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The process of gathering land-cover information has evolved significantly over the last
decade (2000–2010). In addition to this, current technical infrastructure allows for
more rapid and efficient processing of large multi-temporal image databases at con-
tinental scale. But whereas the data availability and processing capabilities have
increased, the production of dedicated land-cover products with adequate accuracy is
still a prerequisite for most users. Indeed, spatially explicit land-cover information is
important and does not exist for many regions. Our study focuses on the boreal Eurasia
region for which limited land-cover information is available at regional level.
The main aim of this paper is to demonstrate that a coarse-resolution land-cover map

of the Russian Federation, the ‘TerraNorte’ map at 230 m × 230 m resolution for the
year 2010, can be used in combination with a sample of reference forest maps at 30 m
resolution to correctly assess forest cover in the Russian federation.
First, an accuracy assessment of the TerraNorte map is carried out through the use of

reference forest maps derived from finer-resolution satellite imagery (Landsat
Thematic Mapper (TM) sensor). A sample of 32 sites was selected for the detailed
identification of forest cover from Landsat TM imagery. A methodological approach is
developed to process and analyse the Landsat imagery based on unsupervised classi-
fication and cluster-based visual labelling. The resulting forest maps over the 32 sites
are then used to evaluate the accuracy of the forest classes of the TerraNorte land-cover
map. A regression analysis shows that the TerraNorte map produces satisfactory results
for areas south of 65° N, whereas several forest classes in more northern areas have
lower accuracy. This might be explained by the strong reflectance of background (i.e.
non-tree) cover.
A forest area estimate is then derived by calibration of the TerraNorte Russian

map using a sample of Landsat-derived reference maps (using a regression esti-
mator approach). This estimate compares very well with the FAO FRA exercise for
2010 (1% difference for total forested area). We conclude that the TerraNorte map
combined with finer-resolution reference maps can be used as a reliable spatial
information layer for forest resources assessment over the Russian Federation at
national scale.
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1. Introduction and objectives

Accurate, detailed, and regularly updated land-cover information has become paramount
for addressing a range of important scientific questions relating to human activity with its
ensuing ecological impact, in particular for Eurasian boreal ecosystems (Achard,
Mollicone, and Stibig 2006; Achard et al. 2008). These scientific questions and their
answers can have a direct impact on political decisions affecting (directly or indirectly)
millions of people worldwide.

A number of global and continental land-cover mapping initiatives have already produced
results at coarse scale. In the early 2000s, new global land-cover data sets were produced at a
resolution of 1 km × 1 km from advanced Earth observation sensors (VEGETATION
instrument on board the SPOT satellites, and the Moderate Resolution Imaging Spectro-
radiometer, or MODIS, on board the Terra and Aqua platforms). These products, GLC-2000
(Bartholomé and Belward 2005) andMODISGlobal Land-cover (Friedl,McIver, and Hodges
2002), allowed for a spatial and thematic refinement of previous global maps owing to
enhanced sensor calibration, increased spectral, spatial, and temporal resolution, as well as
improved classification algorithms. More recently, new global land-cover data sets at finer
spatial resolution (from 250m × 250m to 500m × 500m) were generated from Terra-MODIS
or ENVISAT-MERIS sensors. The two key products at this scale are the Vegetation
Continuous Fields (VCF) product and the GlobCover map. The MODIS-derived VCF
product depicts sub-pixel vegetation cover traits at a spatial resolution of 500 m × 500 m
(Hansen et al. 2005). A more recent version (2005) of the MODIS Global Land-cover product
has also been generated with substantial differences arising from increased spatial resolution
(500 m × 500 m) and changes in the input data and classification algorithm (Friedl, Sulla-
Menashe, and Tan 2010). The ‘GlobCover’ initiative produced a global land-cover map using
the 300 m resolution mode from the MERIS sensor on board the ENVISAT satellite (Arino
et al. 2008) acquired during 2005. The GlobCover global land-cover map has complemented
previous global products and other existing comparable continental products with improve-
ment in terms of spatial resolution.

As a part of the GLC2000 project, a first land-cover map for boreal Eurasia has been
produced based on SPOT-VEGETATION data for 2000 at 1.15 km spatial resolution (Bartalev
et al. 2003). This map is one of the most widely used land-cover products for environmental
research studies and applications at the sub-continental level for this region. More recently an
automated land-cover mapping method based on a new Locally Adaptive Global Mapping
Algorithm (LAGMA) has been developed within the framework of the TerraNorte project and
has been used for land-cover mapping over Russia (Uvarov and Bartalev 2010). This method
allows the use of increased sensor capabilities (finer spatial resolution and improved spectral
characteristics) to derive continental to global land-cover products.

