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Validating land-cover maps at the global scale is a significant challenge. We built a global
validation data-set based on interpreting Landsat Thematic Mapper (TM) and Enhanced
TM Plus (ETM+) images for a total of 38,664 sample units pre-determined with an equal-
area stratified sampling scheme. This was supplemented by MODIS enhanced vegetation
index (EVI) time series data and other high-resolution imagery on Google Earth. Initially
designed for validating 30 m-resolution global land-cover maps in the Finer Resolution
Observation andMonitoring of Global Land Cover (FROM-GLC) project, the data-set has
been carefully improved through several rounds of interpretation and verification by
different image interpreters, and checked by one quality controller. Independent test
interpretation indicated that the quality control correctness level reached 90% at level 1
classes using selected interpretation keys from various parts of the USA. Fifty-nine per
cent of the samples have been verified with high-resolution images on Google Earth.
Uncertainty in interpretation was measured by the interpreter’s perceived confidence. Only
less than 7% of the sample was perceived as low confidence at level 1 by interpreters.
Nearly 42% of the sample units located within a homogeneous area could be applied to
validating global land-cover maps whose resolution is 500 m or finer. Forty-six per cent of
the sample whose EVI values are high or with little seasonal variation throughout the year
can be applied to validate land-cover products produced from data acquired in different
phenological stages, while approximately 76% of the remaining sample whose EVI values
have obvious seasonal variation was interpreted from images acquired within the growing
season. While the improvement is under way, some of the homogeneous sample units in
the data-set have already been used in assessing other classification results or as training
data for land-cover mapping with coarser-resolution data.

1. Introduction

Land cover is the physical evidence on the Earth’s surface, and land-cover maps play a
significant role in Earth system studies and ecosystem management. They can be used in
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parameterizing land process models in both climate and hydrological and carbon cycle
models (e.g. Dickinson et al. 1989; Liu et al. 1997; Dai et al. 2003; van Dijk, Peña-
Arancibia, and Bruijnzeel 2012; Yang et al. 2013), in public health and ecosystem
assessment (e.g. Liang et al. 2010; Gong et al. 2012; Torresan et al. 2012), or in the
management of natural resources or agricultural activities (e.g. Fritz et al. 2011; Zhong,
Gong, and Biging 2012).

During the past 15 years, several global land-cover maps have been developed with
resolutions varying from 1 km to 30 m (e.g. IGBP-DISCover product (Loveland et al. 2000),
UMD land-cover product (Hansen et al. 2000), GLC2000 product (Bartholomé and Belward
2005), MODIS land-cover product (Friedl et al. 2002, 2010), GLOBcover 2005 and 2009
(Arino et al. 2008; Defourny et al. 2009), and FROM-GLC maps (Gong et al. 2013)), and are
available to the users of land-cover information for different applications. Validation is a key
in the whole process of land-cover mapping, since without proper validation against higher-
quality reference data, any land-cover map remains an untested hypothesis that cannot be
unquestionably used (Congalton and Green 1999; Strahler et al. 2006). For global or
continental-scale land-cover maps, reference samples are difficult to obtain from field obser-
vations and are mostly based on image interpretation (Scepan, Menz, and Hansen 1999;
Mayaux et al. 2006; Friedl et al. 2002; Arino et al. 2008; Wickham et al. 2013), a highly
labour-intensive and time-consuming process. Therefore, most global land-cover maps are
either cross-validated from training samples or estimated with a limited number of samples, in
the order of a few hundred to thousands (Loveland et al. 2000; Hansen et al. 2000; Bartholomé
and Belward 2005; Friedl et al. 2002, 2010; Tateishi et al. 2011; Arino et al. 2008; Defourny
et al. 2009). Despite fairly good accuracies reported through self-evaluation (overall accuracy
66–78%), some researchers found considerably lower accuracies, ranging from 10% to 50%,
in different parts of the world or for different land-cover classes when validating the existing
global land-cover maps with different reference samples (Sedano, Gong, and Ferrao 2005;
Frey and Smith 2007; Gong 2009). Clearly more evaluations and comparisons of land-cover
products are necessary, and this requires an independent set of well-distributed validation
samples. Therefore, using FROM-GLC (Gong et al. 2013), it was determined that while high-
quality validation samples should be collected for validating 30 m global land-cover products,
some efforts should be made to make the samples applicable to the validation of other types of
land-cover data products.

