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Abstract. Land cover characteristics remain of particular interest to the monitoring and reporting communities, and approaches
for generating annual maps of land cover informed by change information derived from long time series are critically needed. In
this study, we demonstrate and verify the utility of disturbance and recovery metrics derived from annual Landsat time series to
inform the classification of annual land cover over a > 1.2 million hectare forest management area in the Boreal Mixedwood Region
of northern Ontario, Canada. Annual land cover maps were generated, producing temporally informed products and compared
to the established approach of using single-date spectral variables and indices. The Random Forest (RF) classification algorithm
was used to classify land cover annually between 1990 and 2010, followed by the application of an annual temporal filter to remove
illogical land cover transitions. Change detection in the study area had an overall accuracy of 92.47%. The use of time series
metrics in the classification of land cover improved overall accuracy by 6.38% compared to single-date results. Using a separate
independent reference sample, the RF classification approach combined with postclassification transition filtering resulted in an
overall classification accuracy of 87.98%. The use of annual change and trend information to guide land cover, which is further
informed by logical land cover transition rules, points to the creation of efficient, robust, and reliable land cover products in a
transparent and operational fashion.

Résumé. Les caractéristiques de la couverture terrestre sont intéressantes pour les communautés responsables de la surveillance. Le
développement d’approches pour générer des cartes annuelles de la couverture terrestre qui sont informées par des informations
de changements dérivées de longues séries temporelles est ainsi une nécessité cruciale. Dans cette étude, nous démontrons et
nous vérifions l’utilité des mesures de la perturbation et de la récupération qui sont dérivées de la série temporelle Landsat
annuelle afin d’informer la classification de la couverture terrestre annuelle pour une zone de gestion forestière supérieure à 1,2
million d’hectares dans la région de la forêt boréale mixte du nord de l’Ontario au Canada. Des cartes annuelles de la couverture
terrestre qui fournissent des produits informés temporellement ont été générées et comparées à l’approche établie d’utiliser des
variables et des indices spectraux à une date unique. L’algorithme de classification des Forêts Aléatoires «Random Forest» (RF)
a été utilisé pour classer la couverture terrestre annuellement entre 1990 et 2010 et suivi par l’application d’un filtre temporel
annuel pour enlever les transitions illogiques de la couverture terrestre. La détection de changements dans la zone d’étude avait
une précision globale de 92,47%. L’utilisation de mesures de séries temporelles dans la classification de la couverture terrestre
a amélioré la précision globale de 6,38% par rapport aux résultats à une date unique. En utilisant un échantillon de référence
distinct et indépendant, l’approche de classification des RF combinée avec un filtrage de transition postclassification a abouti à
une précision globale de classification de 87,98%. L’utilisation de l’information sur le changement et la tendance annuelle pour
orienter la couverture terrestre, qui est en outre informée par des règles logiques de transition de la couverture terrestre, pointe
vers la création de produits de couverture terrestre efficaces, robustes, fiables, de manière transparente et opérationnelle.
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INTRODUCTION
The interpretation of annual land cover dynamics based on

the analysis of remote sensing change detection and land cover
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classification maps across large areas and long periods is an
important natural resource management requirement (Lambin
et al. 2003; Wulder and Franklin 2007; Roy et al. 2014). These
activities are now feasible and facilitated by the free and open
access to the entirety of the United States Geological Survey
(USGS) Landsat archive (Woodcock et al. 2008) in a readily ac-
cessible form (Wulder et al. 2012). Access to this tremendously
rich archive creates new opportunities for detecting vegetation
changes at higher temporal frequency and at more detailed spa-
tial scales than was previously possible in many areas (e.g.,
Huang et al. 2010; Kennedy et al. 2010; Zhu and Woodcock
2014), with Canada especially well represented by imagery
(White and Wulder 2013). In actively managed forested ar-
eas, the annual assessment of Landsat time series data can be
used to interpret detailed disturbance history and land cover
changes (Sexton et al. 2013). Such an interpretation is also par-
ticularly useful in carbon modeling (e.g., Turner et al. 2004;
Goward et al. 2008) and in characterizing forest change in a
manner that is more consistent with detection of natural and
human influences on ecological conditions and processes (e.g.,
Kennedy et al. 2014). Carbon balance, whether based on models
or inventory, is highly dependent on the land cover because it
affects several directly relevant characteristics such as albedo,
emissivity, photosynthetic potential, and transpiration (Zhu and
Woodcock 2014). Unique information produced from time se-
ries detection of change includes spectral clues on succession
(Pflugmacher et al. 2012) and postdisturbance recovery (Her-
mosilla et al. 2015). Additionally, annual land cover informa-
tion derived from Landsat can be used to produce a series of
carbon model relevant variables such as predisturbance and
postdisturbance land cover, which are also of general interest
to monitoring, inventory, and reporting programs. This type of
information is important in order to inform carbon models but
conventionally difficult to derive when applying standard 2-
date change detection and single-date land cover classification
methods.

