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ABSTRACT 

CATEGORIZING FETAL HEART RATE VARIABILITY WITH AND 

WITHOUT VISUAL AIDS 

 
Amanda Ashdown 

Old Dominion University, 2015 

Director: Dr. Mark W. Scerbo  

 

 

This present study examined the ability of clinicians and novices to correctly categorize 

fetal heart rate (FHR) variability with and without the use of exemplars. Clinicians and 

undergraduate students were asked to inspect FHR images and determine into which of 

four categories they belonged. Each participant took part in three conditions: one in 

which they were provided exemplars of prototypical FHR variability to use during their 

categorization task, another in which they were provided exemplars of nonprototypical 

FHR variability to use in their task, and a control condition in which no exemplars were 

available. The results showed that experts were more accurate and quicker in their 

category judgments than novices, but this difference was largely limited to the condition 

with no exemplars. The results also showed that participants correctly categorized more 

prototypical images than nonprototypical images and that the prototypical and 

nonprototypical cues were beneficial for experts and novices. The results suggest that 

providing clinicians with alignable, high similarity visual aids can improve judgments 

about FHR variability and potentially enhance safety in labor and delivery.  
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INTRODUCTION 

The ability of a person to perceive and identify shapes and patterns is extremely 

important. The capacity to mentally place relevant signals into correct categories is vital 

in many work situations. Military pilots need to recognize targets while flying, 

particularly with unmanned aerial vehicles (UAV) that require them to perceive objects 

on a computer screen. Also, clinicians rely on their ability to perceive abnormalities in x-

ray and ultrasound images. A person working in any of these jobs needs to accurately 

perceive whether an item is a target of interest or something that can be ignored. Military 

personnel and clinicians need to be able to effectively categorize relevant and nonrelevant 

information, as stimuli can often be ambiguous in different situations.  

The present study addressed issues faced by clinicians when interpreting fetal 

heart rate (FHR) tracings. Although there are guidelines established for assessing FHR, 

there is still potential for clinicians to misclassify FHR variability, which can result in 

inappropriate operative intervention (i.e., cesarean procedures). 

A major issue for clinicians is the difficulty they face in interpreting and 

classifying FHR tracings as reassuring or ominous. Thus, research on categorization was 

examined to address the underlying cognitive process needed for this activity.  Further, 

evidence shows that cues and visual aids can be beneficial when categorizing stimuli. 

Cues can direct attention to salient information and help individuals be more accurate and 

respond faster to stimuli. Accordingly, the present study also examined the effect of 

visual exemplars on the ability to categorize FHR variability for both novices and 

experts.  
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MATERNAL FETAL HEART RATE MONITORING 

Historical Background 

Over the years people have attempted to assess fetal well-being by monitoring 

fetal heart rate (FHR) activity. Presently, there are two methods commonly used for fetal 

assessment during labor. The first method was introduced after a Swiss surgeon, Francois 

Mayor, laid his ear on a pregnant woman’s abdomen and heard fetal heart tones (Chez, 

Harvey, & Harvey, 2000).  A couple years later, the use of a stethoscope to amplify fetal 

heartbeat and exclude other sounds (auscultation) was implemented in fetal assessment.  

Today, auscultation (listening to sounds from the heart with a stethoscope) is performed 

with low-risk patients every 30 minutes in the active phase of labor and every 15 minutes 

in the second stage of labor (Sweha, Hacker, & Nuovo, 1999).  

The second method of fetal assessment is electronic fetal heart monitoring (EFM) 

introduced in 1958 (Sweha et al., 1999). EFM was used during the 1960s in an effort to 

improve fetal and neonatal outcomes by reducing neurological injury and death (Chez, 

Harvey, & Harvey, 2000; Miller, 2011; Sweha et al., 1999). This method uses an external 

transducer placed on the maternal abdomen and held in place by an elastic belt. The 

transducer uses Doppler ultrasound to detect fetal heart motion and is connected to a 

monitor that records the FHR, along with the mother’s contractions, on a continuous strip 

of paper or a computer screen, as shown in Figure 1 (Sweha et al., 1999). The heart rate 

tracing is displayed over heavy vertical lines repeated at 60-sec intervals and lighter 

vertical lines repeated at 10-sec intervals (Chez et al., 2000). The top portion of the 

tracing shows the FHR in beats per minute (bpm) while the bottom portion displays the 
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intensity of maternal contractions in millimeters of mercury (mmHg) as a function of 

time.  

 

 

Figure 1. A paper scale of maternal fetal heart rate (MFHR). The FHR is displayed at the 

top and maternal contractions are displayed at the bottom (Sweha et al., 1999).  

 

 

The introduction of EFM was thought to be beneficial because of the ability to 

continuously monitor the fetus and closely assess high-risk patients. Today, in North 

America the EFM process has become a standard for all patients designated high risk and 

has been widely applied to low-risk patients as well (Sweha et al., 1999; Miller, 2005; 

Bailey, 2009). The EFM procedure was reported in 2005 to have been used in 85.4 

percent of births (Martin, Hamilton, Sutton, Ventura, Menacker, Kirmeyer, & Munson, 

2007).  

As interest in FHR monitoring grew, the importance of creating universal 

terminology became important. Therefore, in 2008, the National Institute of Child Health 

and Human Development (NICHD), the American College of Obstetricians and 

Gynecologists (ACOG), and the Society for Maternal-Fetal Medicine jointly sponsored a 
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workshop focused on EFM to revisit interpretation and research recommendations for 

intrapartum EFM.   

Fetal Heart Rate Characteristics 

Interpretation of a tracing requires both qualitative and quantitative description of 

uterine contractions, baseline FHR, FHR variability, presence of accelerations, periodic 

or episodic decelerations, and changes or trends of FHR tracings over time (Macones, 

Hankins, Spong, Hauth, & Moore, 2008). Uterine contractions are quantified by the 

number present in a 10-minute window, averaged over 30 minutes. Normal uterine 

activity is defined as five or fewer contractions in 10 minutes (Macones et al., 2008).  

Fetal heart rate patterns are defined by the characteristics of baseline, variability, 

accelerations, and decelerations (Macones et al., 2008). The baseline FHR is determined 

by the mean FHR rounded to 5 bpm during a 10-minute window. The normal FHR range 

is between 120 and 160 bpm. The baseline rate is considered changed if a shift persists 

for more than 15 minutes. When the baseline FHR is <110 bpm, it is called bradycardia  

and considered abnormal.  Severe prolonged bradycardia of < 80 bpm that lasts for three 

minutes or longer is an ominous sign indicating severe hypoxia and is often a terminal 

event. A baseline greater than 160 bpm is defined as tachycardia and may be a sign of 

increased fetal stress when it persists for 10 minutes or longer (Sweha et al., 1999).   

Normally, the FHR fluctuates from the baseline, which reflects a healthy nervous 

system and cardiac responsiveness. However, there can be fluctuations in FHR that are 

irregular in amplitude and frequency. There are four categories of variability: absent FHR 

variability with an undetectable amplitude range, minimal FHR variability with an 

amplitude range of 5 or fewer bpm, moderate FHR variability with an amplitude range of 
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6 to 25 bpm, and marked FHR variability with an amplitude range greater than 25 bpm 

(Macones et al., 2008). In addition to the variability, there are also several types of FHR 

patterns that clinicians need to detect. 

One type of pattern is an acceleration, defined as an abrupt increase in FHR from 

its onset to its peak in less than 30 seconds (ACOG, 2010; Macones et al., 2008; Sweha, 

et al. 1999). At 32 weeks of gestation and beyond, an acceleration has a peak of 15 bpm 

or more above baseline, with a duration of 15 to 120 sec from onset to return (ACOG, 

2010; Macones et al., 2008). Accelerations are usually associated with fetal movement, 

vaginal examinations, uterine contractions, umbilical vein compression, fetal scalp 

stimulation, or even external acoustic stimulation. The presence of accelerations is 

considered a reassuring sign of fetal well-being (Sweha et al., 1999).  

Decelerations are classified as early, late, or variable based on specific 

characteristics. Early decelerations are caused by fetal head compression during uterine 

contraction, resulting in vagal stimulation and slowing of the heart rate (Sweha et al., 

1999). Early decelerations are a gradual decrease in FHR lasting 30 seconds or more. 

This type of deceleration has a uniform shape and mirrors the contraction; with a slow 

onset that coincides with the start of the contraction and a slow return to the baseline that 

coincides with the end of the contraction (ACOG, 2010; Macones et al., 2008; Sweha et 

al., 1999). These decelerations are not associated with fetal distress and are considered 

reassuring (Sweha et al., 1999).  

A late deceleration is a symmetric decrease in FHR lasting 30 seconds or more, 

beginning at or after the peak of the uterine contraction and returning to baseline only 

after the contraction has ended (ACOG, 2010; Macones et al., 2008; Sweha et al., 1999). 
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Late decelerations are associated with uteroplacental insufficiency and are provoked by 

uterine contractions. Any decrease in uterine blood flow or placental dysfunction, such as 

postdate gestation, preeclampsia, or chronic hypertension, can cause late decelerations 

(Sweha et al., 1999). All late decelerations are considered potentially ominous. A pattern 

of persistent late decelerations is nonreassuring requiring further evaluation of the fetus 

(Sweha et al., 1999).   