Land cover changes according to different phenological stages of vegetation or
seasonal fluctuations of water supply due to natural climatic cycles or human impacts,
which increases the difficulty of validation. To date, land-cover types in early generations
of global land-cover maps are defined according to the principle of ‘the greenest’ (e.g.
grasslands are usually defined as lands covered with perennial or annual herbaceous
species at least during the growing season) or ‘the wettest’ (e.g. wetlands are lands
saturated with water permanently or seasonally), meaning that they are generalized across
time but not real-time dynamics. Grasses may die back in dry or cold seasons while
wetlands may occur in grasslands or crop fields recurrently, and this dynamic information
of the land cover is also useful, which can be provided by a time series of land-cover
maps. Therefore, the importance of mapping ‘dynamic land-cover types’ for a variety of
applications is increasingly being recognized. Sun et al. (2014) developed a high-
frequency (every 8 days) specific land-cover (water bodies) map for hydrological or
environmental applications, which requires a validation data-set with phenological infor-
mation. Taken the applicability of the samples into consideration, a validation data-set
with phenological information is necessary for validating land-cover maps made from data
acquired from different seasons.
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In addition, large discrepancies were found when comparing different global land-
cover products due to the fact that (1) accuracies of the same land-cover map are different
when assessed with different validation data-sets; (2) accuracies of land-cover maps for
the same area are different; and (3) large disagreement between land-cover maps was
found when conducting map-to-map comparison (Giri, Zhu, and Reed 2005; See and Fritz
2006; McCallum et al. 2006; Tchuenté, Roujean, and Jong 2011; Pflugmacher et al.
2011). Users may be confused about which map to choose for their application with
regard to accuracy, beyond considerations of classification scheme and spatial resolution.
The first difficulty in choosing a land-cover map is that each map was validated inde-
pendently, and direct accuracy comparison among maps is hindered by the lack of a
common validation data-set. The second is that overall accuracy cannot reflect the quality
of a map for a particular application, since map errors are unevenly distributed in different
areas or for different land-cover classes. Better accuracy assessment and comparison
would be greatly facilitated by a common global validation data-set, especially an
adequate, well-described, compatible, and temporally updated one. Communities have
begun contributing to global validation data-sets; GOFC-GOLD has been constructing a
data-access portal (http://www.gofcgold.wur.nl/sites/gofcgold_refdataportal.php) for var-
ious validation data-sets. Designed for different applications, validation data-sets for
specific land-cover types were also developed (e.g. Miyazaki, Iwao, and Shibasaki
2011). Several studies conducted validation sampling design. For example, a stratification
based on Köppen–Geiger climate classification and population density, and an augmenta-
tion method, were developed to make the validation samples independent of any single
land-cover map and meet the objectives of regional accuracy assessment (Olofsson et al.
2012; Stehman et al. 2012). The United Nations Food and Agriculture Organization
(FAO) used systematic sampling at the intersections of latitude and longitude in their
forest inventory (Ridder 2007). However, we believe that equal-area stratified random
sampling of the land areas of the world is desirable.

The objective of this article is to present the newly developed global land-cover
validation data-set whose sample units are allocated using an equal-area stratified sam-
pling scheme, evaluate the inherent land-cover interpretation uncertainty of the sample
units, and analyse the attributes of the sample units to expand their applicability in other
land-cover studies involving data acquired from different phenological stages or at
different spatial resolution. For illustration purposes, the data-set was applied to compare
the accuracies of three global land-cover maps.

2. Constructing a global validation data-set

The main processes in constructing the global validation data-set include (1) data collec-
tion and classification scheme design; (2) sampling design; (3) interpretation and quality
control; (4) phenology characterization; and (5) homogeneity measurement (Figure 1).

2.1. Data collection and classification scheme design

A total of 8929 scenes of Landsat TM/ETM images from Gong et al. (2013) were used in
this research. They were collected from the Global Land Cover Facility (GLCF) at the
University of Maryland (UMD), United States Geological Survey (USGS), and the
Satellite Ground Station of China, as the source data for validation sample interpretation.
The baseline period is 2009–2011, since about 60% of the source images were acquired
after 2009, while 95.8% were acquired after 2000. Source images acquired in multiple
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years were combined in this study based on the fact that the overall land-cover change
through a decade is less than 8% over rapidly changing areas of the world at the regional
scale (Lambin, Geist, and Lepers 2003; Stehman, Sohl, and Loveland 2003; Drummond
and Auch 2012; Pérez-Hoyos, García-Haro, and San-Miguel-Ayanz 2012), which implies
that even with a time discrepancy of 10 years (assuming 40% of images falling outside of
the baseline year of 2009–2011), the validation sample units before 2009 may contain an
error of approximately 0.32–3.2%, even for rapidly changing areas. Since most of the
existing land-cover maps have an error of over 20%, that caused by image combination
over multiple years would contribute less than 3% error in classification assessment at the
global scale. To reduce the uncertainty caused by this, we planned to constantly update
and backtrack the samples in the data-set to provide land-cover time series with the
enlargement of image resources.

Additionally, the time series of a 16-day composite of MODIS enhanced vegetation index
(EVI) with 250m spatial resolution for the year 2010 were downloaded to provide information
about seasonal variation (MOD13Q1 product, http://modis.gsfc.nasa.gov/data), with which
some specific land-cover types are easier to interpret. High-resolution imagery on Google
Earth was used as a supplemental reference for the interpretation of TM/ETM+ images.

