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ABSTRACT
The vast size of oil palm (Elaeis guineensis) plantations has led to
lightweight unmanned aerial vehicles (UAVs) being identified as cost
effective tools to generate inventories for improved plantation man-
agement, with proximal aerial data capable of resolving single palm
canopies at potentially, centimetric resolution. If acquired with suffi-
cient overlap, aerial data from UAVs can be processed within struc-
ture-from-motion (SfM) photogrammetry workflows to yield
volumetric point cloud representations of the scene. Point cloud-
derived structural information on individual palms can benefit not
only plantation management but is also of great environmental
research interest, given the potential to deliver spatially contiguous
quantifications of aboveground biomass, from which carbon can be
accounted. Using lightweight UAVswe captured data over plantation
plots of varying ages (2, 7 and 10 years) at peat soil sites in Sarawak,
Malaysia, and we explored the impact of changing spatial resolution
and image overlap on spatially variable uncertainties in SfM derived
point clouds for the ten year old plot. Point cloud precisions were
found to be in the decimetre range (mean of 26.7 cm) for a 10 year
old plantation plot surveyed at 100m flight altitude and >75% image
overlap. Derived canopy height models were used and evaluated for
automated palm identification using local height maxima. Metrics
such as maximum canopy height and stem height, derived from
segmented single palm point clouds were tested relative to ground
validation data. Local maximum identification performed best for
palms which were taller than surrounding undergrowth but whose
fronds did not overlap significantly (98.2% mapping accuracy for
7 year old plot of 776 palms). Stem heights could be predicted
from point cloud derived metrics with root-mean-square errors
(RMSEs) of 0.27 m (R2 = 0.63) for 7 year old and 0.45 m (R2 = 0.69)
for 10 year old palms. It was also found that an acquisition designed
to yield the minimal required overlap between images (60%) per-
formed almost as well as higher overlap acquisitions (>75%) for palm
identification and basic height metrics which is promising for opera-
tional implementations seeking to maximise spatial coverage and
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minimise processing costs. We conclude that UAV-based SfM can
provide reliable data not only for oil palm inventory generation but
allows the retrieval of basic structural parameters which may enable
per-palm above-ground biomass estimations.

1. Introduction

The oil palm (Elaeis guineensis Jacq.) can yield considerablymore oil per hectare than any other
crop,which explains its large-scale expansion over the last century, tomeet the global demand
for food andbiofuel (Corley and Tinker 2016). As a result the conversionof forest ecosystems to
oil palm plantations has been the topic of much international research and also controversy
due to concerns regarding its impact on biodiversity, carbon storage and ecosystem services
(Fitzherbert et al. 2008; Butler and Laurance 2009; Carlson et al. 2012; Germer and Sauerborn
2008; Koh and Wilcove 2008).

The global demand for oil palmproductsmeans that plantations now cover large tracts of
land in the tropics – for example, in Malaysia 58,100 km2 is taken up by commercial oil palm
plantations (as of 1 December 2017, Malaysian Palm Oil Board (MPOB) statistics retrieved
from http://bepi.mpob.gov.my). Both at national and plantation block scale, remote sensing
is a valuable tool both for stakeholders and researchers. To provide an example, remote
sensing data offers a means by which plantation management can be performed in a more
profitable and arguably more sustainable manner because plantation inventories can be
generated to inform targeted fertiliser and pesticide application (Chong et al. 2017). Beyond
the commercial sector, remote sensing data have been applied on a state-wide scale to
monitor and quantify the impact of the land-use change due to the establishment of new
plantations. These analyses are predominantly based on satellite data, and various studies
haveutilisedoptical, and radio detection and ranging (RADAR) capabilities to differentiate oil
palm from other land cover classes (Morel et al. 2011; Li et al. 2015; Koh et al. 2011; Cheng
et al. 2018). The challengewith using readily available satellite data for oil palm science is the
limited spatial and/or temporal resolution of such data. The demand for finer spatial resolu-
tion data is motivated by the ability to resolve individual palm canopies, which can be used
as reference data to improve land-cover classifications (Nomura and Mitchard 2018) and
allows for automated identification and parameter retrieval to provide information about
palm structure and status. These parameters are not only of interest for plantation manage-
ment but are central to the estimation of plantation carbon stocks, e.g. through the use of
allometric equations (Corley and Tinker 2016). Such work is critical from a scientific perspec-
tive if the carbon implications of forest conversion to oil palm are to be quantified accurately
(Morel et al. 2011), and yet, there are missing examples of such methods in the literature.
Furthermore, patterns relating to local soil nutrient deficiency or disease could also be better
identified (Shafri, Mohd, and Hamdan 2009).

For inventory generation, fine spatial resolution satellite data (e.g. WorldView 4 at
0.31 m spatial resolution) provides fine resolution information, while enabling monitor-
ing over a broad spatial extent and has been successfully used for palm identification
(Weijia Li et al. 2016b; Srestasathiern and Rakwatin 2014), but is not suitable for
estimating structural parameters. For practical considerations, fine spatial resolution
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satellite data have known limitations, for example – they are financially costly and for
countries with frequent cloud cover, acquiring a cloud-free acquisition at the desired
time can be challenging. Improved accessibility, low operating costs, and ease of use has
recently led to lightweight drone platforms (often called unmanned aerial vehicles or
systems (UAV/UAS)) being identified as a useful tool in oil palm plantation management,
with major commercial oil palm companies establishing dedicated UAV-teams for the
routine acquisition of aerial imagery (pers. comm. Sarawak Oil Palms Berhad, 2018).

