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ABSTRACT 

 

SEQUENCE-BASED SIMULATION-OPTIMIZATION FRAMEWORK WITH 

APPLICATION TO PORT OPERATIONS AT MULTIMODAL CONTAINER TERMINALS 

 

Mariam Aladdin Kotachi 

Old Dominion University, 2018 

Director: Dr. Ghaith Rabadi 

It is evident in previous works that operations research and mathematical algorithms can 

provide optimal or near-optimal solutions, whereas simulation models can aid in predicting and 

studying the behavior of systems over time and monitor performance under stochastic and 

uncertain circumstances. Given the intensive computational effort that simulation optimization 

methods impose, especially for large and complex systems like container terminals, a favorable 

approach is to reduce the search space to decrease the amount of computation. 

A maritime port can consist of multiple terminals with specific functionalities and 

specialized equipment. A container terminal is one of several facilities in a port that involves 

numerous resources and entities. It is also where containers are stored and transported, making the 

container terminal a complex system. Problems such as berth allocation, quay and yard crane 

scheduling and assignment, storage yard layout configuration, container re-handling, customs and 

security, and risk analysis become particularly challenging.  

Discrete-event simulation (DES) models are typically developed for complex and 

stochastic systems such as container terminals to study their behavior under different scenarios 

and circumstances. Simulation-optimization methods have emerged as an approach to find optimal 

values for input variables that maximize certain output metric(s) of the simulation. Various 

traditional and nontraditional approaches of simulation-optimization continue to be used to aid in 

decision making. 
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In this dissertation, a novel framework for simulation-optimization is developed, 

implemented, and validated to study the influence of using a sequence (ordering) of decision 

variables (resource levels) for simulation-based optimization in resource allocation problems. This 

approach aims to reduce the computational effort of optimizing large simulations by breaking the 

simulation-optimization problem into stages. 

Since container terminals are complex stochastic systems consisting of different areas with 

detailed and critical functions that may affect the output, a platform that accurately simulates such 

a system can be of significant analytical benefit. To implement and validate the developed 

framework, a large-scale complex container terminal discrete-event simulation model was 

developed and validated based on a real system and then used as a testing platform for various 

hypothesized algorithms studied in this work. 
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CHAPTER 1 

INTRODUCTION 

Container terminals are considered complex systems since they consist of different 

functional areas, each with detailed and critical roles. Due to the challenges involved in managing 

container terminals, researchers rely on simulation and optimization methods to aid in decision 

making. One of the main challenges involved with simulation-optimization is the lengthy 

computational times. Finding optimal solutions to complex problems is, in general, time 

consuming even for objective functions that are easily evaluated. The computation becomes much 

more extensive when running a simulation for longer times and for many replications to evaluate 

viable solutions produced by an optimization algorithm. 

This work presents a novel method for simulation-optimization that incorporates the 

sequence in which the decision variables (resource levels) are optimized. It is hypothesized that 

implementing such a sequence will reach a comparable solution in less computation time than the 

traditional method of optimizing simulations and will reduce the search space and improve the 

efficiency of the optimization process. 

To illustrate the potential and inspiration of this work, this chapter presents, in its outset, a 

brief background of the study specifically focusing on operational challenges usually faced at 

container terminals. This is followed by the motivation behind this dissertation, the problem 

statement, as well as the research objectives. A summary of the contributions and an outline of the 

dissertation are also provided. 
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1.1 Operational Challenges at Container Terminals 

Container terminals can be generally divided into several sections or subsystems where the 

main operations take place, and where delays and bottlenecks occur. Fig. 1 identifies the main 

subsystems, which are the vessel area, storage area and the terminal gate area. The vessel area is 

where the loading and unloading of containers takes place, the storage area is where containers are 

stored temporarily, and the gate area is the entrance to all external trucks. A more detailed 

description of the terminal operations and activities is provided in Chapter 2 of this dissertation. 

 

 

Fig. 1. Port System with main subsystems. 

 

Every container terminal has three main resources that control a container, whether by 

loading and unloading it or transporting it inside the terminal. These resources are cranes that work 

on the vessel called STS Quay Cranes (QC), cranes that work in the storage yard called Yard 
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Cranes (YC) and finally transporters that transport containers from and to the storage yard, called 

Yard Trucks (YT).  

To improve the terminal’s performance, all these resources must be working efficiently; 

this is particularly true of both YCs and YTs, which must serve the QC effectively, given that the 

QCs are the main resource in container terminals. However, this process becomes complex and 

problematic over time since these resources work at different speeds and capacities, yet they must 

interact by exchanging containers.  

Some of these differences are the handling speed of YCs which is around half of that of 

the QCs. YTs move great distances compared to both QCs and YCs. Their movement naturally 

differs based on the operator, traffic situations at the terminal, and human error. Both QCs and 

YCs are dependent on the availability of YTs to pick up and transfer a container. Finally, the 

workload is unevenly distributed over time since container vessels arrive at the terminal at different 

times during the day, which might congest the resources at some point and leave them idle at 

another [1]. 

 

1.2 Motivation 

This dissertation was motivated by a research project on simulating the logistics of the first 

newly constructed container terminal system of Hamad’s new port of Qatar, which has been under 

construction since 2010 and has recently started its operations at Terminal 1 in September 2017. 

The objective is to develop, test and validate simulation and simulation-optimization models for 

the container terminal, study the effectiveness of its operational policies and resource allocation, 

then generalize the applicability of the developed models.  
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1.3 Problem Statement 

Much of the conducted research related to decision support systems for container terminals 

focused primarily on one section of the terminal, such as the container yard or the berths alone; 

isolating it from other influential resources such as Quay Cranes (QC), Yard Cranes (YC) and 

Yard Trucks (YT). Collectively, very little research focused on employing an integration of 

discrete-event simulation models with optimization to address allocation and assignment of 

involved resources as well as their interdependencies in a stochastic container flow system at a 

mega state-of-the-art container terminal. The literature gaps that this dissertation attempts to fulfill 

are described here: 

▪ The first aspect that the current literature lacks is the inclusion of uncertainty and 

stochasticity in the model [2, 3]. Many optimization studies applied to container 

terminals are deterministic not stochastic. Using deterministic input data generally 

encapsulates several assumptions and can provide limited knowledge about the 

system’s behavior. Container terminal systems naturally have a level of randomness 

that is captured much more realistically in a stochastic model. 

▪ The second aspect is the fact that several research papers typically model one specific 

and isolated section of the terminal with limited consideration to other components, 

resources, and processes and eventually its effect on the optimized solution. There is a 

great deal of interdependency within the terminal processes and the advancements in 

one subsystem will not necessarily result in an overall improvement since the influence 

of the change on other components of the system should be considered. Traditionally, 

simulation-based optimization approaches treat the simulation model as a black box 

and consequently make no assumption about the internal structure of the search space, 
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treating decision variables in a non-differentiated way. Realistically, however, decision 

spaces for complex systems tend to have a complex internal structure such that the 

mutual influence of variables is not always symmetrical [4-6].  

▪ Finally, studies in the existing literature did not develop a simulation model that 

considers all terminal activities and major resources, thus providing a complete system 

[7]. As in the second aspect mentioned earlier, most studies focus on solving one or 

two problems relating to one or two resources in one location of the container terminal. 

 

In light of the above, a platform that allows exploration of how different container terminal 

resources allocation and assignment patterns affect the long-term performance of the container 

terminal is of great benefit; an elaborate and conclusive discrete-event simulation model can 

provide such a platform. More importantly, there is an apparent opportunity to supplement the 

current literature with a framework that performs a thorough analysis of the components and 

resources of a given system, investigates the interactions and interdependencies among available 

resources, then implements a simulation-based optimization methodology to perform resource 

allocation governed by the level of interaction and influence that each resource exerts on the 

system. This dissertation aims to address this need through developing and implementing such a 

framework on a container terminal system before extending it to a more generic level that is 

applicable to other systems and fields. 

 

1.4 Proposed Solution and Research Objectives 

To address the issues stated in the previous section, a container terminal discrete-event 

simulation model is proposed to provide a platform that can be used with various optimization 
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algorithms to improve performance in a container terminal. This simulation platform will allow 

studying and evaluating various scenarios introduced via optimization algorithms and changing 

different parameters to achieve improvements to the terminal performance. This model will 

provide solutions for modern container terminal problems like bottlenecks, resources allocation, 

and assignment.  

The proposed simulation model will consider major terminal operations under uncertain 

and stochastic input and behavior. Additionally, it will capture interdependency between various 

components of the model and allow for studying the effects of optimizing these components in a 

sequence-based manner. 

Optimization algorithms will be used to search the solution space of variables associated 

with resource allocation, whereas the simulation model will be used for solution evaluation by 

observing performance metrics such as container throughput and resources utilization. The 

combination of simulation and optimization approaches are anticipated to handle the stochastic 

and dynamic nature of this real-world complex system.  

To implement and validate this simulation-optimization framework, this research will also 

consider a case study of an actual and newly constructed container terminal of Hamad port in 

Qatar. This system will be the basis for configuring the developed simulation-optimization 

framework and methodology. Results relevant to decision making in the port will be generated 

from the simulation and optimization for analysis. Furthermore, output analysis will be performed 

to create a platform for operational design, scenario analysis, as well as inferring relevant 

information and drawing conclusions. 
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More specifically, this dissertation will address the following objectives: 

▪ Objective 1: Developing a discrete-event simulation model that replicates the 

operations of a mega seaport container terminal. 

▪ Objective 2: Developing an optimization module that can communicate with and 

control the simulation model. The optimization method in this case is Evolutionary 

Algorithms, which can be replaced by another method. 

▪ Objective 3: Investigating the influence of a sequence-based optimization approach to 

reduce the search space in a simulation-optimization problem. 

▪ Objective 4: Implementing and validating the developed integrated simulation-

optimization framework on a case study system with real historical data by obtaining 

and evaluating the sequence for optimization. 

 

1.5 Contributions 

In generic terms, the contribution of this work is twofold. The first is to develop a discrete-

event simulation model for a modern container terminal, including operations, logistics, processes 

and resources to be able to study their impact on the overall performance of the terminal and not 

on a specific part of the terminal. The second is to introduce a sequence-based simulation-

optimization methodology not addressed yet by the literature, utilizing the developed terminal 

simulation model. This will be evaluated by executing this methodology to address critical 

problems typically encountered in container terminals. The Hamad container terminal, a modern 

terminal located in Doha, Qatar will be considered as a case study to evaluate the conducted 

research. 

More details of this dissertation’s contributions are described in the following sections. 
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1.5.1 A platform for modeling and simulating container flow at mega seaports 

The first contribution of this work is the design, development, and validation of an 

elaborate discrete-event simulation model that can demonstrate the effects of operative-level 

decisions and changes of a container terminal under uncertainty. This simulation model is designed 

to provide the following: 

▪ An ability to evaluate various resource allocation scenarios. 

▪ An ability to receive external input that specify internal parameters. This input can be 

obtained either from a user or through an external computer program. 

▪ An ability to dynamically report relevant performance metrics intermittently during and 

at the conclusion of simulation runs. 

 

1.5.2 A sequence-based framework for search space reduction for simulation-optimization 

This dissertation proposes the development of a system that hypothesizes and demonstrates 

that the relative order (sequence) in which variables are optimized plays a significant role in 

identifying promising search regions to exploit, and in turn, reduces the amount of computations 

necessary to reach optimal or near-optimal solutions. 

This work discusses optimizing large simulations by breaking the simulation-optimization 

problem into two stages: in the first stage, an evolutionary method is proposed to identify the most 

promising variable sequences, i.e., the order in which input variables should be optimized, and in 

the second stage a heuristic approach is used to exploit the search space determined by this 

identified sequence. This proposed method is implemented and evaluated on a container terminal 

discrete-event simulation model due to its high-level complexity. 
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1.6 Dissertation Organization 

The work in this dissertation is organized in seven chapters. Chapter 2 introduces the 

terminology and technical background relating to container terminals, discrete-event simulation, 

and simulation-based optimization. Chapter 3 provides an analysis of existing research in the 

literature that addressed similar challenges in container terminals through employing simulation 

and/or optimization methods. 

The design, development, and validation approaches used to construct a discrete-event 

simulation model for a container terminal is described in Chapter 4, addressing Objective 1 of 

Section 1.4 of this dissertation. Chapter 5 proposes and evaluates a sequence-based methodology 

for resource allocation in simulation models such as the one developed here for a container 

terminal. The content of this chapter corresponds to Objectives 2 and 3. Chapter 6 discusses the 

computational experiments and outcomes that demonstrate the viability of the developed 

sequence-based simulation-optimization methodology, addressing Objective 4 of the dissertation. 

Finally, Chapter 7 provides a conclusion and summary of the work conducted in this 

dissertation and discusses how it can be generalized for other applications. Potential extensions of 

this effort and recommendations for future work are also described.  
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CHAPTER 2 

BACKGROUND 

To build a knowledge infrastructure for the succeeding chapters, and to understand the 

topics to be covered, the theoretical background is presented in this section. This chapter provides 

a detailed description of the events that occur in the container terminal and covers the main topics 

in the literature with which this dissertation is concerned. 

 

2.1 Container Terminals and Ports 

Ports act as gateways or hubs in geographically centralized locations that lie on shores or 

coasts. A port is usually an unavoidable transit location for transferring cargo among vessels and 

land transportation modes [8].  

In the literature, a port is referred to as either a maritime or an inland container terminal. 

In a maritime container terminal, the involved transportation modes include both vessels and land 

vehicles. A maritime container terminal is a serialized facility that lies on a coast where vessels 

can dock for delivering and picking up containers. If the transportation modes include only land 

transportation, the terminal is referred to as an inland container terminal or a dry port in some 

cases. Inland container terminals are usually situated near major cities and are, in most cases, 

connected by railways to maritime container terminals. The main function of a port is transshipping 

or warehousing freight as well as the berthing, repairing and refueling of vessels. 

A terminal (Fig. 2) is an amenity that exists in a central and an intermediate location within 

a port where freight and passengers are assembled, transferred, or interchanged within the same or 

different modes of transportation. Thus, there are different types of terminals depending on the 

transportation mode involved, the material transferred, and the equipment used.  
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Within a port on a shore, multiple specialty terminals can exist including, among others: 

freight terminals which include both containerized and break-bulk (non-containerized cargo) 

terminals, rail-road terminals, cruise and ferry terminals (passenger terminals) and mineral and 

energy terminals.  

According to Rodrigue [8] a Maritime Terminal is an assigned region of a port that 

contains: wharves, warehouses, storage spaces, cold storage plants, grain elevators, bulk cargo 

handling structures, landing and receiving stations, among others. The activities that usually take 

place in this area are the transmission and interchange of passengers and different cargo types 

between land and water carriers or two water carriers.  

According to Martin et al. [9] there are three types of container ports; however, one port 

may illustrate more than one functional category for different facilities:  

▪ Hub ports: (load center ports) served by large container vessels that operate on main 

shipping lines, where containers can be shipped to other terminals by smaller vessels. 

▪ Feeder ports: served by smaller vessels called feeder vessels that transport containers 

from hub ports within the same area. 

▪ Direct call ports: the port receives containers by large vessels, then containers reach 

their destination by land, where these vessels are not used for transshipping other 

containers to other ports. 

Another type of terminals is a transshipment hub (also known as intermediate hub, vessel-

to-vessel terminal etc.), which is usually located in an intermediate location between Hub and 

Feeder ports. In this type of terminal, containers are stored in the terminal for a short time before 

getting transferred by another vessel to another location, usually a country different than the 

country of origin and the transient country [8]. 



   

 

12 

 

 

Fig. 2. Container terminal of the port of Houston [10]. 

 

2.2 Port Resources and Entities 

 The resources and equipment that exist in most container terminals are introduced in this 

section and their functions will be described in detail. 

Containers (Fig. 3 (a)) are standardized steel aluminum or fiberglass boxes, used for 

moving materials and cargo around the world, either through water by vessels or through land by 

trucks and railways. There are several types and sizes of containers with different specialties, 

including: general purpose, refrigerated, tank, bulk, platform, insulated and ventilated. The 

international standard sizes of containers are 20’, 40’, 45’ 48’ and 53’. A container has specially 

made corners that make it easy for the terminal resources to lift it or pick it up [11-13]. 
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Storage Yard is where all the containers are stored and takes the greatest space in a 

container terminal. It is usually located close to the shore where vessels berth; to minimize the 

travel time for the transporting yard trucks. Containers stored in the yard are in sets stacked next 

to and on top of each other, which are called sections, zones, or stacks [11]. 