This study was initiated as part of the PROBA-V Preparatory Programme. The Project
for On-Board Autonomy (PROBA) started as a technology demonstration mission of the
European Space Agency (ESA) with the aim of using and demonstrating automatic
functions, both onboard and in the mission ground segment. PROBA-V, where V stands
for Vegetation, was built to redress the data gap that occurred when the SPOT 4 and SPOT
5 satellites carrying the VEGETATION instruments came to the end of their operational
missions at the end of 2012. PROBA-V will thus provide data continuity to the
VEGETATION user community until the launch of the first Sentinel 3 satellite (2015).
This study is part of the TerraNorte project within the PROBA-V Preparatory Programme.
The TerraNorte project aimed at evaluating the impact of enhanced-spatial resolution data
for boreal land-cover mapping with a geographical focus on Russia and a thematic focus
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on forests. The future PROBA-V mission will fly a reduced-mass version of the
VEGETATION instrument, to provide a daily overview of the global vegetation status.
An improvement in the performance of the PROBA-V sensor was sought with enhanced
spatial and spectral resolutions (ESA 2012). The PROBA-V TerraNorte project used
MODIS imagery at 230 m resolution (as a proxy for the PROBA-V mission) and
produced as the main output a new land-cover map of the Russian Federation for the
year 2010 at about 300 m resolution. The main aim of our paper is to evaluate the
accuracy of this recent coarse continental land-cover map and to assess its potential use
for forest resource assessment at national scale. Medium-resolution forest maps are used
over sample sites as reference maps (derived from Landsat TM imagery).

2. Methodology

2.1. Data sets

2.1.1. TerraNorte land-cover map of Russia

Bartalev et al. (2012) evaluated the impact of the enhanced spatial resolution of the future
PROBA-V sensor (300 m in VNIR channels at swath edge) versus the VEGETATION
sensor (1.15 km) for boreal land-cover mapping over Russia, with a thematic focus on
forests. MODIS data were used as a proxy for the PROBA-V mission due to similarities in
spectral channels, spatial resolution, and observation frequency for regions at high latitude
(between 35° N and 75° N). An automated method (Bartalev et al. 2011) has been used to
map the vegetation cover using MODIS data. This method involves the generation of
multi-annual time-series of surface reflectance data, which are used for land-cover type
classification based on a locally adaptive algorithm (Uvarov and Bartalev 2010). This
method has been used for producing time-series of annual land-cover maps over Russia
from 2000. For this specific study we used the annual land-cover map for the year 2010.

The TerraNorte map legend consists of 22 thematic classes, including 18 vegetation
classes described through their life forms, leaf type, and phenology (see Table 1).

2.1.2. Landsat imagery

We consider Landsat TM imagery as appropriate data for producing reference vegetation
maps to assess the accuracy of the continental map (Jensen 1996). A sample consisting of
32 units of 20 km × 20 km size was selected for the detailed identification of forest cover
from Landsat TM imagery (see Figure 1). These sample sites were selected from the
systematic sample database of the global remote sensing survey of the FAO (Beuchle et al.
2011; FAO and JRC 2012). Stratified sampling has been demonstrated to be a robust
approach for forest cover monitoring (Richards, Gallego, and Achard 2000; Stehman
2001; Stehman et al. 2003; Stehman et al. 2011). However our sub-sample (of the
systematic sample) was selected empirically in order to incorporate challenging areas
from the point of view of land-cover mapping within the TerraNorte map and to represent
the large latitudinal, longitudinal, and climatic heterogeneity that characterizes the
forested landscape across the Russian Federation. The TerraNorte map was derived
from MODIS decadal mosaics over a period of 12 years. From these MODIS mosaics a
number of regions were identified as being temporally unstable (i.e. between different
years in the 12-year period) from a land-cover perspective. These regions were the most
challenging areas for the land-cover classification process of the TerraNorte map, which
can probably be explained by their spatial or temporal land-cover heterogeneity. We
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Table 1. Land-cover legend for 30-m resolution maps.

Name of land-cover class Description with dominant/subdominant species

1 Evergreen dark needleleaf
forest (ED)

Forest ecosystems consisting of spruce (Picea), fir (Abies), and
Siberian pine (Pinus sibirica) for at least 80% of the forest
canopy

2 Evergreen light needleleaf
forest (EL)

Forest ecosystems consisting of pine (P. sylvestris) for at least 80%
of the forest canopy

3 Deciduous broadleaf forest
(Brd)

Forest ecosystems consisting of birch (Betula), aspen (Populus
tremula), oak (Quercus), linden (Tilia), ash (Fraxinus), maple
(Acer), and some other deciduous broadleaf tree species for at
least 80% of the forest canopy

4 Mixed needleleaf majority
forest (MNM)

Forest ecosystems consisting of the evergreen needleleaf tree
species for 60% to 80% and the deciduous broadleaf tree
species for 20% to 40% of the forest canopy

5 Mixed forest (M) Proportions of the evergreen needleleaf and the deciduous
broadleaf tree species in the forest canopy are approximately
equal (40% to 60%)

6 Mixed broadleaf majority
forest (MBM)

Forest ecosystems consisting of the deciduous broadleaf species
for 60% to 80% and the evergreen needleleaf species for 20% to
40% of the forest canopy

7 Deciduous needleleaf forest
(DN)

Forest ecosystems consisting of larch (Larix) for at least 80% of
the forest canopy

8 Sparse deciduous
needleleaf forest (SD)

Single trees or open stands of larch (Larix) with density of canopy
below 20%

9 Peatlands (Ptlnd) Permanent mixture of water and vegetation: Sphagnum moss and
lichens, or rushes and sedges are dominant. Sometimes sparse
tree canopy (up to 20%) can be found.

