brief is the first step to ensure a project is being developed the right way from the 

beginning. Always ensure your direct supervisor organizes or schedules a pre-job brief before the 

start of any activity such as planning and estimating the effort to develop a conceptual design 

package. Pre-job briefs should be used every time an activity is started and can be led by 

responsible supervisors, project managers, and responsible engineers alike. A pre-job brief is a 

tool that can also be used to reduce activity risks as shown in the risk analysis performed in 

Section 4.3.   

 

4.2.2. Procedure Use and Adherence 

The next step on any project, especially a nuclear plant modification project, is to identify 

applicable procedures or documents, and their latest revisions or versions. The controlled (i.e., 

revision or version approved for use) documents can be found in the plant’s controlled document 

repository. As a good practice, never rely on printed procedures or documents that have been 

saved on local folders or personal computer desktops. These are not controlled and can contain 

old information. During the life of a project controlled documents may change, or not change at 

all. Always ensure that the latest procedures and forms are being used or submitted with project 
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deliverables and that the latest versions of documents are being used for updates. Failing to do so 

may cause schedule or operability issues. The same concept applies to training and 

qualifications. Management and individual project contributors should always ensure that 

training and qualifications are current before assigning or starting work.  

 

4.2.3. Project Definition and Pre-Design Walkdown 

The first deliverable on any project should be to define the project scope. The overall 

scope of the project is defined in the initial scoping phase. During the development of the 

conceptual design phase, the scope is expanded to include technical details. The definition of the 

scope should always start with a walkdown and discussions with customer key stakeholders to 

understand the entire assignment, especially to outline the technical information.  

Pre-design walkdowns are essential to define a project and to develop a design. The 

purpose of this walkdown is to get familiar with the system or component that needs to be 

modified and to give the engineer a sense of the magnitude of the work.  Walkdowns are also 

used to confirm information, especially from drawings. Even if a drawing is approved for use, it 

does not mean that it contains accurate or complete information, especially for non-safety related 

systems, since more focus is put on safety-related systems. Walkdowns are excellent tools to 

confirm this information and to guarantee that the design is based on correct, not assumed data. 

Plant or customer key stakeholders are project managers, engineers, or plant operations 

and maintenance personnel familiar with the issue. Interviewing plant operations and 

maintenance personnel can be beneficial to a project since these are the individuals interacting 

with the systems every day. They typically understand how these systems and components work, 

can identify the real issues they face, and can also provide feedback on realistic solutions to the 
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problems. System and component engineers are another excellent source of information. These 

engineers are in charge of the health of systems and major plant components and often perform 

monitoring activities which can provide the backup data to support possible resolutions. Design 

engineers, on the other hand, know how these issues relate to the plant’s design basis. Design 

engineers are vital resources when identifying and updating impacted documents. All the 

resources previously described can also assist in developing the background of the issue.  

The definition of a project typically consists of the problem statement (i.e., what?), 

background description (i.e., why?), and overall resolution of the problem (i.e., how?).   This 

definition should be a comprehensive description of the issue, the reason why it needs to be 

solved, and how will it be solved. The background should also include reference to regulatory 

requirements, system health issues, maintenance issues, or inspection findings that initiated the 

change. The safety classification (i.e., non-nuclear safety related, safety-related, or 

quality/augmented quality) of the project, or system/component, should also be described. The 

project’s safety classification will give the reader or reviewer a sense of how complex the project 

is. Non-nuclear safety-related projects are typically the less complex, while safety-related 

projects are the most complex due to the amount of documentation and evaluations that need to 

be performed to maintain the safety classification. 

To assist reviewers, a detailed description of each engineering discipline’s (e.g., 

mechanical engineering, electrical engineering, civil/structural engineering, and I&C 

engineering) scope should also be incorporated. This section is typically completed by the 

responsible engineer but should include input from resource engineers. In the case of our 

simplified case study, this section can be described as follows: 
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 Mechanical Scope – Install a 6” drain line to the exiting FWT 8” spare drain 

nozzle. A 6” gate valve and s threaded cap will also be installed. The line will be 

2’ in length and will not require pipe stress analysis performed. 

 Electrical Scope – None. For the purposes of this simplified case, it will be 

assumed that there are no electrical controls and no heat tracing required. 

 Civil/Structural scope – One (1) pipe support shall be installed on the new 6” 

drain line.  

 I&C Scope – None.  

The definition of a project is an essential part of any design change. This section may 

also change during the life of the project; therefore, it should be revisited during every phase. 

The scope also helps the responsible engineer and project manager on the identification of a 

project team. In our case study, and for technical effort estimation purposes, the only resource 

engineer involved will be a civil/structural engineer. For the remainder of this case study, all 

activity person-hour estimates will be provided for the responsible engineer, who is also the 

mechanical resource engineer, and a civil/structural engineer. In some cases, the responsible 

engineer might not be a resource engineer. Therefore, person-hour estimates should consider 

that. For efficiency purposes, it is preferred that the responsible engineer works in the discipline 

of the most scope. For example, if most of the scope is mechanical, then it is preferred for the 

responsible engineer to be a mechanical engineer. For simplicity, engineering supervision, 

project management, and other overhead charges will be ignored when developing the estimate.  

These charges are typically percentages of the direct engineering cost. 

Since the overall scope of a plant modification is mainly developed during the initial 

scoping phase, the effort to develop the technical portion is based on discussions held with plant 
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personnel, walkdowns, and research of documents. A 20 person-hour estimate for defining the 

project and 60 person-hours for walkdowns will be allocated. In realistic terms, 20 hours would 

be enough to visit the site for a day, interview personnel, and type the information gathered. The 

60-hour allocation for walkdowns will be used throughout the development of the conceptual 

design, up until delivery of the package. Assuming 8 hour days, this translates to 7 to 8 days’ 

worth of walkdowns. The assistance of the resource engineer is also required, which would be a 

portion of the hours assigned to the responsible engineer. In this case, approximately 25% of the 

time would be assigned for project definition and walkdowns, which translates to 5 hours and 15 

hours respectively.  The estimates for person-hours and activity duration are shown in Table 2. 

 

 

Activity 

Person-Hour  

Duration Responsible 
Engineer 

(mechanical) 

Resource 
Engineer 

(civil/structural) 
Define Project 20 5 1 week 
Walkdowns 60 15 11 weeks 

 
Table 2. Estimate for Project Definition and Walkdowns 

 

 

4.2.4. Design Inputs 

Design inputs are defined by the American Society of Mechanical Engineers (ASME) as 

the criteria, parameters, bases or other design requirements upon which detailed final design is 

based (ASME, 1974). In other words, the design inputs are the researched information that will 

be used to develop the design. The SDP procedure (i.e., IP-ENG-001), Attachment 10, provides a 
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guide to follow when evaluating design inputs.  Nuclear power plants, as part of a design 

process, might also have specific procedures in place that describe the process of gathering or 

identifying design inputs. These procedures also serve as guides on what parameters to consider 

and what forms or documents need to be completed. Some processes, such as the SDP, are 

industry-wide and provide a standard guide that any plant can apply. 

The SDP procedure provides a comprehensive list of thirty-three (33) design input 

considerations. Some of these include: 

 Design conditions (e.g., pressure and temperature), 

 Codes and standards (e.g., ASME, Institute of Electrical Engineers and 

Electronics (IEEE), American Welding Association (AWS), American Concrete 

Institute (ACI)), and 

 Requirements (i.e., performance, materials, interface, loading, layout, operability, 

redundancy, security, safety, failure, etc.). 

The design inputs document for a plant modification is not a “once and done” document 

or process. The design inputs document is a “living” document that will most likely be updated 

during every phase of the project. Therefore, person-hour estimates should be allocated to this 

activity at every phase of the project.  

Since most of the research for a design occurs during the conceptual design phase, this 

phase should include the biggest effort regarding person-hours to develop design inputs. By the 

time the conceptual design is completed most of the design inputs should be identified and 

confirmed by the customer. Further changes to design inputs occur due to scope changes or 

interface changes that occur throughout the development of the design. Given that this case study 

is based on a 12-week milestone with 11 weeks assigned to developing design inputs and 
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assuming half of the engineer’s time will be spent in research, at least 120 hours should be 

assigned to this effort. Again, 25% of that time will be assigned to the resource engineer. The 

estimates for person-hours and activity duration are shown in Table 3. 

 

 

Activity 

Person-Hour  

Duration Responsible 
Engineer 

(mechanical) 

Resource 
Engineer 

(civil/structural) 
Design Inputs 90 30 11 weeks 

 
Table 3. Estimate for Design Inputs 

 

 

4.2.5. Identify New and/or Update Affected Design Documents 

Permanent modifications to nuclear power plants typically result in changes to the plant’s 

design basis. Documents need to be created or updated to reflect the physical changes made to 

the plant and to maintain the plant’s design basis current. Some of the documents that could be 

created or modified are drawings, calculations, technical reports, specifications, procedures, 

training materials, and design basis documents, among others. The identification, evaluation, and 

initial updates to these documents can be used to define the scope of subsequent design phases, 

such as the detailed design phase. The following sections describe the scope and processes of 

updating these documents. 
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4.2.6. Drawings 

Drawings are graphical representations of the plant’s configuration or design. Based on 

the scope of the hypothetical project used in this case study the scope of this portion would be: 

1. Update the existing P&ID that currently shows the tank with a spare nozzle. 

2. Create a new isometric drawing showing the new piping configuration. 

3. Update existing FWT drawings, most likely a vendor drawing, to either add the 

new piping or reference the new isometric drawing. 

4. Update equipment drawings that potentially show the tanks spare nozzle. 

5. Update any other drawings that use the P&ID as a base. Some of these could be 

safe shutdown drawings or pipe stress analysis drawings. 

6. Create a new drawing to show the design of the new pipe support. 

The creation of a new isometric drawing will aid the engineer in the design and 

constructability of the piping. Since this is a new drawing, it should be developed in some 

Computer Aided Design (CAD) software such as AutoCAD or SolidWorks, among others. 

Depending on the complexity of the design the support of a design technician could be needed 

for this activity. For this case study, it is assumed that the principal and resource engineers are 

both trained and skilled in CAD software and will be performing the drafting task. Having 

engineers trained in the use of CAD software can save time and money in a project since it 

removes one resource and allows the design to rely on the technical expert.  

The update of existing drawings could be more complicated than creating new drawings. 

Depending on the agreements reached with the customer updated drawings might consist of 

markups of PDF (i.e., portable document format) type documents or updates to CAD drawings. 

During the conceptual design phase it is essential to identify the following: 
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1. Are impacted drawings available in CAD? What format or software?  

2. If drawings are available in CAD format, would the customer prefer the 

engineering company to update these or does the customer have the responsibility 

to update them? 

3. If drawings are not available in CAD format, are markups of PDF documents 

acceptable to the customer? What information should those drawing markups 

include? 

The answers to these questions should be used as input when developing the subsequent phases 

of the project. For a conceptual design, PDF copies of identified impacted drawings should be 

obtained from the customer. Markups of these PDF documents should be included as part of 

conceptual design package to serve as a demonstration of the conceptual design. Formal updates 

to drawings should occur after the conceptual design is complete and accepted by the customer.  

 For the purpose of person-hour allocation, for the hypothetical scope, 40 hours will be 

assigned to the development of a new piping isometric drawing, and 20 hours will be assigned to 

the development of a new pipe support drawing. It will be assumed that four (4) additional 

impacted drawings will need to be marked up. A total of 2 hours will be assigned to each 

drawing. Regarding resources, the responsible engineer is in charge of creating the isometric 

drawing and marking up impacted drawings. The resource engineer is responsible for creating 

the new pipe support drawing. Peer reviews of each drawing will also need to be performed. Peer 

reviews of each drawing are also needed at this stage. Peer reviewers provide a defense to detect 

errors and defects before the completion of documents by reading and checking the quality of 

another’s work product (INPO, 2005). At least 1 hour should be allocated for peer reviews. For 

this case study, a total of 6 hours will be allocated for drawing peer reviews. This activity will be 
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performed by additional resources, preferably one mechanical engineer for the mechanical 

drawing and one civil/structural engineer for the civil/structural drawings. The estimates for 

person-hours and activity duration are shown in Table 4. 

 

 

 Activity 

Person-Hour  

Duration Responsible 
Engineer 

(mechanical) 

Resource 
Engineer 

(civil/structural) 
New Drawings 40 20 2 weeks 
Impacted Drawings 8 0 1 week 
Drawing Peer Review 0 0 1 week 

 
Table 4. Estimate for Drawings and Peer Reviews 

 

   

 Activity 
Person-Hour  

Duration SME 
(mechanical) 

SME 
(civil/structural) 

New Drawings 0 0 2 weeks 
Impacted Drawings 0 0 1 week 
Drawing Peer Review 5 1 1 week 

 
Table 4. Continued 
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4.2.7. Calculations 

Calculations are mathematical representations performed to show the results of an 

analysis. Each nuclear power plant should have procedures that describe the process utilized 

when performing calculations. In this case study, we can assume that two (2) calculations will be 

needed, a hydraulic calculation and a pipe support calculation.  

The hydraulic calculation determines the performance parameters of the new FWT drain 

line. This calculation should demonstrate the total flow of water that could be achieved through 

the new line. In the case where a line size is not provided as part of the overall scope of the 

project and a total required flow is provided instead, this calculation would be used to determine 

the size of the pipe required to fulfill the performance requirement. The pipe support calculation 

determines the allowable loads for the designed support. This calculation also determines the 

appropriate sizes of all individual members. Since these calculations will be performed under the 

conceptual design phase, they will be considered preliminary calculations. Formal calculations 

are completed in later design phases. The hydraulic calculation will be performed by a 

mechanical engineer (or responsible engineer). The pipe support calculation will be performed 

by a civil/structural engineer (or resource engineer). A peer review should also be conducted of 

each calculation to ensure that the methods, assumptions, and results of the calculation are 

correct. A total of 40 hours can be assigned to the development of each preliminary calculation. 

Half of this total time, 20 hours, can be assigned to the peer review of the calculation. Assuming 

the engineers will not be dedicated full time to this activity, a total of 2 weeks can be assigned to 

the performance of these calculations, and one week can be designated for the peer review. The 

estimates for person-hours and activity duration are shown in Table 5. 
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Activity 

Person-Hour  

Duration Responsible 
Engineer 

(mechanical) 

Resource 
Engineer 

(civil/structural) 
Calculations 80 0 2 weeks 
Calculation Peer 
Review 

0 0 1 week 

 
Table 5. Estimate for Calculations 

 

 

Activity 
Person-Hour  

Duration SME 
(mechanical) 

SME 
(civil/structural) 

Calculations 0 0 2 weeks 
Calculation Peer 
Review 

40 0 1 week 

 
Table 5. Continued 

 

 

4.2.8. Technical Reports 

Technical reports are typically created to record engineering analyses or engineering 

positions on a specific topic. Since the scope of this modification is simple and only adds a drain 

line to FWT, no particular analyses or engineering positions are created from it. Therefore, for 

this case study, it is assumed that no technical reports are created nor impacted by this 

engineering change.  
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4.2.9. Specifications 

Specifications are documents that record detailed requirements or characteristics of a 

system, structure, or component. Specifications can be of different types such as design, 

procurement, fabrication, or material, among others. As an example, a procurement specification 

would be required to purchase a safety-related valve to be installed in a radioactive controlled 

area. This specification will include details in size, material, and performance requirements. For 

this case study, since the new line is designated as non-nuclear safety related, the valve to be 

installed will not have any “nuclear” specific requirements and will more than likely be an “off 

the shelf” or “commercial grade” item. Therefore, no specification will be required. Details on 

the valve, such as material and size, would be included in procurement documents. Some of 

these documents could be requests for quotes or purchase orders.   

