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ABSTRACT
The subtropical high temperature anomaly of 2013 in China,
adversely affected paddy rice physiology, especially at the heading,
flowering and grain filling stages, and left untold damage and sig-
nificant rice yield reductions in that year. Considering the importance
of data on crop failure induced by abnormal meteorological events,
in understanding the potential impacts of climate change on agri-
culture and food security, and in support of crop insurance policies,
the current study employs satellite remote sensing data to map and
estimate the areal extent of high-temperature-induced damage on
paddy rice in 2013, along the Yangtze River, a major rice producing
area in China. In this regard, the daily mean and maximum air
temperatures were first estimated using the Moderate Resolution
Imaging Spectroradiometer (MODIS) Land Surface Temperature
(LST) products, MODIS Vegetation Indices (VI) products, altitude
information from a Digital Elevation Model (DEM), and air tempera-
ture measurements at meteorological stations located within the
Yangtze River Basin from 2000 to 2016, to derive fully covered
mean and maximum daily air temperatures. Paddy rice cultivated
areas were then identified based on the seasonal profiles of MODIS
Enhanced Vegetation Index (EVI) and Land Surface Water Index
(LSWI) in 2013, and map errors at provincial scales were no more
than 8.7%. Finally, paddy rice growth characteristics were combined
with MODIS VI products to identify heading and flowering stages,
and the time series of daily mean and maximum air temperatures,
paddy rice phenology and cultivated area, were integrated to map
and estimate the rice crop area damaged by the anomalous high
temperature. Our results show that all provinces along the Yangtze
River, this study investigated, recorded a substantial damaged rice
crop area, following the 2013 subtropical temperature high, and
Anhui Province was the hardest hit with a damaged rice area of
63.6%. For the entire study area, a damage extent of about

ARTICLE HISTORY
Received 17 September 2018
Accepted 27 April 2019

CONTACT Ran Huang huangran@cau.edu.cn College of Land Science and Technology, China Agricultural
University, Beijing, China

INTERNATIONAL JOURNAL OF REMOTE SENSING
2020, VOL. 41, NO. 2, 471–486
https://doi.org/10.1080/01431161.2019.1643936

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any
medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

http://orcid.org/0000-0001-9250-3657
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/01431161.2019.1643936&domain=pdf&date_stamp=2019-10-04


5,656,000 ha, accounting for 35.9% of total paddy rice planted area,
was recorded. This indicates a significant agro-meteorological disas-
ter, and in an era of increasing climate variability and weather
extremes, studies of this nature would greatly benefit global food
security planning and management policies.

1. Introduction

Rice is one of the most important staple food in the world, and its cultivated fields
account for about 15% of global cropland area (IRRI 1993). The rice crop thrives well
under abundant precipitation and warmer temperatures (Liu et al. 2013). However,
annual temperatures have increased by 0.13°C every 10 years between 1956 and 2006,
twice as much as that recorded in the preceding century (IPCC 2007).

It has been indicated that anomalously high temperatures at periods coinciding with
the paddy rice heading or flowering stages is a critical factor limiting crop yield as it
hastens rice senescence, shortens grain filling duration and reduces biomass production,
all of which contribute to a decline in grain yield (Huang et al. 2016; Tashiro and
Wardlaw 1989). Monitoring the damage caused by high temperatures on paddy rice is
therefore vital for understanding the potential impact of climate variability and change
on agriculture and food security.

The key prerequisites for monitoring high-temperature-induced damage on the rice
crop involve the estimation of fully covered daily maximum air temperature (Tmax) and
daily mean air temperature (Tmean), estimating rice cultivated area and its distribution,
and identifying the key stages of paddy rice growth, especially heading and flowering
stage. Fortunately, there exists a growing body of literature on the acquisition of the
above parameters using satellite data.

