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Mapping Dominant Tree Species over Large Forested
Areas Using Landsat Best-Available-Pixel Image
Composites

Shanley D. Thompson1,*, Trisalyn A. Nelson1, Joanne C. White2, and
Michael A. Wulder2

1Spatial Pattern Analysis and Research Lab, Department of Geography, University of Victoria, PO BOX
3060, Victoria, British Columbia V8W 3R4, Canada
2Canadian Forest Service (Pacific Forestry Centre), Natural Resources Canada, 506 Burnside Road
West, Victoria, British Columbia V8Z 1M5, Canada

Abstract. Remotely sensed image composites that are pixel based rather than scene based are increasingly feasible to use over
large areas and fine spatial resolutions. For large jurisdictions that utilize remotely sensed imagery for ecosystem mapping and
monitoring, pixel-based composites enable a wider range of applications, at higher quality. The goal of this study was to model
spatial distributions of 6 tree species over a large forested area of Saskatchewan, Canada (>39 million ha) at 30-m spatial resolution
using a multiyear Best-Available-Pixel (BAP) Landsat composite. We tested the influence of the BAP composite on the resultant
maps by comparing species composition and configuration for areas where imagery was from a single sensor, year, and day of
year, to areas with variable composite characteristics. Model error rates ranged from 0.09% to 0.24%, area under the curve
values approaching 1, and met ecological expectations. The BAP composite was found to have little effect on model outcomes,
with composition and configuration values in nonreference areas being similar for all species but one, which had an unexpected
configuration. Moreover, sensor, year, and day of year were similar for reference and nonreference blocks for all species. Results
indicate that Landsat BAP image composites are useful for generating large-area maps of tree species distributions.

Résumé. Des images composites de télédétection qui sont basées sur des pixels, plutôt que sur des scènes, sont de plus en plus
possibles sur des grandes superficies et à des résolutions spatiales fines. Pour les grandes régions administratives qui utilisent
des images de télédétection pour la cartographie et la surveillance des écosystèmes, des composites à base de pixels permettent
une plus large gamme d’applications de meilleures qualités. Le but de cette étude était de modéliser les distributions spatiales de
6 espèces d’arbres sur une grande superficie boisée de la Saskatchewan, Canada (>39 millions ha) à une résolution spatiale de
30 m en utilisant un composite pluriannuel du meilleur pixel disponible (Best-Available-Pixel; BAP) de Landsat. Nous avons testé
l’influence du composite BAP sur les cartes résultantes en comparant la composition des espèces et la configuration pour les zones
où l’imagerie provenait d’un seul capteur, d’une seule année et d’un seul jour de l’année, aux zones ayant des caractéristiques de
composites variables. Les taux d’erreur des modèles variaient de 0,09 % à 0,24 %, les valeurs de surface sous la courbe étaient
proches de 1, et ont répondu aux attentes écologiques. Le composite BAP s’est révélé avoir peu d’effet sur les résultats des modèles.
Les valeurs de composition et de configuration dans les zones non-références étant similaires pour toutes les espèces, à part pour
une qui avait une configuration inattendue. En outre, le capteur, l’année et le jour de l’année étaient semblables pour les blocs
de référence et de non-référence pour toutes les espèces. Les résultats indiquent que les images composites BAP de Landsat sont
utiles pour générer des cartes de la répartition des espèces d’arbres pour de grandes surfaces.

INTRODUCTION
Effective forest management requires knowledge of the spa-

tial distribution of tree species composition and abundance.
Species information is used to assess risks and impacts asso-
ciated with a variety of natural or anthropogenic disturbances,

including fires, insect and invasive plant infestations, and re-
source extraction. Species composition and abundance, together
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with other metrics such as species richness, species endemism,
and rarity are also important metrics of biodiversity that can
be used to guide conservation planning (Fleishman et al. 2006)
and ecosystem service assessment (Kremen 2005). In addition,
climate change may alter the distribution of tree species in the fu-
ture (Coops and Waring 2010; Hamann and Wang 2006; Pfeifer-
Meister et al. 2013; Thuiller et al. 2005), and knowledge of the
current distribution is the first step in attempting to understand,
monitor, and as possible, manage those changes.

Despite the importance and various needs for tree species
distribution data, the availability of these data is limited. Some
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projects might benefit from the tree observations and vegeta-
tion plot data compiled and shared via online databases such
as the Global Biodiversity Information Facility1 and the Global
Index of Vegetation-Plot Databases.2 However, these data re-
main spatially incomplete and biased toward easily accessible
or protected areas (Garcı́a Márquez et al. 2012; Hortal et al.
2007). Expert range maps (e.g., Little 1971) provide a general
indication of where species occur, but overestimate the true
distribution of a species (Jetz et al. 2007; McPherson and Jetz
2007). Strategic-level forest inventories are typically undertaken
in areas that have the capacity to support commercial timber
production. Outside these areas, forest inventory data might be
available, generally with less spatial and attributional detail, ac-
cording to the forest monitoring needs in the area. In Canada, for
example, forest inventories are common in the more intensively
managed southern forests (Falkowski et al. 2009), whereas only
the sample-based National Forest Inventory aims to systemat-
ically characterize forest resources outside of managed forest
areas (Gillis et al. 2005; Wulder, Kurz, et al. 2004).