 

4.2.10. Plant Operating Procedures 

Procedures have for various purposes at nuclear power plants. Some procedures are used 

for administrative purposes and only include descriptions of processes. Plant operating 

procedures are used to perform work in the field. Typically nuclear power plants have designated 

groups or departments that are responsible for updating plant operating procedures.  

There are two (2) approaches to identify impacted procedures. One approach is for the 

responsible engineer or resource engineers to identify the procedures by performing research. 

Another method is to allow stakeholders or reviewers to identify impacted procedures within 

their field of work during design package reviews. The second approach is the most efficient 

since it will enable subject matter experts to identify the procedures and the appropriate impact.  
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For this case study, it is assumed that at the time the project estimate is performed there 

was no knowledge of impacted procedures. Therefore, hours should be allocated for the 

responsible and resource engineers to perform research during the conceptual design phase to 

identify the impacted procedures. At least 20 hours should be assigned to the responsible 

engineer and 10 hours to the resource engineer to perform this task, with a one (1) week time 

duration.  The estimates for person-hours and activity duration are shown in Table 6. 

 

 

Activity 

Person-Hour  

Duration Responsible 
Engineer 

(mechanical) 

Resource 
Engineer 

(civil/structural) 
Identification of 
Impacted Procedures 

20 10 1 week 

 
Table 6. Estimate for Procedures 

 

 

4.2.11. Training Materials 

Training materials are typically those used to train nuclear power operators on the 

maneuver of new systems or components. As with procedures, these training materials are 

identified by stakeholders from the plant’s training department during design package reviews at 

later design phases. Therefore, for this case study, no hours will be allocated to the identification 

or update of training materials.   

 



   

 

77 

4.2.12. Design Basis Documents 

Design basis documents, or DBDs, are plant-specific documents that describe the high-

level functional requirements, interfaces, and expectations of a facility, structure, system or 

component that are based on regulatory requirements or facility analyses (SDPSC, 2017). These 

documents are an overall description and refer to other specific design documents such as 

calculations and technical reports. DBDs are an excellent source of information on a particular 

system and typically describe all the aspects of that system. Therefore, a scope such as the one 

presented in this case study will impact a DBD. It is more than likely that the FWT, being a 

major component or structure at a plant will be described on a DBD. The specific DBD will 

differ from plant to plant. Specific changes to the DBD will also depend on how much detail the 

plant includes in these documents. For this case study, hours should be allocated to identify 

impacted DBDs (more than one could be impacted depending on how systems are set up) and to 

detect potential changes to the DBD. Both the responsible and resource engineers will be 

performing this activity. A total of at least 20 hours should be allocated to the responsible 

engineer and 10 hours to the resource engineer. Time allotted should be around one week. The 

estimates for person-hours and activity duration are shown in Table 7. 

 

 

Activity 

Person-Hour  

Duration Responsible 
Engineer 

(mechanical) 

Resource 
Engineer 

(civil/structural) 
Design Basis 
Documents 

20 10 1 week 

 
Table 7. Estimate for Design Basis Documents 
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4.2.13. Installation Instructions 

Even though the SDP does not consider detailed installation or testing instructions as 

being part of the conceptual design phase, it is a good practice to start thinking about how the 

design change will be implemented and tested, especially based on the phases of implementation. 

This information can be added to plant specific forms or design package sections, or even to the 

project scope if needed.   

During the conceptual design phase, some important information to add is the materials 

needed to implement the change. This list or bill of materials does not need to be detailed in this 

phase. The list should provide reviewers an idea of the major equipment to be installed or 

procurement long-lead components. For this case study, essential items to list are: 

1. Pipe size, length, and material 

2. Valve types, including vendor and models if available 

3. Pipe support elements and construction materials, and 

4. Fittings (e.g., flanges, gaskets, elbows, pipe caps). 

If available at this stage, adding references to plant stock numbers is also helpful. 

 The materials needed for the design will be identified as the design is developed, 

preferably after drawings are complete. Because of this, the duration of this activity should be 

the duration of the project from the development of drawings to completion of conceptual design 

phase (i.e., 8 weeks). For this case study, a total of 20 hours can be allocated to the responsible 

engineer and 20 hours to the resource engineer. Both engineers, in this case, will be developing a 

separate design, which is piping and pipe support. The estimates for person-hours and activity 

duration are shown in Table 8. 
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Activity 

Person-Hour  

Duration Responsible 
Engineer 

(mechanical) 

Resource 
Engineer 

(civil/structural) 
Bill of Materials 20 20 8 weeks 

 
Table 8. Estimate for Bill of Materials 

 

 

4.2.14. 10 CFR 50.59/72.48 Review 

The Nuclear Regulatory Commission’s Chapter 10 (i.e., nuclear) of the code of federal 

regulation (i.e., CFR), part 50.59, titled “Changes, Tests, and Experiments,” describes the 

conditions by which a licensed nuclear power plant can make changes in the facility as described 

in the final safety analysis report (as updated), make changes in the procedures as described in 

the final safety analysis report (as updated), and conduct tests or experiments not described in the 

final safety analysis report (as updated) without obtaining a license amendment (NRC, 2017) . 

The NRC’s 10 CFR 72.48, titled “Changes, tests, and experiments,” describes the conditions by 

which a licensee or certificate holder may make changes in the facility or spent fuel storage cask 

design as described in the Safety Analysis Report (SAR) (as updated), make changes in the 

procedures as described in the SAR (as updated), and conduct tests or experiments not described 

in the final safety analysis report (as updated), without obtaining a license amendment or a 

Certificate of Compliance amendment submitted by the certificate holder. In other words, the 

50.59 and 72.48 reviews are licensing reviews performed to ensure that the changes being made 

to the plant are either covered under the current license or need further review by the NRC. For 

the case study presented here, only the 50.59 applies since the design changes to be performed 

only impact plant systems and do not impact the spent fuel storage cask. 
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Power plants have specific procedures that need to be followed to perform these reviews. 

The process is typically composed of three major parts. The first process is the applicability 

determination (AD) which is the method for determining the appropriate regulatory processes 

and reviews that are required for a proposed activity in accordance with utility-specific 

procedures (SDPSC, 2017). The second process is the screening which determines if the 

proposed change or activities have an adverse effect on SAR described safety functions. The 

third, and last, process is the evaluation which determines if the proposed change or activity 

needs approval from the NRC. Another licensing action that could be required is the update of 

the Safety Analysis Report (SAR). 

The SAR, or FSAR (i.e., Final Safety Analysis Report) as sometimes also called, is a 

plant-specific document that shall include information that describes the facility, presents the 

design bases and the limits on its operation, and presents a safety analysis of the structures, 

systems, and components and of the facility as a whole (NRC, 2017). This document includes 

information such as plant-specific location, results of environmental and meteorological 

programs, descriptions and analyses of SSCs, kinds, and quantities of radioactive materials, and 

facility operation, which includes organizational structure, the conduct of operations, and plans 

for coping with emergencies, among others. Regarding systems, for small scopes as the one 

presented in this case study, the descriptions provided in the SAR typically do not require 

change. However, figures may require changes. In this case study, a P&ID which is also a SAR 

figure is being updated. This change automatically warrants an amendment to the SAR which is 

a separate process from the 50.59/72.48 and should be accounted for as an independent activity 

within the project. 
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During the conceptual design phase, per the SDP, preliminary or draft licensing 

documents should be prepared. The AD is a document that is always required. The screen is 

required if the AD determines it is. The same way, the evaluation is required if the screen 

determines it is. Based on the scope provided for this case study, it is likely that only an AD will 

be required. Also, since it was already identified that the impacted P&ID is also a SAR figure, 

changes to the SAR will be required. Since the 50.59/72.48 review will require extensive 

research of licensing documents (i.e., SAR, Technical Specifications (Tech Specs), Operating 

License), mainly by the responsible engineer, a total of 40 hours will be assigned to the 

responsible engineer to perform this activity; 10 hours will be assigned to the resource engineer. 

The activity should be performed in a 2-week timeframe. Since changes to the SAR are required, 

and it is known that the change only involves updating a figure or drawing, a total of 5 hours will 

be assigned to the responsible engineer, with a duration of 1 week. There is no need to allocate 

hours to the resource engineer for this activity. The estimates for person-hours and activity 

duration are shown in Table 9. 

 

 

Activity 

Person-Hour  

Duration Responsible 
Engineer 

(mechanical) 

Resource 
Engineer 

(civil/structural) 
50.59/72.48 Review 40 10 2 week 
SAR Update 5 0 1 week 

 
Table 9. Estimate for 50.59/72.48 Review 
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4.2.15. Programs Impact Review 

The review of engineering programs to incorporate any design change impact is included 

in the SDP Design Attribute Review (DAR). The DAR is a review performed during 

development of an Engineering Change to determine applicable or impacted engineering 

disciplines, engineering programs and stakeholders from other departments, areas or programs 

(SDPSC, 2017). For this case study, the first part of the DAR was performed in the scope 

definition when the engineering disciplines were identified. This section focuses on the second 

portion of the DAR, Engineering Topics/Programs.  

A list of engineering topics and programs that could be impacted by a design change is 

shown in Attachment 10 of the SDP (SDPSC, 2017). Some of these include: 

 Environmental Qualification (EQ), 

 Fire Protection, Appendix R, and NFPA 0805 (i.e., National Fire Protection 

Association), 

 FLEX (i.e., post-Fukushima strategies), 

 License Renewal and Aging Management, 

 Maintenance  Rule, and 

 MOVs (i.e., motor operated valves), AOVs (i.e., air operated valves), Relief 

Valves, and Check Valves. 

Another list of engineering programs can also be found in INPO’s document 15-003, “Conduct 

of Engineering Programs at Nuclear Power Stations.” INPO’s document includes a description of 

each program, what caused the program to be created, and the key aspects monitored under the 

program.  



   

 

83 

 During the conceptual design phase, a preliminary review of programs should be 

performed. The process to conduct this review should be part of a plant-specific procedure. 

Usually, forms are provided and should be filled as part of the design change package. For this 

case study, a total of 30 hours will be allocated to this activity for the responsible engineer. The 

impacted programs should be identified by the end of the conceptual design phase. At least two 

weeks should be assigned as the duration time of this activity. Assistance from the resource 

engineer might be needed but are not being assumed in this case study. The estimates for person-

hours and activity duration are shown in Table 10. 

 

 

Activity 

Person-Hour  

Duration Responsible 
Engineer 

(mechanical) 

Resource 
Engineer 

(civil/structural) 
Programs Impact 
Review 

30 0 2 weeks 

 
Table 10. Estimate for Programs Impact Review 

 

 

4.2.16. Design Reviews  

This portion of the process involves two main activities: internal review of the conceptual 

design by each engineering discipline’s SME and stakeholder review by plant personnel. Since 

the engineers working on this conceptual design are external to the plant, a design review should 

be performed by SME’s from the same company or firm as the engineers. This review will 

ensure that the conceptual design is technically correct before presenting it to the customer. 

During other design phases, verification will be needed. The difference between review and 
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verification is that a review can be performed by individuals that are familiar with the design 

while a verification is performed by individuals completely independent from the design. For this 

case study, 20 hours will be allocated to the mechanical review and 10 hours to the 

civil/structural review, with one-week duration. The estimates for person-hours and activity 

duration are shown in Table 11. 

 

 

Activity 
Person-Hour  

Duration SME 
(mechanical) 

SME 
(civil/structural) 

SME Internal Review 20 10 1 week 
 

Table 11. Estimate for SME Internal Review 
 

 

4.2.17. Estimates for Next Phases 

By the end of the conceptual design phase the responsible and resource engineers should 

be familiar with the scope of the project and the impact the design change will have on plant 

documents and processes. Therefore, this is the best time to develop person-hour estimates for 

the technical portion of the remaining phases of the project. These estimates might also be 

required by the plant to approve the project to continue to the next stage. Given the scope 

presented for this case study, 20 hours could be assigned to the responsible engineer to develop 

the estimate. Ten total hours should also be allocated for the resource engineer to support the 

responsible engineer with one-week duration. The estimates for person-hours and activity 

duration are shown in Table 12. 
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Activity 

Person-Hour  

Duration Responsible 
Engineer 

(mechanical) 

Resource 
Engineer 

(civil/structural) 
Next Phase Estimate 20 10 1 week 

 
Table 12. Estimate for Next Design Phase 

 

 

4.2.18. Conceptual Impact Review Meeting 

A conceptual design meeting should be held after the conceptual design package has been 

issued to the plant. The purpose of this meeting is to present the conceptual design to different 

plant departments, answer questions from stakeholders, and to obtain feedback on the design. In 

some plants, the conceptual design meeting is also a platform for plant management to decide if 

the design should continue to the next phases and to approve the budget to do so. Per the SDP, 

the design package should be submitted to stakeholders at least one week before the meeting. For 

estimations purposes, hours should be allocated for the engineers to develop a presentation for 

this meeting and to attend the meeting. Because of this, 15 hours will be allocated for the 

responsible engineer, and 5 hours will be allocated for the resource engineer’s assistance. It is a 

good practice for all engineering disciplines involved with the design to be present at the meeting 

since technical questions may arise that cannot be answered by the responsible engineer alone. 