Several research showed that both daily mean air temperature and maximum air
temperature can be estimated using satellite land surface temperature. Huang et al.
(2015) and Guo et al. (2017) estimated daily mean air temperature using correlations
between air temperature measured at meteorological stations and Land Surface
Temperature (LST) generated from remote sensing datasets. Prihodko and Goward
(1997) proposed the Temperature Vegetation Index (TVX) to estimate maximum air
temperature. Based on TVX, Stisen et al. (2007) estimated maximum air temperature
over Africa using Meteosat Second Generation, Spinning Enhanced Visible and Infrared
Imager (MSG SEVIRI) data. Nieto et al. (2011) calibrated the TVX algorithm using a new
maximum Normalized Difference Vegetation Index (NDVI) value at different vegetation
stages. Zhu, Lű, and Jia (2013) showed that daily maximum temperature can be retrieved
effectively from Moderate Resolution Imaging Spectroradiometer (MODIS) LST products
using TVX. Vancutsem et al. (2010) have also demonstrated the possibility of retrieving
near surface air temperature from MODIS LST products in different ecosystems over
Africa.

Meanwhile, various vegetation indices have been used to extract paddy rice culti-
vated area and phenology. Xiao et al. (2005, 2006)) used NDVI, Enhanced Vegetation
Index (EVI) and Land Surface Water Index (LSWI) to map paddy rice agriculture in South
and Southeast Asia, and Southern China. Boschetti et al. (2017) proposed a method for
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the automatic extraction of spatio-temporal information of the rice crop using EVI and
Normalized Difference Flood Index (NDFI) data. Owing to its capability to minimize
saturation at higher biomass levels, EVI is used in this study in tandem with LSWI. EVI
time series have been extensively used across satellite sensors to map paddy rice fields
(Tucker et al. 2005; Sun 2009a; Zheng, Wang, and Huang 2009; Dou et al. 2017; Mansaray
et al. 2017, 2019). Yang, Shao, and Li (2017) used an improved scheme for rice phenol-
ogy estimation based on time-series multispectral environment and disaster monitoring
and forecasting small satellite constellation A/B (HJ-1 A/B) and polarimetric RADARSAT-2
data. Sun et al. (2009b) detected key growth stages of paddy rice using the temporal
profile of MODIS EVI. Wang et al. (2016) utilized the environment and disaster monitor-
ing satellite (HJ-1) EVI time series to map the dynamic change of rice phenology.

Considering the importance of acquiring data on crop damage due to extreme
weather patterns, the current study presents a framework for mapping high temperature
damaged area of paddy rice by integrating daily mean air temperature, maximum air
temperature, planting area, and phenology extracted from remote sensing data. With its
wide use in the retrieval of relevant ecosystem parameters and its suitability for time-
series-based large area mapping initiatives, MODIS data are utilized in the current study.

2. Materials

2.1. Study area

The study area along the Yangtze River extends from 24.5°N to 35.1°N and 97.4°E to
121.9°E. The area considered covers six provincial-level administrative units; Jiangsu
Province, Anhui Province, Hubei Province, Hunan Province, Jiangxi Province and
Sichuan Province (Figure 1). Both single and double cropped paddy rice cultivation

Figure 1. Location of study area and distribution of meteorological stations.
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systems are practiced within the study area. While a double-cropped rice (DCR) cultiva-
tion system is practiced in Jiangxi and Hunan provinces, a single-cropped rice (SCR)
cultivation system is dominant in Jiangsu, Anhui, Sichuan and Hubei provinces, with
a few DCR fields in Anhui and Hubei provinces.

The study area has a subtropical monsoon climate with warm temperatures and
abundant precipitation. The catchment area of the Yangtze River has the highest
concentration of freshwater lakes in China, including the famous Lake Poyang and
Lake Dongting, and most parts of the study area are relatively flat and low-lying.
A combination of the above climatic, hydrographic and topographic factors makes the
study area suitable for a wide range of farming activities, and it is no doubt being one of
the major rice producers in China.