The paucity of detailed inventory data makes satellite remote
sensing a necessary source of information from which species
distributions can be mapped or modeled over large areas. High-
spatial-resolution imagery can offer opportunities for mapping
individual tree structure and composition (Wulder, Hall, et al.
2004), but the spatial image extents are limited (e.g., 10 by
10 km) requiring many images (with variable view angles and
illumination conditions) to map a given area, leading to high
cost. Imagery with larger extents are often of interest for map-
ping larger areas; however, these data come with pixel sizes that
subsume many individual objects and landscape features, dimin-
ishing the variance between pixels, and limiting the capacity to
map high levels of categorical detail, such as tree species com-
position. Issues such as atmospheric contamination (i.e., clouds,
haze) further limit scene availability and confound mapping ef-
forts. Several recent advances address some of these shortcom-
ings and offer increased capacity to use remotely sensed data
for predictive species mapping over large areas at higher spatial
resolutions. Specifically, as of 2008, satellite imagery from the
Landsat series of sensors, extending from 1972 to the present,
are freely available to the public (Woodcock et al. 2008; Wulder
et al. 2012). Free and open access to analysis-ready Landsat
data has enabled considerable innovative capacity (Wulder and
Coops 2014). Combined with improved computing power that
facilitates large-area image compositing approaches (Roy et al.
2010) as well as the applications-focused, best-available-pixel
(BAP) approaches of Griffiths et al. (2007) and White et al.
(2014), spatially exhaustive coverage of large areas at a spatial
resolution of 30 m in a systematic and transparent fashion is now
possible. For instance, compositing approaches can be based on
use of the best available observation for each pixel, with “best”

1gbif.org

2givd.info

being defined according to a set of scores for characteristics
such as year, day of year (DOY), distance to cloud and cloud
shadow, and sensor (Griffiths et al. 2007). Regional compos-
ites of medium spatial resolution imagery can be expected to
become increasingly common (Griffiths et al. 2014). Detailed,
efficient (large-area) maps of species distributions are a likely
product of these compositing approaches, as long as the mod-
els are robust to some composite-imposed spectral variability.
The goal of this research is to generate spatially detailed (30 m)
distribution maps for 6 tree species over a large forested area of
Canada using a multiyear best-available-pixel (BAP) Landsat
composite. A specific objective was to evaluate the impact of
composite characteristics (i.e., DOY, year, and sensor) on model
outcomes, through assessment of the spatial pattern (composi-
tion and configuration) of the predictions.

METHODS

Study Area
The study area is approximately 39 million ha, and com-

prises the 3 forested ecozones of Saskatchewan, Canada. From
North to South, these are the Taiga Shield, the Boreal Shield,
and the Boreal Plains (Ecological Stratification Working Group
1996; Figure 1). The Boreal Plains is adjacent to the Prairie eco-
zone further south, and consists of rolling uplands and plains
with a mixture of deciduous and coniferous vegetation species
(McLaughlan et al. 2010). The Boreal Shield and Taiga Shield
are characterized by a harsh climate and poorer soils, a greater
proportion of coniferous tree species, and a lower diversity of
plant species (McLaughlan et al. 2010; Pastor et al. 1996). A
variety of provincial forest inventory data exist in the man-
aged forest area of the province (Figure 1), with varying spatial
scales, levels of attribution, and temporal frequencies (Gillis
et al. 2005; Saskatchewan Environment—Forest Service 2004;
Saskatchewan Ministry of Environment 2009).

Tree Species Distribution Data
Tree species distribution data were acquired from Canada’s

National Forest Inventory (NFI). The NFI consists of a grid of
permanent sample plots distributed across the country, the ma-
jority of which are 2 km x 2 km “photo plots” (i.e., derived from
air photo interpretations), within which multiple polygons are
delineated indicating species composition and relative abun-
dance. To reduce uncertainty at polygon edges, we removed
30 m (one pixel) from the inner edge of each polygon to en-
sure agreement between the inventory data and our predictor
data (Verbyla and Hammond 1995). To ensure adequate sample
size and quality, we did not model species that occurred rela-
tively infrequently or that occurred exclusively in polygons of
heterogeneous composition (≤90% of one species). In addition,
polygons that were observed to have burned or been harvested
since they were inventoried were removed, as were polygons that
were very small in size (less than one pixel). Thus, of the 11 tree
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FIG. 1. Study area. (a) The province of Saskatchewan (highlighted in black), in central Canada. (b) The forested ecozones
and ecoregions of Saskatchewan. (c) The distribution of Canada’s National Forest Inventory 2 km × 2 km photo plots across
Saskatchewan, including inside and outside of the Managed Forest Area. These inventory data were the source of the training data
used to model tree species distributions.
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TABLE 1
Species modeled, area and number of National Forest Inventory Photo Plot (NFI PP) polygons dominated by each

