
Old Dominion University
ODU Digital Commons

Psychology Theses & Dissertations Psychology

Winter 2013

Effects of Signal Ambiguity and Signal Location on
Target Detection Under Varying Degrees of Time
Constraint
Kimberly E. Culley
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/psychology_etds

Part of the Experimental Analysis of Behavior Commons, Human Factors Psychology Commons,
and the Industrial Engineering Commons

This Dissertation is brought to you for free and open access by the Psychology at ODU Digital Commons. It has been accepted for inclusion in
Psychology Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Recommended Citation
Culley, Kimberly E.. "Effects of Signal Ambiguity and Signal Location on Target Detection Under Varying Degrees of Time
Constraint" (2013). Doctor of Philosophy (PhD), dissertation, Psychology, Old Dominion University, DOI: 10.25777/6k9y-k869
https://digitalcommons.odu.edu/psychology_etds/137

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fpsychology_etds%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/psychology_etds?utm_source=digitalcommons.odu.edu%2Fpsychology_etds%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/psychology?utm_source=digitalcommons.odu.edu%2Fpsychology_etds%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/psychology_etds?utm_source=digitalcommons.odu.edu%2Fpsychology_etds%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1236?utm_source=digitalcommons.odu.edu%2Fpsychology_etds%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1412?utm_source=digitalcommons.odu.edu%2Fpsychology_etds%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=digitalcommons.odu.edu%2Fpsychology_etds%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/psychology_etds/137?utm_source=digitalcommons.odu.edu%2Fpsychology_etds%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


EFFECTS OF SIGNAL AMBIGUITY AND SIGNAL LOCATION ON

TARGET DETECTION UNDER VARYING DEGREES OF TIME

Bachelor of Science, 2004, University o f Scranton 
Master o f Arts, 2009, Marywood University

A Dissertation Submitted to the Faculty of 
Old Dominion University in Partial Fulfillment o f the 

Requirements for the Degree of

CONSTRAINT

by

Kimberly E. Culley

DOCTOR OF PHILOSOPHY

HUMAN FACTORS PSYCHOLOGY

OLD DOMINION UNIVERSITY 
December 2013

Approved by:

Poomima Madhavan (Director)

imes Bliss (Member)

Patrick Hester (Member)



ABSTRACT

EFFECTS OF SIGNAL AMBIGUITY AND SIGNAL LOCATION ON TARGET
DETECTION UNDER VARYING DEGREES OF TIME CONSTRAINT

Kimberly E. Culley 
Old Dominion University, 2013 
Director: Poomima Madhavan

The purpose o f the current study was to investigate the effects o f decision-making 

strategies and tendencies, time constraint, and signal characteristics on decision-making 

performance utilizing the fuzzy signal detection theory framework. Participants were 

tasked with deciding whether x-ray images o f passenger luggage contained hazardous 

objects.

The first objective of the study was to develop a methodology for quantifying optimizing 

versus satisficing tendencies in decision making through direct measurement and 

observation.

The second objective of the study was to examine how time constraint and 

specific signal characteristics contribute to decision making. Interestingly, despite having 

more time available to conduct a comprehensive search, participants in the global time 

constraint condition who were able to self-terminate information search tended toward 

satisficing. They also had shorter overall search durations and greater sensitivities than 

participants in the local time constraint condition, and had shorter search durations for 

central compared to eccentric targets. Across time constraint conditions and decision 

tendencies, participants had greater sensitivities for centrally located targets compared to 

eccentrically located targets and for ambiguous signals with moderate to high degrees o f 

target category membership (.40 < s<  .80). Within each time constraint condition, there



were differences in response criteria as a function o f signal ambiguity. Participants in the 

local condition had more liberal response criteria compared to participants in the global 

condition.

There was no significant effect o f self-terminated search duration on sensitivity or 

response criteria. To examine the effect o f participant control over search duration, 

participants in the global time constraint condition with average search durations of 3500- 

4500 ms were selected for comparison to participants in the local 4000 ms fixed-interval 

time constraint condition. There were significant differences in sensitivities such that 

participants in the global time constraint condition with -4000 ms search durations had 

significantly higher sensitivities, indicating an effect of participant control over search 

duration. There were no significant differences in response criteria.

The current study investigated decision making elements that contribute to 

efficient and effective operator performance o f information search and target detection. In 

addition to operator characteristics that impact performance outcomes, characteristics of 

the signal itself may also moderate signal detection.
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CHAPTER 1

INTRODUCTION AND BACKGROUND OF THE STUDY 

National security, luggage screening, and visual search

Without question, terrorist attacks and threats over the past decade have amplified 

the attention paid to transportation, and specifically aviation, security. The Transportation 

Security Administration (TSA) was established by the Aviation and Transportation 

Security Act and charged with the responsibility o f securing the civil aviation system by 

means that include screening all passengers and their luggage items traveling via 

commercial passenger aircraft (GAO, 2011). The Government Accountability Office 

(GAO, 2007) noted that there are several elements involved in the airline passenger and 

carryon luggage screening process. Transportation security officers (TSOs) screen all 

passengers and their carryon luggage prior to allowing passengers access to their 

departure gates. Among other responsibilities, TSOs attempt to detect prohibited items 

that passengers attempt to transport beyond security checkpoints. TSOs employ 

technology including walk through metal detectors, X-ray machines, handheld metal 

detectors, and explosive trace detection (ETD) equipment to aid detection. Standard 

operating procedures establish the process and standards by which TSOs are to screen 

passengers and their carryon items at screening checkpoints (GAO, 2007). By such 

means, TSA intends to minimize the passage o f potentially hazardous items through 

security checkpoints.

Operators in a decision making task involving visual search or screening must 

utilize cognitive and perceptual resources to interpret the display outputs o f a device or 

visual scene. Therefore, visual search performance errors and errors o f decision making
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are possible. Degraded visual search behaviors or decision processes may preclude 

detection o f threat objects present in a luggage item.

Repeated audits conducted by the Federal Aviation Administration (FAA) reveal 

consistently high miss rates by TSOs conducting luggage screening. The miss rate for 

potentially dangerous items at security checkpoints was approximately 13% in 1978. By 

the late 1980’s, the miss rate had risen to 20%, and further performance declines were 

noted as testing continued through the late 1990s. Post-1990s data continue to 

demonstrate a negative trend in detection performance, but specific figures are no longer 

publicly reported. The Government Accountability Office (GAO, 2005) noted that threat 

detection performance of luggage screeners continues to be a concern and a need to 

understand performance deficits and improve them exists.

Perceptual, cognitive and decision making challenges in luggage screening

One of the primary challenges in luggage screening is that the full member set of 

potentially dangerous targets in weapon categories is unknown (Evans, 2005). Target 

categories may include guns, knives, and explosives, but the individual targets within 

these categories may take many forms, and may even be unique and novel configurations. 

This is particularly true for explosive devices and disassembled or camouflaged firearms. 

Ever-changing item compositions or presentations add to the difficulty o f accurately and 

efficiently identifying objects in the search field. Furthermore, an object may be 

perceived as having some of the qualities or characteristics o f a target without being a 

complete match. That is, the degree of target category membership may vary, 

compounding the difficulty o f identification.
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In addition to the variability o f target presentation, the position o f a target within 

the display can also add difficulty to the visual search task. Monk (1981) found longer 

search durations for targets appearing in the outer half o f a display than in the inner half, 

terming this phenomenon the “edge” or “eccentricity” effect. Wolfe, O ’Neil, and Bennet 

(1998) examined miss rate and detection time for targets situated at different locations on 

a visual display and found a moderate increase in errors for targets in eccentric portions 

o f the display. This finding implies that eccentricity effects are not due to purely visual 

processes without an attentional component (Wolfe, O ’Neil, & Bennet, 1998). 

Essentially, individuals prefer to allocate attention to centrally located portions o f a 

display and neglect eccentrically located portions. The authors assert that eccentricity 

effects are not fully accounted for by a peripheral reduction in visual sensitivity, and 

attention is responsible for the allocation o f stimuli inspection time and resources.

Previous research has examined eccentricity effects in a variety o f visual search 

tasks. Schroeder, Stem, Stoliarov, and Thackray (1994) examined Air Traffic Control 

(ATC) scanning and monitoring behaviors across a range o f variables including time on 

task and target location across four blocks on each o f three days. The authors found 

performance decrements due to time on task for the complex monitoring tasks associated 

with detection and decision making, in line with previous research (Thackray & 

Touchstone, 1991). Additionally, detection times for targets in the outer 50% of the 

display were significantly longer than detection times for targets in the inner 50% o f the 

display. The data also revealed a trend toward more missed outer targets (8, 7, and 7 

across the three days) than inner targets (4, 0, and 1 respectively). Schroeder, Stem, 

Stoliarov, and Thackray (1994) also noted that whereas detection performance for inner
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targets improved over the course o f the three days, detection performance for outer 

targets remained relatively unchanged, indicating that participants tended to neglect the 

periphery of the display.

Thackray (1990) also examined the effects o f location on target detection in a 

study o f signal conspicuity in a radar monitoring task. In that study, half of the signals 

were presented at outer locations o f the display and half at inner locations. Thackray 

found a significant main effect for target location on response time, whereby participants 

took longer to identify eccentric targets than central targets. The authors note that 

eccentricity effects have been reported by in various paradigms including visual search 

(Baker, Morris, & Steedman, 1960; Enoch, 1959) and radar monitoring tasks (Baker, 

1958). It is important to assess factors that contribute to the neglect o f eccentric regions 

o f a display; as such, inattention can lead to higher miss rates, and may generate 

predictable vulnerabilities in airline security. Individuals with malicious intent may 

capitalize on increased security vulnerability by placing potentially hazardous items in 

the outer portions o f luggage items. Examining whether decision making tendencies 

contribute to eccentricity effects may allow for mitigation o f such degraded performance 

if trends emerge.

In the luggage screening paradigm, the screener is tasked with detecting potential 

threats in the form of a variety o f targets. Because the entire range o f possible weapon 

categories is unknown and target presentation locations vary, this type o f signal detection 

task is particularly challenging and may lead to increased uncertainty on the part o f the 

screener during the decision making process. The luggage screener typically sets a lower 

threshold for the minimum amount o f evidence required to endorse signal presence in a
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display (Green & Swets, 1988).The setting of this threshold and the success o f the 

screener’s search strategies can be affected by a variety o f factors as discussed in the 

section above.

Whether an individual is screening passenger luggage for weapons, scanning 

assembly line production for a malformed product, or monitoring a radar screen for 

enemy intrusions, the detection o f a critical signal is o f prime importance. The value o f a 

hit or the cost o f a miss is dependent upon the task at hand. Regardless o f the cost of 

missing a target, it is imperative to have a means o f assessing operator performance. The 

method chosen can impact understanding o f operator characteristics in occupational tasks 

that involve reacting to signals. Hancock (2005) notes that a situation analysis utilizing 

binary fail or no-fail demarcations o f outcomes disregards many behavioral aspects that 

inform potential outcomes, though many assessments continue the tradition of utilizing 

crisp signal detection theory analysis to calculate performance indices. A comprehensive 

assessment technique that accounts for behavioral tendencies in decision making, as 

opposed to just discrete misses, can provide a more appropriate performance assessment 

for an operator when determining current operator functioning and predicting future task 

execution.

Signal detection theory

Performance in a decision making task can be assessed by means o f a Signal 

Detection Theory (SDT) analysis. SDT was originally developed to address a practical 

problem. Engineers designing communication networks utilized this type o f analysis as a 

means o f assessing receipt o f noisy radio signals (Peterson, Birdsall, & Fox, 1954), and 

modified and extended it to describe human performance o f signal detection (Tanner &
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Swets, 1954). This allowed researchers to address the problem of signal detection rate 

confounding the observer’s perceptual ability from the operator’s response criteria biases. 

Because SDT treats sensitivity as a continuous variable, the use o f SDT precludes the 

problems associated with previous absolute and difference thresholds approaches , such 

as the method of limits or the method of constant stimuli, that viewed perceptual 

sensitivity as a discrete state (MacMillan & Creelman, 2005). SDT has been applied in a 

wide range o f domains, including aviation, weather prediction, medical applications, 

military command and control, air traffic control, security, and personnel decisions 

(Bisseret, 1981; Swets & Pickett, 1982). Stanislaw and Todorov (1999) suggest that SDT 

is applicable in any situation in which an operator must engage in decision making under 

some degree o f uncertainty.

There are several primary assumptions that must be met to apply SDT to a 

research paradigm or in situ assessment (Wickens, 2002; Stanislaw & Todorov, 1999). 

Signals, both as present in the environment and as received and represented in the brain 

during sensation and perception, are essentially always surrounded by noise or random 

variation. Noise may be comprised o f variation in the environment or any properties of 

the stimulus itself that reduce salience. Continual neural activity in the sensory and 

perceptual systems also generates noise. The noise is normally distributed along the 

Gaussian equal variance model. The noise distribution is either normal or transformable 

to a normal distribution. Whereas traditional psychophysical models regard the observer 

as a sensor, SDT characterizes the observer as both a sensor and a decision maker. These 

are considered to be discrete processes that are measured using different indices, namely 

response bias and sensitivity. In the decision making component o f a task, the observer
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assumes a threshold criteria that determines the minimum amount o f sensory and 

perceptual evidence required to endorse a “signal present” response. Sensitivity and 

response bias are independent o f one another.

SDT is used as an analysis technique for assessing performance when the task is 

to categorize potentially ambiguous data as a non-signal or a signal plus noise. SDT is 

applicable when categorization requires a binary decision as to the presence o f a signal in 

the data. The discemibility of a signal is affected by the degree o f noise in the system that 

interferes with optimal performance o f the signal detection task. There are two stages of 

information processing that are involved in detection tasks to which SDT is applicable. 

First, the operator accrues sensory data regarding the presence or absence o f a signal 

(measured by an index of sensitivity d ’). Based on the accumulated evidence, the 

operator must then make a decision as to whether there is sufficient indication of signal 

presence (measured by an index of response bias or criterion setting c) (Green & Swets, 

1988).

There are four possible response outcomes in SDT. These outcomes can be 

represented in a Punnet square-type diagram, referred to as a truth table, in which the 

state o f the world is on the horizontal axis, and the operator response is on the vertical 

axis (see Figure 1; see Figure 2 for truth table with sample values). Each condition has 

two mutually exclusive categories: signal present and signal absent, and the interaction o f 

the two conditions produces an outcome. A rate can be calculated for each o f the four 

possible response categories. Rates for hits and misses are calculated by dividing the 

number o f signal present and signal absent operator responses, respectively, by the 

number o f signal present trials. Likewise, rates for false alarms and correct rejections can



be calculated by dividing the number o f signal present and signal absent operator 

responses by the number o f signal absent trials.

