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ABSTRACT
Light detection and ranging (lidar) and object-oriented classifica-
tion (OOC) can be used to overcome the shortcomings of the
traditional pixel-based classification (PBC) of coarse spatial resolu-
tion data, such as Landsat data, for habitat mapping in riparian
zones. The purposes of this study were to investigate methods to
classify multispectral data and lidar for riparian habitat mapping,
and to identify major habitat components for two target species.
The mapping of riparian habitat based on OOC and Decision Tree
Classification (DTC) was carried out by merging vertical data from
lidar and spectral data of high-resolution imagery. Our results
showed an overall classification accuracy of 88.2%. In particular,
small and continuous habitat types, such as short and tall grasses,
rock outcrop and gravel, and riffles, improved the classification
accuracy compared with the pixel-based methods. The habitat
patches and paths for each target species were identified by
incorporating the point data from the field survey and the out-
comes of image classification. Our study demonstrated that the
proposed methodology can be successfully used for the identifica-
tion and restoration of fragmented riparian habitats, and can offer
an opportunity to obtain high classification accuracies for micro-
habitat components in dynamic riverine areas.
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1. Introduction

Riparian zones act as an important interface between aquatic and terrestrial ecosystems
(Naiman and Décamps 1997), and provide ecological corridors for the migration of
wildlife (Hilty and Merenlender 2004; Rodriguez-Iturbe et al. 2009). Most of the natural
water resources in the world have been modified owing to the construction of human
artefacts, including dams and embankments for flood control and the development of
water resources. Riparian areas in the most developed countries have been transformed
for agricultural, industrial, or urban uses. Most of the riparian wildlife habitats have been
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destructed and fragmented, and consequently, biodiversity in riparian areas is declining
at a fast pace.

In Korea, stream restoration projects that include riparian habitat conservation have
been initiated recently. For the systematic planning and management of such conserva-
tion projects in any region, it is important to know the specific habitat types and their
uses (Rodríguez et al. 2003; Saura and Pascual-Hortal. 2007; Melese et al. 2014). However,
it is nearly impossible to acquire detailed riparian habitat data through field surveys
because of the large requirements in terms of resources (Marcus et al. 2002). Therefore,
detailed riparian ecological surveys on a wide extent would be a financial burden to
most environmental agencies.

Remote sensing can be used for the habitat mapping of a dynamic landscape at a
high level of detail and spatial distribution. Most previous habitat mapping projects that
used remote sensing focused on the classification of broad habitat types such as forests,
grasslands, wetlands, and bare soil from the perspective of land-cover classification
(Bevanda et al. 2014; Corbane et al. 2015), and ranged from high spatial resolution
(Quickbird) (Keramitsoglou et al. 2005; Ke, Quackenbush, and Im 2010) to medium
spatial resolution (Landsat Thematic Mapper) (Bock et al. 2005; Tiede et al. 2010).
However, mapping at these resolutions might not provide accurate results in terms of
discrimination at the individual species level because riparian areas have high land-cover
heterogeneity and small patch sizes (Kalliola and Syrjänen 1991; Smith et al. 2002). In the
classification process, traditional pixel-based approaches based on extremely high reso-
lutions have resulted in ‘salt and pepper’ effects (Ke, Quackenbush, and Im 2010), and
failed to delineate actually habitat boundaries because they are based on the spectrum
information of each individual pixel. Thus, these approaches would be insufficient to
delineate continuous habitat boundaries and components, or to identify habitat char-
acteristics based on the species-level requirements (Pekkarinen 2002; Hall et al. 2009).

