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Impact of inter-mission differences and drifts on chlorophyll-a
trend estimates
F. Mélin

European Commission, Joint Research Centre (JRC), Institute for Environment and Sustainability (IES),
Ispra, Italy

ABSTRACT
The chlorophyll-a (chl-a) concentration is an Essential Climate
Variable, and the study of its variability at global scale requires a
succession of satellite ocean colour missions to cover a period
suitable for climate research. In the context of a multi-mission
data record, inter-mission differences can introduce artefacts
affecting trend evaluations, and the impact of the bias between
the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and
Moderate Resolution Imaging Spectroradiometer (MODIS) chl-a
products is shown to be significant in a substantial part of the
ocean. The assessment of trends can also be directly impacted by
a drift in the chl-a time series resulting from sensor functions.
These issues are addressed by a sensitivity analysis that compares
slopes of linear regression obtained for varying levels of inter-
mission bias and drift with respect to a 15-year reference series
built with SeaWiFS and MODIS data. The relationship, constructed
for a representative set of ocean provinces, between bias and the
level of significance associated with the comparison of slopes
shows that a bias on the order of ±5–6% generally induces a
slope that is significantly different from the reference case, while
a threshold on bias values not exceeding 2% largely alleviates this
effect. Moreover, the study suggests that a drift larger than 2% per
decade on the chl-a series can result in misleading conclusions
from a trend analysis. All results have a clear regional dependence
that needs to be taken into account in bias-correction and mer-
ging efforts. Low chl-a regions, such as the oligotrophic subtropi-
cal gyres, appear particularly sensitive to perturbations and require
still higher levels of consistency and stability.
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1. Introduction

Marine ecosystems are affected by various pressures of anthropogenic origin, including
the input of nutrients into coastal zones (Galloway et al. 2008) and top-down effects of
fisheries (Stewart et al. 2010). The release of greenhouse gases also will profoundly affect
the oceans through warming and the intrusion of CO2 leading to acidification (Fabry
et al. 2008). In that context, it appears essential to monitor the evolution of the marine
phytoplankton, which is the base of the marine food chain and a key component of the
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carbon cycle. As such, chlorophyll-a (chl-a) concentration is listed as an Essential Climate
Variable (ECV, Bojinski et al. 2014) by the Global Climate Observing System (GCOS 2011).
Preliminary results suggest that phytoplankton is and will be affected by climate forcing
in different manners (e.g. Sarmiento et al. 2004; Steinacher et al. 2010; Boyce et al. 2014).

Ocean colour remote sensing is currently the only means by which a comprehensive
picture of the ocean phytoplankton and its variations can emerge. But before changes in
chl-a are to be attributed to climate change above the background of natural seasonal
and inter-annual variability, long time series (i.e. on the order of decades, Henson et al.
2010; Yoder et al. 2010) are required that obviously exceed the lifetime of any one
satellite mission. Indeed, changes seen in the annual cycle (Vantrepotte et al. 2011) or
resulting from a strong inter-annual signal (such as that displayed by the El Niño
Southern Oscillation, ENSO, Kahru and Mitchell 2000; Ryan et al. 2006) can impact a
trend calculation performed over a 10-year period, which is currently the most that can
be expected for the optimal operation of a space sensor. But if the study period is
sufficiently long, the effect of these natural variations should no longer contribute to the
long-term signal, unless their amplitude, pattern, and/or frequency are themselves
affected by climate change (in the case of ENSO, see Fedorov and Philander 2000; Yeh
et al. 2009; Collins et al. 2010). Several studies used the data collected by the Sea-
viewing Wide Field-of-view Sensor (SeaWiFS, McClain et al. 1998) over a decade to
analyse inter-annual variations in the global chl-a series (e.g. Behrenfeld et al. 2006;
Martinez et al. 2009; Vantrepotte and Mélin 2009, 2011) but the inclusion of other
subsequent missions in the overall data record is now necessary to extend the temporal
basis of such analyses. Several investigations for local or global applications actually
used the SeaWiFS record with data from other missions (McClain, Signorini, and Christian
2004; Mélin, Zibordi, and Djavidnia 2009, Mélin et al. 2011; Kahru et al. 2012; Bélanger,
Babin, and Tremblay 2013; Coppini et al. 2013; Saulquin et al. 2013; Gregg and Casey
2010; Gregg and Roussseaux 2014; Park et al. 2015; Signorini, Franz, and McClain 2015),
and various merging techniques were proposed to combine data sets from multiple
missions (Kwiatkowska and Fargion 2003; Maritorena and Siegel 2005; Pottier et al. 2006;
Mélin and Zibordi 2007; Mélin et al. 2011; IOCCG 2007).