Hit, false alarm, miss, and correct rejection rates, as well as response criteria and 

sensitivity, are calculated for each operator participant. The standard formulas for crisp 

SDT are utilized (Wickens, 2002, p. 6):

Number o f  signal p resen t responses to  signal p resen t tr ia lsHit rate: HR
N um ber o f  signal p resen t tr ia ls

_ , . , _ . _ N um ber o f  signal present responses to signal absent truthFalse alarm rate: FAR = ------------------------------------------ ---------------
N um ber o f  signal ab sen t tr ia ls  

. Tr_ N um ber o f  signal absent responses to signal present triak
Miss rate: MR = 1 -  HR = ----------- —  ----------- —----------2— -----------

N um ber o f  signal presen t tr ia ls

Correct rejection rate: CRR = 1 -

j., A „ N um ber o f  signal absent responses to  signal absent trials r AK---------------------------------------------------------------
N um ber o f  signal ab sen t tr ia ls

Sensitivity: d ’ = z  (HR) -  z(FAR)

Response criterion setting: c = 2.71828183<'0 5*<Z(HR)' Z(CRR)))

State of the world
Signal Signal

present absent

S Signal 
§. present

o

v  Signal 
a
O absent

Hit
False Alarm  

(FA)

Miss

Correct

Rejection

(CR)

Figure 1. Crisp signal detection theory truth table
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Participant Trial Signal (s) Response (r) Hit FA Miss CR
1 1 1 1 1 0 0 0
1 2 1 0 0 0 1 0
1 3 0 0 0 0 0 1
1 4 0 1 0 1 0 0
1 5 0 0 0 0 0 1
1 6 1 1 1 0 0 0
1 7 0 0 0 0 0 1
1 8 1 1 1 0 0 0
1 9 0 1 0 1 0 0
1 10 1 0 0 0 1 0

Figure 2. Crisp signal detection truth table with sample values

Swets, Dawes, and Monahan (2000) note that data or signals should be considered 

in terms o f higher values o f degree o f evidence being associated with the positive 

diagnostic alternative, and lower values being associated with the negative alternative. 

The operator adopts decision criteria or response criteria that set the minimum threshold 

of evidence required to respond that a signal is present. Because o f the complexity of 

signal discrimination tasks, it is nearly inevitable that an operator will err. However, by 

altering the response criteria, it is possible for human respondents to implement some 

control over the type o f errors that are made. By lowering the response threshold, or 

setting a more liberal response criteria, the operator requires less confirmatory data to 

indicate that a signal is present. Raising the response threshold, or setting a more 

conservative response criteria, increases the amount of data necessary for the operator to 

respond that a signal is present.
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Sensitivity is the ability o f an operator to distinguish between signal and noise. 

Perceptual sensitivity is generally agreed to be independent of the criteria the observer 

sets (i.e., the response bias). Sensitivity depends on the strength o f the signal and noise 

and the amount o f overlap between the two. It is an evaluation o f the intensity o f the 

response that is independent o f the response criteria (see Figure 3).

Sensitivity

Signal + NoiseNoise
Response bias

Liberal 
bias —

Conservative ► \
bias \

Correct
Rejection

Hit

[iss

Figure 3. Signal detection theory model

SDT is a useful tool for analyzing two-alternative forced choice decision making 

in the presence o f uncertainty. Dichotomously defined outcomes have practical value in 

the immediate appraisal o f a single, discrete event-moment or observation, such as 

determining whether there is an interruption o f or intrusion upon the current state of 

affairs. This would include a weapon in a luggage search or an enemy aircraft on a radar 

display. However, constraining signal and response data into one o f two dichotomous
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categories can result in the loss o f important information about both the signal and the 

operator’s response.

Fuzzy signal detection theory

Fuzzy signal detection theory (FSDT), an extension of traditional or crisp SDT, 

involves an alternate method o f defining both signal and response characteristics to 

maximize the volume o f information available regarding the state o f the world and an 

operator’s decision making tendencies. Parasuraman, Masalonis, and Hancock (2000) 

note that FSDT poses an advantage over traditional SDT by systematically capturing the 

information present in a continuum, rather than delimiting information capture to the 

endpoints. An analysis utilizing fuzzy SDT may provide predictive value beyond the 

information available in a tradition SDT analysis o f operator performance by allowing the 

signal and response to assume a hypothetically infinite range o f values between zero and 

one. Evaluating these values as continuous variables provides the greatest amount of 

available information about both signal qualities and operator response characteristics.

In the traditional SDT model, the state of the world is restricted to crisp, discrete, 

mutually exclusive categories. However, dichotomous categories may not accurately 

represent the true state o f the world. It is not uncommon, because o f the diversity and 

nature o f signals that are important to operators across a variety o f domains, for a signal 

or an event to have varying degrees o f both signal and nonsignal properties or 

characteristics. Degree o f categorical membership can be accounted for by utilizing the 

FSDT model, which allows a given stimulus or event to belong to more than one 

category. As category membership is not necessarily mutually exclusive, a signal or event 

may be classified as both a hit and a false alarm to different degrees depending on the
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respective relative degree of category membership in terms o f signal-like and nonsignal

like properties. It is possible for uncertainty or dual categorical membership to exist not 

only in the observer with respect to operator response, but in the signal or event. The 

setting o f response criteria threshold and the general efficacy of the operator’s search 

strategies and procedures can be affected by how the operator perceives the signal itself.

Targets may be present either as discrete, absolute signals, or may be only 

partially observable or discriminable. The treatment o f the “signalness,” or degree of 

signal, o f stimuli as a continuous variable is termed fuzzification (Parasuraman, 

Masalonis, & Hancock, 2000). This is the process by which degree o f non-binary 

categorical membership is assigned. Events can belong to the set “signal” (s ) to a degree 

ranging from 0-1. Events can belong to the set “response” (r) to a degree ranging from 0- 

1. Mapping functions for s relate the signal value to a variable that depicts the true state 

o f the world. Mapping functions for r may be based, for example, on operator confidence 

ratings o f signal presence, a method used in traditional SDT (Green & Swets, 1988; 

MacMillan & Creelman, 1991). A mapping function for the response set relates the 

operator response to a response variable. To assign degrees o f (s, r) membership to 

events, it is necessary to evaluate all possible states of the world and operator responses 

using mapping functions. Ideal or optimal performance occurs when r - s ,  as the operator 

response is precisely mapped to the degree o f signal actually present. However, it is also 

possible that signal-response mappings may result in s > r or s < r. When r > s, some 

degree o f false alarm category membership will ensue, as operator response exceeds the 

degree o f actual signal. On the contrary, when r < s, some degree o f miss category 

membership ensues, as operator response is less than the degree o f actual signal. Ideal
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performance occurs when r = s, as the operator response is appropriately mapped to the 

degree o f signal actually present.

Hit, miss, false alarm, and correct rejection category membership is calculated for 

each trial utilizing the formulas proposed by Parasuraman, Masalonis, and Hancock 

(2000):

Hit: H = min (5 , r)

False Alarm: FA = max (r -  s, 0)

Miss: M = max (s -  r, 0)

Correct Rejection: CR = min (1 -  s, 1 -  r)

To calculate hit, miss, false alarm, and correction rejection rates for each participant, the 

following formulas (Parasuraman, Masalonis, & Hancock, 2000, p. 648) are utilized. The 

term i denotes the trial number and the term N denotes the total number o f trials (see 

Figure 4 for truth table with sample values).

Hit rate: HR = £(//i)/ X(^i) for i = 1 to N

False alarm rate: FAR = £(/vlj)/ £(1 - Sj) for / = 1 to N

Miss rate: MR = £(Mj)/ X(sj) for i = 1 to N

Correct rejection rate: CRR = £(67?,)/ £ ( i  - 5 ,) for i -  1 to N

Szalma and O ’Connell (2011) and Stafford, Szalma, Hancock, and Mouloua (2003) have 

demonstrated that fuzzy hit and false alarm rates can be used to calculate measures of 

sensitivity. Stafford, Szalma, Hancock, and Mouloua (2003) assert that response criteria 

can also be calculated using fuzzy indices.

Sensitivity: d’ = z  (HR) — z(FAR )

Response criteria: c = 2.71828183(~0 5*(Z(HR) Z(CRR)))
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Participant Trial Signal (5 ) Response (r) Hit FA Miss CR
1 1 0.6 0.8 0.6 0.2 0.0 0.2
1 2 1.0 0.2 0.2 0.0 0.8 0.0
1 3 0.4 0.2 0.2 0.0 0.2 0.6
1 4 0.6 0.6 0.6 0.0 0.0 0.4
1 5 0.0 0.4 0.0 0.4 0.0 0.6
1 6 1.0 0.8 0.8 0.0 0.2 0.0
1 7 0.2 0.0 0.0 0.0 0.2 0.8
1 8 1.0 1.0 1.0 0.0 0.0 0.0
1 9 0.8 1.0 0.8 0.2 0.0 0.0
1 10 0.0 0.0 0.0 0.0 0.0 1.0

Figure 4. Fuzzy signal detection truth table with sample values

FSDT is applicable to aviation and air traffic control (ATC). Assessments o f air 

traffic safety utilizing traditional SDT assume discrete divisions o f states o f the world 

into mutually exclusive, dichotomous categories, namely noise or signal plus noise. 

Flowever, in situ, the signal, such as a runway incursion or a loss o f separation, varies 

over time and by context. Traditional SDT analyses o f a situation constitute a signal as 

either an unequivocal presence (s = 1) or an unequivocal absence (5 = 0). Likewise, the 

operator response to a scenario is also classified as r= l or r=0, which does not account 

for confidence in or strength o f the decision. FSDT, on the other hand, allows for the 

classification of an event such as an aircraft-to-aircraft conflict as belonging to the signal 

set with some degree o f 5 between zero and one, and belonging to the response set with 

some degree o f r between zero and one.

Because o f its ability to maximize the availability of information, FSDT has been 

recommended for use in monitoring possible collisions in ATC (Parasuraman, Masalonis,
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& Hancock, 2000). According to Federal Aviation Administration (FAA) regulations, 

two aircraft must maintain a separation of 5 nautical miles (nm) horizontally and 1,000 ft 

vertically. When either o f these critical thresholds is breached, this meets the legal 

definition o f a conflict in the flightpath. Traditional or crisp signal detection theory 

indicates the presence o f a signal specifying an unsafe state at the threshold. FSDT, 

however, can provide information regarding a potential conflict prior to the official loss 

of separation as a function o f the monotonic curve discussed previously. For example, as 

the distance between two aircraft (a) approaches or violates separation minima, the value 

of 5 increases monotonically. Alternately, in crisp SDT, when a > 5nm, 5 = 0, and when a 

< 5nm, 5=1 .  While developments in ATC may lead to altered criteria for separation 

minima in the Next Generation Air Transportation System (NextGEN), FSDT would still 

be applicable given its ability to forecast and present potential conflicts.

Masalonis and Parasuraman (2003) note that safety or criteria thresholds imposed 

by management or by artificial means may be arbitrary indicators. The authors note the 

example o f the 5 nm horizontal separation o f aircraft required by air traffic control (ATC) 

regulations in the United States. A separation o f 0.1 nm has different safety implications 

than does a separation o f 4.9 nm, though this differential is lost in the information 

conveyed by a traditional signal present/signal absent examination o f a radar display 

utilizing a 5 nm critical threshold. The masking of proximate potential threats by the 

division of observations using an arbitrary criteria threshold may be problematic. These 

artificial dichotomies affect the determination or evaluation of operator performance, as 

well as current or future situation conditions.
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When responding to a critical signal, operators can have varying degrees of 

confidence in their responses (Masalonis & Parasuraman, 2003). Just as the signal itself 

may be considered “fuzzy,” as explicated in the above examples regarding lateral 

separation o f aircraft or degree o f target category membership, the response to a signal, 

by either a human operator or an automated decision aid, may also be considered “fuzzy.” 

The definition and presentation of a signal in situ is generally less dichotomous than in 

controlled laboratory settings or as delineated in operational guidelines. The operator’s 

response to the question o f whether a signal is absent or present can fall on a continuum 

that accounts for certainty in his or her decision, which may be due to ambiguity in the 

signal itself or the extent to which he or she considers the signal to have category 

membership. The response continuum can account for the amount o f information 

perceived by the operator, which in turn may be moderated by behavioral decision 

making tendencies.

In the current study, operator response value data were plotted by the signal along 

a continuum o f degree o f target category membership. It was anticipated that the data 

would best be modeled using a sigmoid function, as all derivatives would be positive and 

the system was expected to saturate at higher values o f s. Perhaps due to the high cost of 

a miss in the luggage screening domain, there is a slowing of increasing values o f r as 

saturation is reached when perceived s exceeds some critical threshold. The exemplar 

model (see Figure 5) is plotted utilizing the sigmoid function r = 1/[1 + (s/k)"], whereby k 

is the constant 0.35 and the exponent n equals -4 to achieve the desired sharpness o f the 

mapping function. The data from the current study were expected to follow or
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approximate this model and preserve the monotonic increasing function within the 

restricted domain 0 < s < 1.

Oper
ator 1
resp
onse

valit 0.8

0.6

0.4

0.2

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

■Operator
response
value

Target category membership value (5 )

Figure 5. Predicted sigmoid mapping function relating signal value, s, to operator 

response value, r

Optimizing versus satisficing

Signals may vary between zero and one in degree o f category membership, and 

operator responses may also range between zero and one, either as mapped to an 

ambiguous signal or based on confidence in or strength o f the decision. In this way, 

operator responses may reflect characteristics o f the signal itself, or may reveal decision 

making tendencies o f the operator. Behavioral decision making is frequently considered
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from the perspective of conformity with or deviations from the axioms of rationality and 

utility maximization (Parker, Bruine de Bruin, & Fischhoff, 2007). From 

acknowledgement o f the merits o f these deviations evolved the theory of bounded 

rationality and examinations o f satisficing as a valid strategy for selecting an option that 

suffices without providing the highest expected utility value. Schwartz et al. (2002) 

discuss the implausibility o f the assumption of complete information, a tenet o f rational 

choice theory, which echoes Gigerenzer and Goldstein’s (1996) conceptualization o f the 

human decision maker as having limited time, information, and computational or 

processing power. Schwartz and colleagues note that when dealing with such cognitive 

limitations, information can be treated as a commodity that comes at a cost, such as time. 

Nenkov, Morrin, Ward, Schwartz, and Hulland (2008) assert that the view of information 

as a commodity may entail maximizers being willing to expend resources in search o f an 

optimal solution, while satisficers weight the disutility of the expenditure o f time and 

effort over the utility of an optimal option. Satisficing may involve either a subjectively 

higher assessment o f the cost o f time and effort or a subjectively lower perceived benefit 

o f the utility o f an optimal solution.

In an examination o f decision making in which time is considered a resource or 

commodity, Dar-Nimrod, Rawn, Lehman, and Schwartz (2009) presented participants 

with the option of sacrificing resources such as time in exchange for more options. It was 

found that maximizers, individuals intrinsically motivated to make the best choice 

possible, were more willing to sacrifice commodities like time to procure a larger choice 

array than were satisficers, individuals who tend to search for a satisfactory choice. These 

findings support the previous assertion o f Schwartz and colleagues (2002) that
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maximizers are more likely to engage in an exhaustive search and to expend more time 

and effort during the decision process.

However, because the human decision maker is often limited with regard to time, 

information, and processing capacity (Gigerenzer & Goldstein, 1996), decision making in 

situ frequently exhibits bounded rationality and the decision maker employs approximate 

methods rather than abides by rigid rules to handle most tasks (Simon, 1990). These 

approximate methods may involve stopping rules for information search. Stopping rules 

may be the product o f inherent human perceptual and cognitive limitations or the result of 

temporal limits that are imposed at a macro-organizational level. For example, the TSA 

luggage screener has, on average, four seconds to view an X-ray scan of a piece of carry- 

on luggage and to decide whether it contains a weapon or other potentially hazardous 

item. With regard to stopping rules, Wickens and McCarley (2008) suggest that an 

operator will endorse a signal absent response when he or she perceives the effort 

required for additional searching to exceed the expected value o f detecting the target or to 

exceed the expected cost o f failing to detect it. The investigation o f search strategies is 

particularly important in the luggage screening context, as operators may decide that the 

value o f the target no longer exceeds the cost o f its detection, despite the fact that the cost 

o f a miss can be extraordinarily high. In the course o f signal detection, the information 

search may involve looking for cues or features that indicate a potential target. The 

operator must assign some value to cues with regard to quantitative criteria that would 

indicate target presence.