Annual land cover classification maps produced from dense
Landsat time series data in specific areas enhance the interpre-
tation of forest and land cover dynamics when used together
with more spatially comprehensive, but often less frequently
produced, Landsat-based single-image-date land cover prod-
ucts and compilations of multiple imagery (such as those used to
create national or regional vegetation inventory data). For exam-
ple, in Canada, among the most widely used national land cover
maps is the Earth Observation for Sustainable Development of
Forests product (typically referred to as EOSD LC 2000). This
Landsat-based map provides a national land cover database of
the forested area of Canada with 23 land cover classes for the
year circa 2000. Annual land cover classification products are
an ideal addition to the established EOSD LC 2000 maps, which
have—in Canada and in similar large area coverages in other
jurisdictions—been used to inform reporting programs (Wulder
et al. 2004; Kangas and Maltamo 2006) and allow for the imple-

mentation of unique science activities (e.g., Wulder et al. 2011;
Yemshanov et al. 2011).

Annual land cover classification using Landsat time series
data has fostered the use of specific disturbance- or recovery-
based metrics in the classification procedure (Hansen and
Loveland 2012). Vegetation dynamics and forest cover changes
identified using the “greatest change metric,” or similar
disturbance- or recovery-based metrics, attempt to identify veg-
etation dynamics that occur prior to the date of the image classi-
fication (e.g., Roy et al. 2014). The composition of land cover at
any point in time is linked to its disturbance history. Therefore,
inclusion of the disturbance-related variables is expected to in-
crease the land cover classification accuracy over that which can
be obtained using single-date spectral variables. In addition, by
using the change metrics to inform the classification, it is pos-
sible to provide a single land cover class for a given pixel for
the entire period when change is not specifically identified and
there is no spectral evidence to indicate otherwise.

The use of these disturbance- or recovery-based metrics also
implies an increment in the dimensionality of the datasets being
used in image classification. This increase in dimensionality can
compromise the capability of traditional multispectral classifiers
but can be addressed by the selection of a robust classifier or an
ensemble of machine-learning algorithms, such as the Random
Forest (RF) package (Dietterich 2000). The RF approach, in
particular, has received notable attention because it has flexibil-
ity with regards to the nature and distribution of input variables
and has been found to be robust in situations problematic to
traditional classifiers (Liaw and Wiener 2002). Recently, this
has been buttressed in the use of disturbance- and recovery-
based metrics extracted by time series trajectory-based methods
to characterize forest change and estimate (via modeling) forest
biophysical properties (Ahmed et al. 2015; Pflugmacher et al.
2012). The basic approach is based on detection of change in
surface reflectance and classification of such changes in terms of
land cover change or by characterizing trends (for more subtle
discontinuous phenomena, such as partial land cover change or
regrowth, see Meigs et al. 2011).

In this study, we present an approach for integrated change
detection and land cover mapping with the aim of informing
forest inventory and carbon accounting programs. Our method
is novel in that it integrates: (i) annual large-area composites that
contain no spatial or temporal data gaps; (ii) predictor variables
that correspond with disturbance and recovery conditions; (iii)
output as medium resolution annual land cover maps; and (iv)
a Random Forest classifier that is robust in the case of hetero-
geneous classes and reference data error. Finally, we provide an
indication of future improvements in the methods based on an
analysis of both (i) land cover change over time, and (ii) other
changes that are captured in the Landsat time series in related
disturbance- or recovery-based metrics. This latter improvement
will facilitate an interpretation of more subtle changes within
a specific land cover, such as a pattern of smaller though still



VOL. 41, NO. 4, AUGUST/AÔUT 2015 295

significant changes, or through analysis of repeated land cover
transitions (e.g., cyclical change).

DATA AND METHODS
In this study, we created and interpreted annual Landsat time

series land cover classification and change detection maps that
cover the period 1990–2010 in the Hearst Forest in northern On-
tario, Canada. We incorporated various forest disturbance- and
recovery-based metrics available from the image time series
into the land cover classification process and created land cover
change detection maps based on an analysis of the “greatest
change” within the time series. We then developed a land cover
transition matrix to relate the observed “greatest-change” loca-
tions to specific land cover changes, such as a change in conifer
or mixedwood forest land cover subsequent to clearcut harvest-
ing activities. To assess the accuracy of the change detection,
we compared the results of these land cover change outcomes to
an independent reference dataset created via visual interpreta-
tion of the Landsat time series imagery and aerial photography.
The sampling design for selection of reference samples was a
probability-based design such that the probability of selecting
each land cover class is known and is sensitive to rare classes
(Olofsson et al. 2014). The flowchart in Figure 1 summarizes
the overall approach of this study described in the following
subsections.