The classification scheme for the validation data-set includes 11 land-cover types at
level 1, and some life-form categories included at level 2 that are potentially separable
from TM imagery (see Table 1). This system was developed based on the characteristics
of the finer-resolution data with further expansion in mind when fractional and vegetation
height information become available (Gong et al. 2013). With additional information on
canopy coverage and height that is planned for further production in the FROM-GLC
project, this classification scheme can easily be cross-walked to other schemes such as the
FAO land cover classification system and the International Geosphere-Biosphere
Programme (IGBP) land-cover classification system.

2.2. Sampling design

We had two objectives when we designed the sampling method. First, to ensure an overall
accuracy assessment in space (i.e. the sample units are globally evenly but locally

Figure 1. The main processes involved in constructing the global validation data-set.
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randomly distributed), an equal-area stratified random sampling scheme was selected. At
the global scale, ours is the only one that is based on equal-area partitioning of the
terrestrial surface. Our second objective was to use this design to estimate the proportions
of various land-cover types around the world. There has been no previous systematic
sampling for the entire world using such a large number of independent units. Since
geographic coordinate grids are not equal in area, the strata are approximately 7000 equal-
area hexagons dividing the land areas of the world (Overton et al. 1991; White,
Kimerling, and Overton 1992; Sahr and White 1998). In each hexagon, it is necessary
to avoid potential bias of repetitive patterns of land-cover distribution. Thus, a simple
random sampling of five units within each hexagon was adopted. Initially, each sample
unit was a 30 m pixel. For the sample size in each hexagon, we evaluated from 2 to 10
sample units and found that 5 per hexagon were affordable and practical for the whole
world. This resulted in a total of 38,664 sample units. This sampling design could be
implemented independently of any land-cover maps or stratification systems, and the
sample results can be used to estimate the percentage of each land-cover type occupying
the Earth’s land surface (land-cover percentage estimation was reported in Gong et al.
2013).

2.3. Interpretation and quality control

All image interpreters were selected on the basis of sufficient image interpretation
experience. As shown in Figure 1, after in-depth training on interpretation given by
invited experts familiar with local land cover in different parts of the world, the validation
sample units were primarily interpreted by four image interpreters for the first round. For
each observation, the 30 m pixel at the predefined location was identified into the
appropriate land-cover type at level 2 (shown in Table 1), along with three supplementary
attributes to describe (1) whether high-resolution imagery (spatial resolution usually finer
than 2 m) is available in Google Earth; (2) the interpreter’s perceived confidence; and (3)
whether the 30 m pixel is surrounded by homogeneous surface cover in the same class.
For the second round, the interpreted sample units were double-checked by a further three

Table 1. Land-cover types in the classification scheme of the validation sample set.

Level 1 Level 2 Level 1 Level 2

10 Croplands 11 Rice fields 70 Tundra 71 Shrub and brush tundra
12 Greenhouse farming 72 Herbaceous tundra
13 Other croplands 80 Impervious surfaces 81 Impervious–high albedo

20 Forests 21 Broadleaf forests 82 Impervious–low albedo
22 Needleleaf forests 90 Barren lands 91 Dry salt flats
23 Mixed forests 92 Sandy areas
24 Orchards 93 Bare exposed rock

30 Grasslands 31 Pastures 94 Bare herbaceous croplands
32 Other grasslands 95 Dry lake/river bottoms

40 Shrublands 96 Other barren lands
50 Wetlands 51 Marshland 100 Snow and Ice 101 Snow

52 Mudflats 102 Ice
60 Water bodies 61 Lake 999 Cloud

62 Reservoir/pond
63 River
64 Ocean

International Journal of Remote Sensing 4799



image interpreters selected based on their outstanding skills in image interpretation. The
final quality control – the third round – was conducted by only one interpreter, the most
experienced, who reviewed all sample units and ensured that they could be interpreted
under a uniform standard. Some land-cover types were partially defined by spatial
characteristics such as coverage and canopy height. Coverage may be estimated differ-
ently by different interpreters. Sparse grassland, for example, might be categorized into
grasslands or barren lands, depending on the estimated herbaceous coverage of the sample
unit. Users, however, only need to apply the final round of interpreted samples to their
application. For integrity of the data-set, we kept the earlier rounds of interpretation to
indicate the difficulty of interpretation; for example, if a sample unit was interpreted
correctly for the first round and all quality controllers showed consistent interpretation,
that sample unit would be deemed more reliable and easy to interpret.

The interpretation process is based on both inherent elements (size, shape, tone,
texture, shadow, association, and pattern) in images and prior knowledge, such as climate
condition, vegetation zone, seasonality, and regional human impacts. Beside Landsat TM/
ETM+ images and MODIS EVI time series, supplementary information from Google
Earth plays an important role in land-cover interpretation (Yu and Gong 2012. Examples
are shown in Figure 2).