The operator may discriminate sufficient information to reach the criteria 

threshold and endorse a signal present response. In the FSDT model, a signal present
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response is allowable in the presence of uncertainty without violating the conditions 

necessary for optimal responding, namely s = r  = 0 o r s  = r =  1. Schwartz and colleagues 

(2002) note the findings o f Simon (1956), who argued that maximized or optimized 

decision making is generally not a viable strategy in situ, due to the limitations in time, 

information, and processing power o f the human decision maker. As such, in many 

situations, satisficing may lead to more satisfactory outcomes than will maximizing or 

optimizing.

Hertwig and Herzog (2009) note that satisficing is a decision making strategy that 

allows for the selection of an option from a set o f alternatives when all information is not 

known. A choice is perceived by the decision maker to be acceptable if  it meets or 

exceeds the standards o f a specified set of criteria. Satisficing is a decision making 

strategy that is generally effective under conditions that entail time constraint and 

uncertainty. In such scenarios, the decision maker does not have unlimited time or 

information with which to consider all possible alternatives. In such situations, it is often 

the case that satisficing, and not optimizing, brings the situation to a satisfactory 

conclusion.

Payne, Bettman, and Luce (1996) note that the information processing strategy 

adopted by a decision maker is contingent upon factors such as the range o f alternatives, 

the format in which information and responses are provided, and the correlations between 

attributes. Such strategies may include an exhaustive search and consideration o f all 

available information and all possible alternatives, or may involve invoking decision 

heuristics to expedite and simplify the decision making process. Cognitive effort and 

accuracy o f response are important components in determining contingent decision
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making behavior (Payne, Bettman & Luce, 1996). This framework for characterizing 

available strategies is referred to as the effort/accuracy framework, and represents the 

balancing o f accurate decision making with conservation o f limited cognitive resources.

While not referenced by Payne and colleagues (1996) in their discussion of the 

effort/accuracy framework, the applicability o f these constructs to the examination of 

optimizing and satisficing decision making strategies appears plausible. Specifically, 

optimizing maximizes the degree of accuracy through an exhaustive information search 

and thorough processing o f all available cues. Similarly, Creyer, Bettman, and Payne 

(1990) found that participants whose goal was to maximize accuracy, without an 

accompanying goal o f minimizing effort, tended to acquire more information, expend 

greater search and acquisition time, demonstrate less selectivity in information 

processing, consider more alternatives, and exhibit greater accuracy. It is important to 

note, however, that optimizing as a decision making strategy or tendency engenders 

significant costs with regard to cognitive resources and opportunity costs, such as when 

time is considered as a commodity. Alternately, satisficing is a decision making strategy 

or tendency that often functions in situ under conditions o f limited time, information, or 

information processing capacity (Gigerenzer & Goldstein, 1996; Simon, 1990). 

Satisficing sacrifices some degree o f accuracy in exchange for the conservation of 

cognitive resources or opportunity costs.

Schwartz and colleagues (2002) proposed that in addition to being decision 

making strategies, optimizing and satisficing may represent behavioral decision making 

tendencies (Nenkov et al., 2008). Operators can potentially engage either a satisficing or 

optimizing strategy on a trial by trial basis. Alternately, operators may demonstrate a
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general tendency toward either satisficing or optimizing across trials. Maximizers, or 

optimizers, consistently seek the optimal outcome, rather than an outcome that simply 

resolves an event in a satisfactory manner, as is the case with satisficers. Schwartz and 

colleagues developed the Maximization Scale to differentiate between decision makers 

who tend to maximize and those who to tend to satisfice. Subsequent research resulted in 

a shorter 6-item Maximization Scale better assessed the construct.

Discrimination between optimizing and satisficing in the current experimental 

paradigm utilizing simulated luggage screening entails an operator identifying target 

components that suffice with regard to categorization as potential threats, though they 

may fail to possess the optimal degree of information desired for indicating signal 

presence. The degree to which an operator is willing to endorse signal presence 

accompanied by uncertainty may depend on risk attitudes or such individual differences. 

Verplanken (1993) has noted specifically that information search and decision making 

strategies are moderated by features o f the task and context. The strategies that an 

individual employs are contingent upon features o f the task (e.g., task complexity, display 

format), the decision situation (e.g., the magnitude or potential outcomes o f the decision, 

time constraint), and person characteristics (e.g., prior knowledge, individual 

differences). As such, the current study addresses components o f these factors, namely 

varying signal characteristics and time constraint.

Time constraint

In general, research has demonstrated that high time constraint is not an optimal 

condition for effective decision making (Zakay & Wooler, 1984; Kerstholt, 1994), as 

time constraint exacerbates cognitive workload in decision making paradigms (Ordonez
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& Benson, 1997). Keinan (1987) found that individuals under time-pressure-induced 

stress tended to make decisions rapidly before all available information or alternatives 

were provided, leading to the adoption o f one early decision option to the exclusion o f all 

others. The detrimental effects o f this premature closure are exacerbated by 

nonsystematic scanning, whereby a poorly organized consideration o f alternatives and 

information exists. Further, attentional narrowing during scanning and information search 

precludes adequate consideration o f the alternatives that are considered (Keinan, 1987). 

Ben Zur and Breznitz (1981) found that time constraint has been shown to decrease the 

amount o f time an individual spends processing individual pieces o f information. The 

processing that does occur tends to be more discriminating under time constraint. 

Individuals under time constraint tend to alter decision strategies toward an attribute- 

based style o f processing that entails narrowly processing one single attribute of the 

decision problem before considering a second attribute (Payne, Bettman, & Johnson, 

1988).

Additionally, Shanteau and Stewart (1992) have found that under high time 

constraint both novices and experts tend to be influenced by irrelevant information and 

employ heuristics or mental shortcuts due to an inability to cope with uncertainty. 

Although heuristics can be adaptive in some situations, there are other circumstances 

wherein heuristic-based decision making can lead to serious errors (Tversky &

Kahneman, 1974). Much previous research has shown that individuals tend to accelerate 

information search under time constraint while utilizing the same search patterns. Payne, 

Bettman, and Johnson (1988) note an exception, whereby participants demonstrated a 

trend toward different search patterns under high time constraint. Payne et al. (1988)



indicate that information acquisition behavior may change under time constraint, which 

in turn leads to changes in information use and degraded decision quality. However, 

Rothstein (1986) attributes degraded decision making performance under time constraint 

to reduced consistency rather than changes in decision strategies. Generally, data from 

experimental paradigms examining time pressure due to imposed time constraints or 

deadlines demonstrate poorer decision making performance. This may occur in 

exogenously imposed time constraint conditions in the form of degraded search patterns, 

reduced and narrowed information processing and consideration of alternatives, and 

increased attention to and reliance on irrelevant information, which may contribute to the 

employment o f heuristics to reduce cognitive effort.

It is also important to consider an alternate type o f time constraint that occurs both 

in experimental paradigms and in situ. As an alternative to time constraint imposed by 

fixed-interval search, time constraint can also exist in the form o f opportunity costs of 

delay. Opportunity costs o f delay may involve lost opportunities or reductions in payoffs 

from the most accurate decision (Payne, Bettman, & Luce, 1996). Eisenhardt (1993) 

notes that when time constraint is the result o f opportunity costs, an operator’s decision 

making predicament is a function o f the potential for errors resulting from decisions 

made too swiftly and the reduced effectiveness o f decisions made too slowly. In some 

scenarios, such as the nuclear power plant example discussed by Eisenhardt, accurate 

decisions decrease in utility value as a function o f delay in decision making.

Consideration o f opportunity costs o f delay might also involve the previous 

discussion o f time as a commodity. An individual may be tasked with completing a task 

for a certain period of time; for example, a luggage screener may examine luggage items



25

for an eight hour work shift. In this scenario, the opportunity cost o f delayed decision 

making for each item is not the operator’s own time necessarily, as he or she will be at 

work for eight hours regardless, but rather may entail costs imposed at the macro- 

organizational level because o f the ensuing passenger delays. As such, there may be a 

man-hours per unit time constraint imposed. This is a likely contributor to the average 4 

second per bag screening time available to TSA luggage screeners. Alternately, an 

operator may tasked with screening, for example, X number o f luggage items before 

finishing his or her work shift for the day. In this case, the operator may engender 

opportunity costs in the form o f reduced personal time as a result o f delaying decision 

making and extending the task duration.

Purpose of the current study

To enhance the safety o f domestic airline travel, the focus must be on improving 

both technology and human operators. It is important to investigate the decision making 

elements that contribute to operator performance in luggage screening. As there are many 

factors that contribute to information search and target detection efficacy, it is important 

that researchers continue to study variables that serve as substantive bases for decision 

making strategies in a high stakes environment. However, examining the execution of 

decision making strategies is important as well. The purpose o f the current study was to 

examine a proposed quantitative method for discriminating between satisficing and 

optimizing decision making strategies, as well as examine how time constraint, signal 

location, and degree o f signal impact decision making both individually and 

synergistically.
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The first objective o f the study was to develop a methodology for quantifying 

optimizing versus satisficing tendencies in decision making through direct measurement 

and observation. Current methodologies for assessing behavioral decision making 

tendencies rely on self-report, specifically Schwartz and colleagues’ (2002) 

Maximization Scale or Nenkov and colleagues’ (2008) revision to the Short Form of the 

Maximization Scale (e.g., Parker et al., 2007; Diab, Gillespie, & Highhouse, 2008; 

Tanius, Wood, Hanoch, & Rice, 2009; Bruine de Bruin, Parker, & Fischhoff, 2007).

Generally, there are a number of criticisms regarding self-report measures and 

data. Self-reports can vary over time due to experience, history, or maturation effects 

(Campbell & Stanley, 1963). Mischel (1968) notes that self-report data may involve 

“deliberate faking, lack o f insight, and unconscious defensive reactions” (p. 236). These 

criticisms speak to the reliability o f self-report assessments without necessarily calling 

into question the validity o f the measure. Test-retest reliability, or, generally, the ability 

to replicate results, may vary based on such factors as the perceived time window of a 

report, employment o f availability heuristics, demand characteristics o f the task situation, 

or other cognitive or situational factors.

Endorsement o f items on the Short Form of the Maximization Scale reflects the 

responder’s self-concept o f his or her tendencies toward optimizing or satisficing when 

making decisions. Quantitative data regarding behavioral decision making tendencies, on 

the other hand, is produced via computations based on observed behavior, rather than by 

self-report, which has implications for what the data means. For example, Hochstein, 

Basili, Zelkowitz, Hollingsworth, and Carver (2005) note that in a study of effort exerted 

in a computer-based task, measures o f effort based on self-report and on recordings
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generated automatically from subjects’ computing environments differed significantly. In 

the current study, the implementation of FSDT as a means o f delineating behavioral 

decision making tendencies provides an index o f responding that can be correlated with 

the state o f the world to examine decision making strategies and assess operator 

performance. This index can be generated automatically from an operator’s performance 

on decision making tasks, and does not require or rely on inferences based on self- 

reported data. Because decision making behaviors and tendencies exert a powerful 

influence on behavioral outcomes in a variety o f critical situations (Klein & Klinger, 

1991), it is important to ensure that assessments are both reliable and valid, and that 

behavioral classifications are supported by quantitative data.

The second objective o f the study was to show how time constraint and specific 

signal characteristics contribute to decision making. Participants were situated in either a 

local fixed-interval time constraint condition or a global time constraint condition. Target 

detection for signals o f varying ambiguity and location under both time constraints were 

assessed. The effects o f participants’ maximizing or satisficing were also assessed on 

both a per-trial basis (per-trial decision-making strategy; within subjects variable) and as 

an overall general tendency (across-trials decision-making tendency; between subjects 

variable). The local fixed-interval condition is more analogous to in situ luggage 

screening, and functioned similarly to a control group when examining how self

terminating search (global time constraint) impacts decision making for central versus 

eccentric targets, and for maximizers versus satisficers. Finally, the study also examined 

whether critical thresholds of search duration exist beyond which additional time does not 

improve decision making toward more optimal performance. The study examined
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whether the current average 4-second inspection duration (not including time for the 

luggage image to enter and exit the visual field) for TSA screeners is the optimal man- 

hours per unit standard for effective threat detection. This experimental paradigm also 

sought to identify the outer temporal boundary beyond which additional time is not 

productive to signal detection. The objective was the identification o f an optimal 

inspection duration that meets both performance and macro-organizational efficiency 

goals.

With these considerations in mind, the following hypotheses were formulated.

Hypotheses:

1. Participants making decisions in the local fixed-interval time constraint condition 

will engage in satisficing more often than will individuals making decisions in the 

global time constraint (self-terminating) condition. Satisficing will be 

operationalized as a less-than-optimal response (e.g., 0 < r < 1 when s = 0 or 5  =

1; r = 0 or r = 1 when 0 < s < 1). This is postulated in line with Klein and 

Klinger’s (1991) application o f naturalistic decision making in situations 

involving time stress, where individuals tend to satisfice because generating and 

systematically evaluating a large set o f alternatives would involve an investment 

o f time not available to the decision maker. Participants making decisions in the 

global time constraint condition will engage in optimizing more often than will 

individuals making decisions in the time constraint condition. Optimization will 

be operationalized as an optimal response (e.g., r = 0 or r = 1 when s = 0 or s = 1, 

respectively).



2. Klein and Klinger (1991) note that classical decision making approaches, such as 

optimizing, do not address or support decision making factors such as ambiguity, 

vagueness, and inaccuracies. Optimizers are more likely to discount ambiguous 

information. Therefore, in the ambiguous signal (0 < s < 1) condition, participants 

who have satisficed will demonstrate greater sensitivity than participants who 

have optimized, due to satisficers having a greater response to ambiguous 

information, thus increasing the perceived intensity o f ambiguous signals in noise 

as measured by the sensitivity index d \

3. McElree and Carrasco (1999) note that more time-limited stimuli inspection 

durations tend to induce more liberal response criteria. Therefore, participants in 

the local fixed-interval time constraint condition will have more liberal response 

criteria than participants in the global time constraint condition, indicating that 

they require a lesser degree o f confirmatory evidence to endorse a signal present 

response.

4. Wolfe, O ’Neil, and Bennet (1998) examined miss rate and detection time for 

targets situated at different locations on a visual display and found a moderate 

increase in errors as targets move toward eccentric portions o f the display. 

Participants who tend to optimize may not be susceptible to these errors to the 

same degree as participants who tend to satisfice; participants who optimize are 

more likely to conduct a thorough search o f the entire display, as opposed to 

concentrating on central locations in line with the more efficient and less 

cognitively demanding satisficing approach. As such, it is hypothesized that there 

will be a significant interaction o f across-trials decision making tendency
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(optimizing versus satisficing) and target location such that participants who 

optimize will not have significant differences in sensitivities for targets in central 

versus eccentric locations. Participants who satisfice will have significant 

differences in sensitivities for targets in central versus eccentric locations.

5. Individuals under time constraint will tend to follow an attribute-based style of 

processing (Payne, Bettman, & Johnson, 1988), and therefore will narrowly 

process a single attribute before considering a second attribute. Further, visual 

search tends to first be concentrated on central locations within the display, 

evidenced by higher miss rates and longer decision latencies for eccentrically 

located targets, defined as targets located in the outer 50% area o f a display 

(Wolfe, O ’Neil, & Bennet, 1998); as a result, eccentric targets may not be 

perceived as having the same strength in noise as central targets and thereby will 

not induce an analogous response. As such, participants in the local fixed-interval 

time constraint condition are expected to have lower sensitivity for targets in 

eccentric locations (outer 50% of the display) than targets in central locations 

(inner 50% of the display).
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CHAPTER 2 

METHOD

Participants

Participants (N=  100) were recruited using the Old Dominion University SONA 

research participation system and were compensated 2 research credits, as it was 

anticipated that the study would take, at maximum, in the self-terminating condition, two 

hours to complete. Credits could be applied to mandatory or extra class credit.