The estimates for person-hours and activity duration are shown in Table 13. 
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Activity 

Person-Hour  

Duration Responsible 
Engineer 

(mechanical) 

Resource 
Engineer 

(civil/structural) 
Conceptual Design 
Meeting 

15 5 1 week 

 
Table 13. Estimate for Conceptual Design Meeting 

 

 

4.2.19. Conceptual Design Estimate  

The totals for the conceptual design estimates are shown in Table 14. As mentioned 

previously, these estimates are for the technical portion of the project and should be an input to 

the development of offer letters and project schedules, which are outside of the scope of 

engineering.  
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Activity 

Person-Hour  

Duration Responsible 
Engineer 

(mechanical) 

Resource 
Engineer 

(civil/structural) 

SME 
(mechanical) 

SME 
(civil/structural) 

Define Project 20 5 0 0 1 week 
Walkdowns 60 15 0 0 11 weeks 
Design Inputs 90 30 0 0 11 weeks 
New Drawings 40 20 0 0 2 weeks 
Impacted Drawings 8 0 0 0 1 week 
Drawing Peer 
Review 

0 0 5 1 1 week 

Calculations 80 0 0 0 2 weeks 
Calculation Peer 
Review 

0 0 40 0 1 week 

Identification of 
Impacted 
Procedures 

20 10 0 0 1 week 

Design Basis 
Documents 

20 10 0 0 1 week 

Bill of Materials 20 20 0 0 8 weeks 
50.59/72.48 Review 40 10 0 0 2 week 
SAR Update 5 0 0 0 1 week 
Programs Impact 
Review 

30 0 0 0 2 weeks 

SME Internal 
Review 

0 0 20 10 1 week 

Next Phase Estimate 20 10 0 0 1 week 
Conceptual Design 
Meeting 

15 5 0 0 1 week 

TOTAL 468 135 65 11 = 679 hours 

 
Table 14. Complete Estimate for Conceptual Design Phase 
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4.2.20. Conceptual Design Schedule 

The activities and estimates presented in this section can be captured in a schedule as 

shown in Figure 21 and Figure 22. This schedule serves as an input to the project’s overall 

schedule which should be created and maintained by the project manager. The estimate only 

addresses technical activities. Management or financial activities are not covered under this 

estimate. The description of activities and estimates provided in this section will be used to 

identify project risks and possible mitigation methods which are shown in the next section.  
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Figure 21. Conceptual Design Schedule – Task, Duration, Resources, and Budget Hours 
(Microsoft Project) 
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Figure 22. Conceptual Design Schedule – Timeline (Microsoft Project) 
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4.3. Part III: Risks 

Risk, by definition, is the product of the likelihood and consequence associated with an 

adverse outcome (INPO, 2015). Project risks can often be identified, and mitigation strategies 

can be put in place to avoid delays in schedule and increases in cost. There are various tools used 

in the industry to identify risks. Some of the most common tools are Preliminary Hazard 

Analysis (PHA), Hazard and Operability Analysis (HAZOP), Job Safety Analysis (JSA), Failure 

Mode and Effects Analysis (FMEA), Fault Tree Analysis (FTA), and Cause and Consequences 

Analysis (CCA), among others. These tools’ purpose is to identify failure modes, or risks, and to 

find ways to mitigate their effects.  

This case study applies the Failure Mode and Effects Analysis (FMEA) tool to identify 

risks that can arise during the development of the conceptual design discussed in Section 4.2. An 

FMEA is an engineering analysis done by a cross-functional team of subject matter experts that 

thoroughly analyzes product designs or manufacturing processes, early in the product 

development process (Carlson, 2014). Each of the activities included in the conceptual design 

estimate and schedule from Section 4.2 is evaluated to identify potential failure modes, 

determine potential effects of failure, assign severity rating, identify potential causes of failure, 

assign occurrence rating, identify design controls to prevent and detect the failure, and assign 

detection rating. A risk priority number (RPN) is then calculated for each activity. The RPN is a 

numerical ranking of the risk of each potential failure mode/cause, made up of the arithmetic 

product of the three elements: severity of the effect, the likelihood of occurrence of the cause, 

and the likelihood of detection of the cause (Carlson, 2014). The RPN number is then used to 

create graphical representations of potential failure modes for each activity. The purpose of these 
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graphs is to draw attention to the most significant failure modes within each activity. 

Recommendations on how to mitigate the risks are also provided.  

In his 2014 paper, Carlson provides generic FMEA worksheets, severity scales, 

likelihood scales, and occurrence scales. Adapted versions of these are used in this case study. 

Instead of evaluating effects such as safety and regulatory requirements, the severity scale used 

for this case study assesses the impact on rework and safety or operability issues. The scale is 

ranked from “No Effect” to “Safety or Operability Issue” and is based on the effects the failure 

would have on the person-hour effort, schedule, deliverables, outage, and even plant shutdown. 

The likelihood of failure (i.e., occurrence) scale based on the experience the responsible and 

resource engineers have with nuclear power and the engineering design process and how that 

experience can help reduce the likelihood of the activity failures to occur, instead of identifying 

incidents per item. The occurrence scale is ranked from “Very Low” to “Very High” likelihood 

of failure. Instead of focusing on stages of detection, the detection scale is also based on 

engineers’ experience to detect issues. The scale is ranked from “Almost Certain” to “Absolute 

Uncertainty” of detecting issues before reaching the customer. The controls element of the 

FMEA is replaced by human performance (HU) tools that can be applied to prevent or detect the 

failure mode. These tools can be found in INPO’s report number 05-002 (INPO, 2007), “Human 

Performance Tools for Engineers and Other Knowledge Workers.” 

The use of the FMEA tool to manage project risks relates to INPO’s Principles for 

Excellence in Integrated Risk Management as follows: 

 Principle #1 – Corporate and nuclear leaders foster a culture that promotes risk 

awareness and effective risk management (INPO, 2015). Leaders can foster a 
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culture of risk awareness by encouraging the use of risk assessment tools such as 

FMEA.  

 Principle #2 – Individuals take responsibility for identifying and managing the 

risk inherent in their activities and demonstrate a personal commitment to nuclear 

safety (INPO, 2015). This principle is fulfilled by identifying potential failure 

modes for activities performed throughout the project’s life. 

 Principle #3 – High standards of risk recognition, management, and mitigation are 

embedded in corporate and station policies, programs and processes (INPO, 

2015). The identification of potential effects of failure, potential causes of failure, 

and current design controls to prevent and detect failure describes the core of this 

principle.  

 Principle #4 – A consequence-biased approach is applied to risk determination, 

and decision-making reflects an intolerance for unacceptable end states (INPO, 

2015). The calculation of the RPN can help individuals distinguish acceptable 

from unacceptable risks.  

 Principle #5 – Risk is eliminated or minimized through pre-emptive actions based 

on a well-defined understanding of event significance and consequence.  Residual 

risk is mitigated to acceptable levels using compensatory measures (INPO, 2015). 

The development of FMEA recommended actions and RPN describe this 

principle. 

 Principle #6 – Leaders and individuals communicate risk effectively among the 

nuclear division, corporate executives and other key stakeholders, including the 

board of directors (INPO, 2015). After an FMEA is performed for a project, the 
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results of such analysis should be communicated to team members to create an 

awareness of potential risks and to provide possible mitigation techniques.  

 Principle #7 – Periodic effectiveness reviews are performed to promote 

continuous learning and to improve risk management across the organization 

(INPO, 2015). These are translated into the various reviews performed throughout 

the project and stem from peer reviews of individual deliverables to the internal 

review of the design package.   

The accurate application of these principles to the development of a project could 

guarantee excellence, thus  contributing to the Delivering the Nuclear Promise initiative within 

the nuclear industry.  

 

4.3.1. FMEA Severity Scale 

 The severity scale used for this case study is based on the amount of effort that the 

activity’s failure mode could potentially add to the project. The scale is divided into three main 

categories: “Safety or Operability Issue,” “Rework,” and “No Effect.” The “No Effect,” lowest 

ranking category, is based on the failure not affecting project schedule or deliverables. “Safety or 

Operability Issue,” the highest category, is based on the activity failure’ potential to introduce a 

new safety hazard at the plant or to create an operability issue which could lead to a plant 

shutdown. The “Rework” category is divided into eight (8) different ranks. These differentiate 

the effort, in time, needed to recuperate from the error and the effect it will have on the project 

schedule, deliverables, installation, and outage schedule. The generated severity scale is shown 

in Table 15. 

 



   

 

95 

Category Criteria Rank 
Safety or 
Operability Issue 

Creates a new safety hazard or plant operability 
issue (i.e., leading to plant shutdown)  

10 

Rework 

Significate effort; could impact implementation 
and/or outage schedule 

9 

More than 1 month effort; may have some impact 
on implementation and/or outage schedule 

8 

More than 1 month effort; has some impact on 
schedule and may impact deliverables 

7 

More than 2 week effort but less than 1 month; has 
some impact on schedule and may impact 
deliverables 

6 

More than 1 week effort but less than 2 weeks; has 
some impact on schedule but not on deliverables 

5 

More than 1 day effort but less than 1 week; has 
some impact on schedule but not on deliverables 

4 

More than 1 hour effort but less than 1 day; has no 
impact on schedule nor deliverables 

3 

Less than 1 hour effort; has no impact on schedule 
nor deliverables 

2 

No Effect None 1 
 

Table 15. FMEA Severity Scale 
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4.3.2. FMEA Likelihood of Failure Scale 

 The likelihood of failure scale used for this case study is based on the experience the 

responsible and resource engineers have with nuclear power and the engineering design process 

and how that experience can help reduce the likelihood of the activity failures to occur. The scale 

is divided into five (5) categories ranging from “Very Low” likelihood of failure to “Very High” 

likelihood of failure. The “Very Low” likelihood of failure corresponds to engineers having 10 

or more years of experience within the nuclear power industry and having extensive experience 

with engineering modification projects. The “Very High” likelihood of failure corresponds to 

engineers having less than one year of experience within the nuclear power industry and 

engineering modification projects. Ranks were assigned to each category and range from 1 

(“Very Low”) to 5 (“Very High”). The categories in between are focused on experience and 

capability of the resource engineers. The likelihood of failure scale is shown in Table 16. 
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Likelihood of 
Failure 

Criteria Rank 

Very High 
Responsible and resource engineers are new (i.e., 
1 year or less) within the nuclear power industry 
and to engineering modification projects. 

5 

High 

Responsible and/or resource engineers are 
experienced (i.e., 10 or more years) within the 
nuclear power industry, but have no experience 
engineering modification projects. 

4 

Moderate 

Responsible and resource engineers are somewhat 
experienced (i.e., five to ten years) within the 
nuclear power industry with at least half of their 
experience focused in engineering modification 
projects. 

3 

Low  Responsible and resource engineers are 
experienced (i.e., 10 or more years) within the 
nuclear power industry with at least half of their 
experience focused in engineering modification 
projects. 

2 

Very Low Responsible and resource engineers are 
experienced (i.e., 10 or more years) within the 
nuclear power industry and have extensive 
experience with engineering modification projects. 

1 

 
Table 16. FMEA Likelihood of Failure Scale 
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4.3.3. FMEA Opportunity for Detection Scale 

Similar to the likelihood of failure scale, the opportunity for detection scale used for this 

case study is based on the experience the responsible and resource engineers have with nuclear 

power and the engineering design process. The scale focuses on how the engineers’ expertise can 

help in the detection of failures within the activities before the failures reach or affect the 

customer. The scale is divided into seven (7) categories ranging from “Almost Certain” 

likelihood of failure to “Absolute Uncertainty” when it comes to opportunities for detecting 

failures. Ranks were assigned to each category and range from 1 (“Almost Certain” – failure is 

likely to be detected) to 7 (“Absolute Uncertainty” – failure cannot be detected). The categories 

in between are focused on experience and capability of the resource engineers, similar to the 

likelihood scale. The generated opportunity for detection scale is shown in Table 17. 
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Opportunity for 
Detection (before 

reaching customer) 

Criteria Rank 

Absolute 
Uncertainty 

No controls are in place to detect failure. 
Failure cannot be detected. 

7 

Very Low 

Responsible and resource engineers are new 
(i.e., 1 year or less) within the nuclear power 
industry and to engineering modification 
projects. 

6 

Low 

Responsible and/or resource engineers are 
experienced (i.e., 10 or more years) within the 
nuclear power industry, but have no experience 
engineering modification projects. 

5 

Medium 

Responsible and resource engineers are 
somewhat experienced (i.e., five to ten years) 
within the nuclear power industry with at least 
half of their experience focused in engineering 
modification projects. 

4 

High 

Responsible and resource engineers are 
experienced (i.e., 10 or more years) within the 
nuclear power industry with at least half of their 
experience focused in engineering modification 
projects. 

3 

Very High 

Responsible and resource engineers are 
experienced (i.e., 10 or more years) within the 
nuclear power industry and have extensive 
experience with engineering modification 
projects. 

2 

Almost Certain Controls are in place to detect failure.  1 
 

Table 17. FMEA Opportunity for Detection Scale 
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4.3.4. Resources 

 The resources for this case study, as described in Section 4.2, are the principal engineer, 

resource engineer and subject matter experts (SMEs). For this FMEA the following experience 

will be taken into consideration when evaluating the activities: 

 Principal engineer – A Mechanical engineer with more than ten (10) years in the nuclear 

industry and approximately six (6) years of engineering design experience. 

 Resource engineer – Civil/structural engineer with more than twelve (12) years of 

experience in the nuclear industry and approximately four years of engineering design 

experience. 

 SME – The SMEs are mechanical and civil/structural engineers with more than 15 years 

of experience in the nuclear industry and with more than ten (10) years of engineering 

design experience. 

These descriptions will be applied when evaluating the likelihood of failure and opportunity for 

detection for each activity. Most of the activities evaluated next are performed by the responsible 

engineer or by resource engineers. These engineers are experienced (i.e., 10 or more years) 

within the nuclear power industry with at least half of their experience focused on engineering 

modification projects. Therefore, an occurrence rating of 2 and detection rating of 3 is assigned 

to each of these activities. 
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4.3.5. FMEA for Define Project 

The definition of the project could be the most important activity in the development of a 

design. This activity defines the entire project. Two failure modes were identified for this 

activity. These are: 

 FM.1.1 – Project not correctly defined 

 FM.1.2 – Not all pertinent information received from the customer 

Table 18 describes the potential effect of failure, potential cause(s) of failure, INPO HU 

tools identified for each failure mode, and recommended actions. As shown in the table, the 

identified failure modes can cause significant issues with schedule and deliverables. Changes in 

scope, especially late during the design, could lead to delays in implementation or even on 

outage schedule. The responsible and resource engineers perform this activity. The severity, 

occurrence, and detection ranking numbers are shown in Table 19 and Figure 23. The FMEA 

table shows FM.1.2, not all pertinent information received from the customer, as being the most 

significant issue that could affect this activity.  
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Function/ 
Process 

Potential 
Failure 
Modes 

Potential 
Effects of 

Failure 

Potential 
Cause(s) of 

Failure 

INPO HU 
Tools 

(Prevent and 
Detect) 

Recommended 
Action(s) 

Define 
Project 

FM.1.1 
 

Changes in the 
project scope 
will occur 
which can 
impact cost and 
schedule 

Information 
missed during 
customer 
meetings 

Technical 
Task Prejob 
Briefing 
 
Self-
Checking 
 
Questioning 
Attitude 
 
Validate 
Assumptions 

Maintain constant 
communication with 
the customer, 
specifically with 
customer SMEs. 

