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Abstract. Airborne LiDAR is increasingly used in forest carbon, ecosystem, and resource monitoring. For practical design and
manufacture reasons, the 1064 nm near-infrared (NIR) wavelength has been the most commonly adopted, and most literature in
this field represents sampling characteristics in this wavelength. However, due to eye-safety and application-specific needs, other
common wavelengths are 1550 nm and 532 nm. All provide canopy structure reconstructions that can be integrated or compared
through space and time but the consistency or complementarity of 3D airborne LiDAR data sampled at multiple wavelengths is
poorly understood. Here, we report on multispectral LiDAR missions carried out in 2013 and 2015 over a managed forest research
site. The 1st used 3 independent sensors, and the 2nd used a single sensor carrying 3 lasers. The experiment revealed differences in
proportions of returns at ground level, vertical foliage distributions, and gap probability across wavelengths. Canopy attenuation
was greatest at 532 nm, presumably due to leaf tissue absorption. Relative to 1064 nm, foliage was undersampled at midheight
percentiles at 1550 nm and 532 nm. Multisensor data demonstrated differences in foliage characterization due to combined
influences of wavelength and acquisition configuration. Single-sensor multispectral data were more stable but demonstrated
clear wavelength-dependent variation that could be exploited in intensity-based land cover classification without the aid of 3D
derivatives. This work sets the stage for improvements in land surface classification and vertical foliage partitioning through the
integration of active spectral and structural laser return information.

Résumé. Le LiDAR aéroporté est de plus en plus utilisé pour le suivi du carbone, des écosystèmes et des ressources forestières.
Pour des raisons pratiques de conception et de fabrication, la longueur d’onde de 1064 nm dans le proche infrarouge a été la
plus communément adoptée, et la plupart des études dans ce domaine représentent les caractéristiques d’échantillonnage dans
cette longueur d’onde. Toutefois, en raison des besoins en matière de sécurité oculaire et d’applications spécifiques, d’autres
longueurs d’onde communes sont 1550 nm et 532 nm. Toutes ces longueurs d’onde fournissent des reconstructions de la structure
de la canopée qui peuvent être intégrées ou comparées dans l’espace et le temps, mais la cohérence ou la complémentarité des
données LiDAR aéroportées en 3D qui sont échantillonnées à plusieurs longueurs d’onde est mal comprise. Nous décrivons ici
les missions LiDARs multispectrales réalisées en 2013 et 2015 sur un site de recherche d’une forêt aménagée. La 1st a utilisé 3
capteurs indépendants, tandis que le 2nd a utilisé un seul capteur avec 3 lasers. L’expérience a révélé des différences entre les
longueurs d’onde dans les fractions de retours au niveau du sol, dans les distributions verticales de feuillage ainsi que dans la
probabilité de trous. L’atténuation de la canopée fut la plus grande à 532 nm, probablement en raison de l’absorption du tissu
foliaire. Par rapport à 1064 nm, le feuillage a été sous-échantillonné aux percentiles à mi-hauteur à 1550 nm et 532 nm. Les données
multicapteurs ont montré des différences dans la caractérisation du feuillage en raison des influences combinées de la longueur
d’onde et de la configuration d’acquisition. Les données multispectrales à partir d’un unique capteur étaient plus stables, mais
ont démontré une variation qui était clairement dépendante de la longueur d’onde qui pourrait être exploitée dans la classification
de la couverture terrestre basée sur l’intensité sans l’aide de dérivés en 3D. Ce travail ouvre la voie à des améliorations dans la
classification de la couverture terrestre et le partitionnement vertical du feuillage grâce à l’intégration de l’information spectrale
et structurale de retours laser spectraux.
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INTRODUCTION
Airborne light detection and ranging (LiDAR) point clouds

and derivatives covering large areas are becoming increasingly
available, either as commercial or open datasets, and offer great
potential for high-resolution mapping at regional and national
scales (e.g., Elberink et al. 2013). Aside from obvious benefits
associated with high-accuracy digital elevation models (DEMs),
these data are valuable in supporting a range of forest map-
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ping objectives (Nelson et al. 1984; Nelson 2013). In particular,
the retrieval of the following vegetation parameters has been
demonstrated: canopy height (Dubayah and Drake 2000; Means
et al. 2000; Lefsky et al. 2002), canopy cover indices (Lefsky
et al. 1999; Hopkinson et al. 2009), stand volumes, biomass,
basal area, leaf area index (LAI), and diameter at breast height
(DBH; Lefsky et al. 1999; Means et al. 1999; Naesset 2002;
Clark et al. 2004; Patenaude et al. 2004; St-Onge, et al. 2008;
Ni-Meister et al. 2010; Rosette et al. 2011). Recent efforts are
moving toward the operationalization of LiDAR forest appli-
cations. For example, baseline forest resource inventory (FRI)
(Woods et al. 2011), sample-based calibration of regional forest
biomass products (Hopkinson et al. 2011; Wulder et al. 2012)
and growth and yield monitoring, using LiDAR data, (Yu et al.
2004; Hopkinson et al. 2008; McRoberts et al. 2015) and pos-
sible extension from aerial photograph/LiDAR combinations
(St-Onge et al. 2004). However, during the last 2 decades of
LiDAR hardware development, there have been many technical
advances, which have resulted in increased system accuracy,
performance, capability, and specialization toward niche appli-
cations. Meanwhile, it has been highlighted that when data are
collected through time, across space, or with different sensor
sampling parameters, the consistency of the data and derivative
forest attributes are not assured (Holmgren 2003; Hopkinson
2007; Hopkinson et al. 2008; Naesse2009; Stoker et al. 2014).
As LiDAR monitoring of forest and other land surface attributes
becomes operational, it is important to understand how modern
LiDAR sensors differ in their characterization of terrain and
overlying vegetated surfaces.

To date, much work on airborne LiDAR canopy data compati-
bility has focused on sensor configuration or sampling influences
such as laser pulse power, footprint size, survey altitude, scan
angle, or point density (e.g. Holmgren et al. 2003; Hopkinson
2007; Lim et al. 2008; Naesset 2009; Montaghi 2013). Histori-
cally, a focus on these configuration elements has been justified
because they directly influence the sampling geometry and re-
turn signal detection. Moreover, the dominant wavelength of
commercial airborne LiDAR sensors has tended to be 1064 nm
due to raw material costs, diode reliability, optimal surface re-
flectance attributes, and eye-safety concerns. In recent years,
however, we have witnessed a move toward more specialized
wavelengths other than 1064 nm, such as 1550 nm due to the
water absorption properties of this wavelength being safer for
the eye at higher pulse powers, or 532 nm, where visible wave-
lengths are desired to simultaneously sample terrain, canopy,
and bathymetric surfaces in open water and riparian areas. As
airborne LiDAR systems of different wavelength have prolifer-
ated and the datasets collected are entered into a growing global
database of point clouds, there is a need to directly compare
the point cloud representations of canopy environments when
sampled at different wavelengths.