The sample size for the study is based on a power analysis, conducted with the 

program G*Power 3.1.3, using a power o f .80, with a medium effect size, at an alpha 

level o f 0.05 (Keppel & Wickens, 2004).

Materials

Tendency to maximize or satisfice was assessed using the Short Form of the 

Maximization Scale, a 6-item Likert-type scale presented in Appendix A (Nenkov et al., 

2008; Nenkov, Morrin, Ward, Schwartz, & Hulland, 2009). Participants agreed or 

disagreed with scale items using a 7-point rating scale (1 = completely disagree to 7 = 

completely agree). Individuals whose average rating is higher than 4 are considered 

maximizers and individuals whose average rating is lower than 4 are considered 

satisficers (Schwartz, 2004). The Short Form of the Maximization Scale has been 

determined to have reasonable internal consistency (Chronbach’s alpha = .47) and 

construct validity (validity index = .22) (Nenkov et al., 2008); the authors note that 

although higher alpha levels indicate better internal consistency, Chronbach’s alpha is 

directly proportional to the number o f items on a scale, and therefore scales with fewer 

items will have lower mean alpha levels (Nenkov et al., 2008). Nenkov and colleagues
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(2008) asserted that the shorter 6-item version o f the Maximization Scale performs at a 

level superior to that o f the original 13-item scale, despite a reduction in reliability and 

validity due to a decreased number o f scale items. The Maximization Scale has been 

applied successfully in previous research examining self-reported tendencies toward 

maximizing versus satisficing (Parker et al., 2007; Schwartz et al., 2002).

The stimuli for this experiment consisted of profile images o f handguns amidst 

other objects in luggage items. Target stimuli were created using the commercially 

available image morphing software Morpheus Photo Morpher v3.11 (Morpheus 

Software, 2009). X-ray images o f handguns and non-target objects, such as power drills 

and hairdryers, were morphed utilizing progressively greater degrees o f target category 

membership in 20% increments. Morpheus software allows for customization o f images 

such that the user can determine the precise percentage o f each primary image to merge 

together into the emergent engineered image. See Appendix B for examples o f objects 

ranging from s = 0 to s = 1 in 20% increments o f target category membership. These 

images o f objects o f varying degrees o f target category membership were then inserted 

into x-ray images o f luggage items to generate the full stimuli set (see Appendices C-E 

for full stimuli set, arranged by centrally located 0 < s < 1, eccentrically located 0 < s < 1, 

and s = 0).

Participants viewed images o f three types: unequivocal signal present (16%; 5 =

1.0), unequivocal signal absent (50%; s = 0), and ambiguous signal (34%; 0 < s < 1) (see 

Figure 6 for detailed stimuli distribution information). This distribution o f signals was 

intended to provide sufficient instances o f each signal type to allow for analyses across 

various factors, such as target location and degree of target category membership.
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Figure 6. Stimuli distribution

Within the unequivocal signal present and ambiguous signal image categories, 

50% of targets were randomly located in the central portion o f the display (see Appendix 

C) and 50% of targets were randomly located in the eccentric portion o f the display (see
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Appendix D). Thackray and Touchstone (1991) examined eccentricity effects by 

characterizing the outer 50% of the display as the eccentric region and the inner 50% of 

the display as the central region for target presentation. (See Appendix E for target absent 

stimuli images.)

Procedure

Participants reviewed and signed an informed consent form (see Appendix F). 

Participants were randomly assigned to one of two time constraint conditions: global time 

constraint (n=50), in which participants self-terminated the information search for each x- 

ray image, and local fixed-interval time constraint (n=50), in which participants had 4000 

ms per x-ray image for information search. Participants answered demographic questions 

concerning sex and race/ethnicity.

The study incorporated a 3 (signal: unequivocal present, ambiguous, unequivocal 

absent) X 2 (time constraint: local fixed-interval vs. global) X 2 (target location: central 

vs. eccentric) mixed factorial design. Degree o f signal and target location were within 

subject factors; time constraint was a between subjects factor. Signals were classified as 

unequivocally present when 5 = 1 ,  unequivocally absent when 5 = 0, and ambiguous 

when 0 < s < 1. Participants interacted with a computer-based simulation o f an airline 

luggage screening task, composed with the software ePrime, using Dell Optiplex 780 

computers running the Windows 7 operating system.

Participants were tasked with deciding whether x-ray images of passenger 

luggage contained hazardous objects. Participants were shown examples o f targets with 

varying degrees o f target category membership (see Appendix B and Appendix G). 

Participants then scanned 200 images, with a 50% target presence rate (5  > 0) for both
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time constraint groups in line with previous research utilizing the simulated luggage 

screening paradigm (Gonzalez & Madhavan, 2011). Participants were not informed o f the 

base rate.

Participants were randomly assigned to one o f two time constraint conditions: 

global time constraint, in which participants self-terminated the information search for 

each x-ray image, and local fixed-interval time constraint, in which participants had 4000 

ms per x-ray image for information search. The 4000 ms exposure time is based on an 

estimate from the Transportation Security Administration (TSA) as the average duration 

available to luggage screeners for information search in an x-ray image centered on the 

display screen (not including time to enter and exit the screen), and has been utilized in 

previous research (Wales, Anderson, Jones, Schwaninger, & Home, 2009; Culley & 

Madhavan, 2011). The local fixed-interval condition was proposed to be the closest 

analog to search conditions in situ.

Participants in the global time constraint condition could see each image for as 

long as they wished; the image did not advance until the participant self-terminated the 

information search. Participants in this condition were informed that they must remain in 

the laboratory until their designated time slot had ended, regardless o f whether they 

finished the experiment early. This instruction was intended to discourage participants 

from rushing or accelerating decision making so as to complete the experiment in a 

shorter amount of time with the intention of leaving the laboratory early. The 

experimental design was intended to preclude or reduce the effects o f perceived 

opportunity cost time constraint. It was important that perceived time constraint,
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exogenous or endogenous, was minimized to the greatest extent possible in this 

experimental condition.

Participants in the global time constraint condition were instructed to examine the 

images on the display for as long as they needed before providing a response regarding 

signal presence.

Participants in the local fixed-interval time constraint condition were instructed to 

examine the images on the display, which would automatically time out after a period of 

time, and to provide a response regarding signal presence. The full instructions provided 

to participants in each time constraint condition can be found in Appendix H.

After each image timed out (in the 4000 ms condition) or the participant self- 

terminated the search, the participant then entered decision responses by moving a 

hexagon cursor with the computer mouse above a scroll bar that ranged from “No target” 

(r = 0) to “Target” (r = 1) (see Figure 7). The response input was programmed such that 

the hexagon cursor moved freely with the mouse across the horizontal axis, but did not 

deviate from the horizontal axis at all regardless of vertical mouse movements.

Embedded in the scroll bar but imperceptible to the participant were 100 vertical columns 

that allowed for a precise value o f the operator response. This type o f input allowed the 

response to assume a discrete but sensitive degree o f membership in the response 

category. Positioning of the cursor at the extreme ends of the scale constituted r = 0 and r 

= 1, respectively, while intermediate responses were quantified in the range o f 0 < r < 1. 

Response as a near-continuous variable provides the maximum volume o f available 

information about each discrete event as well as trends over time.
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Move the mouse and click

NO
TARGET

Figure 7. Operator response input

Participants completed a training block of 20 images to become familiar with 

targets, stimuli presentation, and response input. Participants received feedback after each 

decision indicating whether they were correct. During the experimental trials, participants 

did not receive feedback regarding whether they had made a correct decision, as 

knowledge o f results may affect decision making behavior, and this information would 

not be available to luggage screeners operating in situ. At the end of the experiment, a 

short debriefing took place that explained the purpose and long-term benefits o f the 

experiment.
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CHAPTER 3 

RESULTS

Glossary of variables

Across-trials decision-making tendency: data determined tendency, across the 200 trials, 

for each participant to satisfice or optimize. Participant-endorsed decision-making 

strategy: self-selection o f optimizing or satisficing as a decision-making strategy Per- 

trial decision-making strategy: refers to trials for each participant in which the participant 

either optimized or satisficed; separate FSDT indices were calculated for each participant 

for satisficed trials and for optimized trials

Maximization Scale classification: “Satisficer” or “Optimizer” characterization based on 

the average of responses to questions on the Short Form of the Maximization Scale 

Maximization Scale score: participant score based on the average of responses to 

questions on the Short Form of the Maximization Scale

Optimized response: Because o f the precision o f the visual analog scale with regard to 

allowing response inputs in increments o f 1%, an r value within a ±5% interval around s 

constitutes an optimized response; r ~ s

s-r correlation: the correlation between the mean signal value and the mean response 

value on the visual analog scale

Satisficed response: an r value > (s + 5%) or an r value < (s + 5%) constitutes a satisficed 

response; r is not within a ±5% interval around s; r *  s

Search duration : the amount of time the image to be searched for a target is available on 

the screen for participant viewing
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Total decision time: the sum of search duration and visual analog scale response time 

(VAS RT)

Visual analog scale response time (VAS RT): time interval between the appearance o f the 

decision input screen containing the visual analog scale and participants’ response input 

Descriptive statistics

Descriptive statistics including means and standard deviations were calculated for 

hit rate, false alarm rate, response criterion setting, sensitivity, visual analog scale 

response, and search duration, by time constraint condition, signal ambiguity, and target 

location. Means and standard deviations were also calculated for the Maximization Scale, 

task difficulty rating, and s-r correlation by time constraint condition (see Table 1).
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Table 1. Descriptive statistics

Global Local T otal

DV n M S D n M S D n A1 S D

Hit rate

T arget location

OII 50 0.00 0.00 50 0.00 0.00 100 0.00 0.00

Central

s =  .20 50 0.73 0.34 50 0.56 0.43 100 0.64 0.40

5 =  .40 50 0.99 0.01 50 0.99 0.01 100 0.99 0 .0 1

j  =  .60 50 0.99 0.02 50 0.99 0.01 100 0.99 0 .0 1
on II 00 o 50 0.99 0.01 50 0.97 0.08 100 0.98 0.06

s  =  1.00 50 0.96 0.06 50 0.95 0.05 too 0.95 0.06

total 50 0.93 0.07 50 0.89 0.08 100 0.91 0.08

Eccentric

i  =  .20 50 0.65 0.41 50 0.41 0.42 100 0.53 0.43

5 = .40 50 0.99 0.01 50 0.99 0.01 100 0.99 0.01

s  =  .60 50 0.99 0.01 50 0.99 0.02 100 0.99 0.01

On II oo o 50 0.99 0.02 50 0.98 0.03 100 0.99 0.03

5 =  1.00 50 0.89 0.08 50 0.87 0.08 100 0.88 0.08

total 50 0.90 0.08 50 0.85 0.08 100 0.87 0.09

A m biguity

On II O 50 0.00 0.00 50 0.00 0.00 100 0.00 0.00

s  =  .20 50 0.69 0.33 50 0.48 0.38 100 0,59 0.36

s  =  .40 50 0.99 0.01 50 0.99 0.01 100 0.99 0.01

s  =  .60 50 0.99 0.01 50 0.99 0 .0 1 100 0.99 0.01

oooII 50 0.99 0.01 50 0.98 0.05 100 0.98 0.03

s  =  1.00 50 0.92 0.07 50 0,91 0.06 100 0.92 0.06

Total 50 0.92 0.06 50 0.87 0.07 100 0.89 0.07
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Table 1. Continued

Global Local Total

DV n M SD n M SD n M SD

False alarm rate

Target location

s = 0 50 0.16 0.10 50 0.11 0.12 100 0.14 0.11

Central

s  = .20 50 0.11 0.15 50 0.08 0.14 100 0.09 0.15

5 = .40 50 0.74 0.18 50 0.65 0.18 100 0.69 0.18

s  = .60 50 0.71 0.27 50 0.67 0.24 100 0.69 0.26

s  = .80 50 0.80 0.30 50 0.68 0.37 100 0.74 0.34

J = 1.00 50 0.00 0.00 50 0.00 0.00 100 0.00 0.00

total 50 0.47 0.11 50 0.42 0.11 100 0.45 0.11

Eccentric

O11 50 0.11 0.18 50 0.06 0.11 100 0.08 0.15

s ~ .40 50 0.78 0.20 50 0.63 0.23 100 0.70 0.23

s — ,60 50 0.58 0.26 50 0.47 0.27 100 0.53 0.27

11 50 0.79 0.29 50 0.76 0.33 100 0.77 0.31

s  = 1.00 50 0.00 0.00 50 0.00 0.00 100 0.00 0.00

total 50 0.45 0 .1 1 50 0.39 0.13 100 0.42 0.12

Am biguity

s  = 0 50 0.16 0.10 50 0.11 0.11 100 0.14 0.11

11 50 0.11 0.15 50 0.07 0.12 100 0.09 0.13

s  = .40 50 0.76 0.17 50 0.64 0.18 100 0.70 0.18

s  = .60 50 0.64 0.23 50 0.57 0.23 100 0.61 0.23

r = .80 50 0.79 0.25 50 0.72 0.26 100 0.26 0.26

* = 1.00 50 0.00 0.00 50 0.00 0.00 100 0.00 0.00

Total 50 0.53 0.11 50 0.46 0.11 100 0.49 0.12
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Table I. Continued

Global Local Total

DV n M SD n M SD n M SD

Sensivity

Target location

Vi 11 o 50 0.17 0.10 50 0.12 0.12 100 0.15 0.11

Central

s  = .20 50 0.84 0.43 50 0.63 0.51 100 0.74 0.48

s  = .40 50 1.73 0.18 50 1.64 0.18 100 1.68 0.18

s  = .60 50 1.69 0.28 50 1.66 0.24 100 1.68 0.26
il oo O 50 1.79 0.31 50 1.66 0.41 100 1.72 0.37

s  = 1.00 50 0.97 0.06 50 0.96 0.05 100 0.96 0.06

total 50 1.40 0.14 50 1.31 0.14 100 1.36 0.14

Eccentric

s  — .20 50 0.75 0.52 50 0.47 0.49 100 0.61 0.52

s  = .40 50 1.77 0.20 50 1.62 0.23 100 1.69 0.23

5 = .60 50 1.57 0.26 50 1.46 0.28 100 1.51 0.27

t II oo O 50 1.78 0.29 50 1.74 0.35 100 1.76 0.32

j  = 1.00 50 0.90 0.08 50 0.88 0.08 too 0.89 0.08

total 50 1.35 0.15 50 1.23 0.16 100 1.29 0.16

Ambiguity

s  = 0 50 0.17 0.10 50 0.12 0.12 100 0.15 0.11

s  = .20 50 0.80 0.42 50 0.55 0.46 100 0.67 0.46

s  = .40 50 1.75 0.17 50 1.63 0.18 100 1.69 0.18

s  = .60 50 1.63 0.24 50 1.56 0.23 100 1.60 0.24

©00II<0 50 1.78 0.26 50 1.70 0.27 100 1.74 0.27

s  = 1.00 50 0.93 0.07 50 0.92 0.06 100 0.93 0.06

Total 50 1.27 0.12 50 1.17 0.12 100 1.22 0.13
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Table 1. Continued

