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The green revolution represents one of the greatest environmental changes in India over
the last century. The Upper Ganges (UG) basin is experiencing rapid rates of change
of land cover and irrigation practices. In this study, we investigated the historical rate
of change and created future scenario projections by means of 30 m-resolution multi-
temporal Landsat 5 Thematic Mapper and Landsat 7 Enhanced Thematic Mapper Plus
data of the UG basin. Post-classification change analysis methods were applied to Landsat
images in order to detect and quantify land-cover changes in the UG basin. Subsequently,
Markov chain analysis was applied to project future scenarios of land-cover change.
Fifteen different scenarios were generated based on historic land-cover change. These
scenarios diverged in terms of future projections, highlighting the dynamic nature of the
changes. This study has shown that between the years 1984 and 2010 the main land-cover
change trends are conversion from shrubs to forest (+4.7%), urbanization (+5.8%),
agricultural expansion (+1.3%), and loss of barren land (–9.5%). The land-cover change
patterns in the UG basin were mapped and quantified, showing the capability of Landsat
data in providing accurate land-cover maps. These results, in combination with those
derived from the Markov model, provide the necessary evidence base to support regional
land-use planning and develop future-proof water resource management strategies.

1. Introduction

In recent decades, India has undergone substantial environmental change. India’s green
revolution was initiated by the introduction, in the mid-1960s, of high-yielding varieties of
rice and wheat across Latin America and Asia (Singh 2000; Evenson and Gollin 2003),
with the aim of increasing food security and promoting sustainable economic develop-
ment on these continents (Pinstrup-Andersen and Hazell 1985). Combined with the
expansion of agricultural land area to meet the demand of a rapidly increasing population,
the green revolution has enabled India to become self-sufficient in food grains (Singh
2000; Sen Roy et al. 2007). In the initial stages of the green revolution, the growth in
agricultural area was achieved through widespread deforestation (Rai, Sharma, and
Sundriyal 1994; Singh 2000). However, since the beginning of the 1990s, India has
pursued a policy of afforestation and reforestation combined with conservation of its
existing resources (Ravindranath, Chaturvedi, and Murthy 2008).

Land-cover change affects the water resources of northern India in complex ways. Several
studies have identified a strong feedback mechanism between soil moisture and precipitation
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(e.g. Meehl 1994; Koster et al. 2004; Seneviratne et al. 2010). This arises because the amount
of soil moisture on the land surface affects the partitioning between sensible and latent heat:
greater soil moisture increases the latent heat flux, reducing the amount of energy available to
warm the air at the near surface (Pitman 2003). Modelling carried out by Meehl (1994)
showed that the increase in soil moisture at the land surface due to irrigation influenced the
strength of the Asian monsoon. A study by Sen Roy et al. (2011) linked soil moisture from
irrigation to increased precipitation during the dry season. The pressure on water resources in
India is likely to increase further, with forecast population growth together with continued
economic progress. Consequently it is essential to understand historic trends in land-cover
change and make valid predictions of future change in order to understand its effects on water
resources and improve water security in the region.

One of the most successful applications of remote-sensing techniques is recording land-
use/cover changes through time (Christensen et al. 1988). The Landsat programme, one of
NASA’s major Earth observation initiatives, has been providing a nearly continuous record
of the global land surface change since its inception in 1972 (Cohen and Goward 2004).
Landsat 5 was launched in 1984 and ended image acquisition in 2013. Landsat 7 was
launched in 1999 and continues in operation today. The fixed acquisition schedule these
follow (the satellite revisits the same spot on Earth every 16 days) has provided a long-term
record, representing the longest and one of the most consistently available datasets in
remote-sensing history. Its use has extended knowledge of land-surface processes across
spatial and temporal scales and enhanced scientific research (Cohen and Goward 2004).
Satellite images are widely used today in land-cover classification and change detection
analysis (Ehlers et al. 1990; Westmoreland and Stow 1992; Harris and Ventura 1995; Yeh
and Li 1999). However, as a result of management decisions and operational errors, the
availability of Landsat images for northern India is poor (Goward, Arvidson, and Williams
(2006). Furthermore, heavy cloud cover during the monsoon (June–September) means that
satellite images for this season frequently cannot be used (Thenkabail, Schull, and Turral
2005; Goward, Arvidson, and Williams (2006). Because of these shortcomings, the
dynamics of land-cover changes over the Indian subcontinent remain poorly studied.

Recently published regional land-use mapping studies tend to focus on the cities of
central and southern India. Jat, Garg, and Khare (2008) used statistical classification
approaches in high-resolution (5–25 m) satellite images acquired over the period 1977–
2005 to study the urban expansion of Ajmer City in India. To establish a relationship
between urbanization and its causative factors, they applied multivariate statistical techni-
ques and found that, by 2051, the built-up area in the region would increase by almost 100%
when projected using present trends. Bhatta (2009) classified satellite images acquired by
Landsat and the Indian Remote Sensing (IRS) sensor into urban and non-urban to examine
the urbanization pattern of Kolkata, India. The results showed that although the population
growth rate has been declining, there is a clear indication of dispersed development of the
city. Rajitha et al. (2010) mapped the land-cover changes occurring in their study area in
Andhra Pradesh, India, during the period 1990–2005. They quantified the changes based on
normalized difference vegetation index (NDVI) image differencing and post-classification
change analysis, and developed future scenarios for 2010 based on Markov chains.
Moghadam and Helbich (2013) developed land-cover maps for the years between 1973
and 2010 based on Landsat imagery for the city of Mumbai in India. Furthermore, they
applied an integrated Markov Chains Cellular Automata (MC–CA) urban growth model to
project urban expansion for the years 2020–2030.