Variable decelerations are abrupt decreases in FHR that vary in shape, depth, and 

timing in relation to uterine contractions. They typically have a decrease in FHR of at 

least 15 bpm and a duration of 15 to 120 seconds (Bailey, 2009; Sweha et al., 1999). 

Variable decelerations are caused by compression of the umbilical cord and are generally 

associated with a favorable outcome; however, a persistent variable deceleration pattern 

may lead to fetal distress if not corrected.  

In 2008, the NICHD recommended a three-tier classification system to define 

FHR patterns (Macones et al., 2008). FHR tracings fall into Category I if the baseline  is 

between 110–160 bpm, there is moderate variability, there are no late or variable 

decelerations, and early decelerations and accelerations are either present or absent 

(Fedorka, 2010; Macones et al., 2008). Category I FHR tracings are considered a 

reassuring sign that labor is progressing safely (Fedorka, 2010). Category II tracings 

include any of the following: a baseline rate indicative of  bradycardia or tachycardia, 

minimal or absent baseline FHR variability not accompanied by recurrent decelerations, 

marked baseline variability, absence of induced acceleration after fetal stimulation, 

periodic or episodic decelerations, recurrent variable decelerations accompanied by 

minimal or moderate baseline variability, prolonged deceleration of more than two, 
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recurrent late decelerations with moderate baseline, or variable decelerations with other 

characteristics, such as slow return to baseline (Fedorka, 2010; Macones et al., 2008). 

Category II FHR tracings may or not be problematic and should be closely monitored to 

assess whether they are normal or abnormal. Category III tracings appear to have absent 

baseline FHR variability and any of the following: recurrent late decelerations, recurrent 

variable decelerations, and bradycardia (Fedorka, 2010; Macones et al., 2008). Category 

III FHR tracings are abnormal and are regarded as ominous, often requiring clinical 

intervention. Because the FHR fluctuates over time, it is imperative to monitor a category 

change; FHR tracings may move back and forth between categories depending on the 

clinical situation and management strategies employed.  

Perceiving Fetal Heart Rate Tracings 

 It is important for clinicians to understand the different implications of FHR 

patterns to prevent misinterpretation and unnecessary clinical interventions. Clinicians 

who work in labor and delivery must visually inspect and interpret the FHR tracings, 

which can introduce a significant source of subjectivity (Menihan & Zottoli, 2001). 

Continuous EFM is intended to reveal potential problems in fetal well-being; however, 

misinterpretation of FHR tracing patterns may lead to other problems including risk for 

fetal injury, unnecessary intervention, or even death (Buscicchio et al., 2010; Sweha et 

al., 1999). The interpretation of FHR activity and guidelines for management are 

inconsistent and can result in an increase in inappropriate operative intervention, as well 

as increases in the cost of obstetrics and malpractice insurance (Barstow, Gauer, &  

Jamieson, 2010; Berkus et al.,1999; Menihan & Zottoli, 2001; Miller, 2011; Minkoff & 

Berkowitz, 2009;  Sisco et al., 2009; Sweha et al., 1999; Weiss et al., 1997). Because 



8 

 

there are no universally accepted definitions of fetal distress, EFM is associated with 

increased rates of surgical intervention (i.e., cesarean section) resulting in increased costs 

(Sweha et al., 1999).  Since the introduction of EFM, the rate of cesarean delivery 

increased to 26.1 percent of all births, the highest rate ever reported in the United States 

(Martin et al., 2007). 

 Several studies show poor agreement in subjective interpretations of FHR 

patterns, even among experts (Ayres-de-Campo, Bernardes, Costa-Pereira, & Pereira-

Leite, 1999; Bernardes et al., 1997; Gagnon, Campbell, & Hunse, 1993). Interpretation of 

tracings has been shown to vary among different practitioners interpreting the same 

tracing (inter-rater), and when the same practitioner examines the same tracing on 

consecutive occasions (intra-rater; Freeman, 2002).  Figueras and colleagues (2005) 

measured the inter- and intra-observer agreement of visual analysis of fetal heart rate 

tracings and found poor reliability. Classifications of normal baseline and normal 

variability showed good agreement, but poor agreement was found for low FHR 

variability and number of decelerations present in the tracings (Figueras, Albela, Bonino, 

Palacio, Barrau, Hernandez, Casellas, Coll, & Cararach, 2005). In in a study of midwives, 

Devane and Lalor (2005) found that agreement was highest in the classification of 

decelerations and lowest in the assessment of baseline variability.  Ayres-de-Campos and 

colleagues (1999) evaluated inconsistencies in classification of FHR tracings and clinical 

decisions among experts. The researchers examined inter-observer agreement in the 

interpretation of tracings with the International Federation of Gynecology and Obstetrics 

(FIGO) guidelines and found reasonable agreement in the classification of normal 

tracings compared to suspicious or pathologic tracings.  Thus, clinicians had difficulty 
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with the abnormal tracings, the very ones requiring more attention. Based on research 

showing poor agreement among clinicians for the classification of MFHR tracings and 

the difficulty clinicians experience when interpreting the tracings, it is important to 

examine further the ability to categorize the FHR tracings.  
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OBJECT PERCEPTION AND CATEGORIZATION 

Historical Background 

 For years, scientists have investigated human ability to perceive objects and 

shapes in the environment. Our daily activities, and even survival, depend on the way we 

accurately recognize objects. The ability to perceive objects has been widely studied 

since the early 1900’s with the introduction of Gestalt theory by Wertheimer and his 

colleagues (Hartmann, 1935; Wagemans, Feldman, Gepshtein, Kimchi, Pomerantz, van 

der Helm, & van Leeuwen, 2012; Wertheimer, 1938a). Wertheimer argued that structured 

wholes or Gestalten, rather than sensations, are the primary units of mental life 

(Wertheimer, 1938a). The Gestaltists’ view is that humans perceive the simplest possible 

interpretation of elements in the environment; furthermore, we have the ability to 

immediately detect relationships such as symmetry and continuity, a phenomenon called 

perceptual organization (Lowe, 1985). The Gestalt principles of organization describe 

how figural properties are perceived as patterns. Since the emergence of Gestalt theory, a 

number of different principles of perceptual organization have been proposed in order to 

account for both static and dynamic aspects perceptual grouping (Wagemans et al., 

2012).  One principle that determines perceptual organization, according to Wertheimer 

(1938b), is similarity: The law of similarity states that similar features are grouped 

together.  

Research on the principles of perceptual organization have helped us understand 

how we categorize and perceive patterns in our environment. Similarity is a very 

important principle of categorization, and our ability to make sense of our experiences 

and knowledge depends on our capability to categorize relevant information.  
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Categorization 

Categories play a fundamental role in our daily lives and are the basis for decision 

making in most professions (e.g., air traffic control, healthcare, and engineering). 

Categories are sets of objects or events that have similar features and are grouped 

together because of their similarity (Rosch, 1975). Categorization refers to an 

individual’s ability to assign objects or other stimulus patterns to categories (Paradis, 

Guo, Olden-Stahl, & Moulton, 2012). An important Gestalt principle of perceptual 

organization is that similar things will tend to be grouped together, and most theories of 

categorization share the assumption that similar examples tend to belong to the same 

category.  

Rosch and Mervis (1975) conducted several studies to examine about how 

humans mentally organize the entities in their environment. They noted that features in 

the world are not distributed randomly across entities, but instead, tend to occur in 

clusters, and suggested that we group objects together that share such clusters of features 

to form categories. In their research, they found that the most prototypical members of 

categories are those which have the greatest family resemblance to other members in the 

category and have fewer attributes in common with members of other categories (Rosch 

& Mervis, 1975).  

Many categorization models have received attention, two of which are the 

exemplar model and prototype model. In exemplar models, the learner stores mental 

representations of exemplars, grouped by category, and then classifies new objects on the 

basis of their similarity to the previously learned examples (Estes, 1986). The more 

similar the target instance is to concrete exemplars of a category, the more likely it will 
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be placed in that category (Cohen & Basu, 1987). A new item is judged to be part of a 

category to the extent that it is sufficiently similar to an exemplar stored in memory 

(Storms, DeBoeck, & Ruts, 2000). In prototype models, the learner forms an abstract 

representation of each category represented in a series of learning experiences, then 

classifies new instances on the basis of their distances from the mental representation of 

their category prototypes (Estes, 1986). These models suggest that many categories do 

not have defining properties, but rather are organized around specific examples acquired 

during learning (i.e., exemplars) or around an average example (i.e., a prototype).  

Early theories of categorization assumed that rules, prototypes, or exemplars were 

used exclusively to mentally represent categories of objects. More recently, hybrid 

theories of categorization have been proposed suggesting there are multiple ways 

categories can be represented. Johansen and Palmeri (2002) argue these can even 

represent shifts that occur during category learning. In three experiments, participants 

learned to categorize stimuli with feedback, and the researchers tracked how participants 

generalized their category knowledge by testing them on critical transfer items without 

feedback. The results revealed individual differences in the generalization patterns 

exhibited by subjects, and those generalizations changed systematically with experience. 