Currently the primary application of UAV data in oil palm management is the gen-
eration of photographic-based orthomosaics for inventory purposes (Rokhmana 2015).
Manual identification based on spatial data products is still considered the most accu-
rate and cost-effective method to generate inventories in commercial applications and
the selection of training data in recent scientific applications (e.g. Nomura and Mitchard
2018). There are however promising first demonstrations of machine learning techni-
ques on both fine spatial resolution satellite and UAV image data of oil palms and date
palms respectively (Weijia Li et al. 2016b; Malek et al. 2014) as well as software packages
for the operational implementation of object-based segmentation (eCognition, Trimble,
California, USA) for palm identification.

In these workflows, the third spatial dimension (i.e. height) has to date been com-
pletely disregarded for oil palm, however, its inclusion opens up many scientific and
operational management possibilities at low opportunity cost. The acquisition of over-
lapping images from UAV platforms allows the application of a photogrammetric
method which automatically solves for the geometry of the scene, camera positions
and orientations, known as structure-from-motion (SfM) photogrammetry (Westoby
et al. 2012). SfM can be used to generate fine spatial resolution orthomosaics, and
point clouds representing the height structure of the scene (Dandois and Ellis 2013).
Coupled with precise georeferencing information, resultant point clouds can be used to
spatially separate objects and determine their spatial and volumetric dimensions, in
much the same way that light detection and ranging (LiDAR) data permit, but at lower
acquisition costs. Such methods are now being used extensively to derive canopy
metrics of individual vegetation canopies of varying sizes and structure (Puliti et al.
2015; Cunliffe, Brazier, and Anderson 2016; Zarco-Tejada et al. 2014), so it is a natural
step to consider the utility of such approaches for oil palm inventory. Doing so would
deliver new understanding of the volumetric characteristics of oil palm plantations,
which would prove particularly useful for spatial carbon evaluations. Currently such
aspects of oil palm plantations lack sufficient data from which to quantify the environ-
mental effects of tropical forest conversion (Kho and Jepsen 2015). Information on palm
height and its distribution is desirable as it can be an indicator of palm age and localised
growing conditions. Variations due to re-planting of missing palms are expected to be
small as this does generally not occur past the first year (Corley and Tinker 2016). More
spatially contiguous variations can be the result of unequal fertiliser application or other
variations, e.g. in soil nutrient availability. In previous work, UAV based photogrammetry
derived top-of-canopy height metrics in other ecosystems were found to be comparable
with LiDAR derived heights (Wallace et al. 2016; Thiel and Schmullius 2017), with data
acquisition being comparably, more affordable (relying only on consumer grade sensors
and platforms) and easy to deploy (so long as the aircraft and payload are lighter than
the low weight categories defined by civil aviation classifications (Duffy et al. 2017)). First
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efforts in applying the UAV-based SfM methodology to palm plantations have demon-
strated the potential for palm identification and retrieval of structural parameters
(Kattenborn et al. 2014), however further investigation into uncertainties within gener-
ated products as well as the influence of acquisition schemes which allow to cover
greater area at the cost of data quality is required for the operational implementation of
these workflows.

Presented in this study is the first investigation of UAV and SfM-derived point clouds
for oil palm plantation physical assessment. This application of UAV data extends
beyond identification and counting of individual palms and presents a novel workflow
for the segmentation of individual palm objects from point clouds to explore their
application for retrieving height-related structural parameters, as well as quantify spa-
tially-variable uncertainties. Specific aims of this study are:

(a) To demonstrate a workflow for the retrieval of single palm canopies from SfM
point clouds.

(b) To quantify the uncertainties introduced by the acquisition scheme and steps in
the SfM-based workflow as well as in the retrieved metrics.

(c) To derive and assess top-frond-height (TFH) and stem height metrics from single
palm SfM point clouds.

Aim b) is key to understanding the potential and limitations of our methodology for oil
palm science. This is especially important when considering the possible further usage of
the retrieved structural parameters (aim c)) to inform larger scale models, as has been
successfully demonstrated for forestry (Puliti et al. 2017), to quantify error propagation.
Aim c) provides an important step towards deriving per-palm above-ground biomass
(AGB) (Corley and Tinker 2016; Thenkabail et al. 2004).

2. Materials and methods

2.1. Study site

The study sites were located in the state of Sarawak, Malaysian Borneo, on the Sarawak
Oil Palms Berhad plantations of Sabaju (3°09ʹ40.1”N 113°25ʹ09.1”E) and Sebungan (3°
09ʹ58.1”N 113°21ʹ20.2”E). The majority of the plantation area was planted on tropical
peat with smaller areas on clay dominated mineral soil. Three peat soil plantation sub-
plots of 2, 7 and 10 years of age and covering approx. 4, 6 and 6 ha respectively were
selected for this study. Plot sizes were chosen based on the maximal area which could
be safely covered with one flight battery whilst also fulfilling the desired image acquisi-
tion parameters (see Section 2.2.2). The locations of the survey plots are depicted in
Figure 1. These locations were selected to contain two 1 ha carbon sampling plots which
are periodically measured by researchers associated with the MPOB. The peat soil
plantations possess only slightly varying topography (e.g. <1 m vertically over 100 m
horizontal distance). The 2 year old palms consisted mainly of fronds with the above-
ground stems being negligible. Besides the young palms, the 2 year old plot also
contained stacking rows of woody material which were overgrown by vegetation and
were higher than the TFH of the palms. The 7 year old plot contained significant
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undergrowth and the same heaped rows of timber between every other palm row,
though here the palms had grown higher than this topographic variation. In the 10 year
old plot there was significantly less undergrowth, likely due to light limitation as the
fronds of neighbouring palms begin to overlap, as well as a very high water table due to
a difference in local topography. Undergrowth here occurred mainly along drainage
channels dug between every other palm row.