2.4. Phenology characterization

Annual phenology variation, which refers to the life cycle of vegetation or the fluctuation
of water cycles, may result in land-cover change, which is the reason that validation
sampling without phenological characterization cannot be unquestionably applied to
validate dynamic land-cover products. Sample units whose EVI values are high or have
little variation in the annual cycle are in same land-cover type throughout the year,
meaning that they can be used to validate land-cover maps produced from data acquired
at any time in a year. On the contrary, sample units whose EVI values have obvious
seasonal changes should be used with caution, because in this case, sample units might be
identified as different land-cover types inside and outside the growing season. Thus they
can only be applied to validate dynamic land-cover maps in part of their annual cycle
according to the acquisition time of the interpreted Landsat image. Having phenology
information would add the application flexibility of the data and reduce uncertainties.

To identify the phenological type and parameters of sample units, 16-day MODIS EVI
time series data for the year 2010 were extracted at the sample locations and were
processed using TIMESAT software (Jonsson and Eklundh 2002, 2004), which was
developed for extracting seasonality parameters from satellite data. Since the double
logistic function was better at preserving the integrity of the time series (Hird and
McDermid 2009) than Savitzky–Golay, which is more sensitive to rapid changes by
local fitting, the former model was used.

As shown in Figure 3, some sample units could not be processed due to lack of valid
data in a time series, while others were processed with the chosen model fit. To evaluate
the goodness of fit, the coefficient of determination, R2, was calculated. Noisy sample
units with low R2 were filtered out and then checked manually. Seasonality parameters,
such as the beginning of the season (Begin), end of the season (End), length of the season
(Length), average of left and right minimum values (Base), and the difference between the
maximum value and the base level in a season (Amplitude), are calculated from
TIMESAT. The beginning and end of the season were estimated as rising and falling
for 20% of the seasonal amplitude. Figure 4 presents the EVI time series for examples of
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different phenological characteristics identified through the processes in Figure 3. Sample
units with relatively high base level (Base >3000) were characterized as ‘green vegetation
over the whole year’ (Figure 4(a)). For the remaining sample units, those with overly
short or long growing seasons (Length <4 or >22) caused by noise were characterized as
‘EVI with little change over the whole year’ (Figures 4(b) and (c)), while those in dry and
cold regions according to Köppen–Geiger climate classes were excluded because the
growing season is assumed to be shorter than 64 days in those regions limited by water
or temperature conditions (Figures 4(d) and (e)). The remaining sample units were
categorized as ‘EVI with little change over the whole year’ (Figure 4(f)) and ‘EVI with
obvious seasonal change’ (Figures 4(g) and (h)) by comparing the estimated seasonal
amplitude to a threshold related to the estimated base level. The higher the base level, the

A (50.36° N, 109.05° E)

B (42.36° N, 115.61° W)

C (42.57° N, 2.83° E)

(a) (b) (c)

(d) (e)

(f) (g)

Figure 2. Supplementary data over three sample locations for interpretation from Google Earth.
Sample unit A is located in the East Siberian taiga in Russia; sample unit B is an example at Snake-
Columbia shrub steppe in the USA; sample unit C is a typical Mediterranean orchard and vineyard
in France. (a) Geo-tagged photos shared by visitors on the platform of Google Earth; (b), (d), and (f)
latest remotely sensed images on Google Earth; (c) elevation profile for A; (e) historical imagery; (g)
screenshots of street view.
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Figure 4. EVI time series of different phenological characteristics. Small arrows along the time
axis refer to the approximate acquisition time of Landsat imagery used in this study. The estimated
growing season is presented as a grey block in each example.

Figure 3. Major processes in phenology characterization. This procedure is run for each sample in
the validation data-set.
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higher the threshold was set. Since the acquisition time of the main reference image for
interpretation may influence the interpreted land-cover type and uncertainty in interpreta-
tion, sample units with obvious seasonal changes were categorized into two classes –
‘interpreted in growing season’ (Figures 4(d) and (g)) and ‘interpreted outside growing
season’ (Figures 4(e) and (h)), according to the relationship between the acquisition time
of the Landsat image and the estimated beginning and end of the season. That is why the
sample unit shown in Figure 4(e) was interpreted as barren instead of grassland, because
during the long dry season the grasses had dried up.

The cropland and bare cropland sample units were processed separately because some
have more than one season in a year (Figure 4(i)). Thus, the program was forced to treat
the time series of these sample units as if there were two annual seasons. However, given
the fact that some fitted time series data do not reflect the real phenological change, being
affected by noise, the sample units were filtered based on the following criteria to remove
those that were not real double-cropping sample units: (1) relatively high (>0.7) when
evaluating the goodness of fit; (2) the interval between two seasons is no shorter than 32
days; (3) the length of each season is longer than 48 days; (4) relatively high intensity of
the seasonal change (calculated by multiplying the seasonal amplitude by base level,
>0.8); (5) the two seasons should not have major disparity in seasonal amplitude (ratio
between 3/5 and 5/3); and (6) the ratio of the EVI values at the beginning and the end of
the season is below 3.