2.2. MODIS data

The Terra and Aqua satellite platforms hosting the MODIS sensor were launched in
December 1999 and May 2002, respectively. The Terra satellite overpass time is about
10:30 ante meridiem (AM) in its descending mode and about 10:30 post meridiem
(PM) in its ascending mode. In contrast, the Aqua satellite overpass time is about 1:30
AM in its ascending mode and about 1:30 PM in its descending mode (Wang, Li, and
Cribb 2006). The MODIS products are generated in square tile units with the
Sinusoidal (SIN) grid projection, each tile covers approximately 1200 km at the
equator.

Four MODIS products (Collection 6) were used in this study, including the daily LST
products (MOD11A1/MYD11A1) at 1 km spatial resolution, 16 day composite vegetation
indices products (MOD13A2/MYD13A2) at 1 km spatial resolution, 8 day composite
reflectance products (MOD09A1) at 500 m spatial resolution, and annual Land Cover
products (MCD12Q1) at 500 m spatial resolution. The LST products and vegetation
indices products are derived from Terra and Aqua satellites. MOD09A1 products are
derived from Terra satellite. MOD12Q1 uses both Terra and Aqua MODIS input data once
a year. All the products above are available on the website of the Land Processes
Distributed Active Archive Center (LPDAAC).

MODIS LST products are generated from two thermal bands: band 31 (10.78 μm –
12.28 μm) and band 32 (11.77 μm – 12.27 μm) using the split-window algorithm (Wan
et al. 2002). For MODIS daily LST products, there are 12 sub-datasets for each tile, sub-
dataset 1 and sub-dataset 5 represent day and night LST at about 10:30 AM and 10:30
PM for Terra, respectively, and day and night LST at about 1:30 AM and 1:30 PM for
Aqua, respectively. Sub-dataset 2 and sub-dataset 6 represent Quality Control (QC) for
LST and emissivity of day and night, and good quality pixels are those whose QC value
equals zero.

MODIS Vegetation Index (VI) products were produced using the Maximum Value
Composite (MVC) method at 16 day temporal resolution (MOD13A2/MYD13A2). MODIS
VI products are combined with 12 sub-datasets, including NDVI and EVI and their pixel
reliability. MODIS VI products derived from Terra and Aqua satellites are 16 day compo-
sites, but they have an 8 day time difference. This study combines Terra with Aqua
satellite VI products to obtain 8 day composite VI products at 1 km spatial resolution.
Good quality pixels were selected using the Quality Assurance (QA) (sub-dataset 12).
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For MODIS reflectance products (MOD09A1), sub-dataset 2 (Near Infrared, NIR) and
sub-dataset 6 (Short-Wave Infrared, SWIR) were used to calculate LSWI. The LSWI quality
was checked for consistency with MODIS VI products. After being resampled to the 1 km
spatial resolution, LSWI data showed similar pixel quality with VI products of correspond-
ing composite days.

MCD12Q1 products incorporate five different land cover classification schemes,
including the International Geosphere-Biosphere Programme (IGBP) global vegetation
classification scheme, the University of Maryland (UMD) scheme, the MODIS-derived Leaf
Area Index (LAI), and Fraction of Photosynthetically Active Radiation (FPAR) scheme, the
MODIS-derived Net Primary Production (NPP) scheme, and the Plant Functional Type
(PFT) scheme. The PFT scheme was used in this study.

2.3. Meteorological data

In this study, air temperature data from 2000 to 2016 were collected from 381 meteor-
ological stations within the study area. Collected temperature parameters included Tmean

and Tmax, measured at 1.5 m above the ground. These data were downloaded from
China meteorological data service center (CMDC).

In the study area, paddy rice is mainly planted in flat and low-lying terrains. In order
to better demonstrate the correlation between LST and air temperature for rice crop
area, only meteorological stations located at altitudes lower than 1500 m and slopes
under 2° were selected. In addition, considering the impact of land cover on LST, only
meteorological stations located in vegetated areas as shown by the MODIS Global Land
Cover product PFT scheme were selected. From the 381 meteorological stations in the
study area, 330 meteorological stations met the criteria for use in the correlation
between LST and air temperature. The spatial distribution of the 330 meteorological
stations is illustrated in Figure 1.