Study Area
The study area is the Hearst Forest Management Area lo-

cated in northern Ontario (see Figure 2). This area is an actively
managed, commercial forest that is found within the Boreal
Mixedwood ecozone, and covers approximately 1.23 million
ha (of which, approximately 1 million ha are productive for-
est; Hearst Forest Management Inc. 2011). The Hearst Forest is
dominated by coniferous tree species, with black spruce (Picea
mariana Mill. B.S.P.) representing 67% of gross volume in the
area. Jack pine (Pinus banksiana Lamb.), white spruce (Picea
glauca Moench Voss), balsam fir (Abies balsamea L. Mill.) and
tamarack (Larix laricina Du Roi K. Koch) are also represented.
Deciduous species in this region include white birch (Betula pa-
pyrifera Marsh.), trembling aspen (Populus tremuloides Michx.)
and balsam poplar (Populus balsamifera L.). Approximately
60,000–70,000 ha of forest is harvested annually from this area
using a variety of methods, including clearcutting (Hearst For-
est Management Inc. 2007). With an active fire suppression
program successfully controlling or limiting the effects of wild-
fire, timber harvesting is the most common form of disturbance
in the Hearst Forest; however, large fires were recorded in 1995
and 1996. Insect outbreaks have also occurred in the area; for
example, a spruce budworm outbreak occurred in 1999. Re-
cent harvesting, fire history, and other disturbance events (e.g.,
insect outbreaks) in the area are described in the Hearst For-
est Management Plan (2007–2017) published by Hearst Forest
Management Inc. (2011).

Best-Available Pixel (BAP) Image Composites and Change
Metrics

The Landsat imagery for the study area was obtained from
the USGS Landsat archive. The study area intersects 6 Land-
sat WRS-2 path/rows. A total of 706 Landsat images, acquired
between 1988–2012 and representing 1990–2010 conditions,
were used to create multitemporal pixel-based image compos-
ites using a best-available-pixel (BAP) approach (implementing
the methods described by White et al. 2014), and is briefly
summarized here: First, atmospheric correction was applied to
all images using the Landsat Ecosystem Disturbance Adaptive
Processing System (LEDAPS) algorithm (Masek et al. 2006;
Schmidt et al. 2013) transforming digital numbers into surface
reflectance values. Second, clouds, cloud shadows, and water
were detected and masked using the Function of mask (Fmask)
algorithm (Zhu and Woodcock 2012). Once preprocessing was
complete, candidate pixel observations were scored according
to sensor, acquisition day of year (DOY), distance to clouds
and cloud shadows, and atmospheric opacity. A target DOY
of August 1 (Julian day 213) was selected within the growing
season, and the date range for candidate images was restricted
to ±30 days. In the final step, the pixels with the highest score
were used to populate the final image composite, and the surface
reflectance values for these best observations were then written
in the annual BAP composite. This method allows the pro-
duction of spatially contiguous, cloud- and haze-free, spatially
consistent temporal series of surface reflectance composites of
Landsat data. Based on the rules applied, instances of no valid
pixels for inclusion in the composite occurred. For example,
pixel locations in the annual BAP composites with observations
from images acquired outside ±30 days of the target DOY were
assigned a “no-data” value. Similarly, noisy or anomalous pixel
values (spikes in the temporal pixel series) were also identi-
fied and assigned a no-data value as described in Hermosilla
et al. (2015). In our study, infilling of data gaps (pixels with
no-data values) was performed using the proxy value compos-
ite approach (Hermosilla et al. 2015). Briefly, this approach
detects spectral change and derives a series of metrics char-
acterizing these spectral changes and then uses these change
metrics to aid in proxy value assignment. Here the greatest-
change metric was used to flag disturbance events. Then, data
gaps were filled by considering the full spectral information of
the pixel time series; proxy values are informed by those from
preceding and/or following dates, and these no-data pixels are
replaced with values that are most spectrally similar in time and
space. Replacement of these values is desired in order to en-
able production of gap-free, spatially exhaustive, annual proxy
value composites that are spectrally consistent in order to sup-
port the production of annual land cover products. Our annual
land cover classification was based on these proxy BAP com-
posites and a series of disturbance- and recovery-based change
metrics that were derived using a breakpoint detection process
informed by the normalized burn ratio (NBR) on a temporal
pixel series (as per Hermosilla et al. 2015). The breakpoint
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FIG. 1. A flowchart of the overall approach for the annual land cover classification.

detection process, in this study, is performed over the NBR
pixel series, which has been demonstrated as sensitive and con-
sistent for the retrieval of disturbance events over forest environ-
ments (Kennedy et al. 2010). The trends that can be computed
after implementation of the breakpoint detection process are
of distinct types. In this study, we used the “greatest negative
change” in the time series to derive a set of descriptive change
metrics. This greatest-change metric allowed us to characterize
the change events as well as conditions pre- and postchange.
The metrics relay information on change year, magnitude, and
duration are grouped into prechange, at the time of change,
and postchange categories. These change metrics characterize
the negative breakpoint segments, using year, magnitude, and

duration. Table 1 provides a complete listing, categorized by
type, of all the spectral inputs derived from the BAP composites
that were used as inputs for the land cover classification. Eleva-
tion information, derived from a digital elevation model (DEM),
was the only noncomposite input data used for the classification.

Ancillary Data
There are several approaches for incorporating ancillary data

in the image classification process based on earlier studies
that incorporated DEM data into land cover classification (e.g.,
Janssen et al. 1990) to approximate differing ecosite conditions.
In this study, several tiles of the Canadian Digital Elevation
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FIG. 2. The location of the study area within the Hearst Forest Management Area in northern Ontario.