A detailed habitat-type mapping for the selected target species is important to
understand the meticulous spatial patterns of habitats and to identify the heteroge-
neous ecological structures (Borcard and Legendre 2002; Engler, Guisan, and Rechsteiner
2004; Gottschalk et al. 2011). Such habitat characteristics have been used to associate
the presence, species richness, and dispersal paths of wildlife, and to infer the specific
characteristics of habitats through which various organisms are associated based on
their ecological requirements (Melese et al. 2014). However, as mentioned earlier, fine-
scale habitat mapping is still challenging in riparian zones because of their high spatial
variability and limited widths (Congalton et al. 2002; Varela et al. 2008; Fernandes,
Aguiar, and Ferreira 2011; Corbane et al. 2015). Hence, in most cases, habitat mapping
using remote sensing would focus on the classification of terrestrial vegetation covers
(Bork and Su 2007; Gilmore et al. 2008; Hellesen and Matikainen 2013). The extraction of
small and complex microhabitat components in dynamic riverine areas is, thus, a
challenging task (Rapinel, Hubert-Moy, and Clément 2014).

The employment of Object-Oriented Classification (OOC) and light detection and
ranging (lidar) with Decision Tree Classification (DTC) could help overcome the short-
comings of the traditional approaches. A detailed classification of the riparian habitat
types can be obtained through this approach since image objects can be characterized
through thematic or continuous information based on polygons from ancillary data
rather than the pixel-based approach based only on a single piece of spectral
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information (Qian, Zhou, and Hou 2007; Dehvari and Heck 2009). Furthermore, lidar
offers quite detailed vertical measurements that can be used to characterize vegetation
strata, which are significant habitat components. Biological characteristics such as the
height and biomass of large trees and canopy closure as well as various physical
characteristics such as types of substrates, rock outcrops, and stream flows can be
measured (Hyde et al. 2006; Rapinel, Hubert-Moy, and Clément 2014). This approach
should be sufficient for presenting a detailed overview of the riparian habitats bound-
aries, components, and characteristics. Thus, the objectives of this study were to inves-
tigate methods to apply multispectral data and lidar for riparian habitat mapping, and to
identify major habitat patches and paths essential to the conservation of the selected
target species.

2. Materials and methods

2.1. Study site

The study site is a part of the Seom River watershed near the town of Hoengseong,
Gangwon-do, South Korea (Figure 1). The site is characterized by high biodiversity and
has suitable habitats for some protected and endangered wildlife species such as otters
(Lutra lutra), leopard cats (Felis bengalensis euptilura), and water deer (Hydropotes iner-
mis). This riparian zone is very important as a part of the main ecological axis of the
aquatic ecosystem of South Korea. Dominant riparian tree species are black locust
(Robinia pseudoacacia), rose gold pussy willow (Salix gracilistyla), runner reed
(Phragmites japonica), and amur silver-grass (Miscanthus sacchariflorus). However, the
riparian ecosystems in this region have been facing intensive disturbances from the
measures related to flood control, irrigation, and reclamation for agricultural and urban
development. Some of the recent stream restoration projects include the construction of
bike trails and riverine recreational sites. Although our study site covers an area of only
approximately 5 km, it is large enough to encompass the territories of our target wildlife
species, and offers diverse land covers for grazing and migrating of the riparian wildlife
adjacent to a rural township in a densely populated and quickly urbanizing country.

Figure 1. Study site.

INTERNATIONAL JOURNAL OF REMOTE SENSING 1071



2.2. Target wildlife species and habitat component selection

It is important to accurately define and identify species-specific habitat components in
order to explain species distribution (Xiaofeng et al. 2011). In this study, the selected
target species were the Eurasian otter (Lutra lutra) and water deer (Hydropotes inermis).
The otter is a flagship threatened species, and is also one of the key species in riparian
ecosystems (Stevens, Organ, and Serfass 2011; Scorpio et al. 2014); their range covers
most of Europe and Asia and can be a useful indicator for the evaluation of ecological
disturbances or for conservation planning (Soulé and Terborgh 1999). White, McClean,
and Woodroffe (2003) showed that habitat types associated with spraints and not the
density and height of vegetation affect the otter’s habitat characteristics. Furthermore,
Ruiz-Olmo, López-Martín, and Palazón (2001) discuss the flow regime and relationships
with otter abundance and its food.