Meanwhile, multichannel LiDAR sensors (e.g., the Titan)1

are now available that combine multiple lasers to simultaneously

1Teledyne Optech, Toronto, Canada

actively sample and map terrestrial environments at multiple
wavelengths. Multiwavelength airborne LiDAR is not new, as
bathymetric systems such as Optech’s Shoals or AHAB’s Hawk-
Eye have incorporated dual wavelength LiDAR emission and
multiple wavelength backscatter sampling since the late 1990s
(Irish and Lillycrop 1999). However, employing active airborne
multispectral LiDAR technologies in terrestrial forested envi-
ronments is new and opens many research and application pos-
sibilities in terms of forest health and species classification,
habitat mapping, and biomass and carbon stocks assessment
(Morsdorf et al. 2009; Woodhouse et al. 2011; Hancock et al.
2012; Wallace et al. 2012).

Within a forestry context, the availability of commercial mul-
tispectral LiDAR enables the simultaneous observation of both
structural and reflectance properties, which offers the potential
to separate woody and leafy canopy elements from nonfoliage;
or even the generation of passive image-based analogues such
as normalized difference vegetation indices (NDVI) (Morsdorf
et al. 2009; Wallace et al. 2012). This potential exists because
reflectance spectra of vegetation contain information on plant
pigment concentrations, leaf cellular structure, and leaf moisture
content (Colwell 1974; Goetz et al. 1983). Leaves absorb visi-
ble light (∼400 nm to 700 nm) efficiently, because these wave-
lengths are used in photosynthesis (Gates 1970; Knipling 1970).
In the visible range, the maximum reflectance of a healthy green
leaf is between 10% and 20% (Satterwhite and Henley 1990). In
the near-infrared (NIR) range (∼700 nm to 1300 nm), absorp-
tion drops to between 3% and 5%, and leaf-level reflectance is
high, with about 40% to 60% of incident light scattered upward
and the remainder transmitted or scattered downward (Satter-
white and Henley 1990). However, in the infrared (IR) spectrum
(beyond ∼1300 nm), absorption is typically between 30% and
50%, due to water within the canopy foliage (Knipling 1970;
Satterwhite and Henley 1990).

An advantage of airborne LiDAR over passive imaging sys-
tems is that reflections (returns) from canopy and ground sur-
faces can be separated due to their morphological and geometric
contexts (Axelsson 1999). However, different laser wavelengths
will interact with the ground surface differently, and this has
2 important consequences: (i) for a given wavelength, if the
ground surface has characteristics that absorb, or if the canopy
preferentially occludes incoming energy, then the ability for Li-
DAR to accurately map subcanopy terrain could vary; (ii) given
that soil and ground covers might reflect differently at different
wavelengths, then multispectral LiDAR offers the potential for
land surface and land cover classification in open and canopy
covered environments (Yan et al. 2015). For example, a typi-
cal loam soil has an approximate reflectance of 28%, 40%, and
49% for visible, NIR, and IR radiation, respectively (Satterwhite
and Henley 1990), which suggests that longer laser wavelengths
might respond favorably over such surfaces as they experience
lower absorption. However, it is also known that reflectance
will vary with moisture content and that the IR wavelengths
will be most susceptible to increased absorption with increasing
moisture content (Lobell and Asner 2002).
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LiDAR-based land cover classification is not new (Yan et al.
2015). The 3D attributes of discrete-return single frequency Li-
DAR have been used to classify open water and wetland surfaces
(Hogg and Todd 2007; Goodale et al. 2007; Crasto et al. 2015);
forested land cover types and species (Moffiet et al. 2005; An-
tonarakis et al. 2008; Vaukonen et al. 2010; Korpela et al. 2010).
LiDAR 3D derivatives have also been combined with passive
multispectral data in forest environment classifications (Kouk-
oulas and Blackburn 2005; Holmgren et al. 2008; Ke et al.
2010; Millard and Richardson 2013; Yang et al. 2014). Tra-
ditionally, however, single-frequency LiDAR signal intensity
alone (i.e., through intensity thresholding) has not been consid-
ered of high value for species classification due to the many
controls, in addition to surface reflectance, that influence inten-
sity values (Moffiet et al. 2005; Hopkinson 2007). When 3D
and intensity responses are considered together, forest species
classification improves (Korpela et al. 2010). With multispectral
LiDAR sampling of forest canopy and terrain surfaces, the com-
plementary information contained in multiple intensity channels
should alone facilitate improved land cover and perhaps species
classification.

OBJECTIVE
This study aims to compare simple terrain and forest canopy

attributes derived from each wavelength of 2 multispectral Li-
DAR datasets to assess whether the spatial and vertical informa-
tion content in each channel differs. The 1st multispectral dataset
compares data from 3 sensors to evaluate sensor-specific vari-
ations in terrain and canopy characterization, whereas the 2nd
dataset is from a single 3-channel sensor to quantify whether
data from multiple channels are complementary or redundant.
Tests are performed primarily at forest stand scale to place the
analysis in a forest resource inventory context. Finally, the work
explores the possibility of combining the multispectral LiDAR
data alone in standard image-based classifications of major land
cover types in the study area.

DATA AND METHODS

Study Area
The study was conducted in the North Tract of the York

Regional Forest, 50 km north of Toronto, Canada, on the Oak
Ridges Moraine (Figure 1). Almost 80% of the Tract is conifer-
ous plantations, with some considered to be among the oldest in
southern Ontario. The deep sands that cover the site support a
diversity of over 40 tree species with a dominance of white pine
(Pinus strobus) and sugar maple (Acer saccharum). Much of
the original forest was cleared for agriculture in the mid to late
1800s, however, the infertile soils could not sustain this prac-
tice. Beginning in 1924, forest cover was completely restored
by planting coniferous seedlings on abandoned agricultural
lands.

This area was chosen because it has been the subject of ongo-
ing LiDAR research since 2000 and is easily accessible through
a network of recreational trails. The York Regional Forest re-
search site was initially set up by the authors due to its proximity
to the airborne laser terrain mapper (ALTM)2 sensor testing and
calibration site. Consequently, acquiring repeat LiDAR datasets
over the study area could be achieved with relative ease during
optimal conditions or when new systems were being tested. The
study site has been the focus of several LiDAR forest studies
(Hopkinson et al. 2004; Chasmer et al. 2006; Hopkinson et al.
2008; Lim et al. 2008) and in addition to the York Region Forest
Resource Inventory (FRI), several field plots have been estab-
lished within the North Tract to provide a means of plot-level
model calibration.

The FRI stand polygons used in this analysis are presented
in Figure 1. These 41 stands have been chosen because they
fall within the overlap region of the 4 multispectral LiDAR
sets described following. Within this selection of stands, the
ages range from approximately 10 to 70 years of growth within
structurally complex hardwood and mixed regeneration stands
to uniform conifer plantations, each undergoing a range of treat-
ments. Consequently, althoughh this is a largely managed forest
environment, it represents a diverse sample set of canopy con-
ditions over a relatively small area.