2.2. Data acquisition

2.2.1. Field sampling
Measurements in the field were conducted on a per-palm basis. Within the boundaries
of the existing 1 ha carbon sampling plots, palms were sampled in a grid pattern in
accordance with the subdivided squares of the plot. Outside of carbon plots, palms were
sampled following a random sampling scheme. 33, 22 and 37 palms were selected for
measurement in the 2, 7 and 10 year old plots respectively, with the number of samples
varying due to sampling time constraints and accessibility of the plots. TFH as a metric
representing canopy height was measured as the distance between the apex of the
highest frond and ground level, to provide a validation for SfM photogrammetry derived
heights. The stem height was also measured as the distance between the petiole base of
the lowest intact frond and ground level (see Morel, Fisher, and Malhi 2012). Due to the

Figure 1. Top: The state of Sarawak in Malaysian Borneo with a star marking the location of the
studied plantation (shapefiles from www.diva-gis.org). Bottom: Satellite imagery with the location,
extent and age in years of the studied plots (Google Earth).
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size of the older palms, both heights were consistently measured using a laser range-
finder in all plots. These systems typically possess decimetre accuracy.

2.2.2. UAV flights and GPS data
The UAV used for this study was a 3DR Solo quadcopter containing a pixhawk 2.0 flight
controller. Including payloads it weighs under 2 kg and is capable of approximately
15 minutes flying time on a single battery. The system was selected due to its ease of
use and flexibility. Flights were programmed in the ArduPilot Mission Planner software by
drawing a polygon per plot that was reused for all flights. Flights were conducted at an
altitude of 100 m and a speed of 5 m s−1. The minimum frontal and side overlap was
defined as 75%. For the 10 year old plot, a replicate was flown using identical flight
parameters to enable an independent assessment of the photogrammetric reconstruction
and derived parameters as done in previous studies (Dandois et al. 2017). UAV flights were
conducted close to solar noon for all acquisitions when lighting conditions are optimal for
later photogrammetric reconstruction (Dandois, Olano, and Ellis 2015), and wind speeds at
ground level were below 4.5 m s−1. Flight details are summarised in Table 1.

The sensor mounted on the UAV was a consumer-grade RGB camera (Ricoh GRII). The
ground sampling distance (GSD) at 100 m altitude was 2.52 cm. The camera was triggered
by intervalometer every 2 seconds during the flight – chosen since the flight planning
software suggested that this would ensure the desired 75% front and sidelap (with higher
effective frontal overlap of 82%), close to the optimal overlap of 80% recommended by
Dandois, Olano, and Ellis (2015) for vegetation SfM photogrammetry workflows. The focus
was set to infinity, white balance to automatic and exposure time (1/1250 s – 1/1600 s) as
well as aperture (f2.8-f3.2) and ISO (100–200) were varied based on the illumination
conditions and site characteristics (direct/diffuse and amount of shadow) but kept con-
stant throughout each flight, following recommendations from previous studies (Cunliffe,
Brazier, and Anderson 2016; O’Connor, Smith, and James 2017).

For georeferencing, a total of 10–15 ground control points (GCPs) and >10 height
validation points were surveyed per site using a Trimble Geo 7x GNSS system coupled
with a Zephyr Model 2 antenna and were post-processed using RINEX data acquired
from the Department of Survey and Mapping Malaysia (JUPEM) to yield 3 cm horizontal
and 5 cm vertical precision. These measurements allow SfM photogrammetry generated
digital surface models to be adequately constrained (Tonkin and Midgley 2016) and can

Table 1. List of UAV flights used in this study, referred to by an identifier throughout the remainder
of the manuscript and indicating the flight parameters, the palm age plot site (including the
replicate for the 10 year old plot) and date of acquisition.

Identifier System Sensor

Altitude (m
above ground

level)
Speed
(m s−1) Overlap Site Date

HO_2yr 3DR Solo Ricoh GRII 100 5 >75% 2 year 30 January 2018
HO_7yr 3DR Solo Ricoh GRII 100 5 >75% 7 year 9 February 2018
HO1_10yr 3DR Solo Ricoh GRII 100 5 >75% 10 year 2 February 2018
HO2_10yr
(replicate)

3DR Solo Ricoh GRII 100 5 >75% 10 year 2 February 2018

LO_10yr DJI Phantom 4 Integrated
camera

150 11 60% 10 year 5 February 2018
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be used to validate georeferencing accuracies utilising unused GCPs as check-points.
GCP distribution followed recommendations from previous work on UAV SfM survey
accuracies (James, Robson, D'Oleire-Oltmanns and Niethammer 2017b) by ensuring
placements around the boundaries of the region of interest as well as close to the
centre of each plot.

In addition to the main data acquisition described above, an additional RGB image
dataset covering the entirety of the studied 10 year old plantation block was acquired by
the Mapping Unit of Sarawak Oil Palms Berhad. The system used was a DJI Phantom 4
with integrated camera, flying at 150 m and 11 m s−1 resulting in a GSD of 3.93 cm
pixel−1. The programmed flight plan was aimed at acquiring image data with 60%
frontal and side overlap. This acquisition plan allowed for coverage of one entire
plantation block using a single DJI flight battery.