The water deer is considered an important wildlife species across the world because it
is not particularly adaptable and appears to be rather sensitive to environmental
changes. They inhabit mainly the downstream of the Yangtze River in China and the
Korean Peninsula (Kim et al. 2011). However, the size of their population has been
continuously declining because of anthropogenic activities such as poaching and habi-
tat destruction (Harris and Duckworth 2010). Rhim and Lee (2007) showed that habitat
type associated with tracking route and hydrophytes, tall grasses, shrubs along the
riparian corridors, and shrubs and small trees in uphill forests affect the habitat char-
acteristics of the water deer. Furthermore, Kim et al. (2011) reported the preferred
grazing and hide covers of the water deer to be dense grass and reeds, often on
shrubby slopes and riparian forests. Thus, we could conclude that important habitat
components for our target species were: Robinia, Salix, tall grass, and short grass as the
main vegetation types; gravel, gravel/sand, sand, and rock outcrop as substrates; and
riffles and pools under waterbodies.

2.3. Field survey and accuracy assessment

Field data necessary for verifying the classification accuracy were collected by using
the stratified random sampling method during April–September 2011. The sampling
method was demonstrated to have a higher accuracy than the simple random
sampling method for use with DTC (Borak 1999; Laliberte, Fredrickson, and Rango
2007). The sample size per class was set to a minimum of 50 points based on
Congalton (1991) recommendations, with a total of 678 samples. The number of
samples collected through field surveys and visual interpretation of aerial photo-
graphs were 260 and 418, respectively. The accuracy of the OOC in this study was
calculated using the error matrix. This method allows the calculation of specific
accuracies such as the overall, producer’s, and user’s accuracies using the kappa
coefficient (Congalton 1991). The vertical accuracy of the Canopy Height Model
(CHM)-extracted lidar was assessed using a linear regression model and a field survey
employing a laser range finder and a prism pole for vegetation types, rock outcrops,
and artificial objects.

The data including the traces of wildlife (footprints and excrements) and tracked
routes were collected during the entire study period from April 2011 to February 2014.
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Chi-square and Mann–Whitney tests were used to identify the relationships among the
various habitat-use patterns identified.

2.4. Image data and preprocessing

Lidar and spectral data consisting of high-resolution imagery of Color Infrared (CIR) band
acquired in May 2009 were used in this study. The CIR wavelength ranged from 500 to
900 nm, and was divided into green (500–530 nm), yellow (530–580 nm), orange (580–
630 nm), red (630–700 nm), and Near Infrared (NIR, 700–900 nm) bands. The imagery
had a 12-bit radiometric depth, with spatial resolution of 0.12 m and 0.2 m, respectively,
for the three visible bands and the NIR band. The imagery was ortho-rectified using a
bilinear interpolation resampling method based on the National Geographic Accuracy
Standards (NGAS). All points tested for the imagery were from 0.2 to 0.3 cm of mean
error for the x and y coordinates, and within 0.6 cm mean error for the z coordinate.
Lidar data were recorded for the first and last returns for each laser pulse, with an
average point spacing of 4.88 per m2 (maximum 6.41, minimum 3.29). Lidar height
values were extracted using the natural neighbour interpolation method.

2.5. OOC and decision tree

The OOC was performed by multi-resolution segmentation of the images using
eCognition V8.4 software. The basic concept is to group and divide the adjacent pixels
by means of segmentation based on three parameters: scale, shape/colour, and smooth-
ness/compactness (Baatz and Schäpe 2000). The segmentation of the image data is
considered the most important process in extracting boundaries of the dominant
objects (Hall et al. 2004; Mallinis et al. 2008). The scale parameter determines the
average size of objects based on maximum heterogeneity in each segment. The
shape/colour and smoothness/compactness parameters can be weighted from 0 to 1.
Higher values of shape would decrease the influence of colour in the segmentation
process. Smoothness and compactness define the shape of the edge of the complex.
Higher compactness values will generate more boundaries with heterogeneous shapes.
Typically, a proper combination of weighting parameters is selected by trial and error
methods for the successful extraction of objects and complex boundary of the riparian
vegetation (Moffett and Gorelick 2013; Jeong and Park 2013).