2.5. Homogeneity measurement

If the land cover in a 1 × 1 km pixel around a sample location is nearly homogeneous, the
sample unit is suitable for validation of land-cover maps at spatial resolutions ranging
from 30 to 500 m. Thus, the homogeneity measurement of the sample location is
necessary for appropriate use of the sample units. With such a distinction one could use
the large homogeneous sample units as part of the training or validation data when
classifying coarser-resolution images (e.g. Wang et al., forthcoming).

Although homogeneity was manually recorded by interpreters in the information for
the sample units, it relies on the subjective judgement of the interpreters. In most cases the
homogeneous area is relatively uniform, repetitive, and less complicated in texture, so the
approach of texture analysis was adopted to measure homogeneity automatically (Gong,
Marceau, and Howarth 1992).

The grey-level co-occurrence matrix (GLCM) is a second-order statistical texture
characterization method that enumerates the occurrence of pixel pairs of specific values
along certain directions in a local pixel neighbourhood (Haralick, Shanmugam, and
Dinstein 1973). Two texture features, contrast and entropy, were extracted to summarize
the information contained in the GLCMs calculated for a 1 × 1 km window on TM band 4
images at the sample location. Entropy is a measure of complexity of the image, while
contrast is a measure of the intensity of difference between a pixel and its neighbours on
the image.

To estimate the threshold of texture features for homogeneous sample units, 1121
sample units in the data-set were selected by the stratified random sampling method and
the strata were constructed based on a combination of Köppen–Geiger climate classes
(Rubel and Kottek 2010) and land-cover types, to ensure the inclusion of all climate types
and land-cover types. All selected sample units were labelled as either homogeneous or
heterogeneous. Scatter plots and histograms were created separately for different

International Journal of Remote Sensing 4803



land-cover types to select the thresholds, since the threshold is higher if a land-cover is
coarse-grained – such as forests, or fragmented – such as crop fields.

Although a visual inspection of homogeneous samples determined by texture analysis
indicates that all are indeed homogeneous, a certain amount of uncertainty could exist in
this subset of samples, especially those sample units located on different land-cover types
having similar spectral properties or those belonging to the same land-cover type but
having different spectral characteristics.

3. Characteristics of the data-set

Out of the total design of sample size of 38,664, although every sample unit was initially
assigned a class at various stages, 37,435 sample units were identified by the quality
controller. The distribution of the sample units in terms of level 1 classes is shown in
Table 2. This leaves 1229 sample units un-identified due to lack of quality Landsat data
(193), cloud cover (288), or high interpretation uncertainty (748), accounting for 3.18% of
the total sample population. From Table 2, it will be seen that the lowest number of
sample units is 261 (wetlands). This number of sample units in small-sized classes is
sufficient for accuracy evaluation at the global scale according to the sample size
determination for an individual class based on a binomial distribution (Fitzpatrick-Lins
1981). As an approximation to sample size requirements according to this method, when
the expected accuracy is 85% with a 5% allowable error, the required sample size is 196
(Gong 2006).

The data-set contains information about the interpretation uncertainty, phenology, and
homogeneity of each sample unit (Table 3). By summarizing the characteristics of the
sample units in the data-set, the uncertainty of the data and the applicability to different
land-cover maps were analysed (Figure 5). In the following we present some details.

3.1. Inherent land-cover class interpretation uncertainty of the validation sample

The inherent land-cover class interpretation uncertainty of the validation sample is
attributable to many factors, such as site complexity, lack or poor quality of reference
data for interpretation, spectral difference within the same land-cover type, and the
occurrence of mixed pixels caused by fragmented landscape. The lack or poor quality
of reference image for interpretation limits the accuracy of the validation sample. Some
reference images are covered by clouds and shadows, damaged from atmospheric correc-
tion, acquired at specific points in time difficult to interpret, or are too coarse to identify
the land-cover type. Take the spatial resolution of the reference image as an example:
59.39% of the sample units in the data-set have high-resolution images as reference from
Google Earth, providing strong support for TM image interpretation and reducing the

Table 2. Number of sample units for each land-cover class at level 1.

Class (level 1) Number of units Class (level 1) Number of units

10 Croplands 2901 60 Water bodies 1557
20 Forests 11,919 70 Tundra 2120
30 Grasslands 6015 80 Impervious 288
40 Shrublands 4090 90 Barren Lands 7454
50 Wetlands 261 100 Snow and ice 830
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uncertainty of the sample, especially for some specific land-cover types such as rice fields,
shrublands, pastures, and reservoirs/fish ponds. For example, livestock and dam are
visible markers for interpreting pastures and reservoirs, respectively. Some shrubs in
arid regions are difficult recognize on low-resolution images since most arid shrubs

Figure 5. Summary of sample characteristics related to sample uncertainty and applicability.

Table 3. Attribute table in the validation data-set. Two records are shown as examples, with
explanation in parentheses.