On the other hand, it is well documented that ocean colour products from different
missions may show significant differences (Djavidnia, Mélin, and Hoepffner 2010; Mélin
2010, 2011), and inter-mission differences, if not accounted for, may introduce artefacts
in a combined data set that could modify or even invalidate the conclusions of trend
analyses (Gregg and Casey 2010; Beaulieu et al. 2013). In the studies cited above, inter-
mission biases were handled in a variety of ways, from ignoring them in the temporal
analyses to specifically accounting for them, or correcting them. These issues have been
faced by other disciplines that have developed responses adapted to the characteristics
associated with the variable under study, for instance, sea level (Ablain et al. 2015), sea
surface temperature (Kilpatrick, Podestà, and Evans 2001), or atmospheric ozone (Lerot
et al. 2014; Pastel et al. 2014).

The treatment of inter-mission differences in the construction of an ocean colour
climate data record (CDR) begs the question of how close mission-specific data sets
need to be in order to allow a trend analysis with a combined data set. This study
attempts to provide elements of response that should be relevant for the definition of
mission requirements and merging strategies. This is done by performing analyses of
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chl-a series constructed with data from two satellite missions, SeaWiFS and the
Moderate Resolution Imaging Spectroradiometer (MODIS, Esaias et al. 1998) onboard
the Aqua platform. Specifically, the effects of inter-mission differences on trend
estimates are analysed by investigating how trends are affected by varying levels of
bias between mission-specific products. The impact of a drift on trend detection
affecting the chl-a is also analysed. It is stressed that in the whole analysis, trend
will be intended as a mathematical term resulting from a statistical calculation and
does not imply an association with a particular nature of the underlying variations,
such as climate change.

2. Data

The data sets used in this work were obtained from the National Aeronautics and Space
Administration (NASA) archive of Level-3 gridded data in the form of global mapped,
24th-degree, monthly chl-a products, associated with processing versions 2010.0 and
2013.1 for SeaWiFS and MODIS-Aqua, respectively. These data sets were handled to
represent what could be considered as the typical case of two subsequent 10-year-long
missions with a 5-year overlap. SeaWiFS data were considered for the period 1997–2007
and the MODIS data for the period 2002–2012. Other periods could be considered for
temporal analyses, but those were chosen to represent an ideal case. After 2007, the
SeaWiFS record actually showed gaps in the series, and after 2012, MODIS data started
showing signs of sensor ageing. NASA’s work on instruments calibration (Xiong et al.
2010; Eplee et al. 2012) supports the assumption that no significant artefact results from
the instrument calibration history for each mission, an assumption that could be revised
as knowledge about the instruments is further improved. It is stressed that the last years
of the MODIS record are excluded to avoid artefacts that could come from an insuffi-
ciently corrected radiometric degradation of the sensor (Meister and Franz 2014). When
studying trends for a combined SeaWiFS/MODIS data set, the period is 1998–2012, that
is, a period of 15 years. The SeaWiFS (noted with subscript ‘s’) and MODIS (subscript ‘a’)
monthly 10-year chl-a series are referred to as ðxsÞi¼1;Ns

and ðxaÞi¼1;Na
; respectively (with

Ns and Na both equal to 120 months).
For a sensitivity study, chl-a time series representative of annual cycles found in

natural waters are needed. For that purpose, the partition of the global ocean into
biogeographical provinces proposed by Longhurst (2006) was adopted with minor
modifications (like the addition of the Baltic and Black Seas), leading to the definition
of 55 provinces. Average chl-a time-series associated with this ensemble of provinces are
thought to display a representative set with a realistic and fairly comprehensive diversity
of seasonal cycles and inter-annual variations (see Longhurst 2006). For each province,
monthly geometric average values were considered for analysis if valid values covered at
least 10% of the province area.

A monthly climatology was derived for both missions using the period of overlap. The
climatological January value is the average of the valid January values for the 5 years
from 2003 to 2007, and so on for the other months. These climatologies were computed
over the period of overlap (and not over the full period) in order to correct the MODIS
data for differences with respect to SeaWiFS, by computing a corrected MODIS record
(xa,corr):
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xa;corrðmÞ ¼ xaðmÞ þ xs;climðmÞ � xa;climðmÞ; (1)

where the ‘clim’ subscript indicates the climatological chl-a value for the month m. This
step, that can be termed bias correction, corrects in a simple manner the spatial and
seasonal dependence in inter-mission biases that has been noticed for ocean colour
products (Djavidnia, Mélin, and Hoepffner 2010; Mélin, Zibordi, and Djavidnia 2009;
Mélin 2011; Mélin et al. 2016). It can be noticed that this bias correction is affected by
a certain level of uncertainty that mostly results from the uncertainties associated with
the two data records.