2.3. Photogrammetric processing

The photogrammetric processing of UAV-acquired images was performed in Agisoft
Photoscan Professional V1.4.2 (St. Petersburg, Russia). There are a number of software
options available for photogrammetric processing and Photoscan was selected here due
to its successful use in similar applications such as forest inventories (Dandois and Ellis
2013; Puliti et al. 2015), and the ability to use previously developed Python scripts for
spatial uncertainty estimation (James, Robson, and Smith 2017b). Palms differ consider-
ably from coniferous or broadleaf trees, however no inter-comparison of software
options and algorithms exists for this canopy type. Images per flight and plot were
input into the software, upon which tie-points within images are identified and used for
image matching (algorithms used are proprietary, but a similar method is the scale
invariant feature transform (SIFT) algorithm (Lowe 2004)). An automatic aerial triangula-
tion followed by a bundle block adjustment is then performed, reconstructing scene
geometry while accounting for camera orientation and distortion. The resulting sparse
point cloud representing the tie-points in 3D space is used to generate a rough mesh of
the scene. After this initial processing, GCP coordinates are imported and their position
manually identified within the images. To evaluate the geometric accuracy of the
resulting model, ≈25% of measured GCPs per site were omitted from the photogram-
metric processing and used as independent check points. The initial processing was re-
run on the highest setting (with key point limit: 80ʹ000, tie point limit: 8000), followed by
depth-map and dense point cloud generation on high settings. Depth filtering was
disabled as even mild depth filtering appeared to remove points of vertical palm fronds.

While geometric uncertainties of the resulting model are reported by the software
(see supplementary information for examples), these only represent errors in relation to
the measured GCPs and check points at ground level, which are clearly identifiable
within the image. At the top of the canopy, errors can be expected to be considerably
larger, as the z dimension cannot be adequately constrained by the measured GCPs and
values are more heavily dependent on the non-reproducible tie point identification. To
quantify the precision of the photogrammetric processing as outlined in aim b), which is
impacted by varying camera geometry and GCP uncertainties, we utilised a Monte Carlo
(MC) method developed by James, Robson, and Smith (2017b) to derive point precisions
representing the expected one standard deviation in x, y and z directions by running
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many simulations of the sparse point cloud generation including GCP information while
randomly varying parameters within reported accuracy thresholds. Precision estimation
is performed based on the sparse point cloud as the dense matching does not optimise
the image network and, while it can introduce additional smaller errors, does therefore
not affect the underlying precision James, Robson, and Smith (2017b). This method was
primarily developed for the assessment of SfM based surveys of non-vegetated land-
forms but the precision estimates it generates, we argue, can also prove useful for
vegetation focused studies. The algorithm was originally designed by (James, Robson,
and Smith 2017b) for time-series change analysis that accounts for survey-to-survey
uncertainties, but can be used stand-alone on single surveys to highlight areas of higher
and lower point precision, in 3 dimensions. 1000 simulations proved sufficient, assessed
by the difference between the MC means and the initial error free values. Per-point
precision estimates in each dimension were generated based on the simulations, using
the ‘sfm-georef’ software (James and Robson 2012).

2.4. Point cloud processing and parameter retrieval

The processing workflow for oil palm segmentation and derivation of TFH and stem
height is demonstrated in Figure 2. After generating the dense point cloud repre-
senting the volumetric structure of the scene, a statistical outlier filtering was
performed (CloudCompare, V2.9.1), removing points far above or below the scene
which are considered as noise, likely attributed to movements of palm fronds
between images. As most scenes contained water, either as standing water or in
drainage channels, this caused errors in the photogrammetric processing due to
reflections and larger negative outlying point clusters were found, an effect also
described by Duffy et al. (2017). The majority of these outliers were removed by
eliminating points below a feasible threshold, informed by GCP heights. A minimal
amount of manual clipping of the point cloud in CloudCompare (V2.9.1) was there-
fore required.

Figure 2. Processing workflow for deriving per-palm height metrics from UAV data.
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Due to the lack of detailed topographical data of the sites, the digital terrain model
(DTM) had to be derived from the SfM point cloud. Ground points in each plot were
classified by excluding the vegetation through a morphological filtering procedure,
originally developed for airborne laser scanning (Zhang et al. 2003) and implemented
in the R lidR package (Roussel and Auty 2018). This method has previously been applied
for SfM-based DTM generation (Dandois and Ellis 2013) and was selected as it provided
more control over the filtering process. It appeared to perform better for sparse ground
points as opposed to PhotoScan’s own implementation of ground classification which
has been used for DTM generation in more recent SfM based studies where more
ground information was available (e.g. Cunliffe, Brazier, and Anderson 2016). It did
however require the point cloud to be subsampled with a 0.1 m distance constraint
between points for efficient processing. The parameters for morphological filtering had
to be adjusted for each plot due to the varying height and density of palm crowns. The
classified ground points were interpolated using k-nearest-neighbour inverse distance
weighting. The noise filtered original point clouds were normalised using the derived
DTM, yielding height above ground for the remaining vegetation points and canopy
height model (CHM). For palm identification, the CHM was first smoothed using a mean
filter after which local-maximum filtering was applied with a window size informed by
the known planting distance between palms (approx. 9 m, an established planting
pattern for oil palm (Chong et al. 2017)). Individual palms were then segmented from
the point cloud using a crown delineation method by Silva et al. (2016) and adjusted by
Roussel and Auty (2018), using the identified palm points as centroids and the CHM as
input. This particular delineation method was selected due to its suitability for the
simple circular footprint of oil palm crowns and as the impact of overlapping fronds
can be reduced by constraining the buffer radius used. Other methods based on
watershed analysis or region-growing (Dalponte and Coomes 2016) proved to have
issues where overlap occurred.