10 Recent burns Burn scars <5 years old. May contain dead trees, some pioneer
vegetation types may be present

11 Water bodies Open water bodies including seas, lakes, reservoirs, and rivers
12 Other land Lands having a vegetation canopy coverage smaller than 20%
13 Shrubs Shrublands or low trees (height is less than 5 m more than 50 cm)

Figure 1. Location of the 32 test sites.
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selected all sites of the full FAO-FRA 2010 systematic sample that fell within these
challenging areas: this selection led to 32 sample sites.

The 32 sample sites include representative areas of all classes of the TerraNorte
legend. In the TerraNorte map the classes that correspond to Other Land and Shrubs
comprise 42.9% of the territory. The preponderance of the classes Other Land and Shrubs
is attenuated in the coverage of the 32 sample sites to a mere 17.3%, due to their higher
temporal stability compared with forest classes. Taken separately, the cover proportions of
the forest classes are very similar for the whole TerraNorte map and for the set of 32
sample sites. All Broadleaf forests cover 14% of the TerraNorte map and 13.3% in the 32
selected sample sites, when the cover proportions for All Needleleaf forest classes are
63.2% and 61.6%, respectively.

For each sample site, satellite imagery from the Landsat TM sensor for the years 1990
and 2010, and from the Enhanced Thematic Mapper (ETM +) sensor for around the year
2000, was screened from the USGS database (http://glovis.usgs.gov/) (Beuchle et al.
2011). The most suitable images were selected considering the following criteria: acquisi-
tion year as close as possible to three reference years (1990, 2000, and 2010); and limiting
the acquisition period from June to August, because during this period the spectral
appearance of boreal forests is stable and is less influenced by the effects of growth,
shade, or leaf drop, or by snow (Bucha and Stibig 2008). The main reason for using a
time-series of satellite imagery for each site lies in the greater depth of information
provided for the visual interpretation phase in comparison with using one single image.
Furthermore it is intended to use the temporal series for change assessment in a future
phase, similarly to a study carried out over South America (Eva et al. 2012).

A set of 32 Landsat images was selected for each year of analysis. In total we thus
processed a set of 96 Landsat images. For this, a robust methodological approach needed
to be developed. The available imagery was first pre-processed in a standardized manner
to allow for accurate information extraction from the time-series. As described by Bodart
et al. (2011), each image was converted to top-of-atmosphere reflectance (ToAR) and,
where appropriate, haze correction was applied. As a final step we applied relative
normalization to all images from one site by using the Dark Object Subtraction (DOS)
method (Chavez 1996).

2.2. Land-cover mapping from Landsat TM imagery

2.2.1. Unsupervised cluster classification

For each of the 32 sites, one multi-temporal Landsat imagery stack is created. The Red,
NIR, and SWIR bands (0.63–0.69, 0.75–0.9, and 1.55–1.75 µm, respectively) of the
selected images for three reference years (1990, 2000, and 2010) were combined into one
image stack per site.

The unsupervised Iterative Self-Organizing Data Analysis Technique (ISODATA) algo-
rithm was selected to classify the images into 70 automatic clusters. This algorithm relies on
pixel-based spectral statistics and incorporates no prior knowledge of the characteristics of
the themes under study. The benefit of applying unsupervised classification methods is to
automatically convert spectral image data into spatial clusters, which can then be used for
land-cover classification (Xie, Sha, and Yu 2008). This approach has been proven to be
effective and well suited to forest species classification (Reese et al. 2002), and has also
been applied for other global land-cover classifications (Hansen and Reed 2000).

To label the clusters as land-cover classes, an interactive expert interpretation step was
used as the final step in the land-cover mapping process.
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2.2.2. Land-cover legend

One key objective for the design of the legend to be used for the Landsat-derived land-
cover maps was that it had to be compatible with the legend of the TerraNorte land-cover
map in order to allow a straightforward comparison between these maps at two different
resolutions.

Bartalev (2006) showed that Landsat TM or ETM+ imagery allows the identification
of a few forest classes through visual interpretation: Evergreen dark needleleaf forest,
Deciduous broadleaf forest, and Evergreen light needleleaf forest. For the purpose of our
study we defined 13 land-cover classes (Table 1). Given the focus on forests, special
attention was devoted to the differentiation between eight specific forest cover types.