2.4. Digital Elevation Model (DEM) data

Shuttle Radar Topography Mission (SRTM) 90 m Digital Elevation Model (DEM) data were
obtained from the Consultative Group on International Agricultural Research-
Consortium for Spatial Information (CGIAR-CSI) GeoPortal. To ensure consistency with
the spatial resolution of MODIS LST products, the 90 m spatial resolution of SRTM-DEM
data were resampled to the 1 km spatial resolution, and then reprojected to the SIN grid
projection. The 1 km spatial resolution SRTM-DEM covering the study area is also
showed in Figure 1.

3. Methods

Figure 2 illustrates the methodological approach adopted in this study. Firstly, LST
dataset, vegetation indices dataset and reflectance dataset obtained from MODIS pro-
ducts were used to produce preprocessed LST image, NDVI image, EVI image and LSWI
image. The DEM dataset was resampled to a 1 km spatial resolution and subset to the
areal extent of the study area. Air temperature dataset measured at meteorological
stations were processed to derive Tmean and Tmax dataset. Secondly, fully covered Tmean
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image and Tmax image were obtained based on the estimated models of Tmean and Tmax

using the satellite derived LST data as predictor. The temporal profiles of NDVI and LSWI
were then used to map paddy rice pixels and estimate the crop’s heading and flowering.
Finally, using critical threshold values, a combination of fully covered Tmean image, Tmax

image, and paddy rice cultivated area image and its heading or flowering periods,
allowed mapping of the high temperature damaged area of paddy rice in the study
area in 2013.

3.1. Estimation of LST under cloud cover

Several studies have shown that clear sky pixel i LSTi,ec in the estimated image can be
calculated from corresponding pixels LSTi,rc in the reference image and pixel’s altitude
(h) and EVI (Yu et al. 2015) using Equation (1). In the current study, the percentage of
clear sky pixels in the reference image is more 70%, and the time difference between the
estimate image and the reference image is less than a month.

LSTi;ec¼ ðLSTÞi;rc aþ hbþðEVIÞcþ d (1)

Then the model and the coefficients a, b, c and d can be used to estimate cloud pixel j
LSTj, ecl under cloud cover in the estimated image as Equation (2).

LSTj;ecl¼ ðLSTÞj;rc aþ hbþðEVIÞcþ d (2)

3.2. Estimation of daily maximum air temperature

Prihodko and Goward (1997) developed the TVX method to estimate air temperature.
Their results indicated a strong negative relationship between NDVI and LST, and the air
temperature of a fully vegetated canopy was found equal to the air temperature within
the canopy. Using a 7 � 7 moving window, a linear regression model between LST and

Figure 2. Methodological approach used in the current study.
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NDVI is built if more than two-thirds of pixel LST and NDVI values are valid in a moving
window. The relevant mathematical function is given in Equation (3).

LST ¼ ðNDVIÞSþ I (3)

where the coefficients S and I can be used to calculated the instantaneous air tempera-
ture (TTVX) of the pixel at the centre of the moving window using Equation (4).

TTVX¼ ðNDVIÞs Sþ I (4)

where NDVIs is the NDVI value of fully covered vegetation. The infinite fully covered
NDVI value computed by Prihodko and Goward (1997) ranges from 0.82 to 0.86, and the
maximum NDVI of paddy rice in the study area was approximately 0.82 (Zheng, Wang,
and Huang 2009). In the current study therefore, 0.82 was chosen as the critical value of
NDVI saturation.

The Aqua satellite overpass time is around 1:30 PM, and the instantaneous LST
derived from Aqua MODIS is close to daily Tmax(Guo et al. 2017). At last, the daily
maximum air temperature Tmax is estimated using Equation (5).