Customer 
dissatisfaction 

Walkdowns 
not 
performed 

FM.1.2 
 

Changes in the 
project scope 
will occur 
which can 
impact cost and 
schedule 

Customer did 
not have a 
clear 
requirement 
when the 
project was 
assigned  

Technical 
Task Prejob 
Briefing 
 
Questioning 
Attitude 
 
Validate 
Assumptions 

Maintain constant 
communication with 
the customer, 
specifically with 
customer SMEs. 
Research of OE can 
help the customer 
identify issues that were 
not considered.   

New 
requirements 
were created 
during the 
development 
of the design 

 
Table 18. Failure Modes, Effects, Causes, and Recommendations – Define Project 

 

 

Function/ 
Process 

Potential 
Failure 
Modes 

Severity 
(S) 

Occurrence 
Rating (L) 

Detection 
Rating  

(D) 

RPN 
(LxSxD) 

Define 
Project 

FM.1.1 7 2 3 42 
FM.1.2 9 2 3 54 

 
Table 19. Failure Mode Ranking Numbers – Define Project 
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Figure 23. Failure Mode Ranking Numbers – Define Project 
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4.3.6. FMEA for Walkdowns 

As described in Section 4.2.3, walkdowns should be performed pre-design and during the 

development of the design. Three failure modes were identified for this activity. These are: 

 FM.2.1 – Wrong system/component was observed; 

 FM.2.2 – Area cannot be accessed; 

 FM.2.3 – Correct tools (i.e., camera, tape measurer, etc.) are not available. 

Table 20 describes the potential effect of failure, potential cause(s) of failure, INPO HU tools 

identified for each failure mode, and recommended actions.  

The most severe of the failure modes is FM.2.1. If the wrong system or component is 

observed during a walkdown, this could lead to future changes in design that were not accounted 

for, which could at the same time impact schedule and deliverables. The responsible and 

resource engineers perform walkdowns. The severity, occurrence, and detection ratings for the 

failure modes identified are shown in Table 21 and Figure 24. The FMEA table shows FM.2.1, 

wrong system/component, was observed as being the most significant issue that could affect this 

activity. 
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Function/ 
Process 

Potential 
Failure 
Modes 

Potential Effects of 
Failure 

Potential 
Cause(s) of 

Failure 

INPO HU 
Tools 

(Prevent and 
Detect) 

Recommended 
Action(s) 

Walkdowns FM.2.1 Changes in design 
could occur which 
could also impact 
cost and schedule 

Incorrect 
interpretation 
of drawings 

Technical 
Task Prejob 
Briefing 
 
Self-
Checking 
 
Questioning 
Attitude 

Include customer 
SMEs to 
walkdown plans. 

Information 
obtained from 
sources not 
familiar with 
the system/ 
component 

FM.2.2 Assumptions 
would be put in 
place that would 
need validation in 
the future 

Work planned 
by others  

Self-
Checking 
 
Validate 
Assumptions 
 
Project 
Planning 

Coordinate 
walkdowns with 
the customer. 
Involvement of 
customer SMEs 
could help 
engineers identify 
any issues with 
accessing areas of 
the plant. 

Walkdown 
scheduled 
without 
consulting 
correct 
stakeholders 

FM.2.3 More walkdowns 
may be required 

Engineers are 
not prepared to 
perform the 
walddown 

Technical 
Task Prejob 
Briefing 
 

Engineers should 
ensure that tools 
are available for 
walkdowns. Pre-
job briefs can help 
identify any issues 
with obtaining the 
necessary tools. 

 
Table 20. Failure Modes, Effects, Causes, and Recommendations – Walkdowns 

 

 

Function/ 
Process 

Potential 
Failure 
Modes 

Severity 
(S) 

Occurrence 
Rating (L) 

Detection 
Rating  

(D) 

RPN 
(LxSxD) 

Walkdowns FM.2.1 7 2 3 42 
FM.2.2 5 2 3 30 
FM.2.3 4 2 3 24 

 
Table 21. Failure Mode Ranking Numbers – Walkdowns 
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Figure 24. Failure Mode Ranking Numbers – Walkdowns   
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4.3.7. FMEA for Design Inputs 

 During the conceptual design phase, the identification of design inputs is an essential 

task since it will determine how the design will progress. If some design inputs are not 

considered during this phase or are incorrectly identified, this could lead to severe effects. One 

failure mode was identified for this activity. This is: 

 FM.3.1 – Design inputs not considered or incorrectly identified 

Table 22 describes the potential effect of failure, potential cause(s) of failure, INPO HU 

tools identified for each failure mode, and recommended actions.  This failure mode could cause 

significant rework that could lead to changes in schedule and deliverables, especially since there 

is a potential for some of the work for future phases not to have been estimated. The responsible 

and resource engineers perform this activity. The severity, occurrence, and detection rankings for 

the failure modes identified are shown in Table 23 and Figure 25.  

 

 

Function/ 
Process 

Potential 
Failure 
Modes 

Potential Effects of 
Failure 

Potential 
Cause(s) of 

Failure 

INPO HU 
Tools 

(Prevent and 
Detect) 

Recommended 
Action(s) 

Design 
Inputs 

FM.3.1 Design parameters 
are not 
incorporated into 
design (e.g., 
dimensions) 

Improper 
review of 
existing 
documents 
related to the 
system or 
component 

Self-
Checking 
 
Questioning 
Attitude 
 
Validate 
Assumptions 
 
Peer Review 

Ensure the proper 
reviews are being 
performed by 
knowledgeable 
SMEs. 
Consultation with 
customer SMEs 
may also be 
beneficial. 

Incorrect materials 
specified 
Impacted 
documents not 
identified 
Incorrect 
estimation of effort 
for future phases  

 
Table 22. Failure Modes, Effects, and Causes, and Recommendations – Design Inputs 
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Function/ 
Process 

Potential 
Failure 
Modes 

Severity 
(S) 

Occurrence 
Rating (L) 

Detection 
Rating  

(D) 

RPN 
(LxSxD) 

Design 
Inputs 

FM.3.1 7 2 3 42 

 
Table 23. Failure Mode Ranking Numbers – Design Inputs 

 

 

 

Figure 25. Failure Mode Ranking Numbers – Design Inputs 
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4.3.8. FMEA for New Drawings 

Two failure modes were identified for the identification and creation of new drawings 

activity. These are: 

 FM.4.1 – Not all new drawings are identified; 

 FM.4.2 – Drawing does not capture the scope. 

Table 24 describes the potential effect of failure, potential cause(s) of failure, INPO HU 

tools identified for each failure mode, and recommended actions. Recognizing the need to create 

new drawings during the conceptual design phase is essential since it will determine the amount 

of effort for the next design phases. Even though it best to identify these drawings early in the 

design, it is not imperative to initiate all drawings during the conceptual design phase. The effort 

to recuperate from an error like this could be as easy as listing the drawing within the package. 

This effort can be minimal as long as it is caught during the conceptual design. If drawings do 

not capture the scope correctly, even though it is significant, the effort to correct this failure can 

be easily detected by knowledgeable reviewers. These drawings should be updated as soon as 

possible and before they are presented to the customer.  

All of the identified failure effects could cause rework that could lead to changes in 

schedule and deliverables, especially since there is a potential for some of the work for future 

phases not to have been estimated. The responsible and resource engineers perform this activity. 

The severity, occurrence, and detection ratings for the failure modes identified are shown in 

Table 25 and Figure 26. The FMEA table shows FM.4.1, though not all new drawings are 

identified, as being the most significant issue that could affect this activity. 
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Function/ 
Process 

Potential 
Failure 
Modes 

Potential Effects of 
Failure 

Potential 
Cause(s) of 

Failure 

INPO HU 
Tools 

(Prevent and 
Detect) 

Recommended 
Action(s) 

New 
Drawings 

FM.4.1 New drawings will  
need to be 
developed during 
future design 
phases 

Engineers are 
not familiar 
with the 
plant’s 
drawings 
system 

Self-
Checking 
 
Questioning 
Attitude 
 
Validate 
Assumptions 
 
Peer Review 

Ensure engineers 
and SME reviewers 
are familiar with 
the scope of the 
project and the 
specific plant 
processes for 
drawings. 

Effort to develop 
new drawings may 
not be accounted 
for during 
estimation 

FM.4.2 Rework to update 
drawings during 
future phases 

Engineers are 
not familiar 
with the scope 

Questioning 
Attitude 
 
Validate 
Assumptions 

Ensure engineers 
have a thorough 
understanding of 
the project’s scope 
and how it should 
be captured in 
drawings, 
specifically 
following plant 
requirements.  

 
Table 24. Failure Modes, Effects, Causes, and Recommendations – New Drawings 

 

 

Function/ 
Process 

Potential 
Failure 
Modes 

Severity 
(S) 

Occurrence 
Rating (L) 

Detection 
Rating  

(D) 

RPN 
(LxSxD) 

New 
Drawings 

FM.4.1 3 2 3 18 
FM.4.2 6 2 3 36 

 
Table 25. Failure Mode Ranking Numbers – Design Inputs 
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Figure 26. Failure Mode Ranking Numbers – New Drawings 
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4.3.9. FMEA for Impacted Drawings 

Similar to the development of new drawings, two failure modes were identified for this 

activity. These are: 

 FM.5.1 – Not all impacted drawings are identified; 

 FM.5.2 – Drawing does not capture the scope. 

Table 26 describes the potential effect of failure, potential cause(s) of failure, INPO HU 

tools identified for each failure mode, and recommended actions.  The severity of the failure 

modes identified for this activity is lower than the creation of new drawings since it is not vital to 

identify all impacted drawings during the conceptual design phase, which can be a preliminary 

design. The effort to recuperate from an error like this could be as easy as listing the drawing 

within the package. The responsible and resource engineers perform this activity. The severity, 

occurrence, and detection ratings for the failure modes identified are shown in Table 26 and 

Figure 27. The FMEA table shows FM.5.2 as being the most significant issue that could affect 

this activity. 
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Function/ 
Process 

Potential 
Failure 
Modes 

Potential Effects of 
Failure 

Potential 
Cause(s) of 

Failure 

INPO HU 
Tools 

(Prevent and 
Detect) 

Recommended 
Action(s) 

Impacted 
Drawings 

FM.5.1 Impacted drawings 
will  need to be 
identified during 
future design 
phases 

Engineers are 
not familiar 
with plant’s 
drawings 
system 

Self-
Checking 
 
Questioning 
Attitude 
 
Validate 
Assumptions 
 
Peer Review 

Ensure engineers 
and SME reviewers 
are familiar with 
the scope of the 
project and the 
specific plant 
processes for 
drawings. 

FM.5.2 Rework to update 
drawings during 
future phases 

Engineers are 
not familiar 
with plant’s 
drawings 
system 

Questioning 
Attitude 
 
Validate 
Assumptions 

Ensure the effort is 
accounted for in 
estimates to 
identify impacted 
drawings in future 
design phases. 

 
Table 26. Failure Modes, Effects, Causes, and Recommendations – Impacted Drawings 

 
 

 

Function/ 
Process 

Potential 
Failure 
Modes 

Severity 
(S) 

Occurrence 
Rating (L) 

Detection 
Rating 

(D) 

RPN 
(LxSxD) 

Impacted 
Drawings 

FM.5.1 2 2 3 12 
FM.5.2 2 2 3 30 

 
Table 27. Failure Mode Ranking Numbers – Impacted Drawings 
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Figure 27. Failure Mode Ranking Numbers – Impacted Drawings 
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4.3.10. FMEA for Drawing Peer Review 

This activity involves the peer review of new and impacted drawings and is performed by 

knowledgeable SMEs. More than one SME might be required depending on the discipline of 

each drawing. Three failure modes were identified for this activity. These are: 

 FM.6.1 – Review did not catch evident errors; 

 FM.6.2 – Reviewer is not the proper SME; 

 FM.6.3 – Reviewer is not qualified to review drawings. 

Table 28 describes the potential effect of failure, potential cause(s) of failure, INPO HU 

tools identified for each failure mode, and recommended actions. As stated in Section 4.2, this 

activity is performed by the knowledgeable SMEs. The SMEs in this case study are experienced 

(i.e., 10 or more years) within the nuclear power industry with extensive experience focused on 

engineering modification projects. Therefore, an occurrence rating of 1 and detection rating of 2 

is assigned. The severity, occurrence, and detection ratings for the failure modes identified are 

shown in Table 29 and Figure 28. The FMEA table shows FM.6.1 as being the most significant 

issue that could affect this activity. 
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Function/ 
Process 

Potential 
Failure 
Modes 

Potential Effects of 
Failure 

Potential 
Cause(s) of 

Failure 

INPO HU 
Tools 

(Prevent and 
Detect) 

Recommended 
Action(s) 

Drawing 
Peer Review 

FM.6.1 Drawing is issued 
to the customer 
with errors 

Reviewer was 
not familiar 
with the scope 
of the project 

Questioning 
Attitude 
 
Validate 
Assumptions 
 
Peer Review 

Ensure reviewers 
are assigned early 
in the process to 
ensure they are 
available when 
needed and that 
proper time is 
allotted for their 
review.  

Reviewer did 
not take the 
time to 
perform a 
thorough 
review 

FM.6.2 Errors in drawing 
can be missed  

Qualified 
resources may 
not have been 
available to 
perform the 
review 

Questioning 
Attitude 
 
Project 
Planning 

Individuals should 
ensure they are 
knowledgeable on 
a topic before 
accepting to 
perform work.   

FM.6.3 Drawing review 
might not fulfil 
customer’s 
requirements  

Qualified 
resources may 
not have been 
available to 
perform the 
review 

Questioning 
Attitude 
 
Validate 
Assumptions 
 
Peer Review 

Always ensure 
assigned reviewers 
are qualified to the 
process they are 
reviewing under.  

 
Table 28. Failure Modes, Effects, Causes, and Recommendations –Drawings Peer Review 

 
 
 
 

Function/ 
Process 

Potential 
Failure 
Modes 

Severity 
(S) 

Occurrence 
Rating (L) 

Detection 
Rating  

(D) 

RPN 
(LxSxD) 

Drawing 
Peer Review 

FM.6.1 6 1 2 12 
FM.6.2 5 1 2 10 
FM.6.3 4 1 2 8 

 
Table 29. Failure Mode Ranking Numbers – Drawings Peer Review 
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Figure 28. Failure Mode Ranking Numbers – Drawings Peer Review 
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4.3.11. FMEA for Calculations 

Calculations are a vital part of any design. They typically justify a design using 

mathematical evaluations. Calculations can be as simple as calculating the flow through a short 

piece of pipe or as complicated as generating a pipe stress analysis of an entire piping 

arrangement. Due to the amount of effort it takes to complete a calculation (i.e., develop 

technical content, reviews, verifications, etc.) errors such as not identifying impacted 

calculations or not using correct methods can result in adverse effects for a project. Four failure 

modes were identified for this activity. These are: 

 FM.7.1 – Wrong design inputs were considered; 

 FM.7.2 – Impacted calculations were not identified; 

 FM.7.3 – Calculation method is not appropriate; 

 FM.7.4 – Originator is not qualified to perform the calculation. 