Data (CDED) DEM were downloaded from the GeoBase online
spatial data portal1 to be used in the land cover classification.

High spatial resolution color-infrared leaf on aerial orthopho-
tography was acquired in 2007 at approximately 1:20000 scale

1www.geobase.ca

with 40 cm resolution covering most of the Hearst forest. This
aerial orthophotography was used to collect calibration and ref-
erence data for each land cover class. An existing land cover
product was used to provide strata for selection of calibration
and reference samples. The EOSD LC 2000 is a land cover prod-
uct representing the forested area of Canada circa 2000, with 23
land cover classes. Details on the land cover map can be found in
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TABLE 1
Variables derived from the BAP composites that were used as inputs for the land cover classification; the first layer is elevation

from the DEM, followed by 4 Landsat spectral bands, 2 proxy composite vegetation indices, and 14 NBR-based disturbance
metrics derived from the Landsat time series
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Wulder et al. (2008). A stratified random sample was used with
the EOSD LC 2000 map, providing an initial stratification to
estimate the proportions of each land cover class over the entire
area of the Hearst Forest in order to guide the proportion of train-
ing and reference samples (Wulder et al. 2006). Eight classes
in the EOSD LC 2000 land cover map product were selected to
characterize land cover in the Hearst Forest (mixedwood forest,
coniferous forest, herb, wetland treed, broadleaf forest, wetland,
water, and exposed land). These classes dominate the area per
the EOSD land cover classification map product (note that these
classes are derived from EOSD LC 2000 Level 4, which does
not include forest density classes). Sampling strata were gener-
ated from the EOSD LC 2000 map, which enabled estimation of
proportions of each land cover class over the entire area of the
Hearst Forest to guide the sample composition and selection.

Change Detection Validation
The accuracy assessment of the change detection approach

relied on independent reference data collected through visual
interpretation of the Landsat time series imagery and the 2007
1:20000 scale color-infrared aerial photography. A stratified ran-
dom sample design was used to select 100 samples (pixels) from
the change and no-change strata, for a total of 200 reference pix-
els used to evaluate the accuracy of change detection. For each
sample, the BAP composites were visually examined for the
years immediately preceding and following the greatest-change
year. In addition, the 2007 aerial photography was also exam-
ined, and the accuracy assessment results were recorded.

Land Cover Calibration and Validation
A stratified random sampling approach was used to acquire

land cover classification calibration and reference data for each
of the land cover stratum generated from the EOSD LC 2000
data. Sample size determination for reference purposes invari-
ably involves trade-offs between the requirements of statistical
rigor and logistical realities (Czaplewski and Patterson 2003;
Wulder et al. 2007). The number of samples required for refer-
ence was determined using a 95% confidence interval for p with
a margin of error of 5% and an assumption of 80% true accuracy
(Cochran 1977; Wulder et al. 2007), resulting in a sample size
of 174. Half of these samples were allocated proportional to the
area of the classes (from EOSD LC 2000), whereas the other
half were used to improve estimates for rare classes. For each
sample, the land cover class in 2007 was interpreted from the
aerial photography according to the same classification hierar-
chy as the EOSD product (Wulder et al. 2008). An additional
406 photo-interpreted samples were selected for model calibra-
tion and were allocated in the same manner (half proportional to
the area of each EOSD class; half for rare classes; Table 2). All
of the calibration and reference samples were selected in areas
where land cover was unchanged throughout the period of the
analysis (1990–2010).

TABLE 2
Number of calibration and reverence pixels for different land

cover classes based on the EOSD LC 2000 land cover
classification legend; samples were selected randomly and

interpreted in the available color-infrared aerial
orthophotography acquired in 2007

Class Name
Class Area

(ha)

Calibration
Sample

Size

Reference
Sample

Size

Mixedwood 29919 138 59
Coniferous 21292 102 44
Herb 6424 40 17
Wetland treed 6220 39 17
Broadleaf 4778 33 14
Water 2671 24 10
Wetland 1008 17 7
Exposed land 296 14 6
Total 406 174

In this study, for accuracy assessment of change detection
and land cover outputs, the approach that adjusts class area
estimates for misclassification error was adopted as described
by Card (1982) because it fits with recommended good practice
for the accuracy assessment and use of land cover maps derived
from remote sensing (Olofsson et al. 2013; Olofsson et al. 2014).
In this approach, the misclassification-error-adjusted estimates
of the area are derived from the confusion matrix, which forms
the basis for the estimation of map accuracy.