Two types of data sets combining both satellite missions were created (and noted with
the subscript ‘c’ for ‘combined’). The first type applied a concatenation (associated with
the superscript ‘cct’) of the SeaWiFS and MODIS series, with SeaWiFS data up to a switch
date and MODIS data afterwards, with the resulting series noted xcctc : Three switch dates
were tested, placed at one-third, half, and two-thirds of the overall period (i.e. after 5, 7.5,
and 10 years, respectively), with associated data sets noted xcct;1c ; xcct;2c and xcct;3c ; respec-
tively. Another approach was to merge the two data sets, which implied combining them
over a period of overlap. Here the merged data set (superscript ‘mrg’) was constructed by
performing a simple average over the period of overlap 2003–2007 (5 complete years)
which led to the series xmrg

c : For each month m, the combined data can be written as:

xcðmÞ ¼ δsðmÞxsðmÞ þ δaðmÞxaðmÞ: (2)

In the case of the concatenated series xcctc ; δs ¼ 1 and δa ¼ 0 (δs ¼ 0 and δa ¼ 1)
before (after) the switch date. For the merged data, δs ¼ 1 ðδa ¼ 1Þ if only the
SeaWiFS (MODIS) record is available, δs ¼ δa ¼ 0:5 when both SeaWiFS and MODIS
data are available.

Other series were derived in a similar way by using the corrected MODIS data instead,
that is, combining the data sets xs and xa,corr with concatenation or merging (Equation (2)).
These series are referred to as the reference series, xc,corr, considering that they are
thought to be the least affected by any residual differences between the two original
data records. For the purpose of discussion, it is assumed that these series are ideal data
sets that could be constructed from fully consistent SeaWiFS and MODIS records.

To study the effect of biases between mission products, synthetic combined series
were built by ingesting a varying level of bias between the two missions, as follows:

xc;bðmÞ ¼ δsðmÞxsðmÞ þ δaðmÞ 1� bðmÞ
100

� �
xa;corrðmÞ; (3)

with δs and δa defined as above for the concatenated or merged cases. The bias b is
expressed in percentage and applied to the corrected MODIS series xa,corr so that b ¼ 0
corresponds to the series xc,0 equal to the reference series xc,corr. In this analysis, b is
varied between � 50% and þ 50% by steps of 1%. In the whole study, positive bias
values correspond to higher SeaWiFS chl-a with respect to MODIS.

Similarly, synthetic series were built with a formula intended to mimic a drift in chl-a
and applied to a combined series xc,corr (where again the MODIS chl-a is corrected for
the inter-mission bias):
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xc;dðmÞ ¼ 1þ d
100

m
12

� �
xc;corrðmÞ; (4)

where d is the drift expressed in percentage per year ðyear�1Þ: Trend analysis is
performed from January 1998 so that xc,d is equal to the reference series xc,corr for that
month. For the sensitivity analysis, d is varied between � 3% and þ 3% year�1 by steps
of 0.02% year�1:

3. Methods

Trend analysis was conducted for any given chl-a time series (for any grid point of the
mapped products, or for a province-based averaged series) in a manner fully described
by Vantrepotte and Mélin (2009, 2011) and briefly summarized here. Each series first
underwent a preprocessing step. If a month was associated with a missing value in more
than 50% of the cases (i.e. the number of years), then all values for that month were
excluded, in practice creating an annual cycle of varying length ð� 12monthsÞ: If the
reduced series was characterized by more than 30% of missing values, then the whole
series was excluded from the analysis. For the remaining series, missing values were
filled in by an eigenvectors filtering method (Ibañez and Conversi 2002).

A second step was the calculation of the linear trend (expressed in % year�1)
associated with a given series after removal of its annual cycle (de-seasonalized series)
(Vantrepotte and Mélin 2009). If the slope value is noted β; the standard error of the
slope is:

sβ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
ðN� 2Þ

σðyÞ2
σðxÞ2 � β2

 !vuut ; (5)

where x and y represent the series associated with time and geophysical data,
respectively, and σ indicates the standard deviation. The level of significance p of
the trend is calculated with a t-test performed with t ¼ β=sβ and N –2 degrees of
freedom.

Trend analysis was carried out on the various combined series introduced in the
previous section. The focus of the present study is not the amplitude of individual
trends but to compare the trend diagnostics associated with different series over a
given period. Two slopes of regression lines β1 and β2 were compared through a
t-test in order to establish if β1 and β2 could be considered equal (null hypothesis H0),
with a level of significance P: if P was small, then H0 was rejected and the slopes were
considered different (for the sake of clarity, P was associated with the level of
significance obtained when comparing slopes, while p was used to quantify the
significance of a single trend). The statistical comparison of the two slopes β1 and
β2 (with their associated standard error sβ;1 and sβ;2) was performed with a t-test value
defined as:

t ¼ β1 � β2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2β;1 þ s2β;2

q ; (6)
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with a degree of freedom ν equal to:

ν ¼
s2β;1 þ s2β;2

� �2
1
N1
s4β;1 þ 1

N2
s4β;2

(7)

following Andrade and Estévez-Pérez (2014, their Equation (8)). The numbers of samples
N1 and N2 are equal since the merged series xc, xc,corr, xc,b and xc,d were built over the
same period 1998–2012 (15 years) and with the same sampling frequency. In the
description of results, the value of P is considered as the measure of the difference
between two slopes of linear trends: the smaller P is, the more the slopes differ.