The TFH values for each segmented palm were retrieved by selecting the maximum
point within the cloud, the sensitivity to erroneous outliers reduced by the previous
statistical outlier filtering. Derived TFH is assessed against field measured TFH for
measured palms. To test the consistency of TFH for two independent builds, TFH was
also derived from a replicate dataset over the 10 year old plot and the values compared
for the same palms.

Using linear regression, the correlations of different height percentiles (30 to 90%
in 10% steps), and the mean and maximum point height with field measured stem
height were assessed for the samples of the 7 and 10 year old plantation. For the
2 year old palms, the bases of the lowest intact fronds were at ground level and
therefore no stem was measured. Due to a limited number of samples, prediction
accuracy was assessed using leave-one-out cross validation (LOOCV) as used in
similar studies (Wang Li et al. 2016a). Two separate models depending on plot age
were assessed as the relationship between point cloud metrics and stem heights can
be expected to differ slightly between palms of different age classes. This does not
avoid the issue of younger, re-planted palms within the same plots. The relationships
with highest coefficient of determination (R2) were then applied to all identified palm
point clouds to derive stem heights.
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3. Results

3.1. Photogrammetric dense clouds

UAV image data averaged around 350 images per plot and acquisition, from which
dense point clouds were generated for each plot through photogrammetric processing.
For the 10 year old plot, a replicate dataset using the same acquisition parameters was
generated (HO2_10yr), as well as a coarser resolution sparser dataset for the entire
plantation block (LO_10yr).

Subsets of the point clouds from the three different aged plots are displayed in Figure
3. Initial visual inspections of the generated dense point clouds per plot show recon-
structions of individual palm fronds. Noise increased for higher, more vertically-oriented
fronds. The point density decreased towards the apical stem as fronds overlapped more.
No information on the trunk was captured as it was entirely obscured by fronds in all
images. The 10 year old plot contained fewer points from the ground and bottom fronds
due to the high canopy density.

The geometric accuracies of the scene reconstructions, assessed by check points
which were not used for the photogrammetric processing (≈25% of total GCPs per
site), were high with mean horizontal errors (x, y) of 2.29 cm and mean vertical
errors (z) of 3.4 cm (see supplementary information for individual processing
reports).

The LO_10yr dataset showed significantly lower point density (a 1 ha square
extracted from the dense clouds contained 10.26 Mio points for HO1_10yr and
1.69 Mio points for LO_10yr) but still appeared to represent finer details and
individual fronds of single palms. At the higher altitude and speed of this flight,
surface points were imaged 8 times and the ground resolution was 3.93 cm per pixel
(for HO1_10yr, points were imaged 44 times on average at 2.52 cm per pixel). The
average of 8 images per ground point indicates that the overlap lies slightly below
the targeted 60% recommended for photogrammetric surveys (Dandois, Olano, and
Ellis 2015). This may have been due to acquisition conditions on the day of the flight,
or imperfect flight planning.

Geometric accuracies reported by check points for LO_10yr were lower than the other
flights with horizontal error (x, y) of 12.9 cm and vertical error (z) of 39.1 cm.

For the generation of maps from the sparse point cloud precision estimates, values
were interpolated for the dense point locations using nearest-neighbour inverse

Figure 3. RGB dense point cloud subsets (33x33 m) of the 2, 7 and 10 year old plantation datasets,
resulting from the HO_2yr, HO_7yr and HO1_10yr flights.
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distance weighting. It should be noted that due to the reduced overlap for LO_10yr,
there were considerably fewer tie points within the sparse point cloud (Table 2, see
supplementary information for visual representations). The resulting map therefore
includes a higher amount of interpolation and the precision estimates are more poorly
resolved spatially. Derived statistics should be treated with caution as there can be
expected to be a bias depending on the 3D location of tie points identified during
processing, such as a lesser proportion of points found inside the vegetation canopy.

The mean precisions do not exhibit large differences between low and high overlap
acquisitions. Horizontal precisions in x and y were very slightly larger for HO1_10yr,
while vertical precisions (z) are slightly lower on average (Table 2). When displaying
point precisions spatially (Figure 4), it is apparent that precisions are higher for the flat
ground surface on which GCPs were placed as opposed to points located vertically
above the ground, within the vegetation canopy. LO_10yr displays larger patches of
lower precision, due to the sparser tie points. Such patches of low precision may
influence the reliability of the derived DTM. For HO1_10yr, precisions are higher for
resolved ground points. Vertical precisions appear lower but more uniform for the
vegetation canopy, with some edge effects at the north-eastern border.

Table 2. Parameters for the two different acquisitions over the 10 year old plot along with mean
precision estimates in x, y and z directions.
Acquisition
overlap

GSD (cm
pixel−1)

Tie point density
(points m−2)

Mean x precision
(mm)

Mean y precision
(mm)

Mean z precision
(mm)

<60% 3.93 0.05 77.35 89.86 247.90
>75% 2.52 10.28 68.34 80.29 267.39

Figure 4. Maps of interpolated point precisions in x, y and z direction for the 10 year old palm plot.
Top row: Acquisition with 3.93 cm pixel−1 GSD and 60% nominal overlap (LO_10yr). Bottom row:
Acquisition with 2.52 cm pixel−1 GSD and 75% nominal overlap (HO1_10yr).
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3.2. Digital terrain models

After filtering out non-ground points the remaining points were interpolated to derive
a DTM per site. The DTM accuracy was assessed using height validation points measured
between palms in the field with reported mean measurement horizontal precisions of
3.23 cm and vertical precisions of 5.74 cm. Mean vertical absolute errors assessed for height
validation points were 9.1 cm for the 2 year old (HO_2yr), 12.4 cm for the 7 year old (HO_7yr)
and 12.12 cm for the 10 year old plot (HO1_10yr). LO_10yr resulted in errors of 31.62 cm. The
increase in errors from the 2 year old to the older plots is due to less visible ground within
the imagery and thus non-uniformly distributed ground points within the dense cloud. For
the 2 and 7 year old plots, DTM heights were generally over-estimated (Figure 5). This
overestimation is assumed to be related to undergrowth which obscures the ground
beneath. While there is very little undergrowth present in the 10 year old plot, the reason
for the underestimation of ground height is unclear but likely due to interpolation related
uncertainties as well as the larger amount of drainage channels in this plot.