Initially, we used a multi-resolution segmentation algorithm with a scale parameter of
80, 50, and 30 at each segmentation step as shown in Table 1. The final selection of scale
parameters was determined through visual inspection of the segmentation. A successful
segmentation would result in the identification of heterogeneous land covers and the
creation of a hierarchical network of image objects (Laliberte, Fredrickson, and Rango
2007). The weightings for the colour and compactness parameters were set at 0.9, based

Table 1. Multi-resolution setting used for segmentation parameters.
Segmentation Scale parameter Colour/Shape Smoothness/Compactness

Level 1 80 0.9/0.1 0.1/0.9
Level 2 50 0.9/0.1 0.1/0.9
Level 3 30 0.9/0.1 0.1/0.9
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on segmentation testing. Finally, the labels for cover types were determined using the
nearest neighbour classification algorithm.

2.6. DTC

This study employed DTC with ancillary data for each class using the multi-resolution
segmentation stage and nearest neighbour classification. DTC has been demonstrated
to yield improved classification accuracies over the traditional classifiers (Hansen,
Dubayah, and DeFries 1996; Pal and Mather 2003) for mapping wetland mosaic habitats
(Simard et al. 2002; Bwangoy et al. 2010). In particular, small patches were relatively easy
to extract and the classification accuracies were comparable to other classification
techniques (Patil and Bichkar 2006). Moreover, DTC incorporating ancillary data can
improve the classification accuracy for land covers by adjusting iteratively the decision
rules for the problematic classes (Treitz and Howarth 2000; Laliberte et al. 2006).

As shown in Table 2, the ancillary data used in our study for the thresholds criteria in
the OOC and DTC stages included normalized difference vegetation index (NDVI),
brightness channels, CHM, and digital elevation model (DEM). The NDVI has been widely
used as a variable for vegetational analyses (Norman 2012), and was reported to be
effective for substrate classification in highly heterogeneous areas (Behbahni et al. 2010;
Ghorbani, Mossivand, and Ouri 2012). Brightness channels are highly sensitive to topo-
graphy because they are related to soil moisture (Ivits and Koch 2002; Lu et al. 2004;
Pierce, Farris, and Taylor 2012). Thus, brightness channels could be useful for classifying
substrates into gravel, sand, and rock outcrops in the stream channel. The CHM has also
demonstrated to improve the classification accuracy of grasses, shrubs, and trees in
wetland or riparian areas (Goodwin, Coops, and Culvenor 2006). Thus, DTC using
ancillary data should be based on the expert knowledge on riparian habitats and paths.

The decision classification process, cluster separation, and specific criteria are shown
in Figures 2 and 3. The first stage is classifying the vegetation, substrate, and water
surface. The thresholds of NDVI for the extraction of vegetation, substrate, and water
ranged from 1 to –1. The range of NDVI values for shrubs and grass was from 0.2 to 0.3.
The NDVI values of gravel, sand, and rock were set to be 0.1 or less (Carlson and Ripley
1997; Chander and Markham 2003). Low NDVI values correspond to rock and sand, and
moderate values to shrubs and grasslands in the scatter plot, as shown in Figure 2(b).

The second stage involves subdividing the vegetation into tree and ground cover using
CHM. The class of tree was also separated into Salix and Robinia based on DEM. Ground
cover was subdivided into tall grass and short grass based on CHM in the scatter plot, as

Table 2. Habitat variables used in this study.
Variable
(abbreviated) Variable (expanded) Description

NDVI Normalized difference
vegetation index

Pixel calculation based on the ratio formulations between red and near
infrared wavelengths. The value ranged from –1 to 1.

CHM Canopy Height Model Digital elevation model (DEM) values subtracted from the Digital
surface model (DSM).