Dominant (present at ≥90%
abundance)a

Nondominant (present at ≤10%
abundance)a

English Name Latin Name Number of Polygons Area (km2) Number of Polygons

White birch Betula papyrifera 29 0.71 5404
Tamarack Larix laricina 459 27.11 4974
White spruce Picea glauca 49 0.73 5348
Black spruce Picea mariana 2057 55.81 3376
Jack pine Pinus banksiana 856 38.63 4577
Trembling aspen Populus tremuloides 1983 88.48 3450

aCount follows exclusion of very small polygons (less than 900 m2) and those that were burned or harvested in the time since the polygon was
delineated and attributed.

species identified in the NFI photo-plot data, we modeled the 6
most common (Table 1) : black spruce (Picea mariana), trem-
bling aspen (Populus tremuloides), jack pine (Pinus banksiana),
white birch (Betula papyrifera), tamarack (Larix laricina), and
white spruce (Picea glauca). Species that were present in in-
sufficient numbers for modeling were Abies balsamea, Acer
negundo, Fraxinus pennsylvanica, Pinus contorta, and Popu-
lus balsamifera. Our 6 target species can be found across all 3
forested ecozones in the province (McLaughlan et al. 2010).

Image Composite Data
We used a multiyear BAP surface reflectance composite as

the source of spectral information in our distribution models.
A detailed description of this and other compositing methods is
provided in White et al. (2014). Briefly, candidate pixel observa-
tions were scored according to sensor (Landsat TM or ETM+),
year, DOY, distance to clouds or cloud shadows, and haze, and
the pixels with the highest score were used to populate the fi-
nal image composite. Our target was Landsat 5 TM imagery
from August 1, 2010; however, candidate pixels included all
observations acquired ± 30 days of August 1, 2009, 2010, and
2011, from Landsat 5 TM or 7 ETM+, as required to provide
complete, cloud-free coverage of the study area. In Table 2 we
show the number of unique images considered and selected for
the final BAP composite for Saskatchewan as a whole (encom-
passing our study area as well as the Prairie Ecoregion). After
scoring, 5% of pixel observations in the final composite of our
study area were acquired from 2009 imagery, 69% from 2010
imagery, and 2% from 2011 imagery. The remaining 24% of
pixels had BAP observations for both 2009 and 2011, and a
proxy value was generated by taking the average of the 2009
and 2011 observations (see White et al. 2014). Pixels with proxy
values were excluded from the analyses because there were no
logical corresponding DOY or sensor values with which to as-
sess relationships. In total, 95% of pixel observations were from
Landsat 5 TM, and 5% from Landsat 7 ETM+. Almost 30%
of pixel observations came within 7 days of the target DOY

(August 1), with the remaining pixels acquired within 30 days
of August 1. In the context of this study, which was designed
to model tree species distributions, it is important to note that
the majority of pixels (by area) in the composite came from
imagery acquired in the 2010 target year and, furthermore, that
tree species distributions tend to change slowly over longer time
horizons. As such, the multiyear image composite used in this
study is appropriate for modeling species distributions.

In order to reduce undesirable variability in the spectral re-
flectance values of the predictor variables used in our models
(see Loveland et al. 1991), we calculated several spectral in-
dices from the image composite data and used these to exclude
nonvegetated areas and, to the extent possible, nonforested areas
from our analyses (Figure 2). Specifically, the Normalized Dif-
ference Vegetation Index (NDVI), and the Tasseled Cap (Crist
and Cicone 1984; Kauth and Thomas 1976) Greenness (TCG),
Brightness (TCB), and Wetness (TCW) indices were used to
remove water, bare ground, urban areas, and sparsely vegetated
areas. As well, the normalized burn ratio (NBR; Key and Benson
2006), was used to identify and remove areas that had experi-
enced fire in recent years, with the threshold NBR value chosen
for this analysis (0.15) validated by data from the Canadian
National Fire Database (Canadian Forest Service 2013). An un-
supervised classification of the Landsat spectral bands for the
remaining pixels served to remove additional areas subsequently
identified as cultivated land.

Topographic Data
Topographic data were acquired from the freely available

Canadian Digital Elevation Data.3 These elevation data are de-
rived from provincial and national topographic data sources, and
are provided as a 1:50,000 digital elevation model (DEM). The
DEM, which has a native spatial resolution of approximately
23 m (0.75 arc seconds), was resampled to match the 30 m

3http://www.geobase.ca/geobase/en/data/cded/
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TABLE 2
Number of Landsat images used in best-available-pixel composite for Saskatchewan, Canada

Candidate∗ Composite

Year TM ETM+ Total TM ETM+ Total

2009 379 328 707 345 188 533
2010 362 367 729 342 284 626
2011 406 398 804 333 218 551

∗Candidate images are ± 30 days of August 1 with less than 70% cloud cover.

spatial resolution of our image composite using bilinear resam-
pling. From the 30 m DEM we calculated slope (in degrees),
the Topographic Solar Radiation Index (TRASP; a transformed
measure of aspect), and the Topographic Wetness Index (TWI;
Table 3).