The resulting Landsat land-cover maps at 30 m × 30 m are then resampled to
230 m × 230 m resolution using a land-cover majority filter. This method was chosen
as it most closely reproduced the outcome of the classification process applied to medium-
scale satellite imagery. This is reflected in the correlation coefficients reported in Table 2.
The correlation between the Landsat-based classification and resampled classification at
230 m only drops below 0.99 two cases (Recent burns class with 0.94 and the Evergreen
light needleleaf forest with 0.96). This data set of 230 m × 230 m resolution was used to
assess the impact of the spatial resolution of the reference land-cover products on the
assessment of the accuracy of the continental land-cover map.

2.3. Accuracy assessment

Many studies have compared global land-cover data sets produced from different data
sources at various spatial scales, using various classification systems and methodologies
(Hansen and Reed 2000; Giri, Zhu, and Reed 2005; McCallum et al. 2006; Friedl, Sulla-
Menashe, and Tan 2010; Broich et al. 2011; Lu et al. 2011). Any land-cover product
should be (objectively) verified and this evaluation must be provided to users so that
informed decisions can be made on whether and how the products can be used. A

Table 2. Coefficients of correlation between TerraNorte map (TN), Landsat-derived maps at 30 m
resolution (LS 30 m), and Landsat-derived maps at 230 m resolution (LS 230 m).

Map combinations Land-cover classes TN – LS 30 m TN – LS 230 m LS 30 m – LS 230 m

All Forests 0.862 0.861 0.989
All broadleaf forests 0.660 0.678 0.997
Deciduous broadleaf 0.628 0.632 0.998
Mixed broadleaf majority 80% 0.080 0.090 0.996
All needleleaf forests 0.821 0.849 0.993
Deciduous needleleaf forest 0.876 0.879 0.999
Sparse deciduous 0.682 0.682 0.999
Evergreen dark needleleaf forest 0.874 0.834 0.995
Evergreen light needleleaf forest 0.891 0.880 0.963
Mixed needleleaf majority 80% 0.704 0.696 0.997
Mixed forests 0.355 0.364 0.990
Other land 0.930 0.927 0.995
Peatlands 0.903 0.904 1.000
Recent burns 0.667 0.644 0.943
Shrubs 0.595 0.605 0.997
Water bodies 0.890 0.882 1.000
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vegetation map derived from image classification is considered accurate if it provides a
true representation of the region it portrays (Foody 2002; Weber 2006). Accuracy assess-
ments are employed to indicate the degree of ‘correctness’ of the map compared to the
reality in the field. Congalton (1994) describes four types of accuracy assessment with
increasing level of detail and certainty:

(1) visual inspection of maps;
(2) comparison of areal extent of the classes in the derived maps with ground data or

a reference data set;
(3) comparison of class labels in the thematic map with the ground data for the same

locations;
(4) the best level includes further refinements on the basis of the third level. Most

often a confusion or error matrix is used.

Although it is agreed that accuracy assessment is important to qualify the results of image
classification, it is probably impossible to specify a single, all-purpose measure for
assessing classification accuracy (Xie, Sha, and Yu 2008). We therefore decided to report
more closely on the second, third, and fourth levels of accuracy assessment as described
by Congalton (1994).

For accuracy assessment an ideal reference data set would consist of extensive field
data, but given the extent of our study area (Russian Federation), such field data are
difficult to collect for logistical reasons. For the purposes of our study we consider our
sample data set of forest cover maps at 30 m resolution as surrogate for field data (Foody
2010) against which the TerraNorte map is assessed.

2.4. Statistical parameters used for accuracy assessment

Several statistical methods have been used for evaluation of the agreement/disagreement
between the TerraNorte land-cover map and the Landsat-derived reference maps. These
methods are briefly described hereafter alongside the calculations used.

2.4.1. Pearson correlation coefficient

The Pearson correlation coefficient measures the (linear) correlation between two vari-
ables x and y and is typically denoted as r. It is widely used as a measure of strength of
(linear) dependence between two variables.

This correlation coefficient differs from the R-squared coefficient (R2), which is also
reported in several figures in this paper. The R2 value can be interpreted as the proportion
of the variance in y attributable to the variance in x. It is, in other words, the squared value
of the previously calculated correlation coefficient.

