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ABSTRACT

INDIVIDUAL DIFFERENCES AND USAGE OF LEARNER CONTROL

Katelyn J. Cavanaugh 
Old Dominion University, 2013 

Director: Richard N. Landers

Past learner control research has shown discrepant findings for hypothesized 

learning outcomes. In order to shed light on these inconsistent findings, this study 

investigated adult learners’ use of learner control features in an online training program, 

and examined the usage in relation to individual differences. A sample of participants 

recruited from a crowdsourcing website was given a high level of learner control, and 

their progress was tracked as they completed an online Microsoft Excel training program. 

It was hypothesized that learner behavior during training partially mediated the 

relationship between individual differences and learning outcomes in a high learner 

control training environment. Results indicated that the relationship between cognitive 

ability and learning outcomes was partially mediated by the usage of learner control 

features. Hypotheses regarding other individual differences were generally unsupported, 

possibly due to the context of the study: a voluntary training program completed by 

adults who were compensated with a relatively small amount of money. Future research 

on learner control should be conducted on employee samples or in-person.
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CHAPTER I

INTRODUCTION

Training in organizations has remained a prevalent topic in research, technology 

advancement, and practice in Industrial and Organizational Psychology (DeRouin, 

Fritzsche, & Salas, 2004). According to the American Society for Training and 

Development’s (2011) State of the Industry report, of over 400 U.S. organizations,

$171.5 billion was spent on employee training in 2010 (Green & McGill, 2011). On 

average, organizations spent $1,228 per employee that year, each of whom spent an 

average of 32 hours in training. Of the various training methods utilized, 29% were 

technology-delivered (Green & McGill, 2011). This trend toward increasingly computer- 

based training is of significant concern, especially considering the relative lack of 

research on this shift and its potential impact on training expenditures and learning.

Arthur, Bennett, Edens, and Bell (2003) conducted a meta-analysis on the effect 

of training design, identifying training delivery method as playing an important role in 

overall training effectiveness. Specific training delivery methods were compared, 

including lecture, audiovisual, discussion, self-instruction, programmed instruction, and 

computer-assisted instruction. Sample-weighted mean difference scores of effect sizes 

for learning due to delivery method for cognitive skills ranged from .20 to 1.56. For 

interpersonal skills, mean differences ranged from .78 to 1.44 standard deviations. The 

authors noted a wide range of effect sizes with few consistent findings for delivery 

method across skill types. These results warrant a further exploration of which methods, 

and which features of those methods, influence the effectiveness of employee training.
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Increasingly, organizations implement e-leaming methods to train employees, in 

the hopes that this method will reduce monetary and time costs while maintaining strong 

learning outcomes. Brown (2005) defines e-leaming as “the use of computers and 

networking technology for knowledge and skill building” (p. 465). This term describes 

instructional material accessed on an individual computer with the use of software as well 

as internet-based programs which can be accessed from any computer with a connection 

to the internet. The terminology is not universally agreed upon. Some researchers refer 

to online learning and e-leaming interchangeably, others distinguish the two due to the 

source of the content of the training material, and still others distinguish between 

differences in their contexts, access, connectivity, and flexibility (Moore, Dickson-Deane, 

& Galyen, 2011). Because e-leaming can be conceptualized as a broader term, 

encompassing all learning enhanced with electronic devices, the present thesis will focus 

on online learning specifically, which I will define as any training program delivered via 

the internet, accessible from any location with an available internet connection.

Online learning can provide numerous benefits to both employees and 

organizations. Employees can choose where and when is the most convenient to train, 

which may make it more efficient and cost-effective than traditional training approaches 

for many organizations (Bell & Kozlowski, 2010). Along with these organizational 

benefits, online learning can give trainees unprecedented control over their own learning 

process. The value of granting trainees control over the learning process, which is a 

training design feature called learner control, is widely debated, and evidence is mixed as 

to its effects. Some research has found that matching learners’ preferred instruction style 

to mode of instmction provides no benefits (Cook, Thompson, Thompson, & Thomas,
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2009; Hannafin & Sullivan, 1996; Pashler, McDaniel, Rohrer, & Bjork, 2009; Massa & 

Mayer, 2006), while others have found that matching preferences can provide learning 

benefits (Constantinidou & Baker, 2002; Freitag & Sullivan, 1995). Due to this 

controversy, it has been suggested there is a need for more fundamental research to 

“better understand what, how, and when” training works before making further broad 

conclusions (Salas & Cannon-Bowers, 2001, p.481).

Learner Control Defined

Users have different degrees of control in different online learning programs, and 

the types and degrees of control available can be conceptualized as continua. The creator 

of an online learning program chooses the extent to which a trainee’s learning experience 

can be changed. At the “low” end of each continuum is program control. In training 

incorporating program control, trainees follow a predetermined path that was decided 

upon by the creator of the training program; all decisions about order of and exposure to 

content are in the hands of the software, and therefore the training designer (Hannafin, 

1984; Kraiger & Jerden, 2007). On the other end of the continuum is learner control. In 

training incorporating learner control, trainees may customize certain aspects of their 

training experience.

Four types of learner control have been identified: pace, sequence, content, and 

advisory (Milheim & Martin, 1991; Tennyson, Park, & Christensen, 1985). In a recent 

meta-analysis, these four characteristics emerged as most commonly used in learner 

control programs (Kraiger & Jerden, 2007). Pace control enables learners to choose the 

pace of the training, which includes spending more time on sections of the learners’ 

choosing (e.g., more difficult material), and spending less time on other sections (e.g.,



4

easier sections). Sequence control permits learners to navigate through training sections 

in the path of their choosing, which may include completing topics out of order. Content 

control allows learners to decide which topics to learn, and which assessments to take 

during training. Lastly, advisory control allows learners to consult computer-generated 

advice about their progress through training. Because of the easier customizability, 

online training programs offer an ideal platform for learner control.

Because of these adaptable features, learner control provides learners with the 

option to focus on only the topics that are most relevant to them, to proceed through the 

training in the order they feel is most beneficial, and to spend more or less time on certain 

topics as they see fit (DeRouin, Fritzsche, & Salas, 2004). However, research suggests 

that not all learners exert control over their training effectively. Some studies show that 

learning outcomes increase when certain individuals are given learner control (Kinzie, 

Sullivan, & Berdel, 1988; Shyu & Brown, 1992), while others show that learning 

outcomes may actually decrease for some individuals when more learner control is given 

(Hannafin & Sullivan, 1996; Pollock & Sullivan, 1990).

Kinzie, Sullivan, and Berdel (1988) found that eighth-graders using a computer- 

based program to learn about solar energy learned more when they were allowed to 

control more aspects of their instruction. Both groups received pace control, advisory 

control in the form of feedback, and practice questions. In the learner control condition, 

students were also given sequence control, which allowed them to revisit past material 

after answering practice questions incorrectly. An average o f 35% of the material was 

revisited for those in the learner control condition. In the program control condition, 

students were required to revisit past material after answering a practice question
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incorrectly. Total time spent on the program did not differ by condition, but participants 

in the learner control condition scored higher on the posttest than students in the program 

control group. The authors suggested that being given some ability to make learning 

choices may intrinsically motivate students to learn.

Similarly, Shyu and Brown (1992) studied the learning outcomes from a learner- 

controlled computer-based training program containing a series of videos teaching 

origami (Japanese paper folding), a topic in which all participants had no experience. 

Undergraduate students were randomly assigned to either a learner controlled or a 

program controlled version of training. The learner control group was provided with a 

menu of segments and a suggested path, but could navigate through the program in any 

order, and could repeat or stop any segments of their choosing. In the program control 

group, subjects could repeat only the current video segment as many times as they 

wanted, but could not go back to view past segments. The group given learner control 

scored higher on the completion of an origami figure, as rated by expert origami judges. 

This difference between mean group scores was statistically significant. The learner 

control group also spent more total time using the training program, but the groups did 

not differ in pre- or post-training self-efficacy or attitudes toward instruction. Shyu and 

Brown also attributed these findings toward intrinsic motivation, and suggested that 

learner control should be integrated wherever feasible into procedural learning tasks.

In Hannafin and Sullivan’s (1996) study of high school students with no geometry 

experience, students participated in a computer-based geometry learning program, and 

researchers found no differences in learning outcomes between learner and program 

control training. Researchers measured the students’ preference for amount of
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instruction, and randomly assigned them to one of two conditions: a level of control 

matched their preference, or a level that opposed their preference. In the “lean” program 

version, participants were shown 180 screens, and could choose to add an additional 155 

optional screens to their own training program. In the “full” program version, all 335 

screens appeared (the same 180 screens and the 155 optional screens), and participants 

could choose to skip any of the 155 optional screens. Posttest scores did not differ 

significantly by full and lean versions, nor did posttest scores differ by study condition 

(matched or opposed to preference). Researchers considered a screen to be viewed when 

a participant remained on that screen for longer than one second, and students receiving 

the full version did view more optional screens, as the screens were automatically 

presented in the full condition. Students whose condition matched their preference chose 

to view significantly fewer screens than those unmatched. This is contradictory to past 

research on learning outcomes of adult employees; Freitag and Sullivan (1995) found a 

positive relationship between matching preferences for amount of instruction and 

learning outcomes for a sample of employees.

In a study of 152 seventh-graders, the relationship between learner control and 

types of practice questions was mixed (Pollock & Sullivan, 1990). Students were told 

that their achievement in a program about tarantulas would be included in their course 

grade for their science class. Groups were fully crossed by practice mode (recall and 

recognition), gender, and control (learner and program). All groups viewed all 

information screens, but the learner control group was able to skip four practice question 

sections that were mandatory for the program control group. The practice questions also 

included explanations for incorrect answers. Students in the learner control group opted
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to complete an average of 3.14 out of four possible practice sections. Students in the 

program control group scored significantly higher on recognition items than those in the 

learner control group, but there were almost no differences between groups on recall 

items. Because the optional practice question sections contained additional information, 

this was a form of content control. Giving control over content may be an ineffective 

tool to promote learning for students.

A meta-analysis by Kraiger and Jerden (2007) examined 32 studies that compared 

learner control to program control. Overall, the authors concluded that training with 

learner control resulted in slightly higher learning outcomes in comparison to programs 

without learner control. However the corrected weighted average d statistic of .19 had a 

95% credibility interval that included 0, suggesting that the true population correlation 

may be null. When broken down by subgroup, the authors did find positive and 

significant affects for learner control on learning in work-related tasks over educational 

tasks, and learners with no experience versus those with previous experience. In general, 

effect sizes for learner control on learning outcomes were quite small, though increase by 

publication date, suggesting that as online training programs become more advanced, 

learner control features may also become more effective. Hannafin (1984) first suggested 

that learner control does not provide benefits for all learners in all topics and situations, 

and the large variances found in the recent meta-analysis provide evidence for this. 

Kraiger and Jerden proposed that this may be due in part to many unknown variables 

within the trainees or training systems. With this in mind, they proposed a model of 

learner control in which learner control directly influences learning outcomes, learner 

affect, and attitudes. The relationships are moderated by training variables and learner
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variables. This yet-untested model seeks to account for some of the unexplained variance 

in learning outcomes by including learner characteristics (locus of control, goal 

orientation, and self-regulatory skills), individual characteristics (experience, motivation, 

job requirements, and innate factors), and training characteristics (system capabilities, 

pedagogical models, and organizational culture) in a model of learner control.

Kraiger and Jerden’s (2007) meta-analysis has been recently updated to include 

51 studies of learner control, bringing the total sample size from 2,655 to 4,563 

participants (Landers, Reddock, & Mogan, 2012). Again, researchers found the overall 

effect of learner control on learning was quite small, and did not reach statistical 

significance. Some moderating effects were found, however. When training programs 

enabled learners to skip content (exercising content control), learners had superior 

outcomes to those unable to skip content. When learners could add content, learner 

outcomes were poorer. This meta-analysis also found a larger effect on learning when 

pace control was present. No effects were found for sequence or advisory control.

A limitation to this stream of research is that the use of learner control is often 

assumed among learners to whom it is provided. Few of these studies directly examine 

behavior during training; accordingly, the extent to which learner control features are 

actually used is largely unknown. Because of this, it is unclear whether the learning 

outcomes are influenced by the option of having learner control or if they are influenced 

by actually modifying the training. Kraiger and Jerden (2007) hypothesize that the 

features of learner control are not equally salient to all learners. Thus, trainees may 

behave differently in response to the learner control options they are given. However, no 

empirical research has explored this possibility, so it is also conceivable that all learners
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given learner control will use the training exactly as it is prepared, not deviating at all 

from learners with program control. Examining the behavior that learners display during 

training may help to explain the inconsistencies in previous research results.

Usage of learner control features. No research to this point has tracked, timed, 

and analyzed participants’ every click through a training program to measure of the usage 

of learner control features when control is provided. When the use of learner control is 

too broadly measured, the variation between learners may be lost. When learner control 

training behavior is included, researchers typically measure total time spent on the 

training program or number of screens viewed, but not the time spent on each section or 

the order sections are completed. Learners who utilize learner control very differently 

may appear to be similar in the captured data, and any differences between their learning 

outcomes will remain unexplained. For example, many researchers assess learner choice 

by measuring time on task, which is the total amount of time spent in a training program 

(Kinzie, Sullivan, & Berdel, 1988; Shyu & Brown, 1992; Brown, 2001). This may be 

unwise, because total time on task is likely multidimensional, consisting of all learner 

behavior throughout a training program. For example, if one participant in a learner- 

controlled training program chose to skip an entire section but spent substantially more 

time on all other sections, that person’s total time would be similar to another participant 

who did not control pacing but spent the same amount of time on every section. While a 

time on task measure does measure the usage of learner control, it likely also contains a 

great deal of construct-irrelevant variance.

Thus, in the current learner control literature, researchers have made an untested 

assumption that all individuals utilize control features in a similar way. However,
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allowing a learner to exert control over a training program does not necessarily imply that 

they are actually exerting control. By explicitly measuring control-related behaviors for 

all types of control given, incremental variance in a learner control model can be 

explained.

Prior research capturing specific learner behavior during training and their effect 

on learning outcomes is limited. In one study of adult trainees, post-training performance 

was investigated for a study of 78 employees taking a learner-controlled online training 

program (Brown, 2001). The training program taught a problem-solving process 

important to the organization’s goals. Learner behavior was measured by total time spent 

on the training program and number of optional practice activities completed. Trainees 

spent an average of 500.08 minutes (SD = 106.98) on the training and completed an 

average of 84% of the available practice questions (SD -  11%). Given the standard 

deviations associated with these means, there was substantial variability in the way the 

participants interacted with the training program, although the actual usage of specific 

learner control features given is unknown. Additionally, the leap was made from learner 

behavior during training to learner choices made during training with a 6-item off-task 

attention post-training measure, asking learners to recall their off-task attention during 

training. Although there is certainly value in measuring participants’ perceptions of their 

past behavior, the assumption that this directly measures actual behavior or choices is 

questionable, due to the nature of self-reported measurement of this construct (i.e., 

memory and social desirability). Ideally, participants would be asked to report during 

training the reason why they are choosing to skip to the next section, or spend extra time 

on the current section. However, this experience would greatly differ from a typical
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training experience, especially in additional time and cognitive load. Objective learner 

behavior during training has never been measured objectively, and including this may be 

a key insight into training outcomes.

At present, it is unclear which feature or features of learner control provided to 

participants benefit learning. No single study has separately examined the types of 

learner control, and no theory or taxonomy exists regarding which type should affect 

learning. Kraiger and Jerden’s (2007) meta-analysis results indicate that pace and 

sequence control together show a positive relationship with learning, but content control 

shows no relationship with learning. However, Landers, Reddock, and Mogan’s more 

recent (2012) meta-analytic results reveal that sequence and advisory control show no 

significant relationships to learning. Surprisingly, the ability to skip content had a 

significant, positive relationship to learning outcomes, though the ability to add content 

or skip and add content did not affect learning. Because rather small effect sizes have 

been reported when types of control are examined individually, an investigation of the 

use of the use of all three types of control is warranted. Therefore, the usage of learner 

control features will be defined as the amount of control a participant has exerted over all 

types of control given throughout the training program. This measured variable will be 

computed as a standardized mean score for the use of all types of control.

Individual Differences and the Usage of Learner Control Features

Certain individual differences may influence the way that learners interact with 

learner-controlled training programs, and may help to explain these discrepant learning 

outcomes. If so, it is in an organization’s best interest to design the training geared 

toward those learners. Specifically, it would be beneficial for organizations to know
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whether or not to implement learner control in an online training program, as it may be 

helpful or hurtful for learning outcomes of certain people. Before any recommendations 

can be made, programs with learner control should be studied in relation to individual 

differences and behavior during training. Several individual differences appear relevant 

to learner control effectiveness based upon prior research.

Gully and Chen (2010) outline a framework of relevant individual differences 

which include stable, “relatively enduring characteristics” that affect behavior during 

training (p.6). These differences include capabilities, demographics, personality traits, 

and interests and values. Consequently, more global distal individual differences were 

chosen to investigate for the current study; experience, personality, goal orientation, locus 

of control, and cognitive ability. Although arguably important, transient and malleable 

individual differences such as motivation and self-efficacy are not included in the current 

model in an effort to provide a generalizable framework of individual differences which 

should impact learning.

Experience with training content domain and learner control usage. Kraiger 

& Jerden (2007) found that, when given learner control, trainees with no prior experience 

with the training content outperformed trainees with some experience. This unintuitive 

finding may be explained by examining differences between actual usage of learner 

control features, based on experience level. Inexperienced learners may use every 

resource available to them and exhibit behavior during training that positively affects 

learning outcomes (e.g., viewing all content that is made available to them, in the order it 

is presented by the designer of the training program). This training experience closely 

resembles a training program with low learner control. In contrast, learners experienced
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with the training material already may utilize control to spend less time on the training 

program in the interest of efficiency (i.e., not spending time on topics they already know) 

when they are given control over training (Shyu & Brown, 1992). Thus, task experience 

should predict the use of learner control.

Hypothesis la. Experience with the training content domain will positively 

predict the use of learner control features in training programs with learner control.

Big Five personality and learner control usage. Past research has shown that 

some of the Big Five personality traits are related to differences in how learners interact 

with training programs (Ones, Viswesvaran, & Dilchert, 2005). Neuroticism and 

agreeableness have been shown to have weak relationships with training outcomes, 

possibly due to non-linear relationships with performance (Barrick & Mount, 1991). 

Conscientiousness, openness to experience, and extraversion have been found to be 

consistently related to training proficiency (Barrick & Mount, 1991; Hough, 1992; 

Schmidt, Shaffer, & Oh, 2008). These relationships with training proficiency likely stem 

from differential behavior during training. Individuals that are high in conscientiousness 

tend to be planful, organized, hardworking, and persevering, and are more likely to 

achieve educational success (Barrick & Mount, 1991). Individuals that are high in 

openness tend to be creative and curious, and as a result are more likely to be active than 

passive in training (Goldberg, 1993; Barrick & Mount, 1991). Individuals high in 

extraversion, specifically ambition, initiative, and surgency, are more likely to use more 

features of training programs (Goldberg, 1993). Therefore, differences in these 

personality traits should influence behavior during learner-controlled training.

Individuals high in openness, conscientiousness, and extraversion should use more
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learner control features when they are available because of their increased tendency for 

being active during learning and showing initiative.

Hypothesis lb. Trainee openness will positively predict the use of learner control 

features in training programs with learner control.

Hypothesis 1c. Trainee conscientiousness will positively predict the use of 

learner control features in training programs with learner control.

Hypothesis Id. Trainee extraversion will positively predict the use of learner 

control features in training programs with learner control.

Mastery goal orientation and learner control usage. Goal orientation is a 

framework to describe differences in interpretation, experiences, and responses to 

achievement situations (Dweck, 1986; Nicholls, Cheung, Lauer, & Patashnick, 1989). At 

its inception, goal orientation was considered a two-dimensional construct: learning 

(mastery) goal orientation and performance goal orientation. The foundation of the two 

constructs lay in differing beliefs about achievement: a learner’s desire to understand the 

learning material or a learner’s desire to be evaluated as superior. Those with a learning 

goal orientation focus upon understanding the material. Those with a performance goal 

orientation focus upon demonstrating superiority of their own test-taking skill and ability 

over others (Nicholls, et al., 1989).

Recently, proponents of a three dimensional construct argue that performance 

goal orientation should be separated into performance-prove and performance-avoid 

(Brett & VandeWalle, 1999;- Elliot & Church, 1997; Porath & Bateman, 2006). In this 

three dimensional construct, mastery orientation refers to individuals who increase effort 

and persistence in achievement situations, employ “solution-oriented self-instruction”,



15

and believe that abilities are malleable (Brett & VandeWalle, 1999, p. 865). These 

individuals are more likely to seek feedback to gather information, and be proactive to 

enhance their own learning (Porath & Batemen, 2006). In a two-dimensional goal 

orientation construct, performance goal orientation includes both a desire for favorable 

judgments and a desire to avoid unfavorable judgments (Brett & VandeWalle, 1999). In 

a three-dimensional construct, individuals with a performance-prove goal orientation 

focus on performance, and believe abilities are rigid attributes; increasing effort would 

point out low ability, so emphasis is placed on appearing more competent than others in 

areas which they are competent (Brett & VandeWalle, 1999; Pintrich, 2000). Individuals 

high in performance-avoid goal orientation are also concerned with performance, but they 

are characterized as attempting to avoid negative evaluations and employing defensive 

behavior in order to avoid seeming incompetent (Button, Matthieu, & Zajac, 1996). This 

may result in a “maladaptive pattern of helplessness” in learning or achievement 

situations (Porath & Batemen, 2006, p. 186).

Goal orientation contributes to variability in what learners will attend to in 

training and how they will interact with training features. Button, Matthieu, and Zajac 

(1996) found that individuals high in mastery orientation are more focused when 

attempting to understand novel material or develop competence in training. A similar 

effect should be found in training programs that offer a high level of learner control; 

those high in mastery goal orientation should use more features of learner control to 

increase their exposure to new or difficult content while also decreasing their exposure to 

familiar or easier content.



16

Hypothesis le. Mastery goal orientation will positively predict the use of learner 

control features in training programs with learner control.

Locus of control and learner control usage. Locus of control refers to the 

tendency to attribute consequences of behavior to either internal or external causes 

(Collins, 1974). Rotter (1966) originally defined external locus of control as perceiving 

life events as not completely contingent upon a person’s own actions, but rather as “the 

result of luck, chance, fate, as under the control of powerful others, or as unpredictable” 

(p.l). Individuals with internal locus of control interpret life events as contingent upon a 

person’s “own behavior” or their “own relatively permanent characteristics” (p.l). 

Individuals high in internal locus of control tend to seek situations in which control is 

possible, exhibit better learning, pursue information actively, and are more likely to 

control or manipulate their surroundings than individuals high in external control 

(Spector, 1982). Empirical research has supported this theory. Kabanoff and O’Brien 

(1980) found that those high in internal control are more likely to choose leisure activities 

that allow more personal control. In a laboratory experiment of behavior in a competitive 

two-person game, participants were permitted to rely on their opponent or on themselves 

to score points (Julian & Katz, 1968). Individuals high in external control were more 

likely to rely on their opponent, and high internal control individuals were more likely to 

rely on themselves, even when the opponent might have earned more points.