Along with the studies mentioned above, several other recent studies (Sheeja et al.
2011; Bhagyanagar et al. 2012; Rahman et al. 2012; Raja et al. 2013) focusing on India
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have mainly investigated changes in small-scale systems, mostly related to urbanization.
Therefore, investigating the dynamics of land-cover changes in a large-scale system, such
as the Upper Ganges (UG) basin, is a challenge for this study.

In recent years several dynamic-process-based land-cover-change models have been
developed, such as cellular automata and econometric and agent-based models (see
review articles of Parker et al. (2003), Verburg et al. (2009), and Sohl and Claggett
(2013)). These models can represent human decision-making and environmental man-
agement policies while taking into account the processes that drive land-cover change.
Over recent years, a new approach based on combining elements of different modelling
techniques has become popular. An increased number of land-use/land-cover (LULC)
change modelling tools have been linked with each other, leading to multidisciplinary
modelling frameworks. For instance, Claessens et al. (2009) coupled the land-use
change model conversion of land use and its effects (CLUE) (Verburg et al. 2002)
with the landscape process model LAPSUS (Landscape Process Modelling at Multi-
Dimensions and Scales; Schoorl, Veldkamp, and Bouma 2002), which simulates water
and tillage erosion and sedimentation, to model interactions and feedbacks between
land-use change and geomorphic processes. Renwick et al. (2013) combined the
Common Agricultural Policy Regionalized Impact (CAPRI) modelling system and
Dyna-CLUE models to examine the potential impact of agricultural land-use conversion
and trade policy reform on land use across the European Union (EU). Verburg,
Eickhout, and Meijl (2008) presented a scenario-based modelling approach to support
policy discussions as developed in the Eururalis project (Westhoek, van den Berg, and
Bakkes 2006), and to link global level developments influencing land use to local level
impacts; three models are linked together: an extended version of the global economic
model GTAP (Global Trade Analysis Project), the IMAGE (Integrated Model to Assess
the Global Environment) model, and CLUE-s.

All these different approaches have substantially improved the representation of com-
plex systems by offering different levels of modelling complexity dependent on input data
availability (Sohl and Claggett 2013). However, the data requirements of dynamic-based
models do not allow for their implementation in a data-scarce region such us our study
area. Furthermore, a recent study by Tayyebi, Tayyebi, and Khanna (2014) compared two
different types of land-use-change models (artificial neural networks and spatial logistic
regression models) to categorize and measure various dimensions of uncertainties. They
found that the uncertainty in land-use-change modelling originating from data uncertainties
is greater than that originating from model parameter uncertainties. Thus, to overcome the
data limitation which would increase our modelling uncertainty, an empirically fitted model
(Markov chains) was selected.

This paper aims to capture historical and future spatio-temporal trends in land-cover
change by modelling the dynamics of land-cover change and developing future projection
scenarios. The methodology combines the analysis of 30 m-resolution multi-temporal
Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper plus (ETM+)
data with Markov modelling to detect, quantify, and analyse land-cover changes between
1984 and 2010, and to create future projections of change in the UG basin of India.
Hypothetical future projection scenarios of land cover are developed using Markov chain
analysis and by generating transition probability matrices, which indicate transition potentials
from one land-cover class to another. The results are expected to enhance progress in
identifying and understanding the temporal dynamics of climate–surface–groundwater fluxes
as a function of land-cover changes.
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2. Data

2.1. Study area

The study region is the UG basin located in Northern India (Figure 1), which covers an area
of 87,000 km2. The elevation ranges from 7400 m in the Himalayan mountain peaks to
90 m in the plains. When the River Ganges reaches the plains, it becomes subject to a vast
irrigation demand as 410 million people are dependent on it to cover their daily needs
(Verghese 1993). Around 60% of the basin is occupied by agriculture (main crop types
include wheat, maize, rice, sugarcane, bajra, and potato), while 20% is covered by forests,
mostly in the upper mountains, and approximately 2% in the mountain peaks is permanently
covered with snow (Bharati and Jayakody 2010). The annual average rainfall in the UG
basin ranges between 550 and 2500 mm (Bharati and Jayakody 2010), and a major part of
the rains is due to the southwesterly monsoon that prevails from July to late September
(Figure 2). The Ganges basin is the most densely populated river basin in the world, with an
average population density of 520 km−2. Between 1991 and 2001, the urban population of
India increased by 32% and this trend is likely to continue, making the study area subject to
rapid land-cover changes (O’Keeffe et al. 2012). According to the 2011 census (Office of
the Registrar General, Census Commissioner and India 2011), the population of India
increased by more than 181 million from 2001 to 2011, reaching 1.21 billion.

2.2. Remote-sensing data

Landsat 5 TM and Landsat 7 ETM+ images, 77 in total, for the month of October in 1984,
1990, 1998, 2000, 2002, 2004, 2006, 2008, and 2010, were acquired from the US
Geological Survey Global Visualization Viewer. Prior to the analysis, the images were
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Figure 1. Location map of the study area in northern India and digital elevation model (DEM) of
the UG basin showing the range of elevations (m altitude).
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co-registered to UTM projection zone 44N, WGS 1984 datum, and corrected for radio-
metric and atmospheric effects. Then the images were classified using a maximum like-
lihood classifier method with pixel training data sets, resulting in land-cover maps of eight
different classes.

2.3. Field data

The total of 400 validation points for each land-cover map were selected by visual
interpretation of high-resolution imagery on Google Earth, along with ground truth data
collected after a survey of the site in 2012. In addition, online data from the Global Geo-
Referenced Field Photo Library (University of Oklahoma 2011) were used to relate land
cover to the supervised classifications results. The field data were also used in the land-
cover change detection analysis to distinguish between areas with and areas without
change. All images from Google Earth and from the Global Geo-Referenced Field
Photo Library are labelled with the acquisition date, and for the validation we selected
images acquired in the same month as the Landsat images. When that was not possible,
the images selected were acquired within one month’s difference of the satellite image
acquisition date.