2.4.2. Linear regression

A linear regression models the relationship between a dependent variable y and one (or
more) explanatory variables x. Linear regressions can be used to fit a predictive model to
an observed data set. The standard error is calculated to infer confidence intervals for the
estimations, as this predicts the level of error in the predicted value of y for an
individual x value.
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2.4.3. Confusion matrix evaluation

A confusion matrix describes fitness between the derived classes and the reference data
through measures such as overall accuracy and kappa coefficient. Additionally, a variety
of other measures can be derived from the confusion matrix (e.g. the level of agreement,
the expected fraction of agreement, and the maximum fraction f agreement). The level of
agreement between two maps can be expressed in a single-digit kappa, based on the
confusion matrix (or contingency table). This matrix shows how the distribution of classes
in Map A differs from that of Map B. We used three statistical parameters derived from
the confusion matrices:

P(A), the fraction of agreement, calculated according to Equation (1):

PðAÞ ¼
Xc

i¼1

pii; (1)

where pii is the proportion of pixels of class i in classification A and class i in the reference
data. P(E), the expected fraction of agreement subject to the observed distribution,
calculated according to Equation (2):

PðEÞ ¼
Xc

i¼1

piT � PTi ; (2)

where piT is the proportion of pixels of class i in Map A, and PTi is the proportion of pixels
of class i in Map B P(max), the maximum fraction of agreement subject to the observed
distribution. This is the maximum agreement that could be attained if the location of the
cells in one map was to be rearranged. It is calculated according to Equation (3):

PðmaxÞ ¼
Xc

i¼1

minðpiT ;PTiÞ: (3)

These parameters are then used to calculate two different versions of the kappa coefficient
– the standard value and the adapted-to-location value.

The kappa coefficient reports the proportion of agreement P(A) after removal of the
random chance agreement P(E). It varies between 1 (perfect agreement) and 0 (randomly
arranged cells), and can be calculated by the following Equation (4):

κ ¼ PðAÞ � PðEÞ
1� PðEÞ : (4)

However, the kappa coefficient explains only part of the cell-by-cell agreement between
two maps. Pontius (2000) introduced two statistical parameters to separate the quantifica-
tion error from the location error, which are both included within kappa. The kappa
location coefficient (κloc) compares the actual success rate to the expected success rate
relative to the maximum success rate given a constant number of cells for each category.
The maximum value for κloc is 1, with no minimal value. The advantage of κloc is that it is
independent from the total number of cells in each category:

κloc ¼ PðAÞ � PðEÞ
PðmaxÞ � PðEÞ : (5)
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3. Results

3.1. Comparison of areal extent of classes

A quick initial visual comparison was made between the Landsat-derived reference maps
and the TerraNorte map (Figure 2). This comparison was deemed to show agreement
sufficiently good to warrant further statistical inquiry. As suggested by several authors
(Giri, Zhu, and Reed 2005; Broich et al. 2011), we then proceeded to a more detailed
comparison by relating the total area per class in the TerraNorte classification to the
summed area in the reference data set. Correlation tables were produced for the different
land-cover classes summed over all sites and individually for all 32 sites. For a given
land-cover class the correlation between the class areas within each classification was
calculated according to Pearson’s correlation coefficient (Figure 3).

Table 2 shows a high correlation between the Landsat classification at 30 m resolution
and the generalization at 230 m resolution, which is not really surprising but had to be

TerraNorte map
Resampled Landsat

maps  
Landsat maps at 30 m Landsat imagery 

N
54

-E
10

5 
N

53
-E

13
1 

N
54

-E
81

 
N

53
-E

57
 

Figure 2. TerraNorte map at 230 m resolution, Landsat-derived maps resampled at 230 m resolu-
tion, Landsat-derived maps at 30 m resolution, and Landsat imagery at 30 m resolution for four
sample sites. Each sample site measures 20 km × 20 km, N is at the top of the Figure. The location
of the centre point of each box is indicated in the left margin.
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verified. This is also reflected in the very similar correlations between the TerraNorte map
and either the Landsat-derived maps at 30 m resolution or the Landsat-derived resampled
maps at 230 m resolution.

Correlation coefficients between the TerraNorte and the Landsat 30 m maps have
generally high values. However, two land-cover classes demonstrate almost no correla-
tion: Mixed forests (0.355) and Mixed broadleaf majority 80% (0.080). Even though the
definition of these classes with a mixed composition may imply more errors in their
delineation, the absence of correlation is surprising.

The correlation coefficients between the TerraNorte map and the Landsat-derived
maps at 30 m resolution per individual site show a high overall agreement (Table 3).
However, there are significant differences for four sites, where the correlation coefficients
are below 0.7. For seven other sites the correlation coefficients are between 0.73 and 0.8,
which is good but warranted closer inspection. For the remaining 21 sites the correlation
coefficients are higher than 0.8.

When looking at the differences in regard to forest areas per site between the
TerraNorte map and the Landsat 30 m classification, it appears that such differences
significantly increase above 65° N (Figure 4). Whereas the average difference (relative
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Figure 3. Regressions of class area between 30 m resolution maps and TerraNorte map for the
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percentage compared to Landsat map forest area) below 65° N is –2% (with standard
deviation (SD) of 10%), this increases to 10% (SD 36%) above 65° N. Although only 11
among the 32 sample sites are located above 65° N, this clear trend prompted us to
recalculate the correlation coefficients for two separate regions by splitting the Russian
territory into two areas – above and below 65° N. Correlation coefficients for individual
land-cover classes become closer to 1 for the southern region whereas they decrease for
the northern region, and no correlation then exists for Broadleaf forests, Mixed forests,
and other land classes (Table 4). The classes Shrubs, Recent burns, and Sparse deciduous
are also heavily affected by a loss of correlation in the northern region.