Data Collection
Four airborne LiDAR datasets collected from 4 different sen-

sors over 3 flight missions were used for this multisensor, multi-
spectral study. In the summer of 2013, 2 airborne data collections
were conducted 1 month apart during dry conditions at peak fo-
liage conditions. The 1st flight in late July deployed Aquarius
(532 nm) and Orion (1550 nm) sensors co-mounted in a Piper
Chieftan survey aircraft. The 2nd flight in late August deployed
a Gemini (1064 nm) sensor. In July of 2015, a 3rd flight was
carried out over an overlapping but coincident area of interest
(AOI) with a Titan sensor that simultaneously captured the same
3 wavelengths as did the earlier multisensor missions. All 4 sen-
sors3 utilize equivalent pulse detection and ranging procedures,
including the capture of up to 4 returns from a single emission,
each scaled according to its peak pulse amplitude (referred to
as return “intensity”).

The sensor and survey settings for all 4 datasets are pro-
vided in Table 1. Efforts were made to maintain a constant
survey configuration with a ground speed of 135 knots, flight
line side-lap of 50%, and altitude of 1 km for all flights,
but air traffic control at the nearby Pearson International Air-
port imposed some minor deviations. Consequently, the July
2013 flight was ∼100 m lower and the July 2015 flight
∼70 m higher than the planned 1km survey altitude. All other

2Teledyne Optech Inc., Toronto, Ontario, Canada
3Manufactured by Teledyne Optech, Toronto, Canada
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FIG. 1. Study area including forest inventory polygons (white) and field plot locations (yellow). Image is a 3-band (532 nm, 1064
nm, 1550 nm) composite image of the Titan airborne lidar data. Inset: Map of Canada showing location of the study site.

important sensor settings were typical for the sensors, survey
altitude and the nature of the ground surface being mapped (Ta-
ble 1). The diversity in sensor attributes represents the typical
range of commercial airborne LiDAR mapping sensors and is
therefore ideally suited to the dual objective of evaluating the
consistency of terrain and canopy attributes and the influence of
different sampling wavelengths.

The sensors demonstrated some variation in pulse repetition
frequency (PRF) and beam divergence, and this was due to the
different hardware set up and typical usage of each sensor. For
example, the Aquarius sensor is a combined topographic and
bathymetric system requiring operation in the visible portion of

the spectrum. Given that a 532-nm laser pulse is not eye safe at
equivalent operating power levels to the Orion (1550 nm) and
Gemini (1064 nm) wavelengths, some compromise on PRF and
beam divergence is unavoidable; i.e., pulses are spaced more
in time and the beam is widened to reduce the energy con-
centration within the footprint (for an explanation of the pulse
power to beam divergence relationship see Hopkinson 2007).
The main result of these configuration differences is a range
in ground level sampling density from 1.4 pts m-−2- to 2.7 pts
m−2 in the 2013 multisensor dataset (Table 1). A higher sam-
pling density was not practical with the Aquarius sensor due
to the constraints imposed by survey altitude. The high-density



VOL. 42, NO. 5, OCTOBER/OCTOBRE 2016 505

TABLE 1
LiDAR sensor configuration and survey settings for each ALTM system

Parameters Sensor or Mission Values

Sensor model Aquarius Gemini Orion C Titan
Date 22/07/13 24/08/13 22/07/13 02/07/15
Wavelength (nm) 532 1064 1550 532 1064 1550
PRF (kHz) 50 70 125 100 100 100
Pulse width (ns) 8 12 2.6 n/a
Pulse energy (μJ) 70 97 18 n/a
Peak pulse power (kW) 8.8 8.1 6.9 n/a
Divergence (1/e) (mRad) 0.7 0.25 0.22 0.7 0.25 0.22
Receiver aperture diameter (m) 0.05 0.05 0.05 0.075
FOV (deg) 30 40 30 30
Altitude (km agl) 0.9 1 0.9 1.07
Emission sample density (pts m-2) 1.5 1.4 2.7 3 3 3
Footprint area (m2) 0.31 0.05 0.03 0.44 0.06 0.04
Intensity range (bits)∗ 12 12 12 12

∗Intensity units are undefined and represent a scaled index of the peak mV reading observed at the sensor receiver. A 12-bit scale equates to a
range of 0 to 4,096 integer increments.
n/a: values are not available for publication.

sampling of the Orion C is typical of the low-altitude design
criteria of the sensor, however, the Gemini has a much higher
altitudinal range. Consequently, the Orion was operating near
its upper altitude and lower PRF limits, while the Gemini was
nearer to its typical lower altitude and upper PRF limits. The
Titan is the most modern of the sensors, with greater PRF ca-
pabilities than any of the others. However, it was operated at
100 kHz / channel (or 300 kHz overall) to produce data that
would be as comparable as possible given different hardware
design and operational constraints.

To supplement the available FRI data, a field visit was car-
ried out between July 7 and 10, 2015, to survey land cover types
(forest stand and crop type, and open area coverages of sand,
gravel, and asphalt) within the study area. In addition, 8 differ-
ential GPS-surveyed forest mensuration plots were established
to determine species mix, basal area, and to collect 40 (5 per
plot) digital hemispheric photographs (DHPs).

Comparative Analysis
Raw sensor point clouds were constructed for each flight line

using proprietary data integration routines (Teledyne Optech,
Canada), while subsequent point cloud and raster analyses
were carried out using Terrascan (Terrasolid, Finland), LAS-
tools (rapidlasso GmbH, Germany), Surfer (Golden Software,
USA), ArcGIS (ESRI, USA), and Geomatica (PCI, Canada). To
evaluate the general LiDAR signal return properties across the
study area, the signal intensities of all returns were averaged
across a 20 m × 20 m grid within LAStools and compared.
Following ground classification (Axellson 1999), a 1-m resolu-

tion digital elevation model (DEM) of the terrain was gridded
for each wavelength dataset using the triangulation interpola-
tion routine in Surfer. Canopy height normalization was carried
out using the ground classified data, so that point-cloud-based
foliage profile and gap probability estimates could be generated
for each wavelength dataset and compared.

As an index of the cumulative foliage profile, height per-
centiles were extracted and aggregated to a 20 m grid using the
LAScanopy module within LAStools for percentile (%) incre-
ments (PXX) ranging from P00 (minimum or ground reference)
to P100 (maximum or canopy top), with several increments be-
tween (P01, P05, P10, P25, P50, P75, P90, P95, P99). The tails
of the percentile distributions were sampled at higher frequency,
because this is where most differences are likely to occur (Hop-
kinson 2007) and data were aggregated to a 20-m grid to fa-
cilitate direct comparison across wavelengths, while mitigating
uncertainty due to slight differences in sampling density (Lim
et al. 2008) or positional accuracy.