Brightness Brightness Sum of mean values in all bands divided by the number of bands.
DEM Digital elevation model Ground elevation value derived from lidar.
DSM Digital surface model Surface elevation value derived from lidar.
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shown in Figure 2(b). The height threshold for the classification of tall grass and grass is
0.3 m. Finally, the substrates were further subdivided into gravel, gravel/sand, sand, and
rock outcrops using both NDVI and brightness in scatter plots shown in Figure 2(a). In
particular, rock outcrops in stream channel were extracted using variables of NDVI, CHM,
and brightness. The outcomes of our riparian habitat components are shown in Figure 3.
There are three major categories (vegetation, substrate, water) and 10 subcategories
(Robinia, Salix, tall grass, short grass, gravel, gravel/sand, sand, rock outcrop, riffle, and pool).

3. Results

The results and the accuracy of the CHM are shown in Figure 4. The R2 of 0.99 of the
linear model between the CHM and field-measured heights is characterized by very high
accuracy, as shown in Figure 4(b). The heights of artefacts and rock outcrops in stream
channels showed better agreement than those of the trees. The first return in lidar
measurements often collects data from the shoulder or understorey of trees instead of
the top (Nelson, Krabill, and Tonelli 1988; Rönnholm et al. 2004). Thus, the CHM tends to
underestimate the tree height relative to other objects. These results show that the CHM
can be employed for our riparian mapping.

Figure 2. Cluster separation in scatter plots: (a) cluster separation: brightness and NDVI and (b)
cluster separation: CHM and NDVI.

Figure 3. Criteria and stages for the decision tree.
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The result of the multi-resolution image segmentation is shown in Figure 5. The
boundaries of homogeneous objects, such as vegetation, substrate, and waterbody,
were precisely delineated, which shows few salt and pepper patterns compared to
those of pixel-based classification (PBC). In particular, the NDVI threshold of 0.2 for the
segmentation could successfully differentiate the vegetation patches from the substrate
on embankments, as shown in Figure 6(b). Figure 7(c) shows that the height value of the
OOC using CHM effectively differentiated tall grass and short grass despite the similar
spectral values compared with the results of PBC (Figure 7(a)) and OOC (Figure 7(b)).
Consequently, Figures 6 (b) and 7(c) show that approaches based on OOC with ancillary
data such as CHM and NDVI generated better outcomes in terms of the classification
accuracy and the successful delineation of continuous boundaries than the classification
using only spectral information. As shown in Figure 8, the application of OOC with a
decision tree could successfully classify similar covers such as gravel, gravel/sand, and

Figure 4. (a) Canopy height model map, (b) comparison between the CHM obtained from lidar (y
axis) and the field measurements (x axis).

Figure 5. A comparison of the classification results. (a) Segmentation, (b) PBC (ISODATA), and (c)
OOC.
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sand using threshold NDVI and brightness values in the range 0–0.2 and 70–170,
respectively. The parameter ranges were obtained from their scatter plots.

Figure 9(a) shows a typical PBC result, and Figure 9(b) shows that a classification
based on OOC is not sufficient to extract rock outcrops in a stream channel, which have
positive NDVI values and values higher than water surfaces in the scatterplot. Thus,
Figure 9(c) shows that they can be correctly extracted from the water surface based on
two conditions: positive NDVI and CHM mean values greater than 20 cm. Rock outcrops
and gravel can also be separated easily because the brightness values of the former are
higher than those of the latter. Figure 10 shows the difference of OOC and PBC for the
classification of a complex stream bed that is likely to include rock outcrop, pool, and
riffle.

Figure 6. A comparison of the segmentation results for embankments: (a) level 1 segmentation and
(b) re-segmentation with NDVI.

Figure 7. A comparison of the classification results: (a) PBC (maximum likelihood), (b) OOC, and (c)
OOC with CHM.
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Figure 10(b) shows that PBC results in a salt and pepper mixture of rock outcrops and
waterbodies. However, Figure 10(c) shows that riffles could be extracted using bright-
ness, NDVI, and CHM. Riffles are stream segments characterized by the relatively fast
flow velocity compared with adjacent waterbodies due to their narrow and shallow
shapes. Three criteria were used for riffle extraction: brightness values similar to gravel,
CHM values higher than those of water, and negative and positive NDVI values for the
mixed areas of waterbodies. Figures 9(c) and 10(c) show that OOC with ancillary data
such as CHM and brightness resulted in better outcomes than that of PBC for the
classification of small objects, such as rock outcrops and gravel in riffles, and for the
representation of objects with continuous forms, such as riffles. Furthermore, this
method showed that the ‘salt and pepper effect’ is reduced in the high-resolution
images resulting from the ambiguity of the statistical definition.