3.3. Palm identification

The local maximum palm identification algorithm performed relatively well for the 7 and
10 year old palm plots (containing 776 and 654 palms total), with a mapping accuracy
(MA: correctly identified/(true total + commissions)) of 98.2% and 94.9% respectively.
The identified palm locations for the 10 year old plot derived from HO1_10yr are
illustrated in Figure 6, along with a subset showing an example of omitted palms. For
the 2 year old plot, this method caused a large amount of omission and commission
errors in the vicinity of the overgrown stacks of woody material between the palm rows,
as the vegetation here was higher than the palm canopies. Neglecting these stacks and
immediately adjacent palms, the method showed a MA of 80.4% for 238 palms total.

The MA for the same region of the 10 year old plot using LO_10yr is 94.0%.

3.4. Height metrics

Maximum values of the individual palm point clouds were assessed against the TFH
measured in the field. Results showed relatively large deviations between TFH

Figure 5. Interpolated DTM heights above mean sea-level versus GPS measured reference ground
heights. (a): 2 year old plot, (b): 7 year old plot, (c): 10 year old plot.
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measurements and maximum point cloud values with mean absolute errors of 0.383 m
for HO_2yr, 0.968 m for HO_7yr and 1.246 m for HO1_10yr, which represented 18.9%,
13.7% and 11.7% of the mean measured heights respectively (Figure 7). LO_10yr showed
lower mean absolute errors of 1.099 m for TFH of the 10 year old plot.

Figure 6. Left: Resulting palm locations (yellow points) for the 10 year old plot and subset location
(white rectangle), right: Subset illustrating omitted palms (red circles).

Figure 7. Maximum point cloud heights plotted against field measured TFHs for 2 year, 7 year and
10 year old palms.
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When comparing the maximum values between the replicates HO1_10yr and
HO2_10yr for the field measured palms (Figure 8), this resulted in a mean absolute
error of 0.199 m. Deviations between the values appear independent of field-measured
height. One obvious outlier is visible, caused by overlap resulting in a different segmen-
tation of the palm. The magnitude of this deviation between replicates is consistent with
values generated by the MC point precision analysis on the sparse point cloud (Table 2).

To establish the optimal metrics for deriving stem height from the point cloud it was
necessary to establish separate linear relationships between basic point cloud height metrics
of the segmented palm point clouds and the structural metric of stem height using LOOCV for
different age stands (Table 3). For the 2 year old plot, the stem height above ground was
negligible and so is not analysed. The strongest relationships (according to R2 values) with
stemheights of the 7 year old plotwas shownby themaximumvalue (R2=0.63; Table 3), while
for the 10 year old plot the 80th percentile of elevations performed better (R2 = 0.69; Table 3).
The MAEs represent 12.2% and 30.9% of mean stem heights respectively. Results for the low
overlap acquisition showed overall lower R2 values compared to the high overlap dataset, but
was consistent in showing the best relationship for the 80th elevation percentile (R2 = 0.59).

Using these linear models to derive stem heights for the full extent of each plot (i.e.
using heights derived from the UAV-SfM derived point clouds) for the 7 and 10 year old
plots yields the distributions in Figure 9. For the 7 year old plot, negative values for
predicted stem heights were constrained to 0 which results in high counts for this bin.
Despite the errors introduced, these models coupled with the segmented point cloud
represent an efficient method for the mapping of stem height and thus provides

Figure 8. Maximum point cloud height compared for the same palms between replicates of the
10 year old plot.
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necessary information for spatially differentiated AGB and carbon retrieval. Fine-grained
remotely sensed data thus enables single palm based estimates over spatial extents
which would require immense efforts of field-based sampling.

4. Discussion

This manuscript has presented an operational processing workflow for deriving per-palm
height metrics from UAV image data while quantifying method-inherent uncertainties
introduced at different stages. As demonstrated, it is possible to successfully segment single
palms from fine-grained, UAV-derived SfM based datasets and derive TFH and stem height
from point cloud-derived products. Subsequent sections of this discussion will address
precision estimates and accuracies of the generated results, and their implications for the
application of this method in management and research of oil palm plantations.

4.1. Uncertainties within resulting SfM point clouds

Uncertainties resulting from SfM processing were estimated using a method which has not
previously been applied to a vegetation focused study. If correctly parameterised, this
methodmay reduce the need for time consuming replicates from independent acquisitions
which are commonly advocated in SfM based studies (Dandois et al. 2017; Dandois, Olano,
and Ellis 2015). Overall, the precision maps provide a better spatial indication of the SfM
method’s inherent uncertainties than relying exclusively on values reported by GCPs and
check points as a measure of reconstruction quality, which due to the limited number of
surveyed GCPs and the lack of GCPs at canopy level cannot adequately represent uncer-
tainties across the scene. However, it must be noted that these precisionmaps can’t account
for some systematic errors (e.g. doming) and do not represent accuracy, which can only be
assessed using check points (James, Robson, and Smith 2017b). Sparse point precisions at
ground level were higher (<10 cm) than for the vegetation canopy (20–50 cm). The contrast
between precisions of the lower (60%) versus higher (>75%) overlap acquisition highlighted
that ground information resulting from higher overlap flights appears more reliable, an
observation which has previously been made for forested areas (Dandois, Olano, and Ellis
2015). These uncertainties were confirmed at the dense point cloud level by comparing per
palm maximum values from a replicate dataset.

