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ABSTRACT
Here we present a novel application of stage-structured popula-
tion modelling to explore the properties of neuronal dendrites with
spines. Dendritic spines are small protrusions that emanate from
the dendritic shaft of several functionally important neurons in
the cerebral cortex. They are the postsynaptic sites of over 90%
of excitatory synapses in the mammalian brain. Here, we formu-
late a stage-structured population model of a passive dendrite
with activity-dependent spines using a continuum approach. This
computational study models three dynamic populations of activity-
dependent spine types, corresponding to the anatomical categories
of stubby, mushroom, and thin spines. In this stage-structured popu-
lation model, transitions between spine type populations are driven
by calcium levels that depend on local electrical activity. We explore
the influence of the changing spine populations and spine types on
the development of electrical propagation pathways in response to
repetitive synaptic input, and which input frequencies are best for
facilitating these pathways.
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1. Introduction

Efforts to unravel the functional role of dendritic spines, especially in relation to learn-
ing and memory, have led to some of the most exciting research in neuroscience. First
described in 1888 by Ramón y Cajal [6], dendritic spines are bacterial size membrane pro-
trusions from the surface of the neuron, consisting of a bulbous ormushroom-shaped head
connected to the dendritic shaft by a neck or stem. Over 90% of excitatory synapses in
the cerebral cortex terminate on spines and there are over ten trillion spines (among the
hundred billion neurons) in the human brain [16]. Their structures are dynamic, in that
they can physically morph into different spine classifications in response to various phys-
iological, behavioural or pathological states. This synaptic activity-dependent structural
plasticity exists over a vast range of time scales, from minutes to days or weeks [8, 15, 16].

Although spines may have a continuum of anatomical configurations [1], studies have
traditionally grouped spines based on their shapes [12, 18]. The groups are generally clas-
sified as (see Figure 1) stubby (Type-I), mushroom (Type-II), and thin (Type-III). In early
optical studies of cortical pyramidal cells it was observed that spine morphology correlates
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Figure 1. Axonal input to adendritic branch. (A): Twobranched axons distribute their signals tomultiple
locations along a dendritic branch. (B): Magnified region from A shows synapses between presynaptic
axon terminals and three kinds of postsynaptic dendritic processes: stubby s (type-I),mushroomm (type-
II), and thin t (type-III) spines. Note that at a fixed location along the dendrite more than one spine type
may protrude with synaptic connections to the same or different axons.

with distance from the cell body [12, 18]; proximal to the soma, where the dendrite has
the largest diameter, spines have short necks and appear stubby, whereas distally, where
the dendrite is thinner, spines have thinner and longer stems. At intermediate distances,
a variety of spine types were seen including the intermediate mushroom-shaped spines.
It is important to note that the accuracy of these observations and the subsequent con-
clusions have been challenged by more recent imaging and statistical analyses. In 1982,
motivated by these early optical studies, Rinzel [22] proposed that the observed anatom-
ical configurations presented an apparent paradox: why should the membrane potential
response initiated at a distant synaptic site, which is severely attenuated due to cable prop-
erties alone, suffer additional attenuation due to a long, thin, and thereforemore electrically
resistive, spine stem?

Rinzel, in conjunction with earlier work of Rall [19, 21], provided a possible explana-
tion based on analysis and computations with a passive cable model. They found that if the
resistance to current flow in the stem is correlated with the input resistance to the cable
at the spine base, then attenuation is maximally sensitive to changes in the stem resis-
tance. Rinzel suggested that if such an operating range exists for adjusting synaptic potency,
then it is not surprising to find thinner spine stems at more distal sites and stubbier spines
near the soma. This analysis of passive spines, which predated what is now known about
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calcium-mediated restructuring of spines, did provide an explanation for how the spines
arrived at their spatial configuration. Although Rinzel’s mathematical analysis provided
an explanation that added support to the results of the optical studies, today it is viewed
that the spatial distribution of spines depicted in those early investigations were not accu-
rate. However, the value of Rinzel’s effort provided an important contribution that linked
the electrical properties of passive spines to how spines may spatially configure along the
dendrite.