3.2. Spatial agreement between maps

For the third and fourth levels of accuracy assessment (Congalton 1994) we consider the
spatial accuracy of the maps. Whereas in the previous section only total area per class was
taken into consideration, here we look at a pixel-per-pixel comparison of land-cover
classes. This spatial analysis comparison is aimed at detecting inaccuracies more
accurately.

Table 3. Coefficients of correlation between TerraNorte
map and 30 m resolution maps by sample site.

Box No. Latitude/longitude Correlation

1 50° N 41° E 1.00
2 50° N 143° E 0.89
3 53° N 57° E 0.48
4 53° N 131° E 0.66
5 54° N 81° E 0.95
6 54° N 105° E 0.87
7 56° N 160° E 0.74
8 57° N 62° E 0.95
9 57° N 108° E 0.84
10 58° N 136° E 0.77
11 59° N 44° E 0.77
12 59° N 59° E 0.95
13 59° N 78° E 0.86
14 59° N 82° E 0.95
15 59° N 98° E 0.77
16 60° N 34° E 0.50
17 60° N 36° E 0.78
18 60° N 58° E 0.82
19 60° N 122° E 0.83
20 63° N 66° E 0.86
21 64° N 34° E 0.98
22 65° N 108° E 0.95
23 65° N 160° E 0.90
24 66° N 60° E 0.86
25 66° N 144° E 0.84
26 66° N 150° E 0.61
27 67° N 38° E 0.75
28 67° N 48° E 0.76
29 67° N 122° E 0.81
30 67° N 156° E 0.86
31 68° N 102° E 0.93
32 68° N 114° E 0.99
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Two classes are not reported in the confusion matrix, Recent burns and Water bodies,
due to their limited area extent. These two classes are grouped within the class Other land
(Table 5).

From this confusion matrix the overall accuracy (agreement between Landsat and
TerraNorte maps) is 44%, with a kappa coefficient of 0.37 and a κloc coefficient of
0.41. The overall accuracy is rather low and may possibly reflect the selection of
more classes than can be reasonably separated with the method and data used for the

Differences in reported Forested Areas in TerraNorte vs Landsat 30 m
classification 
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Figure 4. Relative differences between forest areas from TerraNorte map versus Landsat 30 m
maps (Landsat 30 m maps used as reference).

Table 4. Coefficients of correlation between TerraNorte and 30 m resolution maps per land-cover
class for regions below 65° N and above 65° N.

Correlation

Land-cover class S of 65° N N of 65° N

All forests 0.9999 0.7174
All broadleaf forests 0.9767 –0.0351
Deciduous broadleaf 0.9627 –0.0308
Mixed broadleaf majority 80% 0.8744 –0.1116
All needleleaf forests 0.9992 0.8480
Deciduous needleleaf forest 0.9978 0.8710
Sparse deciduous 0.9931 0.6419
Evergreen dark needleleaf forest 0.9877 0.9560
Evergreen light needleleaf forest 0.9923 1.0000
Mixed needleleaf majority 80% 0.9794 –0.1000
Mixed forests 0.9577 –0.1000
Other land 0.9962 –0.3532
Peatlands 0.9963 0.8850
Recent burns 0.9917 0.6397
Shrubs 0.9968 0.4427
Water bodies 0.9931 0.9602
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coarse-resolution map. Therefore we simulated a reduction in the number of classes
by combining some. A generalized confusion matrix is generated by grouping the
forest classes into broader categories (i.e. ‘All needleleaf forests’, ‘All broadleaf
forests’, and ‘Mixed forests’ (Table 6)). The All needleleaf forests class includes
the original classes Evergreen dark needleleaf forests, Evergreen light needleleaf
forests, Deciduous needleleaf forests, Sparse deciduous forests, and Mixed needleleaf
majority forests. The All broadleaf forests class includes Deciduous broadleaf forests
and Mixed broadleaf majority forests. Water bodies and Recent burns were added to
the Other land class as these classes are not the focus of this study. This generalized
confusion matrix reports a higher accuracy of 61%, with a kappa coefficient of 0.41
and a κloc coefficient of 0.44.

Given the significant variation in correlations for regions above and below 65° N,
confusion matrices are created for these two regions (Tables 7 and 8). Whereas the overall
accuracy increases for both matrices, the kappa and κloc coefficients increase for the
region below 65° N (to 0.43 and 0.46, respectively) but decrease for the region above 65°
N (to 0.34 and 0.39 respectively).

4. Discussion

The levels of agreement between TerraNorte and Landsat-derived maps from the two
types of analysis, correlation analysis, and spatial analysis allow us to analyse our results
in a quantitative and objective manner.