Two indices of gap probability (or 1 – fractional cover)
were extracted across a 20-m grid, using LAScanopy. Although
intensity-based approaches to gap probability (or fractional
cover) have proven more closely related to absolute values of
overhead canopy gap probability, point-cloud-ratio-based ap-
proaches tend to be accurate predictors, as long as suitable scal-
ing factors are applied (Hopkinson and Chasmer 2009). Con-
sequently, gap probability (P) indices were extracted from: (i)
first and single returns only (Pfirst), as these represent the first
encounter of an emitted pulse with foliage or terrain; and (ii)
from all returns (Pall), as these represent a more complete ter-
rain to canopy profile. In both cases, a height threshold of 2 m



506 CANADIAN JOURNAL OF REMOTE SENSING/JOURNAL CANADIEN DE TÉLÉDÉTECTION

was used to maximize the separation of understory and canopy
elements:

P =
∑

B
∑

T
[1]

where T = total number of returns within the full vertical profile
and B = number of below canopy returns that are located beneath
the specified height threshold.

Following construction of the gridded DEMs, foliage height
statistics and gap probability indices were compared within each
of the multiwavelength datasets in ArcGIS. Given the 2-year
time period between the multisensor and Titan data collections,
grid-to-grid comparisons were limited to the coincident multi-
spectral datasets. Direct spatial comparisons were made across
the AOI by subtracting the most typical LiDAR wavelength of
1064 nm from the 532 nm and 1550 nm grids to visually il-
lustrate deviations. This visual analysis was applied to the 1-m
DEM, the P99 height surface, and both Pfirst and Pall gap prob-
ability grids. P99 was chosen, because it represents a reliable
index of grid-level maximum canopy height that is not suscepti-
ble to the influence of outliers. (Note: P100 is derived from the
single highest point across a 20 m × 20 m grid, whereas P99
is a function of all points within the sample where the nominal
minimum number of points in any grid will be >500). Gap prob-
ability was similarly compared in order to evaluate whether P
estimates are stable across wavelengths. Canopy height profiles
were stratified by wavelength and mature stand type (conifer,
hardwood, and all stands including mixed wood), then compared
graphically. Stand type designations were derived from the York
Regional Forest FRI and for the purpose of this analysis, stands
reporting >75% hardwood or conifer are assigned to that class,
while stands reporting 50%–75% are designated mixed.

Multispectral Classifications
Several dominant land cover types were identified across the

study area by using a combination of field survey and pho-
tographs, interpretation of high-resolution Google Earth im-
agery, and FRI stand attributes. Because the area surveyed in
2015 was larger than that of 2013, more land cover training
sites could be included and there was higher confidence that
field crops (corn and hay) were correctly identified in 2015.
Overall, 8 discernible land cover types were identified in 2015
(asphalt, sand, gravel, corn, hay, pine/spruce, larch, and hard-
wood). Larch (larix) was singled out from the pine and spruce
conifer class in 2015, because a stand on the north side of the
2015 AOI (just outside the 2013 AOI) contained a high pro-
portion of larch trees and they were visibly more distinct than
pine (pinus) or spruce (picea), which were the overall dominant
conifer type. For the 2013 data, insufficient known training data
were available for larch, corn, or gravel, so it was possible to
attempt to classify only the remaining 5 land cover types.

The all-return point clouds of each intensity channel were
gridded in LAStools in order to produce 1-m average intensity

rasters, then imported into ArcGIS. Image speckle and blank
grid nodes were removed using a majority filter prior to con-
structing 3-band composite images with 532 nm, 1064 nm, and
1550 nm as image channels 1, 2, and 3, respectively (Figure 1).
The 2013 and 2015 intensity composites were imported into
PCI Geomatica (Ottawa, Canada) to perform 3 typical image-
based supervised classifications using the previously identified
training areas. For simplicity and speed, minimum distance,
maximum likelihood, and parallelepiped classification routines
were tested, and the method deemed most successful based on
confusion matrix results was chosen for subsequent compari-
son with stand FRI and field plot assessments of conifer vs.
hardwood species. It is of note that the aim of these classifi-
cations is not ultimate accuracy, but to demonstrate the differ-
ence in the capabilities for classification purposes of the mul-
tisensor, multispectral vs. single-sensor, multispectral LiDAR
datasets.

RESULTS

Signal Intensities
The average intensities of all returns across the study area are

presented for each of the sensor wavelengths in Figure 2 (2013
multisensor) and Figure 3 (2015 Titan). The intensity values
represent measures of peak return signal amplitude but are not
radiometrically calibrated to standard units such as Jules (peak
amplitude) or watts (integral of the response curve). All datasets
produce intensity responses nearer the lower end of the 12-bit
(0 – 4,096) scale. For the multisensor data, the Gemini 1064-
nm wavelength demonstrates the highest levels and the greatest
range in reflectance over this woodland environment. The mean
Gemini 1064-nm intensity is >9 times greater than that from
the Orion 1550-nm and >17 times greater than the Aquarius
532-nm (Figure 2). The distributions are closer for the 2015
Titan data (Figure 3), because ensuring compatible intensity
response was a design consideration of this multichannel sensor.
However, given that the Titan intensity channel responses do not
represent surface reflectance, they cannot be used to construct
spectral ratios or indices (e.g., NDVI) without normalization
and calibration (Yan and Shaker 2015).

For all missions and wavelengths, the intensity distributions
are bimodal, with the majority of returns clustered around the
lower intensity peak. The lower intensity peaks are associated
with forest covered areas whereas the higher intensity peaks gen-
erally represent areas of open fields and corridors where there is
no canopy cover to split the emitted pulse into multiple returns.
The one exception is in the center of the study area where high
average intensity values in the 1064-nm and 1550-nm images
(Figures 2b, 2c, 3b, and 3c) are associated with stands con-
taining mostly hardwood (Acer) species. The elevated average
intensity response observed for hardwood stands compared to
the surrounding conifer canopies at 1064 nm is useful for forest
stand type classification and has been observed by others (Orka
et al. 2007; Orka et al. 2009; Korpela et al. 2010).
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FIG. 2. Frequency distributions (left) and linearly-scaled images (right) of the all-return signal intensities for each of the 2013
mission datasets. The arbitrary intensity scale is kept constant both in the distributions (0–150 units) and the images (0–70 units)
to allow direct comparison. The average and standard deviation of each intensity distribution is inset.

DEM and Canopy Height
Summary statistics for the DEM and P99 surface compar-

isons are provided in Table 2. The mean surface elevation offsets
and standard deviations for multisensor and Titan mission data
are close to the noise level typical within LiDAR data, which, in
the absence of additional higher accuracy ground control, sug-
gests that all 3 datasets have produced 1-m DEMs to a similar
level of accuracy. P99 differences are only slightly larger than
DEM surface offsets but are still close to noise levels. To discern
notable wavelength-dependent behavior, we need to observe the
surface raster differences. Note, the 12 cm decrease in mean
ground elevation between the 1064 nm multisensor and Titan
datasets might be due to using different base station controls or
actual changes in the ground surface conditions between 2013
and 2015. However, the 48-cm increase in observed P99 dur-
ing the same period is likely due to 2 years of canopy height
growth, because this is commensurate with growth rates pre-
viously observed in this area (Hopkinson et al. 2008). In both
cases, the wavelength-dependent offsets are not impacted by
these temporal changes.