Global Local Total

DV n M SD n M SD n M SD

R espon se criteria

Target location

s - 0 50 1.91 0.43 50 1.63 0.54 100 1.77 0.50

Central

II © 50 0.30 0.21 50 0.45 0.33 100 0.38 0.28

s = .40 50 0.50 0.22 50 0.42 0.18 100 0.46 0.20

s  = .60 50 0.52 0.25 50 0.50 0.28 100 0.51 0.26

s = .80 50 0.70 0.32 50 0.62 0.25 100 0.66 0.34

8II 50 0.12 0.04 50 0.13 0.04 100 0.13 0.04

total 50 0.43 0.12 50 0.42 0.13 100 0.43 0.13

Eccentric

s  = .20 50 0.38 0.29 50 0.56 0.34 100 0.47 0.33

s = .40 50 0.57 0.26 50 0.43 0.20 100 0.50 0.24

s  = .60 50 0.40 0.21 50 0.33 0.16 100 0.37 0.19

sII*1 50 0.65 0.29 50 0.66 0.32 100 0.65 0.30

s  = 1.00 50 0.16 0.04 50 0.18 0.04 100 0.17 0.04

total 50 0.43 0.13 50 0.43 0.14 100 0.43 0.13

Ambiguity

s  = 0 50 1.91 0.43 50 1.63 0.54 100 1.77 0.50

s  = .20 50 0.34 0.22 50 0.50 0.29 100 0.42 0.27

s  = .40 50 0.54 0.20 50 0.43 0.17 100 0.48 0.19

s  ~ .60 50 0.46 0.19 50 0.41 0.18 100 0.44 0.19

II<0 50 0.68 0.27 50 0.64 0.28 100 0.66 0.27

s  = 1.00 50 0.14 0.04 50 0.15 0.03 100 0.15 0.03

Total 50 1.15 0.20 50 1.00 0.26 100 1.07 0.24
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Table 1. Continued

DV

Global Local Total

n M SD n M SD n M SD

VAS

Target location

s  =  0 50 16.24 10.14 50 10.78 11.54 100 13.51 11.15

Central

s  ~  .20 50 22.85 16.89 50 16.79 17.57 100 19.82 17.41

i  = .40 50 84.31 10.56 50 79.00 10.65 100 81.66 10.89

s  =  .60 50 88.08 11.36 50 86.84 9.82 100 87.46 10.58
V» II oc o 50 95.88 6.58 50 92.47 11.80 100 94.18 9.66

s  =  1.00 50 95.75 6.23 50 94.95 5.53 100 95.35 5.87

total 50 77.37 5.82 50 74.01 5.25 100 75.69 5.76

Eccentric

s  = .20 50 21.01 19.92 50 12.09 15.70 100 16.55 18.40

s  = .40 50 86.60 11.98 50 77.75 13.72 100 82.17 13.56

s  = .60 50 83.33 10.33 50 78.48 11.42 100 80.90 11.10

11 G
O O 50 95.63 6.41 50 94.67 8.46 100 95.15 7.48

5 =  1.00 50 89.14 8.04 50 86.52 8.13 100 87.83 8.15

total 50 75.14 6.02 50 69.90 6.31 100 72.52 6.68

Am biguity

5 = 0 50 16.24 10.14 50 10.78 11.54 100 13.51 11.15

s = .20 50 21.93 16.50 50 14.44 15.62 100 18.19 16.42

5 -  .40 50 85.45 10.45 50 78.38 10.57 100 81.92 11.05

s = .60 50 85.70 9.63 50 82.66 9.42 100 84.18 9.60

o0
0II 50 95.75 5.63 50 93.57 7.07 100 94.66 6.45

5 = 1.00 50 92.45 6.56 50 90.73 5.91 100 91.59 6.27

Total 50 70.80 5.29 50 66.40 5.15 100 68.60 5.64



45

Table 1. Continued

Global Local Total

DV n M SD M M SD M M SD

Search_RT

Target location

s  = 0 50 4465.80 0.01 50 4000.00 0.00 100 4232.90 0.01

Central

5 -  .20 50 3249.48 0 .01 50 4000.00 0.00 100 3624.74 0.01

r = .40 50 1772.44 882.82 50 4000.00 0.00 100 2886.22 0.01

r = .60 50 2182.76 0.01 50 4000.00 0.00 100 3091.38 0.01

s = .80 50 1511.18 973.11 50 4000.00 0.00 100 2755.59 0.01

s  = 1.00 50 1472.86 482.19 50 4000.00 0.00 100 2736.43 0.01

total 50 1912,74 692.24 50 4000.00 0.00 100 2956.37 1156.44

Eccentric

5 = .20 50 3898.30 0.0! 50 4000.00 0.00 100 3949.15 0.01

s -  .40 50 2461.63 0 .01 50 4000.00 0.00 100 3230.82 0 .0 1

s = .60 50 2658.95 0 .01 50 4000.00 0.00 100 3329.48 0 .0 1

oooII 50 1666.67 513.36 50 4000.00 0.00 100 2833.34 0.01

5 = 1.00 50 2487.18 980.58 50 4000.00 0.00 100 3243.59 0.01

total 50 2590.22 849.71 50 4000.00 0.00 100 3295.11 926.96

Am biguity

s  = 0 50 4465.80 0.01 50 4000.00 0.00 100 4232.90 0.01

o1! 50 3573.89 1755.24 50 4000.00 0.00 100 3786.95 1253.29

s  = .40 50 2117.04 823.55 50 4000.00 0.00 100 3058.52 1109.52

s  = .60 50 2420.86 962.54 50 4000.00 0.00 100 3210.43 1043.21

j  = .80 50 1588.93 581.95 50 4000.00 0.00 100 2794.46 1278.91

5 = 1.00 50 1980.02 643.44 50 4000.00 0.00 100 2990.01 1111.44

Total 50 3358.64 1201.52 50 4000.00 0.00 100 3679.32 904.66
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Table I. Continued

Global Local Total

DV n M SD n M SD n M SD

Maximisation scale 50 5.02 0.88 50 5.13 0.78 100 5.07 0.82

Task difficulty rating 50 2.88 1.10 50 2.56 0.84 100 2.72 0.99

s - r  correlation 50 0.74 0.12 50 0.78 0.07 100 0.76 0.10

Homogeneity of groups

An independent-samples t-test was conducted to compare Maximization Scale 

scores o f participants in the global time constraint condition (M -  5.02, SD = .88) and 

participants in the local time constraint condition (M = 5.13, SD = .76). There were no 

significant differences, *(98) = -.69, p  = .411, 95% Cl [-.44, .21], indicating homogeneity 

o f groups for this variable.

An independent-samples t-test was conducted to compare task difficulty ratings of 

participants in the global time constraint condition (M =  2.88, SD = 1.10) and participants 

in the local time constraint condition (M = 2.56, SD -  .84). There were no significant 

differences, *(98) -  1.64, p  = .159, 95% Cl [-.07, .71].

Sigmoid mapping function relating signal value, .v, to operator response value, r

Operator response was mapped to degree of target category membership to 

examine the relationship between the state o f the world and operator response. As 

predicted (see Figure 5), the relationship followed a monotonic increasing function within 

the restricted domain 0 < s < 1 (see Figure 8). This sigmoid mapping function 

demonstrates the significant increases in participants’ estimations o f target presence 

between 5 = 0 and s = .20, and between s = .20 and s = .40, with response saturation 

occurring at moderate levels o f target presence. As ambiguous signals increased in value
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beyond .40, participants consistently overestimated the degree of target presence, likely 

due to the high cost o f a miss in the luggage screening paradigm.
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Figure 8. Sigmoid mapping function relating signal value, s, to operator response value, r

Decision-making strategy

Responses for all s = 0 and s = 1 trials were coded as either a satisficed (or less 

than optimal) response (0 < r < 1) or an optimized response (r ~ 0 or r ~ 1, respectively). 

Responses for all 0 < 5 < 1 trials were coded as either a satisficed response (r = 0 or r = 1 

or r *  5 ) or an optimized response (r ~ s). Because o f the precision o f the visual analog 

scale with regard to allowing response inputs in increments o f 1%, an r value within a 

±5% interval around 5 constitutes an optimized response.

A 2 (time constraint condition: local vs global) x 2 (per-trial decision-making 

strategy: optimizing vs satisficing) mixed ANOVA on total number of per-trial decision

making strategy response types revealed a significant interaction (see Figure 9) indicating
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differences between the number o f satisficed and optimized responses by time constraint 

condition, F (l, 98) = 6.68,p  = .011, rj2 = .06. Participants in the global condition (M = 

88.32, SD = 37.59) satisficed more often than participants in the local condition (M  = 

72.36, SD  = 31.83), F ( l, 98) = 5.25, p  = .024, 95% Cl [77.64, 99.00], With regard to 

optimized responses, the main effect approached significance; participants in the global 

condition (M = 75.22, SD = 24.75) optimized more than those in the local condition (M  = 

83.64, SD = 23.64), F(l,98) = 3.03, p  = .085, 95% Cl [68.19, 82.25

100

G lobal

0
O ptim ized responses Satisficed responses

Figure 9. Interaction of per-trial decision-making strategy X time constraint on total 

number o f per-trial decision-making response types.

A paired-samples t-test was conducted to compare sensitivities of satisficed and 

optimized responses to ambiguous signals. The t-test revealed that satisficed responding 

to ambiguous signals (M  = 1.47, SD = .15) yielded greater sensitivity than optimized



49

responding to ambiguous signals (M =  .95, SD = .06), /(44) = 19.48,/? < .001, 95% Cl 

[.47, .58],

A 2 (across-trials decision-making tendency: overall tendency toward satisficing 

vs overall tendency toward optimizing) X 2 (target location: central vs eccentric) mixed 

ANOVA was conducted to compare sensitivities for central versus eccentric targets of 

participants with an overall tendency to satisfice and participants with an overall 

tendency to optimize. The ANOVA revealed a significant main effect for target location, 

F (l,9 8 )=  18.99, p  < .001, partial r\ = . 16, such that sensitivities were higher for central 

(M = 1.36, SD = .14) compared to eccentric (M =  1.29, SD = .16) targets. The ANOVA 

also revealed a significant main effect for across-trials decision-making tendency, F( 1,98) 

= 5.86, p -  .017, partial rj2 -  .06. Participants who satisficed ( M -  1.36, SD = .16) 

demonstrated greater sensitivities than participants who optimized (M =  1.29, SD = .15). 

The interaction o f across-trials decision-making tendency by target location was not 

significant, F(l,98) = .404,/? = .527, partial t]2 < .01.

To examine the relationship between Maximization Scale classifications and 

participant-endorsed decision-making strategy, a chi-square test for association was 

conducted, x2 = 1.45, p  = .229, indicating that there was no statistically significant 

association between Maximization Scale classification and participants’ endorsed 

decision-making strategy. Both self-endorsed satisficers and self-endorsed maximizers 

were equally classified as Maximizers according to the Maximization Scale.

To examine the relationship between participant-endorsed decision-making 

strategy and across-trials decision-making tendency, a chi-square test for association was 

conducted, x2 = 1.80,/? = .180, indicating that there is no statistically significant
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association between participants’ endorsed decision-making strategy and across-trials 

decision-making tendency.

To examine the effect o f participant-endorsed decision-making strategy on search 

duration, a paired-samples t-test was conducted for participants in the global time 

constraint condition to compare search duration for participants who endorsed an 

optimizing strategy with search duration for participants who endorsed a satisficing 

strategy. Participants in the local condition were not included in the analyses because 

search duration was constant at 4000 ms. The t-test revealed that participants who 

endorsed a satisficing strategy (M = 2795.35 ms, SD = 645.33) had significantly shorter 

average search durations than participants who endorsed an optimizing strategy (M  = 

3734.17 ms, SD = 1342.28), t(48) = -2.91, p  = .006, 95% Cl [-1588.62, -289.01],

To examine the effect of Maximization Scale classification on search duration, an 

independent-samples t-test was conducted for participants in the global time constraint 

condition to compare search duration for participants classified by the Maximization 

Scale as optimizers to search duration for participants classified by the Maximization 

Scale as satisficers. Participants in the local condition were not included in the analyses 

because search duration was constant at 4000 ms. The t-test revealed no significant 

difference in search duration for participants classified as optimizers by the Maximization 

Scale (M = 3416.42 ms, SD = 1210.29) and participants classified as satisficers by the 

Maximization Scale (M =  2694.12 ms, SD = 983.66), t{48) = -1.16,/? = .253, 95% Cl [- 

1977.30, 532.69],
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Sensitivities

A 2 (target location: central vs eccentric) X 2 (time constraint condition: global vs 

local) mixed ANOVA on sensitivities revealed that sensitivities for targets in central 

locations (M = 1.36, SD = .14) was significantly higher than sensitivities for targets in 

eccentric locations (M = 1.29, SD = .16), F( 1, 98) = 19.52, p  < .001, partial rj2 = .17. 

There was a significant main effect for time constraint condition on sensitivities, F ( l, 98)

■y
= 18.61, p  < .001, partial tj = .16, such that participants in the global condition (M =

1.27, SD = .12) had significantly greater sensitivity than participants in the local 

condition (M =  1.17, SD = .12). The interaction o f target location X time constraint 

condition on sensitivities was not significant, F (l, 98) = 1.04,/? = .310, partial rj2 = .01.

To examine the effects o f signal ambiguity and time constraint condition on 

sensitivities, a 6 (signal ambiguity: s = 0,5 = .20, s = .40, s = .60,5 = .80, s = 1.00) x 2 

(time constraint condition: global vs local) mixed ANOVA on sensitivity was conducted. 

The findings revealed that participants in the global condition (M  = 1.27, SD = .12) had 

significantly greater sensitivities than participants in the local condition (M  = 1.17, SD = 

.12), F ( l ,  98) = 19.53,/? < .001, partial rj1 = .17 There was a significant main effect for 

signal ambiguity on sensitivity, F (5 ,490) = 730.59,/? < .001, partial tj2 = .88.

There was a significant interaction o f signal ambiguity X time constraint on 

sensitivity (see Table 3 and Figure 10), F (5, 490) = 2.70,/? = .020, rj2 = .03. There were 

significant differences in sensitivities between participants in the global time constraint 

condition and local condition when s = 0 ,5 = .20, and 5 = .40, but not when 5 = .60, s = 

.80, or s = 1.00.
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Table 2. Interaction o f signal ambiguity X time constraint on sensitivity

Global Local

Signal ambiguity M SD M SD F statistic P partial rj

5 = 0 0.17 0.10 0.12 0.12 6.31 0.014 0.06
5 = .20 0.80 0.42 0.55 0.46 7.77 0.006 0.07
5 = .40 1.75 0.17 1.63 0.18 11.33 0.001 0.10
s = .60 1.63 0.24 1.56 0.23 2.57 0.112 0.03

II bo o 1.78 0.26 1.70 0.27 2.33 0.13 0.02
5 = 1.00 0.93 0.07 0.92 0.06 2.07 0.154 0.02

Global

L ocal

Figure 10. Interaction o f time constraint X signal ambiguity on sensitivity

Response criterion settings

When examining response criteria across varying degrees o f signal ambiguity, a 2 

(time constraint condition: global vs local) x 6 (signal ambiguity: s = 0, s = .20, s = .40, s 

= .60, s = .80, s = 1.00) mixed ANOVA on response criteria revealed a significant main 

effect o f signal ambiguity on response criteria, F (5,490) = 419.95, p  < .001, partial rj = 

.81.
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There was also a significant main effect o f time constraint condition on response 

criteria, F ( l, 98) = 6.76, p  = .011, partial rj1 = .07, such that participants in the global 

condition (M = . 1.15, SD = .20) had significantly higher response criteria than 

participants in the local condition ( M -  1.00, SD -  .26).

There was a significant interaction o f time constraint condition and signal 

ambiguity on response criteria (see Table 2 and Figure 11), F (5 ,490) = 6.78, p  < .001, 

partial rj1 = .07.