Table 30 describes the potential effect of failure, potential cause(s) of failure, INPO HU 

tools identified for each failure mode, and recommended actions.   The responsible and resource 

engineers perform this activity. The severity, occurrence, and detection ratings for the failure 

modes identified are shown in Table 31 and Figure 29. The FMEA table shows FM.7.2 as being 

the most significant issue that could affect this activity. 
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Function/ 
Process 

Potential 
Failure 
Modes 

Potential Effects of 
Failure 

Potential 
Cause(s) of 

Failure 

INPO HU 
Tools 

(Prevent and 
Detect) 

Recommended 
Action(s) 

Calculations FM.7.1 Calculation results 
may not be 
accurate 

Improper 
review of 
existing 
documents 
related to the 
system or 
component 

Questioning 
Attitude 
 
Validate 
Assumptions 
 
Problem-
Solving 

Communication 
with customer’s 
SME could help 
identify design 
inputs.  

FM.7.2 Effort to develop 
calculations during 
next design phases 
may not have been 
estimated. 

Engineers are 
not familiar 
with the 
plant’s 
calculation 
system 

Questioning 
Attitude 
 
Validate 
Assumptions 
 
Problem-
Solving 

Communication 
with customer’s 
SME could help 
identify other 
potential 
impacted 
calculations. 

FM.7.3 Calculation may 
not be accepted by 
the customer 

Engineers are 
not familiar 
with the 
plant’s 
calculation 
process or 
with the topic 

Questioning 
Attitude 
 
Validate 
Assumptions 
 
Problem-
Solving 

Discussions with 
SME’s and 
review of OE can 
help identify 
appropriate 
methods. 

FM.7.4 Calculation might 
not fulfil 
customer’s 
requirements 

Qualified 
resources may 
not have been 
available to 
perform the 
calculation 

Questioning 
Attitude 
 
Validate 
Assumptions 
 
Problem-
Solving 

Always ensure 
the assigned 
originators are 
qualified to the 
plant’s 
calculation 
process. 

 
Table 30. Failure Modes, Effects, Causes, and Recommendations – Calculations 
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Function/ 
Process 

Potential 
Failure 
Modes 

Severity 
(S) 

Occurrence 
Rating (L) 

Detection 
Rating  

(D) 

RPN 
(LxSxD) 

Calculations FM.7.1 6 2 3 36 
FM.7.2 9 2 3 54 
FM.7.3 8 2 3 48 
FM.7.4 6 2 3 36 

 
Table 31. Failure Mode Ranking Numbers – Calculations 

 

 

 

Figure 29. Failure Mode Ranking Numbers – Calculations 
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4.3.12. FMEA for Calculation Peer Review 

At the conceptual design phase not correctly reviewing or verifying a calculation could 

impact future design phases. At this stage, the impact is not as severe as the creation of new 

calculations since the review/verification is not final. Final reviews and/or verifications are 

performed after the final design is complete. Three failure modes were identified for this activity. 

These are: 

 FM.8.1 – Verification did not catch evident errors; 

 FM.8.2 – Verifier is not the proper SME; 

 FM.8.3 – Verifier is not qualified to review calculations. 

Table 32 describes the potential effect of failure, potential cause(s) of failure, INPO HU 

tools identified for each failure mode, and recommended actions. SMEs perform this activity. 

The SMEs in this case study are experienced (i.e., 10 or more years) within the nuclear power 

industry with extensive experience focused on engineering modification projects. Therefore, an 

occurrence rating of 1 and detection rating of 3 is assigned. The severity, occurrence, and 

detection ratings for the failure modes identified are shown in Table 33 and Figure 30. The 

FMEA table shows FM.8.1 as being the most significant issue that could affect this activity. 
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Function/ 
Process 

Potential 
Failure 
Modes 

Potential Effects of 
Failure 

Potential 
Cause(s) of 

Failure 

INPO HU 
Tools 

(Prevent and 
Detect) 

Recommended 
Action(s) 

Calculation 
Peer 
Review 

FM.8.1 Calculation is 
issued to the 
customer with 
errors 

Verifier was 
not familiar 
with the 
scope of the 
project 

Peer Review 
 
Questioning 
Attitude 
 
Technical 
Task Prejob 
Briefing 
 
 

A peer review 
performed by 
another resource 
may be beneficial 
in identifying 
errors.  Verifier did 

not take the 
time to 
perform a 
thorough 
verification 

FM.8.2 Errors in the 
calculation can be 
missed 

Qualified 
resources 
may have not 
been 
available to 
perform the 
verification 

Project 
Planning 
 
Questioning 
Attitude 

Individuals 
should ensure 
they are 
knowledgeable on 
a topic before 
accepting to 
perform work.   

FM.8.3 Calculation review 
might not fulfil 
customer’s 
requirements 

Qualified 
resources 
may have not 
been 
available to 
perform the 
verification 

Project 
Planning 
 
Questioning 
Attitude 

Always ensure 
assigned verifiers 
are qualified to 
the process they 
are verifying 
under. 

 
Table 32. Failure Modes, Effects, Causes, and Recommendations – Calculation Peer Review 

 

 

Function/ 
Process 

Potential 
Failure 
Modes 

Severity 
(S) 

Occurrence 
Rating (L) 

Detection 
Rating 

(D) 

RPN 
(LxSxD) 

Calculation 
Peer Review 

FM.8.1 7 1 3 21 
FM.8.2 6 1 3 18 
FM.8.3 5 1 3 15 

 
Table 33. Failure Mode Ranking Numbers – Calculation Peer Review 
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Figure 30. Failure Mode Ranking Numbers – Calculation Peer Review 
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4.3.13. FMEA for Identification of Impacted Procedures 

Plant operating procedures impacted by a design change can be identified during different 

phases of a project, especially during plant stakeholder reviews. These procedures are updated 

after, or right before, a new design is implemented. Non-engineers typically perform the update 

or creation of procedures. Only one failure mode was identified for this activity: 

 FM.9.1 – Not all impacted procedures are identified. 

Table 34 describes the potential effect of failure, potential cause(s) of failure, INPO HU 

tools identified for each failure mode, and recommended actions. The responsible and resource 

engineers perform this activity. The severity, occurrence, and detection ratings for the failure 

modes identified are shown in Table 35 and Figure 31.  

 

 

Function/ 
Process 

Potential 
Failure 
Modes 

Potential Effects 
of Failure 

Potential 
Cause(s) of 

Failure 

INPO HU 
Tools 

(Prevent and 
Detect) 

Recommended 
Action(s) 

Identification 
of Impacted 
Procedures 

FM.9.1 Not all 
procedures are 
updated with 
current plant 
design. 

A 
comprehensive 
review of 
potentially 
impacted 
procedures 
was not 
performed by 
the engineers. 

Questioning 
Attitude 
 
Self-
Checking 

Always ensure 
that the resource 
engineers provide 
support in 
identifying 
affected 
documents.  

 
Table 34. Failure Modes, Effects, Causes, and Recommendations – Identification of Impacted 

Procedures 
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Function/ 
Process 

Potential 
Failure 
Modes 

Severity 
(S) 

Occurrence 
Rating (L) 

Detection 
Rating 

(D) 

RPN 
(LxSxD) 

Identification 
of Impacted 
Procedures 

FM.9.1 4 2 3 24 

 
Table 35. Failure Mode Ranking Numbers – Identification of Impacted Procedures 

 

 

 

Figure 31. Failure Mode Ranking Numbers – Identification of Impacted Procedures 
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4.3.14. FMEA for Design Basis Documents 

Similar to the identification of impacted procedures, the identification of design basis 

documents can be identified during different phases of a project. These documents are updated 

outside of the design process. Markups are typically included in design packages for information 

only. Only one failure mode was identified for this activity: 

 FM.10.1 – Not all impacted DBDs are identified. 

Table 36 describes the potential effect of failure, potential cause(s) of failure, INPO HU 

tools identified for each failure mode, and recommended actions.  The responsible and resource 

engineers perform this activity. The severity, occurrence, and detection ratings for the failure 

modes identified are shown in Table 37 and Figure 32. 

 

 

Function/ 
Process 

Potential 
Failure 
Modes 

Potential Effects 
of Failure 

Potential 
Cause(s) of 

Failure 

INPO HU 
Tools 

(Prevent and 
Detect) 

Recommended 
Action(s) 

Design Basis 
Documents 

FM.10.1 DBDs are not 
updated with 
current plant 
design.  

A 
comprehensive 
review of 
existing DBDs 
was not 
performed by 
the engineers. 

Questioning 
Attitude 
 
Self-
Checking 

Always ensure 
that the resource 
engineers provide 
support in 
identifying 
affected 
documents.  

 
Table 36. Failure Modes, Effects, Causes, and Recommendations – Design Basis Documents 
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Function/ 
Process 

Potential 
Failure 
Modes 

Severity 
(S) 

Occurrence 
Rating (L) 

Detection 
Rating 

(D) 

RPN 
(LxSxD) 

Design 
Basis 
Documents 

FM.10.1 4 2 3 24 

 
Table 37. Failure Mode Ranking Numbers – Design Basis Documents 

 

 

 

Figure 32. Failure Mode Ranking Numbers – Design Basis Documents 
 

 

 

 

 

 

 

 

0
1
2
3
4
5
6
7
8
9

10

Severity (S) Occurrence (L) Detection (D)

FM.10.1



   

 

128 

4.3.15. FMEA for Bill of Materials 

During the conceptual design phase, a preliminary bill of materials (BOM) is developed 

based on the initial design. This list gets refined as the design progresses. A final or complete 

BOM is generated after the final design is complete. Because of this, not identifying all items in 

a BOM, or having errors, will more than likely not have a significant effect on a project. Three 

failure modes were identified for this activity. These are: 

 FM.11.1 – Not all materials were added to the BOM; 

 FM.11.2 – Items identified cannot be purchased or do not exist; 

 FM.11.3 – Customer does not agree on materials chosen. 

Table 38 describes the potential effect of failure, potential cause(s) of failure, INPO HU 

tools identified for each failure mode, and recommended actions.  The responsible and resource 

engineers perform this activity. The severity, occurrence, and detection ratings for the failure 

modes identified are shown in Table 39 and Figure 33. The FMEA table shows FM.11.3 as being 

the most significant issue that could affect this activity. 
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Function/ 
Process 

Potential 
Failure 
Modes 

Potential Effects 
of Failure 

Potential 
Cause(s) of 

Failure 

INPO HU 
Tools 

(Prevent and 
Detect) 

Recommended 
Action(s) 

Bill of 
Materials 

FM.11.1 None. The design 
is conceptual. The 
list will be refined 
in the next design 
phase. 

Design is 
preliminary 

Questioning 
Attitude 
 
Validate 
Assumptions 
 
Self-
Checking 
 
Peer Review 
 
Decision-
Making 
 

Include as many 
materials as 
possible in a 
BOM to represent 
the conceptual 
design.  

FM.11.2 Alternate items 
should be 
specified in the 
next design phase 

Engineer did 
not perform 
sufficient 
research on 
items 
available in 
the market 

Questioning 
Attitude 
 
Validate 
Assumptions 
 
Self-
Checking 
 
Decision-
Making 
 

Always research 
possible vendors 
when choosing 
items to ensure 
the part or 
material is 
available in the 
market.  

FM.11.3 Changes in design 
during future 
phases 

Customer and 
engineer have 
different 
views and/or 
opinions on 
the design 

Questioning 
Attitude 
 
Validate 
Assumptions 
 

Discussions with 
customer SMEs 
throughout the 
development of 
the design could 
help with the 
selection of 
materials. 

 
Table 38. Failure Modes, Effects, Causes, and Recommendations – Bill of Materials 
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Function/ 
Process 

Potential 
Failure 
Modes 

Severity 
(S) 

Occurrence 
Rating (L) 

Detection 
Rating 

(D) 

RPN 
(LxSxD) 

Bill of 
Materials 

FM.11.1 1 2 3 6 
FM.11.2 2 2 3 12 
FM.11.3 4 2 3 24 

 
Table 39. Failure Mode Ranking Numbers – Bill of Materials 

 

 

 

Figure 33. Failure Mode Ranking Numbers – Bill of Materials 
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4.3.16. FMEA for 50.59/72.48 Review 

As described in Section 4.2.14, a 50.59/72.48 review is an evaluation of a plant’s 

licensing documentation. Therefore, errors in this review can lead to regulatory issues. For a 

design project, issues with the 50.59/72.48 review can lead to problems in future design phases. 

During the development of a conceptual design this review is preliminary; therefore, changes are 

expected to occur during later phases. Two failure modes were identified for this activity. These 

are: 

 FM.12.1 – Originators are not qualified to perform 50.59/72.48 review;  

 FM.12.2 – Review was not performed correctly. 

Table 40 describes the potential effect of failure, potential cause(s) of failure, INPO HU 

tools identified for each failure mode, and recommended actions.  The responsible and resource 

engineers perform this activity. The severity, occurrence, and detection ratings for the failure 

modes identified are shown in Table 41 and Figure 34. The FMEA table shows both failure 

modes as having the same impact on the project.  
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Function/ 
Process 

Potential 
Failure 
Modes 

Potential Effects 
of Failure 

Potential 
Cause(s) of 

Failure 

INPO HU 
Tools 

(Prevent and 
Detect) 

Recommended 
Action(s) 

50.59/72.48 
Review  

FM.12.1 
 

50.59/72.48 
review might not 
fulfil customer’s 
requirements 

Qualified 
resources 
may not have 
been 
available to 
perform task 

Project 
Planning 
 
Questioning 
Attitude 

Always ensure that 
assigned 
individuals are 
qualified under the 
process they are 
working on. 

FM.12.2 
 

Additional effort 
might need to be 
added to later 
design phases  

Individuals 
may not have 
been familiar 
with the 
plant’s 
process or the 
system/comp
onent 
evaluated 

Validate 
Assumptions 
 
Self-
Checking 
 
Peer Review 

Individuals should 
ensure they are 
knowledgeable on 
a topic before 
accepting to 
perform work.   

 
Table 40. Failure Modes, Effects, Causes, and Recommendations – 50.59/72.48 Review  

 

 

Function/ 
Process 

Potential 
Failure 
Modes 

Severity 
(S) 

Occurrence 
Rating (L) 

Detection 
Rating 

(D) 

RPN 
(LxSxD) 

50.59/72.48 
Review  

FM.12.1 6 2 3 36 
FM.12.2 6 2 3 36 

 
Table 41. Failure Mode Ranking Numbers – 50.59/72.48 Review 
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Figure 34. Failure Mode Ranking Numbers – 50.59/72.48 Review 
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4.3.17. FMEA for SAR Update 

The update of a plant’s Safety Analysis Report (SAR) is a result of the 50.59/72.48 

review. The severity of not updating the Safety Analysis Report (SAR) correctly, after the final 

design is complete, can result in licensing issues for the plant. Since the changes identified 

during the conceptual design review are preliminary, the severity during this phase is not as 

significant. Only one failure mode was identified for this activity: 

 FM.13.1 – Not all affected sections and/or figures were identified. 