The 1064-nm baseline 1-m DEM and 20-m P99 canopy
height grid across the study area are, respectively, presented
for the multisensor and Titan missions in Figures 4 and 5, along
with the comparative deviation surfaces for the 532-nm and

1550-nm surfaces. Variations in terrain height and morphology,
as well as canopy height heterogeneity, are clearly evident across
the study area (Figures 4a,d, 5a, and d). There is >30 m of ter-
rain relief with canopy heights ranging from 0 m in clearings
up to ∼30 m above ground surface in riparian areas and mature
hardwood stands.

Differences in multisensor DEM surface elevation of up to
∼0.5 m are illustrated in Figure 4b and 4c for the 532-nm and
1550-nm wavelength datasets, respectively. It is noteworthy that
the 532-nm surface is mostly above the 1064-nm DEM. Also,
the visible differences and offset statistics indicate that the 532-
nm DEM possesses the most noise, with small regions up to
and exceeding 20 m across where the surface is >0.5 m above
or below the 1064-nm DEM. Similar patterns and directional
offsets are also observed for multichannel Titan DEM (Figure 5
and Table 2), but overall, the DEMs are more consistent across
wavelengths than those obtained from different sensors.

The mean difference in multisensor-P99 canopy height grids
between the 1064-nm and 532-nm datasets is −0.16 m (σ =
0.76, p <0.05). In addition, there are localized patterns of de-
viation, often associated with areas of lower DEM quality (Fig-
ure 4b), where the 532-nm P99 surface is several meters below
the 1064-nm P99 grid. The mean 1550-nm P99 difference is
+0.11 m (σ = 0.10, p <0.05), but individual regions of de-
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FIG. 3. Frequency distributions (left) and linearly-scaled images (right) of the all-return signal intensities for each channel of the
2015 Titan data set. The arbitrary intensity scale is kept constant both in the distributions (0–150 units) and the images (0–70 units)
to allow direct comparison. The average and standard deviation of each intensity distribution is inset.

viation are smaller and associated with flight line noise. The
corresponding Titan P99 comparisons illustrate smaller off-
sets that differ in sign to the multisensor mission (Table 2),
although appearing to show no notable spatial patterns (Fig-
ures 5e and f) aside from minor linear feature edge artefacts.
Overall, the P99 differences between 1064-nm and 1550-nm
are minor and within noise levels, while at 532 nm, system-
atic differences are limited to the multisensor mission in areas
of hardwood cover, where DEM errors are also enhanced. The
poor upper canopy sampling of the Aquarius 532-nm dataset
is likely due to the high proportion of visible light absorbed in

photosynthesis (Gates 1970), combined with the low-intensity
response of this particular sensor within this environment
(Table 2).

Gap Probability
Summary statistics for gap probability (Pfirst and Pall) compar-

isons are provided in Table 3. Neither Pfirst nor Pall demonstrate
any statistical difference at the 95% confidence level between
corresponding multisensor or Titan estimates at 1064 nm, de-
spite being captured 2 years apart. However, apart from the Pfirst

TABLE 2
Mean DEM and P99 height differences from 1064 nm within overlapping part of AOI

DEM (m) P99 (m)

Multisensor Titan Multisensor Titan

1064 257.51 (5.63) 257.39 (5.46) 19.07 (7.67) 19.55 (7.78)
� 532 0.07 (0.18) 0.04 (0.20) −0.16 (0.76) 0.12 (0.50)
� 1550 −0.02 (0.12) −0.03 (0.08) 0.11 (0.42) −0.03 (0.43)

Standard deviation in parentheses
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FIG. 4. a) 1064 nm 1 m DEM with differences illustrated for the 532 nm (b) and 1550 nm (c) DEMs of the 2013 multi-sensor
campaign. d) 1064 nm P99 20 m × 20 m canopy height grid with differences illustrated for the 532 nm (e) and 1550 nm (f) P99
grids. Note: for plots b, c, d, and e, a positive difference (blue) indicates that the surface overlies that of the corresponding 1064
nm surface. FRI stand polygon outlines added to P99 maps.

1550-nm Titan estimate, all other 532-nm and 1550-nm Pfirst

and Pall values do differ significantly from their corresponding
1064-nm gap probability. This demonstrates that a simple re-
turn ratio gap probability, whether based on all returns or first
returns, will vary with laser wavelength.

It is a priori known that neither Pfirst nor Pall will provide
a 1:1 estimate of true canopy gap probability (Hopkinson and
Chasmer 2009), and this is illustrated in the comparison of
field DHP results with spatially corresponding Pfirst and Pall

estimates for each wavelength (Table 4). Only the Titan data are
compared because the field data were captured within a week
of the 2015 survey. From the 40 DHP images collected within
8 plots (Figure 1), the mean overhead (0◦–10o) gap probability
was found to be 21% (Min: 1%, Max: 6 7%, σ : 20%).

Pall and Pfirst for all wavelengths consistently underestimate
gap probability (Table 4), with none of the results close to a 1:1

relationship with field DHP estimates. Pall produces improved
estimates over Pfirst in terms of regression residuals, intercept,
and scale factor. There are also marginally improved results for
both models at 532 nm in terms of scale factor and intercept.
This might be because 532 nm is a visible wavelength, as are
DHP images, however, the differences in overall wavelength
responses are negligible.

Spatially explicit multisensor gap probability results are pre-
sented in Figure 6. The upper canopy sampling tendency of
first and single returns is evident in the small average 1064-nm
Pfirst (Figure 6a, Table 3) of 19.9% with a high proportion of
the study area illustrating a gap probability close to zero; i.e.,
dense canopy cover. In contrast, the more complete treatment
of the full canopy profile is evident in the higher average Pall

(Figure 6d, Table 3) of 32.9%, with spatial variations that show
some correspondence to FRI polygons.
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FIG. 5. a) 1064 nm 1 m DEM with differences illustrated for the 532 nm (b) and 1550 nm (c) DEMs of the 2015 Titan campaign.
d) 1064 nm P99 20 m × 20 m canopy height grid with differences illustrated for the 532 nm (e) and 1550 nm (f) P99 grids.

Mean differences in multisensor gap probability by wave-
length (Table 3) indicate that 532 nm and 1550 nm both pro-
duce overall higher values than 1064 nm for first returns (6.9%
and 1.5% in Figure 6b and c, respectively) and lower values for
all returns (1.2% and 4.2% in Figure 6e and f, respectively).
For the 1550-nm Pall (Figure 6f), the difference is almost exclu-
sively negative, with any visual patterns dominated by noise and
scan line artifacts. (Note: Slight differences between datasets
are expected to be elevated at the edge of flight lines, because
this is where vertical sampling and point density are the least
uniform.)

As the comparison between multisensor Pfirst and Pall demon-
strates (Figure 6a and d), an increase in P indicates that a higher
proportion of the point cloud exists below the 2-m height thresh-
old. Therefore, the decreases in Pall observed for 532 nm and
1550 nm in Figure 6e and f indicate that higher proportions
of all returns lie above the threshold than those for 1064 nm;
i.e., the 1064-nm data demonstrate generally increased foliage
penetration (canopy transmittance) and improved representation
of the near-ground level.