3. Methodology

The data analysis is divided into three phases: (1) image processing and land-cover-map
preparation; (2) land-cover-change detection and analysis; and (3) stochastic modelling
and future projections of land-cover change.

3.1. Image processing and classification

Land-cover maps were produced by applying supervised classification techniques to the
Landsat images with a 30 m ground resolution. The accuracy of the classification is highly
dependent on the quality of the satellite data interpreted. Especially in cases where multi-
temporal images (i.e. not acquired on the same date) are to be analysed and compared, a
primary pre-processing task is necessary, in which radiometric and atmospheric correc-
tions are applied to each image.
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Figure 2. Precipitation monthly climatology in the UG basin based on Tropical Rainfall Measuring
Mission (TRMM) satellite data product 3B42v7A. The main amount of rainfall received over the
study area is due to the southwesterly monsoon, which occurs from July to late September.
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To overcome the lack of detailed in situ field data of atmospheric optical properties at
the time of image acquisition, an image-based dark object subtraction (DOS) method was
used (Chavez 1989, 1996; Moran et al. 1992). This method is the simplest yet most
widely used approach, suitable for areas with dense vegetation (Spanner et al. 1990;
Ekstrand 1994; Jakubauskas 1996; Huguenin et al. 1997).

After these corrections, supervised classifications were implemented using the max-
imum likelihood algorithm. All six optical bands of the TM5/ETM+ sensors were used
(bands 1–5, 7). The steps followed for the supervised classifications included: (1) the
selection of training regions; (2) the calculation of regional statistics in order to avoid
overlapping between different classes; (3) the evaluation of each class; and (4) the
application of the maximum likelihood classifier. A total of 160 training regions, evenly
distributed among the land-cover classes, were chosen by means of on-screen selection for
each image to ensure adequate representation of all spectral classes in the training
statistics (Wu et al. 2006). Land-cover classes were defined as water, forest, shrubs,
grass, crops, urban, snow, and barren.

The NDVI, proposed by Rouse et al. (1974), was used as an additional data layer in
the classification procedure to enhance detection among various land-cover classes and
also to reduce the shadow effect due to the mountainside slopes. NDVI is the most
commonly used and well-known vegetation index and, as previously mentioned by Song
et al. (2001), has been used in several studies to monitor vegetation dynamics (Sader
1987; Lenney et al. 1996; Michener and Houhoulis 1997).

The classification algorithm may sometimes misclassify pixels, either due to an
analyst’s error during the training model procedure or to a spectral overlap between
different land-cover types. Hence, one of the most important steps to be followed after
the classification of remotely sensed data is accuracy assessment of the classification,
which determines the quality of the information derived from satellite images. The error
matrix is the most common method for accuracy assessment, as it is the only way to
effectively compare two maps quantitatively (Lu et al. 2004; Congalton and Plourde
2002). The matrix consists of a square array of numbers, or cells, which represent the
number of sample units assigned to each land-cover type as compared to what is on the
ground (Congalton and Plourde 2002). Ground truth data collection is the first and most
important step in accuracy assessment, since the whole procedure will be pointless if the
reference data are not trustworthy (Congalton 2010). After developing the error matrix,
the overall accuracy and kappa coefficient were calculated for each classification using
techniques described in Congalton (1991).

The total of 200 samples for each image date were obtained through visual interpreta-
tion of the area. This was aided by previous experience in identifying features on the
image based on what we knew existed on the ground, determined by direct field
observation and interpretation using Google Maps. These 200 samples were split by
random sampling into training and validation datasets, ensuring that all land-cover types
were equally represented in each dataset. The training dataset (160 points, evenly dis-
tributed between the land-cover classes) was used to calibrate the model, while the
validation dataset (40 points, evenly distributed between the land-cover classes) was
used to test the model’s performance. This cross-validation procedure (i.e. repeated
random sub-sampling) was carried out 10 times for each image. The final error was
estimated as the average of individual errors. Once the cross-validation testing was
complete, the 400 validation points (see Section 2.3) were used to test the performance
of the model that gave the best accuracy during cross-validation.
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3.2. Land-cover-change detection and analysis

In order to detect and quantify the changes in land-cover patterns from 1984 to 2010, a
post-classification change analysis approach was followed, based on a cross-tabulation
detection method that produces a change matrix where different combinations of change
are identified. This allowed us to quantify the changes by knowing how much of a given
land-cover type had changed and into what categories, as well as to identify trends in
land-cover changes that had taken place in the UG basin since 1984. The classified images
were compared on a pixel-by-pixel basis and the accuracy of the change map was the
product of the accuracies of the individual classification maps. Hence, this method
required a very good level of accuracy in both images (Singh 1989; Lambin and
Strahler 1994). In addition, for analysis of the location, type, and rate of change, a set
of images indicating the gains and losses per land-cover class was produced.

3.3. Stochastic modelling and future projections

To generate future land-cover scenarios, one of the analytical methods of the stochastic
process, Markov chain analysis, was applied. Many studies of land-cover-change analysis
use Markov modelling (Drewett 1969; Lever 1973; Bell 1974; Muller and Middleton 1994;
Weng 2002; Petit, Scudde, and Lambin 2001; Wu et al. 2006; Liu et al. 2008; Rajitha et al.
2010). These studies were mainly focused on small areas and based on data sampled from
fieldwork, existing maps, or aerial photography. The application of Markovian analysis to
large-scale systems such as the UG basin is a challenge for this study. The usage of satellite
images is expected to reduce uncertainty and improve the analysis. The method is based on
the assumption that the driving forces that produced changes in the past will continue to do
so in the future. However, this assumption is not always true, especially over long periods,
and therefore we chose to apply the method only for the period from 2000 to 2010, where
the frequency of available land-cover maps is high (one map every two years). In theory, a
given cell of land may change from any type of land cover to any other.