Sample ID 4886 26,040

Spatial information Latitude 47.950621 58.565906
Longitude −113.825193 11.54227
Country USA Sweden
Ecoregion North Central Rockies

forests
Sarmatic mixed
forests

Landsat TM image
information

Path, row 41, 27 196, 19
Year, month, day 2010, 7, 24 2010, 6, 4

Land-cover type
code

First round: original
interpreter

21 (broadleaf forests) 13 (other croplands)

Interpreter name Interpreter A Interpreter B
Second round: double-
checker

22 (needleleaf forests) – (agree with last
round)

Double-checker name Interpreter E Interpreter F
Third round: quality
controller

– (agree with last
round)

– (agree with last
round)

Quality controller name Interpreter X Interpreter X
Comments – –

Uncertainty Availability of high-
resolution imagery in
Google Earth

1 (yes) 1 (yes)

The interpreter’s perceived
confidence

0 (confident at both
levels)

0 (confident at both
levels)

Phenology Phenological type 3 (‘green’ for the
whole year)

7 (obvious seasonal
change, interpreted
image was
acquired in
growing season)

Phenological parameters
(start, end, length, base and
amplitude of the growing
season)

–, –, –, 3074.9, 1401.4 7.5, 21.7, 14.2,
479.5, 5309.6 (unit
of time = 16 days)

Homogeneity Homogeneity in 1 × 1 km
pixel

0 (not homogeneous) 0 (not homogeneous)
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have very small leaves and the background dominates the observed spectral signal. The
discrimination of forest subtype also benefits more from high-resolution images, because
leaf shape, size, and colour can be interpreted better. As shown in Figure 6(a), regions of
high population density such as eastern and southern Asia, Europe, western Africa, and
eastern South America are covered with high-resolution images, while by contrast spar-
sely populated regions such as those in high northern latitudes – western Australia and the
Sahara – are not. The tropics, including Southeast Asia, the Congo Basin, and the
Amazon, also lack high-resolution images due to frequent cloud cover. Sample units of
the 10 largest countries, accounting for over 54% of the total sample amount, represent a
sizeable proportion in the data-set. The numbers of sample units with and without high-
resolution images of the 10 largest countries in area were compared (Figure 6(b)). Over
80% of the sample units for India and the USA have high-resolution images, but the
percentage for Russia and Canada is only 25% and 31%, respectively. Although all
sample units were interpreted based on Landsat imagery, a large portion of them were
covered with high-resolution ancillary data. The use of different data sources could
potentially introduce bias. The level of certainty over different sample units varies with
land-cover type, availability of high-resolution data, and the quality and timeliness of
ancillary data. Despite the potential bias, in most cases the ancillary data help reduce the
uncertainty of the interpretation results based on Landsat data, and therefore improve the
overall quality of the sample data-set for validating land-cover maps. The availability of
high-resolution data, as noted in the attribute table of our validation data-set, could help
indicate the bias and quality of the sample units and serve as a starting point for further
collection of the high-resolution image or field verification.

The interpretation uncertainty of the validation sample can be reflected by the interpreter’s
perceived confidence. More efforts will bemade to improve sample units with low confidence
with the use of more reference data or field surveys in the future. In total, 2622 and 4798
sample units are labelled with low confidence in land-cover type at levels 1 and 2, respec-
tively. Validation sample units interpreted with low confidence are distributed mostly in the
biomes of (1) tundra, (2) boreal forests/taiga at high latitude, and (3) tropical and subtropical

Figure 6. Validation samples with high-resolution imagery available at Google Earth. (a) Spatial
distribution of samples with and without high-resolution imagery available at Google Earth; (b) total
number of samples for the 10 largest countries and the percentage of samples with high-resolution
imagery for each country.
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grasslands, savannas, and shrublands in Africa, South America, and Australia (Figure 7(a)).
The proportion of the samples with low confidence varies greatly among different land-cover
types, as shown in Figure 7(b) – grassland is highest (8.84%), followed by impervious
surfaces and shrublands. This proportion for forests is not high, but the quantity is large
nonetheless due to the large number of forest sample units. Sample units of barren lands show
the best confidence, with only 1.37% interpreted with low confidence at level 1. Although
interpreters may feel confident in identifying barren land, this may not be so easily identifiable
due to its spectral confusion with low-coverage vegetation types.

The quality controller who finalized all validation sample units had been selected from
among more than 20 photo-interpreters who had participated in the production of FROM-
GLC (Gong et al. 2013). She was the best performer in various tests of photo-interpreta-
tion. With no on-site visit experience in the USA, this quality controller scored 90%
correct among the 10 land-cover categories at level 1 and 78% correct out of more than 20
categories at level 2 in a photo-interpretation test. One hundred sample areas in the test
were selected from photo-interpretation keys of all ranges of difficulty level from
California, Utah, South Dakota, Minnesota, and Florida, mostly based on colour infrared
photographs but with some taken from high-resolution images in Google Earth (Aerial
Information Systems Inc. 2007; Ouray National Wildlife Refuge 2001; Lacreek National
Wildlife Refuge 2001; USGS-NPS 1996; Southwest Florida Water Management District
2010). The 100 test units included a similar percentage of each land-cover type (croplands
9%, forest 33%, grasslands 20%, shrublands 8%, wetlands 14%, water bodies 3%, tundra
1%, impervious surface 0%, barren lands 11%, and snow and ice 1%) in the composition
of the validation data-set. With this test score, we estimate the uncertainty attributable to
quality control to be less than 10% in the validation sample at level 1. In the interpretation
testing of all except one photo-interpreter who participated in the validation sample,
interpretation scored above 80% at level 1 classes. The photo-interpreter who scored the
lowest, achieving 78% correct at level 1, was a wetland specialist who scored best with
wetland categories. Considering the fact that none of the photo-interpreters had previously
visited the USA, their performance is good.