In this paperwe develop the framework for a stage-structured populationmodel to illus-
trate how spine configurations observed in dendrites (e.g. cortical pyramidal cells) may
form and how themorphology can evolve in response to patterns of synaptic activity. Con-
versely, for excitable spines, we show how an emerging pattern of spine morphology along
the dendrite can influence the generation and propagation of an impulse (emerging sig-
nalling properties). The model is based on experimental findings suggesting that spines
are compartments that regulate local changes in the calcium concentration independently
of the parent dendrite [11, 13], and that moderate calcium concentration levels cause spine
elongation but higher concentrations lead to spine shrinkage [23]. We break from previ-
ous modelling efforts [7, 25, 26] by specifically tracking the population density of three
types of spines: stubby, mushroom, and thin, and allow for the possibility thatmultiple spine
types may emerge radially from the membrane at any point along the dendrite. The model
is stage-structured with spine types representing reversible growth stages. Stage transi-
tions between spine types depend on intraspine calcium levels that increase or decrease
in response to patterns of electrical activity in the cell. For example, high calcium levels
in the thin population reduce the spine density of that population as thin spines change to
mushroom spines. The primary motivation for introducing a stage-structured approach is
that it opens the door for direct comparison of computational results with morphological
analysis based on experiments.

The paper is organized as follows. Themodel is formulated in Section 2. In Section 3 we
derive a reduced system of ordinary differential equations for passive spines to investigate
how dendritic diameter and the frequency of synaptic input influences spine morphology.
In Section 4 we demonstrate, using the full PDE continuum model, that synaptic input to
excitable spines can drive spine restructuring within the input region as well as far outside
of the region.We show that this is accomplished by activity-dependent spine restructuring
that increases the density ofmushroomspines, forging a pathway for propagation. Section 5
is Discussion.

2. A stage populationmodel for dendritic spines

We formulate a continuummodel for the stage transition between stubby, mushroom, and
thin dendritic spines. New in this model is that multiple spine types may coexist simulta-
neously at points along the dendrite (see Figure 1), and the model allows for the study of
population dynamics between spine types. A continuum formulation [3] is used for track-
ing the interaction between the many activity-dependent (active or passive) spines and for
studying the impact of their individual and collective dynamics on the output properties
of the dendrite.

To begin, consider a passive dendritic cable of electrotonic length l (μm), with both
ends sealed, studdedwith three distinct populations of dendritic spines. The spine densities



4 M. ROUHANI ET AL.

Ni, i = 1, 2, 3 represent the number of spines of type i per unit physical length. Over a
short segment �x, the three spine types deliver current �xNiIssi to the dendrite, where
Issi represents the current flowing through the stem of type i. The stem current (Issi) is
expressed as an I · R voltage drop across the spine stem resistance Rssi (M�), given by

Issi = Vshi − Vd

Rssi
, for i = 1, 2, 3 (1)

where Vshi and Vd (mV) are respectively the membrane potential of spine head i and the
dendritic shaft. The spine stem ismodelled as in previous studies [3, 24] as a lumpedOhmic
resistor, neglecting the stem’s membrane and cable properties. If the potential in the spine
head is larger than the potential in the dendritic shaft (Vshi > Vd), then Issi > 0 and the
current is flowing from spine head i to the spine base. Conversely, if the potential in the
base is larger than the potential in the head (Vd > Vshi), then Issi < 0 and the current flow
is in the opposite direction. If Issi = 0, then no current is passing through that spine stem.

The electrical potential Vd(x, t) in a passive dendrite studded with
∑3

i=1 Ni spines per
unit physical length satisfies the cable equation

πdCm
∂Vd

∂t
= πd2

4Ri
∂2Vd

∂x2
− πd Vd

Rm
+

3∑
i=1

NiIssi. (2)

HereRi (�· cm) is the specific cytoplasmic resistivity (here subscript i refers to intracellular,
not spine type); Rm (�· cm2) is the resistance across a unit area of passive membrane; Cm
(μF/cm2) is the specificmembrane capacitance and d (μm) is the diameter of the dendrite.
Parameter values for the cable are in Table 1.

It is convenient to rewrite the cable equation in terms of dimensionless (electrotonic)
length. After multiplying through by Rm/πd, we substitute into Equation (2) the mem-
brane time constant τm = RmCm, the length constant λ = √

(Rmd/4Ri), and the cable

Table 1. Parameter values.

Symbol Base value Parameter

Ash 1.31μm2 Surface area of each spine head
C0 30 nM Lower critical value for intraspine calcium
C1 100 nM Mid critical value for intraspine calcium
C2 300 nM Upper critical value for intraspine calcium
Cmin 5 nM Calcium lower bound
Cm 1μF/cm2 Specific membrane capacitance
δi 1 × 10−3 ms−1 Rate of change in ni for type i spines
εi 3 × 10−3 ms−1 Rate of change in Cai for type i spines
γ 2.5 Channel density scale factor
L 3 Dimensionless length of the cable
gNa 120mS/cm2 Maximal sodium conductance
gK 36mS/cm2 Maximal potassium conductance
gL 0.3mS/cm2 Maximal leakage conductance
gp 0.074 nS Peak synaptic conductance
Ri 70� · cm Specific cytoplasmic resistivity
Rm 2500� · cm2 Passive membrane resistance
tp 0.2ms Time to peak for gsyn
VNa 115mV Sodium reversal potential
VK −12mV Potassium reversal potential
VL 10.5989mV Leakage reversal potential
Vsyn 100mV Synaptic reversal potential
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input resistance R∞ = Rm/(πλd), and introduce the change of variables X = x/λ, ni =
λNi to arrive at the (dimensionless) cable equation for electrical potential in a dendrite of
dimensionless length L = l/λ:

τm
∂Vd

∂t
= ∂2Vd

∂X2 − Vd + R∞
3∑

i=1
niIssi. (3)

Here, ni represents the number of spines of type i over length λ (or number of spines per
unit electrotonic length; denoted here by spines/e.l.). It is assumed throughout this paper
that both ends of the dendrite are sealed, with a uniform resting potential of zero in the
cable and the spine heads.

Each spine head is modelled as an isopotential compartment with surface area
Ash (μm2) and specific membrane capacitance Cm (μF/cm2). The capacitance of an indi-
vidual spine head is thereforeCsh = AshCm (μF). It is well known that different spine types
have different spine head areas. However, we assume here thatmushroom, thin, and stubby
spines have the same spine head geometry, but have different capacities for sequestering
and releasing intraspine calcium stores. An equation for the membrane potential in a sin-
gle spine of type i is obtained from a current balance relation for the capacitive, ionic, spine
stem and synaptic currents given by

Csh
∂Vshi

∂t
= −Issi − Iioni − Isyni. (4)

The term Iioni represents ionic currents passing through the headmembrane, and Isyni rep-
resents synaptic current. If the membrane is passive, then Iioni = Vshi/Rsh, where Rsh is the
membrane resistance of the head.Whenmodelling excitablemembrane in the spine heads,
we used Hodgkin-Huxley kinetics [9] for voltage-dependent ion channel currents:

Iioni = γAsh

[
(Vshi − VNa)gNam

3h + (Vshi − VK)gKn
4 + (Vshi − VL)gL

]
. (5)

Here, gNa, gK , gL and VNa, VK , VL are maximal conductances and reversal potentials,
respectively, for sodium, potassium and leakage currents. We followed [24] and used
increased channel densities (γ = 2.5) and a temperature of 22◦C.

We simulate the activation of synapses by applying to all spine types i in an activation
region, X0 ≤ X ≤ X0 + �X,

Isyni(X, t) = gsyn(t)(Vshi − Vsyn), (6)

where Vsyn is the synaptic reversal potential (assumed the same value in each spine type)
and gsyn is a brief synaptic conductance generated by the α-function

gsyn(t) = gp
t
tp
e(1−

t
tp ) (7)

which reaches a peak synaptic conductance gp, tp ms after activation. Equations (6) and (7)
model synaptic currents observed in experiments and are similar to the equations for
synaptic current used in other models [3, 20]. Parameter values for spine heads, ionic and
synaptic currents may be found in Table 1.



6 M. ROUHANI ET AL.

Next we combine experimental evidence for how calcium drives structural change in
spine shape [13, 16, 17, 23] with morphological evidence that spines tend to organize in
defined groups by shapes, classified as stubby, mushroom, or thin [12, 14, 18]. Although
research into the precise mechanism and associated detailedmathematical models for how
spines change their shape is ongoing (for example, see [10]), we define the spine stem
current (Issi) as the electrical influence, in spine type i, that drives changes in intraspine
calcium levels. When there is no activity (Issi = 0) we assume that calcium levels decay to
a minimum value Cmin exponentially. The calcium equations are

∂Cai

∂t
= −εi(Cai − Cmin) + κi |Issi|, i = 1, 2, 3 (8)

where constants κi are important scale factors that control the steady-state calcium levels in
response to synaptic input. These scale-factors quantify a prediction of howmuch calcium
a particular spine type is able to release from intracellular stores, whichmay depend on the
spine head area and specialized membrane apparatus associated with that spine type.