Table 3. Interaction o f time constraint X signal ambiguity on response criteria

Global condition L ocal condition

Signal ambiguity M SD M SD F-statistic P partial q "
s = 0 1.91 0.43 1.63 0.54 8.4 0.005 0.08

oII 0.34 0.22 0.5 0.29 9.83 0.002 0.09
s = .40 0.54 0.2 0.43 0.17 8.93 0.004 0.08
s = .60 0.46 0.19 0.41 0.18 1.56 0.215 0.02

11 bo o 0.68 0.27 0.64 0.28 0.52 0.475 0.01
5 = 1.00 0.14 0.04 0.15 0.03 2.7 0.104 0.03

2.5

2

5 1.5
C
u
7 , 1
cL
5
oe 0.5

s = 0  s = .20 s = .40  s = .60  s = .80  s = 1.00

* Global 

■ Local

Signal ambiguity

Figure 11. Interaction o f time constraint X signal ambiguity on response criteria
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To further explore the relationship between time constraint condition and 

response criteria under varying degrees o f signal ambiguity, a one-way (signal ambiguity: 

s = .20, s = .40, s = .60, s = .80, s = 1.00) within subjects ANOVA was conducted to 

compare the effects of signal ambiguity on response criteria for participants in the global 

condition. The ANOVA on response criteria for participants in the global condition was 

significant, F (5,245) = 298.05,/? < .001, partial tj2 = .86. There were significant 

differences in response criteria between all degrees o f signal ambiguity.

The one-way within-subjects ANOVA on response criteria for participants in the 

local condition was significant, F (5,245) = 149.86,/? < .001, partial r\ -  .75. There were 

significant differences in response criteria between all degrees o f signal ambiguity except 

s = .20 and s -  .40, and s = .40 and 5 = .60.

To examine the effects o f target location and time constraint condition on 

response criteria in trials in which some degree of signal is present, a 2 (target location: 

central vs eccentric) X 2 (time constraint condition: global vs local) mixed ANOVA on 

response criteria was conducted. Trials in which s = 0 were not included in the analysis 

because there was no target location. The mixed ANOVA on response criteria failed to 

reveal a significant main effect for target location, F(1, 98) = .40, p  = .530, partial tj < 

.01, for time constraint, F ( l, 98) = .04,/? = .837, partial rj < .01, or an interaction of

'y

target location X time constraint on response criteria, F ( l, 98) = .08,/? = .775, partial r] < 

.01. This finding indicates that the difference in response criteria across time constraint



55

condition found previously is driven by the inclusion of signal absent trials, which were 

excluded from this analysis due to the lack of target location.

Search duration

To examine the effect of signal ambiguity on search duration, a one-way within- 

subjects ANOVA was conducted for participants in the global time constraint condition. 

Participants in the local condition were not included in the analyses because search 

duration was constant at 4000 ms. There was a significant effect o f signal ambiguity on 

search duration, F(5, 245) = 86.55,p <  .001, partial rj2 = .64. Pair-wise comparisons 

revealed significant differences between all search durations across signal ambiguity 

except between s = .40 and s = 1.0.

To examine the effect o f target location on search duration, a paired-samples t-test 

was conducted for participants in the global time constraint condition to compare search 

duration for targets in central locations to search duration for targets in eccentric 

locations. The t-test revealed that search duration for eccentric targets (M = 2590.22 ms, 

SD = 849.71) was significantly longer than search duration for central targets (M = 

1912.74 ms, SD = 692.24), *(49) = -9.01, p  < .001, 95% Cl [-828.52, -526.45], 

Self-terminating versus fixed-intervai -4000 ms search duration

To examine the effect o f participant control over search duration on sensitivity, an 

independent-samples t-test was conducted to compare sensitivities for participants in the 

global time constraint condition with average search durations o f 3500-4500 ms to 

sensitivities for participants in the 4000 ms fixed-interval local time constraint condition. 

The t-test revealed a significant difference in sensitivity, *(54) = 2.77, p  = .008, 95% Cl 

[.04, .23]. Participants in the global condition with average search durations o f 3500-4500
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ms ( M -  1.30, SD = .09), had significantly higher sensitivities than participants in the 

local condition (M = 1.17,5Z) — .12).

To examine the effect o f participant control over search duration on response 

criteria, an independent-samples t-test was conducted to compare response criteria for 

participants in the global time constraint condition with average search durations o f 3500- 

4500 ms to response criteria for participants in the 4000 ms fixed-interval local time 

constraint condition. The t-test showed that response criteria for participants in the global 

condition with average search durations of 3500-4500 ms (M = 1.10, 577 ==.17) did not 

significantly differ from response criteria for participants in the local condition (M  =

1.00, SD = .26), /(54) = .93,p  = .359, 95% Cl [-.12, .32],

Critical thresholds of self-terminated search duration

To determine the point beyond which additional search time matters, search 

durations for participants in the global time constraint condition were coded into a 

categorical variable in 500 ms increments between 1000 ms and 6000 ms. Participants in 

the local condition were not included in the analyses because search duration was 

constant at 4000 ms. Univariate ANOVAs of search duration on sensitivities, F (l, 42) = 

.30, p  = .951, rj2 = .05 and on response criteria, F (l, 42) = .32, p  = .941, rj2 = .05 revealed 

no significant effects (see Table 4).
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Table 4. SDT indices by search duration in 500 ms increments

Search duration n
Hit rate Response criteria Sensitivity

M SD M SD M SD
duration < 1000ms 0 — - — - — —

1000ms < duration < 1500ms 0 — _ - - — -

1500ms < duration < 2000ms 2 0.92 0.07 1.12 0.44 1.31 0.18
2000ms < duration < 2500ms 9 0.93 0.04 1.22 0.20 1.29 0.14
2500ms < duration < 3000ms 9 0.91 0.08 1.14 0.22 1.24 0.14
3000ms < duration < 3500ms 14 0.90 0.08 1.14 0.22 1.25 0.11
3500ms < duration < 4000ms 6 0.92 0.05 1.11 0.18 1.29 0.09
4000ms < duration < 4500ms 4 0.96 0.01 1.21 0.26 1.30 0.13
4500ms < duration < 5000ms 4 0.93 0.04 1.08 0.08 1.28 0.14
5000ms < duration < 5500ms 0 — - — - — —

5500ms < duration < 6000ms 0 — — — - - - —

6000ms > duration 2 0.89 0.10 1.06 0.06 1.28 0.10
Total 50 0.92 0.06 1.15 0.20 1.27 0.12

Search durations for participants in the global time constraint condition were 

recoded into a categorical variable in 1000 ms increments between 1000 ms and 6000 ms. 

Univariate (search duration in 1000 ms increments) ANOVAs o f search duration on 

sensitivities, F(4, 45) = .12,/? = .973, r\ = .01 and on response criteria, F(4, 45) = .23,/? = 

.921, t] = .02, revealed no significant effects (see Table 5).

Table 5. SDT indices by search duration in 1000 ms increments

Hit rate Response criteria Sensitivity
Search duration n M SD M SD M SD

duration < 1000ms 0 — - — - — -

1000ms < duration < 2000ms 2 0.94 0.04 1.12 0.44 1.31 0.18
2000ms < duration < 3000ms 18 0.94 0.04 1.18 0.21 1.26 0.14
3000ms < duration < 4000ms 20 0.94 0.04 1.13 0.20 1.26 0.10
4000ms < duration < 5000ms 8 0.96 0.03 1.15 0.19 1.29 0.13
5000ms < duration < 6000ms 0 — - — - — -

6000ms > duration 2 0.93 0.06 1.06 0.06 1.28 0.10
Total 50 0.92 0.06 1.15 0.20 1.27 0.12
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Regression analyses were conducted with search duration as the independent 

variable to determine whether self-terminated search duration predicts sensitivity or 

response criteria. No statistically significant linear dependence o f sensitivity, F ( l, 48) = 

.01,/? = .937, R2 < .01 or response criteria, F( 1, 48) = .52, p  = .473, R2 = .01, or, on 

search duration was detected.

VAS response means by time constraint

To determine whether there were significant differences between mean response 

values across time constraint conditions, an independent-samples t-test was conducted to 

compare the mean VAS score o f participants in the global time constraint condition and 

participants in the local time constraint condition. The t-test showed that participants in 

the global condition (M  = 70.80, SD = 5.29) had significantly higher mean VAS scores 

than participants in the local condition (M =  66.40, SD = 5.15), t(98) = 4.21,/? < .001,

95% Cl [2.33, 6.47],
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CHAPTER 4 

DISCUSSION

The purpose o f the current study was to investigate decision-making elements, 

such as optimizing or satisficing strategies or tendencies, that contribute to operator 

performance under conditions o f varying time constraint, signal location, and signal 

ambiguity.

Decision-making strategy

The first major objective o f the current study was to examine how decision 

making strategies impact performance. As hypothesized, across time constraint 

conditions, satisficing on trials with ambiguous signals (as a per-trial decision-making 

strategy) resulted in greater sensitivities than optimizing on trials with ambiguous signals. 

It was hypothesized that across time constraint conditions, participants who satisficed 

would have significant differences in sensitivities for targets in central versus eccentric 

locations, while participants who optimized would not. However, the data indicated both 

satisficers and optimizers had greater sensitivities for centrally located targets compared 

to eccentrically located targets. Previous research suggested that participants who 

optimize may be less susceptible to the performance decrements for eccentric targets 

noted by Wolfe and colleagues (1998) because they search for information more 

thoroughly. However, it appears that satisficing was sufficient for the discrimination of 

eccentric targets despite the reduced precision associated with naturalistic decision 

making.

These findings are in line with Klein and Klinger’s (1991) discussion of decision 

making that involves uncertainty, ambiguity, missing data, time stress, and high stakes,
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the defining features of NDM. The NDM approach involves increased flexibility in 

decision making and supports a reliance on heuristics, in contrast to classical or rational 

decision making approaches, such as optimization, which deteriorate under time 

constraint or when ambiguous data are being considered. Whereas classical decision 

making models produce optimal solutions, NDM models satisfice, generally producing 

satisfactory and reasonable outcomes in a more efficient and less cognitively demanding 

manner. Lipshitz and Strauss (1997) contend that the reliance on heuristics inherent to 

decision making that occurs “in the wild” can lead to more efficient and robust decision 

making that does not decrease in effectiveness because a decision maker can terminate 

information search when cues discriminate. This stopping rule eliminates the need to 

consider alternatives and deplete temporal resources. This assertion is supported by the 

findings o f the current study: in the presence and the absence o f local time constraint, 

participants had higher sensitivities when satisficing than when optimizing.

Given the impact o f decision making strategy on search performance, it was also 

important to examine the validity and predictive power of various indices o f operator 

strategy. In the global time constraint condition, participants who endorsed a satisficing 

strategy had significantly shorter average search durations than participants who endorsed 

an optimizing strategy. There was no effect o f Maximization Scale classification on 

search duration; furthermore, there was no association between Maximization Scale 

classification or across-trials decision-making tendency and participant-endorsed 

decision-making strategy. These findings indicate the need for further examination o f the 

accuracy o f self-report measures with regard to capturing tendencies or strategies in 

applied decision making involving ambiguous signals. These findings are suggestive of
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the need for future research regarding the methods for classifying operators’ decision 

making strategies. This is o f particular importance given previous research which asserts 

that a satisficing approach supports more effective performance in naturalistic decision 

situations.

Time constraint

The second major objective of the study was to examine how time constraint 

impacts decision making. Participants making decisions in the local time constraint 

condition were expected to satisfice more often than participants making decision in the 

global time constraint condition. However, despite having more time available to conduct 

a comprehensive search, participants in the global time constraint condition who were 

able to self-terminate information search tended to engage in a satisficing decision 

making strategy, whereas participants who conducted their information search at 

externally imposed 4000 ms intervals optimized more frequently. Overall, participants in 

the global condition had significantly higher mean response values on the VAS than 

participants in the local condition. Over-responding to a signal would result in a response 

that had full membership in the hit category, but would also have membership in the false 

alarm category. At the same time, misses would decrease. This is important given their 

high cost, but is likely to degrade operator efficiency and work against the TSA’s aim of 

keeping passenger wait times below ten minutes (Shea & Morgan, 2007).

Participants in the global condition had higher sensitivities than participants in the 

local condition. This finding may be a function o f the tendency characteristic of 

satisficing, the dominant characteristic o f participants in the global condition. Such 

participants discriminate a single cue, rather than engage in a comprehensive search that
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examines all dimensions o f the decision situation (Lipshitz & Strauss, 1997). The more 

frequent satisficing in the global condition may have driven the effect that the minimal 

target category attributes o f low 5-value targets were discriminated and participants 

endorsed a greater degree o f target presence for these targets. Additionally, time 

constraint may have altered the search behaviors o f participants in the local condition 

toward reduced sensitivities, resulting in degraded effectiveness. Rothstein (1986) has 

asserted that decision making performance is degraded under time pressure not due to 

changes in decision strategy, but rather as a result o f reduced consistency in scanning 

behaviors.

When the effect o f time constraint on sensitivity was examined across varying 

degrees o f signal ambiguity, significant differences in sensitivities were found only 

between time constraint groups for lower signal values. This suggests that perceived time 

constraint, as present in the local condition, is less problematic when signals have greater 

degrees o f target category membership. For ambiguous signals with a lower degree o f 

target category membership, the ability to self-terminate search presumably enhanced 

participants’ ability to distinguish a signal from noise in the global time constraint 

condition. For the local time constraint condition, overreliance on inadequate or 

ambiguous information under time pressure may have weakened information processing 

abilities and degraded sensitivities (Madhavan & Gonzalez, 2006). This phenomenon 

could have significant implications for signal detection tasks that include targets that have 

unique or novel configurations or when the full member set o f targets in a category is 

unknown. These characteristics are particularly pertinent to explosive devices (Evans, 

2005).



As hypothesized, overall, participants in the local condition had more liberal 

response criteria than participants in the global condition. This finding is likely driven by 

the phenomenon whereby time pressured individuals spend more time evaluating the 

negative consequences of decisions (Ben Zur & Breznitz, 1981); this phenomenon may 

have increased the salience of the high cost o f a miss in the luggage screening paradigm, 

which in turn would induce more liberal responding. When examined across varying 

degrees o f signal ambiguity, it was found that there were only significant differences in 

response criteria between time constraint groups when s = 0 ,s  = .20, and s = .40. 

However, when the effects o f target location and time constraint on response criteria were 

examined using only signal-present trials, the main effect for time constraint was not 

significant. Therefore, readers should interpret the initial finding with caution, as it 

appears that differences in response criteria for signal absent trials drove the initial effect.

Within each time constraint condition, there were differences in response criteria 

as a function o f signal ambiguity. Participants in the local time constraint condition had 

significant differences in their response criteria toward the endpoints o f the signal 

continuum, but there were no significant differences in response criteria between s = .20 

and 5 = .40, and 5 = .40 and 5 = .60. Participants in the global time constraint condition 

had significant differences in their response criteria across all degrees o f signal 

ambiguity. Given the lower sensitivities of participants in the local condition, they may 

have focused on the endpoints o f the signal continuum and response scale, and may have 

rounded off or disregarded nuances of signals in the center o f the continuum. This is in 

line with previous research that found that individuals under time constraint tend to alter 

decision strategies toward an attribute-based style o f processing (Payne, Bettman, &
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Johnson, 1988), which entails narrowly processing one single attribute o f the decision 

problem before considering a second attribute. Under time constraint, participants may 

have focused on individual attributes o f the signal rather than its overall correspondence 

to the target category. Additionally, because participants in the local condition detected 

fewer signals, these findings are in line with the results found by Stafford, Szalma, 

Hancock, and Mouloua (2003), whereby response criteria became more liberal as the 

distribution o f fuzzy stimuli shifted toward the non-signal end o f the continuum. 