Based on the locus of control literature, Spector (1982) asserted that employees 

higher in internal control are expected to exert more effort in situations in which they 

have more control. This is because those high in internal control are more likely to look 

internally for direction, whereas high external individuals are more likely to look to
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others for direction. In fact, those high in internal locus have been shown to exert more 

effort during training because they are more likely to seek control over their learning 

environment, Noe and Schmitt (1986) report that internal locus of control positively 

related to self-reports of within-training exploratory behavior. Similarly, Lied and 

Pritchard (1976) found that internal locus of control correlated with self and trainer 

ratings of effort in an Air Force training program. Because locus of control relates to 

constructs salient to employee behavior in training, this is an important variable to 

include in an examination of the extent that learners use learner control features in online 

training. Internal locus of control should positively impact the extant that learners utilize 

control.

Hypothesis If. Internal locus of control will positively predict the use of learner 

control features in training programs with learner control.

Cognitive ability. Cognitive ability is a “very general mental capability 

that., .involves the ability to reason, plan, solve problems, think abstractly, comprehend 

complex ideas, leam quickly, and leam from experience” (Gottfredson, 1997, p. 13). The 

impact of general cognitive ability on learning is widely supported by meta-analyses in 

several contexts, including graduate education (Kuncel, Hezlett, & Ones, 2001), lab 

studies of skill acquisition (Ackerman, 1987), and on-the-job training performance 

(Schmidt, 2002). Because of its strong impact on learning outcomes in a wide variety of 

settings, it should certainly be explored in relation to behavior during the learning 

process.

Research shows that cognitive ability predicts not only learning and performance 

outcomes, but is correlated with constructs that should impact behavior before learning is
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even assessed. Several of these correlates are relevant to behavior in an online learning 

environment with a high level of learner control. These correlates include physiological 

constructs such as the ability to perceive brief stimuli, neural processing speed, and motor 

skills (Ree & Carretta, 2002). Online training programs present stimuli (learning 

material) that must be perceived and processed by the learner while simultaneously 

progressing though the training program by physically moving and clicking a mouse. 

Because each of these constructs is positively related to cognitive ability, those higher in 

cognitive ability should be able to interact more with features of learner control in online 

training.

Hypothesis Ig. Cognitive ability will positively predict the use of learner control 

features in training programs with learner control.

Learner Control Usage and Learning Outcomes

Much of the past research on learner control compares learning outcomes between 

program and learner control groups; however, few researchers have studied the behavior 

that learners display during training enabled by learner control and the ultimate impact of 

their behavior on learning. Kraiger and Jerden (2007) hypothesize that the features of 

learner control are not equally salient to all learners. Thus, trainees may respond 

differently to the learner control features they are given. Because participant behavior 

has only been measured very broadly, deviation from program control may have gone 

undetected by researchers, although it may be an important influence on learning 

outcomes.

Learning outcomes. In Kraiger and Jerden’s (2007) meta-analysis, learner 

control studies were coded as having procedural or declarative learning outcomes. The
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authors argued that they found different effects of learner control by outcome. However, 

the differences they found were not statistically significant from each other. Campbell 

and Kuncel (2002) argue that a breakdown between declarative and procedural 

knowledge is not a useful distinction in training, because the two are difficult to separate 

in practice. Instead, they argue that “knowledge” and “skill” better describe the 

hierarchical learning outcomes that current assessment tools can distinguish between. 

Increases in knowledge could include labels, facts, rules or procedures, plans and goals. 

An increase in observable skill would be applying that knowledge to solve a problem or 

accomplish a goal (Campbell & Kuncel, 2002).

A critical feature of training design is that the training program should allow or 

induce the learner to actively create the knowledge or skill being trained (Campbell & 

Kuncel, 2002). If the features of learner control are used as a means to motivate the 

learner to actively produce the capability being trained, then using learner control should 

lead to improved learning. Support for this can be found in the learner motivation and 

active learning literature. Colquitt, LePine, and Noe (2000) found in their meta-analysis 

that motivation to leam positively predicts increases in both knowledge and skill, and 

explained incremental variance in both outcomes beyond the effects of cognitive ability. 

According to Bell and Kozlowski (2010), active learning “provides individuals with 

significant control over their learning” and that inducing active learning is associated 

with more positive learning outcomes (p. 265). Therefore, if  motivation and active 

learning are indicated by increased usage of learner control, learning should be higher for 

those learners that choose to use learner control features.
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Theoretically, the usage of each type of learner control should indicate a greater 

degree of motivation and active learning. The utilization o f sequence control indicates 

that the learner is actively participating in the format of the training program. Utilizing 

pace control indicates that a learner is spending more time on more difficult or unfamiliar 

topics, or is spending less time on easier or familiar topics. Utilizing content control to 

skip sections that the learner already knows or add learning material when a topic is 

interesting or difficult, should also increase learning. It may seem counterintuitive that 

spending less time or viewing less content will predict higher learning outcomes; 

however, in Landers, Reddock, and Mogan’s (2012) meta-analysis of learner control, 

studies of learner control with the option to skip content produced stronger, more positive 

effects on learning when compared to studies with the option to view more content or 

both skip and view more content. A possible explanation for this may be that viewing 

more information than necessary may cognitively exhaust a learner. Overall, exerting 

greater control over learner control features should result in increased learning outcomes. 

As previously discussed, few studies examine the extent to which learners actually utilize 

learner control features during training. When learner behavior was examined broadly, 

significant incremental variability in learning was explained above pre-training 

motivation (Brown, 2001). Together, time spent training and number of optional practice 

activities explained an additional 15% of the variance in posttest knowledge scores over 

pretest knowledge (Brown, 2001). This suggests that the utilization of certain learner 

control features during training should predict learning outcomes. Being able to utilize 

control over a training program should enable a learner to customize their training
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experience to their specific learning preferences. Thus, learners that do exert control over 

a training program should leam more.

Hypothesis 2. The usage of learner control features will positively predict 

learning outcomes.

Usage of Learner Control Features as Mediator

The relationship between learner control and learning outcomes varies widely in 

the current research literature. Having a high level of learner control in a training 

program has led to poorer, equal, and superior learning outcomes in different studies. A 

viable explanation for these discrepant findings may be that researchers studying learner 

control have largely neglected to include individual differences relevant to both training 

contexts and learner control. Past research indicates that that there are distinct 

relationships between certain individual differences and learning outcomes in training 

situations (Colquitt, LePine, & Noe, 2000; Gully & Chen, 2010). Previously, Noe (1986) 

argued that individual attributes such as locus of control, motivation, and attitudes are 

crucial factors in the effectiveness of training. In a meta-analysis of training motivation, 

Colquitt, LePine, and Noe (2000) found that individual characteristics (e.g., personality, 

locus of control, and cognitive ability) significantly predict behavioral and learning 

outcomes in training. The authors theorize that these individual differences broadly 

affect pre-training motivation, behavior exhibited during training, and performance after 

training. There is no compelling reason to exclude learner behavior exhibited during 

training from this model; however, this has been ignored in the current learner control 

literature.
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More recently, Gully and Chen (2010) agree that this still holds true; most 

empirical studies incorporate few, if any, individual characteristics into their theoretical 

frameworks. Therefore, little evidence exists to help understand how individual 

differences promote learning in which circumstances. Gully and Chen (2010) propose 

that studying training effectiveness in an Attribute-Treatment Interactions (ATI) 

framework will provide a deeper understanding of training design effectiveness. In an 

ATI framework, certain training delivery systems and designs may only be effective for 

some individuals, depending on their specific characteristics (Gully & Chen, 2010). 

Instead of determining whether a specific training design is or is not effective, a more 

critical goal is to determine which aspects of a training environment will allow optimum 

training outcomes for which individuals.

Gully and Chen’s (2010) proposed ATI model posits that the relationship between 

individual differences and learning is mediated by intervening mechanisms, which 

include several cognitive processes such as information-processing, emotion regulation, 

attentional focus and effort allocation. The relationship between trainee characteristics 

and learning outcomes is also moderated by treatments, training design features, and 

situational characteristics. Learner control can be considered a training design feature 

because the creator of the program decides upon the types and level of learner control a 

training program will provide to the learner, and this will be consistent across all learners. 

However, the usage of learner control should not be considered a feature of training 

design because it is likely that learners engage in dissimilar behaviors when learner 

control is given. The usage of learner control should instead indicate varying levels of 

those intervening mechanisms (e.g., attention and effort allocation), a mediator in the
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individual differences and learning relationship. Thus, the usage of learner control will 

be tested as a mediator in the relationship between individual differences and learning.

A moderating relationship is not predicted, because individual differences have 

been shown to directly predict learning in typical training programs with very low levels 

of learner control, or none at all (Schmidt, Shaffer, & Oh, 2008). The use o f learner 

control features should not change the direction or strength of the relationship between 

individual differences and learning, but instead should partially explain why certain 

individuals leam more. Although the distal individual differences proposed in the model 

should directly predict learning outcomes, behavior during training resulting from those 

individual differences likely explains a portion of that relationship. If a learner does not 

exert control over features in training program, that learner experiences the same content 

as a learner without control, leaving only the broad effect of individual differences as 

predictors of learning. Thus, partial mediational relationships are proposed: individual 

differences predict training outcomes, but this relationship is partially mediated by the 

usage of learner control features. In the following sections, the specific mediation 

implied by each training-relevant individual difference will be discussed.

Experience with training content domain. As previously mentioned, Shyu and 

Brown (1992) found differences in procedural learning outcomes between a learner 

control group and a program control group in a sample of undergraduates with no 

previous task experience (origami). Learners with no experience learned more when 

given learner control. Similarly, Kraiger and Jerden found in their 2007 meta-analysis 

that learners with no experience in the training content leam more. These findings in a 

learner control context stand in direct opposition to previous computer training research.
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Prior experience using software on computers has been shown to positively predict 

learning in a variety of software training programs (Gist, Schwoerer & Rosen, 1989; 

Martocchio & Webster, 1992; Webster & Martocchio, 1995). Gist et al., (1999) 

measured pre-training computer experience by the number o f years using computers 

before a training program for a financial software program. Experience positively and 

significantly correlated with post-test performance at r = .38. Martocchio and Webster 

(1992) measured computer experience with five self-rated items regarding computer 

skills, experience, typing skills, and computer usage. Computer experience positively 

and significantly predicted learning after completing a training program on the use of 

WordPerfect, and accounted for 8% of the variance in learning. Similarly, Webster and 

Martocchio (1995) measured pre-training experience specific to the usage of a Macintosh 

construction software program taught during training. Experience with that program and 

similar programs positively and significantly predicted learning in an SEM model 

(standardized direct effect was .21).

The discrepancy of the findings for the relationship between experience and 

learning may be partially explained by the mediating role of learner behavior.

Experience level should affect learning outcomes directly but should also affect how 

much control learners exert during training. If more experienced learners utilize more 

learner control features in the interest of efficiency as hypothesized, this should lighten 

the cognitive load of training. Working memory is negatively affected by extraneous 

cognitive load, which may include material an experienced trainee is already familiar 

with (Sweller, vanMerrienboer, & Paas, 1998). If the use of control allows learners to 

spend less time on or skip sections in which they are already familiar, this should
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positively affect learning outcomes. Thus, including learner behavior in the hypothesized 

model should explain more variability in learning outcomes.

Hypothesis 3a. The relationship between experience and learning outcomes will 

be partially mediated by the use of learner control features.

Big Five personality. Personality has only recently been studied in the context of 

learner control research, but this preliminary research supports that certain personality 

traits influence the relationship between learner control and training performance. 

Individuals high on both of these traits exhibited better performance in a high learner 

control training condition, while those individuals low in openness and extraversion 

exhibited better performance in low learner control (Orvis, Brusso, Wasserman, & Fisher, 

2011). Conscientiousness was not found to significantly interact with learner control, 

nor did it directly predict performance, but the authors speculated that the short length 

and low complexity of their particular training program did not allow sufficient 

opportunity to display behaviors related to conscientiousness such as perseverance and 

planning. Small effect sizes were reported for all three personality traits to predict 

learning outcomes for learner control (Orvis, et al., 2011). This may be because these 

traits directly relate to learning outcomes, and additionally affect learning through the 

usage of learner control features, which was unmeasured. More variability in learning 

outcomes may be explained by the effect of personality through behavior in training. For 

example, a learner high in any of these traits is already more likely to have higher 

learning outcomes. But because the learner is likely to interact with a training program 

more than a learner low in those traits, as measured by the use of learner control features, 

those different actions should help explain the increase in their learning outcomes.
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Hypothesis 3b. The relationship between openness and learning outcomes will be 

partially mediated by the use of learner control features.

Hypothesis 3c. The relationship between conscientiousness and learning 

outcomes will be partially mediated by the use of learner control features.

Hypothesis 3d. The relationship between extraversion and learning outcomes will 

be partially mediated by the use of learner control features.

Mastery goal orientation. Findings from past training research suggest that 

mastery goal orientation should affect learning outcomes directly and through behavior 

displayed in training (Button, Matthieu, & Zajac, 1996; Porath & Bateman, 2006). Meta- 

analytic results also show that mastery goal orientation is positively related to learning 

(Payne, Youngcourt, & Beaubien, 2007). However, these findings do not consistently 

transfer to a learner control context. In a study of undergraduate students, Schmidt and 

Ford (2003), found that mastery orientation positively related to skill-based but had no 

relationship to declarative knowledge. In a sample of employees taking a high learner 

control training program, Brown (2001) found that those high in mastery orientation had 

unexpectedly lower learning outcomes, and that mastery orientation had a significantly 

negative relationship with the number of optional practice questions competed during 

training. However, mastery orientation had a significantly negative relationship with 

self-reported off-task attention. Brown (2001) speculated that because the employees 

were told that they would have access to the training material after the study, those high 

in MGO may have become familiar with the process as a whole, spent less time training 

and learning at their first introduction to training, and planned on using the training more
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afterward. He also suggests that the effects of MGO on learning may be mediated by 

behavior during training (Brown, 2001).

Following Brown’s (2001) suggestion for a mediating model, it is possible that 

learners high in MGO were using more learner control features, but planned to leam 

more over time, not in just the first single session. Although MGO was negatively 

correlated with practice activities, this could actually indicate a form of content control; 

skipping exposure to content by completing fewer optional practice activities. Including 

the usage of all three types of learner control as a mediator between MGO and learning 

likely explains more variance in learning outcomes, especially in a training program in 

which participants will be unable to return to the training materials. Thus, learners high 

mastery goal orientation should utilize more features of learner control during the training 

program in the current study in order to increase their knowledge in the content of the 

training course, which will ultimately increase learning outcomes.

Hypothesis 3e. The relationship between mastery goal orientation and learning 

outcomes will be partially mediated by the use of learner control features.

Locus of control. Spector (1982) suggested that performance in training could be 

predicted by locus of control in situations where control can be attempted by the trainee. 

This belief has been supported empirically in studies of job performance, based on the 

theory that those higher in internal locus of control are more likely to believe that 

performance is the result of personal efforts. In a study of naval personnel, employees 

high in internal control scored higher on both effort and performance (Broedling, 1975). 

Meta-analytic evidence also supports that internal locus of control is positively correlated 

with job performance (Judge & Bono, 2001). Because those high in internal locus should
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also be more likely to believe that learning is based on their own personal control and 

effort, these findings from job performance should transfer to training performance both 

directly and through behavior during training. Researchers in education have found that 

website usage and locus of control correlate positively with course grades. In a study 

examining the predictors of class performance in a Web-based undergraduate Statistical 

Methods in Psychology course, Wang and Newlin (2000) found that those who used the 

course website more frequently (e.g.., logged in, read posts, wrote posts) and those higher 

in internal locus performed better in the class overall. Though correlations between 

website usage and locus of control were not reported, it is possible that those higher in 

internal locus were more likely to be using features of the website more frequently, and 

this in turn increased class performance.

In a learner control training context, locus of control has only been measured in 

one study examining learning outcomes, which did not measure learner behavior in 

training (Chang & Ho, 2009). Locus of control was measured for two classes of college 

freshmen. One class was given program control and the other was given learner control 

online language learning programs to complete. The learner control group scored better 

than the program control group on the posttest, but locus of control did not directly 

predict learning outcomes (Chang & Ho, 2009). However, this lack of prediction may be 

due to its measurement. Locus of control was assessed by an adapted questionnaire 

regarding locus of control for academic responsibility, and participant locus of control 

was dichotomized into internal or external locus labels rather than examining locus of 

control as a continuum.
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With better measurement of locus of control, previous theory and empirical 

evidence suggest a direct relationship should emerge. More critically, this relationship 

should be mediated by behavior in training, because learners high in internal locus should 

attribute learning to their own behavior, and thus be more likely to use the features 

provided in a training program.

Hypothesis 3f. The relationship between locus of control and learning outcomes 

will be partially mediated by the use of learner control features.

Cognitive ability. A large body of research supports the claim that general 

intelligence predicts learning. Kuncel, Hezlett and Ones (2004) go so far as to claim that 

cognitive ability is a “universal predictor of job training success” (p. 149). A multitude 

of individual studies as well as meta-analytic evidence indicate that cognitive ability 

positively and strongly influences knowledge and skill acquisition (Colquitt, LePine, & 

Noe, 2000; Hunter & Hunter, 1984; Ree & Earles, 1991). Based on previous research in 

the area, Colquitt, LePine and Noe (2000) conclude that the reason cognitive ability is 

such a large influence on learning is based in differences in information processing 

capacity. An online training environment is a perfect example of a situation in which 

differences in information processing capacity should emerge. Any online training 

program contains an abundance of information that must be recalled later. Cognitive load 

should be increased further when trainees are given control over the pace, sequence, and 

content of the information. Not only should those higher in cognitive ability be more 

equipped to use control, but they should also benefit the most from using control because 

of increased information processing capacity. Because those higher in cognitive ability 

have higher information processing capacity, they should be able to leam more quickly
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both based on differences in cognitive ability but also in an increased ability to utilize 

control.

Hypothesis 3g. The relationship between cognitive ability and learning outcomes 

will be partially mediated by the use of learner control features.

The Present Study

The hypotheses described above are depicted in Figure 1. The purpose of this 

study is to test this model when learner control is present. Past learner control research 

has shown discrepant findings for hypothesized learning outcomes. This study is the first 

to examine adult learners’ use of learner control features in detail, and look at those 

learner behaviors in relation to individual differences and learning outcomes.

In the current study, all participants were given a high level o f learner control, and 

their progress was tracked as they completed an online Microsoft Excel training program. 

Learners had pace control, content control, and sequence control. The usage of learner 

control was measured individually for each type of control; the exertion of pace, content, 

and sequence control, and the extent to which each is exerted. If pace control was 

exerted, the participant may have been spending more time or less time than other 

participants in each section. If content control was exerted, the participant may have been 

viewing more or less content during the training program. The exertion of sequence 

control was measured by use of navigational buttons. Pre-training knowledge was 

measured to serve as a control variable in order to account for inter-individual variation 

not due to learner behavior. Learning outcomes were measured by performance on two 

posttests: one measuring knowledge about Microsoft Excel and one measuring skills in 

Microsoft Excel. This study used a sample of participants recruited from a
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crowdsourcing website. It was hypothesized that learner choices partially mediate the 

relationship between individual differences and learning outcomes in a high learner 

control context.

Experience

Pace

Skills

Content

Sequence

Knowledge

Figure 1. Proposed model o f experience and learner control usage.
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Figure 2. Proposed model o f openness and learner control usage.
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Figure 3. Proposed model o f conscientiousness and learner control usage.
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Figure 4. Proposed model o f extraversion and learner control usage.
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Figure 5. Proposed model o f internal locus and learner control usage.



34

MGO

Pace

Skills

Content

Sequence

Knowledge

Figure 6. Proposed model of MGO and learner control usage.
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Figure 7. Proposed model o f cognitive ability and learner control usage.
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CHAPTER II

PILOT STUDY

Learner control has not been studied extensively in working adult samples, and it 

is unclear how well findings from adolescent and undergraduate students will generalize 

to working adults. Past research shows that adult learners and children may leam 

differently (Kuhn & Pease, 2006). This finding causes uncertainty about the 

generalizability of using younger student populations, including many of the studies 

found in Kraiger and Jerden’s (2007) meta-analysis. Kraiger and Jerden conclude that 

learner control is more effective in learning work-related topics than educational topics 

but support this with a very small work-related sample. Additionally, the authors suggest 

that gains in learning due to learner control occur because learner control allows 

motivated learners to customize their own learning experience to accomplish specific 

goals. Employees may be more likely than students to be motivated if skills learned in 

training will directly apply to their job. Brown and Ford (2002) further attest that 

workplace learning is different from educational learning because employees need rapid, 

on-demand training that is easily accessed from different locations, and focuses on 

specific material for immediate job application. Based on the differences between 

employee and student learning, an alternative solution to studying learner control is 

proposed.

A contemporary internet phenomenon called crowdsourcing has already been 

utilized for organizational purposes but may also allow access to a viable sample of 

working adults for research. Broadly defined, crowdsourcing is the “outsourcing of tasks 

to the general internet public” (Kleemann, Vob, & Reider, 2008, p. 5). Organizations



36

have used crowdsourcing as an alternative to hiring temporary employees for a wide 

range of purposes. The most common purposes are consumer product development, 

design and configuration, specifically defined tasks, open calls, and consumer profiling, 

product rating. Notable examples of soliciting work through crowdsourcing include input 

on Fiat car design, idea generation for new Dell technologies, and open calls for 

community and amateur news reporting for local and national newscasts and websites 

(Kleemann, Vob, & Reider, 2008). Recently, social science researchers have looked to 

crowdsourcing for participant recruitment. Operationally defined for research, 

crowdsourcing is “the paid recruitment of an online, independent global workforce for 

the objective of working on a specifically defined task or set of tasks” (Behrend, Sharek, 

Meade, & Wiebe, 2011, p. 801). Although crowdsourcing has only recently started to be 

used as a means for research, early evidence suggests that it may be a viable approach to 

recruit participants and collect data for social science research (Behrend et al., 2011).

Generally, participant samples recruited from the internet allow researchers to 

access a broader and more diverse group of people than undergraduate students 

(Dandurand, Shultz, & Onishi, 2008), and it seems that this may also hold true for 

crowdsourcing websites. Research has shown that participants recruited from 

crowdsourcing websites are somewhat similar to those recruited from undergraduate 

Psychology research pools. Both populations are motivated primarily by extrinsic 

factors: minimal financial compensation for crowdsourced participants and course credit 

for undergraduate participants. Effect sizes for differential functioning of Big Five 

personality and goal orientation items were found to be quite small. However, the 

populations differ in other areas. In an empirical study comparing undergraduate
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participants to crowdsourcing participants, crowdsourced participants were found to 

better generalize to employee populations because they were more representative of 

working adult population than undergraduates. They were more likely to be employed, 

have relevant work experience in a career-oriented job, and were also more ethnically 

diverse (Behrend et al., 2011). Amazon Mechanical Turk (mTurk) is the most well- 

known crowdsourcing website (Kleeman, Vob, & Reider, 2008). It is a self-proclaimed 

“marketplace for work” (Amazon, 2011). “Requestors” create a job request, which 

includes a title, task description, relevant keywords, compensation amount for task 

completion (typically between $0.01 and $13.00), how many “Workers” are needed, the 

expiration, and amount of time before the task completion will be approved. The 

Requestor can also filter the job request to specific Workers by country location and 

approval rate, which reflects a worker’s quality on previous tasks according to 

Requestors. Workers sign up to complete these job requests or “Human Intelligence 

Tasks” (HITs) at their convenience. Individuals 18 years and older can sign up for a free 

Worker account, allowing access to view and participate in HITs. Each worker is only 

allowed one account. To make sure of this, an alphanumeric worker ID tracks 

performance and payment records, allowing reasonable certainty that a Worker will only 

complete a HIT once. Tasks are completed in exchange for pre-determined financial 

compensation. If the task is not completed sufficiently, the Requester may choose to 

reject the work and not pay the worker, which will be reflected in a lower approval rating 

for the Worker and also negatively affect Requestor statistics.