Comparative gap probability results for the Titan are visually
similar to the multisensor results at 1064 nm, in that Pall val-
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TABLE 3
Mean gap probability for 1064 nm and 20 m grids and

corresponding differences for 532 nm and 1550 nm channels
within the overlapping multisensor and Titan mission AOI

Pfirst (%) Pall (%)

Multisensor Titan Multisensor Titan

1064 19.9 (32.2) 19.3 (32.3) 32.9 (27.6) 25.9 (29.9)
� 532 6.9 (7.1) 2.7 (4.1) −1.2 (6.4) 1.4 (3.8)
� 1550 1.5 (3.3) 0.1 (1.1) −4.2 (3.9) 1.0 (1.3)

Standard deviation in brackets

ues are higher than Pfirst and with decreased gaps in the central
hardwood stand area (Figure 7a and b). There is also a visual
correspondence in the patterns of 532-nm gap probabilities for
the multisensor and Titan missions (Figures 6b, 6e, 7b, and 7e).

TABLE 4
LiDAR gap probability (P) regressed against overhead

(0 deg–10 deg) DHP gap fraction for 8 plots (40 DHP images)
captured within a week of the 2015 mission

Wavelength 1550 1064 532

Return ratio model Pall Pfirst Pall Pfirst Pall Pfirst

Average (%) 11 3 10 3 11 6
Range (%) 19 9 19 9 22 13
r2 0.75 0.31 0.77 0.29 0.75 0.60
Scale factor 1.91 2.95 1.96 2.74 1.87 2.50
Y intercept (%) 0 12 0 13 0 7

This indicates that much of the 532-nm vs. 1064-nm gap prob-
ability differences are systematically driven by wavelength and
not merely sensor or mission configuration differences. Con-

FIG. 6. a) 1064nm 20m × 20m raster grid of Pfirst with differences illustrated for 532nm (b) and 1550nm (c) for the 2013
multi-sensor mission. d) 1064nm 20m × 20m raster grid of Pall with differences illustrated for 532nm (e) and 1550nm (f). Note: a
positive difference value (blue) indicates that the associated gap probabilities are greater than the 1064 nm grid.
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FIG. 7. a) 1064nm 20m × 20m raster grid of Pfirst with differences illustrated for 532nm (b) and 1550nm (c) for 2015 Titan
mission. d) 1064nm 20m × 20m raster grid of Pall with differences illustrated for 532nm (e) and 1550nm (f).

versely, the 1550 nm to 1064 nm gap probability differences
from the Titan mission (Figure 7 c and f) are smaller than those
from the multisensor mission (Figure 6 c and f) while also being
dominated by noise and scan line artifacts.

Height Percentiles by Stand Type
Pulse penetration and the differences in foliage profile

representation by wavelength and by stand type are further
elucidated in Figure 8. Canopy-to-ground percentile distribu-
tions have been aggregated and plotted for 3 mature stand classes

containing (i) any species mix or (ii) >75% conifer or (iii) >75%
hardwood within the study area. This represents ∼50% sampling
of the FRI stand population within the 2013 and 2015 AOIs.
The 1064-nm foliage height cumulative distributions (Figure 8a
and 8d) are significantly different (Kolmogorov–Smirnov test,
p <0.01), from all corresponding distributions (Figures 8b,c,e),
aside from those produced from the 1550-nm channel in the
Titan sensor (Figure 8f).

Although the mean maximum heights (P100) of mature
conifer and hardwood stands are close at ∼25 m for the 2013 and
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FIG. 8. Multi sensor 2013 and Titan 2015 mission height percentiles (x-axis) and wavelength dependent differences (y-axis) of all,
conifer and hardwood stands. Stands chosen for study are all mature (> 20m in height). “All stands” contain either homogeneous
or mixed species.

2015 missions, the foliage distributions are distinct with slightly
greater deviations in the mid-percentile range (P25–P75). This
upward “bulge” in the hardwoods is characteristic of increased
foliage in a distinct overstory of tree crowns. By comparison,
the more linear distribution displayed by the conifer plantations
is characteristic of a higher stem density and deeper tree crown
profile.

Common to the multisensor and Titan missions, the 1064-nm
aggregated foliage profile for all stands (Figure 8a,d) tends to
better represent the lower canopy heights relative to both 532 nm
(Figure 8b,e) and 1550 nm (Figure 8c,f). Maximum differences
occur at P25, where the multisensor 1064-nm profile is 1.9 m
(Figure 8b) and 1.4 m (Figure 8c) below the corresponding 532-
nm and 1550-nm profiles, respectively. Wavelength-dependent
distribution deviations are greatest overall in the hardwood
stands during the multisensor mission, where the 532-nm profile

is ∼5 m above 1064 nm at P25. Meanwhile, and as observed in
the P99 canopy height comparisons, there are significant differ-
ences (p <0.01) in the upper distribution tails of the multisensor
data where the mean maximum of the 1064-nm profile (P100)
is 0.34 m (σ = 0.10) below that for 1550 nm and 0.59 m (σ =
0.56) above that for 532 nm.

It is clear from the 2015 Titan data (Figure 8e,f), that some
of the profile-based wavelength deviations between conifer and
hardwood resemble the patterns observed in the 2013 multi-
sensor mission (Figure 8 b,c). These similarities indicate that
conifer and hardwood stands interact with laser pulses in dis-
tinct ways, depending on the wavelength of light being used.
Given that the P25 to P75 heights appear greater for 532 nm
and 1550 nm, this indicates that these wavelengths have pref-
erentially sampled upper regions of the canopy. However, al-
though similar patterns are evident in both missions, the Titan
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FIG. 9. Uncorrected intensity statistics for homogenous forest and land cover training sites identified in the field and using Google
Earth. Error bars represent one standard deviation. (Note dominant hardwood is Maple [Acer]).

data possess less distinct wavelength-dependent deviations. It
is likely, therefore, that although some of the percentile distri-
bution attributes are controlled by the wavelength of the laser,
the high deviations observed in the multisensor data have been
amplified by other sensor and data collection influences. For
example, the slight differences in survey altitude, FOV, sam-
pling density, and flight line position could influence the canopy
sampling geometry (Holmgren 2003; Hopkinson 2007) such as
to compound any wavelength influences. Meanwhile, the pri-
mary elements of sampling geometry and density were kept
constant across all 3 channels on the Titan and would, thus, be
mitigated.