Participants in the global condition, given their higher sensitivities, may have been more 

likely to discern varying degrees o f signal presence; this is because only a single 

discriminating cue, rather than a more comprehensive target category match, is required 

to endorse signal presence when satisficing (Lipshitz & Strauss, 1997).

Participants in the global condition had shorter search durations compared to the 

4-second fixed interval local condition. In trials where s > .20 and targets were centrally 

located, participants in the global condition had average search durations o f 1912.74 ms, 

approximately half the duration o f the 4000 ms fixed-interval search duration of 

participants in the local condition. For eccentrically located targets where s > .20, 

participants in the global condition had average search durations of 2590.22ms, 

approximately 65% of the 4000 ms standardized interval o f participants in the local 

condition. Participants engaging in a search that self-terminates when a discriminating 

cue is discerned ostensibly completed the search in approximately half the time required 

for an exhaustive search in which all items in the search set were examined. This is in 

keeping with research findings that, on average, during target search a target will be
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located roughly halfway through the search, and information search and processing can 

then be terminated (Van Zandt & Townsend, 1993).

Signal location

A further objective of the study was to examine how signal location impacts 

decision making. It was hypothesized that participants in the local time constraint 

condition would have lower sensitivities for targets in eccentric locations compared to 

central locations. In fact, participants in both the global and local time constraint 

conditions had higher sensitivities for targets located in the central portion o f the display 

than targets in the eccentric portion of the display. The systematic reduction in signal 

detection effectiveness for eccentrically located targets is problematic, as it may generate 

predictable vulnerabilities in critical visual search tasks.

For participants in the global condition, search duration for eccentric targets was 

significantly longer than search duration for central targets. These results are in line with 

the findings of Thackray (1990), Wolfe, O ’Neil, and Bennet (1998), and Schroeder,

Stem, Stoliarov, and Thackray (1994), who also found a moderate increase in errors and 

extended decision latencies for targets located in eccentric, compared to central, regions 

o f the display.

Previous research has examined the effect o f target location on signal detection 

accuracy and search durations or decision latencies (e.g., Thackray, 1990; Wolfe, O ’Neil, 

& Bennet, 1998; Schroeder et al., 1994). However, there appears to be a dearth of 

research regarding the effect o f target location on sensitivity and response criteria. The 

current results did not show an effect o f signal location on response criteria. Schroeder 

and colleagues (1994) assert that operators have a tendency to neglect the eccentric
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region of a display; the current data support the assertion that it is likely that an 

attentional component, rather than a decision making bias, that drives the decrease in 

detectability o f eccentrically located targets. Participants in the current study had overall 

higher sensitivities for targets located in the central, compared to eccentric, portions of 

the display, suggesting differences in the psychophysical ability to detect targets 

approaching peripheral regions o f the display.

Signal ambiguity

Also o f interest in the current study was the impact o f signal ambiguity on signal 

detection. As predicted (see Figure 5), the relationship between the state o f the world and 

operator response followed a monotonic increasing function within the restricted domain 

0 < s < 1, with the saturation point of the monotonic curve occurring at moderate levels 

o f target presence (see Figure 8). As ambiguous signals increased in value beyond .40, 

participants consistently overestimated the degree of target presence, likely due to the 

high cost o f a miss in the luggage screening paradigm. This in turn caused a saturation in 

r beyond this threshold o f signal presence. When 5 = 1 ,  however, there was a significant 

decrease in r, likely driven at least in part by participants’ tendency toward satisficing.

Participants in the global time constraint condition demonstrated significant 

differences in response criteria across all degrees o f signal ambiguity, and participants in 

the local time constraint condition demonstrated differences in response criteria toward 

the endpoints of the signal continuum. Although the differences among response criteria 

were significant, there was a trend toward relative stability within the restricted domain 0 

< 5  < 1, as compared to the more dramatic shifts in response criteria when 5 = 0 or s = 1. 

This finding indicates that although participants were less likely to endorse a complete
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target absent (r = 0) or present (r -  1) response, their decision-making biases were 

dramatically more conservative when s -  0 than when s > 0; this phenomenon occurred 

despite a propensity to endorse some degree o f target presence when 5 = 0. Likewise, 

although signals with full target category membership were consistently underestimated, 

response criteria were notably more liberal when 5=1 .  This produced an interesting 

phenomena whereby participants had both remarkably liberal response criteria and an 8% 

miss rate when 5 = 1 .

Across time constraint conditions, there was a significant effect o f signal 

ambiguity on sensitivity. Participants had the greatest sensitivity for ambiguous signals 

with moderate to high degrees o f target category membership (.40 < s<  .80), indicating 

that this range o f target category membership was most conducive to participants 

distinguishing a signal in noise. Sensitivity decreased for signals with low target category 

membership (5  < .20) and complete target category membership (5  = 1). The decrease in 

sensitivity when 5  = 1 may be partially attributable to the miss proportions resulting from 

the underestimation of signal value when the signal had full target category membership, 

as calculated using FSDT. As hypothesized, satisficed responses to ambiguous signals (0 

<  5  < 1) yielded greater sensitivities than did optimized responses to ambiguous signals. 

Further, there were significant differences in sensitivities between participants in the 

global time constraint condition and local time constraint condition. Participants in the 

global condition had significantly greater sensitivities for low 5 - value signals compared 

to participants in the local condition. This finding indicates that detection o f signals with 

lower degrees o f target category membership may be further degraded by perceived time
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constraint than would detection of signals with greater degrees o f target category 

membership.

Reduced sensitivity coupled with degraded scanning behaviors under time 

pressure, as proposed by Rothstein (1986), may be particularly problematic given that the 

full member set o f weapons in the aviation security domain is unknown (Evans, 2005) 

and potentially dangerous targets may take a variety of novel forms that only partially 

belong to target categories (Bravo & Farid, 2004). There was a significant effect o f signal 

ambiguity on search duration for participants in the global time constraint condition, such 

that there was a general trend toward decreasing search duration a s s increased in degree 

of target category membership. The findings regarding search duration are in line with 

dual-process theory of automaticity, whereby peak detection performance and search 

durations will be achieved when targets are consistently mapped and do not function as 

distractors (Schneider & Shifffin, 1985). Participants may have been able to engage in 

more intuitive, and thus faster, decision making when responding to targets with higher 

values of s due to connotations between targets that more closely resembled firearms and 

their risk valuations as potential threats. This association would function as higher s- 

valued presentations always serve as targets and never as distractors, while lower 5-value 

presentations are inherently more ambiguous and thus may not engender automatic 

processing with regard to target category membership.

Critical thresholds of self-terminated search duration

A further objective of the current study was the examination of potential critical 

thresholds o f search duration beyond which additional time did not improve performance. 

To address this research question, participant search durations for participants in the
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global condition were recoded as a categorical variable into both 500 ms and 1000 ms 

increments. There was no significant effect o f self-terminated search duration on 

sensitivity or response criteria. Regression analyses o f sensitivity and response criteria, 

respectively, on search duration revealed no relationship.

The data from the current study did not support a critical threshold for optimal 

decision-making performance or an outer temporal boundary beyond which additional 

time is not productive to signal detection. Additionally, the results suggest that required 

minimum search durations may be overestimated given equitable detection performance 

when durations were as short as 1000-2000 ms. This analysis was intended to examine 

whether the current average 4-second inspection duration for TSA screeners is an optimal 

or even sufficient man-hours per unit standard for effective target detection, and to 

identify an optimal inspection duration that meets both detection performance and macro- 

organizational efficiency goals. However, the data did not support the definition o f an 

optimal inspection range, and instead suggested that temporal factors other than duration, 

such as operator control over search time, may exert a stronger impact on signal 

detection.

Self-terminating versus fixed-interval ~4000 ms search duration

Given the nonsignificant findings regarding the effects o f self-terminating search 

on search performance, it was thus of interest to examine additional temporal factors that 

contribute to signal detection performance. To examine the effect o f participant control 

over search duration, participants in the global time constraint condition with average 

search durations o f 3500-4500 ms were compared with participants in the local time 

constraint condition, who had fixed-interval search durations o f 4000 ms. Participants in
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the global time constraint condition with -4000 ms search durations had significantly 

higher sensitivities, indicating an effect o f participant control over search duration. There 

were no significant differences in response criteria.

The finding of significant differences in performance between participants in the 

global condition with -4000 ms search durations and participants in the 4000 ms local 

condition is interesting to consider in light o f the findings o f Harbison, Hussey, 

Dougherty, and Davelaar (2012) in a study examining memory search and recall. After 

learning lists o f various lengths, participants were charged with recalling items for either 

a fixed-interval duration or a self-terminating duration. Harbison and colleagues did not 

find significant differences between the number o f items retrieved in the open-interval 

versus fixed-interval conditions, indicating that participants’ decisions to terminate 

memory search did not impact recall rates for list items. Although participants did not 

perform significantly better with regard to total number o f items recalled in the self

terminating condition, they were able to retrieve the same amount o f information via 

memory search in a shorter duration. This finding indicates a more efficient person- 

hours-per-item parameter for participants in the self-terminating condition. Similarly, in 

the current study, participants in the global time constraint condition, analogous to the 

open-interval condition in the Harbison and colleagues study, performed better than 

participants in a fixed-interval condition when viewed in terms o f person-hours per item. 

Participants in both the current study and the study conducted by Harbison and 

colleagues demonstrated shorter durations for task performance when provided with the 

opportunity to self-terminate search; however, an added complexity in the current study 

is the finding that participants in the global time constraint condition achieved



significantly better signal detection in shorter search intervals compared to participants in 

the 4-second fixed-interval time constraint condition.

Harbison and colleagues (2012) propose that alternative temporal factors to 

duration may exert a significant impact on performance, but limit their explanation to 

differences in stopping thresholds in self-terminated and experimenter-terminated search. 

Data from the current study support the conclusion that duration alone does not determine 

performance. The current study indicates that type of time constraint—global versus 

local— exerted a significant impact on performance. In light o f the significant differences 

across time constraint conditions when search duration was relatively equivalent, it was 

of interest to explore an explanation beyond differences in stopping thresholds.

One such explanation may be the role of perceived time constraint, relative to 

actual in situ time constraint. De Donno and Demaree (2008) examined the role o f real 

versus perceived time constraint in a between-subjects design study in which participants 

were informed that the decision time interval either was or was not sufficient to learn and 

complete the Iowa Gambling Task. De Donno and Demaree found that participants who 

were led to believe that the allotted time interval was sufficient to complete the task 

performed significantly better than participants who were led to believe that the allotted 

time interval was insufficient and thus experienced increased perceived time constraint. 

The authors assert perceived time constraint results in simplifying strategies, such as 

systematically overweighting negative evidence and attending to fewer data dimensions 

(Wright, 1974), as well as a reduction in information search and processing, a failure to 

consider important data, and poor judgments (Ahituv, Igbaria, & Sella, 1998).

Participants in the local time constraint condition of the current study were not directly
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informed that the search intervals they were allotted for information search were 

insufficient; however, the automatic nature of image advancement was intended to induce 

a sense o f time constraint and the need to cope with limited time (Ordonez & Benson,

1997). These effects are proposed to have contributed to the degraded performance 

demonstrated by participants in the local time constraint condition.

An alternative explanation for the current finding that participants in the global 

time constraint condition demonstrated superior performance may involve perceived 

control over time, given that participants who were able to self-terminate information 

search were not subject to automatic image advancement. Perceived control over time has 

been noted as a stress coping strategy and has resulted in better performance and problem 

solving abilities in a sample o f college students (Nonis, Hudson, Logan, & Ford, 1998). 

Likewise, perceived control over time has also been positively correlated with academic 

performance (Macan, Shahani, Dipboye, & Phillips, 1990; Britton & Tesser, 1991).

Macan (1994) examined perceived control over time in workers at a social service agency 

and a correctional facility, and found a significant negative correlation between perceived 

control o f time and stress; workers who experienced greater perceived control over time 

reported decreased stress. Schuler (1979) has proposed that decreased stress results in 

increased efficiency and effectiveness. As such, it is postulated that perceived control 

over time contributed to the superior performance of participants in the global time 

constraint condition in the current study, who were able to exercise time management 

during task performance, compared to participants in the local time constraint condition, 

who could not take an active role in the progression of information displays. Given the 

achievement o f better performance outcomes, with regard to sensitivities, over shorter
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search durations by participants in the global condition, the current findings suggest that 

future research examine the suitability o f self-terminating searches for achieving the dual 

goals o f superior signal detection performance, so as to maximize safety, and increased 

efficiency, so as to satisfy macro-organizational constraints.



74

CHAPTER 5 

CONCLUSION

To ensure aviation safety, there must be a focus on improving the human and 

technology elements o f airport security. As such, it is important to investigate the 

decision making elements that contribute to efficient and effective operator performance 

o f information search and target detection. The method applied to evaluate operator 

performance can have a significant impact on the volume o f information gleaned from 

assessments regarding operator characteristics in occupational tasks involving signal 

detection. Traditional, crisp SDT evaluations may fail to account for the complexity of 

the true state o f the world, given that targets may be unequivocally present or absent, may 

be only partially observable or discriminable, or may have varying degrees o f target 

category membership. FSDT indices may better reflect operator performance in the 

presence o f ambiguous data by documenting s-r mappings. A quantification o f the 

mapping between the state o f the world and operator response can provide an index of an 

operator’s satisficing or maximizing tendency when making decisions. Current 

methodology for assessing satisficing or maximizing tendency involves the use o f a brief 

self-report measure. However, the shortcomings o f self-report type measures have been 

demonstrated in previous research (e.g., Campbell & Stanley, 1963; Mayer, 2004), and 

data from the current study failed to reveal significant relationships between the 

Maximization Scale and the decision-making tendencies endorsed or demonstrated by 

participants. As such, the s-r mapping technique in the current study is proposed as a 

more reliable technique for capturing this behavioral element o f decision making. 

Outcomes in critical signal detection tasks can be strongly influenced by decision making
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behaviors and tendencies (Klein & Klinger, 1991); as such, it is important that strategies 

such as optimizing or satisficing are accounted for when considering the desired operator 

characteristics for occupational tasks involving the detection of critical targets.

In addition to operator characteristics that impact performance outcomes, 

characteristics o f the signal itself may also moderate signal detection. In addition to being 

potentially ambiguous, critical signals may also be located in a position in the display that 

degrades operator detection. Because satisficing and maximizing decision making 

tendencies are postulated to influence the degree to which signal ambiguity and eccentric 

target location impact operator effectiveness, it is important to examine this person-factor 

in conjunction with these exogenous signal characteristics. The eccentricity effect 

demonstrated in both the current study and previous research is likely to be compounded 

by time constraint, which also moved decision making in the direction of reduced 

sensitivity (Thompson et al., 2008) and more liberal response criteria (McElree & 

Carrasco, 1999). To address these important concerns, the current study sought to 

examine the effects o f target location, signal ambiguity, and time constraint on operator 

signal detection, utilizing FSDT.

An additional concern o f the current study was the role o f time constraint on 

signal detection with regard to examining a possible outer temporal boundary beyond 

which decision making is not moved toward more optimal performance. The effects of 

time constraint on signal detection are o f particular importance given the current standard 

of an average 4000 ms inspection duration for TSA screeners examining luggage items at 

an average airport, and the concerns regarding operator performance expressed in 

repeated GAO audits. However, given large passenger volume and macro-organizational
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concerns, it is unclear whether it is impractical to provide TSA luggage screeners with 

only global time constraints, in which they self-terminate information search for each 

luggage item at variable intervals, theoretically ultimately limited only by the temporal 

boundaries o f a work shift. In such a scenario, opportunity costs o f delay are absorbed at 

the macro-organizational level, as operator decisions made too slowly are unlikely to 

reduce operator effectiveness at signal detection, but are highly likely to reduce operator 

efficiency at processing passengers in accordance with the TSA’s aim of keeping 

passenger wait times below ten minutes (Shea & Morgan, 2007).