Early in learning, subjects generalized on the basis of single diagnostic dimensions, 

consistent with the use of simple categorization rules. Later in learning, subjects 

generalized in a manner consistent with the use of similarity-based exemplar retrieval, 

attending to multiple stimulus dimensions. Other models suggest a psychological 

transition from prototype-based to exemplar-based processing during category learning. 

In a series of experiments, Smith and Minda (1998) evaluated participants' categorization 
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strategies and standard categorization models at successive stages of learning smaller, 

less differentiated categories and larger, more differentiated categories. Their results 

revealed that the prototype model had a strong early advantage that gave way slowly 

when learning larger, more differentiated categories and the exemplar model dominated 

in learning with small, less differentiated categories. Therefore, Smith and Minda’s 

(1998) experiments provide evidence that early on, participants' performance is consistent 

with prototype-based processing with a gradual transition later on to strategies that 

feature exemplar processing given highly familiar training exemplars. Thus, what all 

these categorization models have in common is that people tend to judge the similarity of 

stimuli in order to group the stimuli together into categories. 

Although similarity might be an explanation of how people categorize, 

observations suggest that similarity can be influenced by context. Medin, Goldstone, and 

Gentner (1993) conducted several experiments that demonstrate that properties 

recognized about a certain stimulus depend on its pairing with another stimulus, 

suggesting that similarity is dynamic and can change with experience. According to 

Medin and colleagues, similarity can be viewed as a guideline for categorization but can 

be overridden by other forms of knowledge. Not only has context been shown to 

influence categorization, but inductive inference can play a role in categorization as well.  

Gelman and Markman (1986) examined whether inductions can be made without 

perceptual support, that is when an object does not look like other members of its 

category and when a property is unobservable. The researchers compared category 

membership and perceptual similarity in an induction reasoning task. Young children 

were shown pictures of two animals and were taught about different properties of each 
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animal. Then they were asked which property was true of a new animal that was 

perceptually similar to one alternative but belonged to the category of a perceptually 

different alternative. For example, children had to decide whether a shark is more likely 

to breathe like a tropical fish because both are fish, or as a dolphin does because they 

look alike. Gelman and Markman (1986) found that by age 4, children can use categories 

to support inductive inferences even when category membership conflicts with 

appearances (similarity). Moreover, the children distinguished properties that support 

induction within a category (e.g., means of breathing) from those that are determined by 

perceptual appearances (e.g., weight).  

The studies mentioned above suggest that perceptual similarity may serve as an 

initial classification strategy, but categorization can be refined and modified by 

knowledge. Evidence also suggests that categories can be organized around goals. 

Barsalou (1983, 1985) studied the organization of categories constructed in the service of 

goals and demonstrated that the determinants of a particular category's graded structure 

(i.e., members of a category varying in how good or typical they are of their category) 

can change with context. Whereas ideals may determine a category's graded structure in 

one context, central tendency may determine a different graded structure in another. 

Ideals are characteristics that exemplars should have if they are to best serve a goal 

associated with their category. Central tendency refers to any kind of information about a 

category's exemplars, which is another way to view an exemplar's family resemblance. 

Therefore, Barsalou (1983, 1985) argued the organization of categories can be 

determined by a person’s goal at a given time. Collectively, these studies illustrate that 

the categorization of objects and pattern stimuli is a dynamic process.  



15 

 

Categorization of Ambiguous Stimuli 

The real world does not always have clear-cut stimuli that are easily categorized, 

but has instances where stimuli can be ambiguous and vague. When asked to indicate 

which items from a set of candidates belong to a particular natural language category, 

individuals disagree on which items should be considered category members (Verheyen 

& Storms, 2013).  Alternatively, categorization differences are said to be due to 

ambiguity when individuals employ different criteria. Categorization differences are due 

to vagueness when individuals employ different cut-offs for separating members from 

non-members (Verheyen & Storms, 2013). There are important implications in 

examining how people perform when categorizing stimuli that cannot easily be 

distinguished. 

One study had an objective to examine the RT-distance hypothesis which is 

motivated by decision-bound theories of categorization. Ashby, Boynton, and Lee (1994) 

examined response times (RT) of categories that fell near or far from the division point 

that separates the exemplars of the contrasting categories. Decision-bound theories of 

categorization assume that the perceptual effect of each presentation of a category 

exemplar can be represented as a point in a multidimensional perceptual space and that 

repeated presentations of the same exemplar do not always lead to the same perceptual 

effect. Furthermore, decision bound theory assumes that a practiced subject divides the 

perceptual space into regions and associates a category label with each region. On each 

trial, the subject categorizes an object by determining in which region the stimulus 

representation falls. The partition between two response regions is called the decision 

bound (Ashby, Boynton, & Lee, 1994; Maddox & Ashby, 1993). The RT-distance 



16 

 

hypothesis states that RT decreases with the distance between the perceptual effect and 

the decision bound. Categorization response times were examined in three separate 

experiments and in each experiment exemplars varied on two physical dimensions. Three 

different types of stimuli were used: (1) horizontal and vertical line segments of varying 

length that were joined at an upper left corner, (2) rectangles of varying width and height, 

and (3) circles or semicircles of varying size with a radial arm of varying orientation. The 

results revealed that RT decreased with distance from the stimulus to the categorization 

decision bound. Thus, stimuli falling near a category bound have ambiguous category 

membership, hence categorization is slow, whereas stimuli far from the category 

boundary are easy to classify, and therefore, result in shorter response times. 

Not only are stimuli responded to faster when they are further away from the 

category boundary, but stimuli that are similar to their prototypes, and therefore are more 

discriminable from other categories, are learned quicker. In Vandierendonck’s (1984) 

study, participants learned to classify random patterns generated from two prototypes 

with either a short or long inter-prototype distance. The study revealed the tendency to 

call a pattern “new” increased with the distance between the pattern and its prototype. 

Learning was shown to be faster when the distance between the categories is larger (i.e., 

when the categories are more discriminable). 

Although learning is faster when stimuli are similar to their prototypes, it is 

evident that learning with high exemplar diversity can aid in a person’s ability to 

generalize to novel stimuli less typical of the category prototype. For example, Das-

Smaal and De Swart (1984, 1986) argued that categorization models must be capable of 

representing variation among exemplars within a category. Their studies reveal that a 
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central representation (prototype) is abstracted from the experienced exemplars of a 

category, and classification is based on distance from this prototype. They investigated 

forms of variation within categories, more specifically, the similarity of a dimensional 

value variant to a prototypical value (i.e., typicality of variants). Exemplars having the 

same dimensional values may differ with respect to how typically they exhibit these 

values. Their results revealed that typical exemplars were classified faster and with more 

certainty than less typical ones. However, following learning, broad range experience 

resulted in fewer classification errors than narrow range experience, due to better 

classification of both medium typical and (new) atypical stimuli in the broad range 

condition.  

Similarly, Hahn, Bailey, and Elvin (2005) examined the effect of within-category 

diversity on a person’s ability to learn perceptual categories, the inclination to generalize 

categories to novel items, and the ability to distinguish new items from old. The 

researchers manipulated exemplar diversity for one of two perceptual categories of 

schematic flower images. Category membership for these stimuli was determined by the 

flowers’ head and stem areas. Participants learned to distinguish between pictures of both 

categories and were assessed with old and novel stimuli that were either similar or 

dissimilar to the prototype. In one training condition with low exemplar diversity, flowers 

presented for the reference category were very similar to the prototype of that category. 

In the other training condition, the flowers presented were more diverse and dissimilar 

from the prototype. Hahn et al. (2005) found that learning was impaired as exemplars 

differed from the prototype. Thus, training with high exemplar diversity made learning 

more difficult than training with low exemplar diversity. However, higher exemplar 
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diversity during training increased generalization to novel stimuli outside the range of 

trained stimuli during test (Hahn et al., 2005).  

Many variables influence the way in which humans classify certain exemplars 

into categories. People tend to categorize stimuli based on their experiences with learning 

specific categories. For example, people who only learned and experienced prototypical 

examples of a category may not be able to generalize to new, atypical stimuli that belong 

in the same category. Furthermore, people who have a broad range of experience with 

ambiguous stimuli are able to generalize to new stimuli and categorize them more 

reliably. Therefore, it is important to examine the way in which experts accurately 

classify different exemplars into their correct categories, and how they differ from 

novices in a categorization task.  

Experts and Novices 

Compared to novices, experts spend many years learning to classify objects on the 

basis of subtle perceptual cues, and categorization often becomes automatic because of 

the vast majority of examples they have experienced. Palmeri (1997) investigated the 

effects of exemplar similarity on the development of automaticity with a task in which 

participants judged the numerosity of random patterns of 6 to 11 dots. After several days 

of training, response times were the same at all levels of numerosity, indicating that 

automaticity had been achieved. Following training, participants were asked to judge the 

numerosity of old patterns and new patterns of varying similarity to the old patterns. 