Researchers have begun using mTurk to recruit participants for research in 

psychology (e.g. Sharek, 2010; Cole, et al., 2009), but concerns remain regarding the
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viability of the data collected from Turk Workers. Though initial research seems 

promising about the viability of mTurk workers as research participants, there are risks 

and possible downsides. Behrend and colleagues (2011) found that data from mTurk 

workers and undergraduates did not significantly differ in completeness or quality, study 

completion time, or word count of open-ended questions. However, mTurk workers were 

significantly higher in social desirability scores, internet knowledge, and computer 

knowledge and experience. More empirical studies using crowdsourced workers are 

needed in order to best utilize crowdsourcing tools for research, and this study will also 

contribute to our understanding of such samples. Thus, a three-part pilot study was 

conducted in order to examine relevant variables and potential issues with participation 

data collected from Amazon Mechanical Turk. This was done with the purpose of 

answering three questions before conducting the main study. First, do learning outcomes 

vary sufficiently in an mTurk sample to allow modeling of that variance? Second, do 

mean differences exist between undergraduate and mTurk samples on key study 

variables? Third, does the degree of monetary incentive influence mTurk participation 

levels?

Method

Participants. A power analysis was conducted for the pilot study using a 

computer program, G*Power 3 (Faul, Erdfelder, Lang, & Buchner, 2007). Using an a 

priori one-way ANOVA for three groups, with an alpha level of .05 and power of .95, the 

power analysis indicated that a sample of 46 participants would be required to find an 

effect. In order to account for poor quality or missing data, data were collected from 59 

participants. Data collected from mTurk participants were also compared to data from a
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sample of 40 undergraduates which was collected for a separate study using the same 

training materials (Callan & Landers, 2012).

Frequencies for pilot participant characteristics can be found in Table 1. 

Inspection of these frequencies allowed insight into who signed up for the study on 

mTurk. The majority of participants were Caucasian (81.4%) and female (61.0%). Most 

participants reported attending school post high school; 30.5% had completed some 

college, 11.9% obtained an Associate’s degree, and 30.5% obtained a Bachelor’s degree. 

Most mTurk Workers reported they were not currently enrolled in school (76.3%), but 

most were employed (71.2%). Additionally, mTurk Workers reported an average age of 

33.86 years (SD = 10.02).

Materials. The Microsoft Excel training program used in this pilot study was 

adapted from a training program created for training research and has been used in 

several research studies investigating self-regulation and computer-based training 

programs (Sitzmann, 2012; Sitzmann & Johnson, 2012; Sitzmann & Ely, 2010;

Sitzmann, Ely, Bell, & Bauer, 2010). The original materials consisted of a four-hour 

program comprised of four modules with three topics each, and contained terms and 

visual representations (screenshots of Microsoft Excel) at each step. This training 

program was converted into an online format and reduced to one hour for use in another 

study of learner control (Callan & Landers, 2012). The one hour training includes one 

topic from each of the four modules (see Appendix C for an outline of these topics). A 

shorter training program is preferable because the present study is not geared toward 

employees completing a mandatory training program. The topics presented include
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Table 1

Frequency Table of mTurk Demographics for Pilot Study

Variable n %

Ethnicity

African American 3 5.1

Asian 4 6.8

Caucasian 48 81.4

Other 4 6.8

Gender

Male 22 37.3

Female 36 61.0

Other 1 1.6

Education Level

High school diploma 5 8.5

Some college 18 30.5

Associate's degree 7 11.9

Bachelor's degree 18 30.5

Master's degree 9 15.3

Doctoral degree 2 3.4

Currently Enrolled in School

Yes 14 23.7

No 45 76.3

Currently Employed

Yes 42 71.2

No 17 28.8

n = 59
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Microsoft Excel basic definitions and commands, basic data analysis, creating graphs, 

and creating and using macros.

The Microsoft Excel training program was presented in a high learner control 

format. Participants were provided sequence control in that they were given a 

navigational menu, present on each page of the training, with an ordered list of topics. 

Participants could move through each screen in the order laid out in the navigational 

menu by clicking the “Next” button, they could proceed backwards by clicking the 

“Previous” button , or they could choose to view selected topics from the navigational 

menu in any order by clicking on links associated with each topic. Participants had pace 

control in that they navigated through the training program at the pace of their choosing, 

moving as slowly or as quickly through the topics as they chose. Finally, participants had 

content control because they were able to remove content if  they chose to skip large or 

small sections of material; they were not required to view every screen of the training. 

Participants were also able to add content to the training; the navigation menu contained 

links to relevant Excel websites related to each topic. Participants did not have advisory 

control. Learner control features were described in detail to participants using text 

instructions as well as an instructional video on how to use these features immediately 

before starting the training program (see Appendix E for text instructions and a 

transcription of the video).

Measures. All pre-training measures are available in Appendix A, whereas post­

training measures are available in Appendix D.

Conscientiousness, openness and extraversion. Saucier’s (1994) Mini-Markers 

scale were used to measure conscientiousness, openness, and extraversion. Each trait is
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assessed with eight adjectives, and rated on a five-point Likert scale ranging from 1 

(extremely inaccurate) to 5 {extremely accurate). The scale was chosen in an effort to 

provide a robust and reliable measure of personality and to reduce participant completion 

time and cognitive effort prior to training.

According to Saucier (1994), factors derived from Mini-Markers data correlate 

from .92-.96 to Goldberg’s (1993) 100 item Big Five scale. Other researchers report 

correlations ranging from ,56-.85 (Palmer & Loveland, 2003). The Mini-Markers have 

shown acceptable internal consistency in previous studies, with coefficient alpha 

estimates ranging from .75-.90 for each scale in those measurement contexts. 

Additionally, it has shown similar predictive validity to Goldberg’s 100-item personality 

inventory for predicting academic achievement in a sample of 437 undergraduates 

(Dwight, Cummings, & Glenar, 1998). Palmer and Loveland (2003) provided evidence 

for construct validity by comparing correlations between the two scales to other criteria 

such as life satisfaction, emotional intelligence, age, and gender, finding similar criterion- 

related validities across the Mini Markers and Goldberg’s 100 item scale. In the pilot 

study, coefficient alpha was high for Saucier’s measures of conscientiousness (a  = .87), 

openness (a  = .82), and extraversion at (a  = .90).

Mastery goal orientation. To assess goal orientation, VandeWalle’s (1997) scale 

was used. Each item is rated on a five-point Likert-type scale ranging from 1 {strongly 

disagree) to 5 {strongly agree). Mastery goal orientation (MGO) is measured with five 

items. An example item measuring mastery goal orientation is “I am willing to select a 

challenging work assignment that I can work from”. The scale showed acceptable 

internal consistency in a sample of 239 undergraduates, and test-retest reliability in a
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separate sample of 53 undergraduates. Coefficient alpha was estimated at .89, and test- 

retest reliability was estimated at .66 after a three month time lapse (VandeWalle, 1997). 

Although the test-retest reliability appears low, Payne et al. (2007, p .141) found “no 

substantial differences” between the VandeWalle (1997) scale and the other two most 

commonly used goal orientation scales (Button et al., 1996; Elliot & Church, 1997), 

when assessing measure as a possible moderator. Further, Payne et al. (2007) concluded 

that VandeWalle’s scale produced stronger relationships between goal orientation and 

task performance, feedback seeking, and self-set goal level. In the pilot study, coefficient 

alpha for mastery goal orientation was high (a  = .88).

Internal locus of controL To assess locus o f control, a 15-item measure was 

taken from Duffy, Downey and Shiflett (1977). This scale was developed as a response 

to Collin’s (1974) adaptation of Rotter’s original (1966) scale of locus of control into a 5- 

point Likert scale. The scale used for this study consists of the three highest loading 

items for each of the five internal-external scale factors. The five factors are: predictable- 

unpredictable world, just-unjust world, politically responsive-unresponsive world, easy- 

difficult world, and friendly-hostile world. Item loadings reported range from .43 to .74, 

and coefficient alpha for the total scale was reported at .82. Certain subscales correlated 

moderately to measures of perceived supervisor quality, ambiguity intolerance and 

Machiavellianism (Duffy, Downey & Shiflett, 1977). In the pilot study, coefficient alpha 

for internal locus of control was low but approximately at the lower bound of acceptable 

reliability (a  = .68).

Biographical information and content experience. The final questionnaire in the 

pretest measures asked participants to report demographics such as age, education,
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gender, and employment status. Additionally, five questions were asked regarding 

experience with Excel. The Excel experience measure included questions about 

familiarity, importance for work or other reasons, and frequency of use for work or other 

reasons. These questions were taken from previous research regarding learner control 

and modified for Excel (Freitag & Sullivan, 1995). Coefficient alpha for experience was 

acceptable (a  = .75).

Pretraining knowledge. A 24-item multiple choice pretest regarding Microsoft 

Excel was administered prior to the start of the training program. Pretest scores were 

used as a control variable in order to examine the training program’s effects on learning 

Microsoft Excel. The questions were used by Sitzmann et al. (2010) and Sitzmann and 

Ely (2010) to measure knowledge gains in Excel. The test includes items regarding both 

general and specific information from each of the topics presented in the training 

program. The same test was used for the post-training knowledge test. The KR-20 

estimate of reliability was strong (a  = .79).

Cognitive ability. General cognitive ability was measured as the number correct 

out of twelve questions from a publically-available GRE practice test (ETS, 2011).

Verbal reasoning was assessed with seven items, and quantitative reasoning was assessed 

with five items. These questions were chosen in order to balance participant time and 

cognitive resources spent on this task, with an effective representation of general 

cognitive ability and test variability. Measures of academic achievement such as the 

GRE correlate highly with cognitive ability (Ceci, 1996; Neisser et al., 1996). Because 

GRE practice questions are taken from previously administered GRE tests, these
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questions should have adequate validity and reliability to serve as a measure of general 

cognitive ability.

Cognitive ability has been measured in the learner control literature to date 

primarily by self-reported GPA (Fisher, Wasserman, & Orvis, 2010; Orvis et al., 2011) 

and self-reported ACT and SAT scores (Schmidt & Ford, 2003). Participant memory 

limitations for remembering GPA or SAT scores was a possible concern for self-reported 

data, as the mean age of mTurk workers was greater than the undergraduate sample by 

more than ten years. Similarly, the percentage of mTurk workers who have taken a 

standardized test such as the SAT or GRE was unknown. Based on results from Behrend 

and colleagues (2011), 68.17% of mTurk workers hold a degree beyond a high school 

diploma, leaving 31.83% of workers who may have never taken an SAT or GRE test. In 

the pilot study, participants were asked for their quantitative and verbal SAT scores, as 

well as their ACT scores. Forty-nine participants did not report an ACT score, 49 did not 

report a quantitative,SAT score, and 48 did not report a verbal SAT score. Ten 

participants did report an ACT score (M= 28.3, SD = 4.27). After examining the data, it 

was clear that some respondents who did report SAT scores had taken the older (1600 

points possible) version of the SAT and others had taken the new (2400 points possible) 

version. Seven participants reported an older version quantitative SAT score, ranging 

from 650 to 800 (M= 694.29, SD = 53.81). Three participants reported a newer 

quantitative SAT score, and these scores ranged from 1130 to 1440 (M =  1283.33, SD = 

155.03). Nine participants reported older verbal SAT scores, ranging from 500 to 800 (M 

= 645.63, SD = 106.89), and two reported newer verbal SAT scores (M=  1035, SD = 

120.21). The amount of missing data indicated that most participants did not report
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taking or did not remember their scores on these standardized tests. Thus, GRE practice 

questions were used in the pilot study to ensure that all participants had an accurate 

estimate of general cognitive ability. The KR-20 estimate o f reliability for cognitive 

ability from the GRE practice test was high (a  = .79).

Motivation. Pre-training motivation was measured using an 8 item measure 

developed by Sitzmann et al. (2010), based on Noe and Schmitt (1986). Items are rated 

on a 5-point Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree). An 

example item is “I am motivated to leam the skills emphasized in the training program”. 

Noe and Schmitt (1986) reported a coefficient alpha of .81. Motivation was included in 

the pilot study to investigate differences between pilot groups and differences between 

mTurk Workers and a parallel undergraduate sample. Coefficient alpha for the 

motivation measure was high (a  = .88).

Learner control usage. The usage of learner control features, defined as the 

amount of control actually exerted throughout the training program, was measured for 

each type of control.

In order to measure control over sequence, measurement of deviation from the 

prescribed navigational route, called navigational deviation, was captured (Schrader, 

Lawless, & Mayall, 2008; Herder & Juvina, 2004). In a program controlled version of a 

training program, only the “Next” button can be used to progress forward through 

training. Participants in the current study were given a learner controlled version, and 

were additionally able to access and use a navigational menu and a “Previous” button. 

Therefore, a navigational deviation score for each participant was obtained by summing 

the number of times a participant clicked on the navigational menu or “Previous” button
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instead of using the “Next” button alone. Each click on the navigational menu or 

“Previous” button indicated one usage of sequence control. A higher number indicated 

greater usage of sequence control, and a lower number indicated lower usage of sequence 

control. The current slide number appeared at the bottom of each training page (e.g., 

“Slide 20 of 190”) so the participant knew where they currently stood at each step of the 

training. On the last page of the training, participants were told that they had reached the 

end of the training (“This completes the course on Microsoft Excel. Please move on to 

the next page to apply the skills you have learned”). At this point, they could still use the 

“Previous” button or the navigational menu to go back to previous slides, or they could 

click an embedded link; “Continue to the Activity”. The last link on the navigational 

menu, visible at all times, read “Finish training and move onto Excel Activity”.

The use of pace control is typically quantified by total time on training, but this 

may not be specific enough to capture control over pacing. An alternative solution to 

more accurately capture the use of pace control was employed to calculate each person’s 

viewing time for each section of the training. Each participant’s viewing time for each 

topic was calculated in seconds by coding the information derived from tracking records.

Content control was calculated for both the skipping of training content and 

addition of extra-training content (provided via links to external webpages related to the 

training content of each subsection). Content removal was measured as the difference 

between the total number of training pages and number of training pages visited. This 

difference indicated that the participant did not view all pages of that topic, and has 

exercised content control by removing content (i.e. higher scores indicate greater removal
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of content). Additional content was measured by summing the total number of visits to 

additional content (external websites found in the navigation menu).

Posttraining knowledge. For the pilot study, learning was assessed by the 24- 

item multiple choice knowledge test of Microsoft Excel, identical to the pre-training 

knowledge measure. KR-20 was high for this measure (a  = .91).

Procedure. Data was collected from three samples o f mTurk Workers in order to 

test the effects of monetary incentives on participant responses. A payment rate of 75 

cents for a 30-minute task is considered an appropriate compensation amount for mTurk 

participants (Barger, Behrend, Sharek & Sinar, 2011). As the training and series of 

surveys was expected to take a maximum of two hours, $2 . 0 0  was the base rate of 

compensation for the pilot study. The training program was advertised on the 

Mechanical Turk website, and registered Workers were able to sign up to complete the 

training program. Pilot participants were all compensated with $2.00 for completing the 

study regardless of performance. One-third (20) of the participants were assigned to the 

control group and were not given additional incentives beyond $2.00. A second group of 

2 0  was given a bonus $1 . 0 0  incentive for high performance, and a third group of 2 0  was 

given a bonus $2.00 incentive. High performance was defined as scoring in the top 40% 

of pretest to posttest knowledge score increase (i.e., learning increase was measured by 

subtracting the pre-test score from the post-test score). This difference score thus 

indicated an increase in learning due to the training program. This was done so that 

learners who had more pre-training knowledge did not have an advantage to receive the 

additional compensation. Forty percent was chosen to serve as a difficult but achievable
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goal for learning, and to increase the perceived likelihood of receiving the additional 

incentive.

The entire pilot sample was screened for three qualifications. To participate, 

Workers needed to be over 18 and native English speakers, with access to Microsoft 

Excel 2007 or 2010. The first pilot group was given five days to work on the assignment 

after accepting the HIT, they had to already have at least 50 approved HITs, and their 

HIT approval rate had to be 99% or greater. Five days completion time was changed to 

ten hours (200% of the longest completion time for the first group) for groups 2 and 3 

because data collection progressed slowly and one person finished the training program 

five days after they started it. HIT approval rating was also reduced to 95% for the next 

two groups to combat the slow data collection in the first group. It took 25 days to get 19 

participants for the first group, and collection stopped at this point because no one had 

completed the HIT in four days. Data from twenty participants for both group 2 and 

group 3 were collected in seven days each. The three groups were collected at separate 

time points (i.e., group 2 was not advertised on mTurk until collection was complete for 

group 1) in case Workers could see both HITs at different incentive levels, which could 

potentially affect their motivation levels. After the first pilot group, an automatic check 

was added to the website so that no one could repeat the study after completing it once 

already.

Participants first completed a consent form and pre-training measures, which 

included all individual difference variables and the pre-training knowledge measure. 

Participants were provided a text-based overview of how to use the features of learner 

control so they were aware of the features available and knew how to use them.
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Additionally, participants were provided with a video depicting the use of learner control 

in the training program. Both the text and video emphasized the three types of control 

provided (sequence, content, and pace) and how to use them. Learner control usage data 

was collected automatically, based upon actual learner behavior in the program. Once 

participants completed the training program, they completed the post-training learning 

outcome measure.

Results

Descriptive statistics and correlations for the individual difference variables can 

be found in Tables 2 and 3. Sufficient variability and normal distributions were found for 

each variable, and no outliers were found. Participants reported especially high levels of 

Mastery Goal Orientation, and answered an average of 5.49 questions correct out of the 

12 question cognitive ability (GRE) test.

The data for learner control usage was then examined for outliers. Total time 

training was examined for outliers, and three were removed from the analysis because the 

data indicated it was highly likely that that they stepped away from their computer or 

completed training in an unusual manner. One participant spent one hour on the title 

page of training, went through the training once, came back five days later, and 

completed the entire training again. Two other participants were removed because they 

spent more than two SDs outside the mean training time, one of which spent over thirty 

minutes on multiple slides. Thus, learner control usage variables were analyzed without 

those three cases.



Table 2

Descriptive Statistics o f Individual Difference Variables fo r  Pilot Study

Variable M SD Skewness Kurtosis

1. Excel Experience 2.74 0.87 0.17 -0.38

2. Conscientiousness 3.83 0.71 -0.60 0.29

3. Extraversion 3.28 0.90 -0.31 -0.51

4. Openness 3.90 0.61 -0.17 -0.31

5. Mastery Goal Orientation 4.23 0.63 -0.89 1.17

6 . Internal Locus of Control 2 . 8 6 0.43 0.13 1.35

7. Cognitive ability 5.49 2.79 -0.16 -0.54



Table 3

Correlation Matrix o f Individual Difference Variables for Pilot Study

Variable 1 2 3 4 5 6 7

1. Excel Experience —

2. Conscientiousness 0.05 —

3. Extraversion 1 O o 0.15 —

4. Openness -0.07 0 . 2 0 0.25 —

5. Mastery Goal Orientation 0.31* 0.27* 0.06 0.40** — *

6 . Internal Locus of Control 0 . 0 2 0.09 0.26 0.09 0.18

7. Cognitive ability 0.29* -0.23 -0 . 2 0 0.08 0.12 -0.17 —

n = 59
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In order to also check that participants did not purposely score low on the pretest 

and score high on the posttest in order to score in the top 40%, outliers were examined for 

pretest-posttest difference scores, and none were found. The data for pretest-posttest 

difference scores were normally distributed, and standardized (z-score) values for this 

variable were all between -2.63 and 2.10.

Examining total time on training was important for the pilot study because of the 

high level of learner control given; it was possible that learners skipped the entire training 

program and only completed pre-tests and post-tests. Spending very little time on the 

training program (or none at all) would be problematic not only for variability in the 

amount of learner control used, but also in the interpretation of differences between pre- 

and post-test scores. The original creator of the program evaluated the current version 

and estimated that it should take approximately 60 minutes to complete the training 

program. Total time spent training was examined to ensure that pilot participants spent 

an adequate amount of time on the training program. The average time spent on training 

was 42.64 minutes (SD = 34.71). The minimum time spent on training was .05 minutes 

and the maximum time spent training was 142.32 minutes (approximately 2.5 hours). A 

histogram of the time training can be found in Appendix E, which shows that there was a 

great deal of variability among time training, with most people spending less than 50 

minutes training.

Next, the usage of learner control was examined to determine the extent to which



Table 4

Descriptive Statistics o f Training and Learner Control Usage Variables

Variable M Median SD Minimum Maximum Skew Kurtosis

1. Total Time Training 42.64 31.11 34.71 0.05 142.32 1 .1 1 0.62

2. Module 1 Time 9.58 5.92 15.99 0.05 109.23 4.98 28.74

3. Module 2 Time 17.63 13.38 15.39 0 . 0 0 75.27 1.39 2.49

4. Module 3 Time 9.26 4.59 1 1 . 1 1 0 . 0 0 55.35 1.93 4.88

5. Module 4 Time 6.17 5.64 5.48 0 . 0 0 23.77 1.14 1 . 2 2

6 . Sequence 13.05 5.00 2 2 . 0 2 0 . 0 0 118.00 3.06 10.58

7. Content Remove 40.05 0 . 0 0 60.55 0 . 0 0 188.00 1.29 0.25

8 . Content Add 0.36 0 . 0 0 0.67 0 . 0 0 3.00 2.04 4.10

n — 56

U l-P*



Table 5

Correlation Matrix of Training and Learner Control Usage Variables

Variable 1 2 3 4 5 6 7
1. Total Time Training —

2. Module 1 Time .67** ..

3. Module 2 Time 7 9 ** .19 —

4. Module 3 Time 7 7 ** .33* .52** —

5. Module 4 Time .60** .09 .58** .44* --

6 . Sequence 4 4 ** .06 4 9 ** .44* .38** —

7. Content Remove -.38** -.03 -.32* -.45** -.52** - . 2 2 —

8 . Content Add -.07 .03 -.07 -.14 -.07 .24 .28*

n = 56
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participants used learner control features; sufficient variability in usage of these features 

was needed for analyses in the main study. Descriptive statistics for each type of learner 

control (pace, sequence, and content) can be found in Table 4. Average time per module 

varied, ranging from 6.17 minutes to 17.63 minutes. Most participants (89.3%) used 

sequence control at least once, and participants averaged approximately 13 uses of 

control over sequence. The majority of participants (64.3%) did not choose to remove 

content, i.e., they viewed all of the slides in the training program. Approximately 40 

slides were removed from training, on average. Lastly, few participants (26.7%) chose to 

add content by visiting outside websites with additional information. Those who did add 

content visited between one and three additional websites.

Because of the small sample size, correlations between learner control usage 

variables were examined (see Table 5). This was done to provide preliminary evidence 

regarding whether learner control usage can be entered into the full study hypothesized 

models as one unidimensional construct. Time training correlated significantly and 

positively with usage of sequence control, and negatively with content remove. Content 

add and content remove correlated positively and significantly at .28.

Independent-samples t-tests were used to compare mean differences in certain 

variables between the undergraduate and mTurk samples, and can be found in Table 6 . 