Before applying the Markovian analysis, the method was tested to evaluate its validity
for projecting land-cover changes in the UG basin. The three assumptions tested were: (a)
land cover is statistically dependent only on land cover during the preceding time period;
(b) this dependence is a first-order Markovian dependence; and (c) the system is sta-
tionary, meaning that the driving factors causing changes in the past will continue to do so
in the future.

More analytically, the first test was a statistical independence test. Land-cover change
in an area is characterized by a Markovian process when the land-cover class of any
randomly chosen cell is statistically dependent only on the preceding land-cover class and
not on any earlier one (Bell 1974). The null hypothesis that land cover at one point in time
(t1) is statistically independent of land cover at the preceding time period (t0) is being
tested. If M is the number of land-cover classes (here M = 8), Karl Pearson’s χ2 is
calculated with (M – 1)2 degrees of freedom:

χ2 ¼
X

i

X

k

nik � m̂ikð Þ2
m̂ik

; (1)

where nik is the number of cells that transitioned from class i to k over the period 2000–
2010, for instance; and mik is the expected number of cells that transitioned from class i to
k under the Markov hypothesis over the same period.
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We will call this test K2 rather than χ2, to differentiate from its distribution χ2ð Þ. For
M � 1ð Þ2 ¼ 49 and a critical region of 0.05, values of K2 less than 66.3 would indicate
that the hypothesis of land-cover independence is true.

To calculate m̂ik , we applied the Chapman–Kolmogorov equation (Equation (2)).
Markovian theory assumes that the probability of transitioning from state 1 to state 3
can be calculated from the probabilities of transitioning from 1 to an intermediate state 2
and then from state 2 to state 3. For instance, the transition probability matrix of the
period 2000–2010 can be calculated by multiplying the elements of the 2000–2004 and
2004–2010 matrices:

m̂ik ¼
X

j

mij � mjk

mj
; (2)

where mij is the number of cells that transitioned from class i to j in the period 2000–2004;
mjk is the number of cells that transitioned from class j to k in the period 2004–2010; and
mj is the number of cells in class j in 2004. The test was applied to all possible transition
combinations of the years 2000, 2002, 2004, 2006, 2008, and 2010.

If the data are proved to be statistically dependent, the second test will show whether
the dependence is characterized by a first-order Markov dependence or by a higher-order
dependence (Weng 2002). The test for the first-order Markovian dependence is a χ2

goodness of fit test, which compares the observed transition probabilities to the expected
transition probabilities in order to judge whether those observed are described by a
particular distribution (Weng 2002). Here, the expected transition probabilities are
described by a Markovian distribution. The statistic χ2 is calculated by Equation (4) and
is described by a chi-squared distribution. The hypothesis that the data are described by
first-order Markovian dependence is true if

χ2c<χ
2
1�n; M�1ð Þ2 ; (3)

where

χ2c ¼
X

i

X

k

Oik � Eikð Þ2
Eik

; (4)

where Oik is the transition probability from class i to k in the period 2000–2010, for
instance; and Eik is the expected transition probability from class i to k under the Markov
hypothesis in the same period.

The third test is a stationarity test. Markov transition probability-based models assume
that the probability matrix is stationary over time and space. According to this assump-
tion, changes in land cover for all tested periods between 2000 and 2010 occur as a result
of the same transition mechanism. To test this assumption, we will calculate the steady-
state probabilities, which show the equilibrium distributions for these periods. These
distributions are calculated by multiplying the transition matrices by themselves (Bell
1974; Bourne 1976) until they converge to a matrix with identical rows. The values of the
equilibrium matrix represent the amount of each land-cover class at a hypothetical future
equilibrium. Furthermore, this shows that the Markovian process is not a simple linear

International Journal of Remote Sensing 3157



extrapolation, because the transition potentials change over time as the various transitions
reach an equilibrium state.

The matrices of change produced by the post-classification change analysis show
the number of cells that have changed from each land-cover class to another. These
numbers are converted to probabilities by dividing each element by its equivalent row
total. In this study, the probability for each land cover class to change to every other
class is represented in a matrix which (with eight land-cover classes, and therefore 64
possible different land cover transitions) is a 64-cell transition matrix for each discrete
time period. The rows represent the older land-cover categories and the columns the
newer ones. The model applied in this study is a first-order Markov chain, meaning that
the probability that a system will be in a given state at a given time (t1) is dependent
only on the current land-cover type of a cell (at time t0) and not on the land-cover types
that previously occupied the cell. The transition predictions can be determined as
functions of current land covers. The mathematical structure of this approach is based
on probabilities of transition between each pair of land covers i and j. The model has
the form

nt1 ¼ P � nt0 ; (5)

where nt0 and nt0 are vectors representing fractions of each land-cover class at times t0 and
t1, respectively, and P is a transition probabilities matrix that indicates the probability of
moving from one class i at time t0 to another class j at time t1. For m land cover classes, P
has a dimension of m� m. Each row of the matrix must total 1. Once the initial transition
probability matrix is calculated, it can be used to project land-cover changes at any time in
the future.

If the date being projected forward is an even multiple of the training period, then the
new transition probability matrix is calculated through a simple powering of the base
matrix. If the date being projected in the future is not an even multiple of the training
period, the derivation of a yearly transition probability matrix is required. Previous studies
used a linear algebraic formula of the power root of matrices to generate this annual
matrix, but several difficulties arise by this approach as discussed in the study of Takada,
Miyamoto, and Hasegawa (2010).