Classification Algorithm
The Random Forest (RF) algorithm was selected because of

its relatively high accuracy and computational efficiency (Brie-
man 2001). The dependent variable—one of the 8 classes—was
predicted using the independent variables of Landsat spectral
variables and indices, DEM and time-series metrics. The RF
classifier consists of an ensemble of tree-based classifiers; it
uses bootstrap samples with replacement to grow a large col-
lection of classification trees, which assign each pixel to a class
based on the maximum number of votes that a class receives
from the collection of trees. Each tree is grown from a randomly
and independently selected subspace (i.e., a certain proportion
of pixels) of the measurement space (training pixels) that is used
to train the RF classifier; the remaining samples (called out-of-
bag cases) are used to assess the accuracy of the classification.
Two parameters must be specified: (i) the number of trees to
grow, and (ii) the number of randomly selected split variables
at each node (mtry). The default number of trees (500) was
used because values larger than the default are known to have
little influence on the overall classification accuracy (Breiman
and Cutler 2007). The other adjustable RF tuning parameter, the
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TABLE 3
Accuracy assessment of change detection identified by the trajectory analysis for years between 1990 and 2010 based on 200

sample pixels examined in the image data and available color-infrared aerial orthophotography. Cell entries are expressed as the
estimated area proportion of the cells of the error matrix

REFERENCE

Change No Change Total
User’s

Accuracy
Commission

Error

PREDICTED Change 0.093 0.013 0.105 88.00% 12.00%
No change 0.063 0.832 0.895 93.00% 7.00%
Total 0.155 0.845 1
Producer’s
Accuracy

59.71% 98.50% Overall Accuracy 92.47%

Omission error 40.29% 1.50% Margin of Error ± 3.66%

mtry parameter, controls the number of variables randomly con-
sidered at each split in the tree-building process, and is believed
to have a “somewhat sensitive” influence on the performance
of the RF algorithm (Breiman and Cutler 2007). For categorical
classifications based on the RF algorithm, the default value for
the mtry parameter is

√
p, where p equals the number of predic-

tor variables within a dataset (Liaw and Wiener 2002). Model
building and tuning were performed using version 3.0.3 of the
64-bit version of R (R Development Core Team 2014). Several
add-on packages were used within R to create the final classifi-
cation, which relied on the Random Forest package (Liaw and
Wiener 2002; Breiman and Cutler 2007; Breiman 2001).

Reference Year Land Cover Classification
RF and the aforementioned calibration samples were used to

produce a land cover classification for 2007. The 2007 reference
date was selected based on the availability of near-coincident
land cover validation data in the form of color-infrared aerial
orthophotography at 1:20000 scale. Two different classification
scenarios were explored (Table 1). In the first classification sce-
nario, we used single-date spectral variables and derived spectral
indices as inputs to RF. In the second classification scenario, we
used the same set of single-date inputs as those used in Scenario
1, with the addition of change metrics derived from trajectory
analysis of our stack of annual BAP proxy image composites
(Tables 2 and 3).

Temporal Transition Filtering
The RF model with the greatest overall classification accu-

racy, as evaluated following the approach outlined previously,
was applied to each year of the BAP proxy composite imagery.
Postclassification, the annual land cover classifications were
evaluated to identify and remediate illogical land cover tran-
sitions, using a temporal filter (e.g., Sexton et al. 2013). We
defined illogical land cover transitions as those transitions that
make no ecological sense in the context of the study area. An

example of an illogical transition would be from coniferous land
cover to exposed land cover to coniferous land cover in the span
of only 3 years. The temporal filter was a 3-year moving window
applied to each pixel through the time series, beginning in 1990
and proceeding annually to 2010. The filter was advanced year
by year in the temporal sequence, and when an illogical tran-
sition was encountered, the land cover class from the previous
year was automatically used to replace the current year’s land
cover. We then evaluated the impact that this postclassification
temporal transition filtering had on the accuracy of the reference
year land cover classification.

RESULTS AND DISCUSSION

Change Detection Validation
The accuracy of land cover change detection is reported in

Table 3. Overall accuracy was 92.47% with a margin of er-
ror of ± 3.66%. Commission and omission errors for change
events were 12.00% and 7.37%, respectively. Figure 3 shows
all of the change events detected in the Hearst Forest for the pe-
riod 1990–2010. Of the approximately 24 million pixels in the
image of the Hearst Forest, approximately 2 million (or 10%)
experienced a land cover change event during the 2 decades
represented in the Landsat time series. The accuracy result indi-
cates more omission errors than commission errors in detected
changes. There is no noticeable trend in the spatial pattern of
errors. The omission errors could result from partially changed
pixels. Such pixels are usually difficult to detect, because the
magnitude of change is mostly reliant on the proportion of
change within that pixel.

Land Cover Validation
Two different land cover classification scenarios were ex-

plored for the 2007 reference year, using 2 different sets of
input variables for modeling (Table 1). The 2007 classifications
were validated using high-resolution color aerial photography
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FIG. 3. Hearst Forest land cover change map showing land cover changes detected through greatest-change metric during
1990–2010.

acquired in 2007 and 174 reference samples. The accuracy as-
sessment results for the first 2007 classification scenario, which
used single-date inputs, are summarized in Table 4, and the
results for the second scenario, which incorporated single-date
inputs and time series change metrics are summarized in Table 5.

Incorporation of the change metrics improved overall classifica-
tion accuracy for 2007 from 79.38% to 85.77% and reduced the
margin of error by 0.82%. Omission errors for Scenario 2 were
lower for all classes except water and wetland, which were the
same for both scenarios. The greatest decrease in omission error
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in Scenario 2 relative to Scenario 1 were for the broadleaf and
exposed land classes. Similarly, commission errors were lower
for Scenario 2, particularly for the exposed land, wetland treed,
and mixedwood classes. The mixedwood forest class, which
represents approximately 41% of the Hearst Forest area, had an
estimated user’s accuracy of 84.75% for Scenario 2, compared
to 71.88% for Scenario 1.