Species Distribution Modeling
Species distribution modeling was conducted using Random

Forests (RF) in R 3.1 (Breiman 2001). We chose RF, a type of
decision tree, because it can accommodate nonnormal responses
and nonlinear relationships and automatically account for inter-
actions among predictors (De’ath and Fabricus 2000; Elith et al.
2008; Hawkins 2012). Decision trees involve a sequence of bi-
nary splits at values of the predictor variables that result in the
maximum differentiation of values of the response variable (in
this case, species dominance or nondominance at a given loca-
tion). In RF, many (500 to 2000) single trees are developed, each
constructed from a different bootstrapped sample of the training
data and a randomly selected subset of the predictor variables
(Prasad et al. 2006). The predictions are averaged over all trees
to generate an overall probability while minimizing the chances
of over-fitting to the training data (Franklin 2009; Prasad et al.
2006). Ensemble tree methods have been found to perform well,
relative to most other predictive methods across many regions
and species, including plants (Elith et al. 2006; Guisan, Zim-
merman, et al. 2007; Prasad et al. 2006).

The use of RF for species distribution modeling involved both
fitting and prediction stages. First, each model was fit using the
species observation data from Table 1 and the mean of each
predictor variable. The predictor variables used in the modeling
were selected from among the multiple aforementioned topo-
graphic and spectral variables after conducting a Spearman’s
rank correlation analysis and assessing variable utility through
boxplots for each predictor variable across all species. Specif-
ically, we selected the following 3 spectral and 2 topographic
indices for use as inputs, all with correlations of less than ±
0.15: the Tasseled Cap TCG, TCB, and TCW, the TRASP, and
the TWI (Table 3). We used 500 decision trees, with a random
subset of 2 of the explanatory variables chosen for input for each
of these individual trees. Because of the unbalanced number of
observations of dominance and nondominance in the training
data for a given species (Table 1), we used a down-sampling

approach, specifying that each model should use all samples
from the least common class (dominance), and an equal num-
ber of samples from the more common class (nondominance;
Chen et al. 2004). A separate RF model was generated for
each species, and thus, the number of samples varied across
models.

Each output RF model contained probabilities of dominance
ranging from 0 to 1, which are classified by default into the
binary classes dominance or nondominance, if probabilities are
≥0.5 or <0.5, respectively. However, often a threshold prob-
ability other than 0.5 is preferred (Nenzén and Araújo 2011),
particularly for rare species (Freeman and Moisen 2008). To
choose appropriate threshold probabilities for our models, we
generated a receiver operating characteristic (ROC) plot for each
species using the auc.roc.plot() function in the PresenceAb-
sence library in R (v3.1.2). An ROC plot shows how the rate of
true positives (y-axis) versus false positives (x-axis) of a model
varies for all threshold probabilities between 0 and 1. A perfect
classification would pass through the upper-left corner of the
plot (100% true positives and 0% false positives). A threshold
value that achieves the minimal distance between this place of
perfect classification and the curve is an appropriate value to
transform continuous outputs to binary classifications (Liu et al.
2005).

Finally, each of the 6 models were re-run using the values
of the predictor variables for locations (pixels) where species
observations were absent and the predictions of dominance and
nondominance output as continuous raster surfaces using the
determined thresholds. A secondary goal was to create a for-
est composition map with all species combined. A composite
species map was generated by evaluating the individual prob-
abilities of dominance resulting from each of the 6 RF models
were compared at each location (pixel) and that species with
the highest overall probability was selected as the appropriate
classification value for that location.

Model Evaluation
Model performance was assessed using the out-of-bag

(OOB) error generated internally by the RF method, eliminating
the need for a separate cross-validation (Breiman 2001). Specif-
ically, the ability of the classifier to correctly predict observed
values was assessed, and discrete class predictions were based
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FIG. 2. Flowchart of the data and methods followed to model species distributions and asses the impact of BAP composites of the
resultant maps.
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TABLE 3
Predictor variables used in the Random Forests models of individual tree species distributions

Name Description Rationale

Brightness Tasseled Cap components (Crist and
Cicone 1984; Crist 1985)

TC brightness can differentiate between
soil and vegetated surfaces (Crist et al.
1986) and can help differentiate among
successional stages/stand age (Song
et al. 2007).

Greenness Greenness relates to biomass and
vegetation vigor and is highly correlated
to the Normalized Difference Vegetation
Index (NDVI), which is useful for
general land cover classification
(Defries et al. 1995; Running et al.
1994)

Wetness TC Wetness correlated to structural
complexity (Hansen et al. 2001),
perhaps particularly for successional
stages/stand age (Wulder, Skakun, et al.
2004).