Because multiple t-tests were utilized, a Bonferroni correction was used to control for 

Type I familywise error, and alpha was set at 0.008333. The undergraduate sample was 

an average of 23.65 years old, which was significantly lower by 10.21 years from the 

mTurk sample. mTurk Workers reported significantly higher levels of pre-training 

motivation than undergraduates and scored significantly higher on the pre-training



Table 6

t-test Results Comparing Undergraduate Students and mTurk Workers

Variable t df P Mean Difference CILL Cl UL

Pre-training Motivation 4.65 97 < 0 . 0 0 1 0.57 0.33 0.81

Pre-training Computer Knowledge 4.70 97 < 0 . 0 0 1 3.84 2 . 2 2 5.46

Age 5.29 97 < 0 . 0 0 1 1 0 . 2 1 6.38 14.05

Declarative Knowledge Pretest 2.85 97 0.005 2.26 0.69 3.83

Declarative Knowledge Posttest 2.89 97 0.005 3.30 1.03 5.57

Total Time Training 1.35 92 0.179 9.42 -4.39 23.23

Note. mTurk n = 59 and undergraduate n = 40 for all tests except for Total Time Training DV, in which case n = 56 and

38, respectively. Cl = confidence interval; LL = lower limit; UL = upper limit.



computer knowledge measure. As discussed in the previous paragraphs, three outliers 

were removed for total time training due to unusually high training times. No outliers 

were removed from the undergraduate sample because time per training slide was not 

recorded for that data. Undergraduates spent an average o f 33.22 minutes on the training 

program, and mTurk workers spent an average of 42.64 minutes on training. This 

difference of 9.42 minutes was not statistically significant, though without the removal of 

outliers, the difference between mean training times would have been significant. 

Undergraduates scored an average of 10.23 questions correctly (out of 24) on the 

pretraining Excel questions. The mTurk sample answered an average of 7.97 questions 

correctly, and this difference of 2.26 was significant. Undergraduates scored an average 

of 12.83 questions correctly on the posttest, and mTurk Workers scored an average of 

16.12 questions correctly. The 3.30 point difference in posttest scores differed 

significantly between the undergraduate and mTurk samples (see Table 6 ).

A repeated-measures ANOVA was used to examine the differences between 

declarative knowledge gain from the Excel training program. Assumptions for ANOVA 

were checked prior to analysis; no extreme outliers were found, the data was normally 

distributed, and Levene’s test of homogeneity of variance for both the pretest and posttest 

indicated that the assumption of homogeneity of variance was met, F (l, 97) = 3.26,p  = 

.074 and F (l, 97) = 2.24,p  = .138. Results for the ANOVA can be found in Table 7. The 

ANOVA results indicated that mTurk Workers learned significantly more from the 

training program than undergraduate students; the interaction between sample group and 

knowledge change was significant (see Table 7).



Table 7

Repeated Measures ANOVA for Knowledge Change Between Undergraduates and mTurk Workers

Pretest 

M SD

Posttest 

M SD

SS df MS F P partial rj2

Time 8.99 3.98 14.76 0.95 1324.89 1 1324.89 97.85 < . 0 0 1 0.51

Interaction 344.94 1 344.94 25.48 < . 0 0 1 0 . 2 1

mTurk 7.97 4.39 16.12 5.85

Undergrad 10.23 2.93 12.83 5.07

Error 1286.29 95 13.54

n = 9 7

U l
VO



Table 8

Analysis o f Variance Results for Comparisons Between Pilot Groups

Source SS df MS F p  partial rj2

Time Training 5198.34 2 2599.17 0 . 8 8 0.419 0.03

Error 16476.90 56 2942.28

Motivation 0.40 2 0 . 2 0 0.67 0.515 0 . 0 2

Error 16.80 56 0.30

n -  56 for Time Training, n = 59 for Motivation.



Table 9

Repeated Measures ANOVA for Knowledge Change Between Pilot Groups

Pretest Posttest SS df MS F p  partial rj1

M SD M SD

Time 8 . 1 1 4.40 16.12 5.85 1846.05 1 1846.05 114.43 < . 0 0 1 0 . 6 8

Interaction 40.32 2 20.16 1.25 0.295 0.04

Pilot 1 7.63 4.00 14.53 6 . 8 6

Pilot 2 7.90 4.69 15.45 6.16

Pilot 3 8.83 4.62 18.56 3.29

Error 871.18 54 16.13

n = 57

o\
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Lastly, ANOVAs were used to test the effects of top performance incentives on 

motivation, time spent on training, and learning gain in order to decide upon the incentive 

structure for the full study. Results for motivation indicate no significant differences 

between pilot groups (see Table 8 ). The mean motivation scores on a 5-point scale for 

pilot groups 1, 2, and 3 were 4.31, 4.51, and 4.42, respectively. Mean time spent training 

also did not differ significantly by pilot group (see Table 8 ). Mean times for groups 1, 2, 

and 3 were 68.95 minutes, 50.20 minutes, and 47.75 minutes, respectively. Lastly, a 

repeated-measures ANOVA indicated that learning did not differ by pilot group (see 

Table 9).

Discussion

The pilot study data collection and analysis were completed in order to examine 

data from several individual difference variables, training variables, and learner control 

usage variables, to compare mTurk Workers to an undergraduate sample, and compare 

the effects of different incentive schemes. The results of the pilot study informed several 

decisions made regarding the incentive structure, qualifications, and participant 

limitations for full data collection.

First, descriptive statistics from demographic and individual difference variables 

were satisfactory for the purposes of this project. The average age of 33.86 years was 

desirable for generalizing to an employee population, especially when compared to the 

average undergraduate age of 23.65 years. Most participants (91.5%) had completed at 

least some college, which is close to what one might expect for an employee whose job 

requires knowledge of Microsoft Excel. Most mTurk participants (81.4%) were 

Caucasian, indicating fairly low variability in ethnicity, though this breakdown is



typically found in a sample of undergraduates as well. A very large percentage (71.2%) 

of Workers were currently employed. Although this population is clearly not drawn from 

a single organization, more Workers are employed than is typical in undergraduate 

samples. Individual difference variables (experience, personality, goal orientation, locus, 

and cognitive ability) were all normally distributed and showed sufficient variability and 

high internal consistency. One minor exception was the internal consistency of the 

Internal Locus scale, with an alpha of .6 8 . This estimate was lower than .82, which was 

reported by the creators of the measure (Duffy, Downey, and Shiflet, 1977). However, 

this estimate in a sample of 59 participants is not far from the commonly accepted 

minimum of .70. Overall, results indicate that these measures should be reliable 

measures for use with the mTurk population.

Examination of descriptive statistics of training and learner control usage 

variables revealed unexpected results. Time training was lower than the expected one 

hour (42.64 minutes, not including 3 outliers outside of +2 SD from the mean training 

time). Time training was not significantly different than the undergraduate sample, 

which may indicate that the completion time for this training program may simply take 

most people less time than the designer intended. The training program contains 190 

slides, though the amount of detailed information on each slide is fairly small; most slides 

contain a short title, a short (5-6 item) bulleted list, or two sentences and an Excel 

screenshot. In general, fewer Workers utilized learner control than one might expect. 

Distributions for each type of control were quite kurtotic and positively skewed. 

Regardless, no study has been published which measures the amount o f learner control 

utilized, so this is a valuable finding in itself. These distributions may pose problems for
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analysis however, so for the full study, this will be addressed by dichotomizing and 

transforming these variables, if the distributions remain severely non-normal.

Correlations between the types of learner control usage variables were surprising; 

few were statistically significant and a few were unexpectedly negative. Based on these 

low and sometimes negative correlations between types of learner control usage, learner 

control usage behavior does not appear to be a unidimensional construct. These 

correlations indicate that usage of the different types of learner control should be 

examined separately for the full study. It is possible that the low sample size and low 

variability in adding content contributed to these results. It is also possible that the 

measurement of these variables actually indicated quite different behaviors during 

training. Based on this evidence, it appears that these behaviors should be modeled as 

individual, unique behavioral dimensions. As a result of the pilot, the original model 

including one learner control usage variable was tested in the full study, but an additional 

model with distinct behavioral constructs was also tested. The use of content control for 

adding content was examined during the full study because of the low variance in the 

pilot study.

Compared to undergraduates, it appears that mTurk Workers are a desirable 

sample for this study. Demographics such as age, education, and employment status are 

more similar to employee samples than undergraduate samples typically are. Beyond 

that, Workers reported being significantly more motivated pretraining, and learned more 

than undergraduate students taking the same training program. Interestingly, Workers 

had significantly lower pretraining Excel knowledge by 2.26 points, but surpassed the 

post-training scores of undergraduates by 3.30 points. mTurk Workers scored
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significantly higher on the pre-training computer knowledge test than undergraduates, 

and this may or may not be more like the level of actual employees, depending on the 

technology requirements of a specific job. In general, mTurk Workers seem to be 

preferable over an undergraduate sample for this study.

Lastly, ANOVA analyses revealed no significant differences between the three 

pilot groups in regards to motivation, time training, and learning outcomes. There were 

small differences in the qualifications and limitations between the first group and the 

following two groups aside from incentives (less time allowed to complete the HIT and a 

lower minimum previous HIT acceptance rate), which does cloud the effects of the 

differing incentives. However, these qualifications had to be changed for practical 

purposes (data collection time) and data quality (large 5-day lapses in finishing the 

study). Because no significant differences were found between the three pilot groups on 

motivation, time training, and learning outcomes, no additional incentives beyond the 

baseline payment were used for the full study.

Summary of Implications for Main Study

The purpose of the main study was to test the hypothesized models of learner 

control. Participants completed the same training program, individual difference 

measures, and learning measures as the participants in the pilot study. The usage of 

learner control during the training program was then examined as a partial mediator in the 

relationship between those hypothesized individual differences and learning outcomes. 

The pilot study was conducted to examine variability in learning outcomes, differences 

between mTurk and undergraduates, and degree of monetary incentives influencing 

participation. Results indicated that pretest and posttest Excel knowledge had adequate



variability, that there were few but desirable differences between mTurk Workers and 

undergraduate students, and that monetary incentives did not significantly impact 

participation. Therefore, Amazon Mechanical Turk was used to recruit participants for 

the main study, and one flat-rate incentive was given to all participants.



CHAPTER III

METHOD

Participants

In order to determine the number of participants necessary to test the proposed 

models, a power analysis was conducted. Equations from Kim (2005) were used to 

conduct a power analysis for RMSEA, CFI, McDonald’s Fit Index (MFI), and Steiger’s 

y. Sample sizes required depends on several factors, including the distributions and 

reliability of variables, relationships among the variables, simplicity of the model, 

missing data, and which fit index is examined. Kim (2005) recommends conducting a 

power analysis for several fit indices. Thus, required sample sizes at 80% power were 

calculated for four fit indices, and the mean sample from these four estimates was used as 

the power analysis estimate for required sample size. SPSS syntax was taken from a 

website created by Timo Gnabs (timo.gnambs.at/en/scripts/powerforsem). In accordance 

with recommendations from Hu and Bentler (1999), fit values of .90 for MFI, .05 for 

RMSEA, and .95 for CFI and Steiger’s y were used. To test the model as a path model, 

the required samples were 316, 8 8 , 247, and 120 for RMSEA, Steiger’s y, CFI, and MFI, 

respectively. The average of these indicates that 193 participants were needed for 80% 

power to find the hypothesized effects.

Participants were recruited from Amazon Mechanical Turk, approximately two 

months after data collection stopped for the pilot study. A total of 231 mTurk Workers 

submitted a HIT for the study. Of those 231 submissions, 23 were rejected within mTurk 

for bad responses (i.e., long strings of the same responses on multiple survey pages), 

inordinately low time spent on surveys (e.g., completing the 1 2 -item cognitive ability
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measure in 30 seconds) and/or for incomplete submissions (i.e., not all surveys were 

completed). Those 23 cases were removed for the purposes of data analysis, as those 

responses could severely distort the results, bringing the total sample size to 208.

The data were inspected for improbable values, and several were found and 

removed. The following datapoints were removed and changed to missing values: two 

participants reported current GPAs above 4.00, nine participants reported not being 

currently enrolled in school but reported their current GPAs as 0, eight participants 

reported they did not work but listed 0 for working hours, two participants reported ACT 

scores above the maximum score of 36, and one person reported working for mTurk for 

98 hours per week.

Frequencies of demographic variables (see Table 10) revealed that full study 

participants had similar attributes to those participants in the pilot study. The majority 

(75.48%) were Caucasian, most were female (63.94%), and many participants had 

attended some college (32.21%) or completed a Bachelor’s degree (37.02%). The 

majority of participants (69.23%) were currently employed and of those who were 

currently employed, 65.27% considered their current job to be their career. Lastly, only 

62 participants (29.81%) had previously taken a course in Excel before completing this 

study.

Materials

The same Microsoft Excel training program was used for the full study, and 

included the same training content and learner control features. Two changes were made 

to the training program between the pilot study and the full study. Both changes had
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Table 10

Frequency Table of mTurk Demographics

Variable n %
Ethnicity

African American 2 2 10.58
American Indian/Pacific Islander 3 1.44
Asian 14 6.73
Caucasian 157 75.48
Hispanic 7 3.37
Other 5 2.40

Gender
Male 75 36.06
Female 133 63.94

Education Level
Some high school 1 0.48
High school diploma 1 0 4.81
Some college 67 32.21
Associate's degree 17 8.17
Bachelor's degree 77 37.02
Master's degree 28 13.46
Doctoral degree 8 3.85

Currently Enrolled in School
Yes 44 21.15
No 164 78.85

Currently Employed
Yes 144 69.23
No 64 30.77

If Employed, Career Job
Yes 94 65.27
No 49 34.03

Previous Excel Course Taken
Yes 62 29.81
No 146 70.19

n = 208



70

been indicated by participants in open-ended feedback at the end of the pilot study. First, 

the training directions text was edited to be more clear (a few participants complained 

they could not access the training during the posttest knowledge measures, so text was 

added that indicated that they could no longer view the training once they moved on to 

the post training measures). Second, one of the training slides appeared out of order in 

the pilot study, which was corrected for this study. All other aspects of the training 

program were exactly the same between the pilot and full studies.

Measures

Identical measures were used for the full study. A few minor changes were made 

to the measures for the full study, based on feedback from participants and further editing 

for clarity. These changes included two questions on the Excel pre and posttest, and the 

upload feature for the Excel activity/skill test. One question on the pre and posttest 

referred to two datasets, but the dataset images did not appear correctly. This issue was 

fixed, as was another image included on a second question, whose arrows did not appear 

correctly at certain parts of the image. After the training program, participants were 

directed to a post-training skill activity in both the pilot and full studies. The activity was 

completed and submitted by uploading to the website (see Appendix D for the activity 

instructions). One critical issue was discovered during data collection for the pilot study; 

the website originally did not accept Macro-enabled Excel workbooks for the post 

training Excel activity, disallowing some participants in the pilot study from submitting 

their work. This was fixed for the main study.

Learner control usage. The usage of learner control features were again 

measured for each type of control. One difference between the pilot study and the full
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study was that tracking data was coded by hand for the pilot study. For the full study, a 

website was created to automatically sum the usages of learner control, the time spent in 

each section of the training, and the total time.

In order to analyze learner control usage in the hypothesized model, each 

participant’s score for sequence, pace, and content was converted into a z-score. This 

process to standardize sequence control, removing content and adding content was 

straightforward; z-scores of those counts were taken for each participant. Quantifying 

pace control took several steps. Topic viewing time for each of the four modules was 

subtracted from the average viewing time for all participants for that topic. The absolute 

values of those difference scores were summed to produce a single score to quantify the 

use of pace control for the training program. It is important to note that larger scores 

indicate greater usage of pace control during the training program, not necessarily more 

time spent on the training program; only the exertion of control was measured. The sum 

of each participant’s absolute deviation scores indicated overall use of pace control for 

the training program.

Learning outcomes. For the full study, learning was assessed by the 24-item 

multiple choice knowledge test of Microsoft Excel, identical to the pre-training 

knowledge measure, as well as a Microsoft Excel skill activity. This activity included the 

opportunity to demonstrate knowledge gains in the skills taught during the training 

program. Participants complete this activity immediately following the training program, 

and the submitted activities were scored by a key. This activity can be found in 

Appendix D. A possible 30 points could be earned. Up to five points were awarded for 

successfully completing the following tasks; summing numbers using a range by day,
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creating a name based on time period, summing time periods using the name, creating a 

chart based on day, creating a chart based on time, and creating a macro to remove the 

color coding from the data. Coefficient alpha for the skill measure was high (a = .78). 

Procedure

This training program was advertised again on the Mechanical Turk website, and 

registered Workers were able to sign up to complete the training program, just as 

participants in the pilot study. The rate of compensation was $2.50 for the full study, and 

no bonuses were advertised or given to participants. The automatic check remained in 

place so that Workers who had completed the pilot study could not complete the full 

study. Screening criteria included being over the age of 18, being a native English 

speaker, and having access to Microsoft Excel 2007 or 2010. The longest non-outlier 

training time from the pilot was added to the longest non-outlier survey completion time 

for the pilot, and this did not exceed seven hours, so the HIT completion time was 

changed to a maximum of seven hours. HIT approval rating remained at 95%, as did a 

minimum of 50 previously accepted HITs.

As in the pilot study, participants first completed a consent form and pre-training 

measures, including individual difference variables, demographics, and the pre-training 

knowledge measure. Participants were provided with both a text overview and a video 

explaining the features of learner control available in the training program. Learner 

control usage data was collected using tracking cookies and control over each type was 

automatically summed. After the training program, participants completed the Excel skill 

activity and multiple choice knowledge measure.
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CHAPTER IV

RESULTS

Prior to hypothesis testing, the dataset was cleaned and screened for missing data, 

outliers, and non-normality for all variables. Missing data was minimal for variables in 

the path model. Mplus uses Expectation-Maximization (EM) algorithm to automatically 

impute missing data. According to the covariance coverage matrix, between 83.2% and 

100% of the data was present for each variable. The lowest percentage of present data 

was for the skill measure at 83.2%. All other variables contained data for between 96.6% 

and 100% of the data points. The low coverage for the skill measure was due to the 

nature of that variable; participants had to upload an Excel document in order for it to be 

scored. Nineteen participants were unsuccessful in uploading a file to the website, and an 

additional sixteen people uploaded blank or unchanged Excel documents. Because it was 

unlikely that the uploaded blank files reflected a complete lack of Microsoft Excel skill, 

those files were not scored or included in the analysis.

All individual difference, knowledge, and learner control variables were then 

inspected for normality. After inspecting histograms of the data and examining skewness 

and kurtosis estimates, the individual difference and knowledge measures appeared 

normally distributed, except for the Excel skill test. The histogram of the skill data was 

negatively skewed (see Appendix E). Because model fit in SEM may be degraded due to 

univariate non-normality, especially due to extreme skewness (West, Finch, & Curran, 

1995), the skill test data was transformed using Box-Cox transformations, using syntax 

taken from Osbome (2010). Box-Cox transformations are a family o f power 

transformations, which include traditional transformations such as logarithmic, square



root, and inverse transformations. These transformations were performed in order to best 

normalize the distribution without needing to randomly attempt multiple types of 

transformations. According to Osborne (2010), Box-Cox transformations are considered 

a “potential best practice where normalizing data or equalizing variance is desired” (p. 1). 

For the Excel skill test, the variable was anchored at 1.0, and the Box-Cox transformation 

coefficient, lambda, was estimated at .1 increments between .9 and 3.0. The lambda 

value of 1 .1  was maximally effective in transforming the distribution (skew = -.518, 

kurtosis =-.874). Thus, the transformed skill variable was used for SEM analyses.

This study is the first to measure usage of pace, content, and sequence control. 

Thus, it was decided that outliers be examined individually. In order to ensure the data 

collected was meaningful in measuring learner control usage, it was decided that cases 

with extreme outliers more than three standard deviations from the mean may be deleted 

on a case-by-case basis, pending an examination of other variables, such as total time on 

training and missing data on other measures.

All data were examined for outliers, and none were found for the individual 

difference variables or learning outcome measures, but several were found for the learner 

control usage variables. Four cases were flagged as outliers in the boxplot for sequence 

control usage data, and each had extremely high values for uses of sequence control 

(between 79 and 169 uses, z-scores for sequence ranged from 3.26 to 7.88). These 

participants scrolled through many slides in short periods of time, using the “Previous” 

button. The original definition of sequence control (using any button except the “Next” 

button), counts participants who use the “Previous” button many times in a row, spending 

very little time viewing the slides between their start point and intended end point.



However, this does not accurately capture the intended construct (e.g. clicking back 

twenty times to move from Slide 40 to Slide 20 should not represent 20 decisions to use 

sequence control). Two extreme outliers were found for total time in training. Two 

participants spent over four hours and six hours training, respectively (z-scores for time = 

8.05 and 5.26). One participant was flagged as an outlier for the usage of multiple control 

features. The participant used sequence control 62 times but only viewed 45 slides of the 

190 slide training, with a total time of 2  minutes spent on the training program website. 

All data for learner control usage for these seven participants were removed. 

Psychometric Properties of Measured Variables

After data cleaning, reliabilities, descriptive statistics, and correlations were 

calculated for each study variable, which can be found in Tables 11 and 12. Alpha was 

acceptable for all individual difference variables and knowledge measures (between 0.75 

and 0 .8 6 ) with the exception of internal locus of control, which was slightly below 

acceptable (a -  0.65). Excel experience was positively correlated with hours worked per 

week, MGO, and cognitive ability. Surprisingly, cognitive ability was negatively 

correlated with both conscientiousness and extraversion.

Learner control usage variables were further inspected for interrelationships, 

sufficient variability, and normality. Sequence control was negatively correlated with 

content remove, positively related to total time training, and had no relationship to 

content add. Content remove was positively correlated with content add, and negatively 

related to time training. There was no relationship between content add and total time
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Table 11

Descriptive Statistics of Study Variables

Variable n M SD

1. Age 207 32.67 10.46

2. GPA at Highest Education Level 160 3.42 0.45

3. Current GPA 36 3.45 0.53

4. Hours Worked per Week 131 37.83 9.92

5. Microsoft Excel Experience 208 2.74 1 .0 1

6 . Openness 208 3.89 0.61

7. Conscientiousness 208 3.80 0 . 6 8

8 . Extraversion 208 2.93 0.79

9. Mastery Goal Orientation 208 4.22 0.62

10. Internal Locus of Control 208 2.74 0.43

11. Cognitive Ability 208 5.25 3.07

12. Pretraining Excel Knowledge 207 8.99 4.28

13. Post-training Excel Knowledge 199 15.91 4.45

14. Post-training Excel Skill 173 22.98 5.82

15. Sequence Control 2 0 1 13.05 13.01

16. Content Remove 2 0 1 48.03 67.91

17. Content Add 2 0 1 0.37 0.77

18. Total Time Training (minutes) 2 0 1 37.25 31.35



Table 12

Correlation Matrix Between Study Variables

Variable 1 2 3 4 5 6 7 8 9

1. Age —

2. GPA at Highest Education Level -.06 —

3. Current GPA . 2 2 .64** —

4. Hours Worked per Week . 0 1 .16 .47* —

5. Microsoft Excel Experience .13 - . 0 2 .03 .2 0 * .79
6 . Openness . 1 0 .14 .13 -.05 .0 1 .75

7. Conscientiousness . 0 2 - . 0 2 -.07 .13 .05 .16* .84
8 . Extraversion . 1 1 -.04 .07 . 0 0 .05 .13 .2 1 ** .83
9. Mastery Goal Orientation .09 -.06 -.04 . 0 0 .17* .37** 31** .28** .86
10. Internal Locus of Control -.17* . 0 1 -.07 .05 .05 -.07 . 1 0 .33** . 1 0

11. Cognitive Ability . 1 1 . 0 2 .29 -.06 2 2 ** 23** -.2 0 ** -.16* . 1 2

12. Pretraining Excel Knowledge -.03 - . 0 1 -.14 .03 4g** .09 -.06 .04 . 1 0

13. Post-training Excel Knowledge .07 -.03 . 0 1 - . 0 1 .2 1 ** . 1 0 -.05 -.16* .05
14. Post-training Excel Skill .05 •

t3_O
i* .15 .03 .2 1 ** -.05 -.13 -.17* .07

15. Sequence Control .16* .06 -.06 -.06 .03 .09 .07

Or . 1 2

16. Content Remove -.15* - . 0 1 - . 1 0 . 0 2

o
1 -.24** -.13 . 1 0 - . 1 0

17. Content Add -.14* .07 - . 0 2 - . 0 1 .03 .06 .06 -.03 i o >—*

18. Total Time Training (minutes) .28** .05 - . 1 0 i © 4*
.

- . 0 1 .18* .2 1 ** -.04 .18*



(Table 12 continued)

Variable 1 0 1 1 1 2 13 14 15 16 17

10. Internal Locus of Control .65
11. Cognitive Ability -.13 .76
12. Pretraining Excel Knowledge -.04 .28** .78
13. Post-training Excel Knowledge -.06 4g** .50** .79
14. Post-training Excel Skill .05 .42** .2 0 ** 4g** .78
15. Sequence Control .05 19** - . 0 1 .25** .25** —

16. Content Remove .1 1 . 24** - . 1 1 -.38** -.09 _ 3 4 ** —
17. Content Add .08 .09 - . 0 2 - . 0 2 - . 0 2 .05 .2 0 ** —

18. Total Time Training (minutes) -.06 .2 0 ** -.09 .30** .19* .54** -.59** .04



training. Low variability was found for the content add variable (see Appendix E for 

histogram of the raw data). On average, participants added .37 websites to their training 

(SD = 0.77). Only 51 out of the final set of 201 participants visited any extra-training 

websites, and only sixteen of those who did visit those websites viewed more than one.