Quay Cranes (Fig. 3 (b)) are electric powered machines that lift and lower heavy objects 

and can also move horizontally along the length of the dock. In a container terminal, they transfer 

containers from and to the vessels [14]. Cranes should be separated by more than 50 ft. when 

working together, to prevent any crane confliction [11]. 

 Rubber Tyred Gantry Cranes (RTG) (Fig. 3 (c)) are rubber tyred mobile gantry cranes that 

are able to lift containers from a container stack and transfer them to a yard truck. They are used 

for stacking containers within the container yard and are capable of transferring containers from 

rail or trucks to the stacking area and vice versa [15]. 

Yard Cranes are container-handling equipment that load/unload containers onto/from 

trucks at the storage yard and have similar functions as an RTG but are smaller in size and easier 

to navigate around the port [16]. 

Yard Trucks (trailers) (Fig. 3 (d)) are trucks that operate inside the container terminal 

facility only and are mainly responsible for transporting containers from incoming vessels and 

railways to the storage area and vice versa.  

 Vessels (Fig. 3 (e)) are large boats and are one of the main transportation modes in a 

maritime container terminal. They are responsible for transporting containers by water to and from 

the terminal. There are different container vessels with different capacities including: container 

vessel, bulk carrier, container vessel with cranes, small general freight carrier, heavy lift crane 

vessel, liquid natural gas carrier, RO-RO vehicle carrier and a tanker [13]. Vessels make several 

http://en.wikipedia.org/wiki/Gantry_crane
http://en.wikipedia.org/wiki/Intermodal_container
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stops to other terminals before and after berthing at one container terminal. The pier space where 

the vessel docks is called a berth. There may be more than one berth in one terminal, depending 

on the terminal size and the number of available cranes [12]. A vessel may also occupy more than 

one berth depending on its size. 

 Trucks (external trucks) are heavy automotive vehicles and are one of the inland 

transportation modes. Trucks arrive at the container terminal either empty for picking up an 

imported container or full for dropping off an exported container. Trucks must drive to the 

container storage area so that an RTG or a YT can transfer the container from or onto the truck 

[12]. 

 Railways are another mode of inland transportation. They arrive at the container terminal 

according to a schedule for delivering and/or picking up containers. 
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(a) 

 

(b) 

 

  
(c) 

 

(d) 

 

 
(e) 

 

Fig. 3. Main resources and entities at a port: (a) containers, (b) quay cranes, (c) RTG, (d) yard 

trucks, and (e) cargo vessel [10]. 
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2.3 Defining Maritime Terminal Problems 

  Challenges and problems facing decision makers at a maritime terminal can be classified 

into three categories: Seaside, Yard and Landside. This section describes the problems involved in 

each category. 

 

2.3.1 Seaside 

 Berth Allocation and Scheduling Problem (BAP): Finding the optimal way to assign an 

arriving vessel to berth in a port, while taking into consideration the vessel size, dimensions and 

duration of stay and the berth capacity and layout, as well as accounting for any anticipated vessel 

arrival within the same timeframe [17]. 

 Quay Crane Assignment Problem (QCAP) involves finding the optimal way to assign 

cranes to vessels to achieve the transshipment of required containers, while taking into 

consideration the crane constraints and restrictions. These restrictions include non-crossing cranes 

and maximum/minimum number of cranes allowed to serve a vessel. The BAP and the QCAP are 

sometimes considered interrelated since solving one problem will have a great impact on the other 

[17]. 

 Quay Crane Scheduling Problem (QCSP) involves finding the optimal quay crane schedule 

that defines the starting time for every task on a crane while considering the minimization of vessel 

handling time (minimum makespan of the QC schedule), and other crane constraints [17].  

  

2.3.2 Yard side 

 Storage Yard Related Problems: the container or storage yard is the busiest area in a 

container terminal where traffic congestion usually occurs, specifically when there are multiple 
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activities scheduled at the same time. Yard problems include but are not limited to:  

▪ Assigning containers to different yard sub blocks to reduce traffic crowding. 

▪ Determining yard layout (width of container blocks and number of containers in each 

stack) to reduce the number of yard cranes assigned. 

▪ Reshuffling and restacking of containers (when the needed container is underneath one 

or more containers in a stack). 

▪ Locating the storage yard to reduce terminal traffic. 

 Yard Crane utilization: the utilization of the yard cranes or other resources similar in 

function to reduce traffic congestion, reduce the number of cranes assigned, and optimize the yard 

crane schedule and deployment. 

 Transport Operations: reducing the number of yard trailers (trucks) assigned to QC and 

finding the optimal schedule for the trailers (trucks) assignment to container stacks. 

 

2.3.3 Landside 

Railway Layout Problem involves finding the optimal design and location for the railway 

terminal as well as scheduling and assigning a specific number of YC or RTG to process containers 

from the rail.  

 Security (Safety) deals with risk analysis, security breaches, and the recoverability of a 

terminal. Additionally, it involves applying different security measures/levels and analyzing their 

impact as well as finding the optimal configuration of checkpoints. 
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2.4 Discrete-Event Simulation and Arena 

 As the world became more digital and computers appeared in the 1950s and 1960s, people 

started using basic programming languages to write simulation models for complicated systems. 

However, it was monotonous and error prone since everything needed to be written and coded 

from scratch. Following that, simulation-specific programming languages (such as SIMAN and 

GPSS) appeared and aided simulation development and are still popular. Nonetheless, these 

languages posed a steep learning curve and necessitated an investment of time and effort to 

effectively master them. Therefore, numerous high-level simulation products were developed that 

operate with built-in graphical user interfaces. 

 A simulation model is an imitation or a copy of the real system used to study and better 

understand the real system. Simulation systems are categorized into several types, among which 

are discrete and continuous systems. A discrete system is one in which the contents of the system 

change instantaneously at different and separated points in time. A continuous system is one in 

which the system’s contents change continuously with respect to time [18]. In this work, the focus 

will be mainly on discrete systems. 

 Discrete-event simulation is concerned with creating a copy of a real system in which the 

contents or the particles in that system act independently and in separate sets of points in time. 

Each of these points is called an event; an event is that point in time where the state of the system 

will change. An example of an event is the arrival of a particle to be processed that changes the 

state of the system from idle to busy. The particles or the contents that make up the system are 

called entities in the simulation language [18].  

 To this end, the discrete-event simulation software Arena 15 is used in this dissertation to 

model a mega size container terminal. Arena combines a user-friendly interface found in the high-
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level simulators with the flexibility of the simulation specific programing, and it can also be used 

with general-purpose languages like Microsoft Visual Basic and C [19]. The core of Arena is the 

SIMAN simulation language. Arena is also compatible with Microsoft components and allows the 

user to import drawings, images, and 3D models.  

 Arena software also includes multiple helpful tools such as the Input Analyzer, the Output 

Analyzer, and the Process Analyzer. The Input Analyzer assists in fitting appropriate statistical 

distributions and defines the parameters of an existing dataset. The Output Analyzer compares 

multiple systems, determines confidence interval and warm up periods to reduce initial biases, and 

performs correlation analysis.  The Process Analyzer aids with what-if scenario management and 

results analysis [20]. Arena provides simulation modeling animation on its workspace including 

simple graphics like the entity flow, queue lines, and resource status.  

 

2.5 Simulation-Based Optimization 

When simulating a complex system, a primary goal is to evaluate the effects of different 

values of input variables on the system. Yet, when attempting to conclusively find the optimal 

values for input variables in terms of the system outputs, all possible input variables will need to 

be evaluated, which requires numerous simulation runs and long computation times. This can 

quickly become impractical, particularly for complex systems. Therefore, it is increasingly 

beneficial to find the best values for input variables among all possibilities without explicitly 

evaluating each one. This process is called simulation optimization, which is the integration of 

optimization techniques into simulation analysis. 
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2.6 Evolutionary-Based Optimization 

The discipline of evolutionary computation dates to the 1960s since the availability of 

digital computing technology. This made it easier to utilize computer simulations for analyzing 

complex systems that were difficult to evaluate mathematically. Three groups in particular were 

the pioneers of defining this field [21], Rechenberg and Schwefel at the Technical University of 

Berlin proposed using evolutionary processes to solve difficult optimization problems [22], Fogel 

projected utilizing artificial intelligence to solve problems by using evolutionary techniques at 

UCLA [23], while Holland at the university of Michigan anticipated using evolutionary adaptive 

processes as the solution to uncertain and altering environments [24, 25].  

Evolutionary computation is a set of algorithms inspired by biological evolution to find 

optimal global solutions to complex and difficult problems. Evolutionary-based optimization starts 

with an initial set of candidate solutions that is then iteratively updated with every new generation 

by stochastically removing less fit solutions. This process results in a new generation with a 

population better in fitness. 

 

2.7 Case Study: Hamad Port in Qatar  

A case study is constructed where the work of this research is employed and implemented 

in a real-life example. The simulation-optimization model constructed was put into effect and the 

relevant results of the simulation-optimization were collected.  

This case study is concerned specifically with the new Hamad port in Doha Qatar, which 

is in Western Asia on the coast of the Arabian Gulf and has been under construction since 2010 

and recently started its operations at Terminal 1 in September 2017. Two more terminals are 

expected to launch in the succeeding years. 
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The Hamad Port is located at 25 kilometers south of Doha, the capital city of Qatar. This 

state-of-the-art mega project is anticipated to include, when at full capacity, three container 

terminals with a capacity of 6 million TEUs, general cargo terminal, multi-use terminal, off shore 

supply base, coastguard facility, port marine unit, port administration area, centralized custom 

inspection area, railway terminals, Qatari Emiri Naval forces base, Qatar Economic Zone 3 canal. 

This port will have worldwide connectivity and will be one of the world’s deepest seaports in a 

strategic location where it will connect the internal Qatar railways and the Gulf Co-operation 

Council railways with state-of-the-art technology. The length of the Basin of the new port will be 

3.8 kilometers and 700 meters wide, with an access channel of 10 kilometers long, 300 meters 

wide and 15 meters deep and a quay wall of 10 kilometers. Vessels arriving at Hamad port will 

enter through the access channel, constructed to accommodate the largest container vessels, bulk 

carriers and naval vessels. The width of the channel has been designed to facilitate two-way 

crossings. 
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CHAPTER 3 

RELATED WORK 

This chapter will discuss the related work of the topic of this dissertation, focusing mainly 

on recent publications in this area. Simulation and optimization methods are widely employed in 

the literature to address challenges posed in container terminals. Some studies use optimization or 

simulation methods only (Fig. 4), whereas others use an integration of simulation and optimization 

(Fig. 5) to achieve the goals of the study.  

This chapter is divided into three sections corresponding to the methods used for solving 

container terminal problems; these sections are operations research, simulation methods, and 

simulation optimization. 

 

3.1 Operations Research Methods for Maritime Operations 

Articles considered using operations research methods to solve common container terminal 

problems will be reviewed in this section. These papers are classified according to the problems 

that were addressed in the container terminal. 

 

3.1.1 Berth and Quay Crane Allocation and Scheduling 

In 2009, Moghaddam et al. [26] created a mixed integer programming model for the Quay 

Crane scheduling and assignment problem by using genetic algorithms for real-world situations. 

They extended the mathematical model of Kim et al. [27] for the quay crane scheduling problem, 

and they applied their extended model in a container terminal located south of Iran.   
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Fig. 4. Studies that used optimization methods vs. studies that used simulation methods for 

addressing container terminal problems. 
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 In their model they represented each job in the schedule as a gene in the chromosome; by 

the number of vessels and the number of jobs on that vessel, they used two crossover operators for 

two parts of the chromosome representation separately, one for the quay crane assignment to 

vessels and the other for the sequence of jobs on each vessel. They used arithmetic crossover for 

the first chromosome, to explore solution space and maintain feasibility, they also used extended 

patching crossover (uniform order-based crossover) for the second chromosome. Then they 

verified the performance of their proposed genetic algorithm by 30 numerical examples in different 

sizes. The small sized examples were solved by the branch and bound method by using the Lingo 

software. Then the same examples were solved using the proposed genetic algorithm and both 

results were compared. 

 They have concluded that their results have shown a reasonable gap of 1.9% and 3.5% 

between the optimal solutions obtained by the software Lingo and their proposed genetic 

algorithm, and that their algorithm is able to reach near-optimal solution in a reasonable time. 

In 2011, Zhen et al. [28] focused on the berth and yard template planning, where they 

created a mixed integer nonlinear programming model to integrate the berth template and the yard 

template solution model. They created a local refinement stage that would refine the berth and yard 

related decision variables by an iterative process, where they were able to correct any problems 

with the yard template to optimize the berth template, and then the other way around. This process 

continues until no more improvements are achieved. 

 The aim of their research was to reduce the cost that usually applies when the vessel berth 

allocation schedule must be altered or changed to accommodate the actual vessel arrival time. They 

also created a heuristics algorithm to solve this problem on a large scale in a realistic environment.  
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In 2011, Zhen et al. [29] created a decision model to solve the berth allocation problem 

under uncertainty by using meta-heuristic for solving this problem in a larger scale. Their objective 

function considered two uncertainty factors; the first factor is the variation of the vessel’s actual 

and scheduled arrival time, and the second factor is the difference between the scheduled and the 

actual operation’s time of the vessel.  

 They created an objective function for minimizing the cost of creating the tactical plan for 

berth allocation while minimizing the cost of this plan’s deviation, which is called “recovery cost”. 

They used CPLEX to solve their model, but they had to reduce some of their decision variables to 

save some time since this is a large-scale problem. Then, for the improvement of objective function 

solution, they used simulated annealing. They conducted computational experiments to compare 

the meta-heuristic and the CPLEX approaches, in addition to studying the performance analysis 

on the proposed meta-heuristics and the numerical investigation on the proposed berth allocation 

problem model and validating the effectiveness of their proposed method. 

In 2014, Trunfio [30] critiqued the work of Wang et al. [31] regarding the quay crane 

scheduling problem. Trunfio noted some mistakes in their work and proposed several adjustments 

to correctly implement the algorithm that Wang et al. had proposed. Wang et al. utilized the idea 

of Generalized External Optimization to solve the quay crane scheduling problem with respect to 

different interference constraints, by proposing a Modified Generalized External Optimization. In 

addition, they claimed that their proposed algorithm can find a best solution for seven out of ninety 

occurrences. 

Trunfio was able to detect the errors of the latter by analyzing the Gantt charts of their 

solutions provided by their modified optimization.  The author also concluded that the modified 

optimization cannot surpass other optimization methods known in the literature, because using a 
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randomized algorithm gives no guarantee of finding the optimum without proof of convergence. 

Finally, Trunfio suggested that an alternative heuristics approach that is more suitable for this kind 

of problem is an algorithm that alternates between global and local searches to balance the energy 

of considering the neighborhoods of viable solutions and staying within the feasible solution area.  

In 2014 Simrin et al. [32] developed a heuristic model based on a genetic algorithm to solve 

the dynamic berth allocation problem, which is a Nondeterministic Polynomial Time type of 

problem. They proposed a new model for the problem, which considers the realistic dynamic 

arrival of vessels. They tested their algorithm by applying different values for the different 

parameters. They were able to test three different fitness functions, three types of crossover 

functions, different mutation rates and different population sizes and iterations.  Their genetic 

algorithms provided very good results, reaching 0% in most -best- cases, while in the average case 

the gap was 1%. Their algorithm reached the optimal solution in less than a minute. 

In 2014, Diabat et al. [32] developed a genetic algorithm formulation for integrating both 

the quay crane assignment and scheduling in order to solve this common problem in container 

terminals. Their objective was to minimize the makespan for all vessels and to consider a multi-

vessel case, and an all-positioning condition for quay cranes. The objective function of their 

optimization model aims to minimize the handling makespan of the vessel that requires the greatest 

time while they created multiple constraints regarding the crane assignments to ensure 

optimization. Their problem had three different instances: small, medium and large. They were 

able to create problem specific chromosome representation and genetic operators to run an efficient 

algorithm where the genes represented the bays and they perform cross overs and swap mutation, 

while staying feasible when considering the constraints 
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 They concluded that using the genetic algorithm to solve these integrated problems yields 

better results than attempting to solve each problem individually. Additionally, the formulation 

they have created remains simpler than the scheduling problem alone, instead of being complex 

because of the integration. Thus, genetic algorithms proved to be a successful approach for solving 

the quay crane assignment and scheduling problem, where their results returned near optimal 

solutions for small and medium-sized problems and performed extremely efficiently in terms of 

times for other sized problems. 