Judgment response times were determined by the similarity of the transfer patterns to the 

old training patterns. Old patterns were judged just as quickly as those from the end of 

training, and new patterns were judged just as slowly as those from the start of training. 
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Also, new moderate-similarity and low-similarity distortions were judged with fast 

response times, in accord with their similarity to the old patterns.  The researchers then 

investigated the influence of exemplar similarity on the development of automaticity. At 

each level of numerosity, people were trained with three types of patterns: moderate-

similarity patterns with moderate-level distortions from the prototype, low-similarity 

patterns with significant distortions from the prototype, and unrelated patterns that were 

generated randomly. The results revealed that numerosity judgments became automatized 

more quickly for moderate-similarity patterns than for low-similarity or unrelated 

patterns. Further, throughout training, the moderate-similarity patterns were judged more 

quickly than the low-similarity or unrelated patterns (Palmeri, 1997). Therefore, these 

results suggest that experts are able to rapidly categorize similar novel dot patterns based 

on learned experiences.  

The study by Palmeri (1997) showed that people can learn to categorize 

ambiguous stimuli such as dot patterns. However, in real world tasks using more 

meaningful stimuli, evidence shows that people in many domains process stimuli 

differently depending on their level of expertise. In an experiment that examined the role 

of radiological expertise in X-ray image perception, observers with four different levels 

of experience performed a recognition task on slides of faces and chest X-ray films 

(Myles-Worsley, Johnston, & Simons, 1988). Half of the X-ray films were normal and 

the other half revealed clinically significant abnormalities. Recognition  for faces was 

uniformly high across all levels of radiological experience. The results revealed that 

memory for abnormal X-ray films increased with radiological experience and were 

equivalent to memory for faces. Moreover, expert radiologists appear to process X-ray 
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images the way that we process faces, by quickly detecting and devoting processing 

resources to features that distinguish one stimulus from another.  There is considerable 

ambiguity in the sensory input of X-ray images because of the low resolution of the 

radiographic image compared with a photographic image. However, Myles-Worsley et al. 

(1988) showed that when an experienced radiologist and an untrained observer view the 

same X-ray image, they presumably perceive it differently.  

Furthermore, in a study aimed at identifying expertise in perceiving and 

interpreting complex, dynamic visual stimuli, Jarodzka, Scheiter, Gerjets, and Van Gog, 

(2010) had professors and novices examine four digital videos of swimming fish. After 

watching the video, performance was assessed by their ability to name locomotion 

pattern correctly, describe which body part had been moving, and describe how each 

body part had been moving. Compared to novices, experts were able to perform the task 

faster and more accurately, as indicated by their better description of locomotion patterns 

and their higher use of correct technical terms. Jarodzka et al., (2010) also found that 

experts attended to more relevant information than novices, who often attended to 

irrelevant information. Another study investigated diagnosis by clinicians of varying 

levels of expertise of authentic pediatric video cases of children with seizures and with 

disorders imitating seizures. The researchers found that the more experienced clinicians 

spent more of their time looking at relevant areas and were more accurate in visual 

diagnosis (Balslev, Jarodzka, Holmqvist, de Grave, Muijtjens, Eika, & Scherpbier, 2012).  

Collectively, these studies reveal that experts and novices perform differently in 

classification tasks across many different domains. Evidence suggests that novices often 

have trouble discriminating relevant from irrelevant information in complex visual tasks, 
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such as diagnosing radiological images or interpreting FHR tracings.  Klein and Hoffman 

(1993) state that a major difference between novices and experts concerns what they 

perceive.  Even when novices perceive all the relevant details, they fail to see the relevant 

relations among them. In real life complex visual tasks, a lot of information is present and 

not all information is relevant. Novices tend to focus on features that are obvious or 

salient rather than on those relevant to the task (Klein & Hoffman, 1993; Lowe, 1999).  

Cues and External Memory Aids 

Studies reveal that people have difficulty categorizing ambiguous stimuli. 

Novices tend to focus on obvious information and have difficulty in determining what is 

relevant to specific tasks, as well as difficulty in noticing when critical information is 

missing (Klein & Hoffman, 1993). Thus, researchers have studied the potential benefits 

of cues and external aids for improving a person’s ability to correctly categorize relevant 

information. Research in human factors has shown that cues can be effective for 

improving signal detection in a wide variety of tasks. Cues are able to direct attention; 

therefore, when a cue is accurate, observers can attend to the cue, respond faster, and 

make fewer errors when detecting signals (Wickens & Hollands, 2000).In a series of 

experiments, Posner, Snyder, and Davidson (1980) demonstrated that detection efficiency 

was affected by cueing participants to where in space a stimulus would occur.  Previous 

research has demonstrated that attending to a cued location in space leads to faster 

response times when a stimulus is presented in that location. Posner, Nissen, and Ogden 

(1978) showed that performance in detecting or discriminating a target significantly 

increased when the location of the target was previously cued. In their spatial cueing 

paradigm, a central arrow cue preceded the onset of a target. The cue correctly indicated 
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the target's location on 80% of the trials (valid trials) and pointed to the opposite location 

in 20% of the trials (invalid trials). Reaction times were found to be faster to the valid 

trials. The results revealed that focusing attention on the cued location enhanced 

processing of the target stimulus, which resulted in faster responses and higher accuracy. 

Furthermore, in a recent study, Gunn, Warm, Nelson, Bolia, Schumsky, and Corcoran 

(2005) utilized a vigilance task in which threat detections (critical signals) required 

observers to perform a subsequent manual target acquisition task. The study revealed that 

visual, spatial-audio, and haptic forms of cues were effective in enhancing unmanned 

aerial vehicle (UAV) operators’ performance in target acquisition. The speed with which 

observers detected threats increased for each of the cueing conditions compared to the 

no-cueing control. 

External visual aids can not only improve performance on target detection tasks, 

but can also facilitate training. For example, Chaney and Teel (1967) examined the 

effectiveness of visual aids for training on an inspection task with experienced machine 

parts inspectors. Their results showed that inspection training by itself resulted in a 32% 

increase in detections, visual aids alone resulted in a 42% increase, and the use of both 

visual aids and training resulted in a 71% increase. The findings of this study suggest that 

the incorporation of visual aids into a training program can improve performance on 

visual detection tasks. Moreover, visual aids can be beneficial for improving a novice’s 

performance by pointing out information relevant to the task at hand, since novices tend 

to focus on features that are obvious or salient (Klein & Hoffman, 1993). 

The type of cue or exemplar is also important for training. Evidence shows that 

comparison learning is a promising approach for learning complex visual tasks (Gentner 
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& Gunn, 2001; Markman & Gentner, 1997). Comparison of contrasting images can help 

students to isolate relevant but less conspicuous information (Gentner & Gunn, 2001). 

According to structural alignment theory, when individuals compare stimuli, features and 

relations within one stimulus are systematically matched to features and relations in the 

other stimulus (i.e., aligned; Markman & Gentner, 1997). Differences between two 

stimuli become more salient as a result of this matching process; thus, information that is 

more salient is easier to notice, which helps discriminating relevant information (Gentner 

& Markman, 1997). For example, when medical students study radiological images of 

diseases, comparison of images with and without abnormalities can help them learn to 

discriminate relevant, disease-related information. Kok, de Bruin, Robben, and van 

Merriënboer (2013) found that on a visual diagnosis test, medical students who were 

allowed to study by comparing diseases on chest x-ray images with normal images were 

better able to diagnose focal diseases than students who could not make comparisons. 

The results show that comparisons with normal images made it easier to discriminate 

relevant information (Kok et al., 2013). Kurtz, Boukrina, and Gentner (2013) investigated 

the effect of presenting training items for comparison during supervised classification 

learning of novel relational categories. Their stimuli consisted of line-drawn images 

depicting rock arrangements made by fictional cultures. In a test phase measuring 

learning and transfer, the comparison group significantly outperformed a control group 

receiving an equivalent training session of single-item classification learning. 

Comparison-based learners also outperformed the control group learners on the ability to 

accurately classify items from a novel domain that was similar to the training materials.  
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Comparison training can facilitate detection performance but it turns out that 

placement of the comparison stimulus is important too. Kurtz and Gentner (2013) argue 

that an alignable (high-similarity) comparison standard can improve detection 

performance by pointing out relevant information. These researchers examined 

participants’ ability to find an anomalous bone in drawings of animal skeletons. Target 

items including the anomaly were presented either alone or with a correct alignable 

standard. The correct standard was presented in either a regular (high alignable) or 

mirror-reversed (low alignable) manner. The high-alignable standard was identical to the 

target skeleton with the exception of the anomaly present. The low-alignable standard 

was always the mirror-reverse of the high-alignable standard. Thus, the two standards 

were equal in terms of the information present, but they differed in their perceptual 

alignability with the target. Their results showed increased accuracy when an alignable 

comparison standard was present during the detection task: participants showed better 

accuracy in detecting the anomalous feature when given a standard against which to 

compare the target item than when given only the target. Furthermore, results showed 

increased accuracy when the comparison standard was more easily alignable (high 

alignable). The alignable comparison standard helped participants detect relevant targets. 