Therefore, in the present study we chose to develop our future scenarios based on even
multiples of the training periods.

In this study, all 15 available transition matrices of periods between the years 2000
and 2010 were used to develop different scenarios of the future land-cover status for the
year 2020. As the trends in different matrices vary, the future predictions generated are
expected not to be the same. It is, by definition, impossible to test the accuracy of a
scenario that projects the future; however, to visualize the uncertainty and identify outliers
between those 15 future scenarios, we created box-plots which help identify the spread
and skewness of future predictions.

4. Results and discussion

4.1. Image processing and classification

Land-cover maps were produced after supervised classification techniques were applied to
Landsat images for the years 1984, 1990, 1998, 2000, 2002, 2004, 2006, 2008, and 2010
(Figure 3). The error matrix produced by comparing classification results with ground
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truth data and high-resolution images (Table 1) indicated a sufficient level of accuracy,
allowing us to further analyse and study trends in land-cover changes in the UG basin.
The highest overall accuracy achieved was 93.73% for the year 2002. The kappa
coefficient for that year was 0.91, representing a 91% better agreement than if the
classification had been the result of a random assignment. Kappa values greater than
0.80 represent strong agreement (Congalton 1991) and a widely used, minimum level of
acceptable accuracy for land-cover classification is 85% (Anderson, Hardy, and Roach
1976).
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Figure 3. Image classification results for the study years. The eight classes identified are water,
forest, shrubs, grass, crops, urban, snow, and barren.
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As no ground truth data or aerial photographs were available for the 1984 and 1990
classifications, validation relied upon expert manual judgement of the classification in the
validation points.

4.2. Land-cover-change detection and analysis

According to the 1984 classification (Figure 3), areas in the north of the UG basin
(Himalayas) were either barren or covered by snow. The central and northern parts of
the catchment were dominated by forests. In the central areas, a combination of dense
vegetation and crops was identified along with barren and grassland. Most of the urban
and agricultural areas in the basin are located towards the south, in the plains of the
UG basin.

Looking at the changes in land-cover proportions over the periods examined
(Figures 4 and 5), crops increased from 1984 to 2006 but from 2006 to 2010 they
decreased; however, the overall change from 1984 to 2010 was an increase of 1.3%.
The trends observed in the forest proportion follow the opposite direction: forest
decreased from 1984 to 1998 but from 1998 to 2010 it increased, achieving a total
increase of 4.7% from 1984 to 2010. Shrub coverage increased from 1984 to 2000 but
from 2000 onwards it decreased and showed an overall change of –11.6% from 1984 to
2010. Grass and barren lands did not show a stable trend of increase or decrease in the
periods examined between 1984 and 2010; nevertheless, they reduced from 1984 to 2010
by 9.0% and 9.5%, respectively. Urban coverage was expanded from 1984 onwards, and
the total increase during the 1984–2010 period was 5.8%.

Figure 7 shows the contributors to net change from a perspective of land cover. The
main contributor to the net change in forest area was conversion to/from shrubs. Barren
land changed due to conversion to/from water, grass, and snow. Crop change occurred due
to conversion to/from water, shrubs, grass, and barren. Grass change was due to conver-
sion to/from water, snow, and barren land. The main contributors to changes in shrubs
were forest, snow, and barren land. Finally, shrubs, grass, and barren land were the main
contributors to snow coverage change.

Landsat classification indicated that the share of forested areas decreased by 4.1%
from 1984 to 1990 (Figure 4), the same trend observed by Gulati and Sharma (2000). This
loss can be explained by the conversion to agricultural and other uses, such as heavy
grazing and forest fires driven by population growth. During the period 1984–1990,

Table 1. Classification accuracy assessment for each classification based on
ground truth data and high-resolution images. The results were produced by
applying the techniques described in Congalton (1991).

Image Overall Kappa

1984 87.03 0.86
1990 86.88 0.84
1998 87.15 0.86
2000 90.57 0.88
2002 93.73 0.91
2004 93.21 0.90
2006 92.90 0.90
2008 88.86 0.87
2010 91.72 0.91
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agriculture in the UG basin increased by 0.4%, urban by 0.7%, grass by 4%, and shrubs
by 11.8%. According to Figure 7, the main reason for loss of forest during the 1984–1990
period was conversion to shrubs.

The trend in forested area between 2000 and 2006 shows an increase of 7% (Table 2).
This is consistent with reports that investigated forest growth in India over that period,
specifically in the states of Uttar Pradesh and Uttarakhand, the areas of our study.
Specifically, the State of Forest Report by the Forest Survey of India (2009) (reports of
the years 2001 and 2009) showed, for the states of Uttar Pradesh and Uttarakhand, an
increase of 4.33% and 3.17%, respectively, between 2001 and 2007. In addition, the
Global Forest Resources Assessment by FAO (2010) showed an increase of 0.70% in the
forest cover area of India from 2000 to 2005, and an increase of 0.21% from 2005 to 2010
(Figure 5).

In order to analyse the location, type, and rate of changes, a set of images indicating
the gains and losses per land-cover class was produced. Figure 6 shows indicative changes
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Figure 5. Land-cover proportions based on the image classification results.

Table 2. Land-cover proportions for the developed land-cover maps.