4. Results

4.1. Comparison between global distributions

This section compares the trends obtained for the time series xmrg
c and xmrg

c;corr constructed
by merging (similar statistical results are obtained with concatenated series; see Section
4.2). The significant trends of these two series (p < 0:05; Figure 1) show a generally
consistent distribution but also some differences. Some negative signals are seen in the
Indian Ocean, the subtropical North Pacific, central South Pacific, or the tropical Atlantic,
while positive trends are found in the Baltic Sea, the California Current, the Tasman Sea,
the southwest Atlantic, and in the South Pacific with a horseshoe pattern that goes from
the western equatorial Pacific to mid-latitude South America and then westward across
the South Pacific. In general, the slopes obtained with the series xc (i.e. without
climatological bias correction, Figure 1(a)) are higher than for the xc,corr series, and
some patterns of significant trends almost disappear after bias correction, such as in
the Arabian Sea, the Caribbean Sea, the eastern Mediterranean Sea, or the equatorial
Atlantic. In fact, 40.5% of the domain of analysis is associated with significant trends in
the case of xmrg

c versus 31.1% for xmrg
c;corr:

To further quantify the agreement between the two distributions, a contingency
matrix is created that compares the occurrence of different trend diagnostics (Table 1).
Overall 81.6% of the domain of analysis are characterized by a trend slope of the same
sign (adding the first two diagonal terms in Table 1), while 18.4% are characterized by

(a) (b)

Figure 1. Trends for (a) the merged SeaWiFS/MODIS chl-a series xmrg
c ; and (b) for a similar product

xmrg
c;corr where the MODIS data include a climatological correction for the bias with respect to SeaWiFS.
Only significant trends ðp<0:05Þ are represented.
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trends of opposite signs. Non-significant trends are obtained for both products over
approximately half the domain (52.3%), while 24% of the domain is associated with
significant trends ðp < 0:05Þ for both products (and in this case, overwhelmingly the
slopes have the same sign, Table 1). Furthermore, 16.6% of the domain area have a trend
considered significant for the xc series and not for xc,corr, while the opposite is true for
only 7.1% of the domain area.

These first results suggest that the bias between the SeaWiFS and MODIS data has a
significant effect on the trend distribution, particularly at the regional level. The link
between this bias and the trend diagnostics is more specifically illustrated by Figure 2.
First, the bias ψ between the SeaWiFS and MODIS records is shown in Figure 2(a). This
quantity is expressed as the mean relative difference computed as follows over the
period of overlap 2003–2007:

ψ ¼ 1
N

XN
m¼1

2 xs mð Þ � xa mð Þð Þ
xaðmÞ þ xsðmÞ ; (8)

where N is the number of months with valid values for both products. In the metrics ψ;
the numerator is divided by the average of the two products being compared, which
avoids arbitrarily selecting one product as the value of reference. In general, ψ is fairly
small, with its modulus ðjψjÞ not exceeding 5% for 56% of the domain of analysis (or
10% for 83% of the domain), but some higher values can be noticed, for instance, in the

Table 1. Matrix comparing trend estimates for the merged series combining SeaWiFS and MODIS
with/without climatological bias correction.
(%) βcorr � 0 βcorr < 0 n.s. βcorr � 0� βcorr < 0�

β � 0 29.8 2.7
β < 0 15.7 51.7
n.s. 52.3 5.3 1.7
β � 0� 1.7 7.8 0.0
β < 0� 14.8 0.1 16.1

Numbers are fractions (%) of the domain of analysis characterized by different trend diagnostics, expressed by the sign
of the slope β and its level of significance. The subscript ‘corr’ indicates the climatologically corrected product; ‘n.s.’
stands for non-significant; ‘*’ indicates significant trends (p < 0.05).

(a) (b)

Figure 2. (a) Bias between SeaWiFS and MODIS chl-a over the period 2003–2007, expressed in %. A
positive bias means that SeaWiFS chl-a is higher that the MODIS product. (b) Level of significance P
of the t-test comparing the slopes of linear regression obtained for the merged series xmrg

c and xmrg
c;corr

(obtained with climatologically bias corrected MODIS chl-a) shown in Figure 1. Low values of P
indicate that the slopes are significantly different.
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northern Indian Ocean or in the tropical Atlantic Ocean. Over most of the globe, ψ is
positive (i.e. SeaWiFS chl-a higher than the MODIS product).

Figure 2(b) is the result of comparing the slopes of linear regression associated with
the series xc and xc,corr, expressed as the level of significance P of the H0 hypothesis. Low
values of P, typically lower than 0.1, are found in the northern Indian Ocean, the western
and central subtropical North Pacific, the central equatorial Pacific (slightly south of the
Equator), the Caribbean Sea, the subtropical Atlantic, the eastern Mediterranean Sea, or
the Baltic Sea. Therefore for these regions, the slopes of linear regression appear
significantly different ðP < 0:1Þ: Over the area of analysis, P < 0:5 for 42.1% of the
domain (P < 0:1 for 9.6% of the domain). All the main regions with a low P are also
associated with fairly large values of jψj; mostly positive and more rarely negative (as in
the Baltic Sea). Actually, for the part of the domain with jψj larger than 10% (i.e. 17% of
the domain), 59.4% of the area is characterized by P < 0:5 (27.4% by P < 0:1). Thus, over
a substantial part of the ocean, the bias existing between SeaWiFS and MODIS chl-a
could induce a significant trend artefact in the analysis of a merged series created
without any correction for the bias. The next section tackles the question of how close
these products need to be in order to avoid introducing such artefact.