The strong correlation between the Landsat-derived maps at 30 m resolution and the
Landsat-derived maps resampled at 230 m indicates that such spatial thematic degradation
(from 30 m to 230 m resolution) does not lead to a large loss of information at the site
level for this boreal region (Table 2). Of course this does not refer to the loss of spatial
detail from the increase in resolution. The spatially degraded Landsat maps (in contrast to
the TerraNorte map) do not tend to under-represent small extents of classes within one
site, nor to over-represent larger extents of classes. The discrepancies between Landsat-
derived maps and the TerraNorte map may therefore be interpreted as a measure of the
significant effect of the point spread function (PSF) of the MODIS sensor on land-cover
characterization as reported by Huang et al. (2002). Their findings suggest that in order to
achieve the desired performance level, land-cover products may need to be aggregated to
coarser spatial resolutions.

Our results show clearly that smaller areas are generally under-represented in the
TerraNorte map (Figure 3), which is in agreement with the findings of Lu et al. (2011).
This is also in accordance with reported detection capabilities of MODIS for clear cuts in
European Russia: below 10 ha size the detection of clear cuts becomes unreliable,
approaching the level of single MODIS pixels and only above 15 ha does the detection
become reliable and meaningful (Bucha and Stibig 2008). It is equally clear that for any
given site, large patches tend to be over-represented (in terms of total area) when compared
with the Landsat 30 m maps. This can be related to the heterogeneity of land-cover
composition for pixels of 230 m × 230 m size. The spatial details of a 30 m × 30 m
resolution map can get lost within 230 m × 230 m-sized pixels for complex landscapes. But
given the high correlation between the degraded Landsat classification at 230 m resolution
and the Landsat 30 m classification, the results from this study prove that the extraction of
useful information from individual MODIS pixels is substantially inhibited by the con-
tribution of surrounding pixels. This is in line with the reported modular transfer function
effect on MODIS by Townshend et al. (2000) and the point spread function on land-cover
characterization by MODIS reported by Huang et al. (2002).
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Sites having a correlation coefficient below 0.7 represent the most difficult and
challenging cases for land-cover mapping. These sites are characterized by the most
complex landscapes and the presence of land-cover types that are around the thresholds
used for the definition of two or more classes. For example, the characterization of the
different classes of Mixed forests with thresholds of 80% cover is challenging in the
absence of detailed field information. Similarly, recent clear cuts can be mapped as shrubs
when enough tree regrowth is present, when it corresponds in reality to young forest cover
(Broadleaved forest). The correct labelling of forest regrowth is heavily dependent on the
age of regrowth, light conditions, and influence of bare ground partially covering the area.

For the region above 65° N, the significant decrease in correlation between the two
classifications is probably due to the dominance of more open forest stands and smaller
trees, and thus the stronger disturbing effect of the bare component of the land areas. This
is illustrated by the absence of correlation for the classes broadleaf forests, mixed forests,
and other land. Although it could be argued that due to the rather restricted number of
sample sites (11) for this area, further research is advisable to confirm these initial
findings.

The spatial measures of agreement indicate clearly that both maps agree well for
general classes (Table 9). It is only when trying to delineate more specific forest types that
the maps diverge significantly. The land-cover maps under comparison are characterized
by variation in spatial resolution. One TerraNorte pixel at 230 m × 230 m resolution will
contain approximately 58 Landsat pixels at 30 m × 30 m resolution. Consequently the
TerraNorte map should represent more consistently those land-cover classes with large
and continuous coverage (through the selection of the dominant class in the classification
process), whereas Landsat-based maps should represent more accurately those land-cover
classes with more limited or fragmented coverage. This can explain both overlaps for
classes with limited and fragmented spatial extent (e.g. Broadleaf forests, Mixed forest,
and Other land), and the robustness of the needleleaf class that covers large homogeneous
areas with fairly uniform spectral characteristics.

The needleleaf forests class is detected in a consistent manner and can be considered
as a robust class in the TerraNorte map across the entire Russian territory – indeed, the
producer’s and user’s accuracies are 76% and 74%, respectively. All other classes,
however, with the possible exception of Peatlands, have a low detection rate above 65°
N. The confusion matrix for the region above 65° N has a kappa of 0.34, which indicates
only a fair agreement as seen from the lower correlation coefficients. For the region below
65° N the agreement is stronger and can be considered as moderate.

The confusion occurring between evergreen light needleleaf forests (EL) and decid-
uous broadleaf forests is a well-known problem (Bartalev 2006) and can be explained by
the spectral similarity of the component of these two classes. There is also confusion
between EL and Peatlands, which is explained by the fact that EL forests can grow on
peatland soils and is an open canopy class. Broadleaf forest under boreal conditions

Table 9. Kappa and ‘kappa location’ results for all confusion matrices.