Image Water Forest Shrubs Grass Crops Urban Snow Barren

1984 0.63 16.35 5.41 6.58 62.62 1.39 2.82 4.20
1990 0.60 15.68 6.05 6.84 62.88 1.40 2.75 3.80
1998 0.56 14.83 6.712 7.13 63.06 1.43 2.70 3.58
2000 0.64 14.99 6.72 6.44 63.12 1.43 2.73 3.94
2002 0.64 15.67 6.12 5.55 63.58 1.46 2.93 4.05
2004 0.61 15.90 5.81 5.85 64.78 1.46 2.99 3.60
2006 0.58 16.04 5.47 5.33 64.05 1.46 3.16 3.91
2008 0.60 16.71 5.13 5.56 63.95 1.47 3.14 3.45
2010 0.59 17.12 4.78 5.99 63.42 1.47 2.83 3.80
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for the land-cover types forest, snow, grass, crops, and shrubs. During the period 1984–
1998, the forest proportion decreased in the basin mainly in its northern parts (Figure 6
(d)). In contrast, during the period 1998–2010, this proportion increased (Figure 6(a)).
The crop proportion increased during the period 1984–1990 in the middle and southern
parts of the basin, but also increased towards the northern areas near the Himalayan
foothills. During the period 2000–2006, grass coverage was reduced in the northern part
of the study area, while during the same period, snow cover was increased (Figures 6(b)
and 6(c)). According to Figure 7, the most important contributor to the increase in snow
observed during that period was conversion from grassland.

Trends from the literature in other locations in India, such as Kerala and Haryana, for
the period 1965–1996 confirm the intensification and expansion of cultivated land and the
decrease in barren land (Indian National Science Academy, Chinese Academy of Sciences,
and US National Academy of Sciences 2001). According to Rao and Pant (2001), who
studied a small watershed in the mid-elevation zone of the central Himalayas, (India)
between 1986 and 1996, the annual deforestation rate was 0.57%. During this period,
intensification of cultivated land and conversion of natural forests and grazing lands to
agriculture, as well as a constant thinning of available forest, was recorded. Semwal et al.
(2004) reported an increase in agricultural land use by 30% during the period 1963–1993, at
the cost of a loss of 5% of forest area in the Pranmati watershed (Uttar Pradesh, India).
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4.3. Stochastic modelling and future projections

Indicative transition probabilities for the periods 2000–2004, 2000–2010, and 2004–
2010 are presented in Tables 3–5. Under the Markovian hypothesis, the expected
transition probability matrices for different periods between 2000 and 2010 were
calculated (Table 6) by applying the Chapman–Kolmogorov equation (Equation (2)).
All Carl Pearson K2 values derived are shown in Table 8. Since all values were greater
than the critical figure 66.3, the null hypothesis that land cover at one point in time
(t1) is statistically independent of land cover at the preceding time period (t0) was
rejected.
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Table 3. Transition probabilities, 2000–2004.

Water Forest Shrubs Grass Crops Urban Snow Barren

Water 0.2351 0.1813 0.0729 0.1228 0.3367 0.0005 0.0121 0.0386
Forest 0.0017 0.8528 0.0910 0.0173 0.0366 0.0001 0.0001 0.0004
Shrubs 0.0045 0.6175 0.2482 0.0173 0.1115 0.0001 0.0004 0.0005
Grass 0.0220 0.0345 0.0132 0.7275 0.1213 0.0001 0.0082 0.0732
Crops 0.0019 0.0155 0.0092 0.0033 0.9679 0.0020 0.0001 0.0001
Urban 0.0010 0.0016 0.0006 0.0006 0.0945 0.9015 0.0001 0.0001
Snow 0.0009 0.0001 0.0001 0.0575 0.0001 0.0001 0.8959 0.0453
Barren 0.0051 0.0001 0.0001 0.2385 0.0019 0.0001 0.1539 0.6003

Table 4. Transition probabilities, 2000–2010.

Water Forest Shrubs Grass Crops Urban Snow Barren

Water 0.2069 0.2577 0.0633 0.0586 0.3631 0.0004 0.0209 0.0291
Forest 0.0009 0.8955 0.0733 0.0073 0.0225 0.0001 0.0001 0.0003
Shrubs 0.0053 0.6701 0.2218 0.0089 0.0931 0.0001 0.0002 0.0005
Grass 0.0147 0.0451 0.0286 0.7108 0.0849 0.0001 0.0175 0.0983
Crops 0.0017 0.0155 0.0134 0.0037 0.9654 0.0001 0.0001 0.0001
Urban 0.0001 0.0001 0.0003 0.0001 0.0001 0.9990 0.0002 0.0001
Snow 0.0005 0.0001 0.0001 0.0040 0.0001 0.0001 0.9706 0.0245
Barren 0.0026 0.0011 0.0003 0.0583 0.0028 0.0001 0.3344 0.6004

Table 5. Transition probabilities, 2004–2010.

Water Forest Shrubs Grass Crops Urban Snow Barren

Water 0.3137 0.0891 0.0096 0.1193 0.4375 0.0032 0.0212 0.0064
Forest 0.0017 0.8804 0.0824 0.0047 0.0304 0.0002 0.0001 0.0001
Shrubs 0.0050 0.5860 0.3015 0.0152 0.0916 0.0003 0.0003 0.0001
Grass 0.0092 0.0671 0.0211 0.6163 0.0323 0.0002 0.0892 0.1646
Crops 0.0020 0.0111 0.0114 0.0065 0.9665 0.0023 0.0001 0.0001
Urban 0.0001 0.0010 0.0008 0.0002 0.0840 0.9137 0.0001 0.0001
Snow 0.0009 0.0001 0.0003 0.0133 0.0001 0.0001 0.9533 0.0319
Barren 0.0021 0.0029 0.0008 0.1102 0.0018 0.0002 0.1803 0.7017

Table 6. Expected values of transition probabilities for 2000–2010 under Markov hypothesis.