The results and the accuracy of the riparian habitat mapping using combinations of
remote-sensing techniques are shown in Table 3 and Figure 11. This classification
approach has consistently yielded better results with the classification accuracies

Figure 8. A comparison of the classification results: (a) raw data, (b) OOC, and (c) OOC with NDVI
and brightness.

Figure 9. A comparison of the classification results: (a) PBC (maximum likelihood), (b) OOC, and (c)
reclassification with CHM and brightness.
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ranging from 80% to 96%. The overall classification accuracy and kappa coefficient were
88.2% and 0.86, respectively. The accuracy satisfies the standard proposed by many
researchers (Fielding and Bell 1997; Bock et al. 2005). Both producer’s and user’s
accuracies of all of the classes were higher than 80%. The results of classes are shown
in Table 3. The Robinia and Salix trees were accurately identified because of their distinct
reflectance and height, as can be seen in their scatter plots (Figure 2). Since Robinia was
mainly distributed on the vegetated embankments, it could be classified easily using
slope and CHM. The classification accuracy was relatively lower for classes such as gravel,
gravel/sand, and sand. The rock outcrops were also identified with even higher accuracy
because they could be easily separated using CHM, brightness, and NDVI (Figure 8).
Gravel/sand and sand were identified with relatively lower accuracy because of similar
brightness thresholds (Figure 2 (a). Riffles, on the other hand, were identified with high
accuracy because of their higher NDVI and brightness values compared with calm water
surfaces, and thus they could be grouped as homogeneous polygons in the

Figure 10. A comparison of the classification results for riffles: (a) aerial imagery, (b) PBC, (c) OOC
with NDVI, CHM, and brightness.

Table 3. Confusion matrix and accuracy assessment for the classification based on the DTC with
OOC.

Robinia Salix
Tall
grass

Short
grass Gravel

Gravel/
Sand Sand

Rock
outcrop Riffle

Producer’s
accuracy (%)

User’s
accuracy

(%)

Robinia 54 3 0 0 0 0 0 0 0 90 94
Salix 4 60 0 0 0 0 0 0 0 90 93
Tall grass 2 3 89 3 0 0 0 0 0 89 91
Short
grass

0 0 9 76 1 2 1 0 0 86 85

Gravel 0 0 0 0 51 0 3 2 1 86 89
Gravel/
Sand

0 0 1 8 3 100 7 4 2 86 80

Sand 0 0 0 0 2 13 64 1 0 85 80
Rock
outcrop

0 0 0 0 0 0 0 57 2 89 96

Riffle 0 0 0 1 2 0 0 0 47 90 94
Total 60 66 99 88 59 115 75 64 52

Overall accuracy = 88.2; Kappa coefficient = 0.86
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segmentation process. Only a few misclassifications were observed within the classes,
e.g. between gravel and sand/gravel, and between tall grass and short grass.

The habitat-use patterns of water deer are shown in Figure 12(a) and Table 4. The
various land-cover types obtained through the field survey of footprint and faecal trace
and snow tracking were 80 points and 50 points, respectively. The longitudinal slope of
the water deer tracking route ranged from 0° to 20°, and the average slope was 14.32°.
The CHM of the route ranged from 0.2 m to 8 m, and the average CHM was 0.46 m. The
paths preferred by water deer were characterized by three factors: a longitudinal slope
of less than 15°, the presence of vegetation with a CHM of 0.2–1.0 m, and the land cover
of tall grass, short grass, gravel & sand, and sand (Slope and CHM, Mann–Whitney test,
p < 0.01; land cover, χ2 test, p < 0.01; Table 4). Meanwhile, the mean values of slope and
CHM in habitat patches were 7.41 and 0.80 m, respectively. They show different patterns
of habitat use as paths and habitat (χ2 test, p < 0.01; Table 4). The path points tend to
have a higher mean slope and lower CHM than the habitat points (Slope, CHM, Mann–
Whitney test, p < 0.01). Figure 12(a) shows that habitat-use patterns can be mapped as
path and habitat patches.