Thus, the evidence suggests that comparison processes enhance people’s ability to detect 

subtle anomalies in complex stimuli by highlighting key differences between the stimulus 

and the comparison standard. The researchers also investigated whether comparison as 

opposed to single-item training led to improved detection of anomalies. Their results 

showed that comparison training led to improved detection of anomalies in subsequent 

novel examples presented as isolated targets. Therefore, comparison-based learning is 
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advantageous and detection of nonobvious anomalies can be improved by providing 

alignable standards next to targets. Collectively, the studies described above show that 

external visual aids that are aligned with relevant features in the training stimuli can be 

beneficial in pointing out relevant information and improving performance in target 

detection tasks.  

The Present Study 

The present study was designed to address how individuals discriminate between 

categories of FHR variability. There were four categories of FHR variability that 

participants needed to classify: absent, minimal, moderate and marked. Participants were 

instructed to identify the category in which each example belongs with and without the 

presence of alignable cues. The participants consisted of novices and experts in order to 

examine whether experience affects the way the FHR variability examples are 

categorized.  

The first goal was to assess whether classification of FHR variability is more 

difficult as the examples deviate further from the prototype for each category. Research 

indicates that categorization of stimuli becomes more difficult as the distance between the 

stimulus and the prototype increases (Ashby et al., 1994; Das-Smaal & De Swart, 1984, 

1986). The first hypothesis proposed that the classification of variability images was 

expected to be easier, and more accurate, if they resemble the prototype and was expected 

to become more difficult as the examples move away from the center and to the 

boundaries of a particular category, making it harder to distinguish from one category or 

another. Therefore, it was hypothesized that classification accuracy will be higher for the 

prototypical examples compared to the nonprototypical examples.  



26 

 

When detecting ambiguous and vague stimuli, research shows that participants 

benefit from comparison learning and using visual aids in a target detection task. Based 

on the evidence that external visual aids increase detection performance (Hall et al., 

2012; Loft et al., 2013; Kok et al., 2012; Kurtz & Gentner, 2013), the second goal of this 

study was to examine categorization performance when given the opportunity to use 

exemplars. Participants were able to use an alignable standard cue to aid in the 

categorization task. Evidence shows that people, in general, benefit from using cues in a 

detection task (Chaney & Teel, 1967; Gunn et al., 2005; Posner et al., 1978; Posner et al., 

1980). The cues in this study were prototypical and nonprototypical exemplars of each of 

the four FHR variability categories and were placed under each example as shown in 

Figure 2. Thus, participants should benefit from the cues since they can be used to aid in 

pattern matching. Therefore, the second hypothesis proposed that the presence of 

exemplars was expected to significantly improve participants’ performance.  

 

                   
 

Figure 2: The left image shows moderate FHR variability with prototypical visual 

aids placed below the FHR and the right image shows moderate variability with 

nonprototypical visual aids placed below the FHR. 
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The ability to discriminate between categories is based not only on how similar 

the stimuli are to the category prototype, but evidence shows that people in many 

domains process stimuli differently depending on their level of expertise (Balslev et al., 

2012; Jarodzka et al., 2010; Klein & Hoffman, 1993; Myles-Worsley et al., 1988). The 

third goal of this study was to examine how experts (i.e., clinicians) and novices differ 

when categorizing FHR variability with and without exemplars present.   

Evidence suggests that experts are better than novices at noticing relevant 

information (Klein & Hoffman, 1993); therefore, clinicians may have an advantage over 

novices when categorizing the FHR variability. Because clinicians have extensive 

experience examining FHR tracings, they may have internalized prototypical 

representations of the primary categories of FHR variability. However, based on the 

categorization research, evidence shows that people will generally base their 

categorization decisions on how similar the given example is to the learned exemplar or 

prototype (Das-Smaal & De Swart, 1984, 1986; Cohen & Basu, 1987; Palmeri, 1997; 

Storms, DeBoeck, & Ruts, 2000; Johansen & Palmeri, 2002; Hahn et al., 2005). Thus, 

clinicians may be able to make their decisions using an internalized prototype of each 

category acquired over their years of experience. Evidence reveals that people are able to 

generalize new, moderately-similar stimuli and categorize them correctly when they are 

more familiar and have more experience with the stimuli (Palmeri, 1997; Hahn et al., 

2005). Furthermore, experts are able to apply their experience and what they have learned 

in their domains in order to detect critical information by noticing relevant details that 

novices may miss (Klein & Hoffman, 1993). Therefore, the third hypothesis proposed 

that clinicians may be able to generalize when the FHR varies from the prototype and 
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perform significantly better than novices when categorizing FHR variability, particularly 

when no cues are available. 

Regarding the cues, however, the categorization of the FHR variability could be 

accomplished purely by perceptual pattern matching allowing both clinicians and novices 

to perceptually categorize the examples by matching them to the stimuli. Thus, it is 

possible when cues are present that clinicians would have no advantage over novices 

during the categorization task.  However, FHR tracings may be vague, especially when 

the examples are not prototypical of the categories. Hall, Hannon, Leisk, Wolfberg, and 

House (2012) provided evidence that expert performance was improved when using an 

external aid. In their study, Hall et al. (2012) developed a prototype electronic ruler for 

the assessment of FHR variability on an electronic monitor. The electronic ruler consisted 

of horizontal bands that were sized and colored to embed the four FHR variability 

categories, and the FHR variability categories were represented with different colors to 

permit clinicians to rapidly assign a variability category to a segment of FHR data. The 

results of Hall and colleagues’ (2012) study revealed that accuracy of expert variability 

assessment was significantly improved. 

In the present study, the cues were changed to an alignable standard of 

prototypical examples of each variability category and may be superior since alignable 

cues have been shown to improve detection of subsequent novel examples by pointing 

out relevant information (Kok et al., 2013; Kurtz et al., 2013; Kurtz & Gentner, 2013). 

Thus, the alignable cues may aid clinicians’ performance, but particularly when the 

examples are difficult and deviate from the prototypes.  Thus, the fourth and final 

hypothesis was that there may be a benefit of exemplars for experts, but limited to FHR 
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examples that are at the boundaries of each category and not the prototype of each 

category.  Therefore, a 3-way interaction between prototypicality of the examples, the 

cueing conditions, and experience was expected: exemplars should be beneficial for 

everyone, but limited to the less prototypical examples for experts. 
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METHOD 

Participants 

 

 Participants in this study consisted of a convenience sample of novices and 

experts. The novices were 41 Old Dominion University students (24 females, 17 males) 

recruited through the SONA research participation system, and the experts were 33 

clinicians working in labor and delivery (21 nurses, 10 residents, 1 faculty physician, and 

1 midwife) from Eastern Virginia Medical School (EVMS) and Sentara. All nurses, the 

midwife, and nine residents were female, and the faculty physician and one resident was 

male. To achieve a power of .80 with a medium effect size and an alpha of .05, G*Power 

3.1 statistical software indicated a total of 34 participants were required for each group to 

observe a medium effect of .25 for these analyses (Cohen, 1988). 

Design 

 The current study employed a 2 (expert vs. novice) × 3 (cue condition) × 2 

(prototypicality) mixed design. Experience level was the between-subjects variable with 

two levels: experts, and novices. The within-subjects variables were the presence of cues 

and the prototypicality of examples. The dependent measures were response times and 

accuracy (i.e., the total number of examples each participant categorized correctly). 

 For this study, participants were required to categorize 270 images. Each 

participant viewed 180 example images presented with exemplars (prototypical or 

nonprototypical cues) and 90 images without exemplars. There were 10 images created 

for each category prototype (i.e., absent, minimal, moderate, and marked) and 10 images 

near the boundaries between the categories. Each image was presented with no time limit 

until the participants indicated which variability category the examples belong in by 
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using the keyboard. Once participants selected a response, the next example immediately 

was presented.  

FHR Display 

 

 The images used in this study were created using a MFHR simulator created by 

Belfore and colleagues (Belfore, Scerbo, & Anderson, 2007).  The FHR signals were 

simulated by producing a stream of heart beats and then determining the average heart 

rate within a 4-sec interval. The interval between heart beats was a nominal interval 

representing the combination of the nominal heart rate, heart rate variation, and a random 

component whose standard deviation was equal to the (variability/100) * the nominal 

interval. This calculation ensured that the symmetry of the signals and variations scale 

well with heart rate and variation amplitude changes. 

 Static images (snaphsots) were produced from the dynamic tracing described 

above and were presented on the computer screen using the Superlab 5 software. Each 

static image had a white background and two red grids, one for the fetal heart rate and 

another below for the maternal contractions. The tracings were displayed in blue. An 

example image is displayed in Figure 3.  
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Figure 3: Image of moderate FHR variability. The FHR is shown in the top 

portion of the display while the maternal contractions are shown in the bottom 

portion of the window.   

 

 

Fetal heart rate beat-to-beat variability differed according to the categories defined by the 

NICHD (Macones et al., 2008). The ranges defined by the NICHD and the values 

selected for the prototype and boundary images for this study are shown in Table 1.  