Water Forest Shrubs Grass Crops Urban Snow Barren

Water 0.1597 0.1856 0.1031 0.1038 0.3143 0.0337 0.0413 0.0585
Forest 0.0458 0.6823 0.1985 0.0226 0.0377 0.0051 0.0034 0.0047
Shrubs 0.0615 0.5662 0.2147 0.0285 0.1077 0.0122 0.0040 0.0052
Grass 0.0835 0.0476 0.0356 0.3883 0.1005 0.0109 0.1268 0.2068
Crops 0.1361 0.0392 0.0849 0.0472 0.6230 0.0660 0.0019 0.0018
Urban 0.0210 0.0060 0.0129 0.0074 0.0957 0.8561 0.0005 0.0005
Snow 0.0099 0.0016 0.0014 0.0445 0.0003 0.0004 0.8713 0.0707
Barren 0.0299 0.0062 0.0054 0.1810 0.0025 0.0008 0.3054 0.4687
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The χ2 goodness of fit test for the first-order Markovian dependence gave values of χ2,
as shown in Table 8. For 49 degrees of freedom and a 5% level of significance, the critical
value of χ2 was equal to 33.93. The dependence was therefore characterized by a first-
order Markovian dependence, in all cases.

Table 7 and Figure 8 show the equilibrium distributions of land cover for all periods
tested, used for analysis of the stationarity of the system. These distributions were
calculated by matrix powering (Bourne 1976). According to that method and starting
from an initial land-cover distribution n, the iteration n, n� P, n� P2, n� P3,…,
converges to a unique stationary distribution. The transition matrices (P) are multiplied
by themselves (Bell 1974; Bourne 1976) until they converge to a matrix with identical
rows. The obtained values indicate the amount of each land-cover class at a hypothetical
future equilibrium. Some of the distributions are quite similar to each other but the results
do not provide evidence that the system is stationary, since not all of them are similar. As
other studies have shown, transitions are often not constant over long periods.

Table 7. Steady-state probabilities calculated by multiplying the transition matrices by themselves
(matrix powering, Bourne (1976)) until they converge to a matrix with identical rows. The values
represent the proportion of each land-cover class at a hypothetical future equilibrium.

Water Forest Shrubs Grass Crops Urban Snow Barren

2000–2002 0.0045 0.2490 0.0466 0.0309 0.5595 0.0210 0.0573 0.0312
2002–2004 0.0032 0.1724 0.0319 0.0341 0.6442 0.0909 0.0139 0.0095
2004–2006 0.0020 0.1515 0.0863 0.0232 0.5776 0.1218 0.0256 0.0120
2006–2008 0.0025 0.1792 0.0160 0.0254 0.3051 0.0952 0.3181 0.0585
2008–2010 0.0044 0.2622 0.0458 0.0740 0.4187 0.0109 0.1264 0.0575
2002–2006 0.0022 0.1736 0.0632 0.0283 0.6123 0.0953 0.0183 0.0068
2002–2010 0.0026 0.2618 0.0363 0.0336 0.4413 0.0130 0.1910 0.0204
2004–2010 0.0029 0.2334 0.0354 0.0324 0.4113 0.0122 0.2297 0.0427
2006–2010 0.0032 0.2353 0.0279 0.0442 0.2559 0.0071 0.3692 0.0571
2000–2004 0.0036 0.2397 0.0379 0.0403 0.6347 0.0133 0.0201 0.0105
2000–2006 0.0022 0.2318 0.0712 0.0228 0.6376 0.0133 0.0161 0.0050
2000–2008 0.0023 0.2814 0.0328 0.0199 0.5069 0.0108 0.1268 0.0192
2000–2010 0.0018 0.2602 0.0310 0.0197 0.3227 0.0914 0.2524 0.0208
2002–2008 0.0022 0.2204 0.0278 0.0222 0.4730 0.1238 0.1103 0.0203
2004–2008 0.0027 0.2089 0.0320 0.0220 0.4829 0.0900 0.1239 0.0377

Table 8. Carl Pearson’s K2 values and χ2 goodness of fit test values.

K2 x2

2002–2006 1.07 × 105 1.22
2002–2010 1.75 × 105 4.85
2004–2010 1.98 × 105 4.41
2006–2010 1.95 × 105 4.60
2000–2004 0.74 × 105 0.99
2000–2006 1.09 × 105 1.31
2000–2008 1.13 × 105 1.48
2000–2010 1.39 × 105 1.88
2002–2008 1.37 × 105 2.54
2004–2008 0.94 × 105 0.97
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Nevertheless, stationarity can be assumed to make scenario-based projections and identify
the response of the landscape to management and policy decisions. In the UG basin, the
classification results already indicated changes in land-cover trends between the periods
examined from 1984 to 2010.

An interesting trend was observed here regarding the 2000–2002 transition matrix:
although from 2000 to 2002 we identified a small increase of 0.73% in the agricultural
proportion (Figure 4 and Table 2), the equilibrium distributions show a decrease in this
proportion, which, from 63.58% in 2002 was reduced to 55.96% (Table 7). The bar plots
of Figure 7 illustrate that the only contributors to crops reduction during the period 2000–
2002 were conversion to forests (–0.6%) and urban (–1.1%). Therefore, in this case, the
agricultural decrease suggested by the equilibrium distributions can be explained by the
forest and urban growth noted over the same period (Table 7, 2000–2002 period). The fact
that the equilibrium distribution of the 2000–2002 matrix shows an opposite trend in crop

0

25

50

75

100

20
00

−2
00

2

20
00

−2
00

4

20
00

−2
00

6

20
00

−2
00

8

20
00

−2
01

0

20
02

−2
00

4

20
02

−2
00

6

20
02

−2
00

8

20
02

−2
01

0

20
04

−2
00

6

20
04

−2
00

8

20
04

−2
01

0

20
06

−2
00

8

20
06

−2
01

0

20
08

−2
01

0

20
10

Period

P
ro

po
rt

io
n 

(%
)

Class

Barren
Snow
Urban
Crops
Grass
Shrubs
Forest
Water

Figure 8. Equilibrium distributions of land cover as they were projected by all transition prob-
ability matrices. The calculated proportions of land cover for 2010 are shown to the right for
comparison purposes.