Tmax¼TTVX aþ b (5)

3.3. Mapping paddy rice cultivated area

EVI is sensitive to canopy variations (Huete et al. 2002) and LSWI is sensitive to soil
moisture. Due to the 500 m spatial resolution of MODIS 8 day composite reflectance
(MOD09A1) product as against the 1 km spatial resolution of the MODIS 8 day
composite vegetation indices product, LSWI was resampled to a 1 km spatial
resolution.

At transplanting, paddy rice fields are flooded. At this stage, rice fields have little
vegetation cover and therefore a lower EVI value. In contrast, LSWI being sensitive to
water has its maximum value during this period. As paddy rice grows after transplanting,
the increase in canopy leads to a corresponding increase in EVI up to the heading stage.
After heading, the yellowing of leaves leads to a gradual decrease in EVI (Sun 2009a).
These temporal profiles allowed for the discrimination of paddy rice and estimation of its
heading or flowering stages. Rivers, ponds, forest and others were masked out using the
MODIS Global Land Cover (MCD12Q1) product.

3.4. Mapping high temperature damaged area

Previous studies have indicated that high temperature damage on paddy rice is mainly
confined to the crop’s heading or flowering stages, and this period has been successfully
mapped using NDVI and EVI time series data (Wang et al. 2013; Xiao 2011). As paddy rice
EVI reaches maximum at the heading or flowering stage, this parameter was found
useful in the detection of the aforementioned growth stages.

Reference to subsections 3.1, 3.2, and 3.3, daily mean air temperature images, daily
maximum air temperature images, planting area images of paddy rice, and the heading
or flowering MODIS images of paddy rice were obtained and integrated to derive the
high temperature damage images (HTDI) using Equation (6).
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HTDI ¼ RPAIð Þ \ HTIð Þ \ HOFIð Þ (6)

where RPAI represents rice planting area image, and HTI represents high temperature
images, HTI = {daily Tmean � 30:00 �C for 3 consecutive days} [ {daily
Tmax � 35:00 �Cfor 3 consecutive days}, and HOFI represents images of paddy rice at
heading or flowering.

This information was further combined with the estimated area of paddy rice and
its heading or flowering stages to produce a map and an estimate of the high
temperature damaged area of paddy rice along the Yangtze River following the
heat wave of 2013.

4. Results and discussion

4.1. Validation of daily Tmean and dailyTmax

4.1.1. Calibration and validation of dailyTmean

LST has a strong correlation with near-surface air temperature in a certain range
(Hachem, Duguay, and Allard 2011). In this study, a linear regression model for Tmean

measured at 330 meteorological stations and LST derived from Terra and Aqua MODIS
LST products was established. With the exception of data in 2013 which were used for
validation, the regression model included Tmean and LST data from 2000 to 2016. In
addition, to accurately fit the correlation between Tmean and LST of paddy rice cultivated
fields and improve on the accuracy of estimating high temperature damaged area of
paddy rice, a linear regression including data from the paddy rice green-up stage to the
maturity stage was established, results of which are shown in Figure 3.

It is obvious that the liner relationship between Tmean and nighttime LST outperforms
that involving daytime LST, considering the higher coefficient of determination
(R2 � 0:84) and lower root mean square error (RMSE � 1:74 °C) with nighttime LST.
Aqua nighttime LST had the best linear relationship with Tmean (R2 = 0.87).

The spatial coverage of Aqua night time LST and Terra night time LST is limited,
although both have been interpolated in the previous process. To increase LST cover-
age, both Terra night time and Aqua night time estimated Tmean were used. The
computation rule is that if one pixel only has one estimated Tmean, generated only by
one satellite, the pixel Tmean value was equal to this estimated Tmean. But if the pixel had
two estimated Tmean, the pixel Tmean was the mean value of the two estimated Tmean,
despite the presence of several deficient Tmean pixels due to cloud interference. At last,
Inverse Distance Weight (IDW) method was employed to the interpolation of Tmean for
the cloud-contaminated pixels because features proximal to each other are more likely
to have similar attributes as against those at distances (Hodam et al. 2017) and air
temperature has a strong spatial correlation.