Table 42 describes the potential effect of failure, potential cause(s) of failure, INPO HU 

tools identified for each failure mode, and recommended actions. The responsible and resource 

engineers perform this activity. The severity, occurrence, and detection ratings for the failure 

modes identified are shown in Table 43 and Figure 35.  

 

 

Function/ 
Process 

Potential 
Failure 
Modes 

Potential Effects 
of Failure 

Potential 
Cause(s) of 

Failure 

INPO HU 
Tools 

(Prevent and 
Detect) 

Recommended 
Action(s) 

SAR Update FM.13.1 Information may 
be left out of 
SAR, or SAR may 
contain outdated 
information.  

A proper 
review of the 
SAR may not 
have been 
performed.  

Questioning 
Attitude 
 
Validate 
Assumptions 
 
Peer Review 

When unsure, 
always consult the 
Licensing 
Department. During 
stakeholder 
reviews, ensure the 
Licensing 
stakeholder 
provides comments 
or 
recommendations 
for improvement.  

 
Table 42. Failure Modes, Effects, Causes, and Recommendations – SAR Update 
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Function/ 
Process 

Potential 
Failure 
Modes 

Severity 
(S) 

Occurrence 
Rating (L) 

Detection 
Rating 

(D) 

RPN 
(LxSxD) 

SAR Update FM.13.1 4 2 3 24 

 
Table 43. Failure Mode Ranking Numbers – SAR Update 

 

 

 

Figure 35. Failure Mode Ranking Numbers – SAR Update 
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4.3.18. FMEA for Programs Impact Review 

The programs impact review performed during the conceptual design phase of a project is 

preliminary, but this does not mean that issues with this review are insignificant. The programs 

impact review typically evaluates a program and also identifies any documents that would need 

to be updated as a result of the implementation of the new design.  An example of this is the Fire 

Protection Program. As part of this program’s review engineers need to identify if the amounts of 

flammable sources in a specific room would be affected. Typically this information is captured 

in a calculation, which at the same time determines the design of the fire protection system 

within the specific room. If the preliminary review of this program fails to identify the impact of 

the new design, this could result in significant rework during future design phases. This rework 

could cause changes in schedule and even deliverables.  Two failure modes were identified for 

this activity. These are: 

 FM.14.1 – Not all impacted programs are identified ; 

 FM.14.2 – Impacted programs are not properly evaluated. 

Table 44 describes the potential effect of failure, potential cause(s) of failure, INPO HU 

tools identified for each failure mode, and recommended actions.  The responsible and resource 

engineers perform this activity. The severity, occurrence, and detection ratings for the failure 

modes identified are shown in Table 45 and Figure 36. The FMEA table shows both failure 

modes as having the same impact on the project. 
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Function/ 
Process 

Potential 
Failure 
Modes 

Potential Effects 
of Failure 

Potential 
Cause(s) of 

Failure 

INPO HU 
Tools (Prevent 

and Detect) 

Recommended 
Action(s) 

Programs 
Impact 
Review 

FM.14.1 
 

Impacted 
programs will  
need to be 
identified during 
later design phases 

Engineers 
are not 
familiar with 
the plant’s 
programs 
and how 
they relate to 
the project’s 
scope 

Self-Checking 
 
Questioning 
Attitude 
 
Validate 
Assumptions 
 
Peer Review 

Ensure engineers 
and SME reviewers 
are familiar with 
the scope of the 
project and the 
potential impacted 
plant programs. 
Discussions with 
plant program 
owners may be 
beneficial. 

Additional 
impacted 
documents and 
calculations might 
be identified and 
added to the 
project’s scope 

FM.14.2 
 

Additional 
impacted 
documents and 
calculations might 
be identified and 
added to the 
project’s scope 

Engineers 
are not 
familiar with 
the plant’s 
programs 
and how 
they relate to 
the project’s 
scope 

Self-Checking 
 
Questioning 
Attitude 
 
Validate 
Assumptions 
 
Peer Review 

Ensure engineers 
and SME reviewers 
are familiar with 
the scope of the 
project and the 
potential impacted 
plant programs. 
Discussions with 
plant program 
owners may be 
beneficial. 

 
Table 44. Failure Modes, Effects, Causes, and Recommendations – Programs Impact Review 

 

 

Function/ 
Process 

Potential 
Failure 
Modes 

Severity 
(S) 

Occurrence 
Rating (L) 

Detection 
Rating  

(D) 

RPN 
(LxSxD) 

Programs 
Impact 
Review 

FM.14.1 7 2 3 42 
FM.14.2 7 2 3 42 

 
Table 45. Failure Mode Ranking Numbers – Programs Impact Review 
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Figure 36. Failure Mode Ranking Numbers – Programs Impact Review  
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4.3.19. FMEA for SME Internal Review 

The SME internal review is the last control to detect issues with a design package. This 

analysis identified two failure modes for this activity. These are: 

 FM.15.1 – SME is not qualified to perform the review; 

 FM.15.2 – Review identified issues with the content of the package. 

Table 46 describes the potential effect of failure, potential cause(s) of failure, INPO HU 

tools identified for each failure mode, and recommended actions.  SMEs perform this activity. 

The severity, occurrence, and detection ratings for the failure modes identified are shown in 

Table 47 and Figure 37. The FMEA table shows FM.15.2, review identified major issues with 

the content of the package, as being the most significant issue that could affect this activity. 

 

 

Function/ 
Process 

Potential 
Failure 
Modes 

Potential Effects 
of Failure 

Potential 
Cause(s) of 

Failure 

INPO HU 
Tools (Prevent 

and Detect) 

Recommended 
Action(s) 

SME Internal 
Review 

FM.15.1 Design package 
might not fulfil 
customer’s 
requirements 

Qualified 
resources 
may not 
have been 
available to 
perform the 
task 

Project 
Planning 

Always ensure 
assigned 
individuals are 
qualified under the 
process they are 
working on. 

FM.15.2 Design package 
might not be ready 
to be submitted to 
the customer 

Resource 
engineers 
might not 
have been 
the correct 
individuals 
to perform 
the work 

Questioning 
Attitude 
 
Validate 
Assumptions 
 
Peer Review 
 
Product 
Review 
Meeting 
 

Enough time 
should be allotted 
to SME reviews to 
allow for a 
thorough and high 
quality review of 
design packages. 

Peer reviews 
failed to 
identify 
errors 

 
Table 46. Failure Modes, Effects, Causes, and Recommendations – SME Internal Review 
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Function/ 
Process 

Potential 
Failure 
Modes 

Severity 
(S) 

Occurrence 
Rating (L) 

Detection 
Rating 

(D) 

RPN 
(LxSxD) 

SME 
Internal 
Review 

FM.15.1 4 1 2 8 
FM.15.2 6 1 2 12 

 
Table 47. Failure Mode Ranking Numbers – SME Internal Review 

 

 

 

Figure 37. Failure Mode Ranking Numbers – SME Internal Review 
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4.3.20. FMEA for Next Phase Estimate 

The creation of an estimate and schedule for future design phases is one of the most 

important activities that can be performed during the conceptual design phase, other than the 

development of the design itself. This activity will determine the structure of the remainder of 

the project. Errors in estimate or schedule could affect the outcome of the entire project. Five 

failure modes were identified for this activity. These are: 

 FM.16.1 – Person-hour estimate is over or underestimated; 

 FM.16.2 – Scope changes from the customer; 

 FM.16.3 – Person-hour estimate not accepted by the customer; 

 FM.16.4 – Schedule not accepted by the customer; 

 FM.16.5 – Estimate did not consider all activities to be completed. 

Table 48 describes the potential effect of failure, potential cause(s) of failure, INPO HU 

tools identified for each failure mode, and recommended actions.  The responsible and resource 

engineers perform this activity. The customer controls some of the failure modes identified. 

Because of this, a detection rating of 7 was assigned to these. The severity, occurrence, and 

detection ratings for the failure modes identified are shown in Table 49 and Figure 38. The 

FMEA table shows FM.16.2 as being the most significant issue that could affect this activity and 

the entire project. 
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Function/ 
Process 

Potential 
Failure 
Modes 

Potential Effects 
of Failure 

Potential 
Cause(s) of 

Failure 

INPO HU 
Tools 

(Prevent 
and Detect) 

Recommended 
Action(s) 

Next Phase 
Estimate/ 
Schedule 

FM.16.1 
 

Scope of later 
design phases was 
not correctly 
defined  

Engineers were 
not familiar 
with the scope 
and/or did not 
identify all 
affected 
documents 

Self-
Checking 
 
Peer 
Review 
 
Project 
Planning 
 

Always ensure that 
estimates and 
schedules are 
reviewed by the 
project managers 
and/or other 
leaders. 

FM.16.2 
 

Significant 
changes in design 

Changes in the 
customer’s 
scope or 
changes in the 
industry  

No controls 
are in 
place. 

Ensure the design 
team is constantly 
communicating 
with the customer 
to identify issues 
early in the project. FM.16.3 

 
Rework or 
complete stop of 
project 

Engineers were 
not familiar 
with the scope 

No controls 
are in 
place. 

FM.16.4 
 

Rework or 
complete stop of 
project 

Proposed 
schedule does 
not fit 
customer’s 
implementation 
plans 

No controls 
are in 
place. 

FM.16.5 Scope of later 
design phases was 
not correctly 
defined 

Engineers were 
not familiar 
with the scope 
and/or did not 
identify all 
affected 
documents 

Project 
Planning 
 
Peer 
Review 
 
Product 
Review 
Meeting 

Always ensure that 
estimates and 
schedules are 
reviewed by the 
project managers 
and/or other 
leaders. 

 
Table 48. Failure Modes, Effects, Causes, and Recommendations – Next Phase 

Estimate/Schedule 
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Function/ 
Process 

Potential 
Failure Modes 

Severity 
(S) 

Occurrence 
Rating (L) 

Detection 
Rating 

(D) 

RPN 
(LxSxD) 

Next Phase 
Estimate/ 
Schedule 

FM.16.1 4 2 3 24 
FM.16.2 9 2 7 126 
FM.16.3 4 2 7 56 
FM.16.4 4 2 7 56 
FM.16.5 5 2 3 30 

 
Table 49. Failure Mode Ranking Numbers – Next Phase Estimate/Schedule 

 

 

 

Figure 38. Failure Mode Ranking Numbers – Next Phase Estimate/Schedule 
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4.3.21. FMEA Conceptual Design Meeting 

No FMEA was performed for this activity. The purpose of this meeting is to present the 

developed conceptual design to plant stakeholders.  No specific activities would be performed by 

engineers or SMEs other than providing a presentation.  

 

4.3.23. Risk Priority Number 

As described previously, the RPN is a numerical ranking of the risk of each potential 

failure mode/cause, made up of the arithmetic product of the three elements: severity of the 

effect, the likelihood of occurrence of the cause, and the likelihood of detection of the cause 

(Carlson, 2014). Figure 39 shows the RPN calculated for each activity under this FMEA. The 

figure shows FM.16.2, "scope changes from the customer," as being the most significant failure 

mode for this design project. Changes in scope by the customer are not detectable. Sometimes, if 

the changes are based on regulatory initiatives, they could be anticipated to some extent. A 

change in scope after a conceptual design has been developed can have a significant impact on 

project cost, schedule, implementation, and even on outage schedule.  

The purpose of comparing the RPN of each activity is to create a sense of significance 

among all the failure modes identified. Other than identifying FM.16.2 as the most significant, 

the RPN graph can give the project team a tool that can be used to prioritize mitigation strategies 

for each failure mode. This graph is a representation of INPOs Principle for Excellence in 

Integrated Risk Management #5. 
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CHAPTER 5 

CONCLUSIONS 

The introduction to this dissertation presented the background of engineering design 

modification projects in the U.S. nuclear power industry, along with this dissertation’s problem 

statement. Various questions were formulated as part of the research, which is addressed as a 

case study focused on a hypothetical scope. Topics related to the development of engineering 

design modification projects were discussed as part of the literature review, followed by the 

research methodology. The results of the research were divided into three parts and comprised 

the core of this case study. Part one (i.e., Section 4.1) developed a work breakdown structure 

(WBS) for a design modification project. Part two (i.e., Section 4.2) provided descriptions for 

activities to be completed as part of a conceptual design package, estimated person-hours, and 

proposed duration for each activity. Part three (i.e., Section 4.3) comprised a risk analysis using 

the Failure Modes and Effects (FMEA) tool. This section summarizes the conclusions from this 

case study. The limitations of the study, recommendations for future research, and contribution 

to the Engineering Management field of knowledge are also addressed.  

 

5.1. Conclusions and Recommendations 

This dissertation formulated three fundamental research questions to be addressed as part 

of the case study presented here: 

 Research Question #1 – How does a comprehensive work breakdown structure for 

an engineering design project within the nuclear industry look like? 

 Research Question #2 – What should take place to deliver a successful project? 
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 Research Question #3 – What kind of risk could I face? What risk response can be 

identified? How can these risks impact the overall success of the project? 

Research question #1 was answered in Part I of the research results. In this section, a 

WBS for a design modification project was presented. Representations of the WBS were 

presented in Figure 13 thru Figure 18. These diagrams help the reader visualize the process. The 

activities listed in the WBS ranged from the definition of the project scope up to close-out of the 

design package. The WBS revealed that the activities involved in this type of nuclear project 

could be widespread with some of the activities, such as the 50.59/72.48 review, being unique to 

the nuclear industry. These activities are considered part of a detailed design project under the 

SDP. Various activities were identified within the WBS as being needed to develop a conceptual 

design. The identified activities are discussed in section 4.2 of the dissertation, which leads to the 

answer to research question #2.  

The discussion presented in Part II answered research question #2. This section provided 

steps recommended to perform each of the activities successfully. Even though the processes 

discussed should be captured in plant procedures, the descriptions provided in Section 4.2 also 

include insights from SME experience, which are typically not recorded in plant procedures. 

NEI’s SDP was referenced throughout the section. Each activity discussed was assigned person-

hour estimates and durations. These estimates were developed in response to the pre-determined 

scope of the case study. The results from Part I were captured in Table 14. This table includes the 

person-hours assigned to each activity under the responsible resource. This analysis resulted in a 

total of 679 hours needed to complete the technical portion of a conceptual design package. The 

information presented in this table was then incorporated into the Microsoft Project software. 
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The resulting Gantt chart is shown in Figure 21 and Figure 22. The activities described in this 

section are evaluated for risk in Part III.  