The similarity in overall trend indicates that the general sen-
sor and wavelength behaviors of sampling upper or lower parts
of the distribution (upper canopy vs. understory vs. ground) are
characteristic of the wavelength and not the stand differences.
However, the subtle differences in wavelength-dependent pro-
file deviations among stand types indicate that each wavelength
(or sampling configuration) provides a unique representation of
the canopy, that when combined, helps differentiate stand type.
The profile deviations constructed in Figure 8 can be consid-
ered analogous to signatures and, therefore, offer the potential
for land cover classification. However, instead of being a 2D rep-
resentation of spectral response, these profiles constitute a 3D

TABLE 5
2013 multisensor and 2015 single-sensor classification accuracy statistics

Mission Classification Average (%) Overall (%) Kappa

2013 (5 classes + null) Minimum Distance 56.1 37.1 0.22
Maximum Likelihood 77.2 69.8 0.59
Parallelepiped (tie breaker) 74.5 64.0 0.53

2015 (8 classes + null) Minimum Distance 77.6 78.0 0.74
Maximum Likelihood 85.7 86.0 0.83
Parallelepiped (tie breaker) 87.3 87.9 0.85
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TABLE 6
2013 multisensor training site confusion matrix for 5 classes (plus null) using a maximum likelihood classification (column =

actual; row = predicted); total training area used = 42,066 m2

Class Area (%) Null Conifer Sand Hardwood Asphalt Hay

Conifer 34 0.9 64.8 0 5.3 29.0 0
Sand 2 3.6 0 93.2 0 0 3.2
Hardwood 26 1.7 42.9 0 43.0 12.4 0
Asphalt 5 3.9 0.4 0.1 1.5 94.0 0.1
Hay 33 3.0 0 5.9 0.1 0 90.9

representation of canopy-depth-integrated response in 3 distinct
bands.

Multispectral Classification
Thus far, the comparative evidence presented suggests that

ground surface and forest canopy characteristics are uniquely
represented at different LiDAR wavelengths. This is explicitly
illustrated in Figure 9, where training site intensity summaries
are illustrated for the 3e Titan wavelengths. Class separation
using individual wavelength intensity thresholds is limited. At
1550 nm, larch would be inseparable from pine and spruce, and
gravel would be inseparable from corn and sand. At 1064 nm
alone, the same classes would be inseparable. However, the
subtle differences in response between 1064 nm and 1550 nm,
when combined with 532 nm, lead to distinct class signatures
that offer the potential for multiband classification.

Training site accuracy statistics for each of the supervised
classifications tested for 5 classes in 2013 and 8 classes in
2015 are presented in Table 5. Overall, the most successful
3-band intensity-based classification was the Titan data used
to classify 8 land cover types with a parallelepiped routine
(K = 0.85). Despite attempting to classify fewer land cover
types, the 2013 multisensor results were less encouraging, with
the best result returned from the maximum likelihood routine
(K = 0.59).

The land cover types that were difficult to distinguish in the
multisensor and Titan training datasets are evident in the as-
sociated confusion matrices (Tables 6 and 7, respectively). For
the multisensor data, hardwood and conifer land cover types
were the most difficult to distinguish, even though the training
areas were known to be homogenous. There is even confusion
between asphalt and the forested land cover types in the multi-
sensor classification (Table 6), despite asphalt having a distinct
response in the Titan datasets (Figure 9 and Table 7). For the
Titan classification, 4 of the 8 classes produce >90% accuracy,
with the lowest being larch at 65.8% (Table 7). Unsurprisingly,
the main sources of confusion for the larch class are pine and
spruce, then hardwood. Demonstrating that although classifica-
tion of forest species using multispectral LiDAR shows promise,
the overlap in the intensity channel responses might be too
great for detailed or numerous classifications of specific forest
species.

The final output of the Titan multispectral LiDAR intensity
channel-based land cover classification is presented in Figure 10.
Visual inspection of the image confirms that many of the land
cover types are correctly classified, with roads, fields, bare sand,
and gravel areas and the forest classes of larch, pine/spruce,
and hardwood (primarily maple) conforming to their expected
and known locations. The unclassified or null class tends
to be associated with open canopy areas where understory
shrub vegetation is prevalent or surrounding houses and farm

TABLE 7
2015 Titan training site confusion matrix for 8 classes (plus null) using a parallelepiped classification (column = actual; row =

predicted); total training area used = 65,097 m2

Class Area (%) Null Corn Gravel Hay Asphalt Larch Hardwood Pine/Spruce Sand

Corn 19 0.5 94.3 0 0.7 0.3 0 0.2 0 4.1
Gravel 3 0.4 0 96.0 0 0.3 0 0 0 3.3
Hay 20 0.1 1.5 0 98.5 0 0 0 0 0
Asphalt 10 1.8 0.3 0.9 0 96.6 0 0 0 0.3
Larch 4 0 0.2 0 0.1 0.2 65.8 4.1 29.6 0
Hardwood 23 0.7 0.4 0 0.1 0.6 7.7 80.2 10.5 0
Pine/Spruce 18 0.1 0.1 0 0 1.5 14.7 4.8 78.9 0
Sand 3 0 8.4 3.3 0 0.1 0 0 0 88.2
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FIG. 10. Grid-level 1m resolution parallelepiped classification (with null class) of 8 dominant landcovers in the AOI for the 3-band
composite 2015 Titan dataset. Training sites (circles) and FRI stand boundaries (black outlines) are illustrated.

buildings where gardens and urban infrastructure classes were
not considered in training. One conspicuous misclassification is
in the middle of the hay field in the SE corner of the AOI, where
some areas are classified as corn. It is known from the field visit

that the hay crop was patchy in places and it is possible that
more of the unclassified soil signature is dominating these areas
(see Figure 1) and creating the confusion with corn. Given this
one clear example of misclassification, it is possible that similar

TABLE 8
2013 multisensor and 2015 single-sensor confusion matrices of FRI stands designated as either completely hardwood or conifer

or nonforest compared against the proportion of stand area classified as hardwood, conifer, or any other (including null) landcover

MS LiDAR classified grid cells (%)

FRI stand designation Hardwood Conifer Other

2013 Hardwood (n = 13) 25 (14) 48 (19) 27 (27)
Conifer (n = 41) 10 (12) 51 (26) 39 (30)
Nonforest (n = 6) 16 (17) 28 (30) 56 (36)

2015 Hardwood (n = 13) 52 (27) 41 (24) 7 (10)
Conifer (n = 51) 16 (15) 79 (15) 5 (5)
Nonforest (n = 8) 9 (7) 43 (27) 48 (31)

Standard deviation in brackets.
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TABLE 9
Plot-level proportions of hardwood vs. conifer basal area (BA) measured in the field and the corresponding differences in areal

proportions of classified hardwood (HW) vs. conifer; other class means grid cells were neither hardwood or conifer

Class Proportion Differences from Field BA (%)

BA field Proportion (%) 2013 Multisensor 2015 Single-Sensor

Plot Conifer HW Conifer HW Other Conifer HW Other

1 0 100 42 −47 5 24 −25 1
2 0 100 57 −66 10 19 −19 0
3 75 25 −2 −18 20 3 −3 0
4 80 20 −3 −9 12 −3 3 0
5 99 1 −19 5 14 −7 6 0
6 91 9 −23 0 23 3 −4 1
7 100 0 −25 1 24 −1 1 0
8 0 100 57 −67 10 23 −23 0
Avg(SD) 56(47) 44(47) 11(36) −25(30) 15(7) 8(12) −8 (13) 0(0)

errors have occurred over the forest stands where it would be less
obvious.