To achieve this goal and minimize undue delays and passenger inconvenience, 

and to ensure standardized practice across the nation’s airports, the TSA currently 

maintains the 4000 ms search duration standard. However, competing needs exist for 

improved operator performance and expedited passenger and luggage screening. As such, 

the current study examined whether there is an optimal inspection duration that provides 

sufficient time for information search without squandering valuable temporal resources.

It was initially proposed that the imposition o f an appropriate man-hours per unit time 

constraint, comprised of the critical threshold beyond which performance measures such 

as sensitivity do not improve with additional time, may serve both o f these goals. 

However, the current research supports the notion that operator control over search 

duration exerts a greater impact on signal detection indices such as sensitivity than does 

any parameterized search duration. Because means and standard deviations can be 

derived for populations o f effective operators self-terminating information search, it is 

still possible to establish temporal standards against which to measure individual operator 

performance. Operators who routinely exceed critical thresholds for centrally or



eccentrically located targets, respectively, during training sessions or audits may be 

selected for additional training to improve search strategies and decision making 

behaviors.

Because o f the criticality o f decision making in an aviation security context, it is 

important to examine both operator characteristics, such as maximizing and satisficing 

tendencies, and task characteristics, such as time constraint and the location and degree of 

signal. The current study sought to examine both facets o f the decision making situation 

to support efficient and effective operator performance. As decision making is a complex 

process, it is essential that researchers continue to conduct comprehensive examinations 

o f the variables that contribute to information search, target detection, and the behavioral 

aspects o f decision execution. Future research should further address the quantification of 

satisficing and optimizing, as decision-making strategy impacted operator performance in 

the current study, as well as determine whether self-terminating search is a viable strategy 

for improved operator performance in visual detection tasks.
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APPENDIX A

SHORT FORM OF THE MAXIMIZATION SCALE

Rate each item on a scale o f 1 to 7, with 1 being “completely disagree” and 7 being 
“completely agree.”

1. When I am in the car listening to the radio, I often check other stations to see 
something better is playing, even if  I am relatively satisfied with what I’m 
listening to.

2. No matter how satisfied I am with my job, it’s only right for me to be on the 
lookout for better opportunities.

3. I often find it difficult to shop for a gift for a friend.
4. Renting videos is really difficult. I’m always struggling to pick the best one.
5. No matter what I do, I have the highest standards for myself.
6. 1 never settle for second best.
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APPENDIX B

TARGET CATEGORY MEMBERSHIP EXAMPLES (0 < 5  < 1)

5  —  0

5 = .2

5  = .4

5  =  . 6

5  —  .8

5 =  1.0 - *#W “

/F
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APPENDIX C

SIGNAL PRESENT STIMULI (0 < * < 1): CENTRALLY LOCATED TARGETS

1= 2  cen tral b a g !  j = J  central bag  2 s= 2  central bag  3 5= 2  cen tral bag  *

s= 2  cen tral bag  5 s=-2 central bag 6  s - .< central bag  I  i=  4 central bag  2

$= 4 central bag  3 s= 4 central bag  4 s= 4 central b a g  5 s= 4 central bag  6

5= 4  central bag  7 s= 4  central bag 8 5= 4  central bag  9 s= 4  central bag 10
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s= A  cent? at beg  11 = .6 central bag  1 4 : A  central bag  2 4=.6 central bag  3

rm rn* 'm .tm m
> . f - t  -l

4= 5  central bag  4 s= A  cen tral bag  5 5s 6 centfal bag 6 ;= £  central bag  7

z A  cen tral bag 1 5=5 cen tral bag  2 5= .8 central bag  3 5= £  central bag 4

s= 25 cen tral bag  5 s= .8 central bag  6 5=1 central bag  1 5=1 central bag  2

s= l central bag  3 s= l central bag  4 5=1 central bag  5 5=1 central bag  6
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*1 cen tral beg 7 ;1 central bag  8 :1 central bag 9 1 central bag 10

central bag  12 :1 cen tral bag  13t= 1 central bag 11 :1 central bag 14

i= l  cen tral bag 15 1=1 central bag  16
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APPENDIX D

SIGNAL PRESENT STIMULI (0 < s < 1): ECCENTRICALLY LOCATED TARGETS

eccentric  t u g  1 i s ^ e c c e n tn c lM g Z  *= 2  eccentric b ig  3 s=.2 eccentric b ig  4

s s .2  eccentric b a g  6 ;.4 eccen tric  bag  1 s=.4 eccen tnc  bag  2

4 eccentnc  b a g  3 s -  A  eccen tnc  b a g  4 s=.4 eccentric bag 5 5= 4 eccentric  bag 6
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4 eccentnc  bag  11 ■■£ eccen tnc  bag  1 £  eccentric beg  3

s = £  eccentnc  b e g  4 6  eccentric bag  6 ;£  eccentric beg 7

■ 6  eccen tnc  bag  10 ■£ eccentric bag  11

s= & eccentric bag  3

S  eccen tnc  bag  5 :1 eccen tnc  bag  2

1 eccentnc  bag  3 s=1 eccen tnc  bag  4 s z l  eccen tnc  bag  5 5=1 eccentnc  bag 6



i - \  eccen tnc  bag  13:1 eccen tnc  bag 121 eccentnc  bag  11

s r l  eccen tnc  bag 16c r l  eccen tnc  bag  IS
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APPENDIX E

SIGNAL ABSENT STIMULI (s = 0)

1=0 bag  \ s=0 bag  2 $=0 bag  3 1=0 bag A

s=0 b a g  8

1=0 bag 12ssO bag  t ls=0 bag 10s= 0 b a g 9

5=0 bag  IS :© bag  16■Qbag Ui= 0  b a g  13



i=fl b a g 17 i=Q bag  16 i= 0  bag  19 s=0 bag 20

5=0 bag  21 s=0 bag  22 ;0 bag  23 s=0 bag  24

?0 bag  261=0 bag  25 =0 bag 27 :0  bag  28

s=0 bag  30 1=0 bag  32i= 0  bag  29 1=0 bag 31

5=0 bag  34 i= 0  bag  36:0  bag 35:0  bag  33

s=0 bag  37 i= 0  bag 38 s=0 bag  39 i= 0  bag  40
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B9HB
,=Q b a g  41

■ W  'S i§ !

i= 0  bag  42 5=0 bag 44

1=0 bag  45 s=0 b a g  46

+mmm

s=0 bag  47

f t

s=0 bag 46

s=0 bag  49

f t T M

t= 0  bag  S3 1=0 bag  54 .=0 bag  SS .=0 bag  56

QS5 EI fi^M irnP3j infeffai
s=0 bag  57 5=0 bag 59

£~mm*

0 bag  63i= 0  b a g  61 =0 bag  62



5=0 bag  65 i= 0  bag  66 s=0 bag 67 s=0 bag  66

:Q bag  69 5=0 b a g  70 s=0 bag  71 :0  bag  72

:0  bag  73 4=0 bag  74 :0 bag 75 --0 bag 76

:0  bag  7? :Q b a g 7 8 :0 bag  79 -0 bag  80

5=0 bag  83 :0 bag  84s=0 bag  81 :Q b a g  82

s=0 bag  85 5=0 bag  86 5=0 bag  87



5=0 bag  89 5=0 bag 90 5 :0  bag  91 s=0 bag  92

s=0 b a g  93 s=0 bag  94 r0 bag 95 s=0 bag  96

5=0 bag  97 5=0 bag  96 :0  bag 99 5=0 bag  100
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APPENDIX F

OLD DOMINION UNIVERSITY INFORMED CONSENT DOCUMENT 

PROJECT TITLE: Exogenous Factors Affecting Decision Making 

INTRODUCTION
The purposes of this form are to give you information that may affect your decision whether to say 
YES or NO to participation in this research, and to record the consent of those who say YES. The 
experiment will be conducted on the ODU campus in Room # 331 or Room #234 or Room #222 
Mills Godwin Building.

RESEARCHERS
Responsible Project Investigator: Poornima Madhavan, Ph.D., Assistant Professor

Department of Psychology, College of Sciences, Old Dominion
University
Investigator: Kimberly Culley, Graduate Student

Department of Psychology, College of sciences, Old Dominion University

DESCRIPTION OF RESEARCH STUDY
The purpose of this research is to examine how people make decisions in complex tasks with 
implications for homeland security.

In this experiment you will perform an airline luggage screening task, where you will have to look 
for dangerous objects in x-ray images of luggage, similar to what you see at an airport. On each 
trial, you will be presented with a piece of luggage that you will have to scan for the presence of a 
weapon. After the image disappears, you will be asked whether or not to pass the bag. Click on 
your choice. You will gain points for a correct diagnosis and lose points for a wrong diagnosis. 
Remember, not all bags contain targets. Please do not pause during the experiment as it is timed.

If you decide to participate, then you will join a study involving research of factors that affect 
human ability to visually detect targets under different conditions in the context of airline luggage 
screening. You will be seated in front of a computer for the entire duration of the task. You have 
the option at any time to cease participation without penalty. If you say YES, then your 
participation will last for 2 hours at Room #331 or Room #234 or Room #222, Mills Godwin 
Building. Approximately 175 undergraduate students will be participating in this study.

EXCLUSIONARY CRITERIA
You should be between the ages of 18 and 65 years, and have normal or corrected-to-normal 
vision. Also, to the best of your knowledge, you should not have any color blindness that would 
keep you from participating in this study.

RISKS AND BENEFITS
RISKS: The researcher has removed all linking identifiers - data will be recorded under a 
participant number and will not be connected to your real identity in any way. However, there is a 
small risk of the loss of confidentiality. As with any research, there is some possibility that you 
may be subject to risks that have not yet been identified.

BENEFITS: There are no direct benefits to participation. Indirectly, your participation will 
contribute to the development of better training solutions for luggage screeners.

COSTS AND PAYMENTS
The researchers want your decision about participating in this study to be absolutely voluntary. 
There is no cost to participate and no monetary payment in this study. You will receive 2 research
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participation credits for participation. If you choose not to participate in research you can 
complete library reports to obtain the required research credits.

The primary benefit to participants is in the form of research credits awarded. Participants will 
receive 1 research participation credit per hour of participation in this project. These credits will be 
reported to faculty teaching courses in which participating students are enrolled. These credits 
may be used to meet required or extra credit opportunities as described in each course syllabus. 
They will also gain an understanding of experimental research.

NEW INFORMATION
If the researchers find new information during this study that would reasonably change your 
decision about participating, then they will give it to you.

CONFIDENTIALITY
All information obtained about you in this study is strictly confidential unless disclosure is required 
by law. The results of this study may be used in reports, presentations and publications, but the 
researcher will not identify you.

WITHDRAWAL PRIVILEGE
It is OK for you to say NO. Even if you say YES now, you are free to say NO later, and walk 
away or withdraw from the study -- at any time. Your decision will not affect your relationship with 
Old Dominion University, or otherwise cause a loss of benefits to which you might otherwise be 
entitled. The researchers reserve the right to withdraw your participation in this study, at any time, 
if they observe potential problems with your continued participation.

COMPENSATION FOR ILLNESS AND INJURY
If you say YES, then your consent in this document does not waive any of your legal rights. 
However, in the event of harm, injury or illness arising from this study, neither Old Dominion 
University nor the researchers are able to give you any money, insurance coverage, free medical 
care, or any other compensation for such injury. In the event that you suffer injury as a result of 
participation in this research project, you may contact Dr. Poornima Madhavan at 757-683-6424, 
Dr. George Maihafer the current IRB chair at 757-683-4520, or the Office of Research at Old 
Dominion University at 757-683-3460, who will be glad to review the matter with you.

VOLUNTARY CONSENT
By signing this form, you are saying several things. You are saying that you have read this form 
or have had it read to you, that you are satisfied that you understand this form, the research 
study, and its risks and benefits. The researchers should have answered any questions you may 
have had about the research. If you have any questions later on, then the researchers should be 
able to answer them:
Dr. Poornima Madhavan: (757-683-6424)
If at any time you feel pressured to participate, or if you have any questions about your rights or 
this form, then you should call Dr. George Maihafer, the current IRB chair, at 757-683-4520, or 
the Old Dominion University Office of Research, at 757-683-3460.

And importantly, by signing below, you are telling the researcher YES, that you agree to 
participate in this study. The researcher should give you a copy of this form for your records.

Subject's Printed Name & Signature Date

INVESTIGATOR’S STATEMENT
I certify that I have explained to this subject the nature and purpose of this research, including 
benefits, risks, costs, and any experimental procedures. I have described the rights and 
protections afforded to human subjects and have done nothing to pressure, coerce, or falsely 
entice this subject into participating. I am aware of my obligations under state and federal laws,
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and promise compliance. I have answered the subject's questions and have encouraged him/her 
to ask additional questions at any time during the course of this study. I have witnessed the 
above signature(s) on this consent form._____________________________

Investigator's Printed Name & Signature Date
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APPENDIX G

TARGET CATEGORY MEMBERSHIP EXAMPLES ( 5 = 1 )
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APPENDIX H

INSTRUCTIONS TO PARTICIPANTS 

Participants in the global time constraint condition received the following instructions at 

the beginning of the task:

“You will perform an airline luggage screening task, where you will have 
to look for dangerous objects in x-ray images o f luggage, similar to what you see 
at an airport. You will scan several loads of luggage. At the beginning, you will 
see a set o f targets on the screen. After you have looked at them and have 
memorized them, activate the trials by pressing the space bar.

On each trial, an x-ray image of a bag will appear on the screen. You may 
view the image for as long as you need in order to make your decision about 
whether or not there is a target present in the luggage item. Please consider your 
decision carefully. When you are finished viewing the luggage item, press the 
spacebar to advance to the decision screen. After the luggage image disappears, 
use the response bar to indicate the degree to which the target is present in the 
previous image. You will gain points for a correct diagnosis and lose points for a 
wrong diagnosis.

Remember, not all bags contain targets.
Please do not pause during the experiment as it is timed. If you have any 

questions, please clarify them before you begin.
press "Spacebar" to continue”

Participants in the local fixed-interval time constraint condition received the 

following instructions at the beginning of the task:

“You will perform an airline luggage screening task, where you will have 
to look for dangerous objects in x-ray images o f luggage, similar to what you see 
at an airport. You will scan several loads o f luggage. At the beginning, you will 
see a set of targets on the screen. After you have looked at them and have 
memorized them, activate the trials by pressing the space bar.

On each trial, an x-ray image of a bag will appear on the screen for you to 
view. The image will automatically time out after a period o f time and advance to 
the decision screen. After the luggage image disappears, use the response bar to 
indicate the degree to which the target is present in the previous image. Please 
consider your decision carefully. You will gain points for a correct diagnosis and 
lose points for a wrong diagnosis.

Remember, not all bags contain targets.
Please do not pause during the experiment as it is timed. If you have any 

questions, please clarify them before you begin.
press "Spacebar" to continue”
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VITA

Kimberly E. Culley 
Department of Psychology 
250 Mills Godwin Building 

Norfolk, VA 23529

Education

Old Dominion University, Norfolk, VA; Doctor of Philosophy, Human Factors Psychology; 
Expected graduation December 2013
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University of Scranton, Scranton, PA; Bachelor of Science, Secondary Education; May 
2004

Work Experience
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