The habitat patterns of otter, investigated through the analyses of 20 sampling points
collected through a field survey of footprint, faecal materials, and sprints, can be
summarized as shown in Table 5. The range of CHM of an otter was from 0 m to
12 m, and the average CHM was 0.12 m (CHM, Mann–Whitney test, p < 0.01; Table 5).

Figure 11. Habitat component classification.
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The land-cover types preferred by the otter include gravel/sand, rock outcrop, and short
grass (Chi-square test, p < 0.01; Table 5). The classification results (Figure 12(b)) closely
match the segmentation of the otter suitability factor such as sand, rock outcrop, and
riffle.

4. Discussion

The results demonstrated that OOC, applied on lidar and high-resolution images, is more
effective in classifying the detailed riparian habitat components at our test site. The

Figure 12. Habitat mapping as habitat patches and paths. (a) Habitat patches and paths of water
deer and (b) habitat patches for otter.

Table 4. Occurrence frequency of the Korea water deer from the field survey in the Seom River.

Species Habitat components Category

Occurrence frequency (%)

Habitat patches Paths

Water deer Land cover Robinia 7 13
Salix 23 9
Tall grass 40 13
Short grass 23 39
Gravel 7 1
Gravel/sand 21
Sand 3
Riffle 1

Vegetation height (cm) <20 40 1
21–40 33 47
41–60 6 27
61–80 4 19
81–100 3 3
>100 14 3

Slope (°) 0–5 6 0
5–10 66 21
10–15 16 32
15–20 8 19
20–25 2 15
>25 2 13

Note: Significant differences in water deer spotted between patches and paths, χ2, p < 0.01, Mann–Whitney test,
p < 0.01.
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overall classification accuracy was 88.2%, which is higher than those reported by Marcus
et al. (2002), Chust et al. (2008), Ghioca-Robrecht, Johnston, and Tulbure (2008), and
Rapinel, Hubert-Moy, and Clément (2014). We could achieve a high classification accu-
racy for small and continuous habitat types, such as short and tall grasses, rock outcrop
and gravel, and riffle. Other previous studies in riparian and wetland areas based on the
traditional land-cover mapping at a macro or a coarse level could not produce such
outcomes (Bock et al. 2005; McKenna Jr and Castiglione 2010; Ouyang et al. 2011; Bargiel
2013; Mücher et al. 2015; Rapinel, Hubert-Moy, and Clément 2014; Corbane et al. 2015).
As reported by several researchers (Zhang and Huang 2010; Nie et al. 2010; Hölbling
et al. 2012; Tehrany, Pradhan, and Jebuv 2014), the salt and pepper effect for high-
resolution data could be reduced significantly. Furthermore, we could identify suitable
habitats for two target wildlife species by combining trace data and image classification
through OOC and DTC. Wildlife habitats were subsequently classified into grazing
habitats and paths for each target species.

The levels of segmentation parameters – scale parameter, colour/shape, smoothness/
compactness – could significantly affect the land-cover classification with OOC. The
objective of the multi-scale segmentation was to classify the habitat components and
delineate the precise boundaries at a micro level. Our results were consistent with the
other studies concerning the comparison between OOC and PBC (Radoux and Defourny
2007; Im, Jensen, and Tullis 2008; Ouyang et al. 2011).

The scale parameter of level 1 should be lower than 90; however, when the value was
set higher than 90, the segmentation did not adequately delineate the boundaries of
riparian vegetation. The small-scale values of 30 were effective to generate the bound-
aries of vegetation patches, particularly grass and small patches of rock outcrop and
gravel within the stream channel. These objects have relatively simple and compact
shapes. The edge of the complicated riparian vegetation, such as Phragmite, was pre-
cisely extracted using a compactness parameter of lower than 0.9, whereas compactness
values higher than 0.9 would result in the fringed shapes of boundaries, similar to the
results shown by Kloiber et al. (2015).