4.2. Sensitivity analysis

The consequence of the differences separating satellite products on the trend analysis
and the effect of a drift are addressed using the set of data associated with the ocean
provinces. For each province, a trend analysis is conducted for the series xs, xa, xc, xc,corr,
and the suites xc;b b 2 �5%;þ50%½ �ð Þ and xc;d d 2 �30% year�1;þ3% year�1½ �ð Þ :

4.2.1. Merging versus concatenation
Before analysing the impact of biases, the comparison of slopes is conducted for the
merged and concatenated series. Considering the data sets associated with the 55
analysed provinces, the trend for the SeaWiFS 10-year series xs is found significant
ðp < 0:01Þ for 18 provinces (for the period 1998–2007), while it is so for 24 provinces
in the case of MODIS (2002–2012). For the merged series xmrg

c ; trends are found
significant for 26 provinces, while for the concatenated cases with xcctc (with switch
dates placed at one-third, half or two-third of the 15-year period), this is so for 24 to 26
provinces. If the climatological bias correction is applied, trends are found significant for
12 provinces for xmrg

c;corr; and for 12 or 13 provinces for xcctc;corr: So, the merged and

concatenated series provide a consistent picture at global scale from the point of view
of trend detection.

The slopes obtained for merged and concatenated products can be compared for
each province. Comparing the slopes associated with xmrg

c and xcct;2c (switch date halfway
within the period), the P value is lower than 0.5 for 5 out of 55 provinces, 3 in the
tropical Atlantic, the Caribbean Province, and the Boreal Polar Province (BPLR; see
Longhurst 2006, for the list of provinces and related acronyms). This is true for two
provinces with xcct;1c ; the Northern Atlantic Tropical Province (NATR) and the

Subantarctic Province, and for three provinces with xcct;3c ; BPLR, NATR, and the Atlantic
Arctic Province (ARCT). These provinces fall into two broad categories. The first group
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contains the three tropical Atlantic provinces and the Caribbean Sea, regions with a
relatively large bias between the SeaWiFS and MODIS series (larger than 10% in mod-
ulus) that has an impact on the trend analysis since the average chl-a level varies during
the overlap period according to the relative importance of the two data sets. The second
group is associated with high latitudes and a restricted data coverage so that merging
can significantly alter a trend analysis by improving the coverage.

If the corrected MODIS data are used to build xmrg
c and xcctc ; the P value is lower than

0.5 for no province in the case of xcct;1c ; two provinces (representing 3.7% of the global

ocean) for xcct;2c ; namely BPLR ðP ¼ 0:03Þ and the Alaska Coastal Province ðP ¼ 0:49Þ;
and two provinces (representing 4.4% of the global ocean) for xcct;3c ; BPLR and ARCT.
Employing the bias-corrected MODIS data clearly reduces the differences in slopes that
are now found significant only for high-latitude regions. Considering that results are
consistent in the merged and concatenated cases, the rest of the analysis is presented
only for merged series unless specified otherwise.

4.2.2. Impact of the inter-mission bias
Example series are shown for the Northern Atlantic Tropical Province (NATR) in Figure 3.
The SeaWiFS series xs shows a highly significant trend of � 1:55% year�1 ðp<0:001Þ
while the trend for MODIS is not significant. The trend for the merged series xmrg

c

appears highly significant ð�1:84% year�1Þ and stems from two factors: the negative
trend associated with SeaWiFS for the first years, and the fact that SeaWiFS chl-a is on
average higher than MODIS values, as is also evident for that region in Figure 2(a).

The slope of the merged product xmrg
c;corr including the climatological bias correction is

only � 0:82% year�1 albeit still highly significant ðp < 0:001Þ (� 0:84% year�1 for the
concatenated product xcct;2c;corr with a half-way switch date). This slope is significantly

Figure 3. Time series of chl-a for SeaWiFS (‘s’, red), MODIS (‘a’, blue) averaged over the North
Atlantic Tropical Ocean (NATR). The slopes of linear regression are also shown, together with the
slopes obtained for the merged products xmrg

c (‘mrg’, dashed green line) and xmrg
c;corr (‘mrgcorr’, dotted

green line, obtained with climatologically corrected MODIS chl-a). The value of the slope in % per
year is indicated in each case.
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different from the slope obtained for the simple merged series xmrg
c ðP < 0:001Þ: The

case of NATR exemplifies a more general behaviour. As anticipated above, trends are
found significant for 24 to 26 provinces for xc series (either merged or concatenated) but
only for 12 or 13 provinces when the bias correction is applied to MODIS data, again
highlighting the impact that biases have on combined products when studying trends.