Based on these results, the Scenario 2 classification model
was selected for application to all other years in the time se-
ries (1990–2010). Figure 4 shows the 2007 reference land cover
classification map (Scenario 2) for the Hearst Forest with the 8
land cover classes. An estimate of variable importance (VI),
as provided by the Random Forest algorithm, is shown in
Figure 5. VI is estimated by randomly permuting the variable
in the out-of-bag (OOB) samples; an increased OOB error is
an indication of the importance of that variable to the model,
providing indication of how influential an input variable is on
the overall accuracy (Genuer et al. 2010). VI is measured with
mean decrease in accuracy (MDA). To calculate the MDA of a
variable, the values of the variable are randomly permuted for
the OOB data, while keeping the values of the other variables
constant. The importance of the variable is obtained by com-
paring the resulting misclassification rate with the rate achieved
without randomly permuting the values of the variable. This
procedure is repeated for each variable (Breiman 2001).

The top 5 most important variables were single-date Land-
sat spectral variables and spectral indices, with the next most
important 3 variables selected from among the Landsat-based
time-series change metrics (trend magnitude, greatest distur-
bance duration, and postdisturbance duration).

Final Classification and Land Cover Transitions
The annual land cover classifications were produced by ap-

plying the RF model developed in Scenario 2 for the reference
year to all other years in the time series. Then, we examined all
of the annual land cover classifications and assessed land cover
transitions. Temporal transition filtering was performed to re-
move illogical class transitions, and the transitions that were
considered illogical in the context of the study area are summa-
rized in Table 6. The application of the filtering process allowed
us to estimate the gain in classification accuracy from our post-
classification transition-rule filtering. The accuracy assessment
results for the 2007 filtered classification are summarized in
Table 7. When compared to the results for the Scenario 2 refer-
ence classification for 2007 (Table 5), the overall accuracy was
improved 2.2% as a result of the temporal transition filtering,
whereas the margin of error was reduced by 0.36%. With the
exception of the wetland treed and mixedwood classes, omis-
sion errors were the same or lower for the transition filtered
classification, particularly for the wetland class. Commission
errors were likewise reduced or remained the same for the
filtered classification for most classes, but increased for wet-
land treed.

The time series of filtered annual land cover classifications
were then used to characterize general land cover transforma-
tions in the Hearst Forest over the past 20 years. Figures 6, 7, and
8 illustrate examples of land cover transitions identified in the
study; shown are the color-infrared aerial photography, NBR,
land cover changes over the 1990–2010 time period, 8-class
land cover classification for 2007, and a summary change tran-
sition map. Also shown in Figure 6 are 4 smaller sample sites
(numbered 1–4), which are used in Figures 7 and 8 to illustrate
different land cover change transitions in the study area.

Sites 2 and 4 were disturbed early in the time series 1991 and
1997, respectively; Sites 1 and 3 are more recent disturbances
(2006 and 2005, respectively). These sites were selected to show
typical land cover transition characteristics that are found in the
study area. It can be seen from the summary land cover transition
map (Figure 6) that many of the pixels that were disturbed early
in the time series had recovered by the end of the time series. Of
the approximately 10% of the study area that was identified as
experiencing land cover change, more than 90% had recovered
by 2010. The remaining areas show as herb or exposed land
class in 2010 (See Figure 7). Examples of land cover transitions
in areas shown in Figure 7a and 7b show Site 2 from Figure 6
in greater detail. Site 2 contains an area that was harvested at
the beginning of the available time series; the dominant land
cover class at the start of the time series was coniferous; as a
result of harvesting, the majority of the area was converted to
exposed land and then transitioned to herb, and eventually the
site recovered to mixedwood. The graph in Figure 7b shows a
pixel located near the edge of this harvest block (labeled as #1
in 7a) that transitioned from coniferous to exposed land then to
herb and finally to mixedwood. Figure 8(a) and (b) show Site 3,
which also displays a complex series of land cover transitions:
the area was harvested in 2004 and 2005, and most of this area
transitioned from exposed land (postharvest) to different land
cover classes by the end of the time series in 2010. The graph
(Figure 8b) shows an example of a pixel that was labeled as
conifer at the beginning of the time series, was later classified
as exposed land, and then experienced a transition over the next
few years from herb to mixed wood.

Table 8 summarizes the land cover transitions in the Hearst
forest, by 5-year epochs, from 1990 to 2010. These 5-year
epochs were selected to illustrate broad land cover change pat-
terns within the 20-year time interval examined for this study.
Note that only pixels that changed land cover at some point–not
necessarily from the beginning to the end of the time period, but
at least once during the epoch–were tabulated in each epoch.
Most land cover change pixels experienced only one land cover
change in the 20-year time period. However, some pixels started
a given epoch in 1 land cover class, changed to a different class,
and then returned to the original class by the end of that 5-year
epoch. The percentage of these pixels are counted in Table 8 as
having changed from 1 class and returning to that class.