 

 

Table 1 

 

Standard variability ranges and the values selected for the prototypical and boundry 

variabilities. 

 

Variability  Prototypical  

Boundary 

(Nonprototypical)  

Absent 0 bpm 0 bpm 

 Minimal > 0 and ≤ 5 bpm  3 bpm 1 bpm & 4 bpm 

Moderate 6-25 bpm 15 bpm 7 bpm & 20 bpm  

Marked >25 bpm 35 bpm 30 bpm 

 

 

The prototypical images were created by using the middle value within each 

category of FHR variability. The nonprototypical images were created by using values 

near the boundaries separating each FHR variability category.  The visual exemplars used 
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to aid participants in the categorization task were created by taking snapshots of each 

value used for the prototypical and nonprototypical images and labeling it with the 

correct variability category. They were designed to be placed side-by-side and under the 

FHR tracing (see Figure 2).  

Procedure 

The experiment for the novices (undergraduate students) took place on campus at 

Old Dominion University. The undergraduate students recruited through SONA received 

course credit. After arriving at the laboratory, participants were asked to read and sign the 

Informed Consent Form (Appendix A). The participants were randomized across the 

initial three cue conditions using the Superlab 5 software. The researcher read the general 

instructions to each participant, repeating any instructions as necessary. The participants 

were then shown examples of each variability type and were given the opportunity to 

practice categorizing five examples of each cue condition with feedback. After the 

practice to get them familiar with the categories, the participants were seated at a 

computer to begin the first block (with or without the cues) of the experiment. They each 

had an opportunity to take a 5-minute break after the first block and then began the 

second block of the experiment.  

The experts were asked to participate voluntarily by email and the experiment 

took place in a conference room at Sentara Hospital in Norfolk. The residents and nurses 

signed a consent form provided by the EVMS IRB before the start of the study. After 

arriving, the researcher read the instructions to each participant, repeating any instruction 

as necessary. The participants were then shown the same example images the novices 

were shown in order to become familiar with the FHR images produced by the simulator. 
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The participants were randomized across the initial three cue conditions.  After the 

practice, the participants were seated at a computer to begin the first block (with or 

without the cues) of the experiment. They each had an opportunity to take a 5-minute 

break after the first block before beginning the second block of the experiment.  

Each participant was required to judge and categorize  each image by pressing a 

single key on the computer keyboard. Participants pressed the “A” key if they thought the 

image presented was of absent variability, “V” key if the image was of minimal 

variability, “M” key if the image was of moderate variability, and the “L” key if the 

image presented marked variability. The keys on the computer keyboard were labeled as 

absent, minimal, moderate, or marked on the above mentioned keys for each participant 

for their convenience. After each block was completed, the participants were taken back 

to the initial start screen informing them that the study had ended.  Overall, the study 

lasted about 30 minutes.  
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RESULTS 

 

All data were screened for outliers prior to running analyses and none were 

identified. The results were analyzed using a 2 (experience) × 3 (cue condition) × 2 

(image type) analysis of variance (ANOVA) for a mixed design, with the cue conditions 

and the image type (prototypical or nonprototypical) as the within-subjects factors and 

the experience level as the between-subjects factor. The dependent measures analyzed 

were response times and accuracy (number of correctly categorized images). The alpha 

level was set at .05. 

Accuracy 

Accuracy was derived by obtaining the number of correctly categorized examples 

in each condition divided by the total number of example images each condition 

contained, or proportion of correct responses. The results of the ANOVA are shown in 

Table 2.   
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Table 2 

 

Results of the Analysis of Variance for Proportion of Correct Responses 

 

Source SS Df MS F p partial ƞ² 

Between Subjects 
      Experience ( E ) 0.15 1 .15 4.9 .03 .06 

Error 2.19 72 .03 
                 

Within Subjects 
      Image ( I ) 3.17 1 3.17 186.6 .00 .72 

I x E 0.01 1 .01 0.84 .36 .01 

Error 1.22 72 .02 
   Condition ( C ) 0.28 2 .14 25.24 .00 .26 

C x E  0.04 2 .02 3.36 .04 .05 

Error 0.80 144 .01 
   I x C 0.08 1.82 .05 9.48 .00 .12 

I x C x E 0.01 1.82 .01 1.37 .26 .02 

Error 0.62 131.10 .01 
                 

 

 

Levene’s tests were used to check for equality of variance and the results 

concluded that there was adequate homogeneity of variance. Mauchly’s test of sphericity 

indicated that the assumption of sphericity was violated for the interaction between image 

type and cue condition, χ2 = 7.36, p < .05. A Greenhouse-Geisser correction was used for 

this effect. For post hoc tests, the Bonferroni Sidak test was used. Descriptive statistics 

for accuracy are shown in Table 3.  
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Table 3 

 

Means and Standard Deviations for Proportion of Correct Responses. 

 

Experience Image Type Cue Condition M SD 

Expert 

Prototypical Image 

Prototypical Cue 0.92 0.1 

Nonprototypical Cue 0.93 0.1 

No Cue 0.87 0.1 

Nonprototypical Image 

Prototypical Cue 0.76 0.11 

Nonprototypical Cue 0.75 0.09 

No Cue 0.74 0.11 

Novice 

Prototypical Image 

Prototypical Cue 0.88 0.1 

Nonprototypical Cue 0.94 0.07 

No Cue 0.82 0.13 

Nonprototypical Image 

Prototypical Cue 0.73 0.12 

Nonprototypical Cue 0.71 0.1 

No Cue 0.67 0.12 

 

 

Image Type. A significant effect for image type was observed. Both experts and 

novices correctly categorized more prototypical images (M = .90, SD = .10) than 

nonprototypical images (M = .73, SD = .11). A significant interaction was also observed 

for image type and cue condition. A plot of the interaction is shown in Figure 4. A test of 

simple effects showed that for the prototypical images, participants correctly categorized 

significantly more images in the nonprototypical cue condition (M = .94, SD = .08) 

compared to both the prototypical (M= .90, SD = .09) and no cue conditions (M = .85, SD 

= .12), and participants correctly categorized more images in the prototypical cue 

condition compared to the no cue condition. The test of simple effects also showed that 

for the nonprototypical images, participants correctly categorized more images in the 

prototypical (M = .74, SD = .12) and nonprototypical cue condition (M = .73, SD = .10) 

compared to the no cue condition (M = .70, SD = .12). Moreover, the test of simple 
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effects also showed that the difference between prototypical and nonprototypical images 

were significant in all three cue conditions, with fewer examples categorized correctly for 

the nonprototypical images. 

 

 

 

Figure 4. Mean proportion of correct responses for image type as a function of 

each cue condition.  
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SD = .11). A significant interaction for experience and cue condition was also observed. 

A plot of the interaction is shown in Figure 5. A test of simple effects showed that experts 

(M = .81, SD = .10) correctly categorized significantly more images in the no cue 

condition compared to novices (M = .74, SD = .12). The test of simple effects also 

showed that experts correctly categorized more images in the nonprototypical (M = .84, 

SD = .10) cue condition compared to the no cue condition (M = .81, SD = .10), and 

novices correctly categorized more images in the prototypical (M = .81, SD = .11) and 

nonprototypical (M = .83, SD = .08) cue conditions compared to the no cue condition (M 

= .74, SD = .12). There were no significant differences between experts and novices in 

the prototypical and nonprototypical cue conditions (p > .05). 

 

 

 
 

Figure 5. Mean proportion of correct responses for each cue condition as a 

function of experience.  
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Response Times 

The results for response times are shown in Table 4. Levene’s tests were used to 

check for equality of variance and the results concluded that there was adequate 

homogeneity of variance. Mauchly’s test of sphericity indicated that the assumption of 

sphericity was violated for the interaction between image type and cue condition, χ2 = 

6.59, p < .05. A Greenhouse-Geisser correction was used for this effect. For post hoc 

tests, the Bonferroni Sidak test was used.  

 

Table 4 

 

Results of the Analysis of Variance for Response Times 

 

Source SS df MS F p partial ƞ² 

Between Subjects 
      Experience ( E ) 40.62 1 40.62 5.78 .01 .10 

Error 506.41 72 7.03 
                 

Within Subjects 
      Image ( I ) 26.52 1 26.52 31.46 .00 .30 

I x E 1.95 1 1.95 2.32 .13 .03 

Error 60.7 72 .84 
   Condition ( C ) 7.85 2 3.93 2.42 .09 .03 

C x E  0.03 2 .01 0.01 .99 .00 

Error 233.86 144 1.62 
   I x C 2.67 1.84 1.45 4.24 .02 .06 

I x C x E 0.84 1.84 .46 1.33 .27 .02 

Error 45.37 132.27 .34 
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A significant main effect for experience was observed which shows that novices 

(M = 2.89, SD = 1.62) took significantly longer to respond to images compared to experts 

(M = 2.28, SD = .99). A significant main effect for image type was also observed. Both 

experts and novices took significantly longer to respond to the nonprototypical images (M 

= 2.83, SD = 1.58) compared to the prototypical images (M = 2.34, SD = 1.23). A 

significant interaction for image type and cue condition was observed. A plot of the 

interaction is shown in Figure 6. Regarding prototypical images, a test of simple effects 

showed that participants took longer to respond with the nonprototypical cues (M = 2.47, 

SD = 1.24) than with the prototypical cues (M = 2.16, SD = 1.00). As for the 

nonprototypical images, participants took longer to respond with the nonprototypical cues 

(M = 3.07, SD = 1.74) than they did without cues (M = 2.66, SD = 1.55).  A test of simple 

effects also showed that the difference between prototypical and nonprototypical images 

was significant in all three cue conditions, with slower responses to the nonprototypical 

images. No other effects were significant.    
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Figure 6. Mean response times (sec) for image type as a function of cue 

condition.  
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DISCUSSION 

 

The purpose of the present study was to examine how well individuals 

discriminate between categories of FHR variability. There were four categories of FHR 

variability that participants needed to classify: absent, minimal, moderate and marked. 