For each province, the trend analysis is then conducted for each element of the suite
xc;b b 2 �50%;þ50%½ �ð Þ; and the slope compared with that obtained for the reference
series xc,corr. This is done by computing Pb, the level of significance quantifying to what
degree the two slopes are statistically different for the bias b. The derived relationship
between the bias b and the level of significance Pb can be inverted by finding, for any Pb,
the bias that would entail a slope of linear regression statistically different with that level
of significance. For instance, for the example of NATR, a level of significance Pb<0:05 is
reached if b exceeds � 5%: For each level of significance and using all provinces, the
average and standard deviation of the associated bias are computed, as well as a
weighted average, where the weights are the areal surface of the various provinces.
These relationships Pb versus b are displayed in Figure 4. Coloured symbols illustrate
single realizations of that relationship by showing the bias between SeaWiFS and MODIS
chl-a and the level of significance P associated with the comparison of the slopes
obtained for xmrg

c and xmrg
c;corr: Out of 55 provinces, 21 are characterized by a bias between

SeaWiFS and MODIS chl-a exceeding 5%, and for 15 of these, P < 0:05:

Figure 4. Relationship linking the bias (in %) between SeaWiFS and MODIS and the level of
significance P quantifying to what degree the slopes of linear regression are statistically different
when comparing a merged series xmrg

c (where the MODIS data are affected by a given bias) and the
reference series xmrg

c;corr with MODIS chl-a including a climatological bias correction. P is increasing
from right to left. The dashed line (with grey envelope) shows the average relationship between bias
and P (with its standard deviation) for the global set of ocean provinces (see text); the black line is
the average relationship with a weighting by the areal surface of each province. Coloured circles are
associated with a global distribution of biogeographic provinces and compare the actual bias
between SeaWiFS and MODIS and P obtained analysing the slopes for xmrg

c and xmrg
c;corr (the bias is

positive if SeaWiFS chl-a is higher than MODIS chl-a). Different colours have been used for the
provinces associated with the polar, coastal, mid-latitude and subtropical biomes. The point
obtained for the Baltic Sea is out of the graph, with a bias of � 53:8% and P of 1.2 × 10�7:
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Figure 4 shows that the relationship between Pb and b is almost symmetric. For a
given bias b, P is lower for the weighted average than for the simple average, which is
explained by the fact that the weighted average is influenced by the largest provinces
that are associated with open ocean oligotrophic conditions (Longhurst 2006). For these
regions of low chl-a, the variability is usually small with respect to coastal regions or
marginal seas (Esaias, Iverson, and Turpie 2000), with the consequence that trends may
be more easily detected. Considering a threshold level P, Figure 4 indicates the bias that
needs to be enforced in order to respect that threshold. Hence, if considering the
merged case (xmrg

c series), a P value of 0.05 is associated with a bias of approximately
7.5% (b of � 7:7% or þ 7:4%) if the relationship obtained with the simple average is
used, and approximately 5.6% (b of � 5:8% or þ 5:5%) if the relationship obtained with
the weighted average is used. For concatenated series ðxcct;2c Þ; these values are slightly
smaller, approximately 6.7% and 5.0% for the average and weighted average cases,
respectively. So, if the bias is on the order of � 5%; there is a significant risk that the
trend associated with a combined product be affected, that is, the slope of the com-
bined product be significantly different ðP<0:05Þ from the slope obtained with the bias-
corrected series. If the more conservative threshold P of 0.5 is selected as an objective
(to avoid that the slopes be significantly different), the corresponding bias when
analysing merged series is � 2:9% and � 2:2% considering the relationships with the
average and weighted average, respectively. If working with concatenated series ðxcct;2c Þ;
these values are � 2:7% and � 2:0%:

Provinces can be grouped into four biomes following Longhurst (2006): coastal, polar,
westerlies mid-latitude, and trades regime subtropical provinces. Considering the
merged series, a threshold P of 0.5 is associated with biases of �
3:6%; �3:4%; �2:6%; and � 2:1% on average for the four biomes. Again, the oligo-
trophic low-variability conditions typically associated with subtropical waters are more
conducive to trend detection, with the implication that small inter-mission biases are
easily interpreted as trends. Enforcing a P value of 0.5 in the three large southern
subtropical gyres (in the Pacific, Atlantic, and Indian Oceans) requires biases as low
as 1–2%.

4.2.3. Impact of a drift
A similar analysis is conducted with the case of a drift applied to the reference merged
time series xmrg

c;corr; where the MODIS data are first corrected for the bias with respect to
SeaWiFS chl-a. For each province, the trend analysis is performed for each element of
the suite xmrg

c;d (Equation (4), d 2 ½�3% year�1; þ3% year�1�), and the slope compared

with that obtained for xmrg
c;corr: Again this is done by computing Pd, the level of significance

quantifying to what degree the two slopes are statistically different given the drift d.
Conversely, for any Pd threshold, the corresponding drift can be found for each province.