Research question #3 was answered in Part III of the research results. This section 

evaluated each of the activities described in Part II using the Failure Modes and Effects Analysis 

(FMEA) tool.  The process consisted of identifying failure modes for each activity. Each failure 

mode was then evaluated to determine the potential effects and causes of the failure. INPO 

human performance tools were assigned to each failure mode. These tools can be used to prevent 

or detect the failures. Recommended actions to address or mitigate the failure were also 

provided. The results of each activity-specific FMEA were captured in separate tables. Finally, 

each failure mode was assigned a severity, occurrence, and detection rating. The criteria for each 

scale were described in Table 15, Table 16, and Table 17. These ranks were used to calculate the 

risk priority number (RPN). The results from the scale assignment were also captured in separate 

tables. A chart was included to provide a graphical representation of the results. Among all the 

activities described, a total of 37 failure modes were identified and evaluated. The results of the 

overall FMEA were recorded in Figure 39. This chart gives a graphical representation of the 

risks that can be expected for each failure mode. Failure mode FM.16.2, “scope changes from the 

customer,” corresponding to the “Next Phase Estimate” activity, had the highest priority number. 

This result is mainly due to its high severity and detection ranking. The presence of this failure 

could cause a significant amount of rework or even the termination of the project.  Therefore, 

engineers and project managers should pay close attention when performing estimates for later 

design phases.  

The activities described and evaluated under this case study are assumed to be performed 

under a plant-specific quality assurance (QA) program, such as ASME’s NQA-1 (i.e., American 
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Society of Mechanical Engineers’ Nuclear Quality Certification). This QA program governs the 

procedures under which the work is being performed. Some of these plant-specific procedures 

address risks such as the ones identified in Section 4.3 but are typically intended for work 

performed for safety-related structures, systems, and components. This dissertation narrows the 

gap between risk analysis for safety-related and non-nuclear safety-related work. The results 

presented in this paper are expected to assist the U.S. nuclear industry in the identification and 

mitigation of risks beyond what is already addressed in plant-specific procedures.  

The results from this dissertation shall be applied to the development of an engineering 

design modification project iteratively. The recommended actions from the FMEA shall be used 

to adjust activities in the WBS. These actions can also be used to improve estimated person-hour 

and durations for each activity, assign more resources, and change the scope of reviews. Overall, 

this case study can support engineers and projects managers in the development of successful 

projects as a supplement to plant-specific processes and procedures.  

 

5.2. Limitations and Future Research 

The results of this case study are built upon a hypothetical scope for a U.S. nuclear power 

plant. The person-hour estimates and activity durations provided are limited to a conceptual 

design performed under the Standard Design Process (SDP). The literature review presented in 

this dissertation discussed the subject of multi-unit risk. A risk analysis was not performed to 

address this topic since the case study focuses on a design modification to be implemented at a 

single-unit nuclear power plant.  

The SDP addresses multi-unit matters through the development of a common design 

package, listed in Figure 19. The common design process initiates after a conceptual design is 
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developed that contains nuclear fleet-level designs and evaluations that are applicable to more 

than one nuclear site (SDPSC, 2017). The development of an additional risk assessment, along 

with a risk mitigation plan, is a step in the common design process. The risk assessment to 

address multi-unit risk could be the basis for future research and could further expand the 

Engineering Management field of knowledge.  

 

5.3. Contribution to the Engineering Management Field of Knowledge 

The nuclear energy industry is a unique business that relies on the knowledge and 

experience of individuals. Although nuclear power plants utilize countless procedures to perform 

day-to-day activities, the procedures themselves do not capture essential processes set forth from 

experience. With an aging workforce and a large percentage of the nuclear workforce 

approaching retirement, it is up to the new generation to gain this knowledge to move the 

industry forward. One of the ways this can be achieved is by implementing design modifications.  

Design modifications are engineering projects that involve technical problem solving 

along with the management of engineering processes. The development of a case study that 

describes in detail the process of developing engineering projects for nuclear power plants is a 

step towards the documentation of the knowledge needed to successfully develop a design 

modification.  

Old Dominion University (ODU) defines Engineering Management as a specialized form 

of management that is concerned with the application of engineering principles to business 

practice (2017). It also states that the discipline addresses the problems, design, and management 

of projects and complex operations (ODU, 2017). This definition accurately describes the 

foundation of this research as it applies to engineering projects in the nuclear industry. Therefore, 
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this research will contribute to the Engineering Management field of knowledge by providing a 

source of detailed information that can be used as a guide when developing engineering projects 

for nuclear power plants.  
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APPENDIX A 

The following table is a list of all nuclear power reactors licensed in the U.S. Each 

plant/unit is identified by type, PWR or BRW. Status of License Renewal application is also 

shown.  

 
# Plant Name and Unit PWR BWR License Renewal Application 

Status 
1 Arkansas Nuclear 1 ×  Complete 
2 Arkansas Nuclear 2 ×  Complete 
3 Beaver Valley 1 ×  Complete 
4 Beaver Valley 2 ×  Complete 
5 Braidwood 1 ×  Complete 
6 Braidwood 2 ×  Complete 
7 Browns Ferry 1  × Complete 
8 Browns Ferry 2  × Complete 
9 Browns Ferry 3  × Complete 
10 Brunswick 1  × Complete 
11 Brunswick 2  × Complete 
12 Byron 1 ×  Complete 
13 Byron 2 ×  Complete 
14 Callaway ×  Complete 
15 Calvert Cliffs 1 ×  Complete 
16 Calvert Cliffs 2 ×  Complete 
17 Catawba 1 ×  Complete 
18 Catawba 2 ×  Complete 
19 Clinton  × To be submitted in 2017 
20 Columbia Generating Station  × Complete 
21 Comanche Peak 1 ×  To be submitted in 2022 
22 Comanche Peak 2 ×  To be submitted in 2022 
23 Cooper  × Complete 
24 D.C. Cook 1 ×  Complete 

Table 50. List of Power Reactors in the U.S. and Application Status (NRC, 2018) 
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Table 50. Continued 

 

 

 

# Plant Name and Unit PWR BWR License Renewal Application 
Status 

25 D.C. Cook 2  ×  Complete 
26 Davis-Besse ×  Complete 
27 Diablo Canyon 1 ×  Under Review 
28 Diablo Canyon 2 ×  Under Review 
29 Dresden 2  × Complete 
30 Dresden 3  × Complete 
31 Duane Arnold  × Complete 
32 Farley 1 ×  Complete 
33 Farley 2 ×  Complete 
34 Fermi 2  × Complete 
35 FitzPatrick  × Complete 
36 Ginna ×  Complete 
37 Grand Gulf 1  × Complete 
38 Hatch 1  × Complete 
39 Hatch 2  × Complete 
40 Hope Creek 1  × Complete 
41 Indian Point 2 ×  Under Review 
42 Indian Point 3 ×  Under Review 
43 La Salle 1  × Complete 
44 La Salle 2  × Complete 
45 Limerick 1  × Complete 
46 Limerick 2  × Complete 
47 McGuire 1 ×  Complete 
48 McGuire 2 ×  Complete 
49 Millstone 2 ×  Complete 
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Table 50. Continued 

 

 

 

# Plant Name and Unit PWR BWR License Renewal Application 
Status 

50 Millstone 3 ×  Complete 
51 Monticello  × Complete 
52 Nine Mile Point 1  × Complete 
53 Nine Mile Point 2  × Complete 
54 North Anna 1 ×  Complete 
55 North Anna 2 ×  Complete 
56 Oconee 1 ×  Complete 
57 Oconee 2 ×  Complete 
58 Oconee 3 ×  Complete 
59 Oyster Creek  × Complete 
60 Palisades ×  Complete 
61 Palo Verde 1 ×  Complete 
62 Palo Verde 2 ×  Complete 
63 Palo Verde 3 ×  Complete 
64 Peach Bottom 2  × Complete 
65 Peach Bottom 3  × Complete 
66 Perry 1  × To be submitted in 2019 
67 Pilgrim 1  × Complete 
68 Point Beach 1 ×  Complete 
69 Point Beach 2 ×  Complete 
70 Prairie Island 1 ×  Complete 
71 Prairie Island 2 ×  Complete 
72 Quad Cities 1  × Complete 
73 Quad Cities 2  × Complete 
74 River Bend 1  × To be submitted in 2017 
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Table 50. Continued 

 

 

 

# Plant Name and Unit PWR BWR License Renewal Application 
Status 

75 Robinson 2 ×  Complete 
76 Saint Lucie 1 ×  Complete 
77 Saint Lucie 2 ×  Complete 
78 Salem 1 ×  Complete 
79 Salem 2 ×  Complete 
80 Seabrook 1 ×  Under Review 
81 Sequoyah 1 ×  Complete 
82 Sequoyah 2 ×  Complete 
83 Shearon Harris 1 ×  Complete 
84 South Texas 1 ×  Under Review 
85 South Texas 2 ×  Under Review 
86 Summer ×  Complete 
87 Surry 1 ×  Complete 
88 Surry 2 ×  Complete 
89 Susquehanna 1  × Complete 
90 Susquehanna 2  × Complete 
91 Three Mile Island 1 ×  Complete 
92 Turkey Point 3 ×  Complete 
93 Turkey Point 4 ×  Complete 
94 Vogtle 1 ×  Complete 
95 Vogtle 2 ×  Complete 
96 Waterford 3 ×  Under Review 
97 Watts Bar 1 ×  No intent yet; expires 2035 
98 Watts Bar 2 ×  No intent yet; expires 2055 
99 Wolf Creek 1 ×  Complete 
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Reactor Type Number of Reactor Units 
PWR 66 
BWR 34 

 
Table 51. Summary of Reactors in the U.S. 

 

 

License Renewal Application Status Number of Reactor Units 
Completed 84 
Under Review 8 
Future Submittal 5 
No Intent to Submit Yet 2 

 
Table 52. Summary of License Renewal Application Status for Reactors in the U.S. 
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APPENDIX B 

Part I Subject Matter Expert (SME) Review 

SME: #1 
SME Title: Project Engineer Electrical/I&C 
Description of SME Experience: 
35+ Years of Engineering and Engineering Management experience on power plant projects, 
including nuclear and non-nuclear projects. 
 
 
Scope: Review Part I of the case study and provide comments and/or recommendations on how 

to improve the content based on your experience with design engineering projects. 
 

Section/Table/Figure Comment/Recommendation Resolution 
Chapter 4, Lead-in 
paragraph 
 

Providing recommended person-
hour estimates may be difficult 
unless you have SME's from all 
disciplines and your input is not 
all from WEC.  If your input was 
solely based on information from 
WEC sources, I can foresee some 
WEC legal type not being too 
thrilled.  (i.e., they may consider 
it to be proprietary)  

The recommended person-hour 
estimates are based on own 
experience from current and 
previous positions. 

4.1 Should you clarify that the list is 
the WBS for Engineering only?  
The other groups will also have 
WBS's which you have only 
partially touched on. 

Added “from the Engineering 
perspective”. 

1.1.3 Maybe add Architectural, 
Geotechnical.  Should you be 
adding other department scopes, 
such as QA, Procurement, 
Construction, 
Startup/Commissioning, 
Customers/Owner's Scope.  
Understanding these groups 
scopes (ie, the DOR between 
these groups and Engineering) 
will help define deliverables and 
associated WBS needs. 

These disciplines follow the SDP, 
identified in IP-ENG-001, 
Attachment 10. 

 
Table 53. Part I SME #1 Comments and Resolutions 

 



   

 

163 

Section/Table/Figure Comment/Recommendation Resolution 
1.1.4 Maybe indicate "Proposed 

Design Change/Problem 
Resolution" 
Also, I think this should be listed 
ahead of the Project Scope.  
Unless, this is meant to be the 
"Detailed Project Scope". 

Changed to “Proposed Design 
Change/Problem Resolution.” 

1.1 Suggest adding a section on 
defining resources needed versus 
resources available.  Performing 
skills gap analysis and making 
decisions to self-perform 
engineering or sub-contracting 
out the work to third parties who 
already possess the necessary 
skills.  By defining what will be 
self-performed and what will be 
sub-contracted will in turn define 
what activates to include in the 
WBS. 

Added new 1.1.3 for identifying 
resources needed. 

1.1.5 Suggest listing the different types 
of design input:  Existing plant 
licensing and design information; 
New Design Functional and 
Performance Criteria; Regulatory 
Requirements; Design Codes and 
Standards; Customer/Owner's 
operations and maintenance 
criteria; Commissioning and 
Testing features to be 
incorporated into the design; 
physical layout and spatial 
criteria; engineering discipline 
department standards and 
guidelines; Owner preferred 
supplier information,.   You 
could expand the list further. 

This is explained in Section 4.2 
and references the programs 
identified in the SPD.  

 If you want to, you could further 
identify design inputs associated 
with every program the 
Customer/Owner has.  (e.g, Fire 
protection, MOVs, EQ, Seismic, 
etc) 

 

 
Table 53. Continued 
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Section/Table/Figure Comment/Recommendation Resolution 
 The exercise of defining all of 

the design inputs helps define the 
design outputs needed for the 
Project. 

 

1.2.1 This is item 1.1.5.  Do you need 
to repeat here? 

The purpose of the repeat is to 
ensure that the responsible 
engineer is constantly 
communicating with the 
customer’s design engineering 
group. 

1.2.4 General comment:  It will be 
difficult to provide meaningful 
engineering rates without 
identifying the specific 
documents that each discipline 
works with. 

Those details are shown in section 
4.2 where a specific scope of work 
is provided, including documents 
to be created or updated. 

1.2.1.2, 1.2.2.2, etc 
 
(Numbering needs to 
be reviewed/corrected;  
these numbers should 
be 1.2.4.2, 1.2.5.2, etc) 

Is this meant to include all 
reviews, including customer 
reviews? 
 
General question applicable to all 
documents listed. 
 
See comment against 1.6.1 

Yes, but mainly aimed at 
reviews/verifications performed 
by the firm, which will be 
estimated in Section 4.2 for a 
specific work scope.  
 
Numbering has been updated. 

1.2.8.1  (Same 
comment for 
numbering as above) 

Do you want to list some of these 
other documents:  Equipment 
Data Sheets, Motor Data Sheets,  
Instrument Data Sheets. 
equipment lists, electrical load 
lists, instrument lists, cable and 
raceway lists, cable connection 
lists, pipe and valve lists, pipe 
hangar lists, EQ equipment lists; 
Equipment supplier documents, 
engineering service supplier 
documents; BOMs. 
 
The above could be condensed in 
generic categories of Data 
Sheets, Component Lists, 
Supplier Documents, BOMs. 

Added data sheets, components 
lists, and supplier documents as 
examples under 1.2.11, other 
documents.  

1.3.2.1 Suggest adding (ie, 
constructability review) 

Added. 

 
Table 53. Continued 
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Section/Table/Figure Comment/Recommendation Resolution 
1.3.3.3 Coordinate with Owner as well.  

Or, is this this just part of the 
BOM review/approve cycle in 
1.2.8.2? 

Updated 1.3.3.1 to “obtain input 
from customer (e.g. procurement, 
engineering, installing group).” 

 
1.3.4.1 Maybe indicate both Owner's 

testing group as well as whoever 
is contracted to perform the 
testing? 

Updated to “Obtain Input from 
Customer (e.g. test group).” 