Participants were instructed to identify the category in which each example image of a 

FHR tracing belonged with and without the presence of alignable cues. Participants took 

part in three conditions: no cue, prototypical cue, and nonprototypical cue. The 

prototypical cues were four images that represented the prototype of each of the four 

FHR variability categories. The nonprototypical cues were five images that represented 

the boundaries of each of the four FHR variability categories. The participants in the 

present study consisted of novices and experts in order to examine whether experience 

affects the way the FHR variability examples are categorized.  

Image Type 

The first goal was to assess whether classification of FHR variability is more 

difficult as the examples deviate further from the prototype for each category.  Previous 

research suggests that stimuli falling near the category boundaries have ambiguous 

category membership, making categorization of the stimuli slower compared to stimuli 

far from the category boundaries, where categorization is an easier and faster process 

(Ashby et al., 1994; Das-Smaal & De Swart, 1984, 1986). Therefore, it was anticipated 

that classification accuracy would be higher and response times shorter for the 

prototypical examples compared to the nonprototypical examples. The results from the 

present study supported the first hypothesis. The results show that both experts and 

novices correctly categorized significantly more prototypical images compared to the 
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nonprototypical images, which supports other findings and suggests that examples of 

stimuli that are similar to their prototypes are easier to categorize and are learned quicker 

(Das-Smaal & De Swart, 1984, 1986; Vandierendonck, 1984). The results also show that 

participants took longer to respond to the nonprototypical images as compared to the 

prototypical FHR images. These results support numerous studies that have found that 

examples of stimuli that resemble their prototypes are responded to faster (Ashby et al., 

1994; Das-Smaal & De Swart, 1984, 1986). Theories of categorization suggest that 

individuals tend to judge the similarity of stimuli to group them into categories (Cohen & 

Basu, 1987; Estes, 1986; Johansen & Palmeri, 2002; Smith & Minda, 1998). Previous 

research has found that individuals’ categorization performance is consistent with 

prototype-based possessing early on in learning (Smith & Minda, 1998). In prototype 

models of categorization, individuals learn to categorize examples by comparing new 

examples to an average example of each category (i.e., a prototype; Estes, 1986). The 

novices in the present study were given a prototypical example image of each of the four 

FHR variability categories, followed by practice images to categorize before they started 

the experiment. The novices were required to categorize each practice image before they 

could start the experiment to ensure familiarity with the categories. Thus, because the 

novices were able to correctly categorize more prototypical FHR images compared to the 

nonprototypical images, the results of the present study suggest that novices may have 

made their judgments based on memory by comparing each FHR example image to the 

prototype of each category.  

The results of the present study also reveal that the experts correctly categorized 

more FHR images than the novices in all conditions; however, the experts correctly 
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categorized significantly fewer nonprototypical images compared to prototypical images 

in all three conditions.  Based on previous research, which suggests that learning with 

high exemplar diversity can aid the ability to generalize to novel stimuli less typical of 

the category prototype (Das-Smaal and De Swart, 1984; 1986; Hahn et al., 2005), it was 

expected that the experienced clinicians would be able to focus on the relevant details of 

the images and correctly categorize more nonprototypical images in the no cue and 

prototypical cue condition (Balslev et al., 2012; Klein et al., 1993; Lowe, 1999).  The 

experts were already familiar with the stimuli and had the advantage of years of learning 

from multiple examples; thus, they should have been able to organize the FHR variability 

categories around examples acquired through years of experience and outperform the 

novices at categorizing nonprototypical images. Therefore, the results suggest that 

categorization of the FHR images may require more perceptual processing, guided by 

how similar each example is to the learned prototype of each category, making it difficult 

to categorize nonprototypical images when needing to rely on memory.   

Cue vs. No Cues 

The second goal of this study was to examine categorization performance when 

given the opportunity to use exemplars. Previous research suggests that cues are able to 

direct attention to relevant information and help a person respond faster and make fewer 

errors when detecting stimuli in visual tasks (Chaney & Teel, 1967; Hall et al., 2012; Loft 

et al., 2013; Kok et al., 2012; Kurtz & Gentner, 2013; Gunn, et al., 2005; Posner, et al., 

1978; Posner, et al., 1980; Wickens & Hollands, 1999). It was expected that the presence 

of the exemplars would lead to faster response times and better accuracy.  The results of 

the current study supported the second hypothesis and revealed that novices and experts 
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correctly categorized significantly more FHR variability images when given the 

opportunity to use the exemplars. The results also revealed that experts and novices 

correctly categorized more prototypical images in the nonprototypical cue condition and 

more nonprototypical images in the prototypical cue condition. According to structural 

alignment theory, the participants were able to use the alignable (high-similarity) cues 

which helped them to compare the FHR images to the exemplars, or cues, and detect 

subtle differences (Markman & Gentner, 1997).  By comparing the features of the FHR 

examples and the cues, the participants were able to isolate relevant information in the 

ambiguous stimuli, which made the differences become more salient (Gentner & Gunn, 

2001; Kok et al., 2013; Kurtz & Gentner, 2013). Thus, by making differences between 

the image and cues more salient as a result of this matching process, discriminating 

relevant information became easier allowing the participants to correctly identify the 

categories to which the images belonged.  

The results also showed that participants took longer to respond to the 

prototypical images in the nonprototypical cue condition compared to the prototypical 

cue condition, and participants took longer to respond to the nonprototypical images in 

the nonprototypical cue condition compared to the no aid condition.  One possible 

explanation for the longer response times in the nonprototypical cue conditions could be 

that the exemplars of the category boundaries were harder to discriminate from one 

another because of how similar they looked, requiring more attention, and time, to match 

the image to the appropriate exemplar (Ashby et al., 1994; Maddox & Ashby, 1993). 
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Prototypical vs. Nonprototypical Cues 

The results showed that all participants correctly categorized significantly more 

images in both the prototypical and nonprototypical cue conditions compared to the no 

cue condition. There was also a significant interaction for image type and cue condition. 

More specifically, for the prototypical images, participants categorized more images in 

the nonprototypical cue condition compared to both the prototypical and no cue 

conditions, and participants correctly categorized more images in the prototypical cue 

condition compared to the no cue condition. For the nonprototypical images, the results 

showed that participants correctly categorized more images in the prototypical and 

nonprototypical cue condition compared to the no cue condition. Thus, the experts and 

novices were able to benefit from the cues by using them as an aid for pattern matching. 

The alignable cues allowed participants to compare the example to the relevant 

information in the cues and detect the less conspicuous information in order to categorize 

the images correctly (Gentner & Gunn, 2001; Markman & Gentner, 1997). The results 

also showed that experts correctly categorized significantly more images in the 

nonprototypical cue condition compared to the no cue condition, and novices correctly 

categorized significantly more images in the prototypical and nonprototypical cue 

conditions compared to the no cue condition. These results support previous research in 

which cues improved performance when categorizing MFHR images (Kennedy, 

Anderson-Montoya, Scerbo, Prytz, Belfore, Abuhamad, Davis, & Chauhan, 2012; Hall et 

al., 2012), and suggest that the categorization of the FHR variability could be 

accomplished by pattern recognition (Lowe, 1985; Wertheimer, 1938b).  Both clinicians 

and novices were able to categorize the examples by matching them to the cues; 
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therefore, when the cues were present, the clinicians had no appreciable advantage over 

the novices. Moreover, the results showed that when given the prototypical cues, the 

novices were able to perform just as well as the experts that categorized FHR variability 

without the cues. Thus, the current study demonstrated that not only do cues aid a 

participant’s performance, but the alignable cues, which were highly similar examples of 

the simulated FHR images, used in this study are beneficial to both novices and experts 

when categorizing MFHR variability.   