Figure 7. Validation samples interpreted with low confidence at land-cover type level 1. (a) Spatial
distribution of the low-confidence samples; (b) number of samples in each land-cover type (solid
bars) and percentage of sample interpreted with low confidence at level 1 (dashed lines).
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3.2. Phenological characteristics

According to the phenological analysis described above, 7488 sample units in the data-set
are ‘green’ for the whole year (Figure 8(a)) and 45% of those are in the forest category,
including rainforests (distributed in Southeast Asia, the Amazon Basin, the Congo Basin,
Central America, and many Pacific Islands), temperate coastal forests (e.g. the Taiheiyo
evergreen forests in Japan and the Atlantic forests in Europe, Pacific temperate coastal
forests in Western North America, the Valdivian forests in southwestern South America,
and the Eastern Australian temperate forests), and taiga/boreal forests in Russia and
Canada, while most of the remaining ‘green’ sample units are grasslands, shrublands,
and croplands. Among the sample units, 9646 are of the type ‘EVI with little change over
the whole year’, as shown in Figure 8(b). The colour of each point shows the average
value in the EVI time series, among which the sample units with lower average EVI are
barren lands like desert, mainly distributed in western China, the Arabian Peninsula, the
Sahara, the Kalahari in southern Africa, Chihuahuan in North America, Atacama in South
America, and western Australia. Sample units with stable medium average EVI are spread
over steppe, savannah, and shrublands. There are also some sample units with high
average EVI that change little throughout the year. Some evergreen forests in regions of
taiga/boreal forests belonging to this type were not extracted, due to interference with the
EVI time series by snow cover in winter. These were judged as belonging to the type
showing obvious seasonal change (see the green belt at high latitudes in Eurasia and
Canada in Figure 8(d)). This will be improved if phenological fit is weighted by snow
cover (e.g. the MODIS snow/ice flags) for the same time period. The sample units of the
two types mentioned above can be readily used without concerns about seasonal change.
Conversely, sample units whose EVI has an obvious seasonal change throughout the year
(Figure 8(c)) may not be suitable for validating land-cover maps derived from remote-
sensing images acquired at certain times. Thus, the sample units are distinguished between

Figure 8. Phenological characteristics of validation samples. (a) Samples ‘green’ for the whole
year. (b) Samples with little EVI variation over the whole year; the annual average EVI for this type
of sample is denoted by different colours. (c) Samples with obvious EVI change over the whole
year; sample colours indicate whether they were interpreted with images acquired during the
growing season. (d) Samples with obvious EVI change over the whole year; sample colours indicate
the length of growing season fitted with EVI time series.
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interpretation within and outside of the growing season in reference to seasonal change.
For example, a sample unit can be interpreted as barren in the dry season, but it may be
grassland in the wet season. A sample unit of snow cover in the cold season may be
tundra after snow melts. Approximately 76.4% (14,865) of 19,450 sample units with an
EVI showing obvious seasonal change throughout the year were interpreted from images
acquired in the growing season. The sample units from images taken outside the growing
season, marked in yellow in Figure 8(c), have higher uncertainties in land-cover inter-
pretation, to which special attention should be paid. However, they may also be very
useful when dynamic land-cover types are mapped at different seasons throughout the
year. In this case, the attributes of the beginning, end, and length of the growing season
could help determine the applicability of a sample unit in regard to seasonal change.
According to the length of the growing season extracted by model fit (Figure 8(d)),
ecoregions of savanna, steppe, dry and thorny woodlands, and tundra have shorter
growing seasons.

3.3. Homogeneity characteristics

Approximately 41.65% (16,104) of sample units were categorized as ‘homogeneous
sample’, which are almost homogeneous in a 1 × 1 km pixel. Homogeneous sample
units comprised 35.26% of forest samples and 26.23% of barren land samples, accounting
for 47.65% and 56.67% of the sample units in their own land-cover types, respectively.
Homogeneous sample units are relatively easy to interpret, being less affected by the error
imposed by geolocation, and can be used to validate land-cover maps at lower resolutions
such as 250, 300, and 500 m resolution. The homogeneity calculated by texture analysis
was compared to that manually interpreted, and the consistency was 76%. Since texture-
based homogeneity results are more objectively obtained, in the subsequent application
demonstration we mainly used this subset of sample units in subsequent applications
when homogeneous sample units were needed.