International Journal of Remote Sensing 3167



land cover to that observed during the same period highlights that Markovian analysis is
not a simple linear extrapolation, but the transition potentials might change over time until
equilibrium is reached.

Before developing future projections of land-cover status, we tested our method to
examine its accuracy. As a validation measure of the ability to generate future land-cover
scenarios under Markov chain analysis, we used transition matrices of years previous to
2010 and generated future scenarios for the year 2010. These scenarios were compared to
the historic land-cover map of 2010, as shown in Figure 9 (red indicates land-cover
proportion in the historic map). The results indicate that the scenarios generated for 2010
are quite close to the actual historic proportions. Highest overall uncertainties are
observed for the land-cover classes forest and shrubs. For instance, the actual proportion
of forest in 2010 was 17.12%, while the two most extreme values that we obtained
through Markov chain analysis were 19.98 and 15.20% (Figure 9). This gives us
confidence for developing other near-future scenarios by applying the same method.

All possible transition probabilities of periods between the years 2000 and 2010, 15 in
total, were used to generate 15 different scenarios of future projections for the year 2020
(Figure 10). As the trends in different matrices vary, the future predictions generated were
not exactly the same. The date being projected forward is an even multiple of the training
periods (see Section 3.3). Therefore, whenever 2020 was not an even multiple of the
training period, a simple interpolation (or extrapolation) was used to calculate the
proportions for that year.

Figure 11 shows the uncertainty of the projected scenarios. The land-cover types with
the highest values of uncertainty were forest and crops, which was expected given that
these are the two dominant land-cover types of the study area and the key difference
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Figure 9. Box plots indicating land-cover trends with uncertainties for 2010, as developed by
applying Markov chain analysis. The transition probabilities of years previous to 2010 were used to
generate a 2010 scenario. Red denotes actual land-cover proportions for 2010, as derived from the
Landsat classifications. The middle bar of each box shows the 50% percentile, while the top and
bottom of the box bars show the 75% and 25% percentiles (or first and third quartiles), respectively.
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between the transition matrices used for future scenarios is that some of them project an
expansion of forest and/or agricultural areas while others project a loss in these areas.

Figure 12 shows the spatial distribution of the predicted future land cover for the year
2020 after determining the dominant land-cover types by applying the majority rule in the
15 different scenarios. The main projected trends include forest growth, replacing some of
the shrub and grass areas in the mid-northern parts of the UG basin, and less grass and
barren lands in the north where snow coverage is greatest. In addition, agricultural
expansion and urbanization are projected mainly for the southern parts of the study area.

5. Conclusions

This study detected and quantified trends in land-cover changes by classifying satellite
imagery and modelling land-cover change in a region that has undergone one of the
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largest environmental changes in human history over recent decades. India’s green
revolution, besides its ubiquitous benefits, has resulted in large-scale changes in land
cover. Remarkably strong agricultural expansion, development activities, urbanization,
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Figure 11. Box plots indicating future land-cover trends with uncertainties in future scenarios for
2020. The results show greater variability in the land-cover types forest and crops, which are the
dominant ones in our study area. The middle bar of each box shows the 50% percentile, while the
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and deforestation have caused alterations and modifications in land-cover status. This
is the first study attempting to evaluate and understand the dynamics of land-cover-
change processes in this region by monitoring and analysing the spatial patterns of
change at a high resolution, which allowed detailed descriptions of land-cover transi-
tions over time.

We focused on a period characterized by dramatic land-cover changes of high
complexity. The hypothesis of a stationary system is therefore unreliable and the three
future land-cover distributions generated by different transition matrices revealed different
trends that do not necessarily represent realistic future states for the UG basin. However,
the Markov chain analysis is a simple method for projection of trends and which,
regardless of its limitations, can serve as an indicator of the direction and scale of future
changes (Bell 1974).

The main trends of changes observed in the study region for the period from 1984 to
2010 are increased areas of forest, agricultural land, and urbanization, and loss of barren,
shrubs, and grassland.

Potential future directions of land-cover change in the UG basin vary and depend on
the historic time period selected by the analyst to project previous changes into the future.
In this study, 15 different scenarios based on historic land-cover change produced
different future projections. The scenario using land-cover maps for 2008 and 2010
projects future expansion of forest, urban, grass, and shrubland, with a decline in
agriculture and bare soil. More confidence can be placed in this result as it is based on
analysis of the most recent land-cover change.

A key limitation of the current approach is that historic trend analysis only considers
two discrete points in time. Moreover, Markov chain analysis is unable to assimilate
ancillary data, which may constrain the rate and direction of change.

Land-cover change is driven by socio-economic and biophysical factors (Lambin et al.
2001). Therefore, to make valid predictions about future land-cover change it is necessary
to understand the causes of historic land-cover change. In the UG, given the observed
dependence of the agricultural sector on irrigation, we may hypothesize that an area of
land located near an irrigation canal or well is more likely to be converted to cropland
than land without a reliable water source. Furthermore, the expansion of cropland may be
limited by the presence of the Himalayan mountain range in the north of the basin, where
factors such as elevation, aspect, and slope may impose physical limits on crop growth.
Understanding the objectives of national and international policies on afforestation in the
region may provide a means to constrain future scenarios of change. These examples
demonstrate that land-cover change cannot be modelled unless the underlying driving
factors are taken into account. Future work will attempt to improve the prediction of land
cover by applying modelling approaches that utilize biophysical and socioeconomic
datasets. This is a possible way to reduce uncertainty and provide more accurate projec-
tions for the future status of land cover in the UG basin.
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