Figure 5 shows the relationship between Pd and d obtained by averaging and
weighted averaging over all provinces. The GCOS requirements for the chl-a ECV call
for a stability of 0:3% year�1 (GCOS 2011) (identified as dotted lines in Figure 5). For that
level of drift, 45 provinces (amounting to 93% of the domain area) yield P < 0:5: For five
provinces representing 24% of the domain (southern Atlantic and Pacific subtropical
gyres, Caribbean Sea, Subantarctic Province, and East Australian Coastal Province),
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P<0:05; which means that the difference in slopes obtained with and without drift is
highly significant for a large part of the ocean. Based on the relationship between Pd and
d, a threshold of 0.5 for P corresponds to a drift of � 0:22% year�1 if the average over
provinces is considered, � 0:17% year�1 if the weighted average is used. With the
average relationship, the drift associated with P of 0.5 is � 0:28%; �0:27%; �0:20%;

and � 0:16% year�1 for polar, coastal, mid-latitude, and subtropical provinces, respec-
tively. Again, oligotrophic regions appear as the most sensitive to perturbations of their
time series. For a drift of � 0:15% year�1; 52% of the ocean is characterized by P<0:5
including the Mediterranean Sea, the Caribbean Sea, the Northern Atlantic Tropical
Province (NATR), the southern Atlantic subtropical gyre, the northern and southern
Pacific subtropical gyres, and the southern Indian Ocean. Furthermore, three provinces
are still associated with P<0:5 for a drift of � 0:1% year�1; the southern Atlantic and
Pacific subtropical gyres and the Subantarctic Province.

5. Conclusions and discussion

This study first showed that the trends obtained with a combined series built with
SeaWiFS and MODIS chl-a differed from those observed with the corresponding bias-
corrected series even though these two products are close to each other (Figure 1).
Specifically, trends differed in regions where the bias between the SeaWiFS and MODIS
chl-a was characterized by relatively large amplitudes (Figure 2). Quantifying how two
slopes differed by the level of significance P of a t-test, P was found lower than 0.5 for
42.1% of the ocean domain, and lower than 0.1 for 9.6% of the domain.

Figure 5. Relationship obtained between a drift affecting a merged SeaWiFS/MODIS time series and
the level of significance P quantifying to what degree the slope of linear regression differs with
respect to the case of the reference series xmrg

c;corr with MODIS chl-a including a climatological bias
correction. P is increasing from right to left. The dashed line (with grey envelope) shows the average
relationship between drift and P (with its standard deviation) for the global set of ocean provinces
(see text); the black line is the average relationship with a weighting by the areal surface of each
province. The dotted lines represent the GCOS requirements of � 0:3% year�1.
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This aspect was further addressed through a sensitivity analysis, where the level of
bias was systematically varied and its impact on the trend detection quantified. In
practice, slopes of linear regression were compared for two time series: (1) a series of
reference created by combining SeaWiFS and MODIS data where the MODIS data were
corrected for the bias with respect to SeaWiFS on a climatological basis, and (2) a series
where a constant relative bias was applied to the climatologically bias-corrected MODIS
data before combining them with the SeaWiFS data. This was performed on average chl-
a series derived from a set of provinces that amount to a template of the world ocean
and therefore provide a representative ensemble of chl-a annual and inter-annual
variability (Longhurst 2006). Relationships were constructed that linked any level of
significance with the bias between the two products (Figure 4). Results were similar if
the combined SeaWiFS/MODIS data record was built by merging or concatenation,
albeit some differences might appear in regions of scarce coverage such as at high
latitudes. In general, a bias on the order of ±5–6% (considering results averaged over all
provinces weighted by their surface) corresponds to a level of significance P of 0.05, that
is, slopes that are different in a significant manner. Conversely, the objective of P equal
to 0.5 would require bias values of approximately 2%. Considering uncertainties on chl-a
in situ data (Claustre et al. 2004), results of algorithms evaluations (Brewin et al. 2015),
chl-a satellite products validation analyses (Gregg and Casey 2004; Mélin, Zibordi, and
Berthon 2007) or inter-comparison (Zhang et al. 2006; Mélin 2010, and Figure 2(a)),
uncertainties associated with the satellite-derived remote-sensing reflectance (Mélin and
Franz 2014), and limitations inherent to the calibration of radiometers in space (Zibordi
et al. 2015), it is unlikely that, in the current state of technology and algorithm devel-
opment, these levels of biases will be achieved by merely applying a fully consistent
processing chain for the various missions (even though this is highly desirable). This
study suggests that bias correction methods should become an integral part of the
strategy to create ocean colour multi-mission CDRs. A corollary is that the results of
trend analyses that do not specifically address inter-mission biases are questionable.