Topographic Wetness Index (TWI) Model of potential surface moisture, based
on topographic position (Beven and
Kirkby 1979):

Soil moisture directly affects plant growth.

Ln(specific catchment area/tan(slope in
radians))

Topographic Solar Radiation
Aspect Index (TRASP)

Values range from 0 to 1, with 0 indicating
cool, NE slopes, and 1 indicating warm
SW slopes (Roberts and Cooper 1989).

Solar radiation affects soil moisture and
heat load, and directly affects plant
growth.

on species-specific probability thresholds determined through
the ROC analysis described. We also examined the area under
the curve (AUC) associated with an ROC plot, as calculated
by back-predicting on our observed data (essentially, but not
exactly the same data used for training because of the subsam-
pling and consensus approach used in RandomForests). The
AUC ranges from 0.5 to 1 and indicates the proportion of times
that the model discriminates between our 2 outcomes as better
than random (Jiménez-Valverde 2012), or more specifically, the
proportion of times a randomly chosen instance of dominance
has a value larger than that for a randomly chosen instance
of nondominance (Fielding and Bell 1997). Thus, higher AUC
values indicate better models.

Finally, we compared our resultant tree distribution models
with previous studies, general knowledge of the species’ ranges,
and trends of dominance per ecozone and ecoregion. In partic-
ular, we calculated the areal extent of each dominant species as
predicted in our overall forest composition map per ecozone and
ecoregion and ranked these in descending order. We repeated
this calculation using homogenous polygons from NFI photo
photo-plot data to assess agreement between model outputs and
the training data over a broader scale. Similarly, we generated

regional summaries of species dominance by combining predic-
tions of a relative basal area for the same species from a recent
study by Beaudoin et al. (2014).

Assessing the Effects of the Image Composite on Spatial
Patterns of the Models

To assess the impact that compositing had on predicting
species distributions, we tested the hypothesis that the spatial
pattern of predictions was similar for reference sample blocks
and nonreference sample blocks. Reference blocks had pixel
observations derived from a single year, a single DOY, and a
single sensor, whereas nonreference blocks had pixel observa-
tions from multiple years, DOYs, and sensors. Spatial patterns
can be quantified by a combination of composition and con-
figuration. Whereas composition is aspatial and refers to the
variety and (relative) abundance of different features (e.g., tree
species), configuration refers both to the spatial characteristics
of individual patches such as size and shape, as well as spa-
tial relationships among neighboring patches or neighboring
cells (Gustafson 1998). Although composition indicates what
is present at any given location, configuration metrics provide
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TABLE 4
Threshold used to translate probabilities of species dominance to a binary dominant or nondominant variable. The threshold

selected minimized the distance on a plot of the ROC curve between the upper-left corner of the plot and the curve.

Threshold Used to Create OOB Error Rateb (for Area Under the Curve
Species Binary Mapa (for class “dominant”) (AUC)c

Betula papyrifera 0.7 0.24 0.99
Larix laricina 0.7 0.12 0.99
Picea glauca 0.7 0.24 0.99
Picea mariana 0.6 0.11 1
Pinus banksiana 0.7 0.14 1
Populus tremuloides 0.6 0.09 1

aAccording to the criteria of minimizing the distance on a plot of the ROC (receiver operating characteristic) curve between the upper-left corner
of the plot and the curve.
bThe Out of Bag (OOB) error indicates the total number of misclassified data points from within the out-of-bag sample (Breiman 2001).
cValues close to 1 indicate good model fit.

a context to local conditions and permit study of the manner
in which spatial patterns are an expression of process (Fahrig
2005; Turner 1989).

The analysis was undertaken within sample blocks measuring
1020 m × 1020 m, distributed over a random 10% of the study
area (for a total of 31,840 samples). An extent of 1020 m ×
1020 m was chosen to ensure coverage of the data gaps (of 1
to 14 pixels in size, see Goward et al. 2010; Storey et al. 2005)
resulting from Landsat 7 ETM+ Scan-Line Correction failure,
while also being a number within which 30 m Landsat pixels
could be equally divided. Three image composite characteristics
were evaluated: acquisition year (2009, 2010, or 2011), sensor
(TM or ETM+), and the number of days from the target DOY
of August 1 (ranging from 0 to 30).

For each species, composition was quantified within each
1020 m × 1020 m block as the sum of pixels with predicted
dominance for that species. All blocks had dominance of at least
1 species. Configuration was measured for each species using
join counts within each 1020 m × 1020 m area. A join count
test can be used to assess spatial autocorrelation in categorical,
especially binary, variables such as dominance/nondominance
(Boots 2006). Using a join count, the spatial configuration of a
species can be quantified as clustered or dispersed, relative to
complete spatial randomness (O’Sullivan and Unwin 2010). For
binary data, the 2 categories are normally referred to as either
“Black” (B) or “White” (W) (here, dominance or nondominance,
respectively). For this analysis, we were interested only in the
JBB (dominance-dominance) join-count statistic:

JBB = 1

2

(∑n

i=1
i �=j

∑n

j=1
j �=i

δijXiXj

)
1

2

(∑n

i=1
i �=j

∑n

j=1
j �=i

δijXiXj

)
,

where i and j are the 2 sampling units being compared, xi is

the value of the sampling unit (1 or 0), and δij is the adja-
cency of i and j (1 when they are adjacent, 0 when they are

not). The expected values of joins are then calculated based on
the proportion of each category and number of total joins in
the study (which depends on how connectivity is defined), and
the observed and expected values are then compared to assess
the null hypothesis of complete spatial randomness (Fortin and
Dale 2005). We computed a join count for each species, us-
ing the Rook’s case definition of contiguity (4 neighbors). Each
species had to be predicted within at least two 30-m cells within
each 1020 m × 1020 m block to be included in the analysis.
Missing data within each 1020 m × 1020 m block were reclas-
sified as zeroes to allow calculation of the join-counts, while
remaining statistically conservative.

To assess whether the use of an image composite affected
our modeled species distributions, we compared values of com-
position and configuration between reference (n = 23,581) and
nonreference (n = 8259) sample blocks. We calculated the fre-
quency distribution of the composition and configuration values
for each of the 6 species from the reference sample blocks, and
extracted the 5th and 95th percentiles for each. The number of
composition and configuration values in the nonreference sam-
ple blocks that fell below the 5th or above the 95th percentiles
was then calculated. Blocks with these unexpected values were
then mapped and a summary of their sensor type, year, and DOY
characteristics was extracted.

RESULTS

Species Distribution Modeling
The ROC threshold optimization method resulted in a thresh-

old of 0.7 for all species except for Picea mariana and Populus
tremuloides, for which the optimum threshold was 0.6 (Table 4).
These thresholds were used to map the distribution of each indi-
vidual tree species (Figure 3). Combining the individual species
maps creates an overall map of forest composition (Figure 4). Pi-
nus banksiana was predicted to dominate over the largest spatial
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FIG. 3. Individual models of tree species dominance in Saskatchewan.

extent (8.9 million hectares in total), particularly at mid-to-high
latitudes (Figure 4). Populus tremuloides was predicted to dom-
inate in the southern extreme of the Boreal Plain ecozone, in the
Aspen Parkland ecoregion, but is also found across the province
even in the far north, with predicted dominance covering 7.3 mil-
lion ha in total. Picea mariana was predicted to be the next most
widespread species, dominating over 6.6 million ha, particularly
at mid-latitudes, but being also widespread in the north. Larix
laricina was predicted to be dominant at low-to-mid latitudes in
the Boreal transition ecoregion and in lowland areas and known
wet areas such as the Saskatchewan River delta, straddling the
eastern border of Saskatchewan, covering 3.4 million ha in total.
Picea glauca and Betula papyrifera were predicted to dominate
with considerably less extent (approximately 1.3 million ha and
824,000 ha, respectively).

Model Evaluation
The ability of our models to correctly classify the dominance

or nondominance of individual species varied from species to
species (Table 4). Overall, OOB error rates were less than

25%, indicating reasonable model fit to the training data. Er-
ror rates were much lower for species with sufficient sample
sizes. Specifically, at the selected thresholds, Populus tremu-
loides (with one of the highest sample sizes) had the lowest
OOB error at 9%. Betula papyrifera and Picea glauca (with the
2 lowest sample sizes) had the highest OOB error rates at 24%
each. AUC values were very high for all models (0.99 to 1),
indicating good model performance.

Trends in the relative areal extent of species dominance for
the province’s forested ecozones and ecoregions predicted in this
study are generally comparable to those in the NFI photo-plot
database, as well as to those of species occurrence from Beau-
doin et al. (2014) (Table 5). For example, all 3 studies/datasets
indicated that both the Boreal Plain Ecozone and Boreal Tran-
sition Ecoregion are dominated by Populus tremuloides. All
3 datasets also suggest Pinus banksiana is dominant in the
Athabasca Plain ecoregion. Some differences are also appar-
ent. For instance, the current study predicts Pinus banksiana to
be dominant across the largest proportion of the Taiga Shield,
whereas the other datasets indicate that Picea mariana is most
dominant.
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FIG. 4. Forest composition map showing tree species with highest predicted probability of dominance at each location.
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TABLE 5
Spatial extent of dominant tree species in Saskatchewan’s forested ecozones and ecoregions

Most Spatially Expansive Species

Ecozone Ecoregion NFI photo plot data1 Beaudoin et al. 20142 This study

Taiga Shield Picea mariana (70% of
ecoregion)

Picea mariana (80% of
ecoregion)

Pinus banksiana (61%
of ecoregion)

Tazin Lake Upland Picea mariana Picea mariana Pinus banksiana
Selwyn Lake Upland Picea mariana Picea mariana Pinus banksiana

Boreal Shield Pinus banksiana (48%
of ecoregion)

Picea mariana (49% of
ecoregion)

Pinus banksiana (46%
of ecoregion)