Figure 4(a) shows the correlation between measured Tmean and estimated Tmean using
both Terra and Aqua nighttime LST. The results show that measured Tmean and esti-
mated Tmeanhave a relatively good correlation, and that 47.5% of the deviation is within
1.00°C and 94.3% of the errors are less than ±3.00°C. In addition, the R2 between Tmean

and estimated Tmean is 0.95, with RMSE, MAE and Bias values of 1.60°C, 1.30°C and −0.30°
C, respectively.
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A body of scientific literature exists on the estimation of daily mean air temperature
and daily maximum temperature using satellite data. Pichierri, Bonafoni, and Biondi
(2012) employed brightness temperature and emissivity from thermal infrared MODIS
channel 31 and 32 to estimate direct air temperature 2 m above the ground surface in
Milan, Italy, and obtained an error below 2.00°C. Colombi et al. (2007) used empirical
approaches to relate LST to air temperature, and instantaneous air temperature to daily
mean air temperature, and they obtained a daily mean air temperature with an overall
RMSE of 1.89°C. Guo et al. (2017) employed daily mean air temperature data from
meteorological stations in Anhui and Jiangsu provinces in China in 2013, to build
a linear regression model that estimates daily mean air temperature, and an RMSE of

Figure 3. Regression between daily mean air temperature and MODIS LST for model calibration. TD
(a), TN (b), AD (c), AN (d) represent Terra Day time LST, Terra Night time LST, Aqua Daytime LST and
Aqua Night time LST, respectively. N represents the sample number.

INTERNATIONAL JOURNAL OF REMOTE SENSING 479



2.01°C was recorded. Yan et al. (2009) estimated air temperature from MODIS data in
East China using all synoptic weather stations, and recorded an RMSE of 3.23°C. In the
current study, a better estimation accuracy with RMSE = 1.60°C was recorded when data
acquired only from weather stations located in vegetated areas were used.

4.1.2. Calibration and validation of daily maximum air temperature estimation
Comparison of instantaneous air temperature (TTVX) estimated using the TVX method,
and Tmax shows a strong positive correlation between TTVX and Tmax with R2 = 0.65,
RMSE = 2.52°C, Bias = 0.65, and MAE = 1.95°C. The regression model between TTVX and
Tmaxis given in Equation (7).

Tmax¼ 0:827TTVXþ6:085 (7)

The estimated Tmax was computed using Equation (7), and the results showed a decrease
in RMSE from 2.50°C to 2.30°C and MAE from 2.00°C to 1.90°C. Then a linear regression
between instantaneous air temperature at about 1:30 PM (estimated by TVX) and daily
Tmax was built to improve daily Tmax estimation accuracy. Figure 4(b) shows the relation-
ship between estimated Tmax and observed Tmax, and a good correlation is observed. It is
observed that 32.1% of the errors were within 1.00°C, and 79.5% were less than ±3.00°C.
Similar to mean air temperature, the cloud contaminated pixels were interpolated via
IDW, using all 381 meteorological stations.

A number of studies have attempted to derive maximum air temperature from LST
using regression analysis (Vancutsem et al. 2010). Shah et al. (2013) employed TVX to
estimate daily maximum air temperature over the Indo-Gangetic Plain and obtained an
RMSE of 2.20°C. Xu, Qin, and Shen (2011) attempted to improve the TVX method by
considering the influence of too much cloud or water and observed an MAE of 2.40°C.
Our study built a linear regression model between the instantaneous air temperature
derived from MODIS data and daily maximum temperature measured by meteorological
stations, and a decrease in RMSE from 2.50°C to 2.30°C, and MAE from 2.00°C to 1.90°C,
was recorded. These are acceptable.