Figure 2(A) is a modification of Figure 1 in [7] (adapted originally from the conceptual
model by [23]). In Figure 2(A), when the function f (Ca) is positive, for intermediate
values of calcium C1 < Ca < C2, spines become longer and thinner through a transition
from stubby to mushroom to thin. For moderately low (C0 < Ca < C1) or high (Ca > C2)
calcium values, the transition is from thin to mushroom to stubby. All spine transitions
are considered sequential; e.g. a stubby spine undergoing transition to a thin spine, must
first go through the mushroom spine stage, and vice versa. In this formulation we assume
that there is no spine pruning or formation of new spines, so the total density of spines is
conserved (See Discussion). For very low calcium concentrations, it is assumed that spine
transitions do not occur. The stoichiometric representation of the transition between spine

Figure 2. Calcium drives transitions between spine types. (A): For moderate calcium values (C1 < Ca <

C2) f > 0 and spines grow through transitions from stubby to mushroom to thin (s→m→t). For mod-
erately low or high values of calcium (C0 < Ca < C1 or Ca > C2), f < 0 and spines shrink through
transitions in the opposite direction (t→m→s). For very low calcium (Ca < C0), f = 0 and spine struc-
ture is static. (B): Stoichiometric representation of the transitions between spine types quantified by
densities n1, n2, and n3. The calcium dependent rates K±

i are defined in Equation (12).
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types is shown in Figure 2(B) and the corresponding equations are

∂n1
∂t

= −K+
1 n1 + K−

2 n2 (9)

∂n2
∂t

= K+
1 n1 − (K−

2 + K+
2 ) n2 + K−

3 n3 (10)

∂n3
∂t

= K+
2 n2 − K−

3 n3. (11)

Here, the rates K±
i are dependent on calcium and defined by

K±
i =

{
δi|f (Cai)|, ±f (Cai) ≥ 0
0, otherwise , (12)

where δi, i = 1, 2, 3, are constants.
The above definition of the calcium-dependent rates are consistent with the dynamics

described by Figure 2(A). For example, suppose that at some location x along the dendrite,
mushroom spines have calcium levels in the intermediate range (C1 < Ca < C2) but the
other two spine types have high levels of calcium (Ca > C2). We expect that the mush-
room spines would see a positive contribution to their density n2 from thin transitions
to mushroom (K−

3 �= 0), yet we would not expect any stubby spines to transition to mush-
room (K+

1 = 0). Since mushroom spines have intermediate calcium levels, they would be
making a transition to thin spines but not to stubby (K+

2 �= 0, but K−
2 = 0). Whether or

not themushroom spine density ultimately increases, decreases, or stays the same, depends
on the balance between the terms K−

3 n3 and K+
2 n2.

Summarizing, the stage population model for three types of dendritic spines is

τm
∂Vd

∂t
= ∂2Vd

∂X2 − Vd + R∞
3∑

i=1
niIssi. (13)

Csh
∂Vshi

∂t
= −Iioni − Isyni − Issi, i = 1, 2, 3 (14)

∂Cai

∂t
= −εi(Cai − Cmin) + κi |Issi|, i = 1, 2, 3 (15)

∂n1
∂t

= −K+
1 n1 + K−

2 n2 (16)

∂n2
∂t

= K+
1 n1 − (K−

2 + K+
2 ) n2 + K−

3 n3 (17)

∂n3
∂t

= K+
2 n2 − K−

3 n3 (18)

where the K±
i ’s are defined above in Equation (12) and the currents in Equation (14):

Issi, Iioni, and Isyni, are defined in Equations (1), (5), and (6) respectively.
In this work, we choose the functional form of f to be (see Figure 2(A))

f (Cai) = −1
2

(1 + tanh [2(Cai − C0)]) + tanh [2(Cai − C1)] − tanh [2(Cai − C2)]. (19)

System (13)–(18) is nonlinear even if the spine head membrane is passive, since the rates
K±
i are nonlinearly dependent on calcium. However, it is worth noting that for passive



8 M. ROUHANI ET AL.

spine heads, Equations (13)–(14) constitute a linear subsystem which acts on a fast time
scale (milliseconds) compared to subsystem (15)–(18), which behaves on a slow time scale
(seconds).

In our simulations, the synaptic input will be repeated at least every 10ms, a period
long enough to allow the synaptic inputs Isyni and potentials Vshi and Vd to return to rest
(see Figure 3(A)). However, intraspine calcium values do not return to rest (Figure 3(B))
due to their relatively slow decay rates. The steady-state calcium values for each spine
type is governed by their respective scale-factors κi. Figure 3(B) shows a case where the
steady-state calcium level of the thin spines is largest, followed by mushroom and stubby.
The mechanisms for handling calcium in a spine, along with spine morphology, ultimately
determines themagnitude and time course of calcium (see [28] for amore thoroughdiscus-
sion and issues surrounding calcium handling in a spine and their parent dendrite). Here
we assume, for simplicity, that the time course of the calcium concentration in each spine
type is similar, but the magnitudes may differ. We examine all permutations of steady-state
calcium levels. The model does not take into account the affect of calcium in the parent
dendrite. Finally, it is important to point out that the biology does not preclude extremely