Athabasca Plain Pinus banksiana Pinus banksiana Pinus banksiana
Churchill River Upland Picea mariana Picea mariana Pinus banksiana

Boreal Plain Populus tremuloides
(48% of ecoregion)

Populus tremuloides
(48% of ecoregion)

Populus tremuloides
(40% of ecoregion)

Mid-Boreal Uplands Populus tremuloides Picea mariana Picea mariana
Boreal Transition Populus tremuloides Populus tremuloides Populus tremuloides
Mid-Boreal Lowlands Larix laricina Picea mariana Larix laricina

1Calculations included only homogenous polygons (those of which ≥90% of the polygon comprises a single species).
2As in the generation of our forest composition map, each individual species distribution map from Beaudoin et al. 2014 was combined and
assigned the value of the species with the highest predicted relative basal area. Calculations in this table are based on the combined map.

Assessing the Effects of the Image Composite on Spatial
Patterns of the Models

The proportion of composition and configuration values
within the nonreference sample blocks falling outside the ex-
pected distribution (5th to 95th percentiles of values of the refer-
ence blocks) was fairly low. Depending on the species, 3.7% to
9.6% of the blocks had unexpected composition values, whereas
7.1% to 16.5% had unexpected configuration values (Table 6).
Given that we set the critical value of the statistical comparison
to 0.10, we would expect around 10% of blocks to have unex-
pected composition and configuration. Only the configuration
of Populus tremuloides had a higher than statistically expected
number of unexpected blocks (16.5%). The spatial distribution
of the sample blocks with unexpected composition and configu-
ration values appears random (Figure 5). Further, the DOY, year,
and sensor characteristics in these expected and unexpected re-
gions were found to be very similar. For instance, all of these

nonreference sample blocks, regardless of whether they had
expected or unexpected values of species composition and con-
figuration, comprised primarily imagery from 2010, with the
difference in proportions of 2010 imagery between expected
and unexpected blocks ranging from ∼2% to 9%, depending on
the species. Likewise, all blocks contained imagery primarily
from Landsat 5; blocks with unexpected values of composition
and configuration differed in terms of sensor composition by no
more than 9% from blocks with expected values. Mean DOY
differed by no more than 2 days for blocks with expected and
unexpected samples of species composition and configuration.

DISCUSSION
The use of satellite imagery for vegetation mapping is a

desirable supplement to ground- or photo-based inventories be-
cause of the large spatial extents that can be covered by satellite

TABLE 6
Proportion of composition and configuration values within non-reference sample blocks (n = 8259)∗ that are <5th or >95th

percentile of values within reference sample blocks (n = 23,581)

Betula Populus
papyrifera Larix laricina Picea glauca Picea mariana Pinus banksiana tremuloides

True sample size∗ 6177 7361 5588 7966 7446 7675
% unexpected Composition 3.71 9.96 5.71 9.63 7.13 8.33
True sample size∗ 4469 6517 4274 7682 6677 7481
% unexpected Configuration 7.14 9.56 7.25 8.69 8.62 16.53

∗Note that the nonreference sample size was fewer than 8259 for each species because for each species, in turn, blocks had to contain at least
1 pixel of presence (dominance) for analysis of composition, and at least 2 pixels of presence (dominance) for analysis of configuration.
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FIG. 5. Nonreference sample blocks (1020 m × 1020 m) are those comprising a mixture of sensor types, image years, or image
DOY. Blocks are highlighted where species composition and configuration values were outside the 5th–95th percentile of values
from reference sample blocks.
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imagery, as well as the associated automated, repeated acqui-
sition. Tree species distribution mapping based on satellite im-
agery involves the detection or classification of separate spec-
tral reflectance signatures for each species (Bradter et al. 2011);
however, tree species classification is difficult, because many
vegetation species have overlapping spectral reflectance char-
acteristics in the wavebands collected by typical multispectral
sensors (Immitzer et al. 2012; van Aardt and Wynne 2001).
Hyperspectral imagery, which collects reflectance in many nar-
row wavebands, is often needed to map species composition
to a high, or even modest, degree of accuracy (e.g., Budden-
baum et al. 2005; Ustin and Xiao 2001). However, this type
of imagery is not currently cost effective for inventorying large
regions because, like high-spatial-resolution data, hyperspec-
tral imagery are associated with small spatial extents, requiring
multiple scenes or, more likely, airborne collections, to repre-
sent a given area, thereby increasing data costs and processing
overhead. In this study we mapped the probable distribution of
dominance of 6 tree species across a large region using freely
available moderate spatial resolution multispectral imagery. Our
model error rates (∼10%–25%) were typical for forest species
distribution modeling using this type of imagery (e.g., Evans
and Cushman 2009).