In 2010 Bierwirth and Meisel [17] provided a summary of the research work conducted up 

to date related to the berth allocation and the quay crane scheduling and assignment problems in a 

container terminal. They described the operational planning problems against the limitations of 

different terminal properties and objectives. They categorized the berth allocation problem into 

three sections: discrete, continuous and hybrid; and surveyed the literature review accordingly. 

 Under the discrete type of BAP and QCAP, Hansen et al. [33] proposed compact Mixed 

Integer programming for the static problem of assigning and sequencing of vessels to berths while 

minimizing the vessel handling and waiting time. Imai et al. [34] minimized the waiting and 

handling time for the vessels and the deviation between the arrival order of vessels and the service 

order and used the Hungarian method to solve this problem. In 2008 the same authors [35] used 

genetic algorithms to minimize the weighted number of rejected vessels when the terminal could 

not serve these vessels. Hansen et al. [36] considered the discrete dynamic problem and considered 

minimizing the total cost of vessel waiting and handling keeping in consideration the earliness and 

tardiness for the vessels. Cordeau et al. [37] presented a tabu search method and formulated a 

discrete dynamic BAP with due dates. Mauri et al. [38] designed a column generation approach 

that provided better solutions in less time than the Tabu search proposed by Cordeau et al. [37]. 
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Han et al. [39] and Zhou et al. [40] proposed a genetic algorithm to solve the problem of vessels 

restricting the berth assignment decisions; however, Zhou et al. [40] considered stochastic 

handling and arrival times for vessels in their model and a waiting time restriction that was 

considered as a due date. Lee et al. [41] formulated a bi-level programming model based on genetic 

algorithms to solve the problem of berth allocation and quay crane scheduling. Imai et al. [42] used 

genetic algorithms to develop a heuristic to find the efficient berth and crane allocation. Liang et 

al. [43] used genetic algorithms as well to find a solution for determining the berthing position and 

time of each vessel and the number of quay cranes to assign to each vessel. Giallombardo et al. 

[44] maximized crane utilization to be able to minimize the berthing position dependent on 

container flow between pairs of vessels.  

 Under the continuous type of BAP and QCAP, Li et al. [45] and Guan et al. [46] introduced 

the BAP in a continuous static method with fixed vessel handling times, where Li et al. formulated 

the problem as “multiple-job-on-one-processor” scheduling problem. The continuous dynamic 

BAP with fixed handling times, on the other hand, has been studied by multiple researchers, 

including Guan et al. [47], Moon et al. [48], Park et al. [49], Kim et al. [50] and Wang et al. [51] 

who proposed a new multiple stage search method (stochastic beam search algorithm) to solve this 

problem. Imai et al. [52] presented a heuristic for this problem and Chang et al. [53] extended their 

heuristic model by combining berth allocation and yard planning. Meisel et al. [54] proposed an 

improvement for crane utilization, then in [55] they presented a construction heuristic and two 

meta-heuristics procedures to solve the combined problem of BAP and CAP.  Liu et al. [56] used 

Mixed Integer programming to formulate this problem as a large size problem, then proposed a 

heuristic decomposition approach to break the problem into smaller linked models. Zhu et al. [57] 

formulated this problem as an integer programming, then designed a branch and bound algorithm 
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to obtain optimal solutions, then simulated annealing was designed for large size instances. 

Hendriks et al. [58] proposed a mixed integer linear programming that minimizes the maximal 

crane capacity reservation. Legato et al. [59] suggested a two-way approach to solve this problem, 

the first phase using an Integer Programming model while the second phase using heuristics. 

Meisel et al. [60] used cut-and-run method to make sure that vessels meet their liner schedule, 

which is usually applied in packed terminals. 

 Under the hybrid type of BAP and QCAP with fixed handling times, Moorthy et al. [61] 

modeled this problem as a rectangle packing problem on a cylinder and they used a sequence pair 

based simulated annealing algorithm to solve it. They used the dynamic berth allocation package 

developed by Dai et al. [62] to evaluate the quality of their model. Imai et al [63] used genetic 

algorithms to solve this problem where both mega-container vessels and feeder vessels are served 

in a terminal. Lokuge et al. [64] proposed a hybrid Beliefs, Desires and Intention (BDI) framework 

with an intelligent module to solve this problem.  

 Under the QCSP, Lim at al. [65] presented approximation algorithms for the QCSP for the 

unidirectional type, then reformulated their problem later as a constraint programming model [66]. 

Then [67] they incorporated a non-crossing spatial constraint and studied a m-parallel machine 

scheduling that was inspired by crane scheduling in ports. Lee et al used genetic and greedy 

algorithms to solve this problem [68, 69], then they improved and updated their approach in a later 

publication [70]. Daganzo [71], Peterkofsky et al. [72] and Liu et al. [56] concluded that the sharing 

of bays among cranes can improve the makespan of a Quay Crane Scheduling Problem. Moccia et 

al. [73] formulated the QCSP as a vehicle routing problem with side constraints and solved the 

small instances by CPLEX while they developed a branch and cut algorithm for the larger 

instances. Sammarra et al. [74] proposed a tabu search heuristic for this problem. Ng et al. [75] 
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proposed a heuristic that decomposes this problem into a sub problem by sorting the vessel into a 

set of non-overlapping zones. Jung et al. [76] proposed a greedy randomized adaptive search 

procedure, which is a heuristic search algorithm, to solve this problem. Goodchild et al. [77] 

proposed that double cycling can reduce vessel turn-around time by using a greedy strategy. 

In 2004 Steenken, Voß and Stahlbock, [78] presented a review paper that explored the 

major methods considered within the last four years for solving logistics and operational problems 

in container terminals. With regard to the BAPs, QCSPs and QCAPs, Bruzzone et al. [79] created 

an integrated simulation optimization model based on genetic algorithms for planning, scheduling 

and finding the optimal allocation for resources in container terminal. Legato et al. [80] adopted 

an approach to simulate the logistic activities of the arrival and departure of vessels in a container 

terminal. Lim [81] tackled the berth planning problem and showed that it is NP- Complete and 

used heuristics to propose a solution. Nishimura et al. [82] developed a heuristic procedure based 

on a genetic algorithm for the dynamic BAP with simultaneous service in a higher effectiveness 

container terminal in Japan. Similar to [82] Imai et al. [82] concentrated their research on 

developing a heuristics procedure based on the Lagrangian relaxation of the original dynamic berth 

allocation problem. Later on the same authors considered the nonlinear problem for the same issue 

[83], based on their paper published [34]. Kim et al. [50] formulated a mixed integer programming 

model for the berth-scheduling problem by using simulated annealing. Earlier the same authors 

used a heuristic procedure for finding a near optimal solution for the berth planning problem [48]. 

Guan et al. [47] developed a tree search procedure combined with pair-wise exchange heuristic for 

solving the vessel to berth allocating problem, they also developed a heuristic for the same problem 

using worst-case analysis in an earlier paper [46]. Park et al. [84] formulated an integer 

programming model by considering various practical constraints to find a method for the berth and 
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quay crane scheduling, the same authors also used sub-gradient optimization technique to solve 

the same problem in an earlier paper [49]. Gamberdella et al. [85] solved the resource allocation 

problem and the scheduling of loading and unloading problem hierarchically and verified their 

solution by using discrete event simulation. Bish [86] developed a heuristic algorithm based on 

transshipment problem to solve the container allocation problem, the vehicles to containers 

assignment problem and the crane assignment problem. 

  

3.1.2 Storage Yard and Containers handling 

In 2007, Lee et al. [87] were the first to address the yard allocation problem with 

consignment strategy and vicinity matrix. They formulated a mixed integer programming model 

and heuristic algorithm in order to create a solution for the yard storage allocation problem. They 

created a high workload rule and a vicinity matrix on the unloading/loading process, and they 

formulated the storage allocation problem as a mixed integer linear programming model. They 

were able to test their model using two set of input data for a simplified small-scale problem and 

a larger scale problem.  

 Their results for the small-scale problem show that the optimal solution can be obtained 

for low utilization, but it will take longer time for moderate utilization, and finally for high 

utilization the problem is infeasible. They were not able to solve the large-scale problem optimally 

in a reasonable time due to insufficient memory. They concluded that their proposed mixed integer 

programming is too complex to solve at a large-scale problem optimally, and therefore heuristic 

algorithms should be considered. They proposed two heuristic algorithms for finding a feasible 

solution: the sequential and the column generation methods. They concluded that the second 

method gives a better solution when compared to the first one, but only for those problems wherein 
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the first method can get a feasible solution, which means that the column generation method does 

not improve the solution quality effectively. 

In 2008, Chew et al. [88] studied managing the storage yard template problem in a 

transshipment type of terminal, which is an intermediate destination, where most containers 

unloaded from one vessel will eventually be loaded onto another vessel in the same port. This 

study is an extension of Lee at al. 2007 [87]. The focus of this paper is the movement of export 

containers only. The first objective behind this study was to determine the yard template and then 

to find the smallest number of yard cranes to assign in order to reduce the operational cost. They 

proposed using a tabu search heuristic algorithm for obtaining an initial yard template, then they 

would improve their template through an improvement algorithm based on the information they 

obtained from the solution of the yard allocation problem which they have solved by the sequential 

method, this cycle will keep on repeating itself until an optimal or satisfactory solution is reached. 

Their goal was to determine the assignment of specific sub-blocks for each vessel where this 

assignment should be fixed at all times, and to determine the smallest number of cranes each sub-

block needs, and the capacities of these sub-blocks. Finally, they validated their model by creating 

extreme cases to test their proposed method. 

From the 2004 review paper by Steenken, Voß and Stahlbock, [78] under the container 

stowage planning problem, Sculli et al. [89] were one of the first few to create a simulation model 

to study the stacking and handling of identical size containers. Wilson et al. [12] developed a 

methodology for generating an automatic computerized solution for this problem using heuristic 

rules. In an earlier paper they applied principles of combinational optimization and tabu search to 

solve the same problem [90]. Debrovsky et al. [91] developed a genetic algorithm model for 

solving this problem, after testing a few other heuristics, including the suspensory heuristic 
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procedure, integer programming-based algorithm, simulated annealing and a branch and bound. 

They proposed that the GA model provided the most feasible and optimal results. Steenken et al. 

[92] proposed just-in-time scheduling formulation for the combined stowage and transport 

planning plus a consequent mixed integer model, exact and heuristics methods to solve this 

problem. Kang et al. [93] developed a greedy heuristic based on the transportation simplex method 

to solve the container assignment problem, and a tree search method to determine a loading pattern 

for the container assignment. 

 Under the storage and stacking logistics problems, Cao et al. [94] developed an algorithm 

based on tabu search to solve the transportation problems with nonlinear side constraints. Kim et 

al. [95] used dynamic programming to formulate the bay matching and the task sequencing 

problems, to convert the existing layout into a better layout by the minimum number of containers 

moved and shortest distance. Kim et al. [96] suggested a methodology based on the Lagrangian 

relaxation technique to find the optimal solution for the problem of minimizing the expected total 

number of container re-handles under certain conditions. Kim et al. [97] developed an analytic 

model to estimate cost components and to determine the number of storage spaces and transfer 

cranes required in an import container yard, this paper was an update to their previous publication 

to solve the same problem [98]. Kim et al. [99] formulated a dynamic programming model to 

determine the storage location of an arriving export container considering the weight constraint 

and develop a decision tree from the optimal solution to support real time decisions. Preston et al. 

[100] used genetic algorithms to minimize the turnaround time for container vessel and to 

determine the optimal storage strategy for different container handling schedules. Kim et al. [101] 

formulated a mixed-integer linear program and suggested two heuristic algorithms to allocate 

storage space for outbound container arriving at a storage yard, based on duration of stay and sub-
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gradient optimization technique. Zhang et al. [102] used rolling-horizon approach to minimize the 

total distance to transport the containers between vessel berthing locations and storage yards, and 

to solve the storage space allocation problem. Kim et al. [103] formulated a routing problem as 

mixed integer program to minimize the total container handling time of a transfer crane including 

setup and traveling time. 

 Within the topic of distributing empty containers to ports, Crainic et al. [104] proposed a 

model and mathematical formulation for empty containers allocation and handling that addresses 

the uncertainty of supply and demand, the space and time dependency of events and equilibration 

flows. Shen et al. [105] presented a decision support system that uses network optimization, to 

solve the distribution of empty containers planning problem for a shipping company. Cheung et 

al. [106] developed a dynamic network model to solve the dynamic empty container allocation 

problem, by formulating a two-stage stochastic network, deterministic and random. Cao et al. [107] 

designed a heuristics branch and bound algorithm to search for a better solution for the capacitated 

multi-commodity p-median transportation problem, by applying a Lagrangian relaxation to the 

problem. 

The literature review conducted by Steenken, Voß and Stahlbock [78] did not cover the 

Loading Containers Problem. However, among the groups that have looked into this problem are: 

Chen et al. [108], who created an analytical model where they formulated a zero-one mixed integer 

programming model to consider the problem on loading containers; Davies et al. [109], who 

proposed a new container loading heuristic that is capable of producing better lading arrangement 

when evaluated against other approaches and overcoming the limitations of other approaches; 

Scheithauer [110], who developed new bounds with new relaxation-layer for the container loading 

problem and the multi container loading problem that is based on the linear programming 
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relaxation; Eley [111], who presented a greedy algorithm approach with additional real world 

constraints for solving multiple container problem and the single container loading problem. 

 

3.1.3 Shipping Routing, Scheduling and Liner Shipping Networks  

In 2012 Wang et al. [112] proposed a way to optimize the sailing speed relation for 

container vessels and also investigated the optimal sailing speed of a container vessel and the 

optimal number of vessels to deploy on each ship route in a liner shipping network while 

considering container routing and transshipments. They formulated this problem as a mixed-

integer nonlinear programming model and applied the model algorithms to a real case study for a 

global liner shipping company. 

Qi et al. in 2012 [113] were one of the first to consider the stochastic nature of the port 

operational times when solving the problem of designing an optimal vessel schedule for a given 

shipping route to minimize the total expected fuel consumption and emissions. They used 

simulation based stochastic approximation methods to formulate the general optimization 

scheduling problem. They were able to validate their model based on a linear case study with 

multiple analysis and scenarios, and they have concluded that their proposed model will provide a 

significant fuel savings. 

Plum et al. in 2014 [114] presented a novel compact model of the Liner Shipping Network 

Design Problem (LSNDP) that deals with handling multiple calls to the same port. Their goal was 

to create a shipping liner network that allow for container transport services and be able to 

maximize the profit of operating such network. They implemented their model as a Mixed Integer 

Programming and they solved it using a commercial solver. They were able to compare the results 

from this model, with the Benchmark Instance Algorithm of the study of Brouer et al. [115] in 



   

 

36 

2013. They have concluded that because of the many variables and constraints in their model, they 

were not able to achieve an optimal solution, and that they will address this issue in their future 

work.  

Brouer et al. [116] in 2014 presented a metaheuristic for the Liner Shipping Network 

Design Problem where Metaheuristics are defined as methods exploiting the synergies of 

mathematical programming and metaheuristics. Their goal was to maximize cargo transport 

revenue while minimizing the network operations cost. The metaheuristic consisted of four main 

algorithms: construction, improvements reinsertion and perturbation heuristic. They were able to 

apply their mat heuristic as a decision support tool in a case study and concluded that it shows 

great improvements for a real-life network.  

In 2014 Wang et al. [117] were one of the first to develop a mathematical model to 

simultaneously optimize ship route scheduling and cargo allocation scheme by taking into 

consideration the waiting time and the demurrage cost for the carrier with the objective of 

maximizing the total net profit for the container carrier. To guarantee a global optimal solution, 

they used an equivalent mixed-integer linear program to reformulate the schedule coordination and 

cargo allocation model. They were able to validate their model and test the effectiveness of the 

algorithms proposed by applying it to a case study and concluding the successfulness of their 

proposed model. 

Agra et al. in 2015 [118] proposed a solution for the maritime inventory routing problem 

where sailing and waiting times are stochastic. They created a two-stage stochastic programming 

model with recourse (a feasible solution for the second stage can always be found as long as there 

is a feasible solution for the first stage), where the first stage contains the decisions of routing, 

loading and unloading and the second stage contains the decisions of scheduling and inventory. 
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Their solution combines the use of sample average approximation method with a decomposition 

procedure similar to an L-shaped algorithm, to check optimality for the complete model through 

an efficient separation method. They implemented their model based on real data from oil 

distribution at the Cape Verde islands, where they created ten instances. Based on their results they 

have concluded that the decomposition methods and stochastic programming is very effective for 

solving such problems and that the larger the demand and time horizon is the harder it becomes to 

solve the problem.  