In order to address the low variability, content add was added to content remove. 

However, this new content total variable did not correlate with any other learner control 

usage variables. Additionally, the correlation of only .20 did not indicate that the same 

people were both adding and removing content, so the content total control variable was 

not used. It was determined that content add would be attempted as a measured indicator 

as part of unidimensional learner control factor, but that it may need to be dropped from 

analyses due to low variability. The other relationships (especially the negative 

relationship between sequence and content remove) indicated that a unidimensional 

learner control usage variable would need to be investigated but may not provide 

adequate fit.

The following decisions were made regarding learner control variables for 

analysis in SEM. Because the data for sequence control and time training for each 

module were severely non-normal (see histograms in Appendix E), a series of Box-Cox 

transformations were used to determine the ideal transformation for those variables. The 

same procedure as the Skill test transformation was followed, but lambdas of -2.1 to 1 

were used because of the positive skew of these variables. Lambdas o f . 1 for sequence 

and .3 and .4 for the four training module times best addressed the non-normality, so 

those transformed variables were used for analyses. The content remove variable was 

also problematic; about half of participants did not remove content (i.e., they viewed all
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training slides). The distribution was severely skewed and kurtotic. Content remove 

was dichotomized, but this was unhelpful in attempts to measure total learner control. 

Fitting the Measurement Model

Numerous iterations of a possible latent learner control measurement model were 

attempted. A one-factor unidimensional model, with sequence, content add, content 

remove, and time training indicators was modeled, but the analyses would not converge. 

Every possible combination of raw, transformed, dichotomized, and polytomized 

variables were attempted. Only one model of only absolute deviation time scores loaded 

onto one factor successfully, but neither of the other two learner control usage variables 

related in any meaningful way. Because of estimation problems.in Mplus for a 

dichotomous content remove variable, it was polytomized into 0 usage, and 4 quartiles of 

amount of content removed (i.e., 5 total categories). This allowed content remove to 

remain in the model without creating errors. Thus, three measured and correlated learner 

control usage variables were used as mediators in each of the hypothesized model tests; 

polytomized content remove, sum of absolute deviation time per section (transformed), 

and transformed sequence control.

Measurement models were attempted for each of the individual difference 

variables. See Tables 13 and 14 for model fit and factor loadings for each scale. MGO 

was the only scale with acceptable fit and factor loadings for each item, so this scale was 

left as-is. Excel experience (five items) showed poor fit, and one item in



Table 13

Model Fit Statistics for Scale Measurement Models, All Items Loaded Onto One Factor

Model t df P CFI AIC RMSEA SRMR

1. Experience 41.955 5 <0 . 0 0 0 0.790 1588.313 0.267 0.078

2. Openness 178.307 2 0 <0 . 0 0 0 0.656 4474.064 0.195 0.109

3. Conscientiousness 174.173 2 0 <0 . 0 0 0 0.771 4166.439 0.193 0.089

4. Extraversion 116.522 2 0 <0 . 0 0 0 0.823 4826.905 0.152 0.076

5. Mastery Goal Orientation 7.722 5 0.172 0.994 1961.966 0.051 0.019

6 . Internal Locus of Control 580.282 90 <0 . 0 0 0 0.303 8974.636 0.162 0.148

7. Cognitive Ability 578.870 30 <0 . 0 0 0 0.904 — 0.084 1.055*

*WRMR (Weighted Root Mean Square Residual) is reported for dichotomous items.



Table 14

Item Loadings for Scale Measurement Models, All Items Loaded Onto One Factor

Scale/Item P S.E. t p

Experience

Familiarity with Microsoft Excel 0.657 0.068 9.650 <0 . 0 0 0

Importance of Microsoft Excel for Work or School 0.781 0.055 14.322 <0 . 0 0 0

Important of Microsoft Excel for Reasons Other than Work or School 0.379 0 . 1 0 0 3.804 <0 . 0 0 0

Frequency of Microsoft Excel Use for Work or School 0.831 0.051 16.247 <0 . 0 0 0

Frequency of Microsoft Excel Use for Other Reasons 0.559 0.080 6.970 <0 . 0 0 0

Openness

Complex 0.270 0.072 3.731 <0 . 0 0 0

Creative 0.786 0.038 20.711 <0 . 0 0 0

Deep 0.381 0.068 5.596 <0 . 0 0 0

Imaginative 0.768 0.039 19.565 <0 . 0 0 0

Intellectual 0.286 0.072 3.992 <0 . 0 0 0



(Table 14 continued)

Scale/Item 3 S.E. t p

Philosophical 0.379 0.067 5.650 <0 . 0 0 0

Uncreative* 0.759 0.041 18.369 <0 . 0 0 0

Unintellectual* 0.312 0.073 4.274 <0 . 0 0 0

Conscientiousness

Careless* 0.619 0.049 12.755 <0 . 0 0 0

Disorganized* 0.804 0.033 24.142 <0 . 0 0 0

Efficient 0.530 0.057 9.223 <0 . 0 0 0

Inefficient* 0.689 0.044 15.639 <0 . 0 0 0

Organized 0.764 0.037 20.843 <0 . 0 0 0

Practical 0.378 0.066 5.739 <0 . 0 0 0

Sloppy* 0.787 0.034 23.494 <0 . 0 0 0

Systematic 0.349 0.067 5.219 <0 . 0 0 0



(Table 14 continued)

Scale/Item P S.E. t p

Extraversion

Bashful* 0.610 0.053 11.567 <0 . 0 0 0

Bold 0.563 0.055 10.165 <0 . 0 0 0

Energetic 0.378 0.069 5.489 <0 . 0 0 0

Extraverted 0.696 0.046 15.117 <0 . 0 0 0

Quiet* 0.742 0.040 18.433 <0 . 0 0 0

Shy* 0.764 0.041 18.659 <0 . 0 0 0

Talkative 0.627 0.051 12.329 <0 . 0 0 0

Withdrawn* 0.482 0.060 8.070 <0 . 0 0 0

Mastery Goal Orientation

Select Challenging Assignments 0.775 0.034 22.688 <0.000

Look for Opportunities to Develop New Skills and Knowledge 0.657 0.045 14.661 <0.000



(Table 14 continued)

Scale/Item S.E.

Enjoy Challenging and Difficult Tasks 0.856 0.028 31.023 <0 . 0 0 0

Developing Work Ability is Important Enough to Take Risks 0.745 0.037 19.910 <0 . 0 0 0

Prefer Work Situations Requiring High Ability and Talent. 0.722 0.039 18.485 <0 . 0 0 0

Internal Locus of Control

No Such Thing as "Luck" 0.860 0.044 19.641 <0 . 0 0 0

Impossible That Chance or Luck Play an Important Role 0.776 0.043 18.208 <0 . 0 0 0

Unhappy Things are Due to Bad Luck* 0.444 0.065 6.833 <0 . 0 0 0

Lonely People Do Not Try to be Friendly 0.341 0.071 4.768 <0 . 0 0 0

Misfortunes Result from Lack of Ability, Ignorance, or Laziness 0.331 0.073 4.503 <0 . 0 0 0

People Who are Not Liked Do Not Understand How to Get Along 0.175 0.078 2.241 0.025

People Can Control World Events 0.053 0.077 0 . 6 8 6 0.493

Average Citizens Can Influence Government Decisions 0.153 0.075 2.030 0.042



(Table 14 continued)

Scale/Item P S.E. t P

Difficult to Have Control over Politicians in Office* -0.114 0.077 -1.486 0.137

The Boss was Lucky to be in the Right Place First* 0.149 0.077 1.923 0.054

Have Little Influence over What Happens to Me 0 . 0 0 2 0.078 0 . 0 2 1 0.983

People’s Worth Often Passes Unrecognized* 0.005 0.079 0.057 0.954

Wars Exist because of Disinterest in Politics 0.230 0.076 3.009 0.003

War will Exist, Regardless of People trying to Prevent them* -0.068 0.076 -0.891 0.373

No Matter how Hard you Try, Some People Just Don't Like You* 

Cognitive Ability 

Verbal

0.132 0.076 1.739 0.082

Q i 0.707 0.066 10.712 <0 . 0 0 0

Q2 0.520 0.079 6.610 <0 . 0 0 0

Q3 0.604 0.074 8.105 <0 . 0 0 0
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(Table 14 continued)

Scale/Item P S.E. t P

Q4 0.772 0.058 13.391 <0 . 0 0 0

Q5 0.751 0.061 12.414 <0 . 0 0 0

Q6 0.775 0.058 13.352 <0 . 0 0 0

Q7 0 . 8 8 8 0.050 17.785 <0 . 0 0 0

Quantitative - choose which quantity is greater

Q i 0.165 0.095 1.739 0.082

Q2 0.590 0.073 8 . 1 0 0 <0 . 0 0 0

Quantitative - choose the correct answer

Q i 0.404 0.107 3.771 <0 . 0 0 0

Q2 0.554 0.077 7.210 <0 . 0 0 0

Q3 0.274 0.092 2.985 0.003

Note. Full text of items is available in Appendix A. *Item was reverse-coded



particular had low correlations with other items and a low factor loading (.379). The item 

was created for the study (“How important is using your current knowledge of Microsoft 

Excel for reasons other than work or school?”). This item was dropped, and adequate 

model fit and factor loadings were found for the new 4-item scale. Alternative models 

with 2  factors (all items and negative item factors) were tested for each scale containing 

negative items (i.e., the three personality variables and internal locus). This approach did 

not improve measurement model fit to an acceptable level. Therefore, a conservative 

parceling strategy was employed for each scale. Items were randomly chosen to form 

parcels. Eight-item personality scales (openness, conscientiousness, and extraversion) 

were converted into four parcels of two random items, 1 2 -item cognitive ability was 

converted into four parcels of 3 random items, and 15-item internal locus was converted 

into five parcels of three items. Each of these parceled scales showed acceptable model 

fit and factor loadings and were used to test the hypothesized models. Because the aims 

of this study were more aligned with testing individual differences’ relationships to other 

variables, and not on the scales themselves, this was a desirable strategy to remove error 

from the hypothesized models, stemming from the measurement models. Model fit and 

factor loadings for the final models can be found in Tables 15 and 16.

Hypothesis Testing

Hypothesized models were tested using Mplus 5.2 with bias corrected 

bootstrapping and 1,000 replications, as recommended by Preacher and Hayes (2008). 

Overall model fit was examined in order to infer how well the variances and covariances 

of the model were predicted by the theoretical relationships. Multiple global fit indices;



Table 15

Model Fit Statistics for Scale Measurement Models, Final Scales

Model t df P CFI AIC RMSEA SRMR

1. Experience 6.231 2 0.044 0.984 2491.116 0 . 1 0 1 0.026

2. Openness 7.879 2 0 . 0 2 0 0.978 1692.554 0.119 0.028

3. Conscientiousness 2.486 1 0.115 0.996 1666.601 0.085 0.016

4. Extraversion 7.333 2 0.026 0.982 2054.595 0.113 0 . 0 2 2

5. Mastery Goal Orientation 7.722 5 0.172 0.994 1961.966 0.051 0.019

6 . Internal Locus of Control 1.654 3 0.647 1 . 0 0 0 1997.189 0 . 0 0 0 0.017

7. Cognitive Ability 4.270 2 0.118 0.988 2210.984 0.074 0 . 0 2 2
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Table 16

Item Loadings for Scale Measurement Models, Final Scales 

Scale P S.E. t p

Experience

Familiarity with Microsoft Excel 0.679 0.048 14.261 <0 . 0 0 0

Importance of Microsoft Excel for Work or School 0.731 0.042 17.585 <0 . 0 0 0

Important of Microsoft Excel for Reasons Other than Work or School 0.876 0.036 24.533 <0 . 0 0 0

Frequency of Microsoft Excel Use for Work or School 0.529 0.057 9.311 <0 . 0 0 0

Openness

Parcel 1 0.743 0.044 16.740 <0 . 0 0 0

Parcel 2 0.548 0.056 9.768 <0 . 0 0 0

Parcel 3 0.692 0.046 15.163 <0 . 0 0 0

Parcel 4 0.846 0.039 21.965 <0 . 0 0 0



(Table 16 continued)

Scale , P S.E. t p

Conscientiousness

Parcel 1 0.545 0.060 9.167 <0 . 0 0 0

Parcel 2 0.642 0.046 13.853 <0 . 0 0 0

Parcel 3 0.865 0.034 25.151 <0 . 0 0 0

Parcel 4 0 . 8 8 6 0.034 26.186 <0 . 0 0 0

Extraversion

Parcel 1 0 . 6 6 8 0.048 14.051 <0 . 0 0 0

Parcel 2 0.639 0.049 13.141 <0 . 0 0 0

Parcel 3 0.848 0.035 24.374 <0 . 0 0 0

Parcel 4 0.774 0.039 19.944 <0 . 0 0 0

Mastery Goal Orientation

Willing to select challenging work assignments to leam from 0.775 0.034 22.688 <0.000



(Table 16 continued)

Scale 3 S.E. t P

Look for opportunities to develop new skills and knowledge 0.657 0.045 14.661 <0 . 0 0 0

Enjoy challenging and difficult tasks at work to learn new skills 0.856 0.028 31.023 <0 . 0 0 0

Development of work ability is important enough to take risks 0.745 0.037 19.910 <0 . 0 0 0

Prefer work in situations requiring a high level of ability and talent 

Internal Locus of Control

0.722 0.039 18.485 <0 . 0 0 0

Parcel 1 0.314 0.074 4.254 <0 . 0 0 0

Parcel 2 0.854 0.114 7.511 <0 . 0 0 0

Parcel 3 0.667 0 . 1 1 0 6.062 <0 . 0 0 0

Parcel 4 0.539 0.081 6.631 <0 . 0 0 0

Parcel 5 0.457 0.083 5.535 <0 . 0 0 0
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(Table 16 continued)

Scale P S.E. t P

Cognitive Ability

Parcel 1 0.658 0.054 12.095 <0 . 0 0 0

Parcel 2 0.532 0.060 8.824 <0 . 0 0 0

Parcel 3 0.652 0.055 11.896 <0 . 0 0 0

Parcel 4 0.800 0.049 16.352 <0 . 0 0 0



the chi-square fit index, Standardized Root Mean Residual (SRMR), Root Mean Square 

Error of Approximation (RMSEA), Aikaike Information Criterion (AIC) and 

Comparative Fit Index (CFI) were examined. Definitions and cutoff values of the chi- 

square test and supplementary indexes are taken from Hu and Bentler (1999). The chi- 

square fit index directly compares the sample and model covariance matrices, and is the 

most widely used model fit statistic. A non-significant chi-square fit index indicates 

satisfactory overall model fit, though this statistic is inflated by large sample sizes 

(Thompson & Daniel, 1996). Absolute fit indices (SRMR and RMSEA) assess the degree 

of similarity between the a priori model and the sample data. SRMR is the average 

absolute value of the residual covariance matrix, and should be .08 or less to indicate 

good fit. As recommended by Hu and Bentler (1999), SRMR should be coupled with at 

least one other index in order to detect misspecification in measurement or structural 

model parameters. This is because the SRMR is most sensitive to detect structural model 

misspecifications (factor covariances), whereas other fit indices are more sensitive to 

measurement model misspecifications (factor loadings). Thus, RMSEA and CFI were 

also employed. The Root Mean Square Error of Approximation (RMSEA) estimates the 

error of approximation, or error due to the model as a simplification of reality. A 

RMSEA value of .05 or less would indicate good model fit. Incremental fit indices (such 

as the CFI) compare the hypothesized model with a restricted baseline model, typically a 

model of uncorrelated observed variables. CFI compares the model chi-square to the 

independence chi-square, and should be greater than 0.95 to indicate good fit. These 

supplementary fit indices were chosen together because of their common use in published 

empirical articles employing SEM, as well as the results of Monte Carlo simulations,



such as Fan, Thompson, and Wang’s (1999) study, which indicated minimal influence of 

sample size and random variation. Each hypothesized partial mediation model was tested 

with and without the pre-training knowledge control variable. Pre-training knowledge is 

likely meaningfully related to many of the hypothesized individual difference variables 

and post-training learning outcomes. Spector and Brannick’s (2011) advice regarding the 

effects of control variables “extraneous to the focal theory and hypotheses being tested” 

(p. 297) was followed. They advise to “do comparative tests with and without controls to 

show whether their addition has an effect on observed relationships among the 

substantive variables of interest to the study” (p.297). In order to investigate whether or 

not the hypothesized relationships are affected by pre-training knowledge, models were 

tested with and without the control variable. Model fit for each hypothesized model was 

assessed, and each model showed acceptable overall fit (see Table 17). Because of the 

high correlation between Excel experience and the pre-training knowledge test, these 

variables were correlated in the experience model. Each hypothesis was tested by 

examining standardized path coefficients

Hypothesis 1. Hypotheses la-lg  stated that each individual difference would 

positively predict the usage of learner control. Tests of these hypotheses can be found in 

Table 18. Pre-training experience, openness, conscientiousness, and internal locus of 

control did not significantly predict the usage of sequence control, pace control, or 

content control, regardless of the pre-training knowledge control variable, failing to 

support Hypotheses la, b, c, and f. Extraversion did not significantly predict sequence



Table 17

Model Fit Statistics for Hypothesized Models, With and Without Pre-Training Knowledge Control Variable

Model ■ t df P CFI AIC RMSEA SRMR

a. Experience and Pre-Training Knowledge 61.245 2 0 <0 . 0 0 0 0.937 8413.424 0 . 1 0 0 0.040

Without Pre-Training Excel Knowledge 26.223 17 0.071 0.982 7330.860 0.051 0.036

b. Openness and Pre-Training Knowledge 30.14 - 2 0 0.068 0.982 7667.573 0.049 0.033

Without Pre-Training Excel Knowledge 21.753 17 0.194 0.991 6535.420 0.037 0.031

c. Conscientiousness and Pre-Training Knowledge 29.931 19 0.053 0.984 7641.666 0.053 0.031

Without Pre-Training Excel Knowledge 21.485 16 0.161 0.991 6509.734 0.041 0.032

d. Extraversion and Pre-Training Knowledge 24.876 2 0 0.206 0.992 8025.238 0.034 0.034

Without Pre-Training Excel Knowledge 24.271 17 0 . 1 1 2 0.986 6899.322 0.045 0.035

e. Mastery Goal Orientation and Pre-Training Knowledge 47.142 29 0.018 0.977 7936.598 0.055 0.037

Without Pre-Training Excel Knowledge 35.213 25 0.084 0.986 6806.757 0.044 0.036

f. Internal Locus of Control and Pre-Training Knowledge 31.278 27 0.260 0.990 7975.512 0.028 0.047
Without Pre-Training Excel Knowledge 27.391 23 0.240 0.988 6843.495 0.030 0.048

g. Cognitive Ability and Pre-Training Knowledge 19.702 2 0 0.477 1 . 0 0 0 8132.204 0 . 0 0 0 0.028

Without Pre-Training Excel Knowledge 18.614 17 0.351 0.997 7001.705 0 . 0 2 1 0.029
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Table 18

Standardized Path Coefficients for Usage of Learner Control on Individual Differences, for Models With and Without Pre-Training 
Knowledge Control Variable

Sequence Pace Content

Model P S.E. t P P S.E. t P P S.E. t P
With Pre-Training Knowledge

a. Experience 0.062 0.097 0.637 0.524 0.149 0.094 1.590 0 . 1 1 2 0.043 0.104 0.416 0.677

Pre-K 0 . 0 2 1 0.091 0.229 0.819 -0.283 0.085 -3.325 0 . 0 0 1 -0.147 0.092 -1.595 0 . 1 1 1

b. Openness 0.147 0.080 1.835 0.067 -0.094 0.077 -1 . 2 2 1 0 . 2 2 2 -0.191 0.072 -2.630 0.009

Pre-K 0.041 0.073 0.552 0.581 -0.190 0.063 -3.028 0 . 0 0 2 -0.104 0.070 -1.480 0.139

c. Conscientiousness 0.058 0.074 0.790 0.430 0.024 0.076 0.320 0.749 -0.113 0.077 -1.474 0.140

Pre-K 0.062 0.074 0.835 0.404 -0.193 0.064 -3.001 0.003 -0.135 0.073 -1.841 0.066

d. Extraversion -0.052 0.074 -0.694 0.488 0.155 0.073 2.131 0.033 0.116 0.069 1.685 0.092

Pre-K 0.056 0.075 0.745 0.456 -0 . 2 1 0 0.062 -3.397 0 . 0 0 1 -0.128 0.070 -1.832 0.067

e. MGO 0.154 0.069 2.230 0.026 0.086 0.078 1.106 0.269 -0.092 0.071 -1.299 0.194

Pre-K 0.040 0.071 0.558 0.577 -0.205 0.064 -3.212 0 . 0 0 1 -0 . 1 1 2 0.071 -1.573 0.116
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(Table 18 continued)

Model

Sequence Pace Content

P S.E. t P P S.E. t P P S.E. t P
f. Internal Locus 0.052 0.086 0.602 0.547 0.041 0.087 0.469 0.639 0 . 1 1 2 0.078 1.444 0.149

Pre-K 0.057 0.074 0.769 0.442 -0.194 0.063 -3.087 0 . 0 0 2 -0 . 1 1 1 0.071 -1.550 0 . 1 2 1

g. Cognitive Ability 0.246 0.086 2 . 8 6 8 0.004 -0.129 0.086 -1.502 0.133 -0.225 0.078 -2.871 0.004

Pre-K -0.025 0.081 -0.307 0.759 -0.156 0.074 -2.126 0.033 -0.049 0.076 ' -0.639 0.523

Without Pre-Training Knowledge

a. Experience 0.083 0.075 1.098 0.272 -0.009 0.075 -0.123 0.902 -0.052 0.077 -0.667 0.505

b. Openness 0.148 0.080 1.844 0.065 -0.105 0.076 -1.375 0.169 -0.195 0.072 -2.699 0.007

c. Conscientiousness 0.052 0.072 0.723 0.470 0.045 0.078 0.574 0.566 -0.103 0.077 -1.337 0.181

d. Extraversion -0.050 0.074 -0.678 0.498 0.142 0.074 1.907 0.056 0.109 0.069 1.582 0.114

e. MGO 0.160 0.070 2.300 0 . 0 2 1 0.067 0.079 0.852 0.394 -0.104 0.071 -1.472 0.141

f. Internal Locus 0.047 0.086 0.550 0.582 0.057 0.087 0.653 0.514 0 . 1 2 2 0.077 1.583 0.113
g. Cognitive Ability 0.242 0.078 3.092 0 . 0 0 2 -0.178 0.080 -2.230 0.026 -0.242 0.072 -3.365 0 . 0 0 1

Note. Pre-K = Pre-training Knowledge.
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control or content control. The relationship between extraversion and pace control was 

significant only when controlling for pre-training knowledge, but was non-significant 

when pre-training knowledge was not in the model. MGO significantly and positively 

predicted the usage of sequence control, regardless of the pre-training knowledge control 

variable, but did not significantly predict the usage of pace control or content control. 