Approximately 10% of the study area (about 6000 hectare)
are represented in these tables (i.e., areas that have experienced
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FIG. 4. Eight-class land cover classification in 2007 of the Hearst Forest study area in northern Ontario based on Landsat spectral
data and time series disturbance metrics. Overall land cover classification accuracy was approximately 86% based on 174 reference
sites. The small window outlined at the center of the map is the area shown in more detail in Figures 6, 7, and 8.

land cover change); of these, many of the land cover transi-
tions were made to the herb land cover class from one of the
forest classes. This occurred in each 5-year epoch. For example,
of the 408 hectare mixedwood identified as having changed
in the first epoch (in Table 8a), approximately 28.61% re-

mained as mixedwood at the end of the epoch (despite having
undergone a change in land cover class typically during the
earlier part of the epoch). Another approximately 51.6% of
this area, originally classified as mixedwood, changed to herb
in the first epoch. Similarly, of the areas that began the first
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FIG. 5. Training data variable importance (VI) as estimated in the RF classifier; VI is the average of the squared classification error
when the variable in the classification is replaced (permuted) with a random one and is an indication of the variables’ contribution
to the classification accuracy.

5-year epoch as conifer, and experienced a land cover transition
during this epoch, approximately 23.9% returned to conifer by
the end of the time epoch in 1995. In the same epoch, approxi-
mately 10.19% and 56.53% of these conifer land cover change

pixels changed land cover to the mixedwood and herb classes,
respectively. The exposed land cover pixels also show a reason-
able land cover change trend over the first epoch; of the 25.8
hectare that began the first 5-year epoch classified as exposed

TABLE 6
Illogical class transitions used in the transition-rule filter. Acceptable class transition in the center year between the start and end

year class is indicated with “
√

”; illogical transitions are indicated with “✗”

Middle (second) year

Class Mixedwood Coniferous Herb
Wetland

Treed Broadleaf Water Wetland
Exposed

Land

Start (first)
and end
(third) year

Mixedwood
√

✗
√

✗ ✗ ✗ ✗ ✗

Coniferous ✗
√

✗ ✗ ✗ ✗ ✗ ✗
Herb

√
✗

√
✗ ✗ ✗ ✗

√
Wetland Treed ✗ ✗ ✗

√
✗ ✗ ✗ ✗

Broadleaf ✗ ✗ ✗ ✗
√

✗ ✗ ✗
Water ✗ ✗

√
✗ ✗

√ √ √
Wetland ✗ ✗

√
✗ ✗

√ √ √
Exposed Land ✗ ✗

√
✗ ✗

√ √ √
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FIG. 6. A subarea of the Hearst Forest dataset showing exemplars of the various land cover transitions in the study area. Shown
are the color-infrared aerial photography, normalized burn ratio (NBR), land cover changes over the 1990–2010 period, 8-class
land cover classification for 2010, and a binary recovery no-recovery mask. Sites 2 and 4 were disturbed early in the time series
1991 and 1997, respectively; Sites 1 and 3 are more recent disturbances (2006 and 2005, respectively). Sites 2 and 3 are shown in
greater detail in Figures 7 and 8, respectively.

land, approximately 34.23% experienced a land cover change
(typically to the herb class) but remained or returned to the ex-
posed land class by the end of the 5-year epoch. Approximately
16.2% and 35.99% of the exposed land pixels were classified as
mixedwood and herb by the end of the first epoch.

There are clear patterns of change between mixedwood,
coniferous, and herb land cover classes in each epoch and over
the 20-year period. The transitions between these classes ap-
pear to represent land cover change and dynamics associated
with harvesting activities (e.g., clearcutting conifer, to exposed,



VOL. 41, NO. 4, AUGUST/AÔUT 2015 309

FIG. 7. Examples of land cover transitions in areas shown in Figure 6: (a) and (b) show Site 2, this site contains an area that was
clearcut at the beginning of the available time series; at that time, the dominant land cover class was coniferous, and the majority
of the area was converted to mixedwood at the end of the time period. The graph in 7(b) shows the land cover transitions for a
pixel located near the edge of this cutover in Site 2 where the land cover has transitioned from coniferous to exposed land and then
to herb and finally to mixedwood.
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FIG. 8. Site 3 in Figure 6. Site 3 has experienced land cover change in 2004 and 2005, and many of these cutover pixels transitioned
to different land cover classes by the end of the time series. The graph in 8(b) shows a pixel that began as conifer, transitioned to
exposed land following harvesting, and subsequently transitioned from herb to mixedwood.
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TABLE 8
Land cover class transitions (%) by 5-year epochs in the Hearst Forest

Epoch 1 (1990–1995), Epoch 2 (1995–2000), Epoch 3 (2000–2005), Epoch 4 (2005–2010)

To

From Mixedwood Coniferous Herb Wetland Treed Broadleaf Wetland Exposed Land

Mixedwood
Epoch 1 28.61 0.66 51.56 3.91 5.68 4.49 5.10
2 8.65 0.47 71.30 1.69 0.42 2.21 15.26
3 10.19 1.17 56.74 2.13 0.38 9.12 20.26
4 21.53 4.05 38.55 11.45 1.90 9.25 13.28