A colour parameter setting of 0.9 was well-suited for the image segmentation
process, which could be further influenced by spectral values as opposed to the shape
parameter for riparian land-cover classification (Qian, Zhou, and Hou 2007). This setting

Table 5. Occurrence frequency of the otter from the field survey in the Seom River.

Species Habitat components Category

Occurrence frequency (%)

Habitat patches

Otter Land cover Short grass 31
Gravel/sand 22
Sand 10
Rock outcrop 26
Riffle 11

Vegetation height (cm) <20 5
21–40 68
41–60 21
61–80 6
81–100 0
>100 0

Note: Significant difference between the observed and expected habitat type, χ2, p < 0.01, Mann–Whitney test,
p < 0.01.
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was suitable for resolving the problems caused by small differences in the colour of such
objects. This means that the colour parameters are more sensitive when CIR images are
used as small patches in the algorithm. This is because the CIR imagery can be sensed by
both absorption and reflectance in the NIR band that detects significant differences in
the vegetation types. The classification accuracy of the riffle was 90.4%, which is better
than that of Marcus et al. (2002). In particular, our study presented that segmentations
using NDVI were better suited for the extraction of vegetation boundaries from sub-
strates on embankments (Figure 6). It is important to reduce the misclassification by
influencing the vegetation stratum (Sébastien Rapinel, Hubert-Moy, and Clément 2014).

First, brightness and NDVI were extremely effective in dividing stream substrates into
gravel, gravel & sand, and sand. The classification accuracies of the substrates were
similar to those of Campbell (2007), and much higher than other classifications based on
most multispectral classification schemes. As can be seen from the scatter plots, the
spectral response of such materials could be affected by infrared and brightness char-
acteristics. Todd and Hoffer (1998) reported that the spectral response of a substrate
type is closely related to their soil moisture content.

Second, CHM has been useful for the identification of riparian grasses and stream
channel topography. Smeeckaert et al. (2013) reported that CHM was a useful parameter
for vegetation mapping and stand breaks, and the classification accuracies of tall grass
and short grass were 89.9% and 86.3%, respectively. The classification accuracies for
riffles and rock outcrop – 90.3% and 89.0%, respectively – were unexpected.

In this study, a few misclassifications have been observed within the classes (Table 3).
This could result from the overlapping distribution of pixels at the threshold baseline
because of the riparian habitat characterized by strong environmental gradients in the
variability in the occurrence of floods. A recent classification algorithm, such as Random
Forest, and multi-temporal data could offer the opportunity to obtain a much higher
accuracy using a multiple-decision tree and vegetation phenology in riparian areas.

5. Conclusion

The purpose of this study was to produce detailed riparian habitat maps for
selected wildlife species by using ancillary data of the study area. We investigated
ways to combine the high-resolution spectral data and lidar as well as to classify the
riparian habitats and potential corridors to connect the fragmented habitats in
highly developed stream corridors. The outcomes of this study extend those of
most previous studies usually focused on broad habitat types, coarse-scale classifi-
cation based on only spectral data and PBC, and consequently had difficulty in
capturing the continuous and multidimensional habitat features at dynamic land-
scapes such as urban streams. The outcomes of the study can be summarized as
follows. First, the combination of high-resolution spectral data and lidar for the
extraction of environmental factors provided the basis for the riparian habitat
classification in terms of ecology. Second, OOC using ancillary data such as NDVI,
CHM, brightness, and DEM could accurately extract stream substrates and contin-
uous habitat types. In particular, small patches, such as sand, gravel, rock outcrop,
and short and tall grasses, were classified at overall classification accuracies of
88.2%. Third, the optimum combinations of segmentation parameters of scale,
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colour/shape, and smoothness/compactness could be achieved using the field sur-
vey results. Finally, the land-cover classification could be transformed to riparian
habitat maps that include habitat patches and paths for two target species of otter
and water deer. These maps could be essential to habitat restoration in the
urbanized stream corridors.
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