Figure 9. Histograms of estimated stem heights for the 7 year old plot (a) and 10 year old plot (b).
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4.2. Quality of derived DTMs

Retrieving accurate ground elevations from SfM can introduce considerable uncertain-
ties but doing so represents an alternative to time consuming manual surveys when
lacking LiDAR coverage of the studied area, for point cloud normalisation and CHM
determination. We found that undergrowth caused an overestimation of the elevation of
identified ground points, while dense canopies led to the absence of information about
the ground position. Interpolating between sparse ground points as was required in this
study for the 10 year old plantation was only feasible for regions of very slightly varying
topography as is the case for peat-soil plantations which show very subtle changes in
topography at landscape extents (Ballhorn, Jubanski, and Siegert 2011). Although the
MAE of the measured ground points did not exceed 20 cm for all the studied areas, it
can be expected that uncertainties in the DTM remain a major limiting factor in the
quality of resulting canopy height metrics. An increase in DTM error resulting from fewer
ground points was observed for the lower overlap (60%) acquisition, suggesting that
higher overlap is recommended if DTMs must be derived from SfM point clouds alone.

4.3. CHM-based palm identification

Local maxima based palm identification informed by planting distance performed very
well (98.2% MA) for palms of intermediate ages (here 7 years), when they were taller
than surrounding vegetation and other topographic variations (e.g. mounds of over-
grown timber) and when their fronds did not yet overlap by more than a few deci-
metres. This mapping accuracy is identical to that reported by Kattenborn et al. (2014)
for dense palm stands without overlap. The performance of height based identification
of young palms (2 years) was heavily dependent on the plantation structure and
undergrowth. Excluding areas with large local topographic variations our approach
performed moderately well with 80.4% mapping accuracy, influenced predominantly
by false positives from tall undergrowth. In the plot studied here, the application of the
method to the entire plot was complicated by the overgrown stacks of organic material
which resulted in false positives and sometimes obscured adjacent young palms. We
advise that local maximum methods are not appropriate for direct application to
plantation blocks with such topographic variations. For older plantations (10 years),
the resulting MA of 94.9% was caused by issues with overlap and smaller palms which
are surrounded by taller ones not being identified as local maxima. This could be partly
addressed by decreasing the window size of the local maximum filtering, which would
however introduce more false positives.

4.4. Assessing maximum point cloud height against TFH

Comparing the maximum point cloud height with field-measured TFH appeared to show
a high uncertainty but also an apparent negative bias for the UAV-derived metric (Figure 7).
The large deviations between field measurements and point cloud metrics are likely due to
biases also in field measurements – e.g. including the manual identification of the highest
frond, selection of its highest part and a possible x, y discrepancy between the reference
point on the ground and the highest measured frond point. Treating the field validation
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data as a perfect baseline against which to assess the SfM result is probably a flawed
approach, and both datasets should be considered as uncertain. This difficulty of validating
SfM-derived heightmetrics for higher vegetation such as trees has also been encountered in
previous studies (Lisein et al. 2013). Here this issue is not solved but addressed by the
generation of tie-point precision estimates which provide further insight into the method-
inherent uncertainties, which we show to be relatively low (e.g. < 10 cm) for ground points
and higher at canopy level, averaging around 30 cm as visible in Figure 4.

The negative bias apparent in the results (Figure 7) is expected to be independent of
the above uncertainties and can be partially explained by the effect of undergrowth on
the interpolated DTM surface. For the 10 year old palm plot this is however not
consistent with height validation measurements where the DTM values were below
the reference. Further bias may originate from an inherent smoothing effect of the
dense matching process, observed in previous studies where SfM point clouds were
compared to LiDAR reference data (Lisein et al. 2013), but this is contradictory to the fact
that LO_10yr produced maximum height values closer to field measured TFH.

Overall, the errors resulting for the TFH (or top-of-canopy height) estimation are very
close to those reported by other studies applying SfM methodologies to vegetated
systems of similar height range (Wallace et al. 2016; Panagiotidis et al. 2017). Better results
can be achieved when employing a LiDAR-derived DTM (Lisein et al. 2013; Puliti et al.
2015), though this represents a considerable operational constraint. The inclusion of
convergent imagery at non-nadir angles (e.g. 45°) has also been advocated as besides
strengthening the image network for reconstruction it can result in more ground points
being visible to aid in DTM generation (Cunliffe, Brazier, and Anderson 2016). The latter
aspect may be negligible for dense canopy cover but could yield better results for
younger palms. The impact on point precisions and DTM error would benefit from further
study, especially in relation to the cost of additional acquisitions and processing time.