Figure 4. Validation of daily mean air temperature and daily maximum temperature estimated from
MODIS LST (a) observedTmean and estimated Tmean using both Terra and Aqua nighttime LST, and (b)
observed Tmaxand estimated Tmax using TVX.
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4.2. Mapping and estimation of paddy rice area

There are two paddy rice cropping systems in a year in the study area, single-cropped
rice and double-cropped rice. Double-cropped systems are divided into early rice and
late rice. For paddy rice to be classified as early (including SCR fields), the following
conditions should be met at the transplanting stage: LSWI + 0.05 > EVI, EVI < 0.26, and
LSWI > 0.12. After transplanting, the EVI of early paddy rice fields is expected to attain at
least half of its maximum value within the first five 8 day composites, or the mean EVI
value should be greater than 0.35 between the sixth 8 day EVI composite and the
eleventh 8 day EVI composite.

For late rice, the EVI at corresponding phenology to early rice is obviously higher due
to the influence of the background on transplanting date, while LSWI is almost the same.
This is attributable to the longer wavelength of the short wave infrared band, giving it
a stronger penetration power than the infrared band. For later rice, it should satisfy the
following conditions at the transplanting stage; LSWI + 0.17 > EVI, EVI < 0.35 and LSWI >
0.12. Similar to early rice, late rice fields should reach half of their maximum EVI within
the first five 8 day composites, or the mean EVI value should be greater than 0.35
between the sixth 8 day EVI composite and eleventh 8 day EVI composite.

Figure 5 shows the paddy rice cultivated area in the study area in 2013, and includes
both single-cropped and double-cropped rice systems. According to data from the
Chinese Ministry of Agriculture, Jiangsu, Anhui, Hubei, Hunan, Jiangxi and Sichuan
provinces had in 2013, paddy rice cultivated areas of approximately 2,266,000 ha,
2,214,000 ha, 2,101,000 ha, 4,085,000 ha, 3,338,000 ha and 1,991,000 ha, respectively,
with a grand total rice area of 15,813,000 ha. In our study, the estimated rice cultivated
areas of the aforementioned provinces are 2,310,000 ha, 2,044,000 ha, 1,932,000 ha,
3,910,000 ha, 3,438,000 ha, and 2,110,000 ha, respectively, and their corresponding

Figure 5. Rice cultivated area in the study area in 2013 estimated using MODIS data.
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errors relative to government statistics provided above are 1.9%, −8.3%, −8.7%, −4.4%,
2.9% and 5.6%, respectively. The relatively lower errors ( � 8:7%) of the above estimates
would support the mapping of high temperature damaged area of paddy rice along the
Yangtze River in 2013. Summary statistics of paddy rice cultivated area in the study area
in 2013 are given in Table 1.

Amidst several other studies, Xiao et al. (2005) and Sun et al. (2009a) have mapped
paddy rice cultivated area, using critical values of vegetation indices. In (Xiao et al. 2005),
the EVI of paddy rice fields is expected to attain at least half of its maximum value within
the first five 8 day composites after rice is transplanted, and using this critical value as
a classification feature, they reported a reasonable agreement between MODIS-derived
paddy rice area and that obtained from Landsat data at county level in southern China.
Sun (2009a) defined the mean EVI of paddy rice fields to be greater than 0.35 between
the sixth 8 day EVI composite and the eleventh 8 day EVI composite after transplanting
as critical EVI value, errors of paddy rice area mapping for a test site located in southern
China were confined between 3% to 27%. In our proposed approach, only pixels that
satisfy both thresholds recommended in Xiao et al. (2005) and Sun (2009a) were
mapped as paddy rice, and the resultant map errors at provincial scales were no more
than 8.7% when validated against government agricultural statistics on paddy rice area.
This observation suggests that the synergistic use of classification features employed in
this study substantially improves paddy rice mapping and area estimation accuracies at
regional scales.

4.3. Mapping and estimation of high temperature damaged area

The high temperature damaged area of paddy rice in the study area in 2013 is calculated
using Equation (6) and the result is presented in the thematic map shown in Figure 6,
and the corresponding statistics at provincial scales are provided in Table 2.