In 2015 Wang et al. [119] Evaluated the profitability of a shipping network and suggested 

improvements for the shipping services. They considered the problem of Profit-based maritime 

Container Assignment models (P-CA), where the container shipment demand is dependent on the 

freight-rate. They proposed two versions of the (P-CA) models, one at a tactical level and other at 

an operational level. They developed a nonlinear optimization model for the tactical-level (P-CA) 

with freight-rate dependent on container shipment demand. Then they designed a convergent trial-

and-error approach to obtain the optimal freight-rate for an operational level (P-CA) with unknown 

but fixed demand functions. Finally, they proposed a practical trial-and-error method and were 

able to integrate the mathematical optimization and expert judgment for the operational level (P-

CA) to maximize profit. 

 In another publication yet in a related topic Wang et al. in 2015 [120] developed a mixed 

integer programming model with a polynomial  number of variables to propose an optimal 

alteration for the container liner shipping network problem, which is also called segment-based (a 

sequence of legs from a head port to a tail port that are visited by the same type of vessel more 

than once within the same shipping network ). They were able to apply their proposed model to 

Asia-Europe-Oceania liner shipping network with a total of 46 ports and 11 shipping routes and 
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36 segments. Their results showed that their model gave improved results and that the optimized 

network has 8 ship routes, and the total cost of the initial network was reduced by 20%. 

 

3.1.4 Port Resources and Transportation 

From the review paper by Steenken, Voß and Stahlbock, [78] under the container terminal 

systems topic, Kozan [121] designed a network model to be used as a decision support system to 

analyze container transfer at a multimodal terminal. Meersmans et al. [122] discussed two 

operation research methods and classified some optimization scientific approaches for the 

container terminal problems. Murty et al. [123] designed a Decision Support System (DSS) to 

assist in decision making and solving the major bottle necks in container terminals. Kjetil [124] 

used CPLEX to assist in optimal routing decision, scheduling policy for vessels on operational 

levels, and determined a proper fleet size for strategic planning level, by evaluating the vessel 

scheduling problem. Dell'Olmo et al. [125] considered a container terminal as a service production 

system and presented it as a compels substructures of platforms to find resources allocation to 

minimize delay. Nam et al. [126] evaluated the difference between the conventional and the 

unmanned (automated) handling systems in container terminals. Liu et al. [127] designed analyzed 

and evaluated four different automated container terminal concepts, then each performance was 

evaluated by using microscopic simulation. Daganzo et al. [71] studied the crane scheduling 

problem by examining the static and dynamic crane work schedules, where he used integer 

programming to formulate the problem. Gambardella et al. [128] used simulation and optimization 

methods like genetic algorithms, mixed integer programming and job-shop scheduling to solve 

multiple container terminal scheduling, performance and allocation problems. Kozan et al. [129] 

used simulation and genetic algorithms to analyze the major factors that influence container 



   

 

39 

transfer efficiency in a container terminal. Peterkofsky et al. [72] used branch and bound methods 

to minimize delay cost and to solve the crane scheduling problem. Alicke [130] created a model 

based on Constraint Satisfaction Problem to model an intermodal terminal Mega Hub that was 

then transformed into a Constraint Optimization Problem, to configure long and short-term 

operations in a terminal. 

 Under the transport optimization topic, specifically automated guided vehicles (AGV), 

Evers et al. [131] used a new modeling technique to control the traffic of AGV by using a 

hierarchical system of so called semaphores. Bruno et al. [132] proposed two fast and effective 

heuristics that dynamically determine the home positions for AGV. Gademann et al. [133] 

addressed the problem of determining the home positions for the AGV that are in a loop layout. 

Wallace [134] presented an agent-based controller that is able to control the flow of other vehicles 

to reduce inefficient complex designs. Van der Heijden et al. [135] developed several rules and 

algorithms for empty vehicles management to reduce cargo waiting time, then they used simulation 

to evaluate the planning options on their performance. Leong [136] compared and analyzed the 

current performance of AGV in a container terminal with a new proposed efficient deployment 

algorithm scheme, by using discrete event simulation software AutoMode. Moorthy et al. [137] 

discussed the development of an efficient strategy of predicting and avoiding the deadlocks in a 

large scale AGVs in a terminal in Singapore. The implemented their solution using Automated 

simulation software. Grunow et al. [138] developed a flexible priority rule-based approach, by an 

alternative Mixed Integer Programming formulation. Hartmann [139] introduced a general model 

for scheduling container terminal resources by discussing priority rule-based heuristics and genetic 

algorithms in the port of Hamburg Germany. Lim et al. [140] used simulation to compare a 

dispatching method they proposed with other dispatching rules. The method they suggested by 
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using auction algorithm to dispatch AGV. Kim et al. [141] developed a beam search algorithm to 

route straddle carriers during the loading operation of export containers in a container terminal. 

They also formulated the routing problem as an integer programming in another publication [142] 

to minimize the total travel time for the straddle carrier. Bose et al. [143] studied the potential of 

evolutionary algorithms in improving the different dispatching strategies for straddle carriers to 

gantry cranes in order to reduce the time a vessel spends in the terminal. Li et al. [144] have 

developed an optimal and heuristic algorithm for the single quay crane dispatching problem and 

to optimize the loading and unloading of containers in a container terminal. Meersmans et al. [145] 

presented a branch and bound algorithm that uses various combinational lower bounds to solve the 

integrated scheduling of different types of handling equipment at an automated container terminal. 

Bish et al. [146] studied the container to yard position locating problem and developed a heuristic 

algorithm based on formulating the problem as an assignment problem. Lau et al. [147] formulated 

a mixed integer programming model that considers different limitations of operations of different 

handling equipment, to improve the productivity of an automated container terminal. Rebollo et 

al. [148] presented a multi agent system architecture for the automatic allocation problem in a port 

container terminal. Kim et al. [149] proposed using a beam search algorithm to solve the load-

sequencing problem for export containers in port container terminals. 

 Within the landside transport resources topic, Kim et al. [150] suggested a dynamic 

programming model to solve the static sequencing problem in which all the arrival trucks are 

known in advance. They have also proposed a learning-based method and other heuristics and a 

simulation study to compare the impact of the different approaches. Koo et al. [151] proposed a 

new fleet management procedure based on a heuristic tabu search algorithm in a container 

transportation system. 
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 Under the crane transport optimization topic, Kim et al. [142] formulated an integer 

programming and developed an optimization algorithm to minimize the total container handling 

time of the transfer crane. Cheung et al. [152] developed a new solution method called “the 

successive piecewise-linear approximation method” to solve the crane scheduling problem, by 

formulating a mixed integer linear program. Narasimhan et al. [153] developed a branch and bound 

based enumerated method to obtain an exact solution to the loading time minimization problem. 

Zhang et al. [154] formulated a mixed integer programming model and solved it using the 

Lagrangian relaxation model to solve the crane deployment problem. Linn et al. [155] presented a 

mixed integer program and a mathematical model for the optimal yard crane deployment. 

 

3.1.5 Security Measures 

In 2013, Yeo et al. [156] analyzed the relationship between seaport security levels and 

container volumes by building a system dynamics model.  The use of system dynamics in their 

work demonstrates how this method helps in understanding the behavior of a complex system over 

time. They were able to test their findings by applying it to actual data collected from the seaport 

in Korea, which was used to build three interrelated models including a base model, an optimistic 

scenario model and a pessimistic scenario model. A different security level was applied to each 

model.  

 Yeo et al. concluded that applying high security measures will cause decreasing 

competitiveness resulting in significant loss of market share. On the other hand, applying low 

security measures will increase port attractiveness for stakeholders and increase the number of 

containers processed. However, if a security breach occurs, which is more likely in an optimistic 

scenario, it will have a significantly negative impact on the port and will cost the authorities time, 
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money and multiple delays. Consequently, it was concluded that these results should initiate more 

research interest in this area so that the different impacts can be further analyzed and studied.  

 

3.2 Simulation Methods for Maritime Operations 

In this section research applying simulation methods that address issues in berth area, 

storage yard, port operations and security measures will be discussed. 

 

3.2.1 Berth and quay crane allocation and scheduling 

In 2015, Ji et al. [157] considered a continuous and dynamic berth, where they integrated 

the berth allocation and the crane assignment problem. They created a continuous model using 

Monte Carlo simulation with different performance indicators. Their research is one of the few 

that considered the continuous nature of the berth system, with multiple different vessel sizes and 

random arrivals. They applied sensitivity analysis and double factors variance analysis to evaluate 

the operational efficiency of their model. Their results demonstrate the relationship between the 

crane assignment and the performance strategies considered at the terminal, and they suggested 

applying their optimal solutions to reduce waiting time and increase the resources utilization. 

 

3.2.2 Storage yard 

In 2009, Petering was the first to introduce the direct connection between the containers’ 

block width and the long run performance at a container terminal [14]. A discrete event simulation 

model written and compiled in Microsoft Visual C++ 6.0 was designed to consider this study, 

where four different cases were studied: a small terminal and a large terminal, and two different 

container size configurations, less and more equipment. Nineteen different layout scenarios were 
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tested for each of the small terminal configurations, whereas fourteen were tested for the other 

configuration. In each of these different scenarios, the total yard storage capacity, the number of 

storage zones, as well as the number of containers in each zone was manipulated in order to 

introduce changes to the system. Ten simulation replications were performed for the small terminal 

configuration and six replications for the large terminal.  

 Petering concluded that the average quay crane work rate is concave with respect to block 

width and that the optimal block width configuration ranges between 6 to 12 rows, depending on 

the size and shape of the terminal. Additionally, wider blocks require less equipment whereas 

blocks with thinner width require more equipment optimally. Finally, he stated that the overall 

performance of the port improves as the shape of the terminal becomes more like a square. 

In 2013, Petering [1] presented a system that determines real time container storage 

locations and investigates the effect on the overall long run of the container terminal. He had two 

objectives: to assess the importance of minimizing the container travel distance from quay to 

storage during unloading and from storage to quay during loading; to minimize yard truck 

congestion when containers are stored and when containers are retrieved.  The second objective 

was to find specific real time storage locations that will maximize GCR (Gross Crane Rate). 

 The experiment considered two different terminal settings, a small terminal and a big 

terminal. He considered three main equipment sizes for each setting: scarce, less, and more yard 

trucks and yard cranes per quay crane. With these different settings, he proposed that many 

different and unique scenarios can be created from the setup above. For each scenario mentioned, 

the author set several container stacking restrictions and penalties in order to reach the best 

stacking method to achieve the goals of the study. 
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 Petering concluded that maximum container dispersion and restrictive yard crane 

deployment systems will result in the highest GCR in the six different scenario terminals. He also 

concluded that a stacking strategy that is penalty based will improve GCR depending on the 

terminal by 1% to 7% and that the advantages of a penalty-based stacking strategy will increase as 

the terminal size gets larger or as the terminal equipment gets scarce. However, random storage 

systems are still considered a good system, especially with terminals that have more equipment, 

as the penalty-based experiments results showed an improvement of only 1% to 2%. 

 

3.2.3 Port operations 

In 1988, Chung et al. [11] developed a simulation model to increase the utilization of 

material handling equipment and reduce container loading time at the Port of Portland. Their 

research presents the idea of creating a buffer area located between the container storage area and 

the dock area, where containers can be stored temporarily while waiting to be loaded onto a vessel. 

The objective was to consider the effect of this area on the container terminal’s operations and 

whether or not it will reduce bottlenecks caused by the transtainers (which in this case is an RTG 

or a yard crane). 

 The buffer area in their research can serve two scenarios. The first is one in which a 

transtainer is scheduled to pick up a container from the container stack; however, this container is 

located at the bottom of the stack and is to be loaded onto the vessel first, followed by the 

containers on top of it. In the second scenario, the transtainer is scheduled to leave the current 

section or stack of containers and work on another one; however, the transtainer will have to come 

back to this section later to pick up containers.  
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They were able to perform 96 simulation runs, observing a significant improvement of the flow of 

the port operations when their idea for the first scenario was applied, which resulted in a reduction 

of 4% in the total loading time. However, they concluded that using the buffer area in the second 

scenarios did not reduce the total time; because, while the transtainer will be moving the containers 

to the buffer area, the cranes will be idle because it will be waiting for the scheduled containers to 

arrive from the new sections. 

Lee et al. [158] published their work in 2006 on using analytical calculations for creating 

a design for railways terminal facility, where the process of unloading containers from a train 

occur. This facility is located close to a container terminal. They used simulation for manipulating 

and evaluating the different available designs for such terminal. Their design parameters were the 

number of cranes to deploy and the number of transshipment rail lanes for the crane to be working 

on. They created seven different simulation testing scenarios, with two different operational times 

of rail terminal per day, one with 20 hours arrival window per day and another with 7 hours arrival 

window. Their simulation model allowed them to compare the different scenarios, and study the 

workload and the rail occupancy, and the containers flow, and also nominate the most efficient 

scenario. 

In 2007, Cortes et al. [159] simulated the transportation of different types of cargo like 

containers, cements, steel, iron etc. that depart from and arrive at the Seville inland port in Spain. 

From data collected from the annual reports of the Port Authority of Seville, they were able to 

build a simulation model using Arena software that simulated vessels arrival and departure, dock 

assignment, truck arrival and departure, the different container terminals, cereal and cement 

facilities and some other docks. Two berths are assigned to receive container vessels involving 
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three different terminal companies, each with an average capacity of 700 TEUs. The cranes 

working on these berths have a 30 container per hour performance.  

 The simulation model was run for 90 days providing results from the arrival of 166 vessels 

to the port of Seville, and the total time the vessel spent in the dock and in the system was 

calculated. No details were provided regarding the simulation model as the focus was primarily on 

the different port operations. The results of their work concluded that the port resources can handle 

the current flow of freight and cargo, except for the rare and short-term situation when there are 

some difficulties in the port like down time and weather circumstances.   

In 2010 Wan et al. [160] used the Arena software to build a conceptual and simulation 

model for a container terminal and were able to model all of the resources at this port, like quay 

cranes, container truck and yard crane. They were also able to utilize the Arena built in program 

“OptQuest” in order to find the optimal allocation of the port resources within a given constraints 

in order to minimize operation times and increase utilization. They have concluded that their 

results were realistic and that they were able to achieve practical values; however, since their model 

was created for teaching purposes, it still has some limitations and they intend to avoid these 

restrictions in their future work by building a model with more details and parameters. 

In 2011, Petering [161], was the first to address nine different and independent studies in a 

vessel to vessel transshipment container terminal by creating a fully integrated discrete event 

simulation model that was designed to imitate the real system. He was able to analyze the various 

impacts of these studies on the long run of quay crane and the decisions made by the container 

terminal experts. 

 The first study focused on finding the optimal yard capacity for a terminal while all the 

other aspects remained unchanged. The second and third study investigated finding the ideal 
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number of Yard Cranes and Yard Trucks for a container terminal. The fourth study the impacts of 

substituting the Yard Cranes by Yard trucks. The fifth study the processing speeds of the Yard 

Cranes and Yard Trucks. The sixth study addresses the processing time variability of Yard Trucks 

and Yard Cranes on the Quay Crane Rate. The seventh addresses the minimum required yard crane 

separation distance. The eighth study addressed the substitutability of Yard Trucks traveling to the 

same location. Finally, the ninth study addresses the terminal scalability. The different impacts of 

all these studies on the Quay Crane Rate individually have been collected as an outcome measure. 

In 2010, Yuan et al. [162] created a discrete event simulation model using Arena software 

in addition to optimization methods in order to analyze some issues in a raw material inland 

terminal. The issues they were dealing with are cargo transportation, vessel berthing and handling 

machinery performance. Since this is a special kind of terminal, it also faces some issues regarding 

raw material stock piling and production of material. After analyzing the current state of the port, 

they were able to improve performance in the terminal operations with their simulation and 

optimization measures. 

in 2013, Kulak et al. [15] developed a simulation model using the Arena software in 

conjunction with a Visual Basic application at one of the biggest container terminals in Turkey. 

This study was to reconsider the terminal's operations, identify bottlenecks and optimize 

performance; as comparative empirical studies using Data Envelopment Analysis, classified this 

terminal as one of the most inefficient container terminals. 

 After analyzing the current port configuration, they identified yard cranes as the major 

bottleneck in the system and proposed to solve the problem by also improving resource allocation, 

i.e., storage yard allocation and truck allocation. They suggested increasing the yard cranes 

number, and after doubling the number of yard cranes, the total handling rate of containers 
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increased by 50%. For yard allocation, they assigned the outbound container’s location to be close 

to the berth location where the assigned vessel is scheduled to berth in. A significant improvement 

was noticed in the total container handling rate when applying this strategy.  