Cognitive ability did not significantly predict content control. The significant relationship 

between cognitive ability and the usage of sequence control remained regardless of the 

pre-training knowledge control variable. The relationship between cognitive ability and 

pace control was significant only when pre-training knowledge was not controlled for; 

when pre-training knowledge served as a control variable, the relationship was not 

significant. The results with respect to extraversion, MGO, and cognitive ability provide 

limited support for Hypotheses Id, e, and g.

Hypothesis 2. Hypothesis 2 stated that the usage of learner control would 

positively predict learning outcomes. Tests of this hypothesis can be found in Table 19 

for post-training knowledge and 20 for post-training skill. Sequence control positively 

and significantly predicted both post-training knowledge and post-training skill across all 

individual difference models, regardless of controlling for pre-training knowledge. The 

usage of pace control significantly and negatively predicted post-training knowledge 

across all individual difference models. However, the relationship between pace control 

and post-training knowledge was only significant when pre-training knowledge was not 

used as a control variable. The usage of pace control did not significantly predict post­

training skill. The usage of content remove control significantly and negatively predicted 

post-training knowledge across all individual difference models, regardless o f controlling



Table 19

Standardized Path Coefficients for Post-Training Knowledge on Learner Control Usage, With and Without Pre-Training Knowledge 

Control Variable

Sequence Pace Content

Model P S.E. t P P S.E. t P P S.E. t P

With Pre-Training Knowledge

Experience 0.238 0.062 3.873 0 . 0 0 0 -0.091 0.065 -1.397 0.162 -0 . 2 1 1 0.066 -3.214 0 . 0 0 1

Openness 0.237 0.062 3.834 0 . 0 0 0 -0.098 0.066 -1.491 0.136 -0.209 0.068 -3.084 0 . 0 0 2

Conscientiousness 0.238 0.061 3.889 0 . 0 0 0 -0.097 0.065 -1.496 0.135 -0 . 2 1 2 0.069 -3.090 0 . 0 0 2

Extraversion 0.232 0.061 3.796 0 . 0 0 0 -0.075 0.067 - 1 . 1 2 2 0.262 -0.208 0.067 -3.121 0 . 0 0 2

MGO 0.243 0.061 3.969 0 . 0 0 0 -0.092 0.067 -1.360 0.174 -0.216 0.067 -3.220 0 . 0 0 1

Internal Locus 0.246 0.060 4.085 0 . 0 0 0 -0 . 1 0 0 0.066 -1.524 0.128 -0 . 2 0 0 0.067 -3.003 0.003

Cognitive Ability 0.179 0.060 2.972 0.003 -0.081 0.060 -1.357 0.175 -0.175 0.068 -2.577 0 . 0 1 0



(Table 19 continued)

Sequence Pace Content

Model P S.E. t P P S.E. t P P S.E. t P

Without Pre-Training Knowledge

Experience 0.244 0.067 3.654 0 . 0 0 0 -0.187 0.074 -2.523 0 . 0 1 2 -0 . 2 0 1 0.079 -2.550 0 . 0 1 1

Openness 0.252 0.067 3.773 0 . 0 0 0 -0.184 0.074 -2.494 0.013 -0.203 0.083 -2.436 0.015

Conscientiousness 0.256 0.065 3.906 0 . 0 0 0 -0.172 0.072 -2.401 0.016 -0 . 2 2 0 0.082 -2 . 6 6 6 0.008

Extraversion 0.251 0.066 3.779 0 . 0 0 0 -0.171 0.074 -2.300 0 . 0 2 1 -0.205 0.080 -2.555 0 . 0 1 1

MGO 0.255 0.066 3.855 0 . 0 0 0 -0.185 0.075 -2.474 0.013 -0.206 0.082 -2.517 0 . 0 1 2

Internal Locus 0.266 0.067 3.992 0 . 0 0 0 -0.186 0.073 -2.537 0 . 0 1 1 -0.192 0.081 -2.360 0.018

Cognitive Ability 0.171 0.063 2.706 0.007 -0.139 0.069 -2.024 0.043 -0.160 0.081 -1.977 0.048



Table 20

Standardized Path Coefficients for Post-Training Skill on Learner Control Usage, With and Without Pre-Training Knowledge Control 

Variable

Sequence Pace Content

Model P S.E. t P P S.E. t P P S.E. t P

With Pre-Training Knowledge

Experience 0.325 0.074 4.417 0 . 0 0 0 0 . 0 0 1 0.081 0.016 0.987 0.023 0.091 0.255 0.799

Openness 0.334 0.071 4.698 0 . 0 0 0 0 . 0 2 2 0.083 0.266 0.790 0.004 0.095 0.040 0.968

Conscientiousness 0.328 0.072 4.571 0 . 0 0 0 0.030 0.082 0.368 0.713 0.006 0.090 0.062 0.951

Extraversion 0.321 0.074 4.350 0 . 0 0 0 0.046 0.083 0.561 0.575 0 . 0 2 2 0.091 0.236 0.813

MGO 0.327 0.074 4.435 0 . 0 0 0 0 . 0 2 1 0.084 0.251 0.802 0 . 0 2 1 0.093 0.228 0.819

Internal Locus 0.326 0.075 4.360 0 . 0 0 0 0 . 0 2 2 0.083 0.269 0.788 0.018 0.094 0.196 0.844

Cognitive Ability 0.242 0.080 3.024 0 . 0 0 2 0.025 0.079 0.319 0.749 0.075 0.090 0.825 0.409
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(Table 20 continued)

Sequence Pace Content

Model P S.E. t P P S.E. t P P S.E. t P

Without Pre-Training Knowledge

Experience 0.324 0.074 4.371 0 . 0 0 0 -0.028 0.081 -0.352 0.725 0.028 0.092 0.307 0.759

Openness 0.339 0.072 4.691 0 . 0 0 0 -0 . 0 2 1 0.080 -0.262 0.793 0 . 0 1 0 0.097 0.099 0.921

Conscientiousness 0.332 0.072 4.612 0 . 0 0 0 -0.004 0.079 -0.055 0.956 0.003 0.091 0.037 0.971

Extraversion 0.328 0.075 4.396 0 . 0 0 0 -0.003 0.080 -0.040 0.968 0.026 0.093 0.281 0.779

MGO 0.330 0.074 4.454 0 . 0 0 0 -0.026 0.082 -0.311 0.756 0.028 0.095 0.297 0.766

Internal Locus 0.334 0.076 4.390 0 . 0 0 0 -0 . 0 2 1 0.080 -0.262 0.793 0.024 0.096 0.254 0.800

Cognitive Ability 0.237 0.081 2.940 0.003 0.005 0.075 0.072 0.943 0.082 0.092 0.892 0.372
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for pre-training knowledge. The usage of content control did not significantly predict 

post-training skill. The results with respect to sequence control provide limited support 

for Hypothesis 2.

Hypothesis 3. Hypotheses 3a-g stated that the relationship between individual 

differences and learning outcomes will be mediated by the usage of learner control. 

Experience positively predicted both post-training knowledge and skill directly, but no 

indirect effects through the usage of learner control were significant (see Table 21 for 

post-training knowledge and 2 2  for post-training skill).

Openness did not significantly predict post-training knowledge directly, but total 

indirect effects through the usage of all learner control usage variables were significant. 

Significant total indirect effects were found regardless of controlling for pre-training 

knowledge. Thus, evidence of full mediation was found for the relationship between 

openness and post-training knowledge. Openness did not significantly predict post­

training skill, directly nor indirectly (see Table 23 for post-training knowledge and 24 for 

post-training skill). Conscientiousness did not significantly predict post-training 

knowledge, directly or indirectly. Conscientiousness significantly and negatively 

predicted post-training skill when not controlling for pre-training knowledge. The direct 

relationship was not significant when controlling for pre-training knowledge. No indirect 

effects were significant for conscientiousness (see Table 25 for post-training knowledge 

and 26 for post-training skill). Extraversion significantly and negatively predicted post­

training knowledge and skill, directly. These relationships were significant only when 

controlling for pre-training knowledge; when not controlling for pre-training knowledge, 

the relationships were non-significant. No significant indirect relationships were found.
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Thus, no evidence of partial mediation was found (see Table 27 for post-training 

knowledge and 28 for post-training skill).

MGO and internal locus did not significantly predict post-training knowledge, 

directly or indirectly. Internal locus did not significantly predict post-training skill, 

directly or indirectly. MGO did not significantly predict post-training skill directly, but 

the indirect relationship through sequence control was positive and significant. Thus, no 

evidence of partial mediation was found, but evidence for full mediation through 

sequence control was found. This relationship was significant only when not controlling 

for pre-training knowledge (see Tables 29 and 30 for MGO and Tables 31 and 32 for 

internal locus).

Cognitive ability positively and significantly predicted post-training knowledge 

directly, regardless of controlling for pre-training knowledge. The indirect path through 

sequence control was positive and significant, the indirect path through content remove 

was negative and significant, and the total of all indirect effects was significant.

Cognitive ability positively and significantly predicted post-training skill directly, 

regardless of controlling for pre-training knowledge. Indirect effects through sequence 

control only were positive and significant, regardless of the pre-training control variable. 

Thus, some support was found for a partial mediation relationship for both post-training 

knowledge and skill. The results with respect to cognitive ability provide partial support 

for Hypothesis 3g (see Table 33 for post-training knowledge and 34 for post-training 

skill).



Table 21

Standardized Path Loadings for Partial Mediation Test o f  Post-Training Knowledge on

Experience and Pre-Training Knowledge

Model P S.E. t P
Experience With Pre-Training Knowledge

Post-Training Knowledge on Experience 

Total Effects -0.078 0.095 -0.820 0.412

Direct Effects -0.070 0.083 -0.847 0.397

Total Indirect -0.008 0.039 -0 . 2 0 2 0.840

Specific indirect: Sequence 0.015 0.024 0.606 0.545

Specific indirect: Pace -0.014 0.015 -0.895 0.371

Specific indirect: Content -0.009 0.023 -0.400 0.689

Post-Training Knowledge on Pre-Training Knowledge 

Total Effects 0.559 0.074 7.512 0 . 0 0 0

Direct Effects 0.498 0.071 6.972 0 . 0 0 0

Total Indirect 0.062 0.039 1.599 0 . 1 1 0

Specific indirect: Sequence 0.005 0 . 0 2 2 0.224 0.823

Specific indirect: Pace 0.026 0 . 0 2 1 1 . 2 0 0 0.230

Specific indirect: Content 0.031 0.023 1.355 0.175

Experience Without Pre-Training Knowledge

Post-Training Knowledge on Experience

Total Effects 0.237 0.074 3.190 0 . 0 0 1

Direct Effects 0.205 0.066 3.080 0 . 0 0 2

Total Indirect 0.032 0.035 0.913 0.361

Specific indirect: Sequence 0 . 0 2 0 0 . 0 2 0 1 . 0 2 2 0.307

Specific indirect: Pace 0 . 0 0 2 0.015 0.116 0.908

Specific indirect: Content 0 . 0 1 0 0.017 0.610 0.542
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Table 22

Standardized Path Loadings for Partial Mediation Test o f  Post-Training Skill on

Experience and Pre-Training Knowledge

Model P S.E. t P
Experience With Pre-Training Knowledge

Post-Training Skill on Experience

Total Effects 0.164 0.106 1.540 0.124

Direct Effects 0.142 0.099 1.437 0.151

Total Indirect 0 . 0 2 1 0.034 0.629 0.530

Specific indirect: Sequence 0 . 0 2 0 0.032 0.632 0.527

Specific indirect: Pace 0.000 0.015 0.013 0.989

Specific indirect: Content 0 . 0 0 1 0 . 0 1 1 0.095 0.924

Post-Training Skill on Pre-Training Knowledge

Total Effects 0.142 0.089 1.587 0.113

Direct Effects 0.139 0.081 1.709 0.088

Total Indirect 0.003 0.038 0.079 0.937

Specific indirect: Sequence 0.007 0.030 0.226 0.821

Specific indirect: Pace 0.000 0.025 -0.015 0.988

Specific indirect: Content -0.003 0.016 -0.207 0.836

Experience W ithout Pre-Training Knowledge

Post-Training Skill on Experience

Total Effects 0.227 0.080 2.837 0.005

Direct Effects 0 . 2 0 2 0.076 2.661 0.008

Total Indirect 0.026 0.026 0.967 0.334

Specific indirect: Sequence 0.027 0.025 1.071 0.284

Specific indirect: Pace 0.000 0.006 0.041 0.967

Specific indirect: Content -0 . 0 0 1 0.009 -0.161 0.872



Table 23

Standardized Path Loadings for Partial Mediation Test o f  Post-Training Knowledge on

Openness and Pre-Training Knowledge

Model P S.E. t

Openness With Pre-Training Knowledge

Post-Training Knowledge on Openness

Total Effects 0.085 0.071 1.192 0.233

Direct Effects 0 . 0 0 1 0.068 0.015 0.988

Total Indirect 0.084 0.035 2.410 0.016

Specific indirect: Sequence 0.035 0 . 0 2 1 1.648 0.099

Specific indirect: Pace 0.009 0 . 0 1 1 0.818 0.413

Specific indirect: Content 0.040 0 . 0 2 0 1.959 0.050

Post-Training Knowledge on Pre-Training Knowledge

Total Effects 0.507 0.045 11.181 0 . 0 0 0

Direct Effects 0.456 0.046 1 0 . 0 2 2 0 . 0 0 0

Total Indirect 0.050 0.032 1.588 0 . 1 1 2

Specific indirect: Sequence 0 . 0 1 0 0.018 0.537 0.591

Specific indirect: Pace 0.019 0.015 1.269 0.204

Specific indirect: Content 0 . 0 2 2 0.018 1.234 0.217

Openness Without Pre-Training Knowledge

Post-Training Knowledge on Openness

Total Effects 0.106 0.082 1.302 0.193

Direct Effects 0 . 0 1 0 0.080 0.131 0.896

Total Indirect 0.096 0.040 2.403 0.016

Specific indirect: Sequence 0.037 0 . 0 2 2 1.662 0.097

Specific indirect: Pace 0.019 0.017 1.140 0.254

Specific indirect: Content 0.040 0 . 0 2 2 1.760 0.078
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Table 24

Standardized Path Loadings for Partial Mediation Test o f  Post-Training Skill on

Openness and Pre-Training Knowledge

Model P S.E. t P
Openness With Pre-Training Knowledge

Post-Training Skill on Openness

Total Effects -0.043 0.084 -0.518 0.605

Direct Effects -0.090 0.084 -1.069 0.285

Total Indirect 0.046 0.032 1.430 0.153

Specific indirect: Sequence 0.049 0.028 1.728 0.084

Specific indirect: Pace -0 . 0 0 2 0 . 0 1 0 -0 . 2 0 1 0.841

Specific indirect: Content -0 . 0 0 1 0.019 -0.039 0.969

Post-Training Skill on Pre-Training Knowledge

Total Effects 0.231 0.066 3.504 0.000

Direct Effects 0 . 2 2 2 0.062 3.585 0.000

Total Indirect 0.009 0.031 0.285 0.776

Specific indirect: Sequence 0.014 0.025 0.542 0.588

Specific indirect: Pace -0.004 0.017 -0.248 0.804

Specific indirect: Content 0.000 0 . 0 1 2 -0.033 0.974

Openness Without Pre-Training Knowledge

Post-Training Skill on Openness

Total Effects -0.034 0.086 -0.394 0.693

Direct Effects -0.084 0.087 -0.974 0.330

Total Indirect 0.050 0.033 1.507 0.132

Specific indirect: Sequence 0.050 0.029 1.742 0.082

Specific indirect: Pace 0 . 0 0 2 0 . 0 1 1 0.209 0.835

Specific indirect: Content -0 . 0 0 2 0 . 0 2 0 -0.095 0.924
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Table 25

Standardized Path Loadings for Partial Mediation Test ofPost-Training Knowledge on

Conscientiousness and Pre-Training Knowledge

Model P S.E. t P
Conscientiousness With Pre-Training Knowledge

Post-Training Knowledge on Conscientiousness

Total Effects 0.025 0.069 0.356 0.722

Direct Effects -0 . 0 1 1 0.068 -0.162 0.871

Total Indirect 0.036 0.032 1.104 0.270

Specific indirect: Sequence 0.014 0.018 0.756 0.450

Specific indirect: Pace -0 . 0 0 2 0.009 -0.261 0.794

Specific indirect: Content 0.024 

Post-Training Knowledge on Pre-Training Knowledge

0 . 0 2 0 1.226 0 . 2 2 0

Total Effects 0.514 0.047 10.965 0 . 0 0 0

Direct Effects 0.452 0.049 9.188 0 . 0 0 0

Total Indirect 0.062 0.033 1.890 0.059

Specific indirect: Sequence 0.015 0.018 0.811 0.417

Specific indirect: Pace 0.019 0.015 1.291 0.197

Specific indirect: Content 0.029 

Conscientiousness Without Pre-Training Knowledge

0.019 1.471 0.141

Post-Training Knowledge on Conscientiousness

Total Effects -0.048 0.079 -0.609 0.543

Direct Effects -0.077 0.076 -1 . 0 0 2 0.316

Total Indirect 0.028 0.038 0.753 0.452

Specific indirect: Sequence 0.013 0.019 0.690 0.490

Specific indirect: Pace -0.008 0.015 -0.525 0.599

Specific indirect: Content 0.023 0 . 0 2 1 1.097 0.272
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Table 26

Standardized Path Loadings for Partial Mediation Test ofPost-Training Skill on

Conscientiousness and Pre-Training Knowledge

Model P S.E. t P
Conscientiousness With Pre-Training Knowledge

Post-Training Skill on Conscientiousness

Total Effects -0.130 0.083 -1.563 0.118

Direct Effects -0.149 0.083 -1.784 0.074

Total Indirect 0.019 0.027 0.702 0.483

Specific indirect: Sequence 0.019 0.025 0.752 0.452

Specific indirect: Pace 0 . 0 0 1 0.007 0 . 1 1 2 0.911

Specific indirect: Content -0 . 0 0 1 0 . 0 1 2 -0.051 0.960

Post-Training Skill on Pre-Training Knowledge

Total Effects 0 . 2 1 1 0.067 3.150 0 . 0 0 2

Direct Effects 0.198 0.063 3.159 0 . 0 0 2

Total Indirect 0.014 0.031 0.443 0.658

Specific indirect: Sequence 0 . 0 2 0 0.025 0.812 0.417

Specific indirect: Pace -0.006 0.017 -0.340 0.734

Specific indirect: Content -0 . 0 0 1 0.014 -0.053 0.958

Conscientiousness Without Pre-Training Knowledge

Post-Training Skill on Conscientiousness

Total Effects -0.158 0.084 -1.879 0.060

Direct Effects -0.175 0.085 -2.058 0.040

Total Indirect 0.017 0.025 0.687 0.492

Specific indirect: Sequence 0.017 0.028 0.605 0.545

Specific indirect: Pace 0 . 0 0 0 0.007 -0.028 0.978

Specific indirect: Content 0 . 0 0 0 0 . 0 1 2 -0.029 0.977
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Table 27

Standardized Path Loadings for Partial Mediation Test o f  Post-Training Knowledge on

Extraversion and Pre-Training Knowledge

Model P S.E. t P
Extraversion With Pre-Training Knowledge

Post-Training Knowledge on Extraversion

Total Effects -0.213 0.060 -3.521 0.000

Direct Effects -0.165 0.055 -3.015 0.003

Total Indirect -0.048 0.029 -1.648 0.099

Specific indirect: Sequence -0 . 0 1 2 0.018 -0 . 6 6 6 0.506

Specific indirect: Pace -0 . 0 1 2 0 . 0 1 2 -0.944 0.345

Specific indirect: Content -0.024 0.016 -1.460 0.144

Post-Training Knowledge on Pre-Training Knowledge

Total Effects 0.527 0.043 12.147 0.000

Direct Effects 0.471 0.045 10.521 0.000

Total Indirect 0.055 0.031 1.799 0.072

Specific indirect: Sequence 0.013 0.018 0.729 0.466

Specific indirect: Pace 0.016 0.015 1.040 0.298

Specific indirect: Content 0.027 0.018 1.499 0.134

Extraversion Without Pre-Training Knowledge

Post-Training Knowledge on Extraversion

Total Effects -0.175 0.071 -2.454 0.014

Direct Effects -0.116 0.064 -1.795 0.073

Total Indirect -0.059 0.033 -1.782 0.075

Specific indirect: Sequence -0.013 0 . 0 2 0 -0.645 0.519

Specific indirect: Pace -0.024 0.017 -1.427 0.154

Specific indirect: Content -0 . 0 2 2 0.017 -1.287 0.198
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Table 28

Standardized Path Loadings for Partial Mediation Test o f  Post-Training Skill on

Extraversion and Pre-Training Knowledge

Model P SE. ~t

Extra version With Pre-Training Knowledge

Post-Training Skill on Extraversion

Total Effects -0.155 0.073 -2.114 0.035

Direct Effects -0.148 0.071 -2.085 0.037

Total Indirect -0.007 0.028 -0.247 0.805

Specific indirect: Sequence -0.017 0.024 -0.675 0.500

Specific indirect: Pace 0.007 0.014 0.496 0.620

Specific indirect: Content 0 . 0 0 2 0.013 0.192 0.848

Post-Training Skill on Pre-Training Knowledge

Total Effects 0.240 0.066 3.634 0 . 0 0 0

Direct Effects 0.235 0.062 3.768 0 . 0 0 0

Total Indirect 0.005 0.031 0.175 0.861

Specific indirect: Sequence 0.018 0.025 0.730 0.465

Specific indirect: Pace -0 . 0 1 0 0.019 -0.520 0.603

Specific indirect: Content -0.003 0.014 -0.203 0.839

Extraversion Without Pre-Training Knowledge

Post-Training Skill on Extraversion

Total Effects -0.137 0.075 -1.832 0.067

Direct Effects -0.123 0.072 -1.702 0.089

Total Indirect -0.014 0.028 -0.512 0.609

Specific indirect: Sequence -0.017 0.025 -0.658 0.510

Specific indirect: Pace 0 . 0 0 0 0.013 -0.035 0.972

Specific indirect: Content 0.003 0.013 0 . 2 2 2 0.824
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Table 29

Standardized Path Loadings for Partial Mediation Test o f  Post-Training Skill on