4. Application of the data-set

The entire data-set was used in validating our new 30 m-resolution global land-cover data
product, FROM-GLC-agg (an improved version of FROM-GLC available at data.ess.
tsinghua.edu.cn, Yu et al. (Forthcoming)). The overall accuracy is 65.51%.

Part of the data-set was used to validate and compare two land-cover maps, MODIS
Land Cover 2010 and GLOBCOVER 2009. Since these two products have a spatial
resolution of 500 and 300 m, respectively, only sample units that are homogeneous in an
area of 1 × 1 km around the sample location can be used for this application. Cross-
walking of land-cover types was done between the different classification schemes. Since
the data-set was originally designed to validate a 30 m-resolution map, sample units
located in homogeneous areas are unevenly distributed. Therefore, these would lead to a
certain extent of overestimation of accuracy in coarser-resolution data products if used for
accuracy assessment. Nonetheless, they can be used as a relative measure in assessing the
potential performance of different classification procedures when applied to the same type
of data-sets.

With the exclusion of sample units interpreted using Landsat imagery acquired outside
their growing season (2167 sample units), we used the remaining 13,902 (approximately
36.00% of the total sample) large homogeneous sample units to assess the accuracy of
MODIS and GLOBCOVER land-cover data. The removal of sample units outside of the
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growing season is necessary because both MODIS and GLOBCOVER land-cover pro-
ducts adopted land-cover classes in ‘the greenest’ season.

Overall accuracy for MODIS 2010 and GLOBCOVER 2009, calculated based on all
homogeneous sample units, excluding those interpreted with images acquired outside the
growing season, is 73.14% and 68.89%, respectively (Table 4). As a reference, when
using this same set of homogeneous sample units in validating FROM-GLC-agg, this
resulted in an overall accuracy of 67.04%, indicating that these homogeneous sample
units overestimated accuracy as compared with 65.51% overall accuracy when all valida-
tion sample units were used.

5. Conclusions and discussion

The data described here represent our initial efforts in developing a land-cover validation
data-set that is global, well described, compatible, and temporally updated to facilitate
global land-cover mapping. A total of 38,664 sample units were collected by interpreting
Landsat TM/ETM+ images and MODIS EVI time series data, as well as high-resolution
images from Google Earth, recording of the quality of reference data, and interpreter
confidence. Acknowledging phenological and homogeneity information of the sample
units, users can filter and use the data to validate land-cover maps of different spatial
resolution and at appropriate time points. The validation sample can also be used
separately for either individual class validation or as training data, particularly for forests,
water bodies, impervious surfaces, and snow/ice, whose uncertainty is low. Our confi-
dence in the other categories is also high following final quality control with careful
analysis of the reference time series data and other ancillary data. Although the entire
validation data-set was originally designed for assessing global mapping results at the
30 m level, the homogeneous sample units within the growing season that account for
36% of the entire validation data-set were used in validating MODIS 2010,
GLOBCOVER 2009, and FROM-GLC-agg as an example.

Given the fact that only a small portion of global land cover changes on an annual
basis, the majority of the validation sample units collected in this research are useable for
multiple years over large spatial scales such as continental and global. However, over
areas where land cover frequently changes beyond seasonal variations, sample units
should be temporally updated. One urgently needed improvement is to collect additional
images to resolve the 3.18% of unidentified sample units and to enrich the validation data-
set by finding the within-growing season of land-cover types for those that are currently
based on interpretation of images that were acquired outside of the growing season.
Improvement of the validation data-set takes time and requires additional effort. When
further data for different years are collected, sample units that have undergone changes

Table 4. Overall accuracies calculated based on homogeneous samples
in the data-set presented with a 95% confidence interval and estimated
according to the standard error (Olofsson et al. 2014).

Overall accuracy (%)

MODIS 2010 73.14 ± 1.60
GLOBCOVER 2009 68.89 ± 1.06
FROM-GLC-agg 67.04 ± 0.69
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can be identified through automatic change detection methods, and then reinterpreted. It is
quite a significant challenge to further reduce uncertainties in image interpretation, and
this could be partially overcome by gathering additional reference data or conducting
well-designed field survey targeting on those difficult-to-interpret regions. Crowd-
sourcing is an alternative to improvement of the validation data-set, by asking volunteers
from all over the world to validate the sample. However, consistency in image interpreta-
tion is harder to achieve through crowd-sourcing. Future work will also include expanding
the application scope of this validation data-set to the validation of other land-cover maps
of different spatial resolution and in different seasons, and ensuring correct use of the
sample. For example, it would be beneficial to screen out those sample units that are
almost homogeneous, but the land-cover type for a high-resolution pixel is different to
that for a low-resolution pixel, since a map of low resolution is a generalization of the
mixed surroundings. This could be done automatically by edge detection or multi-scale
texture analysis. Furthermore, inference rules about land-cover dynamics could be set up
for both phenological and long-term changes, which can then be used to check the
correctness of the sample or to update the sample to prolong its applicability.

The validation data-set presented in this paper can be downloaded from data.ess.
tsinghua.edu.cn.
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