For the truck allocation, they noted that currently, the available yard trucks do not work 

under any specific assignment rule, so the trucks might have to travel long and unbalanced 

distances. in their experiment, they applied a dedication strategy in which each berth has a specific 

number of trucks, unless the berth is idle; then a priority rule is used to re-allocate the trucks. Their 

results showed that the total container handling rate can be increased with this allocation for a 

number of 30-yard trucks; however, if the number of yard trucks is 27, both strategies work well; 

but the lower the number of trucks, the lower the total container handling rate will be. Kulak et 

al.’s simulation model helped with analyzing the port operations and forecasting methods to 

resolve bottlenecks and emphasize on future developments and changes to the operation and the 

configuration of the operation system. 

 

3.2.4 Security measures and risk 

Rabadi et al. [163] presented a discrete event simulation model that represents US port 

activities on the east coast, in order to study the impact of risk activities and security breaches on 

the port activities and recoverability (the ability to go back to normal port activities). They were 

able to model the movement of full and empty containers, trucks, trains and vessels, and also 

terminal gates, straddle carriers, cranes and transtainers. Input data were based on a port historical 

data and they were also able to validate their model by comparing their outcomes with these data 

and by consulting subject matter experts. Then they implemented a theoretical risk scenario in 

their model and studied its impact and estimated the recovery time. They concluded that their 
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model can be applied to help with utilizing other port resources and studying the implementation 

of different scenarios.   

In 2009, Caris et al. [164] created a discrete event simulation model in order to analyze and 

improve the complex system of intermodal freight flow and transport at the network of port 

Antwerp in Belgium. Intermodal transport refers to having at least two modes of transportation in 

a single transportation activity, where these modes are being transported by railways, inland or 

waterways. They succeeded in simulating numerous policy measures for the transportation of 

entities, toward facilitating the estimation of consequences and estimation before having to apply 

these policies in real life. 

In 2009, Na et al. [165] developed an integrated simulation model using Monte Carlo 

technique and Arena software to mimics the port operations and activity in order to study the 

impact of earthquakes or any similar disaster on the operations of a container terminal and to 

evaluate the loss and damage caused to the economy of that area. Their main goal was to improve 

the decision-making process for the risk of earthquakes in container terminals and to assess the 

loss of throughput in that terminal upon the damage that has occurred.  

In 2010, Longo [166] presented a simulation model that assists in applying better 

operational policies and practices on the flow of inspected containers in a container terminal. 

Longo created a simulation model, which describes the container terminal operations and contains 

most of the important resources and activities in a terminal, like vessels, forklifts, cranes, tractors, 

and trucks as well as the processes of loading/unloading and transferring containers, etc. The 

container cycle in this study follows any other cycle, when vessel arrives to the seaport; containers 

are moved to the storage area. Also, in this study, Longo applied an inspection area in the 

simulation model, where the model assigns a percentage of the incoming containers for inspection, 
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and this selection is based on container history information, container configuration information 

or any alert information. The simulation model was used to study the impact of the container 

inspection on the overall container terminal operations and productivity.   

Longo concluded that the incorporation of container inspection process with the other 

container terminal operations is simply a matter of optimal trade-off between having more 

advanced technology and equipment that would speed up the inspection process and between 

finding a better organization of the internal container resources that aids with inspection like 

officers and yard trucks. 

From the review paper by Steenken, Voß and Stahlbock, [78] on the topic of simulation 

systems, Nam et al. [126] performed computer simulation analysis representing various operational 

scenarios in a port in Korea to find the optimal port size and configurations of berths and quay 

cranes. Shabayek et al. [167] created a simulation model for the Kwai Chung container in Hong 

Kong, to study the simulation model’s prediction capabilities and how accurate and relative the 

results will be to the real system. Kia et al. [168] created a simulation software for a container 

terminal to study the positive vessel to rail direct loading on the capacity of the terminal using real-

time statistics. Their model also identified bottle necks, and other delay problems which helped 

save time and cost. Hartmann et al. [169] created a container terminal simulation software that is 

capable of generating various scenarios based on an algorithm. Their scenarios can be used to input 

data to the simulation model to solve and optimize the different port problems. Yun and Choi [170, 

171] created an object-oriented model and simulated a general container terminal based on a 

terminal in Korea. Vis et al. [172] studied the effects of using Automated Guided Vehicles and 

Automated Lifting Vehicles on the unloading time of the vessel using simulation studies. Kozan 

et al. [173] developed a batch-arrival multi-server queueing system and compared it with another 
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analytical model and a simulation approach. Henesey et al. [174] and Meersmans et al. [145] were 

some of the first to present a multi-agent system approach with several agents, where quay cranes, 

berths, vessels and gantry cranes are considered agents. 

 

3.3 Simulation Optimization Methods for Maritime Operations 

According to Dragovic et al. [175], there were 21 journal papers that focus on the 

integration of Simulation and Optimization in container terminal operations, between 1998 and 

2015. While the application is similar, these papers considered solving different problems in 

various areas of several types of terminals and systems, in addition to using different types of 

simulation and optimization tools as a solution method. This section will review all these papers 

in addition to other relevant publications. Fig. 5 depicts the most related studies that used an 

integration of simulation and optimization methods for various problems in container terminals. 

 

3.3.1 Berth and quay crane allocation and scheduling 

In 2005, Nishimura et al. [176] developed a new optimized dynamic routing strategy of the 

assignment of yard trailers to quay cranes to reduce the cost of container handling in a container 

terminal. They ran their solution on the C program where they considered a long quay terminal 

with four or six berths and 2 different types of container storage, one with a spread-out design 

while the second is located behind the berth.  
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Fig. 5. Previous work for integrating simulation and optimization for addressing problems in 

maritime operations. 
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 They generated ten different computational samples to include the random nature of 

stacking in a container terminal. After multiple computational experiments, they concluded that 

the dynamic trailers assignment to quay cranes are more improved than the static assignment that 

is usually employed in container terminals. 

In 2012, Xu et al. [177] developed a hybrid heuristic algorithm to deal with the continuous 

berth allocation problem that usually deals with unreliable arrival and handling times for container 

vessels. their main goal was to prevent the adjustments that usually take place in the berth 

scheduling execution. They created a robust berth scheduling algorithm that integrates simulated 

annealing and branch and bound algorithm, and they were also able to test the reliability of their 

proposed algorithm by conducting computational studies where they used simulation to be able to 

validate the robustness of their model formulation.  

Legato et al. [178] in 2014, proposed a simulation-optimization model to integrate the 

tactical-level of the berth allocation problem as a mathematical programming formulation with the 

operational-level model as a discrete-event simulator to solve the berth allocation problem. They 

created a framework by inserting a simulation engine in an optimization algorithm, where they 

created two separate two-level models. They integrated the first model as a mathematical 

programming formulation and the second model as a discrete event simulator. They also used 

simulated annealing for their optimization model. Their objective was to create a special model 

where it is possible to manipulate any tactical solution returned for the berth allocation problem, 

when in some cases things are not going according to plan in the operational level. 
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3.3.2 Storage yard 

Tang et al. in 2014 [179] proposed an improvement to the static reshuffling and the 

dynamic restacking problem in a container terminal. They developed five effective heuristics to 

improve the reshuffling problem, and then they developed a discrete event simulation model with 

animation to mimic the stacking, reshuffling and retrieving operations and to be able to test and 

analyze their proposed algorithms. They have concluded that their improved model can return 

optimal or feasible solutions in less time than the current model used in the terminal, also the 

heuristics they proposed return better results and require less time than the current one for both the 

static and dynamic problems.  

In 2015 Said et al. [102] presented an approach using discrete-event simulation modeling 

to optimize solution for the storage space location problem in a container terminal in Alexandria 

port in Egypt. They built a simulation model using the simulation software Flexsim to simulate the 

container terminal operations and to be able to optimize a solution for the storage space allocation 

problem, taking into consideration all the different container terminal handling activities. Their 

input data was collected from the port of Alexandria for one week of operations, with an arrival of 

12 vessels and more than 9,000different types and sizes of containers. Their results showed the 

effectiveness of their proposed optimization model with a significant decrease in the container 

handling time of 54%.  

In another publication in 2014 Said et al. [180] proposed another optimization model based 

on their container terminal simulation software, where they analyzed vessel handling and berth 

allocation. They were able to reduce the vessel service time by 51% based on their optimization 

approach. 
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3.3.3 Port resources and transportation 

In 2012, Nguyen et al. [181] conducted their research on solving the vehicle dispatching 

problem under uncertainty in container terminals in a dynamic environment, where they created a 

mixed integer programming algorithm that can adopt to the dynamic changes in the container 

terminal. Then they used Plant simulation model to evaluate their proposed heuristic algorithm 

under uncertainty. They compared the performance of their heuristic algorithm under uncertain 

travel times with a greedy algorithm for the deterministic traveling times, and concluded that under 

the uncertainty algorithm, the results performed better in vehicles’ throughput and the total delay 

time of quay cranes.  

In 2013, He et al. [182] proposed an integer programming model based on the rolling 

horizon approach to improve the traffic affectivity of a port. Where they proposed creating an 

approach where internal trucks are shared among multiple container terminals located close to 

each other. Their objective was to minimize the total transferring cost and the over-all flow of 

workloads and operations of all terminals during all times. They used a genetic algorithm to be 

able to search for solutions, whereas the simulation model will execute the rolling horizon 

approach, evaluate and repair solutions. They used random data to validate their proposed 

simulation optimization method, which provided good solutions in a good timeframe. They also 

concluded that the total cost from their proposed method was reduced. 

Tao et al. [183] in 2015 suggested a multi-factor online dispatching strategy by combining 

evolution searching function and discrete event simulation to solve the vehicle dispatching 

problem in a container terminal in mainland China.  They were able to build a realistic simulation 

model based on the layout of the port in Shenzhen, China, where they establish two berths with 

vessels arriving and departing at various times. They have concluded that this simulation study has 
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outperformed the traditional dedication vehicle dispatching method significantly in most of the 

cases they have studied. 

In 2015 Cordeau et al. [184] presented a simulation-based optimization model for solving 

the Housekeeping problem in a transshipment container terminal. They were able to embed a 

simulation model in a local search heuristic to facilitate the routing of straddle carriers and multi 

trailer systems. They presented the term “Housekeeping” which represents the transportation of a 

container from a temporary location to a permanent location, closer to the berth location where it 

will be loaded on a vessel. They have concluded that using a simulation optimization model 

significantly improved results of vehicle routing and waiting times when compared to the standard 

scheduling policies. 

 

3.3.4 Port operations 

Nevins et al. in 1998 [185] utilized object-oriented programming to develop a discrete 

event simulation model that was implemented in PORTSIM evaluating complicated operations 

occurring in seaports. They intended to explore how object-oriented programming concepts such 

as data abstraction; data encapsulation as well as inheritance can be beneficiary in such a context. 

Such features allowed them to construct different types of cargo (different object classes) as well 

as creating shared attributes and functions across the model (by using inheritance and 

encapsulation techniques). The goal from their work was to study the complex operations in 

seaports in the context of military mobility in order to determine the throughput capability of the 

port and to be able to create a prototype of the port for the purpose of measuring the effectiveness 

of any plan changes in the seaport. 
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In 1998 Bruzzone et al. [79] created an integrated simulation optimization model based on 

genetic algorithms for planning, scheduling and finding the optimal allocation for resources in 

container terminal. 

Bielli et al. [186] created a container terminal simulator in 2006 for the improvement of 

management decisions where they evaluated policies that were generated by optimization 

algorithms. They used distributed discrete event simulation in their model by applying 

multithreaded programming in Java. They analyzed the container terminal system based on an 

object-oriented paradigm where they identified different classes and diagrams to describe the 

system; they represented these diagrams using the Unified Modeling Language. 

In 2009 Sacone and Siri [3] considered the operational planning of a container terminal by 

defining an integrated framework in which simulation and optimization interact. the simulation 

represents the dynamic environment of the terminal and the optimization is called (in this case the 

software Lindo) whenever the system faces a critical event condition. Their objective was to find 

the optimal handling rate among the different areas of the terminal to minimize the weighted sum 

of queue lengths. 

 In 2009 Li and Wang [187] used simulation-based optimization based on a genetic 

algorithm to solve the block planning and dynamic container truck configuration problem, by 

introducing the parallel computing technology which is realized by MPI to the solving process. 

 In 2009 Zeng and Yang [188] developed a simulation optimization method based on 

genetic algorithms and neural network for scheduling loading operations. 

 In 2009 Briano et al. [189] proposed modeling port operations through a systems dynamic 

approach integrated with ERP and simulation, where genetic algorithms and risk analysis tools 

help make better decisions.  
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 In 2009 Zeng and Yang [190] proposed a method that integrates Q-learning algorithm and 

simulation techniques to optimize the operation scheduling in container terminals.  

 In 2010 Legato et al. [191] designed and implemented a simulation optimization 

framework based on simulated annealing algorithm, to address the quay crane scheduling problem. 

In 2011 Arango et al. [192] created a discrete event simulation model using the Arena 

software for solving some of the berth allocation problems in the inland port in Seville, Spain. The 

port they studied is considered a multi-purpose terminal that contains different specialties 

terminals for handling and transferring these different cargos.  They used genetic algorithms 

to solve the berth allocation problem based on first come first serve strategy, by aiming to reduce 

the service time for vessels. Their results confirm that simulation by optimization is indeed an 

appropriate solution strategy and it did improve performance in the port of Seville.   

In 2011 Yu et al. [193] presented a simulation-based optimization model for job sequencing 

scheduling-optimization of a container terminal. They developed a mathematical model based on 

Hybrid Flow Shop Scheduling Problem, to optimize the operations of quay cranes, yard cranes 

and yard trailers. They also developed a simulation optimization model based on genetic 

algorithms to find a solution for this problem. They have concluded that their proposed method is 

successful in managing job sequence optimization. 

In 2012 Bruzzone et al. [2] developed a simulation model to evaluate the fitness function 

of genetic algorithms to carry out a range allocation optimization on berth assignment and number 

of tractors to be assigned to each crane. 

 In 2012 Sharif et al. [194] considered a dynamic programming-based heuristic and agent- 

based simulation to solve the yard crane scheduling problem in both centralized and decentralized 

approaches. 
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In 2013 Hartmann et al. [195] discussed the scheduling of refer mechanics at a container 

terminal in a case study that integrates simulation optimization. Reefer containers are special 

temperature-controlled containers used to transport temperature-sensitive goods such as fresh 

fruits and vegetables. They are equipped with an integral refrigeration unit and require external 

power supply while on a vessel, truck or train and while being stacked on a container terminal. 

Reefer mechanics work in the stacking area of a container terminal, where they are responsible for 

unplugging departing containers and for plugging arriving containers. They have concluded that 

choosing the correct scheduling method, will have a crucial impact on the productivity of refer 

mechanics workforce and the completion of the job. 

In 2013, He et al. [182] proposed an integer programming model based on the rolling 

horizon approach to improve the traffic affectivity of a port. Where they proposed creating an 

approach where internal trucks are shared among multiple container terminals located close to 

each other. Their objective was to minimize the total transferring cost and the over-all flow of 

workloads and operations of all terminals during all times. They used a genetic algorithm to be 

able to search for solutions, whereas the simulation model will execute the rolling horizon 

approach, evaluate and repair solutions. They used random data to validate their proposed 

simulation optimization method, which provided good solutions in good timeframe. They also 

concluded that the total cost of their proposed method is considerably lower than the obtained cost. 

  In 2014 Ilat at al. [7] developed a simulation-optimization method to address the integration 

of three resource allocation problem: berth, quay crane and tugboat assignment.  

 In 2015 He et al. [196] addressed the problem of integrating the scheduling of the main 

three terminal resources, Quay Cranes, Yard Cranes and Internal Trucks. They formulated the 

problem as a mixed integer programming model and their objective was to minimize the total 
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departure delay for vessels and the total transportation energy consumption of all tasks. To solve 

the problem, they developed a simulation-based heuristic method to solve it, where they integrated 

genetic and swarm optimization algorithms. 

 In 2015 He et al. [197] developed a modeling and optimization problem of multi-echelon 

container supply chain network, to minimize the total supply chain service cost. Since this is NP-

hard problem, the authors proposed a simulation-based heuristic method to solve it, where they 

integrated genetic and swarm optimization algorithms. 

 In 2015 He et al. [198] considered the trade-off between energy-saving and time-saving in 

the Yard Crane scheduling problem, where integrated simulation optimization and the 

optimization algorithm integrates genetic algorithms and particle swarm optimization.  