The results show that all six provinces recorded damaged areas of paddy rice follow-
ing the 2013 heat wave. Anhui Province was reported to have 1,200,000 ha of damaged
rice fields attributed to the high temperature anomaly of 2013 (Guo et al. 2017), and our
estimates reported 1,297,000 ha for the same, an estimation error of 7.5%. This means
that our results are acceptable. The percentage of high temperature damaged area of
paddy rice over the planting area range from 24.5% to 63.5%. Anhui Province had 63.5%
of its rice cultivated area being damaged by high temperatures, and a 48.8% damage is
recorded for Hubei Province.

To the best of our knowledge, this study presents the first attempt to mapping high
temperature damaged area of paddy rice at a regional scale using MODIS and ancillary

Table 1. Statistics of paddy rice cultivated area along the Yangtze River in 2013.

Province
Estimated SCR area

(ha)
Estimated DCR area

(ha)
Statistical total area

(ha)
Estimated total area

(ha)
Deviation error

(%)

Jiangsu 2,310,000 0 2,266,000 2,310,000 1.9
Anhui 2,005,000 39,000 2,214,000 2,044,000 −8.3
Hubei 1,890,000 42,000 2,101,000 1,932,000 −8.7
Hunan 1,960,000 1,950,000 4,085,000 3,910,000 −4.4
Jiangxi 1,220,000 2,218,000 3,338,000 3,438,000 2.9
Sichuan 2,110,000 0 1,991,000 2,110,000 5.6
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datasets. The estimated high temperature damaged areas of paddy rice agreed well with
reference data. In future, considering the growing incidence of erratic weather patterns
brought by climate change and variability, remote sensing technologies would be useful
in mapping, at near real-time, the impacts of anomalous high temperatures on crop
development. Data obtained from such investigations would aid the estimation of
agricultural yield loss and in forecasting food scarcity and prices.

5. Conclusions

Climate change and variability pose significant threats to sustainable agricultural pro-
duction and food security, and rising temperatures is one of the most reported variables
in this regard. Temperatures beyond the optimal agronomic requirement could result in
poor crop growth and ultimately, lower yields. Paddy rice is one crop affected by high
temperatures, especially during the heading and flowering stages, and previous studies
have reported attendant reductions in final grain yield. Considering the importance of
rice in meeting the calorie requirements of over half of the world’s human population,
the current study proposed a framework to map high temperature damaged area of

Figure 6. High temperature damaged area of paddy rice in the study area in 2013.

Table 2. Estimated high temperature damaged area of paddy rice in 2013 based on MODIS data.
Province SCR damaged area (ha) DCR damaged area (ha) Total damaged area (ha) Total damaged area (%)

Jiangsu 814,000 0 814,000 35.2
Anhui 1,288,000 9,000 1,297,000 63.5
Hubei 924,000 18,000 942,000 48.8
Hunan 552,000 586,000 1,138,000 29.1
Jiangxi 437,000 412,000 849,000 24.5
Sichuan 616,000 0 616,000 29.2
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paddy rice by integrating daily mean air temperature and daily maximum air tempera-
ture obtained from meteorological observations and MODIS LST, and paddy rice culti-
vated area and its heading and flowering stages obtained from MODIS data.

Based on the proposed framework, all provinces along the Yangtze River recorded
a substantial area of paddy rice damage, following the 2013 subtropical temperature
high, and with a damaged area of 63.6%, Anhui Province was the hardest hit. For the
entire study area, a damage extent of about 5,656,000 ha, accounting for 35.9% of total
paddy rice cultivated area, was recorded. A validation of our estimated high temperature
damaged area of paddy rice against government agricultural statistics proved the
robustness of our proposed mapping approach, owing to errors confined below 8%.

The high temperature damaged area of paddy rice, as reported in this study, confirms
that the 2013 subtropical temperature high in China, contemporaneous with the paddy
rice growing season, was a significant agro-meteorological disaster along the Yangtze
River. In this era of increasing climate variability and weather extremes, remote sensing
datasets, such as MODIS, would provide the much needed information on crop failure to
support early warning and food disaster preparedness, crop insurance policies, and in
assessing the impacts of climate change on agriculture and global food security.
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