Coniferous
Epoch 1 10.19 23.90 56.53 2.36 0.26 4.13 2.63
2 1.90 10.58 70.40 1.61 0.02 4.65 10.83
3 4.28 4.52 56.94 2.31 0.07 13.65 18.23
4 7.76 8.33 34.62 10.67 0.75 16.48 21.40

Herb
Epoch 1 16.59 0.42 80.04 0.92 0.53 0.47 1.03
2 3.19 1.32 88.04 1.16 0.61 1.53 4.16
3 3.44 0.50 80.46 0.95 0.08 2.87 11.70
4 13.50 3.78 65.59 4.85 0.72 5.84 5.72

Wetland Treed
Epoch 1 24.50 0.43 60.28 3.21 1.48 5.77 4.32
2 6.31 1.17 71.81 3.11 0.10 4.52 12.97
3 5.57 1.86 63.83 4.95 0.09 10.99 12.71
4 9.49 4.02 32.92 23.36 1.74 18.72 9.74

Broadleaf
Epoch 1 28.16 0.17 49.55 0.73 6.16 5.94 9.29
2 5.33 0.18 73.62 0.24 3.46 2.39 14.77
3 7.52 0.26 51.47 1.38 32.54 1.89 4.92
4 10.62 6.06 56.31 3.44 4.67 6.08 12.81

Wetland
Epoch 1 31.70 0.64 29.90 1.85 4.61 26.33 4.97
2 7.80 6.84 43.33 5.48 0.41 20.88 15.28
3 7.20 2.93 39.20 4.20 0.70 30.08 15.70
4 12.81 8.85 16.32 16.29 1.94 33.11 10.69

Exposed Land
Epoch 1 16.20 0.27 35.99 1.09 3.21 9.01 34.23
2 2.21 1.38 19.75 0.71 3.59 1.12 71.24
3 2.20 0.37 29.45 0.89 0.21 2.13 64.76
4 6.88 1.12 46.89 4.57 0.87 4.31 35.36

to herb) and forest regeneration (e.g., herb to mixedwood). The
annual land cover classification helps to confirm interpretations
of the kind of land cover change occurring on an annual basis
and over time for the entire study area. A compilation of the
annual percentage of different land cover classes throughout the
time series is contained in Figure 9. This classification method
can be applied to other areas to produce spatially and temporally
consistent information on annual land cover, providing sufficient
archived Landsat data is available. The approach allows the use

of spatially contiguous, cloud- and haze-free, spatially consis-
tent, temporal series of Landsat data for large-area land cover
mapping. The resulting information on land cover dynamics is
important for the study of carbon modeling. Spatially explicit
carbon modeling methods often require information on annual
land cover and land cover changes, especially such that can
be portrayed in a change matrix. The predisturbance land cover,
the year of disturbance, and the postdisturbance land cover class
information can be joined with data on carbon dynamics to esti-
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FIG. 9. Areal percentage of the 5 major land-cover classes mixedwood, coniferous, herb, wetland treed, and broadleaf for years
1990 to 2010.

mate carbon stocks, stock changes, and the associated emissions
and removals over time. Future research is intended to imple-
ment land cover classification approaches using all available
Landsat imagery to assess intra-annual phenological change
and to test this approach for other regions with different en-
vironments. Further, knowing the variable yield of imagery that
can be expected within a given year or growing season, oppor-
tunities such as those implemented by Senf et al. (2015), using
multiscale applications, also merit additional investigation.

CONCLUSIONS
In this study, annual land cover maps were generated from

a time series of Landsat image composites for the period
1990–2010 in the Hearst Forest in northern Ontario. Time se-
ries trajectory analysis identified areas that had changed land
cover at least once during the 1990–2010 time period based
on the greatest-change metric; such areas were then filtered for
illogical transitions, examined for land cover change patterns,
and interpreted in the context of known forest management
practices and land cover transitions. Incorporation of change
metrics derived from the time series into the land cover classifi-
cation approach improved overall accuracy by 6.38% compared
to single image-date results. Subsequent postclassification fil-
tering of the time series of annual land cover classifications
further improved overall accuracy by an additional 2.2%. The
capacity to characterize land cover transitions through time is
a unique contribution of this study. For example, mixedwood
forest that experienced change early in the time series showed
a typical vegetation transition pattern: mixedwood transitioned
to exposed land following harvest, then transitioned to herb,
and subsequently returned to mixedwood by the end of the time

series. An area that was more recently disturbed changed from
conifer to exposed land and then to herb. Such characterizations
of land cover transitions rely on both the accurate detection of
change events as well as the accurate classification of land cover.
Future work will examine conversion of these transitions into
inputs relevant for carbon budget modeling, such as predistur-
bance and postdisturbance land cover. These interpretations of
land cover dynamics are also of general interest to monitoring,
inventory, and reporting programs, as well as to characterizing
postdisturbance recovery trajectories.
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