In 2015 Zehendner et al. [199] used optimization simulation for the allocation of straddle 

carriers at a tactical level at an intermodal container terminal. 

In 2015 Zeng et al. [200] proposed a simulation optimization method to solve the Quay 

Crane Dual-Cycling scheduling problem based on a mixed integer programming model and a bi-

level genetic algorithm heuristic method. 

Said et al. in 2015 [201] developed a methodology using discrete event simulation to 

optimize resource utilization at El-Dekheila port in Egypt, with regard to the integration of 

equipment resources used in the container terminal.  Data was collected from the port in Egypt, 

where they were also able to validate their proposed model and conclude its efficiency and 

effectivity where the quay crane utilization was increased by 41%. 

In 2016, Clausen et al. [202] considered an inland terminal in Germany that serves as a 

hinterland hub for deep sea container terminals, where all areas are handled in an integrated 

terminal with a rail mounted gantry crane on one rail as the main handling equipment, where 
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these cranes execute all the handling in the operation areas in the terminal. The container they 

are considering is a multimodal terminal that serves vessels, trains and trucks. 

 

3.3.5 Security measures 

In 2008, Ding et al. [203] proposed a fuzzy simulation optimization model based on 

discrete event simulation and heuristic algorithm for the optimal configuration for check posts. 

They created three modules: simulation module, interface module and optimization module. The 

optimization module is responsible for generating data for the simulation module, whereas the 

interface module transfers the generated data from the optimization module to the simulation 

module. The results from the simulation module are then sent back in a feedback loop to the 

optimization module via the interface module similarly. OptQuest engine was adopted as a 

simulation optimizer integrating tabu search, scatter search, integer programing, and neural 

networks into one search algorithm. They validated their findings by applying it in the Free Trade 

Port Area in the north port in China. Their results showed that the best way to utilize the check 

post is by reducing the resource redundancy with the current traffic volume and concluded that 

more research should be conducted where other factors that might affect the port should be 

considered, such as road network structure and traffic operation modes. 

 

3.4 Search Space Reduction for Simulation Optimization  

This section identifies papers that may have considered sequence-based methods to reduce 

the search space and computation times in simulation-optimization.  

Reducing search space in simulation-based optimization algorithms has motivated several 

studies [4, 5]. Particularly relevant to this work are studies that investigated novel ways to 
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efficiently evaluate decision variables. Dehghanimohammadabadi et al.  [6] proposed an iterative 

optimization-based simulation framework, where in every optimization iteration, the number of 

decision variables and coefficients is updated in the traditional way and no predefined sequence is 

considered.  In addition, their framework can call an optimizer upon the occurrence of predictable 

or unpredictable events within the simulation run, where a trigger event occurs upon which, the 

optimizer takes over to optimize the parameters of the system while the simulation model is halted.  

Chang it el. [5] proposed a partitioning-based simulation optimization method to divide the 

feasible solution region into several sub regions. Then, their approach samples a few solutions 

from each region, evaluates this solution, and identifies the most promising region. Their 

convergence analysis showed significant reduction in computation time. Collectively, an 

investigation of the order/sequence in which optimization is executed and its effect on reducing 

the search space was not observed in the literature. 
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CHAPTER 4 

SIMULATION MODEL DESIGN AND DEVELOPMENT 

In Chapter 2, the complex and stochastic nature of container terminals as well as the various 

challenges involved were described. After establishing the understanding of the nature of the 

system and properly defining the problem, a discrete-event simulation model was constructed to 

mimic the system’s behavior and capture its activities. Additionally, in this chapter, different 

methods are considered to validate the developed simulation model.  

Data collected from an actual port as well as information from the literature are utilized to 

provide input parameters to run the simulation model. The simulation results are then compared to 

output data obtained from the same port. In addition to simulation results, this chapter will also 

discuss different scenarios considered and sensitivity analysis to aid with the model’s validation. 

 

4.1 Model Design and Construction 

After studying the real system thoroughly and building an overall understanding of the on-

going container terminal operations, a conceptual model can be inferred and constructed to assist 

with creating the model and make it a seamless, less complicated task. In this section, the design 

of the conceptual model and the building of the Arena simulation model will be described. Details 

regarding operations, activities and implementations of this work will be discussed in the 

succeeding sections. 
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4.1.1 Conceptual Model and System Architecture 

In the context of terminal simulations, a conceptual model is a logical flow diagram that 

represents the flow of vessels, trucks, and containers between sea side and land side and identifies 

decision nodes and resources necessary for the movement of containers and transport systems.  

The flow diagram shown in Fig. 6 depicts the conceptual model of the container terminal. 

This was developed after studying the container terminal system and the flow of its operations. In 

this abstract model, vessels arrive at the anchorage area at the port and wait for a berth. Once an 

available berth is allocated, the vessel moves to it via an access channel and docks at its assigned 

berth. Quay Cranes or Ship-to-Shore (STS) cranes are assigned to the vessel and start unloading 

containers to Yard Trucks that transport them to the Container Yard where containers are stacked. 

Yard Cranes, which in this case are rubber tyred gantry cranes (RTGs), pick up the containers from 

the Yard Trucks and place them in blocks of containers in the Container Yard. Yard Trucks then 

return to the Quay area to pick up more containers and bring them back to the Container Yard. In 

case of export containers, Yard Trucks take containers in the opposite direction for the STS cranes 

to load on the vessel. This process continues until the vessel is unloaded and export containers, if 

any, are loaded on the vessel. Multiple vessels can berth simultaneously and be serviced by STS 

cranes.  

In the truck cycle, external trucks come from the land side and enter the port area through 

the security gates to the Container Yard to pick up containers and transport them inland outside 

the port. RTGs are used to load containers on the external trucks which then go through customs 

and exit the port area through the security gates. In the case of exporting containers or returning 

empty containers, external trucks bring these containers to the port and drop them off at the 

Container Yard.   
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Fig. 6. Conceptual model. 

 

4.1.2 Simulation Model 

The design of the simulation model is intended to be at a macro level to study operations 

and policies such as the impact of resource allocation and scheduling on the terminal’s 

performance. The model was developed using ARENA simulation modeling environment. The 

vessels (with different lengths), containers, and external trucks are modeled as dynamic entities 

that flow through and drive the simulation according to the conceptual design discussed earlier. 

The modeled resources include the vessel access channel, quay berth area, the STS cranes, and 

external truck gates. Yard Trucks and Yard Cranes are modeled as transporter resources to 

accurately simulate their functions. The external trucks were not, however, modeled as transporters 

since they do not belong to the port; they are instead treated as entities attached to the containers 
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as another entity type. It is assumed in this model that personnel are readily available to operate 

the modeled resources and the impact of their unavailability is captured within the data.  

Many processes that take place at the terminal were modeled by seizing the necessary 

resources, delaying the entity by a certain time, and then releasing the resources. The berth area is 

considered continuous and vessels are allocated to berth areas based on the vessels’ lengths. 

 

4.2 Data Collection 

To simulate the activities and operations taking place in the container terminal, real data 

and descriptive statistical distributions were collected. This data included the number of resources 

such as: Berth size, number of STS quay cranes, yard cranes, yard trucks; as well as storage 

capacities and dimensions. Data regarding the port layout and activities was also obtained from an 

open-source data repository, other similar ports, as well as previous studies and research conducted 

on port activities. 

 

4.2.1 Data Categorization 

The data collected can be categorized as follows: 

▪ Arrivals: Inter-arrival times (the time between consecutive arrivals in a queuing 

system) of the main entities to the container terminal: vessels and external trucks. 

▪ Processing times: The time it takes various transporters and resources to load/unload a 

container from one process to another: STS quay cranes, RTGs, external trucks and 

their gates and yard trucks. 
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▪ Traveling times: The time it takes various entities and transporters (yard trucks, vessels 

and external trucks) to travel in the port system based on measured distances and 

velocity estimates. 

▪ Availability: The number of available berths, cranes, container yard size and yard 

trucks in the container terminal. 

▪ Capacity: The number of available resources, such as STS quay cranes, yard cranes 

and yard trucks. 

 

4.2.2 Defining Entities and Resources 

Among the important steps for building a simulation model is defining its entities and 

resources to avoid misrepresenting the real system. The following describes the way entities and 

resources were defined: 

 

Entities: 

▪ Containers: They represent the entities that seize the resources to be loaded, unloaded 

or transferred. They arrive according to the same arrival distribution of the 

transportation mode that brought them in. 

▪ Vessels: They represent the entities that bring/take the containers to/from the container 

terminal by sea.  

▪ External Trucks: They represent the entities that bring/take the containers to/from the 

container terminal by land. 
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Resources: 

▪ STS Quay Cranes: They perform the process of loading\unloading a vessel. A vessel 

seizes several cranes (multiple cranes) according to its (the vessel’s) size. 

▪ Berth Segments: The location where the vessel docks (parks) in the container terminal 

for a brief time until the unloading/loading process concludes. A vessel seizes several 

berth segments according to its (the vessel’s) size. 

▪ Gates for External Trucks: The checkpoints for all arriving external trucks, where check 

ins, paper work and some security scans take place. 

 

Transporters: 

▪ RTG (Rubber Tyred Gantry Crane): They perform the process of loading/unloading 

external and internal trucks. They usually work in the container yard, assigned to a 

specific area or stack of containers. 

▪ Yard Trucks: They perform the process of transporting containers inside the container 

terminal only, among the different terminal resources. 

 

4.3 Modeling Highlights 

In this section, the primary areas in the simulation model in addition to the techniques 

followed to model various aspects of the system in a discrete-event simulation platform will be 

introduced. Fig. 7 below shows the outlines of the arena building blocks, where all entities arrive 

at the model through a Create module which is used to model the arrival of all vessels and trucks. 

While at the Dispose module, all the entities mentioned previously depart. 
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Fig. 7. Simulation Model Building Blocks 

 

Vessel flow: 

Vessels are generated in the simulation model through a create module based on an 

exponential distribution that represents the arrival distribution of the actual vessels. They are then 

sorted into thirteen different vessel types, and each vessel is assigned a size and a specific number 

of containers to load/unload.  This number was based on historical data of the port under study. 

 

Berth availability and allocation: 

 The berth area was divided into several segments where each segment represents a resource 

as shown in Fig. 8. A vessel requires several segments based on its size where larger vessels need 

more segments. Thus, after the vessel arrives in the simulation model, it must check if there are 

enough idle berth segments to seize based on its size. Once the vessel seizes the necessary number 

of segments (berth resources), it will be time stamped. If there was not a sufficient number of 

segments for the vessel to seize, or if all segments were busy, the vessel will be moved to a Hold 

module where it will wait until a condition is met and a signal is sent to this Hold module. After a 

vessel finishes the unloading/loading process it will release the berth segments and depart the 
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system, but before departing it will send a signal to the Hold module to release any vessel waiting 

in line. 

 

 

Fig. 8. Berth availability and seizing. 

 

 Crane allocation: 

The STS cranes are modeled as a set of individual resources that are responsible for 

unloading/loading containers from/to the vessel. Based on the vessel size, a specific number of 

cranes is required to serve the vessel. Thus, cranes are assigned to several specific sections of the 

berth segments to prevent the cranes from crossing over. The cranes and berth assignment are 

modeled such that, depending on the predefined (user defined) number of berth segments and the 

number of cranes, the cranes are assigned to the corresponding berth segments. For example: If 

the berth size is at full capacity (48 segments) and there are 6 cranes available, then each crane 

will serve 8 segments. In another example, if the berth size is at 75% capacity (36 segments) and 

there are 4 cranes then each crane will serve 9 segments, and so on. 

External Trucks flow and Gates: 

External trucks are generated in the simulation model through a Create module based on a 

Weibull distribution that reflect the arrival distribution from the historical data of the port under 

study. They are then sorted into two different truck types, either a truck for picking up imported 

container or a truck that is dropping off exported container. Finally, both trucks will be sent to the 
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container yard to the designated container block (import or export). Once the job of picking 

up/dropping off is completed, the external truck departs the system. 

 

Container yard: 

The container yard is where the containers are stored in Hold modules and Queues, waiting 

to be picked up by an external or a yard truck. It is modeled as a set of container blocks, where 

four horizontal blocks make a row in the terminal, and there are three export rows and seven import 

rows. Each block has a set of queues to hold the containers which represents the process of storing 

the containers in the block (Fig. 9). 

 

 

Fig. 9. Container yard design. 

RTG (Rubber Tyred Gantry Cranes)  

A Rubber Tyred Gantry Crane is a yard crane that serves the external and internal trucks 

in the container yard, specifically to load and unload containers to/from the trucks and from/to the 

yard. The RTGs are modeled as a set of guided transporters in ARENA.   
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Yard Truck:  

Yard trucks are responsible for transporting containers from/to the vessel and to/from the 

yard. It is served either by the RTG if working in the Yard or by STS Crane if working near the 

vessel.   

 

Containers Flow: 

A container entity can arrive at the terminal in two different ways, either on a vessel, or on 

a truck. The first process the containers go through is the unloading process, where they are 

removed by an STS quay crane if they arrived on a vessel or by RTG if they arrived on an external 

truck. After they are unloaded, a yard truck will drive to the unloading area for vessels to transfer 

the unloaded containers to the container yard. The loading process follows identical but reversed 

steps, where a yard truck will transfer a container from the container yard to the departing vessel. 

 

Read/Write features: 

When constructing the discrete-event simulation model in Arena, some of its read/write 

features were utilized, to make the information incoming to and outgoing from the model available 

externally. The direct read feature allows for reading data directly into variables and attributes in 

Arena, this read process takes place at the beginning of the simulation; replication or even during 

the simulation run. The input data is created using a text file which the optimizer can access and 

write the solution string to. The simulation model then accesses that file and performs a read 

process to access the provided solution string values and run the simulation model accordingly. 
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4.4 Input Analysis and Data Fitting  

A case study was considered, of the newly constructed container terminal system of 

Hamad’s new port of Qatar, which has been under construction for the past several years and has 

recently started its operations at Terminal 1. Data from the existing Doha port has been collected 

on the number of vessels as well as the number of import and export containers over a year. 

Vessel historical data is expected to reflect a comparable demand levels and material flow 

that the new terminal will undergo in the first years of operations. One-year worth of historical 

data was analyzed, and appropriate distributions were fitted to it. This included vessel lengths, 

vessel interarrival times, number of containers (full, empty, import and export), delay times from 

the arrival to the start of operations, loading/unloading times, and delay times from the end of 

operations to the vessel’s departure. It is recognized that the resource types and terminal design 

differ between the new and current port; however, for validating the simulation model, the model 

was populated with data based on the current port to be able to validate against the historical data. 

For example, the STS crane types in the new terminal can move more containers per hour, and 

hence, are expected to service a vessel faster; however, crane movement rates that resemble those 

of the current crane types were used to validate the simulation output. Another example is the 

access channel, which does not exist for the current port; therefore, the time for the vessel to pass 

through it (in the model) was set to zero. Similar assumptions have been made to accommodate 

the differences between both systems for the purpose of validation.  

One-year worth of historical data was analyzed. To conduct proper validation analysis, data 

only for six months were used to fit the distribution and the remaining six months were used for 

testing purposes. To further remove any biases due to possible trends and seasonality in the data, 

the historical data of the full year was randomized, and then half of the dataset was drawn randomly 
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for input analysis, while the other half was used for validation after running the model and 

comparing its outcome. After the data is fitted to theoretical statistical distributions, both Chi 

Square and Kolmogorov-Smirnov (K-S) tests were used assess the goodness of fit. The null 

hypothesis in this case is that the fitted distribution and the theoretical one are the same, and when 

we reject the null hypothesis (p-value > 5%) which means that there is no difference between the 

distributions (i.e., the fit is acceptable). 

Fig. 10 is an example of fitting the vessel interarrival times over six months of randomized 

data using ARENA’s Input Analyzer, which shows that the best fit is an Exponential distribution 

with a mean of 13.7 hours and shows that this distribution passes both tests as the p-values is large 

(> 0.05). This means that the null hypothesis that both distributions are the same cannot be rejected 

and therefore the fit is acceptable. Other simulation inputs were conducted similarly and empirical 

distributions (based on six-month worth of data) were used whenever fitting to a theoretical 

distribution failed the hypothesis testing. 
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Vessel Interarrival times Distribution Summary 

Distribution: Exponential   

Expression: EXPO(13.7) 

Square Error: 0.001987 

Chi Square Test 

  Number of intervals             = 10 

  Degrees of freedom     = 8 

  Test Statistic                  = 7.28 

  Corresponding p-value = 0.507 

 

 Data Summary 

 

Number of Data Points = 324 

Min Data Value            = 0 

Max Data Value                    = 66.4 

Sample Mean                       = 13.7 

Sample Std Dev             = 12.9 

Kolmogorov-Smirnov Test 

  Test Statistic = 0.0438 

  Corresponding p-value > 0.15 

 

  

Fig. 10. Vessel Interarrival times distribution fitting of 6-month historical data (data included in 

the model). 