P(A) P(E) P(max) Kappa Kappa location

Extended confusion matrix (Table 5) 44.06 11.66 89.91 0.37 0.41
Simplified CM (Table 6) 60.95 34.33 95.38 0.41 0.44
Simplified CM – region below 65° N (Table 7) 62.12 33.61 95.41 0.43 0.46
Simplified CM – region above 65° N (Table 8) 61.78 41.9 93.01 0.34 0.39
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represents a challenge for accurate mapping, as these forest stands can be quite open and
thus are more difficult to identify due to the higher contribution of the background to
spectral reflectance. This explains the high level of confusion between Broadleaf forests
and Other land. Another large part of the Broadleaf forests is confused with Mixed forests,
which can further be explained by the spatial complexity of these classes. The accurate
mapping of Mixed forests is therefore challenging, as expected, even at 30 m resolution.
Another challenging class is Shrubs, which includes vegetation from 50 cm up to 5 m in
height. The difficulty with this class relates to the fact that in boreal areas, Shrubs are
mostly located in mountain and tundra areas.

The overall high correlations between the Landsat 30 m classification and the
TerraNorte map for the combined class All forests (see also Figure 5) prompted us to
calculate a forest area estimate for Russia by combining the TerraNorte map available for
the entire Russian Federation and the sample of forest maps derived from Landsat
imagery. A correction needs to be applied to the forest area measures from the
TerraNorte map as there is an over-representation of large patches and an under-repre-
sentation of small patches when compared with reference maps. Based on approaches
used by Potapov et al. (2008) and by Stehman, Sohl, and Loveland (2003), the correction
is done by determining and applying three linear regression equations to the All forest
class areas: for the full territory and both above and below 65° N (Tables 10 and 11;
Figure 5). The resulting estimate (823.0 ± 58.2 million ha) compares well to the figure
from the FAO Forest Resource Assessment 2010 (814.7 million ha; FAO 2010), which is
derived from the national forest inventory, with a 1% relative difference in mean
estimate.

All Forest Classes N and S of N65
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Figure 5. Linear regressions of forest percentages within sample sites between TerraNorte map and
Landsat 30 m maps for regions below and above 65° N.
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5. Conclusions

Differences between two land-cover mapping initiatives (TerraNorte map and reference
forest maps derived from Landsat TM imagery) have been assessed through quantitative
and spatial analyses. The land-cover initiatives were very similar in that they covered the
same time window (the year 2010) and used the same land-cover legend. They differed in
the resolution of their input data (230 m × 230 m and 30 m × 30 m, respectively).

The quantification of the agreement was principally based on cross-tabulations of the
map legends using standard measures as the kappa coefficient to infer a degree of
difference. General vegetation classes (e.g. All forests and Needleleaf forests) can be
well detected and show high areal and moderate spatial correlation agreements. On the
other hand, accurate mapping from moderate-resolution imagery of more specific forest
cover classes remains more challenging, especially for northern latitudes where forest
canopy cover is more open and spectral reflectances are influenced by background cover.

The coarse-scale TerraNorte land-cover map corresponds well with the reference
forest maps derived from Landsat imagery when considering area estimates for main
forest cover types. It does show some discrepancies when compared to reference forest
maps derived from Landsat imagery when looking at more detailed land-cover types. The
impact of over- and under-representation of land-cover classes in the moderate-resolution
map is quantified. As reported by Townshend et al. (2000), such impact can disappear for
large regions due to a compensation effect. In this study we indicate that over- and under-
representation are important factors when using more detailed forest-cover classes. One
has to be careful when considering the thematic information from individual coarse-
resolution pixels. The effective point spread function needs to be quantified to infer a
correct indication of the spatial accuracy that can be obtained for final products, as
indicated by Huang et al. (2002).

We report a total forest area estimation for the Russian Federation, which corresponds
well to the national Russian estimate. We can thus conclude that such a coarse-resolution
map, with the addition of a sample of reference maps, can complement estimates of the
national forest inventory by providing a spatial component available for the full territory.
Based on this study we can expect that the next generation of Vegetation instruments will

Table 10. Linear regressions for forest area estimates.

Nb Region Linear regression Correlation coefficient (r) Standard error (%)

1 Whole Russia y = 1.0187 × – 0.0288 0.86 14.04
2 Region below 65° N y = 1.0498 × – 0.0205 0.72 7.44
3 Region above 65° N y = 0.8685 × + 0.0093 0.96 21.43

Table 11. Estimates of forest areas (ha) for the Russian Federation.

Forest area (ha) TerraNorte Landsat corrected Standard error

From regression 1 for whole Russia 807,664,282 822,766,451 115,516,410
From regression 2 (below 65° N) 670,281,575 703,660,778 52,352,362
From regression 3 (above 65° N) 137,382,707 119,317,252 25,569,687
Whole Russia (Sum 2 + 3) 807,664,282 822,978,030 58,263,013

Note: Bold values highlight the values for the same classes in the Landsat Map and in the TN map.
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allow the production of coarse-resolution scale maps suitable for forestry applications in
boreal ecosystems.
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