A similar analysis was conducted by ingesting a drift of varying amplitude into the
reference merged series. The relationship between drift value and the level of signifi-
cance associated with the comparison of slopes with and without drift showed that on
average a drift of � 0:3% year�1 associated with the GCOS requirements corresponds to
P values of approximately 0.3. This suggests that this requirement, representing approxi-
mately 10% of a typical statistically significant trend in chl-a (Figure 1(b), Vantrepotte
and Mélin 2009), should be further reduced. To enforce P values larger than 0.5 requires
drift below approximately 0:2% year�1, or even 0:1% year�1 if subtropical gyres are
concerned. Indeed, in both types of analysis (effects of a bias or a drift), regions of
low variability such as the oligotrophic subtropical gyres are particularly sensitive to any
perturbation of their time series and require a special attention, all the more so that they
show signs of inter-annual variability (Polovina, Howell, and Abecassis 2008; Vantrepotte
and Mélin 2011; Signorini and McClain 2012). It is worth mentioning that the drift
selected here is a multiplicative term (Equation (4)) expressed in % per unit of time,
with the consequence that the drift modifies the amplitude of the annual cycle. Other
mathematical formula for the drift could be tested, for instance, modifying chl-a more
strongly towards the end of a mission record as can be envisaged with an ageing sensor.
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It is also not clear how a drift affecting a sensor can manifest itself in terms of chl-a
variability, and a simple linear drift is unlikely to apply in the case of a time series based
on successive missions. Equation (4) was adopted as an ideal case merely because it
refers to the GCOS requirement expressed in % per decade.

These conclusions are mostly the result of a sensitivity study based on regional chl-a
time series associated with a set of provinces deemed representative of the annual and
inter-annual variability that can be observed in the global ocean. They should be
somewhat independent of the reprocessing activities that the different data sets reg-
ularly undergo, insofar as these updates do not significantly change the main properties
of these patterns of variability. The issue is different when it comes to obtaining
quantitative estimates of trend. Indeed, some reprocessing updates might have an
impact on trend detection, for instance, through the reduction of noise in the series.
The most direct impact is likely to occur through a revision of the calibration history of a
sensor (with effects that could be compared to those of a drift), which is a recurrent
event affecting particularly the latest years of an active mission as the knowledge on the
sensor characterization is updated. In that respect, the last years of the MODIS record,
which suffer from radiometric degradation (Meister and Franz 2014), were cautiously
excluded from the current analysis. Clearly, the effect of a data update depends on the
nature of the reprocessing and its impact on the quantity of interest (such as chl-a). For
the sake of illustration, the trend obtained with the newly reprocessed SeaWiFS data
(version R2014.0) was compared over the period 1998–2007 with the trend associated
with the version R2010.0 data used here. For that update, the reprocessing entailed
various changes including a revised calibration history (NASA 2015) and an update of
the chl-a algorithm in oligotrophic conditions (Hu, Lee, and Franz 2012). The P value
comparing the two trend estimates is less than 0.1 for only 1.8% of the global ocean
(75% have P>0:5) with isolated features mostly in oligotrophic waters, including the
eastern Mediterranean Sea. In that case, the change in trend estimates is rather limited
but still relevant.

This study relies on a fairly simple statistical method applied to monthly data, but this
approach appears commensurate to introduce an objective framework that illustrates
the effects of bias and drift on trend analyses and provides information relevant for the
definition of requirements for multi-mission CDRs and merging strategies. Moreover,
similar approaches were actually used for typical studies of time series (McClain,
Signorini, and Christian 2004; Vantrepotte and Mélin 2009; Yoder et al. 2010; Kahru
et al. 2012; Signorini, Franz, and McClain 2015). In any case, the objective of the study
was not to derive accurate estimates of actual chl-a trends in the ocean, for which more
advanced statistical methods are desirable (e.g. Beaugrand, Ibañez, and Lindley 2003;
Henson and Thomas 2007; Vantrepotte and Mélin 2011; Saulquin et al. 2013), but to
illustrate how significant bias or drift can be for trend detection. This being said, the
trend map (Figure 1(b)) obtained for the period 1998–2012 with the reference merged
series (combining SeaWiFS and bias-corrected MODIS data) is very coherent with the
results of Gregg and Roussseaux (2014) who also used a bias correction approach and
data assimilation in a biogeochemical model (see their Figure (6)). Some trends are more
significant in the current study, like the positive horseshoe-shaped pattern in the south-
ern Pacific; on the other hand, some trend amplitudes appear higher in Gregg and
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Roussseaux (2014) like in the northern tropical Atlantic, which might indicate residual
effects of inter-mission biases.

The current study has worked with the realistic setting of two successive satellite
missions with a lifetime of 10 years and an overlap of 5 years. While a similar condition is
not guaranteed in the future, further developments of this kind should take place to
properly handle more complex cases, for example, with more coincident missions and
varying periods of overlap. The longer periods necessary to study climate change issues
require a series of successive missions, a situation that needs to be properly accommo-
dated by the techniques called to combine and analyse the corresponding data records.
In that respect, bias quantification and bias correction techniques will take a growing
importance, as heralded by some current projects such as the Ocean Colour Climate
Change Initiative (Sathyendranath et al. 2016). Finally, this study recalls the importance
of the efforts deployed to monitor the stability of space sensors and of the consistency
in calibration and processing strategies.
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