 

To validate the distributions inputted into the simulation, the historical data of the 

remaining six months are fitted into a distribution and both distributions are compared. Fig. 11, for 

example, shows the interarrival time distribution fitting of the six-month data that was used for 

testing. The result shows that an exponential distribution with an average interarrival time of 13.1 

hours is the best fit which is very close to the result shown in Fig. 10.  
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Vessel Interarrival times Distribution Summary 

Distribution: Exponential   

Expression: EXPO(13.1) 

Square Error: 0.002313 

 

Chi Square Test 

  Number of intervals   = 10 

  Degrees of freedom    = 8 

  Test Statistic                  = 11.5 

  Corresponding p-value = 0.19 

 

 Data Summary 

 

Number of Data Points = 328 

Min Data Value             = 0.03 

Max Data Value           = 66.5 

Sample Mean                        = 13.1 

Sample Std Dev                    = 11.7 

Kolmogorov-Smirnov Test 

  Test Statistic = 0.0361 

  Corresponding p-value > 0.15 

 

  

Fig. 11. Vessel Interarrival times distribution fitting of 6-month historical data (data used for 

testing). 

 

4.5 Validation: Simulation vs. Historical Data 

As was mentioned previously, the data set was randomized to remove any trends or 

seasonality and was split into two six-month data sets (training and testing). The training data set 

was used for input analysis and distribution fitting, while the testing data set was used for 

comparisons with the simulation output. A summary of the simulation results for some of the 

measures compared to the historical data are shown in Table 1. Note that the Historical data column 

does not correspond to six consecutive months of the year but rather randomly selected days of the 

year that add up to six months. 



   

 

77 

 The simulation was run for 25 replicates where each replicate is six months. It was observed 

that with this number of replicates, the half width of the 95% confidence interval was about 5% of 

the mean for most measures. Hence, it was concluded that this is a good number of replicates. 

Furthermore, it was noted that the model goes into steady state after about 14 days; therefore, a 

simulation warm-up period of 14 days was used. A Summary of the simulation results for some of 

the measures compared to the historical data are shown in Table 1.  

Table 1: Simulation results vs. historical data 

 

Measure 
Historical Data Simulation Output 

Mean 95% C.I. Mean 95% C.I. 

Vessel Turn Around Time 

(hrs.) 

36.5 [33.9, 39.1] 33.04 28.88 37.20 

Vessel in 327 - 318 311.12 324.88 

Vessel out 327 - 317 310.13 323.87 

Imports Full 99,951 - 90,854 88,693 93,015 

Exports Empty 42,109 - 47,990 46,861 49,119 

 

4.6 Sensitivity Analysis 

Two cases were considered, with different vessel arrivals in the simulation model, while 

changing the number of resources, to test the simulation model under extreme conditions. In the 

first case, the same level of the vessel arrival from the historical data was considered, with changes 

to the resources of the terminal. The resources manipulated are the Yard Trucks, Yard Cranes and 

the STS Quay Cranes. The performance measures that were considered are the Vessel Turn Around 

time, the number of vessels in and out, the number of exported and imported containers 

(throughput), in addition to resources utilization. Results of the simulation scenarios are provided 

in Table 2.  
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Table 2: Vessel arrival is at the same level as in 2014 

 

 

In the second case, the vessel arrival was increased by 25%, the same changes to the 

resources were applied, and the same performance measures were captured as shown in Table 3. 

  

Table 3: Vessel arrival level of 2014 is increased by 25% 

 

 

The outputs from the previous scenarios are represented in graphs to better understand the 

behavior of the system under these extreme conditions. Both the Vessel turn-around time and the 

container throughput were depicted against the number of the manipulated resource and compared 

with both the regular and the increase vessel arrival.  
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Fig. 12 shows the comparison of the vessel turn-around time with both the regular and 

increased arrival when the number of yard trucks was changed. With the regular arrival, it can be 

noted that the vessel turn-around time improves as the number of yard trucks increases; however, 

that is not the case with the increased arrival.  

 

Fig. 12. Regular and increased arrivals, TAT Vs. YTs. 

When tracking the total containers processed for this same case as shown in Fig. 13, it 

seems that the number of containers decreases when there are 40 yard trucks, which means that 

having more yard trucks in the system, introduces congestion, and this also explains the decrease 

in the vessel turn-around time for that same instance (Fig. 12), with fewer containers to process, 

the vessels will spend less time in the system. 
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Fig. 13. Regular and increased arrivals, # Containers Vs. YTs. 

 

Fig. 14 shows the comparison of the vessel turn-around time with both the regular and 

increased arrival when the number of RTGs was changed. It can be concluded that, with lower 

number of RTGs the system gets congested as well, due to the lack of resources to process the 

containers, thus creating a bottle neck, which explains the low value of the time spent by the vessel 

in the system.  

 

 

Fig. 14. Regular and increased arrivals, TAT Vs. RTGs. 
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This can also be noted when considering the number of containers processed, as shown in 

Fig. 15. Since the system’s congestion is caused by fewer resources, eventually fewer containers 

will be processed.  

 

 

Fig. 15. Regular and increased arrivals, # Containers vs. RTG. 

 

The sensitivity analysis confirms that the system can process containers under extreme 

conditions, whether an increased arrival or a combination of increase and decrease in the number 

of resources.  However, an increase in resources does not always cause an improvement in the 

system’s behavior since this increase might create congestion that leads to a bottleneck that would 

affect the system’s overall throughput and behavior. 
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CHAPTER 5 

SEQUENCE-BASED SIMULATION OPTIMIZATION FRAMEWORK  

This work investigates the influence of incorporating a sequence that governs the search 

space for a simulation-based optimization. In this chapter, the framework developed, methods 

used, and approaches taken to construct such a platform are discussed. 

The design and infrastructure are introduced, followed by a thorough discussion of the 

necessary building blocks constructed to allow for seamless communication and function within 

the system. Lastly, the implementation of the simulation-optimization model is discussed as well 

as relevant modifications made to incorporate a governing optimization sequence. 

 

5.1 Simulation-Optimization Infrastructure 

The simulation-optimization framework has a two-stage iterative process. As shown in Fig. 

16, the process starts with an Optimizer Control that determines an initial solution and queries the 

Simulation Model to execute the simulation given this solution. In the second stage, the Simulation 

Model returns the performance measures of interest to the Optimizer Control using a feedback 

loop which allows the Optimizer to reevaluate the initial parameters and use a heuristic approach 

to reach the best solution iteratively. 
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Fig. 16. Simulation Optimization Framework 

 

5.1.1 Running the Simulation Model Externally 

As mentioned in Chapter 2, the simulation platform considered in this dissertation is Arena 

15.0. Arena software’s underlying language is SIMAN. When SIMAN was first designed, it was 

meant to be able to operate on a personal computer with 256 K of memory. To be able to have 

some memory for a practical size simulation model, the simulation functions were divided into 

five separate programs (executables) [204]:   

▪ Siman.exe is the simulation engine. 

▪ Model.exe is where the simulation network model is read, compiled, and reported. 

▪ Expmt.exe is where the simulation experiment frame is processed.  

▪ Linker.exe is where the resulting data files were reconciled and combined. 

▪ Output.exe is a batch processor of simulation data files, which is the final program. 

This divided structure still exists in current Arena models, specifically under the installed 

ARENA software file in addition to some necessary direct link library (DLL) files. For purposes 
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of this dissertation, these files are essential for running the Arena program externally, meaning 

there will not be a need for opening the Arena file to manually run the simulation model. 

Thus, in practice, once the simulation model in Arena is verified and validated, both the 

.mod and .exp files can be automatically created by writing them from within Arena (RUN> 

SIMAN> Write). These files are then utilized to run the simulation model externally using the 

mentioned executables, following the steps: 

• Open “expmt.exe”, print “Arenafilename.exp”, print “Arenafilename.e”. 

• Open “model.exe”, print “Arenafilename.mod”, print “Arenafilename.m”. 

• Open “linker.exe”, print “Arenafilename.m”, print “Arenafilename.e”, print 

“Arenafilename.p”. 

• Open “siman.exe”, print “Arenafilename.p”. 

 

This last step will run the Arena model externally. These steps can be implemented in any 

programming platform to be automated, as explained in the next section. It is crucial to locate all 

the SIMAN running .dll files in addition to all the .exe files in the same file directory (same folder) 

as the programming platform, in addition to the .doe Arena program file of the desired simulation 

model. 

 

5.1.2 Simulation-Optimization: Input, Output and Automation 

The programming platform utilized for this research work is C++. This program was 

developed to run and control the Arena model externally, by successfully implementing and 

automating the previous steps and the various building blocks within the introduced framework 

(see 5.1). To automate the simulation-optimization platform, a link must be established to connect 



   

 

85 

the Simulator with the Optimizer to manage input and output, information and data flow, and 

command communication.  

As discussed in Chapter 4, when constructing the discrete-event simulation model in 

Arena, some of its read/write features were utilized to successfully make incoming and outgoing  

information available externally. In this manner, the optimizer program runs the simulation model 

externally by calling the necessary Arena .exe files using the Windows Command Processor. The 

simulation model will then read the text file provided by the optimizer (solution string) and use 

the values as its running parameters. Before Arena terminates the simulation run, it will utilize a 

similar direct read/write feature, but in this case to write data directly from variables and attributes 

to report the behavior and performance of the simulation. This writing function can take place any 

time during the simulation run, thus the output data is exported into a text file which can be 

accessed by the optimizer. 

As shown in Fig. 16, the optimizer will be responsible for sending solutions to the 

simulation model, running the simulation model, and evaluating the performance measures. This 

feedback loop will continue until a termination criterion is met, at which time the process will 

terminate this loop. The established connections between the optimization and the simulation 

modules will achieve the following steps: 

1. Initial solution 

1.1. Start with a candidate initial feasible solution  

1.2. Write solution (input) into text file 

1.3. Signal the simulation model to run with the current solution 

2. Simulation 

2.1. Evaluate candidate solution by executing the simulation model 



   

 

86 

2.2. Write fitness (output) into text file 

3. Optimization 

3.1. Evaluate fitness (Simulation results) 

3.2. If terminating criteria is met (or convergence) then terminate loop 

3.3. If not optimal, then improve: create a new solution then go to 1.2  

 

5.2 Evolutionary Algorithm-Based Optimization (Non-Sequence-Based) 

In this section the optimization part of the Simulation-Optimization infrastructure is 

discussed. Evolutionary algorithm-based optimization is the optimization method considered in 

this dissertation. 

 

5.2.1 Solution Representation, Initial Population and Generations 

The container terminal resources in the simulation model are represented by a solution 

string (chromosome) and each element (gene) in the string refers to a changeable value (decision 

variables) of a resource being considered for optimization in the simulation model.  

At the first generation, the Optimizer randomly generates an initial population of strings in 

which each string consists of a set of variables whose values are randomly selected from the 

predefined list of values given in Table 4. A string is used as an input to the simulation model to 

evaluate and produce a fitness value that corresponds to one or more of the simulation outputs. 

Every string in the initial population is evaluated in this way before evolving it to the next 

generation. Every generation that follows has the same population size. 
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Table 4: Terminal section, resources and levels 

Solution String Index Resources Possible Values 

1 Berth Size (25%, 50%, 75%, 100%) 

2 STS Cranes (3, 4, 5, 6, 7, 8) 

3 Gates (6, 9, 12, 15) 

4 Yard Trucks (15, 20, 25, 30, 35, 40, 45, 50, 55) 

5 Exports rows (1, 2, 3) 

6 Imports rows (4, 5, 6, 7, 8, 9, 10) 

7 Yard Crane per row (1, 2, 3, 4) 

 

5.2.2 Mutation, evolution, and termination 

In evolutionary algorithms, a string is randomly selected, mutated and competed with 

another randomly selected string from the population. The fitness of the offspring (i.e., the mutated 

string) is evaluated and is compared to the fitness of the competing string. The winner (i.e., the 

string with the better fitness) makes it to the second generation and the loser is disposed. This 

process is repeated for n times where n is the population size. As such, a new generation with 

better average fitness will be created. Proceeding in this manner, the population of strings evolve 

from one generation to the next with improved average fitness values. Note that using this 

approach, the goodness of fit of future generations will never decline as only individuals with the 

best fitness values will make it to new generations. The process converges when all strings in the 

population have the same fitness value. If convergence is deemed to be too time consuming to 

reach, the process can be stopped after a predefined number of generations as defined by the 

analyst. In this method where the solution string consists of the number of resources to allocate, 

the mutation is to randomly pick one of the seven resources of the parent string and change its 

value up or down by one level.  
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5.2.3 Fitness Function 

The Fitness function can mainly be one or more of the simulation outputs to reflect and 

evaluate the behavior of the simulation model and how it is influenced by each change in the 

inputs. Such outputs can be throughput, resource utilization, waiting times, delay times, etc. A 

meaningful fitness function in this application is the throughput, which is the total number of 

exported and imported containers via the container terminal. However, setting the fitness function 

in this manner will naturally set the levels for all resources to the highest possible value since more 

resources typically produce more throughput. To overcome this, and since cost is not captured in 

this simulation, the weighted average resource utilization was incorporated into the fitness function 

to challenge the Optimizer to find a balance between the two, as follows: 

 

Fitness = throughput × weighted average resource utilization (1) 

 

As such, the optimal fitness will be driven by a search to find the configuration that 

produces the most throughput with the least resources since resource utilization increases with 

fewer resources used.  

However, since resources vary in terms of number and influence, this effect was accounted 

for when computing the fitness function. For instance, the utilization of a truck should not be 

weighed as that of the berth. A utilization equation was, therefore, formulated where appropriate 

coefficients were used to represent these weights based on the resource market price. Namely, the 

research yielded that one STS Crane costs around 5 M dollars, whereas a yard truck costs 0.1 M, 

etc. Accordingly, the weighted average resource utilization equation is: 
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0.63 Berths + 0.32 Cranes + 0.031 RTGs + 0.013 Gates + 0.006 Trucks (2) 

 

the utilization equation considers actual resources with utilization only; thus, the number 

of imported and exported container rows are excluded due to the lack of an actual usage value. 

The simulation model is executed once every iteration using the number of resources given 

by the solution string. It will then output the total containers throughput and the average utilization 

per resource to the Optimizer, which will calculate the fitness based on the fitness function given 

in (1). 

 

5.3 Sequence-Based Evolutionary Algorithm for Optimization 

This section will discuss the necessary modifications implemented to incorporate the 

optimization algorithm described in the preceding section with a sequence that governs the order 

in which resources are optimized. The hypothesis is that implementing such a sequence will reach 

a comparable solution in less computation time. This approach is anticipated to reduce the search 

space and improve the efficiency of the optimization process.  

 

5.3.1 Solution representation, initial population and generations 

In this method, the solution string represents the order (sequence) in which the resources 

are optimized, with the aim of finding the order that results in the best fitness value. Each resource 

is represented by its location number in the solution string (Table 4). For example, in the string 1-

2-7-5-6-4-3, the algorithm starts by optimizing the berth first and fix its best value, it then 

optimizes and fixes the number of STS cranes (2nd variable)  before moving to the 7th  variable 

which is the number of RTGs or yard cranes whose value is then fixed and is followed by the 5th 



   

 

90 

variable which is the export rows and so on until we finally optimize and fix the 3rd variable which 

is the Gates (see Table 4).  

The initial population consists of a set of randomly generated sequences whose fitness is 

obtained by running the simulation with optimizing and fixing variable values in the order they 

appear in the string as explained earlier.  

 

5.3.2 Mutation, evolution, and termination 

 Unlike traditional evolutionary algorithms that mutate the value of the variables 

themselves, the mutation in this algorithm swaps the sequence of two variables, by randomly 

selecting two resources and swapping their location in the sequence, thus creating a new mutated 

sequence. The evolution process in this method does not differ from the previous one. The 

termination condition, however, is pre-defined at the beginning of the simulation-optimization by 

placing a limit on the number of generations for the sequence-based algorithm since it is 

computationally expensive to reach convergence due to the large number of simulation runs 

required per solution string.  