Mastery Goal Orientation and Pre-Training Knowledge

Model P S.E. t P
Mastery Goal Orientation With Pre-Training Knowledge

Post-Training Knowledge on MGO

Total Effects -0.004 0.059 -0.059 0.953

Direct Effects -0.053 0.052 -1.028 0.304

Total Indirect 0.050 0.034 1.467 0.142

Specific indirect: Sequence 0.038 0 . 0 2 0 1.878 0.060

Specific indirect: Pace -0.008 0 . 0 1 0 -0.749 0.454

Specific indirect: Content 0 . 0 2 0 0.018 1 . 1 2 2 0.262

Post-Training Knowledge on Pre-Training Knowledge

Total Effects 0.512 0.044 11.560 0 . 0 0 0

Direct Effects 0.460 0.046 10.072 0 . 0 0 0

Total Indirect 0.053 0.032 1.634 0 . 1 0 2

Specific indirect: Sequence 0 . 0 1 0 0.018 0.543 0.587

Specific indirect: Pace 0.019 0.015 1 . 2 2 2 0 . 2 2 2

Specific indirect: Content 0.024 0.018 1.319 0.187

Mastery Goal Orientation Without Pre-Training Knowledge

Post-Training Knowledge on MGO

Total Effects 0.046 0.069 0.665 0.506

Direct Effects -0.004 0.060 -0.066 0.948

Total Indirect 0.050 0.040 1.255 0 . 2 1 0

Specific indirect: Sequence 0.041 0 . 0 2 2 1 . 8 6 6 0.062

Specific indirect: Pace -0 . 0 1 2 0.017 -0.745 0.457

Specific indirect: Content 0 . 0 2 1 0.018 1.163 0.245
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Table 30

Standardized Path Loadings for Partial Mediation Test o f  Post-Training Skill on

Mastery Goal Orientation and Pre-Training Knowledge

Model P S.E. t P
Mastery Goal Orientation With Pre-Training Knowledge

Post-Training Skill on Mastery Goal Orientation

Total Effects 0.030 0.078 0.387 0.699

Direct Effects -0 . 0 2 0 0.080 -0.249 0.804

Total Indirect 0.050 0.026 1.923 0.054

Specific indirect: Sequence 0.050 0.026 1.959 0.050

Specific indirect: Pace 0 . 0 0 2 0 . 0 1 0 0.184 0.854

Specific indirect: Content -0 . 0 0 2 0 . 0 1 1 -0.181 0.856

Post-Training Skill on Pre-Training Knowledge

Total Effects 0.228 0.065 3.540 0 . 0 0 0

Direct Effects 0 . 2 2 2 0.062 3.586 0 . 0 0 0

Total Indirect 0.006 0.031 0.204 0.838

Specific indirect: Sequence 0.013 0.024 0.547 0.585

Specific indirect: Pace -0.004 0.018 -0.236 0.813

Specific indirect: Content -0 . 0 0 2 0.013 -0.188 0.851

Mastery Goal Orientation Without Pre-Training Knowledge

Post-Training Skill on Mastery Goal Orientation

Total Effects 0.052 0.082 0.637 0.524

Direct Effects 0.004 0.083 0.048 0.961

Total Indirect 0.048 0.027 1.787 0.074

Specific indirect: Sequence 0.053 0.027 1.984 0.047

Specific indirect: Pace -0 . 0 0 2 0.009 -0.186 0.852

Specific indirect: Content -0.003 0 . 0 1 2 -0.243 0.808



Table 31

Standardized Path Loadings for Partial Mediation Test o f  Post-Training Knowledge on

Internal Locus o f Control and Pre-Training Knowledge

Model P S.E. t P
Internal Locus With Pre-Training Knowledge

Post-Training Knowledge on Internal Locus

Total Effects -0.081 0.085 -0.957 0.339

Direct Effects -0.067 0.075 -0.903 0.366

Total Indirect -0.014 0.030 -0.455 0.649

Specific indirect: Sequence 0.013 0 . 0 2 2 0.590 0.555

Specific indirect: Pace -0.004 0 . 0 1 1 -0.385 0.701

Specific indirect: Content -0 . 0 2 2 0.018 -1.272 0.203

Post-Training Knowledge on Pre-Training Knowledge

Total Effects 0.506 0.046 11.115 0 . 0 0 0

Direct Effects 0.450 0.046 9.752 0 . 0 0 0

Total Indirect 0.056 0.032 1.749 0.080

Specific indirect: Sequence 0.014 0.019 0.748 0.454

Specific indirect: Pace 0.019 0.015 1.310 0.190

Specific indirect: Content 0 . 0 2 2 0.017 1.290 0.197

Internal Locus Without Pre-Training Knowledge

Post-Training Knowledge on Internal Locus

Total Effects -0 . 1 1 2 0.090 -1.242 0.214

Direct Effects -0.090 0.080 -1.132 0.258

Total Indirect -0 . 0 2 1 0.036 -0.597 0.550

Specific indirect: Sequence 0.013 0.024 0.534 0.593

Specific indirect: Pace -0 . 0 1 1 0.018 -0.597 0.550

Specific indirect: Content -0.023 0.019 -1.230 0.219
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Table 32

Standardized Path Loadings for Partial Mediation Test o f  Post-Training Skill on

Internal Locus o f  Control and Pre-Training Knowledge

Model 0 S.E. t P
Internal Locus of Control With Pre-Training Knowledge

Post-Training Skill on Internal Locus of Control

Total Effects 0.032 0.090 0.352 0.725

Direct Effects 0 . 0 1 2 0.089 0.132 0.895

Total Indirect 0 . 0 2 0 0.032 0.615 0.539

Specific indirect: Sequence 0.017 0.029 0.587 0.557

Specific indirect: Pace 0 . 0 0 1 0.008 0 . 1 1 0 0.912

Specific indirect: Content 0 . 0 0 2 0.013 0.159 0.874

Post-Training Skill on Pre-Training Knowledge

Total Effects 0.233 0.064 3.610 0 . 0 0 0

Direct Effects 0 . 2 2 0 0.061 3.642 0 . 0 0 0

Total Indirect 0 . 0 1 2 0.031 0.397 0.691

Specific indirect: Sequence 0.019 0.025 0.744 0.457

Specific indirect: Pace -0.004 0.017 -0.250 0.803

Specific indirect: Content -0 . 0 0 2 0.013 -0.159 0.874

Internal Locus of Control W ithout Pre-Training Knowledge

Post-Training Skill on Internal Locus o f Control

Total Effects 0.018 0.091 0 . 2 0 1 0.841

Direct Effects 0 . 0 0 1 0.089 0.008 0.993

Total Indirect 0.018 0.033 0.536 0.592

Specific indirect: Sequence 0.016 0.030 0.534 0.593

Specific indirect: Pace -0 . 0 0 1 0.009 -0.134 0.894

Specific indirect: Content 0.003 0.014 0.213 0.831



Table 33

Standardized Path Loadings for Partial Mediation Test o f  Post-Training Knowledge on

Cognitive Ability and Pre-Training Knowledge

Model P S.E. t P
Cognitive Ability With Pre-Training Knowledge

Post-Training Knowledge on Cognitive Ability 

Total Effects 0.412 0.062 6.672 0 . 0 0 0

Direct Effects 0.318 0.063 5.070 0 . 0 0 0

Total Indirect 0.094 0.028 3.347 0 . 0 0 1

Specific indirect: Sequence 0.044 0 . 0 2 2 2.051 0.040

Specific indirect: Pace 0 . 0 1 0 0 . 0 1 2 0.870 0.384

Specific indirect: Content 0.039 0.019 2.064 0.039

Post-Training Knowledge on Pre-Training Knowledge 

Total Effects 0.381 0.058 6.511 0 . 0 0 0

Direct Effects 0.364 0.054 6.774 0 . 0 0 0

Total Indirect 0.017 0.027 0.610 0.542

Specific indirect: Sequence -0.004 0.015 -0.288 0.773

Specific indirect: Pace 0.013 0 . 0 1 2 1.075 0.282

Specific indirect: Content 0.009 0.015 0.569 0.569

Cognitive Ability Without Pre-Training Knowledge

Post-Training Knowledge on Cognitive Ability

Total Effects 0.531 0.063 8.428 0 . 0 0 0

Direct Effects 0.426 0.068 6.296 0 . 0 0 0

Total Indirect 0.105 0.030 3.546 0 . 0 0 0

Specific indirect: Sequence 0.041 0 . 0 2 0 2.095 0.036

Specific indirect: Pace 0.025 0.016 1.503 0.133

Specific indirect: Content 0.039 0 . 0 2 2 1.785 0.074
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Table 34

Standardized Path Loadings for Partial Mediation Test o f  Post-Training Skill on

Cognitive Ability and Pre-Training Knowledge

Model P S.E. t P
Cognitive Ability With Pre-Training Knowledge

Post-Training Skill on Cognitive Ability

Total Effects 0.448 0.078 5.751 0.000

Direct Effects 0.408 0.085 4.793 0.000
Total Indirect 0.040 0.031 1.291 0.197

Specific indirect: Sequence 0.060 0.027 2.197 0.028

Specific indirect: Pace -0.003 0.013 -0.252 0.801

Specific indirect: Content -0.017 0.024 -0.689 0.491

Post-Training Skill on Pre-Training Knowledge

Total Effects 0.099 0.072 1.381 0.167

Direct Effects 0.113 0.070 1.617 0.106

Total Indirect -0.014 0.024 -0.557 0.577

Specific indirect: Sequence -0.006 0 . 0 2 0 -0.297 0.766

Specific indirect: Pace -0.004 0.014 -0.282 0.778

Specific indirect: Content -0.004 0.009 -0.392 0.695

Cognitive Ability Without Pre-Training Knowledge

Post-Training Skill on Cognitive Ability

Total Effects 0.479 0.070 6.878 0.000

Direct Effects 0.443 0.079 5.623 0.000

Total Indirect 0.036 0.031 1.169 0.243

Specific indirect: Sequence 0.057 0.025 2.286 0 . 0 2 2

Specific indirect: Pace -0 . 0 0 1 0.015 -0.064 0.949

Specific indirect: Content -0 . 0 2 0 0.025 -0.779 0.436
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CHAPTER V

DISCUSSION

This study investigated a model of individual differences, learner control usage, 

and learning outcomes. Based on the results of the analysis, several hypotheses were 

partially supported, but the majority were unsupported, and most of the theoretical 

models were largely unsupported. Overall, Hypothesis 1 stated that each individual 

difference would positively predict the usage of all learner control features. After 

investigating Hypotheses la-g, results indicated that only three of the seven hypothesized 

individual differences predicted certain types of learner control usage. Participants 

higher in extraversion used more pace control, but only when controlling for pre-training 

knowledge. This is consistent with prior literature regarding differential behavior in 

training due to personality (Barrick & Mount, 1991; Goldberg, 1993). Participants higher 

in MGO used more sequence control, and participants higher in cognitive ability used 

more sequence control and used less pace control (only without controlling for pre­

training knowledge). These relationships are consistent with past research regarding the 

effects of MGO and cognitive ability on training behavior (Button, Matthieu, & Zajac, 

1996; Ree& Earles, 1991).

No individual difference investigated predicted the use of content remove control. 

It is possible that the lack of significant findings for content is due to the measurement of 

content remove control is due to the measurement o f that construct (explained fiirther in 

the next paragraph). Experience, conscientiousness, openness, and internal locus of 

control did not significantly predict the usage of any type of learner control features. The 

lack of support for the prediction of learner control usage for these traits stands in



1 2 1

opposition to previous findings that these trainee characteristics should predict increased 

interaction with training programs and explain variability in training behavior (Barrick & 

Mount, 1991; Goldberg, 1993; Noe & Schmitt; 1986; Ones, Viswesvaran, & Dilchert, 

2005). An explanation for the lack of prediction of learner control usage could be lower 

engagement or motivation and thus lower activity in training in this particular sample. 

Future research should continue to examine individual differences and behavior during 

training with greater assurances of high motivation.

Hypothesis 2 stated that the usage of learner control would positively predict 

learning outcomes. This hypothesis was supported for the usage of sequence control, but 

not for the usage of pace or content remove control. Those who used more sequence 

control performed better on both the knowledge and skill post-tests. It seems that 

participants who went out of order during training learned more. It could be argued that 

the usage of sequence control is an indicator of being more active in training, and those 

who are more active in training tend to learn more (Campbell & Kuncel, 2002). Based on 

the operational definition of sequence control, these results may also include effects from 

seeing material more than one time (i.e., with use of the “Previous” button). Future 

research should examine this variable separately for the usage of the navigational menu 

to view whole sections out of order and the usage of the “Previous” button to view pages 

multiple times.

Those who used more pace control actually performed worse on the post-training 

knowledge test, when not controlling for pre-training knowledge. Contrary to the 

hypothesized effects of pace control usage, the usage of pace control negatively predicted 

post-training knowledge, but not above and beyond the effects of pre-training knowledge.



It appears that deciding to spend more time or less time than average on each training 

section may actually be harmful to learning. An explanation for this finding could be that 

learners without prior knowledge should have spent more time per section but instead 

went through training too quickly. The current study measured pace control as mean 

deviation time instead of total time, in an attempt to capture the usage of pace control 

specifically, and not just total time spent on training. However, empirical evidence for 

time training has been fairly consistent in training research; spending more time on 

training positively predicts learning (Fisher & Ford, 1998), so it is possible that effects 

from total time clouded the measurement of pace control. Based on the findings from the 

current study, future investigations should identify an alternate measurement approach 

for pace control that does not exhibit such undesirable measurement characteristics.

Those who removed more content also performed worse on the knowledge test, and thus 

viewing more content of the training was associated with increased learning. It appears 

that many participants who should have viewed all of the slides of training did not, and 

this harmed learning. Unfortunately, the low variability in content add control made it 

impossible to model in tests of hypotheses. Future research should investigate one single 

content construct that combines both amount of training content viewed and amount of 

additional content added to training.

Lastly, Hypothesis 3 stated that the usage o f learner control partially mediated the 

relationship between each individual difference and learning. Hypotheses 3a-f were 

unsupported; however, the cognitive ability partial mediation model (Hypothesis 3g) was 

partially supported. The usage of sequence and content control partially mediated the 

relationship between cognitive ability and post-training knowledge. The usage of



sequence control partially mediated the relationship between cognitive ability and post­

training skill. Direct effects to learning were non-significant for internal locus of control. 

Indirect effects to learning were non-significant for experience, extraversion, 

conscientiousness, and internal locus of control. Thus, key requirements of partial 

mediation were not met for these individual differences. Interestingly, openness did not 

directly predict post-training knowledge, but indirectly predicted post-training knowledge 

through all types of control. Similarly, MGO did not directly predict post-training skill, 

but indirectly predicted skill through sequence control. It appears that the relationship 

between these differences and learning outcomes is fully mediated; variance in learning is 

explained by these individual differences only through the usage of learner control 

features. This was the first study to investigate the usage of learner control as a partial 

mediator in the relationship between individual trainee characteristics and learning 

outcomes, and only the effect of cognitive ability was supported.

Limitations

This study was the first investigation using mTurk Workers to study online 

training, and the first to define and measure the usage of learner control features. Most 

studies regarding learner control use student samples (see Kraiger & Jerden, 2007) but 

the current participants were adults, most of whom were currently employed. This 

sample much more closely matched to a sample of employees than an undergraduate 

sample, in terms of age, occupation status, and education level. However, this was not a 

sample of employees from one organization, and it is unknown how these results would 

transfer to a sample of employees from one organization. Because Microsoft Excel is a 

software program for personal use, typically used for calculating values and
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storing/organizing data, these results would probably generalize well to a sample of 

employees. Quite a few Workers reported being very satisfied and glad to have a training 

program on Excel in their open-ended feedback. Several Workers, however, voiced 

concerns that the incentive was much too small for the amount of time that it took to 

complete the HIT. It is possible that these reactions impacted the results of the study, and 

additional studies of Worker reactions to incentives would be interesting to examine in 

the future, especially in relation to learner control usage and learning outcomes.

Second, the results from the pilot study informed certain choices made about the 

full study, including incentives and time allotted for Workers to finish the study. These 

decisions were not based on any theory, but were driven solely by the results from the 

pilot study. It is possible that the incentives given to participants do not closely match to 

the incentives an organization gives for finishing a training program, whether it is a 

requirement or an opportunity outside of the job requirements.

Similarly, the definitions and measurement of learner control usage had to be 

adapted during data cleaning. The initial plan for the learner control mediator variable 

was a unidimensional learner control factor, with measured indicators for each type of 

control. However, the data for each type of learner control was severely non-normal, and 

had to be transformed or polytomized in order to be analyzed in the hypothesized models. 

Further, it was clear from the data that there is not a unidimensional learner control usage 

factor, and we currently lack both theory to explain these distributions and distributions 

of these behaviors from prior research for comparison.

In general, participants do not use very much learner control when it is given to 

them. It is possible that sufficient incentives were not used for the study, and that the
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usage of learner control would increase in a different sample. For those participants who 

are not intrinsically motivated to learn, or do not need to learn for work or school, it is 

conceivable that $2.50 was not an adequate incentive for the time and effort it takes to 

leam to use Microsoft Excel.

Lastly, there were two limitations in the analysis of the data and measurement of 

one of the outcome variables. First, there was a substantial amount of missing data for 

the skill outcome variable. The post-test Excel file was submitted by participants through 

the website after the training program. However, several Workers uploaded training 

workbooks, instead of the final training skill activity. Because these workbooks were 

partially completed when downloaded by the Worker, they did not evidence actual skill 

gains by participants and were thus excluded from analysis. Several participants skipped 

uploading the skill measure at all. The researcher’s email address and directions to email 

the file appeared on the upload page, and participants were directed to email if the upload 

feature was not functioning. Although several participants submitted Excel files to the 

researcher during the pilot study, it is possible that relatively few Workers emailed 

because they interpreted this as a violation of Amazon’s policies (which forbid the 

collection of email addresses) or as an invasion of privacy. No participants emailed 

completed skilled measures to the researcher in the main study. It seems that this may be 

a difficult-to-avoid side effect of online data collection in which an uploaded assignment 

is necessary. Researchers should utilize another type of check on this type of data. The 

second limitation was that in the interest of time, all skill activities were rated by one 

researcher, potentially reducing reliability of that measure. Although internal consistency
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was acceptable for the skill measure, multiple raters and a calculation of interrater 

reliability will be used in the future to follow best practices in research.

Implications

Based on these initial results, there are implications for both research and practice. 

A great deal of research over many years has found that cognitive ability is a positive 

and robust predictors of many job-related outcomes, including training performance and 

job performance (Kuncel, Hezlett, & Ones, 2004; Hunter & Hunter, 1984). The results of 

the current study support these past findings, and extend them to a learning environment 

with a high level of learner control. It appears that those who are higher in cognitive 

ability use learner control features the most and leam the most from training programs 

with high levels of learner control. Differences in learning can be attributed to both direct 

effects of cognitive ability and indirect effects of learner behavior. It is not surprising, 

given that the training environment in this study had a low level of external influences 

that this trait significantly impacted important outcomes. There were no outside 

influences such as instructors, classmates, or job requirements to complete this training 

program, which would normally influence behavior during learning.

Further, the usage of sequence control stood out as a positive predictor of learning 

outcomes. This indicates a type of control to be explored further in research, and may be 

used as a first step in implementing learner control in an actual employee training setting. 

Based on the current study’s results, providing and using sequence control appears to be a 

feature that provides benefit to trainees’ learning. Instructing trainees to utilize sequence 

control as a way to improve learning may provide a benefit to trainees.
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Future Directions

The present study examined several constructs and relationships relevant to 

employee training and technology in the workplace. However, several questions were 

raised that were not addressed within the scope of this study, which relate to data 

collection on the internet, the measurement of learner control usage, and the 

generalizability of these results to employees in an organization.

This study was the first to compare a sample of undergraduate students and 

mTurk Workers in a training study. Age, motivation, time training, and learning 

outcomes were compared between the two samples. Although the samples differed 

significantly in age, motivation, and learning, they did not differ in the time they spent 

training. It would be interesting to compare the samples on other variables relevant to 

training. It is unknown whether unmeasured variables differed in the undergraduate 

sample, including individual differences such as cognitive ability and personality, as well 

as behavior during training.

This was the first study to quantify and measure the usage of learner control. 

Although a measurement strategy was decided upon prior to data collection, the training 

data appeared to be a bit different than initially anticipated. First, the option to add 

content was added to the training program to give participants the option to receive more 

information regarding topics that were especially interesting or difficult. For the current 

sample, very few participants added any content, and those who did, did not add very 

much. It is possible that employees completing a job-relevant training would use this 

feature much more, but a Mechanical Turk sample earning a few dollars to complete a 

training program did not. It is possible that participants with a higher motivation to leam



more information from training would add more content. Sequence control was measured 

for the first time in a training program by using navigation deviation. The measurement 

of sequence control included any use the Back button and the navigational menu. It is 

unclear which, or both, led to the positive learning outcomes. The way this variable was 

measured also contains some elements of repeating content; participants who used the 

Back button after moving forward were seeing slides more than once. After examining 

the raw training data, it appeared that many participants who used sequence control often 

were actually viewing many of the slides multiple times. It is possible that seeing content 

multiple times may be a separate and important construct to study when studying 

behavior in a learner controlled training environment, in addition to the other types of 

control measured already.

This study was also a first step in examining several individual differences to 

predict the usage of learner control features and learning outcomes. It is unknown 

whether the majority of the hypotheses were unsupported because of the method of 

measuring learner control variables, unseen error in measuring online behavior, or 

because the relationships are simply not there for the current sample. An in-person study 

examining off-task attention and behavior not tracked by the training website may shed 

some light in this area. This study did show that learner control features are not used 

unanimously when they are given to learners. In order to test the hypothesized model, 

only one training program version with high learner control was used. In the future, a 

comparison of a training program with high and low learner control assigned at random 

should be conducted to examine differences in behavior during training, reactions to 

training, and learning outcomes.



Lastly, the data collected from mTurk Workers appeared to reflect an older, more 

motivated, more educated, and already employed sample of people when compared to 

undergraduate students. But it is unknown whether the mTurk sample differs in these 

areas to an actual sample of employees from one organization. It is also unknown 

whether employees from one organization may use learner control differently, or that the 

conclusions drawn from the mTurk sample will transfer to a sample of employees. It is 

possible that other factors could impact behavior during training and learning from an 

online program. These other factors could include pressure to complete training from a 

manager, superior, or peers, compensation for training, or learning requirements for the 

job. An examination of organizational factors influencing behavior and learning 

outcomes in a high learner control training program is warranted.

Conclusion

This study attempted to investigate individual differences and the usage of 

learner control to explain differences in learning outcomes. Although the hypotheses 

were generally unsupported, this effort represents a first step in understanding how 

learners use learner control, and how this in turn affects learning outcomes in online 

training programs. Because flexible online training programs are becoming more and 

more prevalent in the workplace, further work in this area will help organizations best 

implement online training methods for their employees.
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APPENDIX A 

PRE-TRAINING MEASURES

Excel Knowledge Pre-Test

1. This dialog box allows you to add buttons to the Quick Access toolbar:
A. Excel Options
B. Add Buttons
C. Customize Excel
D. Fast Access

2. What is the first step for performing many basic Excel functions?
A. copying data
B. saving data
C. highlighting data
D. grouping data

3. Which of the following statements is false?
A. A standard Excel workbook has 3 sheets
B. You can use the arrow keys on the keyboards to move between worksheets
C. Ctrl+C can be used to copy data
D. Pressing this button will undo the last command:

4. After highlighting a group of cells, how do you define them as a range?
A. Formulas tab »  Apply Name »  Define Name
B. Formulas tab »  Define Name »  Apply Name
C. Formulas tab »  Define Name »  Define Name
D. Formulas tab »  Apply Name »  Apply Name

5. Which dialogue box do you use to write an If function?
A. Function Arguments
B. Function Cells
C. Format Arguments
D. Format Cells

6 . #/DIV0! Indicates:
A. The formula you typed contains a letter
B. An incorrect argument is included in the denominator of the formula
C. The formula is trying to divide by zero
D. The argument in the denominator refers to a cell that does not exist

7. What is the arrow with the letter a pointing to?
id s  tar taoumry

0,500.00 

. (2.000.00



143

A. category axis
B. value axis
C. chart area
D. plot area

8 . Which of the following is
chart?