Experience 

The third goal of this study was to examine how clinicians and novices differ 

when categorizing FHR variability with and without exemplars. Previous research has 

found that experts are better than novices at noticing relevant information in 

discrimination tasks (Klein & Hoffman, 1993; Myles-Worsley et al., 1988). Moreover, 

people who have more experience with specific stimuli are better able to generalize new, 

moderately-similar stimuli and categorize them correctly (Palmeri, 1997; Hahn et al., 

2005). Therefore, it was proposed that experienced clinicians would be more adept at 

generalizing to nonprototypical examples of the FHR variability categories and perform 

significantly better than novices when making judgments, particularly when no cues were 

available. However, differences between experts and novices could be modified by the 

presence of cues. When cues are available, the categorization of FHR variability could be 

accomplished purely by perceptual pattern matching allowing both clinicians and novices 

to perceptually categorize the examples by matching them to the stimuli (Estes, 1986; 

Rosch & Mervis, 1975). The alternative hypothesis was that clinicians would have no 

advantage over novices when cues were available.  The results partially supported the 
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third hypothesis and revealed a significant interaction for experience and cue condition, 

more specifically, experts correctly categorized more images and in less time in the no 

cue condition compared to novices. The experts could draw upon their extensive 

experience with the ambiguous and vague FHR tracings, and therefore, were more adept 

at making their decisions.  However, the presence of cues did indeed impact performance. 

The advantage of experts over novices in the no cue condition was eliminated when cues 

were available. Thus, the availability of cues enabled novices to make up for their lack of 

experience and make categorization decisions comparable to those of clinicians.   

Although the experts correctly categorized more images compared to the novices 

in all conditions, the experts did not perform significantly better than the novices in either 

of the cue conditions. Thus, the results suggest that for the experts and novices alike, 

categorization of the FHR images can be facilitated by a perceptual matching process that 

is guided by how similar each example is to the learned prototype of each category and 

then influenced by how similar each example is to the cues. 

The final goal of the present study was to examine whether the alignable cues 

would be beneficial to the experts. A 3-way interaction among prototypicality of the 

examples, the cueing conditions, and experience was expected. It was hypothesized that 

there might be a benefit of alignable cues for experts, but limited to FHR examples that 

are at the boundaries of each category and not the prototype of each category. However, 

the fourth hypothesis was partially supported because no interaction was detected, 

suggesting that even though the experts have more experience with the ambiguous 

stimuli, categorizing nonprototypical examples of FHR variability is still a difficult task. 

Although the results did not show the expected interaction, the results did show that 
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experts correctly categorized significantly more images in the nonprototypical cue 

condition compared to the no cue condition. Therefore, the experts benefited from the 

cues on both prototypical and nonprototypical images.  

The results of the present study suggest that the experts were able to make their 

decisions using an internalized prototype of each FHR variability category acquired over 

their years of experience when no cues were available; however, categorizing 

nonprototypical examples was still a difficult task. The experts were less able to 

generalize to nonprototypical images, suggesting that when the images are farther away 

from the prototype of each category and closer to the boundaries, the task becomes more 

perceptual.  In the cue conditions, the experts may have benefited from their experience, 

but the additional information provided by the cues further aided their performance by 

allowing them to pattern match. Furthermore, novices, who have no experience with FHR 

tracings, benefitted from both prototypical and nonprototypical cues and were able to 

perform at the level of experts with no cues.  

Limitations and Future Research 

The goal of the present study was to examine theories of categorization to predict 

how individuals would classify different levels of FHR variability.  Previous research has 

indicated that the placement of a cue is important when comparing stimuli against a 

comparison standard (Kurtz & Gentner, 2013). A limitation was that the cues used in the 

present study were fixed and appeared under the FHR images. If the participants were 

able to move the cues and place them nearer or on top of the FHR images, performance 

may have been improved because structurally aligning the two figures would render the 

differences more salient (Gentner, & Gunn, 2001).  Therefore, subsequent studies should 
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be designed to allow more control over cue placement. Also, the participants in the 

present study were presented with sets of static images of FHR tracings.  However, this 

paradigm differs from standard clinical practice. When maternity patients are monitored 

by EFM, the clinicians inspect dynamic tracings of the FHR. Therefore, the task of 

categorizing static images of FHR variability did not resemble the actual dynamic task 

clinicians perform on a regular basis in labor and delivery units because the participants 

had a limited view (5 minutes of a tracing), whereas in hospitals, clinicians have an 

opportunity to inspect hours’ worth of data.  By narrowing and restricting the view, 

participants were not given the opportunity to use the additional information available in 

a longer FHR tracing.  For instance, it may be possible to benefit from looking at a longer 

tracing because there is more context available for detecting changes in the variability.   

Another potential limitation was that the experts differed in their level of experience. The 

experts consisted of residents, nurses, and midwifes. A closer look at performance within 

the expert group showed that the residents (M =.80, SD = .10) correctly categorized 

significantly more nonprototypical images compared to the nurses (M =.72, SD = .10).  

Future studies should look at how the training differs between residents and nurses, 

because nurses are often the first to inspect the FHR tracings before they are given to 

doctors for further examination. Furthermore, it would also be beneficial to look at nurses 

solely because they may benefit more from the cues.    

Another goal of the present study was to examine the benefits of providing cues to 

aid in categorization. Participants benefited more from the nonprototypical cues when 

categorizing prototypical example images and benefited more from the prototypical cues 

when categorizing the nonprototypical example images. This suggests that individuals 
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may have been comparing and contrasting the differences between the cues and examples 

in order to detect relevant information. More research is needed to examine whether 

participants would benefit from a combination of both prototypical and nonprototypical 

cues. A combination of both types of cues could help to further distinguish the relevant 

information by providing contrasting sets of exemplars (Gentner & Gunn, 2001). 

Furthermore, because comparison-based learning/training has been shown to lead to 

improved detection performance of non-obvious anomalies in subsequent novel examples 

(Kok et al., 2013; Kurtz & Gentner, 2013), it would be beneficial to give clinicians the 

cues and examine whether using the cues while inspecting FHR tracings affects the 

outcome of how they treat their patients. 

Theoretical and Clinical Implications 

 One of the main goals of the current study was to assess how well individuals 

categorize FHR variability with the aid of a visual cue. The results suggest that 

categorizing FHR variability is a difficult task because FHR tracings are vague and 

ambiguous stimuli; clinicians may employ different criteria for distinguishing categories 

of FHR variability. Based on theories of category learning (Das Smaal & De Swart, 1984; 

1986; Hahn et al., 2005; Palmeri, 1997; Vandierendonck, 1984), research suggests that 

people who have a broad range of experience with categorizing ambiguous stimuli, such 

as clinicians in labor and delivery units, should be able to generalize to new stimuli and 

categorize them more reliably. Furthermore, theories of expertise suggest that experts 

who have a broad range of experience with specific stimuli should be able to detect the 

less-conspicuous and relevant information in order to distinguish one stimulus from 

another (Balslev et al., 2010; Jarodzka et al., 2010; Klein & Hoffman, 1993; Myles-
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Worsley et al., 1988). However, the results of the present study reveal that the experts 

categorized significantly fewer nonprototypical compared to prototypical FHR images 

and only correctly categorized about 81% of the FHR images when no cues were 

available. This suggests that the clinicians may have an internalized prototype of each 

variability category, however, it doesn’t help them when the examples are at the border of 

each category, where categorization is more difficult.  Moreover, theories of expertise 

suggest that clinicians should be able to outperform novices who have not had as much 

training and experience with the stimuli. However, the results of the present study reveal 

that the novices, when presented with cues, were able to perform just as well as the 

experts with no cues. The results suggest that some FHR images may just be too 

ambiguous for clinicians to rely solely on memory for making category decisions. Thus, 

even experts could use additional cues in order to reliably categorize FHR variability 

since performance improved when an alignable cue were present.  

In a clinical setting, the failure to make the distinction between the different types 

of variability may lead to improper care of the patient. More specifically, clinicians must 

be able to judge the degree of variability in the tracing in order to correctly determine to 

which category of the three-tier FHR interpretation system the tracing belongs. If the 

variability is categorized incorrectly then there is a risk of misdiagnosis and unnecessary 

intervention, such as performing a cesarean section. Therefore, the presence of a visual 

cue can improve clinicians’ abilities to properly categorize FHR variability when the 

tracings are prototypical examples of the categories, and may provide a benefit when the 

FHR variability is not prototypical. 
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CONCLUSION 

The main goal of this study was to examine the effect of cues on the ability of 

individuals to categorize prototypical and nonprototypical examples of FHR tracings and 

also to examine whether there were differences due to experience. Although experts 

performed better on categorizing the images and responded faster, the cues increased 

performance for both the experts and novices. Both image type and the presence of cues 

had a significant impact on performance. The current study suggests that the clinicians 

could benefit from training with alignable cues on categorizing FHR variability, which 

could improve later clinical decision making when monitoring FHR tracings to enhance 

the safety in labor and delivery.  
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Your results from this study will be kept confidential by the researcher. All identifiers that 
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If at any time you feel pressured to participate, or if you have any questions about your rights 

or this form, then you should call Dr. George Maihafer, the current IRB chair, at (757) 683-

4520, or the Old Dominion University Office of Research, at 757-683-3460.  

 

And importantly, by signing below, you are telling the researcher YES, that you agree to 

participate in this study. The researcher should give you a copy of this form for your records.  
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falsely entice this subject into participating. I am aware of my obligations under state and 
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