1.6.1 You have these reviews listed 
here, but also include them in 
Section 1.2.  Seems redundant. 

The reviews listed under 1.2 are 
for processes outside of the design 
package. The reviews listed under 
1.6.1 are for the design package. 
Updated 1.6.1 to “Design Package 
Inter-Discipline 
Review/Verification.” 

1.6.1 Suggest adding "Inter-discipline 
Reviews." 

See previous response.  

2 Suggest adding: "Performance 
test acceptance report reviews." 

Added as 2.3. 

1.2 It might be better to list all the 
documents in one section, then 
list the sequencing of review and 
processing that is typical for each 
document.  When done this way, 
you can expand upon the list of 
reviewer/verifiers instead of in 
1.6.1 

See response for 1.6.1. 

 
Table 53. Continued 
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SME: #2 
SME Title: Structural Engineer  
Description of SME Experience: 
Structural engineer of plant mods at nuclear power plants. 
 
Scope: Review Part I of the case study and provide comments and/or recommendations on how 

to improve the content based on your experience with design engineering projects. 
 

Section/Table/Figure Comment/Recommendation Resolution 
4.1 / 1.2.1 This seems to be from the 

perspective of an outside 
contractor. Recommend reword 
to 5 guys meeting or equivalent 

Added “Customer’s” to specify. 

1.2.5.1 
 

Recommend “station” procedures 
to differentiate between 
installation procedures 

Changed 1.2.8.1 (updated number) 
to “Update/Generate 
Administrative and Installation 
Procedures” 

1.2.4 thru 1.2.11 
 

Numbering doesn’t match higher 
tier 

Updated numbering. 

1.3.2.1 The engineer writes the 
instructions, may need to add 
some language, sounds like the 
installer is doing this. The 
installer reviews the package, but 
doesn’t write the instructions. 
Similar for 1.3.3 and 1.3.4 

Changed to “Obtain Input 
from…” on 1.3.2.1, 1.3.3.1, and 
1.3.4.1. 

1.4.2.1 Typically only updates to the 
SAR are provided, the station 
updates the sar all at one time 

Changed to “Identify 
Recommended Changes to the 
SAR.” 

1.4.4.1 Update if required, not always 
required 

Changed to “Identify 
Recommended Changes to the 
Operating License.” 

1.6.1.2 
 

Written from an outside firm’s 
perspective, may want to keep it 
to a station’s wbs. An outside 
firm would be working to an 
augmented program. 

The case study is based on an 
outside firm doing the work.  

1.6.4 
 

Should you add “and get final 
signatures”? The activities make 
sense, but may want to show that 
these are part of the design phase 
before the package is approved. 

Added 1.6.5, “Final signatures and 
approval.” 

2.2 Add “minor” changes Added. 
2.3 Return “SSC” to service Added “SSC.” 

Table 54. Part I SME #2 Comments and Resolutions 
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SME: #3 
SME Title: Project Manager 
Description of SME Experience: 
Project manager for nuclear plant design modifications with more than 15 years of technical 
engineering experience. 
 
Scope: Review Part I of the case study and provide comments and/or recommendations on how 

to improve the content based on your experience with design engineering projects. 
 

Section/Table/Figure Comment/Recommendation Resolution 
Introduction and 
Literature Review 

Editorial comments throughout. 
Markup provided. 

Updated. 

WBS 1.4 
 

Do you have to define this or 
have it more generalized? 

Updated. 

WBS 1.4.2 Define SAR. Defined. 
WBS 1.6.1.1 Define SME. Defined.  
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
 

Table 55. Part I SME #3 Comments and Resolutions



   

 

168 

APPENDIX C 

Part II Subject Matter Expert (SME) Review 

SME: #1 
SME Title: Project Engineer Electrical/I&C 
Description of SME Experience: 
35+ years in engineering, engineering supervision, engineering project management for fossil 
and nuclear power plant projects. 
Scope: Review Part II of the case study and provide comments and/or recommendations on how 

to improve the content based on your experience with design engineering projects. 
 

Section/Table/Figure Comment/Recommendation Resolution 
Project Definition and 
Pre-Design Walkdown 

This is especially true for non-
safety related designs as the 
plant's configuration control 
tends to put more focus on the 
safety-related design. 

Agree. Added some explanation. 

Project Definition and 
Pre-Design Walkdown 

"Craft" is normally associated 
with construction personnel.  
Unless "craft" is a generic term 
in your writings, suggest that you 
indicate "plant operations and 
maintenance personnel".  "Craft" 
could be still considered a 
stakeholder since they are the 
customer to engineering's 
construction design and may 
have some insight as to 
constructability issues. 

Replaced “craft” with “plant 
operations and maintenance”. 

Project Definition and 
Pre-Design Walkdown 

Do you want to be using a 
command tense 'shall', instead of 
a recommendation tense, i.e., 
'should' (typical comment)? 

Replaced “shall” with “should” in 
most instances.  

Project Definition and 
Pre-Design Walkdown 

Suggest adding: For purposes of 
this simplified case, It will be 
assumed that there are no 
electrical controls and no heat 
tracing required." 

Added. 

 
Table 56. Part II SME #1 Comments and Resolutions 
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Section/Table/Figure Comment/Recommendation Resolution 
Project Definition and 
Pre-Design Walkdown 

Suggest adding: "For simplicity, 
engineering supervision, project 
management, and other overhead 
charges will be ignored when 
developing the estimate.  These 
charges are typically percentages 
of the direct engineering cost." 

Added. 

Design Inputs Does the SDP address schedule?  
This is what puts the demand on 
the resources.  For example, a 
modification needing to be 
incorporated in a future outage 
will be less demanding than one 
that needs to be incorporated in 
the upcoming outage. 

The SDP des not specifically 
discuss this subject.  

Design Inputs Are you adding more here?  or 
should this be "...etc.)" 

No. This bullet continues on the 
next one below.  

Design Inputs Goal of the Conceptual phase 
should be to take the design from 
a rough idea to one that has 
structure and legitimacy. All 
items potentially having a high 
risk impact on cost or 
acceptability should be 
identified, defined, and 
incorporated into the conceptual 
design.  Other risks can be 
cataloged in a risk register with 
mitigating strategies.   
 
Also, the type of documents 
created during the conceptual 
phase should be agreed to with 
the customer.  Different 
customers have different 
expectations. 
 
You could add this to Page 61 
discussion where you introduce 
the conceptual design phase. 

Added wording. 

 
Table 56. Continued 
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Section/Table/Figure Comment/Recommendation Resolution 
Drawings Suggest putting this first as all 

design flows down from key 
documents. 
 
Also, note that in many 
organizations, the Mechanical 
Engineers are not the people 
doing the piping layout.  ME's 
know the mechanical system 
process information, selection of 
pipe class, and determination of 
the sizing.  Separate personnel 
typically do the piping routing, 
design of pipe supports, and 
perform the stress analysis.  
These can be other ME's or 
Piping designers.  C/S Engineers 
usually only get involved when 
there is a special attachment to a 
structure needed, or when a 
foundation is needed. 

Moved item.  

Drawings 'Design technician' may be more 
PC. 

Changed “drafter” to “design 
technician”. 

Drawings Double edge sword.  Designers 
are typically paid less per hour 
than engineers, particularly 
Principal engineers.  Unless PE 
has good working cad skills, the 
task should be left to a design 
technician. 
 
What you generally find is the 
most senior engineers do not 
have these skills.  I do agree that 
it should be the company's goal 
that the young engineers acquire 
these skills as early in their 
careers as possible for the 
reasons you state. 

Agree. 

 
Table 56. Continued 
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Section/Table/Figure Comment/Recommendation Resolution 
Drawings And in what format?  We have 

people who know only 
Microstation and don't know 
Autocad, and vice-a-versa.  This 
plays into the required skills of 
the resources and the job-hour 
estimates. 

Added. 

Calculations Change “future” to “later” Updated. 
Specifications Some amount of time is needed 

to specify the valve either on a 
BOM or on a procurement 
requisition.   
 
This detail is likely not important 
with regards to what you are 
trying to present, but I felt I 
should mention. 

This information accounted for in 
the “Bill of materials” section. 

Procedures I note that the procedures here 
are the plant operating 
procedures rather than the design 
change package and supporting 
document procedures.  Maybe 
clarify? 
 

Updated to “Plant Operating 
Procedures”. 

Installation 
Instructions 

YES!  I agree 100%.  Not 
recognizing how the design will 
be tested or commissioned is a 
major source of under-estimates. 
 
Key stakeholders in the 
conceptual design phase are the 
construction and commissioning 
managers. 

Agree. 

 
Table 56. Continued 

 
 



   

 

172 

SME: #2 
SME Title: Structural Engineer 
Description of SME Experience: 
15 years of structural design of nuclear facilities  
 
 
Scope: Review Part II of the case study and provide comments and/or recommendations on how 

to improve the content based on your experience with design engineering projects. 
 

Section/Table/Figure Comment/Recommendation Resolution 
4.2 2nd paragraph, change “divided in 

phases” to “divided into phases” 
Updated to “into”. 

Page 61, before bullets You’re jumping right into a 
project, but it would be helpful to 
explain the scoping that was 
already performed. For example, 
why are they installing the drain 
line? 

Added background information.  

Page 62 
 

A more realistic resource 
allocation would be something 
less than 100% utilization, 
possibly 7 hours/day 

Changed to 7 hours/day. 

Page 62, last 
paragraph before Pre-
Job Brief 

Change “As stated in previously” 
to “As stated previously” 

Updated. 

Page 63 Typo “led” to “lead” This is the past tense for lead.  
Page 63 
 

Note that procedures are not 
controlled once printed 

Agree. 

Page 64 
 

Wouldn’t the scope start in the 
PJB? Then be expanded or 
confirmed during the walkdown 

Added “Pre-job briefs are also an 
essential activity to perform 
before walkdowns”. 

Page 64 
 

Change “contains accurate 
information” to contains accurate 
or complete information” 

Updated. 

Page 66 Change ” that under 
consideration” to “that into 
consideration” 

Updated. 

Page 66 Delete “Same applies to any 
other disciplines”, as this is 
obvious 

Deleted. 

 
Table 57. Part II SME #2 Comments and Resolutions 
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Section/Table/Figure Comment/Recommendation Resolution 
Page 70 – cad 
paragraph 

I don’t agree with using 
engineers to do drafting; doesn’t 
seem like an efficient use of 
resources. No change required.  

Somewhat agree. 

Page 72 
 

Doesn’t the pipe support need a 
calculation? 

Added calculation for pipe 
support, including person-hour 
estimate. 

Page 73 - TR Change “only add a drain line to 
FWT” to “only adds a drain line 
to FWT” 
 
Change “assumed that not” to 
“assumed that no” 

Updated. 

Page 74 
 

“radioactive area” should be 
“radiation controlled area” 

Updated. 

 
Table 57. Continued 
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SME: #3 
SME Title: Project Manager 
Description of SME Experience: 
Project manager for nuclear plant design modifications with more than 15 years of technical 
engineering experience. 
 
Scope: Review Part II of the case study and provide comments and/or recommendations on how 

to improve the content based on your experience with design engineering projects. 
 

Section/Table/Figure Comment/Recommendation Resolution 
Section 4.2 Editorial comments. Markup 

provided.  
Updated. 
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APPENDIX D 

Part III Subject Matter Expert (SME) Review 

SME: #1 
SME Title: Project Engineer Electrical/I&C 
Description of SME Experience: 
35+ years in engineering, engineering supervision, engineering project management for fossil 
and nuclear power plant projects. 
Scope: Review Part III of the case study and provide comments and/or recommendations on 

how to improve the content based on your experience with design engineering projects. 
 

Section/Table/Figure Comment/Recommendation Resolution 
All Editorial comments throughout.  Updated. 
 
4.3.5 

Need to identify “FM 1.1” in the 
writeup. “FM 1.2” is identified, 
but not FM 1.1  

This has been added as part of 
Chapter 5, under conclusions. 

 
4.3.22 

You might want to contrast your 
conclusions to the QA program 
and procedures the work is being 
done under.  I think you will find 
that many of the risks are already 
addressed by the program and 
procedures if the design is safety 
related, but less so for non-safety 
related work. This gap analysis 
will help focus on what else 
should be done to mitigate risk 
beyond what the current program 
already addresses. 

This has been added as part of 
Chapter 5, under 
recommendations. 

 Following on from previous 
comment, do you have any 
suggestions for the reader on 
how to deal with the identified 
risks for this sample project?  
Should you inflate the budget?  
Adjust schedule? Get different 
resources? 

Updated. 

   
   
   

 
Table 59. Part III SME #1 Comments and Resolutions 
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SME: #2 
SME Title: Structural Engineer 
Description of SME Experience: 
Structural engineer of plant mods at nuclear power plants. 
 
Scope: Review Part III of the case study and provide comments and/or recommendations on 

how to improve the content based on your experience with design engineering projects. 
 

Section/Table/Figure Comment/Recommendation Resolution 
 
4.3.2 

“engineers experience” to 
“experience and capability of the 
resource engineers” 

Updated. 

4.3.2 last sentence 
 

Remove “generated” Removed. 

4.3.3 
 

“engineers experience” to 
“experience and capability of the 
resource engineers” 

Updated. 

4.3.9 2nd sentence 
 

Change “sine” to “since” Updated. 

Figure 4.3-5 
Table 4.3-8 

FM.5.2, severity shown as 5 but 
listed as 2, RPN calculated based 
on S=5 

Updated to 2. 

4.3.12 
 

Detection for calculation errors 
should be higher, as it is very 
difficult to detect errors. 
Recommend at least 3. 

Updated to 3. 

Figure 4.3-11 
 

Occurrence and detection should 
be at least 1 notch higher, based 
on my experience. 

Occurrence and detection updated 
to 2 and 3, respectively.  

4.3.20 2nd sentence “reminder” to “remainder” Updated. 
4.3.20 First you say detection is 3, then 

detection is 7. I see where the 
different FM16’s have 3 and 7 in 
the table, it just isn’t clear in the 
write up. Maybe need to just 
point to the table for a 
description. 

Added explanation.  

   
   
   
   

 
Table 60. Part III SME #2 Comments and Resolutions 
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SME: #3 
SME Title: Project Manager 
Description of SME Experience: 
Project manager for nuclear plant design modifications with more than 15 years of technical 
engineering experience. 
 
Scope: Review Part III of the case study and provide comments and/or recommendations on 

how to improve the content based on your experience with design engineering projects. 
 

Section/Table/Figure Comment/Recommendation Resolution 
Section 4.3 Editorial comments. Markup 

provided.  
Updated. 

4.3.17 Define SAR. SAR has been defined. 
All 4.3.x Remove sentence “The engineers 

in this case study are 
experienced…” and “Therefore 
an occurrence…” These 
sentences are repetitive.  

Removed sentences from 
individual section. Added overall 
statement to Section 4.3.4. 
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