4.5. Point cloud height metric based stem height estimation

Assessing the relationship between different point cloud height metrics and field
measured stem height did not show very large differences between the metrics used.
Nevertheless, the strongest relationship differed between the two different aged plots
analysed, which can likely be attributed to different point cloud characteristics as a result
of canopy density. For 7 year old palms where little to no overlap occurs, a greater
portion of the fronds were resolved in the point cloud; while for the 10 year old palms
the lower fronds were completely, or partially obscured. When applying the resulting
models to generate estimates of stem height distributions throughout the plots, it is
striking that there were relatively large value ranges for plots of the same age, con-
siderably larger than the resulting MAEs. For the 7 year old plot, there were however
a considerable number of negative values, which were re-set to zero for the analysis. The
two primary causes for this were local DTM errors caused by undergrowth as well as the
fact that younger, later planted replacement palms have significantly smaller fronds
which results in under-estimation of stem height by the linear model. Due to the
amount of palms affected, we advise that a solution should be sought before applying
this model for stem height estimations. Given a large amount of field samples across
multiple palm ages, it may be possible to identify a robust non-linear relationship which
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accounts for age-dependent differences. This would allow efficient and accurate retrieval
of per-palm trunk biomass from SfM point cloud data using allometric equations, given
assumptions about diameter at breast-height (DBH) (Corley and Tinker 2016).

4.6. Implications for oil palm plantation management and research

The methods for palm identification, TFH and stem height retrieval presented here are
applicable to image data from consumer grade UAV systems, provided such data are
acquired with sufficient spatial overlap. Our workflow can thus be of relevance to
improved plantation management – because it can deliver maps indicative of plantation
status at relatively low financial cost. Repeat acquisitions would further allow the
identification of height increments over time and local variations in height could
possibly be correlated with oil palm yield, for example by influencing the light regime
(Corley and Tinker 2016). The retrieval of height metrics appears to work almost as well
for lower resolution, lower overlap acquisitions (LO_10yr) as they do for acquisitions
focused on retrieving a higher quality point cloud (e.g. HO1_10yr). This is an important
insight when seeking to maximise the spatial coverage of survey flights, whilst also
reducing the time required for acquisitions and data processing. A constraining factor
regarding both time and cost of UAV acquisitions, following the survey designs pre-
sented here, is the reliance on high precision GCP measurements. If the absolute
geographic locations are not a necessity, an alternative may be the use of a total station
to measure distances between markers. The installation of adequately spaced perma-
nent GCPs would also greatly facilitate repeat acquisitions. Furthermore, with the
ongoing development of UAVs that will, in future, carry on-board real-time kinematic
GNSS capabilities, immediate high precision georeferencing of the acquired data may
become an operational option, minimising the need for ground control (Turner, Lucieer,
and Wallace 2014).

The demonstrated usefulness of even low overlap acquisitions to derive height
metrics and the increased application of UAVs for plantation management means that
there may be an untapped data source of interest for research and a potential for
a closer collaboration between researchers and innovative palm oil companies. Despite
similar results for HO1_10yr and LO_10yr it can be assumed that for deriving information
on younger palm canopies and for finer scale structural information such as frond rachis
length and number, utilizing advanced point cloud metrics, higher overlap and finer
resolution are required. The ability to derive advanced metrics with higher reliability may
also prove useful in predicting per palm biomass, given adequate training and validation
data derived from destructive harvesting or estimated AGB derived from allometric
measurements of stem height, DBH, petiole cross-section and frond number in the
field (Corley and Tinker 2016). Coupled with further concurrent field sampling efforts,
UAV SfM photogrammetry derived metrics may be robust enough to provide much
needed information to address one aspect of the lack of data for oil palm carbon stock
estimates and the impact of the conversion of different land cover to oil palm planta-
tions (Kho and Jepsen 2015).

Emerging work by Malek et al. (2014) and Manandhar, Hoegner, and Stilla (2016)
indicates the potential of computer vision and object based detection for automated oil
palm identification and counting. Further work is needed to develop and demonstrate
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the robustness of these methods in complex plots with larger undergrowth. It stands to
reason that object based and height based detection possess a number of contrasting
advantages and that a hybrid approach including height information and image-based
segmentation may yield the most accurate solution. As a DSM typically results from the
workflow for orthomosaic generation, no additional data acquisition is required.
Therefore this would be a promising direction for future research aiming at developing
palm identification methods with sufficient accuracy for commercial application.

5. Conclusions

This study demonstrated the use of SfM point clouds derived from UAV imagery for the
identification of single palm canopies and the retrieval of basic structural information
based on height metrics from segmented palms. In plantation plots with flat topography
as studied here a DTM interpolated from classified SfM ground points proved sufficiently
accurate (~10 cm for high overlap acquisitions) for height based studies of oil palm
without requiring LiDAR based information, which is key for the operational implemen-
tation at similar sites. Employing an MC approach for generating point cloud precision
estimates allowed a spatially resolved assessment of SfM data quality which can be used
to inform a quantitative assessment of point cloud robustness and suitability for vegeta-
tion structure related studies. Local maximum methods for CHM based palm identifica-
tion performed best for intermediate palm ages (7 years) but show more errors where
large undergrowth and overlapping between palm canopies is common. Further it was
shown that reliable inventories of the number of palms per plantation block could be
generated with acquisition plans which favour coverage over high overlap, which
provides an important benchmark for applying this methodology while maximising
the efficiency of data acquisition. However, more highly resolved per-palm point clouds
allowed for better estimation of stem height using height percentiles, and enabled the
generation of stem height distributions for the studied plots. Due to the amount of
detail resolved, it can be assumed that more complex point cloud based metrics could
be identified which correlate with other aspects of palm structure and therefore warrant
further research. These derived per-palm metrics, besides giving detailed information on
plantation status, may prove useful for predicting per-palm AGB and ultimately mapping
oil palm carbon stocks, providing an affordable and widely applicable method for
carbon accounting.
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