Some error and uncertainty in our distribution models can
be attributed to limited sample size. Sample size of the species
data has been shown to affect the accuracy of predictive models
in previous research (Stockwell and Peterson 2002; Wisz et al.
2008). Although machine learning and ensemble methods such
as Random Forests can perform relatively well with small-to-
moderate sample sizes, especially when absence information is
available in addition to presence information (Elith et al. 2006;
Guisan, Graham, et al. 2007), estimates of error in this study
were nonetheless highest for the species with the lowest sample
sizes (Table 1). Model accuracies could also have been affected
by characteristics of the individual species modeled. Specifi-
cally, wide-ranging species are typically more challenging to
model than species with more particular niches (Guisan, Zim-
mermann, et al. 2007; McPherson et al. 2004). The 6 tree species
modeled in this study are all wide-ranging species, and are gen-
erally tolerant of a range of soils and parent materials (Farrar
1995). That our training data indicated where a species was and
was not dominant was therefore likely particularly important.
Indeed, distribution models are particularly robust when reliable
absence data are available in addition to presence data (Brotons
et al. 2004).

Another potential source of uncertainty in large-area map-
ping and modeling relates to the remotely sensed data itself. In
multitemporal image analysis, differences in atmospheric con-
ditions, and variability in phenology, sun angle, and view angle
of imagery (Song and Woodcock 2003) can lead to some un-
certainty. Moreover, relationships between species and image
spectral reflectances will vary seasonally according to species
phenology (Maeda et al. 2014). In this study, we explored the use
of a multiyear BAP composite to generate a series of distribution

models for the 6 most common tree species in the forested area
of Saskatchewan. We found that mean acquisition year, DOY,
and sensor were similar regardless of the level of local com-
plexity found in the composite. In other words, the variability
of image characteristics across the BAP composite was actu-
ally very small, which was achievable due to the vast archive
of open-source Landsat imagery (White and Wulder 2013), the
rules used for compositing, and the preprocessing applied that
converted the data to surface reflectance (White et al. 2014).

Composition and configuration of the predicted species are
important characteristics to consider in species distribution mod-
eling because spatial pattern is an expression of underlying spa-
tial processes (Nelson and Boots 2008). Spatial pattern anal-
ysis is used to assess model error because it allows patterns
in error or uncertainty to be detected and enables departures
from random noise to be determined (Wulder et al. 2007). The
approach used in this study allows mapping and detection of
statistical departures in patterns of species distributions gen-
erated from nonreference imagery (Nelson and Boots 2005).
We found that in all but 1 instance (Populus tremuloides) the
composition and configuration of species distributions was not
different among sample blocks with variable composite char-
acteristics. This species in particular might stand out from the
rest simply because of its overall prominence across the study
area. Nonetheless, because the majority of our models were
unaffected by the compositing, we are confident that the com-
positing rules used relating to sensor type, target DOY, and cloud
contamination minimized illumination and phenological differ-
ences sufficiently across space. Overall, results indicate that the
relation between predicted species distributions and important
environmental processes are represented, rather than species’
spatial patterns being the result of data artifacts in the compos-
ite. Overall, our individual maps of the probable distribution
of tree species dominance across Saskatchewan meet expected
trends as captured through 2 other independent data sources. For
instance, broad-leafed species Populus tremuloides and Betula
papyrifera were predicted to be dominant over a greater spatial
extent in the south, relative to the north. The species predicted to
be most widespread were Picea mariana, Pinus banksiana, and
Populus tremuloides. These 3 species are typically dominant
over a large number of ecosites in the province (McLaughlan
et al. 2010). The primary difference among the 3 datasets is this
study’s predicted dominance of Pinus banksiana in the Taiga
Shield, versus the dominance of Picea mariana in this region
in the other datasets. We note that there are very few NFI plots
in this ecozone, however, and that the differences between our
results and those of Beaudoin et al. (2014) likely stem from the
use of different remotely sensed data (MODIS) with a different
spatial resolution (250 m), and a different modeling approach
(kNN).

CONCLUSION
Regional-scale, spatially comprehensive maps of forest com-

position have traditionally been limited by the mismatch
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between desired, versus available, spatial extent and spatial res-
olution of data. In this analysis, we have demonstrated the ca-
pacity to use 30-m Landsat data to map detailed tree species
distributions over large areas by capitalizing on archived, mul-
titemporal imagery composited using the BAP approach (White
et al. 2014). The variability introduced by the BAP composit-
ing was found to be minimal and resulted in mostly insignifi-
cant differences in this large-area mapping application. Future
applications will benefit from analyses of the effects of BAP
compositing in other geographic regions and for features of in-
terest other than tree species. The potential of the BAP approach
to provide source data for developing species distribution maps
over large areas will continue to increase with Landsat continuity
and the launch of complementary satellites such as Sentinel-2 in
2015 (Drusch et al. 2012; Roy et al. 2014). The constellations of
these new satellites have been designed such that, taken together,
the majority of Earth will be able to be imaged twice weekly
(Wulder and Coops 2014) at a 30-m spatial resolution. Spatially
continuous maps of tree species distributions over large areas
will be useful for a variety of information needs, including forest
management, carbon modeling, ecosystem service assessment,
and conservation planning.
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