A confusion matrix of FRI stands designated as entirely hard-
wood or conifer or nonforest cover, vs. the proportion of 1-m
cells classified as hardwood or conifer (pine, spruce, or larch)
is presented in Table 8. For the 2015 hardwood FRI stands, the
majority of the area (52%) was classified as hardwood, whereas
in conifer stands, the area classified as conifer was 79%, and
in nonforest covered stands, 43% were classified as some-
thing other than forest. In each stand designation, the dominant
areal Titan classifications were in general agreement. Complete
agreement was not expected, because all stands contain trees
outside the FRI designation class, and where the ground surface
is visible in the 1-m LiDAR classification, the area is frequently
classified as null or some other nonforest land cover (Figure 10).
The results for the multisensor classification were poor by com-
parison with increased confusion throughout the classes. The
nonforest class was more correctly identified in the multisen-
sor data (56%) vs the Titan data (48%), however, due to fewer
land cover types in 2013, 52% of the image was unclassified,
whereas for 2015, only 24% of the image remained unclassified.
Consequently, the nonforest class was >2 times more likely in
the 2013 vs. 2015 classification, and this result should not be
taken to suggest the multisensor data are better able to classify
nonforest areas than the Titan.

FRI stand designations are coarse, however, and not com-
pletely representative of the species mix and proportions in
an individual stand. In the field, it was not possible to easily
and accurately map the upper crown surface extent for each
tree, so plot-level basal area was used as an index of hardwood
vs, conifer areal proportion. For each of the 8 closed-canopy
plots visited, the basal area proportions are presented alongside
the associated areal classification proportions of hardwood and
conifer (Table 9). 50% of the plots were either entirely conifer

or hardwood, with the remainder being mixed. There is limited
correspondence for the 2013 classes, with mean discrepancies
of +11% and −25% for conifer and hardwood, respectively.
The mean discrepancies for the 2015 plot data are +8% and
−8%, respectively. Of note, however, is that for 2015, no other
classes are present in these plot areas and the residuals are small
compared to those of 2013 (Table 9).

CONCLUSIONS
From DEM, P99, percentile and gap probability comparisons

performed using both multisensor and single-sensor multispec-
tral LiDAR data, it has been shown that forest environment char-
acterization differs with laser wavelength. For the comparison
of individual sensors, this observation has potentially negative
implications for either long-term monitoring or large area inte-
gration of LiDAR data from a range of sources. Differences in
terrain and canopy representation from different sensors has 3
consequences: (i) the transferability of models across datasets
will be limited; (ii) training data will be required for data derived
from different sensors; (iii) if models are widely applied, users
should expect higher levels of uncertainty and bias, which will
vary by data source.

However, it has also been demonstrated that when sampling
configuration inconsistencies associated with different sensors
and platforms are removed by integration of multiple lasers
into a single sensor, systematic wavelength-dependent differ-
ences still occur but are more subtle. Canopy profile differences
between wavelengths and stand types are minor at ground and
canopy top, but are pronounced at low- to mid-height percentiles
and when modeling gap probability from return ratios. The light
penetration, absorption, and reflection characteristics vary such
that the returns from each wavelength do not sample the same
parts of the foliage profile. This is likely at least partially influ-
enced by profile variation in leafy vs, woody proportions and
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the different relative reflectance properties in each wavelength
(Korpela et al. 2010). Studies combining optical and LiDAR
data have attempted similar canopy structural separations, but
this is traditionally challenging due to uncertainty in the 3D
source of the optical response within a canopy (e.g., Niemann
et al. 2012). The active multispectral observations presented
here suggest that there is potential for separation of woody and
leafy foliage within the canopy, using the relative proportions
of wavelength response at each height interval, but this remains
to be tested.

Although airborne LiDAR canopy foliage profile classifica-
tion remains elusive, differences in planimetric land surface re-
flectance in each active laser wavelength can be used to support
high-resolution land surface classification. This was demon-
strated by using the 3 Titan intensity channels alone to classify
8 distinct land cover types (K = 0.85). The multisensor classi-
fication over the same area, using intensity data alone, was able
to classify 5 land cover types at lower accuracy (K = 0.53).
Within the single-intensity channels of any sensor, the overlap
in intensity values between land cover types is sufficiently high
to prevent accurate classification of even 5 of the dominant land
cover types in the AOI.

Land cover classification using LiDAR derivatives, including
intensity, is becoming main stream. In addition, the classifica-
tion presented in Figure 10 is unimpressive compared to what
is possible using high-resolution multispectral data. However,
using LiDAR intensity alone to classify multiple land cover
types with acceptable accuracy has previously not been demon-
strated for land surfaces with similar characteristics. Therefore,
the simple 8 land cover classifications presented as an example
here, constitute a minimal level of capability for single sensor
multispectral LiDAR. Similar image-based supervised classi-
fications will be aided significantly through the inclusion of
terrain and canopy structural metrics derived from the point
cloud. Further enhancements will follow from the inclusion of
supplemental data sources such as coincident optical imagery,
or the utilization of more sophisticated classification routines
(Holmgren et al. 2008; Vaukonen et al. 2010).

The intensity data produced from the LiDAR sensors in
this study could not be radiometrically corrected, due to there
being no coincident ground reflectance data available for chan-
nel calibrations. Also, due to the proprietary nature of the hard-
ware design and intensity recording procedure, there was in-
sufficient data to physically calculate the radiometric response
of each sensor’s receiver channel. Consequently, the ability to
accurately ratio wavelengths to derive vegetation indices is cur-
rently limited and was not evaluated. With ground reflectance
target data (Kaasalainen et al. 2009), however, this could be
achieved and so is a logical next step in land cover or vegetation
species classification.
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species of individual trees by intensity and structure features derived
from airborne laser scanner data.” Remote Sensing of Environment,
Vol. 113(No. 6): pp. 1163–1174.

Patenaude, G., Hill, R.A., Milne, R., Gaveau, D.L.A., Briggs, B.B.J.,
and Dawson, T.P. 2004. “Quantifying forest above ground carbon
content using LiDAR remote sensing.” Remote Sensing of Environ-
ment, Vol. 93(No. 3): pp. 368–380.

Rosette, J., Suarez, J., North, P., and Los, S. 2011. “Forestry applica-
tions for satellite LiDAR remote sensing.” Photogrammetric Engi-
neering and Remote Sensing, Vol. 77(No. 3): pp. 271–279.

Satterwhite, M.B., and Henley, J.P. 1990. Hyperspectral Signatures
(400 to 2500 nm) of Vegetation, Minerals, Soils, Rocks, and Cultural
Features: Laboratory and Field Measurements. DTIC Document.
Fort Belvoir, VA. Army Engineer Topographic Labs.

Stoker, J.M., Cochrane, M.A., Roy, D.P. 2014. “Integrating disparate
Lidar data at the national scale to assess the relationships between
height above ground, land cover and ecoregions.” Photogrammetric
Engineering and Remote Sensing, Vol. 80(No. 1): pp. 59–70.
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