 

5.3.3 Fitness Function 

The fitness in this method is calculated similar to the previous non-sequence-based method 

using equation (2), but it is more complex as it requires more than one simulation run for each 

sequence of variables to be evaluated. Since a sequence consists of seven variables in this case, 

the simulation model must run several times for each variable which is dependent on the number 

of variable levels as given in Table 4. Once the best value for a certain variable is reached, the 

resources for that variable are fixed to the value that produced the best fitness, then it proceeds to 

find the best value for the next variable in the sequence and so on until all variables are optimized 
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sequentially. The resulting fitness after computing all simulation runs required to evaluate a single 

sequence-based solution string is reported to the Optimizer as the fitness value for this sequence. 

A Similar process is followed for each sequence or string in the population. 

 

5.3.4 Stage 1: Partial ordering for obtaining the sequence 

Once the last generation for the sequence-based optimization is reached, the n best 

sequences are obtained. Each sequence corresponds to an ordering of the variables that led to a 

good fitness. To determine the best overall sequence, a partial ordering is created by determining 

cij for each pair of variables (vi and vj), where cij counts the number of times that vi precedes vj in 

the n sequences of the generation. If cij exceeds a value T.n, then vi is considered to precede vj in 

the overall optimization sequence. T ∈ [0.5, 1] is a threshold value where the higher the threshold 

T, the higher the stringency of the partial ordering relation. A threshold of T = 1 would mean that 

vi must precede vj in all n sequences of the generation to be considered a legitimate ordering 

relation. 

The partial ordering relation can be represented as a directed graph G = (N, E), such that: 

▪ Ni is the representative node for the variable i.  

▪ E is the set of edges cij between Ni and Nj, such that cij > T.n 

▪ G is a legitimate graph for the ordering relation between variables vi…n if and only if 

G is a directed acyclical graph.  

Fig. 17 shows the variables’ partial ordering graph based on the sequences presented in  

Table 5. For example, variable 7 (represented by node 7) is preceded by variables 2, 1, 4, 

and 3. Also, node 1 has [7] as successors; node 2 has [3, 6, 7] as successors; node 3 has [7] as 
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successors; node 4 has [7] as successors; node 6 has [1] as successors; and nodes 5 and 7 have no 

successors. In this case, for a threshold T = 0.6, the “optimal” sequence is:  2 ➔ (3,4) ➔ 6 ➔ 1 

➔ (5 ➔ 7). 

 

Fig. 17. Variables’ Relationship Graph. 

 

 

Table 5: The sequence of the last generation 

 
Seq #        

1 4 7 6 3 2 1 5 

2 5 2 4 3 6 1 7 

3 6 7 5 1 3 4 2 

4 5 2 6 3 4 1 7 

5 2 3 5 4 1 7 6 

6 4 1 2 3 7 6 5 

7 5 2 6 3 1 4 7 

8 4 2 6 3 7 1 5 

9 6 1 2 3 7 4 5 

10 1 3 5 4 2 7 6 

 

If there is a cycle in G, it means that the generation has not sufficiently converged to 

determine the ordering relation. Two solutions can be envisaged in this case; more generations can 

be created for the sequence optimization to obtain a more cohesive set of best sequences, or the 

threshold T can be raised to achieve a more stringent ordering. The best sequence S is given by the 

longest path in the directed acyclic graph. When T is raised too high, or when the sequence 

optimization has not yet converged, the best sequence might not involve all variables. 
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5.3.5 Stage 2: optimizing variables in the sequence 

After obtaining the sequence in Stage 1 as discussed in the previous section, the variables 

are optimized in that order via stochastic sampling, with a decreasing sample size. That is, the 

simulation is run for many runs for the first variable, and the number of runs is reduced for the 

subsequent variables as more variables are fixed. When optimizing one variable at a time, every 

possible value (level) is considered for that variable, while the levels of the remaining variables 

are determined based on a random selection rule for a predefined number of simulation runs and 

the fitness is calculated accordingly. The rationale for using this approach is to alleviate the effect 

of randomness by conducting a substantial number of iterations to expose this variable value to a 

wide mix of combination values of the other unfixed variables. 

 

5.4 Alternative Validation Scenario: Increased Vessel Arrivals 

To validate the proposed method, another scenario is tested by increasing the vessel arrival 

frequency by 25% and performing similar experiments as discussed in 5.2 and 5.3. Both scenarios 

were executed for the same container terminal simulation model with similar run parameters for 

comparison purposes. 
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CHAPTER 6 

COMPUTATIONAL EXPERIMENTS AND RESULTS 

The previous chapter discussed the two evolutionary approaches developed. To 

demonstrate the effectiveness and influence of the proposed sequence-based approach, its 

performance is compared to the traditional evolutionary approach. Both methods were executed 

for the same container terminal simulation described earlier with similar run parameters for 

comparison purposes. Both methods were executed on the same computer running Windows 10 

pro with a i7-7820 GHz 2.9 processor, 32 GB of RAM, and a Quadro M1200 GPU. Additionally, 

the same version and type of the simulation software was used (Arena 15.0 64-bit).  

In this chapter the computational experiments conducted in this work are presented. Two 

scenarios were considered within a container terminal system, the first scenario includes regular 

vessel arrival and the second scenario with increased vessel arrival. 

 

6.1 Results: First Scenario 

In this section the results for the regular vessel arrival will be discussed and analyzed. 

 

6.1.1 Traditional evolutionary optimization algorithm (Non-sequence-based) 

In this method, an initial population of size 20 is used. Each generation required an average 

of 25 minutes to compute. The algorithm was terminated at generation 200, as no improvement 

was observed since generation 167 (Table 6). It was concluded that convergence occurred at 

generation 167 after 75 hours of computation time, where 18 out of the 20 members of the 

population carried the same fitness value.  

 



   

 

95 

Table 6: Population data after 20 births (generation 167) of the traditional (non-sequence-based) 

evolutionary optimization algorithm 

Individual Birthdate Utilization 
Through-

put 
Fitness Solution String 

1 1200 0.825427 55392 45722 ( 12 3 9 55 3 10 1 ) 

2 3056 0.825427 55392 45722 ( 12 3 9 55 3 10 1 ) 

3 2780 0.825427 55392 45722 ( 12 3 9 55 3 10 1 ) 

4 1940 0.825427 55392 45722 ( 12 3 9 55 3 10 1 ) 

5 456 0.825427 55392 45722 ( 12 3 9 55 3 10 1 ) 

6 1407 0.825427 55392 45722 ( 12 3 9 55 3 10 1 ) 

7 1919 0.825427 55392 45722 ( 12 3 9 55 3 10 1 ) 

8 1790 0.825427 55392 45722 ( 12 3 9 55 3 10 1 ) 

9 2132 0.823941 55392 45639 ( 12 3 12 55 3 10 1 ) 

10 2106 0.825427 55392 45722 ( 12 3 9 55 3 10 1 ) 

11 2268 0.825427 55392 45722 ( 12 3 9 55 3 10 1 ) 

12 2497 0.823941 55392 45639 ( 12 3 12 55 3 10 1 ) 

13 1529 0.825427 55392 45722 ( 12 3 9 55 3 10 1 ) 

14 1531 0.825427 55392 45722 ( 12 3 9 55 3 10 1 ) 

15 1853 0.825427 55392 45722 ( 12 3 9 55 3 10 1 ) 

16 3294 0.825427 55392 45722 ( 12 3 9 55 3 10 1 ) 

17 2062 0.825427 55392 45722 ( 12 3 9 55 3 10 1 ) 

18 3338 0.825427 55392 45722 ( 12 3 9 55 3 10 1 ) 

19 1604 0.825427 55392 45722 ( 12 3 9 55 3 10 1 ) 

20 2274 0.825427 55392 45722 ( 12 3 9 55 3 10 1 ) 

 

The optimal solution string in (Table 4) indicates the optimal levels for all the resources to 

produce the highest possible fitness. Recall that the solution string presented represents the 

resource levels presented in Table 7. 

 

Table 7: Scenario 1: Result of the traditional evolutionary method 

Utilization Throughput Fitness Solution String 

83% 55,392 45,722 (50% 3 9 55 3 10 1) 

 

 

6.1.2 Sequence-based evolutionary method 

In this method, an initial population of size 10 was used instead of 20 as the process of finding the 

fitness per sequence is much more computationally intensive. Each generation required an average 
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of 110 minutes to compute. The algorithm was terminated at generation 27, as no significant 

improvement was observed since generation 20. It was concluded that convergence occurred at 

generation 20 after 37 hours of computation time. Analyzing the sequences resulting at generation 

20 and exploring the sequence pair dependencies produced the following sequence: 2 3 4 6 1 5 7. 

This sequence indicates that  

the algorithm starts by optimizing the STS cranes first and fix its best value, it then optimizes and 

fixes the number of gates (3rd variable) before moving to the 4th variable which is the number of 

yard trucks whose value is then fixed and is followed by the 6th variable which is the import rows 

and so on until we finally optimize and fix the 7th variable which is the RTGs or yard cranes (see 

Table 9). 

This sequence was then used in Stage 2 to control the order in which variables are 

optimized as discussed in section 5.3.5. This evaluation process required 13 hours of simulation 

run time. The optimal solution string from this method is shown in (Table 8) which shows the 

optimal sequence of the variables in the solution string in addition to the optimal level for that 

variable or resource, to achieve the best possible fitness. In total, the two-stage sequence-based 

approach required 37 + 13 = 50 hours of computation time. To compare with the previous method, 

Table 9 shows the utilization, throughput and fitness of the optimal solution string. 

 

Table 8: Scenario 1: Solution string for sequence-based method 

Order/Sequence 2 3 4 6 1 5 7 

Resource Value 3 9 30 9 100% 2 1 
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Table 9: Scenario 1: Result of the sequence-based evolutionary method 

Utilization Throughput Fitness Solution String 

75% 57,027 42,461 (100% 3 9 30 2 9 1) 

 

 

6.1.3 Discussion: First Scenario 

Following the proposed steps of finding the variable sequence first then optimizing them 

in that order, it is evident that the proposed sequence-based method reached a comparable solution, 

a fitness of 42,461, in 66% of the time, when compared to the traditional non-sequenced 

evolutionary approach. 

In the traditional evolutionary method, the algorithm is required to consider the entire 

search space as it searches for input variable candidates, whereas when optimizing in a sequence, 

a predefined path is enforced to limit and reduce the search space to one section at a time, thus 

significantly reducing the total computational time.  

When comparing results from both methods in (Table 10), it can be concluded that that the 

non-sequence-based method favored a smaller berth size (50%) with a larger yard and more 

resources; thus, it achieved a higher utilization of the berth but negatively impacted the throughput. 

The sequence-based method favored a larger berth (100%) with a smaller yard, resulting in lower 

berth utilization and higher throughput. Furthermore, the solution itself in terms of resource 

allocation is quite similar to the traditional and more exhaustive method. 

 

Table 10: Scenario 1: Results comparison for the two methods 

 Utilization Throughput Fitness Solution String 

Non-sequence-based 83% 55,392 45,722 (50% 3 9 55 3 10 1) 

Sequence-based 75% 57,027 42,461 (100% 3 9 30 2 9 1) 
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6.2 Results: Second Scenario 

In this section the results for the increased vessel arrival will be discussed and analyzed. 

 

6.2.1 Traditional evolutionary optimization algorithm (Non-sequence-based) 

In this method, an initial population of size 20 is used. Each generation required an average 

of 74 minutes to compute. The algorithm was terminated at generation 173, as no improvement 

was observed since generation 134. It was concluded that convergence occurred at generation 134 

after 166 hours of computation time, where 6 out of the 20 members of the population carried the 

highest and same fitness value. The optimal solution string in (Table 11) indicates the optimal 

levels for all the resources to produce the highest possible fitness. Recall that the solution string 

presented represents the resource levels presented in Table 4. 

 

Table 11: Scenario 2: Result of the traditional evolutionary method 

Utilization Throughput Fitness Solution String 

80% 70,159 56,069 (50% 4 6 20 1 8 4) 

 

 

6.2.2 Sequence-Based Evolutionary Method 

In this method, an initial population of size 10 was used instead of 20 as the process of 

finding the fitness per sequence is much more computationally intensive. Each generation required 

an average of 8 hours to compute. The algorithm was terminated at generation 9 since it is 

computationally expensive to consider more generations. It was concluded that convergence 

occurred at generation 9 after 75 hours of computation time. Analyzing the sequences and 

exploring the sequence pair dependencies as discussed in 5.3.4 produced the following sequence: 
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4 3 7 1 2 6 5. This sequence was then used in Stage 2 to govern the order in which variables are 

optimized as discussed in 5.3.5. This evaluation process required 23 hours of simulation run time. 

The optimal solution string from this method is shown in (Table 12) which shows the optimal 

sequence of the variables in the solution string in addition to the optimal level for that variable or 

resource, to achieve the best possible fitness. In total, the two-stage sequence-based approach 

required 75 + 23 = 98 hours of computation time. To compare with the previous method, Table 13 

shows the utilization, throughput and fitness of the optimal solution string. 

 

Table 12: Scenario 2: Solution string for sequence-based method 

Order/Sequence 4 3 7 1 2 6 5 

Resource Value 50 9 2 100% 3 7 2 

 

Table 13: Scenario 2: Result of the sequence-based evolutionary method 

Utilization Throughput Fitness Solution String 

86% 60,274 52,002 (100% 3 9 50 2 7 2) 

 

 

6.2.3 Discussion: Second Scenario 

Following the proposed steps of finding the variable sequence first and then optimizing 

them in that order, it is evident that the proposed sequence-based method reached a comparable 

solution, a fitness of 52,002, in 60% of the time, when compared to the traditional non-sequenced 

evolutionary approach. 

When comparing results from both methods in (Table 14), it can be concluded that both 

methods were able to achieve comparable results and favored a similar container terminal size. 

However, it can be noted that since this scenario considered an increased vessel arrival, meaning 
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the system will process more vessels carrying more containers, the system is generally congested. 

Therefore, whatever resources are allocated in this case, they will be working at full capacity, 

which produces higher throughput and resource utilization. This explains why, in the non-

sequenced-based method, higher throughput was coupled with a lower number of resources, while 

the sequenced-based method had more resources and lower throughput. 

 

Table 14: Scenario 2: Results comparison for the two scenarios 

 Utilization Throughput Fitness Solution String 

Non-sequence-based 90% 60,585 54,978  (100% 3 6 20 1 5 2) 

Sequence-based 86% 60,274 52,002 (100% 3 9 50 2 7 2)  
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

Operations research and mathematical algorithms can provide near-optimal solutions for 

problems that are usually encountered in a container terminal. Such optimization algorithms can 

be utilized to search solution space to support decisions for resource allocation and assignment. 

Additionally, simulation models can aid in predicting and studying the behavior of the system over 

time and monitoring its performance under stochastic and unforeseen circumstances. 

 In this dissertation, a search-space reduction framework was developed and validated to 

reduce the computational effort of simulation-optimization algorithms through decreasing the 

number of possible solutions to consider and evaluate. The method was applied to a complex 

container terminal system and is compared to a traditional evolutionary method that optimizes the 

variables directly without considering the sequence by which these variables are optimized. 

 The first aim of this work is to develop a large-scale discrete-event simulation model for 

the newly constructed container terminal of Hamad’s new port of Qatar. The model captures the 

flow of vessels, containers, and external trucks as well as important resources including STS 

cranes, yard trucks, and yard cranes. The model was validated by comparing its output to historical 

data obtained from the current port of Doha. Two scenarios were executed in which resources were 

reduced to reflect a policy change. The results indicate that since the port is equipped with more 

resources than is necessary for the current demand levels and in anticipation of increase in future 

demands, the moderate reduction in resources did not impact the vessel turnaround time. However, 

significantly reducing the number of yard trucks will have a more profound impact on vessel 

turnaround time. 
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 After establishing the accuracy of the developed simulation model, the second aim of this 

work is to develop an optimization technique not addressed in the literature and investigate its 

utility using the simulation platform. For the resource allocation problem in the container terminal, 

the relative order (sequence) in which variables (resources) are optimized was investigated. This 

has played a significant role in identifying promising search regions to consider, and in turn, 

reduced the amount of computations necessary to reach optimal or near-optimal solutions. Results 

show that optimization of decision variables sequentially can indeed reduce the total computational 

time with solution quality that is comparable to traditional simulation-optimization methods. 

 Future research includes investigating the effectiveness of the developed sequence-based 

simulation optimization framework: (i) for different scenarios that reflect changes in the layout or 

the policies in the container terminal, (ii) for different optimization techniques (other than an 

evolutionary-based algorithm), and (iii) for a different complex real-world system (other than 

container terminals). 
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