A. Layout tab»A xis
B. Format tab»A xis

Axis
C. Layout tab»A xis

Axis
D. Format tab»A xis

Axis

-j - j  _ » ri
a ,3 - 3 .3 . .1 
MjjMjHB
zMsMtMMMk 

H19 I j

^ J-JJ iilSd M MJHMSMmm 
C13

A 1 B
Month Sales

2 January 666!
3 February 432!
4 March 66!
5 April 98!
6 January 890!
/ January 90!
8 January 876!

Month January
2 Sales 666
3 ^Salespeople 4
4 Month February •
5  ! Sales 432-
6 Salespeople 3
7 iMonth March
8 Sales 66
9 Salespeople 1-
10 Month April
11 Sales 98
12 Salespeople 7

Number of Salespeople I 2[
 ?LB
 4T

2 : 97 iT"

9. What type of Excel graph is shown below?

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

B East 
□  West 
■  North

A. Column chart
B. Bar chart
C. Line chart
D. Area chart

10. In what programming language are macros recorded?
A. Visual Basic for Programs
B. Visual Basic for Applications
C. Visual Basic for Microsoft
D. Visual Basic for Macros
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11. Which type of workbook already has macros enabled?
A. xlsx
B. xlsm
C. xltx
D. mxls

12. Which of the following is associated with columns?
A. Numbers
B. Letters
C. Letters and Numbers
D. None of the above

13. Where will Excel tell you it is done saving data?
A. Quick Access toolbar
B. user interface Ribbon
C. status bar
D. task pane

14. You want to copy and paste new data from one row into another using keyboard 
shortcuts. What is the correct order of steps?

A. Highlight data, Ctrl+C, Click in new row, Ctrl+V
B. Highlight data, Ctrl+C, Click in new row, Ctrl+P
C. Highlight data, Ctrl+P, Click in new row, Ctrl+C
D. Highlight data, Ctrl+V, Click in new row, Ctrl+C

15. How do you save your workbook?
A. Ctrl+S
B. Ctrl+V
C. Office button, Save as
D. Both A and C

16. What does the If function allow you to create?
A. Conditional Format
B. Conditional Formula
C. Conditional Task
D. Conditional Edit

17. Which error code tells you that the formula contains text that Excel does not 
recognize?

A n ii n  a  iiTT I I  11 I t  f t

. ti it H i n t

B. #VALUE!
C. #NAME?
D. #REF!

18. Cell A17 has the number $59.70 in it. If you clicked on cell Cl 8  and then entered 
the following information in to the function arguments dialogue box, what would 
you expect to see in cell C l 8 ?
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fiilc lW nS lfum ents" *rm.

Logical J e s t |A17>25 

Value if .true 'yes"

Valuejfja lse "no"

j§ |= T R U E

] l = " y e s "

F5)=°no''

Checks whether a condition is met, and returns one value if TRUE, and another value if 
FALSE.

V alueJf Ja lse  is the value that is returned if logicaljest is FALSE. If omitted, FALSE is 
returned.

Formula result =

Help on this function; OK Cancel

A. 25
B. yes
C. no
D. >25

f t n
19. What does the following button.... allow you to do when viewing levels? L— J

A. Show detail
B. Hide detail
C. Show a level
D. Hide a level

20. You organized your data using levels and now, only the grand total is left. What 
button would you click on to make all the data reappear?

A.

B.

C.

D.

I
2 i

correct answer

21. What is the arrow with the letter b pointing to?

A. plot area
B. chart area
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C. graph area
D. axis area

22. What does the Chart Styles section of the Design tab allow you to do?
A. Allows you to add a chart title and axis titles
B. Allows you to change the type of chart you want
C. Adds, removes, or positions labels on the chart
D. Changes the color and design of your chart

23. Which of the following opens Microsoft Visual Basic Editor?
A. Alt + F9
B. Alt + FlO
C. Alt + F ll
D. Alt + F12

24. You have already opened the Excel options dialog box and now want to add a 
macro to the Quick Access toolbar. What is the first step?

A. Select the Macro you want
B. Select Macros in the Choose Commands From box
C. Click the Add button
D. None of the above

Cognitive Ability Measures

Verbal Reasoning
Directions: For questions 1-5, select one entry for each blank from the corresponding 
column of choices. Fill all blanks in the way that best completes the text.

1. In the 1950s, the country’s inhabitants were_______: most of them knew very little
about foreign countries.
a. partisan
b. erudite
c. insular
d. cosmopolitan
e. imperturbable

2. It is his dubious distinction to have proved what nobody would think of denying, that 
Romero at the age of sixty-four writes with all the characteristics o f_______ .
a. maturity
b. fiction
c. inventiveness
d. art
e. brilliance

3. The (i)_______ nature of classical tragedy in Athens belies the modem image of
tragedy: in the modem view tragedy is austere and stripped down, its representations 
of ideological and emotional conflicts so superbly compressed that there’s nothing (ii) 
_______ for time to erode.
Blank (i)
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a. unadorned
b. harmonious
c. multifaceted

Blank (ii)
a. inalienable
b. exigent
c. extraneous

4. To the untutored eye the tightly forested Ardennes hills around Sedan look quite (i)
_______, (ii)_______ place through which to advance a modem army; even with
today’s more numerous and better roads and bridges, the woods and the river Meuse 
form a significant (iii)_______ .
Blank (i)

a. impenetrable
b. inconsiderable
c. uncultivated

Blank (ii)
a. a makeshift
b. an unpropitious
c. an unremarkable

Blank (iii)
a. resource
b. impediment
c. passage

5. Room acoustics design criteria are determined according to the room’s intended use.
Music, for example, is best (i)_______ in spaces that are reverberant, a condition that
generally makes speech less (ii) . Acoustics suitable for both speech and
music can sometimes be created in the same space, although the result is never 
perfect, each having to be (iii)_______ to some extent.
Blank (i)

a. controlled
b. appreciated
c. employed

Blank (ii)
a. abrasive
b. intelligible
c. ubiquitous

Blank (iii)
a. compromised
b. eliminated
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c. considered

Directions: For questions 6  and 7, select the two answer choices that when used to 
complete the sentence blank, fit the meaning of the sentence as a whole and produce 
completed sentences that are alike in meaning.

6 . Early critics of Emily Dickinson’s poetry mistook for simplemindedness the surface 
of artlessness that in fact she constructed with such
a. astonishment
b. craft
c. cunning
d. innocence
e. naivete
f. vexation

7. While in many ways their personalities could not have been more different—she was 
ebullient where he was glum, relaxed where he was awkward, garrulous where he 

-they were surprisingly well suited.was — 1

a. solicitous
b. munificent
c. irresolute
d. laconic
e. fastidious
f. taciturn

Quantitative Reasoning

Directions: For Questions 8  and 9, compare Quantity A and Quantity B, using the given 
information. You must determine which quantity is larger, if  either.

1. A certain recipe requires 3/2 cups of sugar and makes 2 dozen cookies. (1 dozen = 
12) Quantity A is the amount of sugar required for the same recipe to make 30 
cookies. Quantity B is 2 cups.
a. Quantity A is greater.
b. Quantity B is greater.
c. The two quantities are equal.
d. The relationship cannot be determined from the information given.

2. 6  < x < 7 AND y = 8 . Quantity A is x/y. Quantity B is 0.85.
a. Quantity A is greater.
b. Quantity B is greater.
c. The two quantities are equal.
d. The relationship cannot be determined from the information given.

Directions: For Questions 10 and 11, choose the one correct answer.
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3. 7x + 3y = 12 AND 3x + 7y = 6 . If x and y satisfy the system of equations above, what 
is the value of x - y?
a. 2/3
b. 3/2
c. 1

d. 4
e. 6

1. Of the 750 participants in a professional meeting, 450 are female and 1/2 of the 
female and 1/4 of the male participants are less than thirty years old. If one of the 
participants will be randomly selected to receive a prize, what is the probability that 
the person selected will be less than thirty years old?
a. 1 / 8

b. 1/3
c. 3/8
d. 2/5
e. 3/4

2. The total number of recording titles distributed by music distributors L and M is 
9,300. The number of recording titles distributed by L is 7,100, and the number of 
recording titles distributed by M is 5,200. Which of the following statements must be 
true? Select ALL such statements.
a. More than half of the titles distributed by L are also distributed by M.
b. More than half of the titles distributed by M are also distributed by L.
c. No titles are distributed by both L and M.

Mastery Goal Orientation Scale

Please select the response that best matches your agreement or disagreement with 
the following items (1- strongly disagree, 2=disagree, 3=neither agree nor disagree, 
4=agree, 5-strongly agree):
1. I am willing to select a challenging work assignment that I can learn a lot from.
2. I often look for opportunities to develop new skills and knowledge.
3. I enjoy challenging and difficult tasks at work where I’ll learn new skills.
4. For me, development of my work ability is important enough to take risks.
5. I prefer to work in situations that require a high level of ability and talent.

Locus of Control

For each of the following statements, please indicate the degree to which you agree or 
disagree. (1 = strongly disagree, 2 = disagree, 3 = neutral, 4 = agree, 5 = strongly agree)
1. There really is no such thing as "luck."
2. It is impossible for me to believe that chance or luck plays an important role in my 

life.
3. Many of the unhappy things in people's lives are partly due to bad luck.
4. People are lonely because they don't try to be friendly.
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5. Most misfortunes are the result, of lack of ability, ignorance, laziness, or all three.
6 . People who can't get others to like them don't understand how to get along with 

others.
7. By taking an active part in political and social affairs the people can control world 

events.
8 . The average citizen can have an influence in government decisions.
9. It is difficult for people to have much control over the things politicians do in office.
10. Who gets to be the boss often depends on who was lucky enough to be in the right 

place first.
11. Many times I feel that I have little influence over the things that happen to me.
12. Unfortunately, an individual's worth often passes unrecognized no matter how hard 

he tries.
13. One of the major reasons why we have wars is because people don't take enough 

interest in politics.
14. There will always be wars, no matter how hard people try to prevent them.
15. No matter how hard you try, some people just don't like you.

Big Five Personality Questionnaire

How Accurately Can You Describe Yourself?
Please use this list of common human traits to describe yourself as accurately as possible. 
Describe yourself as you see yourself at the present time, not as you wish to be in the 
future. Describe yourself as you are generally or typically, as compared with other 
persons you know of the same sex and of roughly your same age.

Next to each trait, please type the number indicating how accurately that trait describes 
you, using the following rating scale:

1. Extremely Inaccurate, 2. Moderately Inaccurate, 3. Neither Accurate Nor Inaccurate,
4. Moderately Accurate, or 5. Extremely Accurate

1. Bashful 16. Imaginative
2. Bold 17. Inefficient
3. Careless 18. Intellectual
4. Cold 19. Jealous
5. Complex 20. Kind
6 . Cooperative 21. Moody
7. Creative 22. Organized
8 . Deep 23. Philosophical
9. Disorganized 24. Practical
10. Efficient 25. Quiet
11. Energetic 26. Relaxed
12. Envious 27. Rude
13. Extraverted 28. Shy
14. Fretful 29. Sloppy
15. Harsh 30. Sympathetic
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31. Systematic
32. Talkative
33. Temperamental
34. Touchy
35. Uncreative

36. Unenvious
37. Unintellectual
38. Unsympathetic
39. Warm
40. Withdrawn

Biographical Data, Experience, and Preference for Learner Control

1. What is your age?
2. What is your highest level of education attained?

a. Some high school
b. High School diploma
c. Some college
d. Associate’s degree
e. Bachelor’s degree
f. Master’s Degree
g. Doctoral Degree

3. Are you currently enrolled in school?
a. What is your year in school?
b. What is your GPA?

4. What were your quantitative and verbal SAT scores, combined (if applicable)?
5. What was your SAT writing score (if applicable)?
6 . What was your ACT score (if applicable)?
7. What is your race and/or ethnicity?

a. White A
b. African American
c. Hispanic
d. Asian
e. American Indian/Pacific Islander
f. Other

8 . What is your gender?
a. Male
b. Female
c. Other

9. Are you currently employed?
a. What is your occupation?
b. How many hours do you work per week?
c. Are you a part-time or full-time employee?
d. Do you consider this job to be a long-term occupation (your career)?

10. How familiar are you with using Microsoft Excel?
a. I am not at all familiar at all with Microsoft Excel.
b. I am slightly familiar with using Microsoft Excel
c. I am moderately familiar with Microsoft Excel
d. I am very familiar with Microsoft Excel
e. I am extremely familiar with Microsoft Excel

11. How important is using your current knowledge of Microsoft Excel in your job?
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a. Not at all important
b. Slightly important
c. Moderately important
d. Very important
e. Extremely important

12. How important is using your current knowledge of Microsoft Excel for reasons 
other than work?
a. Not at all important
b. Slightly important
c. Moderately important
d. Very important
e. Extremely important

13. How often do you use Microsoft Excel for work?
a. Never
b. Less than once a month
c. Monthly
d. Weekly
e. Daily

14. How often do you use Microsoft Excel for reasons other than work?
a. Everyday
b. Several times a week
c. Several times a month
d. Several times a year
e. Never

15. Have you ever taken a course on Microsoft Excel?
a. What was the duration of the course?
b. When did you take the course?

Please rate how much you agree with the following statements:
16. When I am learning something new, I like to have the option to go over the

information more than once.
a. Strongly disagree
b. Disagree
c. Neither agree nor disagree
d. Agree
e. Strongly agree

17. When I am learning something new, I like to have the option to go as slowly or as
quickly as I want.
a. Strongly disagree
b. Disagree
c. Neither agree nor disagree
d. Agree
e. Strongly agree

18. When I am learning something new, I like to be able to skip information I already
know.
a. Strongly disagree
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b. Disagree
c. Neither agree nor disagree
d. Agree
e. Strongly agree

19. If you could choose the format of this Microsoft Excel training course, which of the 
following options would you want to have (please check all that apply):
a. Ability to navigate both forwards and backwards through the course.
b. Ability to move through the course at my own pace.
c. Ability to choose the specific Microsoft Excel topics covered in the course.
d. None of the above, I would like to go through the course as it has been 
designed, with no control over the navigation, pace, or content of the course.
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APPENDIX B 

PRE-TRAINING INSTRUCTIONS

Thank you for completing the surveys. Next, you will receive the Microsoft Excel 
training. This training covers a number of topics related to using Microsoft Excel. The 
training is highly interactive, so please download this Excel file now so you can follow 
along as you go through the training.

Following the training, you will be asked to complete a short Excel activity and a brief 
series of surveys.

During the training program, you will have control over several aspects of the course.

First, you will be able to control the pace of the course; you can spend as much or as little 
time as you think you need on each topic. Second, you will be able to control the 
sequence of the course. You can use the "Previous" and "Next" buttons at any time to go 
back to a previous page or go forward to the next page. There will also be a navigational 
menu on the left side of the training webpage at all times so you can complete the topics 
in any order you would like. The page number of the training that you are currently on 
will appear at the bottom of each page. Third, you will be able to control the content of 
the course. You are not required to view all o f the training pages, but the knowledge test 
after the training will cover material from all of the topics in the training. It is suggested 
that you review all topics you are not familiar with in order to learn the most from this 
course. You will also be able to add content to the training program by clicking "More 
info on this topic" in the Navigation menu.

Please watch this video for more information about the training program before you 
begin:

Transcript of Training Instructions Video

Hi. Thanks for completing the pre-training surveys. Next, you’ll receive the Microsoft 
Excel training program, and it looks like this. On the right hand side will be the 
information and then at all times on the left hand side, you’ll have a navigation menu.
You can see that there are four modules in this training program and within each module 
are several different subtopics. You have control over three aspects of this training  
program. First, you have control over the pacing. You can decide which sections or 
section you would like to spend more time on (if it’s something especially interesting or 
difficult for you). You can also spend less time on certain parts that you already know a 
lot about or that are easy for you. Next, you have control over the sequence of this 
program. You can go ahead and use this Next button to get to all of the different pages in 
the training in order. You can always use the previous button as well, and this will take 
you to the previous page that you were just on. You can also go through the training in 
any different order that makes sense to you. So for example, if it makes more sense to 
you to learn about Graphs, you can go ahead and do this topic before you do Analyzing
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with Excel. You can use this menu to complete the training in any order you like.
Lastly, you have control over the content of this course. You’re not required to view all 
190 pages of the course, so if there’s a topic or subtopic you already know a lot about, 
you don’t have to visit those pages. You do have the option of adding more content, so if 
there’s a topic or subtopic that you’re really interested in or may be a bit confused about, 
you can always get more information on it. If you’re looking at If-Then statements here 
on page 75, and you want more information, then you can always just use this link below- 
- it says More Info on this Topic. This will lead you to an outside webpage and there 
will be more information on it. This one’s a video about If-Then statements. Then when 
you’re done, you can just close that out and you’ll be right back to the training where you 
were before. At the end of the training, on page 190, there will be a link for you to get to 
the Microsoft Excel Activity. Or you can get there at any time on the Navigation menu 
by clicking this link, Finish Training and move on to the Excel activity.

I’m really interested in how people use these different features, so I’d like you to really 
think about which feature or features will help you to best learn, and then use those 
features. Okay, thanks for listening. You can go ahead and start the training program 
now.



APPENDIX C

OUTLINE OF TRAINING PROGRAM

A. Module 1:
a. Basic terminology
b. Basic functions
c. Customizing the quick access toolbar
d. Working with your data

B. Module 2:
a. Calculations
b. Filters
c. Recording and summarizing

C. Module 3:
a. Making a chart
b. Chart terminology
c. Customizing a chart

D. Module 4:
a. Macros
b. Looking up information
c. Publishing information on the web
d. Collaborating with colleagues
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APPENDIX D 

POST-TRAINING MEASURES

Excel Knowledge Post-Test
Excel knowledge post-test is identical to Excel knowledge pre-test (Appendix B).

Excel Skill Post-Test
Download the dataset provided. Using the data labeled “February,” create a range for 
morning, afternoon, and evening sales. Report the sum of the morning, afternoon, and 
evening sales. Also, report the summed sales for each day of the week. Create a chart to 
report sales by day of the week and another chart to report sales based on time of day. 
Customize your chart so that it includes labels and so that is easy to understand. Finally, 
create a macro to remove the color coding found in the chart. When you have finished 
save your file and name it with your unique id number and the date (example:
123456.11.21.10). Upload the file by clicking “Browse,” selecting the Excel file you just 
saved, and clicking on “Submit.” You will then be taken to a webpage containing the 
final questionnaire.



F e b r u a r y  S a l e s  R e p o r t
9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM

Monday $8.00 $8.00 $43.00 $18.95 $92.00 $0.00 $33.95 $54.00 $44.95 $83.95 $19.95 $43.00

Tuesday $4.00 $10.00 $33.95 $18.95 $87.00 $12.00 $0.00 $10.00 $57.00 $57.95 $64.95 $0.00

Wednesday $13.00 $3.00 $0.00 $15.00 $49.00 $0.00 $28.00 $33.95 $44.95 $69.95 $54.55 $0.00
Thursday $0.00 $5.00 $7.00 $30.00 $50.00 $0.00 $28.00 $44.95 $19.95 $0.00 $28.00 $50.65
Friday $12.00 $19.85 $85.00 $44.00 $59.00 $40.00 $10.00 $174.35 $200.00 $215.7£? $83.95 $65.35
Monday $0.00 $7.00 $18.95 $59.95 $56.00 $22.00 $32.00 $0.00 $65.85 $64.95 $18.00 $44.95
Tuesday $0.00 $11.00 $22.00 $0.00 $42.00 $20.00 $41.95 $54.00 $39.00 $102.30 $34.95 $0.00
Wednesday $5.00 $0.00 $8.00 $13.00 $45.00 $41.00 $44.95 $18.95 $34.95 $44.70 $18.95 $45.00
Thursday $5.00 $7.75 $68.00 $13.85 $0.00 $59.95 $18.95 $27.75 $69.95 $0.00 $0.00 $45.50
Friday $9.00 $8.00 $98.00 $22.00 $49.00 $33.00 $0.00 $133.80 $90.00 $90.00 $44.95 $54.65
Monday $6.00 $0.00 $57.95 $18.00 $83.00 $0.00 $44.15 $64.95 $18.95 $69.95 $69.95 $56.45
Tuesday $5.00 $0.00 $48.00 $15.00 $76.00 $27.00 $39.95 $46.75 $47.00 $98.05 $34.95 $12.50
Wednesday $0.00 $8.00 $9.00 $32.00 $40.00 $26.35 $18.95 $31.15 $54.00 $79.95 $58.00 $37.35
Thursday $0.00 $0.00 $0.00 $34.00 $65.00 $0.00 $18.95 $34.95 $14.95 $41.95 $18.95 $45.00
Friday $10.00 $15.00 $87.00 $28.00 $63.00 $53.00 $69.95 $69.95 $0.00 $67.95 $54.00 $67.00
Monday $10.00 $9.00 $21.00 $26.00 $38.00 $62.55 $57.95 $164.35 $54.00 $82.40 $69.95 $29.95
Tuesday $0.00 $11.00 $0.00 $27.00 $42.00 $31.00 $44.85 $65.00 $69.95 $164.35 $47.65 $97.65
Wednesday $0.00 $12.00 $0.00 $69.95 $67.00 $23.00 $18.00 $18.00 $87.55 $34.95 $54.00 $73.35
Thursday $10.00 $14.00 $44.95 $0.00 $76.00 $21.00 $12.50 $14.95 $44.95 $39.95 $57.95 $74.65
Friday $13.00 $27.95 $18.00 $45.00 $45.00 $43.00 $59.95 $18.95 $44.95 $118.95 $0.00 $85.75

t/l
00



159

APPENDIX E 

HISTOGRAMS OF SKEWED DATA

Pilot Study Total Training Time

< 10 10-20 20-30 30-40 40-50 50-60 60-70 70-S0 80-90 90-100 100-110 110-120 120-130 130-140 140-150
Time Training Range in minutes

Full Study Training Time -  Module 1

Mean = 387.32 
Std. Dev. = 337.27 
N= 201

40-

U.

20-

10-

1000 2000 25000 500 15QQ

M1 Seconds
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Full Study Training Time -  Module 2

60- Mean = 8 6 7 £ 6  
Std. Dev. = 830.156 
N-201

50-

40-

20-

10-

1000 20000 3000 4000 5000

M2 Seconds

Full Study Training Time — Module 3

8 0 - Mean *  533 .72  
Std. D ev. = 588.923 
N = 201

5 0 -

>*u
C
3
S’ 40~h.
Ii.

20 -

20000 1000 3Q0Q 4000

M3 Seconds
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Full Study Training Time -  Module 4

M ean = 4 4 6 5 3  
S td. Dev. * 484.471 
N = 201

60-

40-

20“

1S00 20000 500 1000 2500 3000

M4 Seconds



162

Full Study Content Remove

100-

3crat

20-

M ean * 48.03 
S td. D ev.«  6 7 5 0 8  
N « 201

100 

R Cont

Full Study Skill
Skill

M ean = 22.98 
Std. Dev. a $.818 
N =  173

205 10 15 25 30 35

Skill
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