Figure 3. Within one activation period Vd and Isyn return to rest, but calcium rises rapidly andmaintains
its peak concentration. (A): The potential in the dendritic shaft Vd approaches rest after 10ms, as does
the synaptic input Isyn for a stubby spine. The spine head potentials of the three spine types as well
as the synaptic input for mushroom and thin spines also approach rest within 10ms (not shown). (B):
In contrast, calcium concentrations in all three spine types quickly rise to between 20 and 25 nM and
maintain their peak values over the activation period due to relatively slow decay rates.
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large disparities in time scale between fast and slow subsystems. For practical computa-
tional reasons we chose time scales for the slow system, δi and εi, just small enough so
that decreasing the order of magnitude of these parameters does not qualitatively affect
the dynamical properties of the system (see [27]).

For spatially uniform synaptic input and spatially uniform distribution of spines, the
partial differential equation system reduces to a system of ordinary differential equations
which were integrated and cross-checked using standard solvers. Extensions to the model,
such as how to incorporate the formation and loss of synapses, and how to add spine popu-
lations to handlemore than one input frequency at points along the dendrite, are addressed
in the discussion.

3. Population dynamics of passive spines

In this section we reduce system (13)–(18), with passive spines, to a system of ordinary
differential equations to investigate how (1) dendritic diameter and (2) synaptic input fre-
quency influence spine morphology along the dendrite. The reduction is motivated by
computational studies which show that spatially uniform repetitive synaptic input to pas-
sive spines, within an input region, drive spine restructuring primarily within that input
region, with little or no effect on membrane potential and structural change outside the
region [26]. This is in stark contrast to excitable spines, where theoretical studies suggest
that synaptic activity can drive restructuring andmembrane potential far outside the input
region [7, 26]. For the passive spine case, we use the above insights to model an isolated
segment of cable with sealed ends corresponding to the endpoints of the input region. If
the passive cable segment receives synchronous synaptic input, and initially each spine
type is uniformly distributed, model (13)–(18) reduces to the following system of ordinary
differential equations:

τm
dVd

dt
= −Vd + R∞

3∑
i=1

niIssi. (20)

Csh
dVshi

dt
= −Vshi/Rsh − Isyni − Issi, i = 1, 2, 3 (21)

dCai

dt
= −εi(Cai − Cmin) + κi |Issi|, i = 1, 2, 3 (22)

dn1
dt

= −K+
1 n1 + K−

2 n2 (23)

dn2
dt

= K+
1 n1 − (K−

2 + K+
2 ) n2 + K−

3 n3 (24)

dn3
dt

= K+
2 n2 − K−

3 n3. (25)

To investigate how dendritic diameter influences spine morphology in a passive cable we
use system (20)–(25) to simulate calciumdynamics and changes in spine densities. Figure 4
shows the calcium dynamics and spine densities for stubby, mushroom, and thin spine
types, for three different dendritic diameters: d = 0.5, 1.0, 1.5μm. A synaptic input fre-
quency of 50Hz (synaptic input ever 20ms) is applied to all three spine types. Initially
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Figure 4. Spine morphology correlates with dendritic diameter in response to repetitive synaptic input
to passive spines. Dendritic spines uniformly distributed on a passive cable of diameter d, initially at
rest, are uniformly and synchronously stimulated by repetitive synaptic input of frequency 50 Hz. Initially
there are equal numbers of stubby (s), mushroom (m), and thin (t) spines per unit electrotonic length
(n = 20 for each spine type), and each type has an initial calcium concentration of 5.01 nM. Scale fac-
tors governing calcium steady-states are set to κ1 = 5.0, κ2 = 5.8, and κ3 = 6.8 nM/(pA ·ms). (A): For a
thin dendrite (d = 0.5μm), calcium (left) rises above the lower critical value of C1 = 100 nM but stays
below theupper critical value ofC2 = 300 nM. For thesemoderate calciumvalues (cp Figure 1) s→m→t
and therefore the density of t spines dominate (right). (B): For an intermediate diameter (d = 1.0μm),
calcium rises above C2 for t and partially above for m. However, s remains below the upper thresh-
old. Here,m, s, and t coexist with m dominating. (C): For a larger diameter (d = 1.5) all three calcium
concentrations rise above C2 and therefore s dominates since t→m→s.

the spine densities are equal, ni = 20 spines per electrotonic length (e.l.). In this simula-
tion parameters κi are set so that thin spines accumulate the largest intraspine calcium,
followed by mushroom and stubby. For d = 0.5 the calcium for all three spine types does
not exceed C2 = 300 nM in response to repetitive synaptic input. Calcium levels remain
in the range C1 < Ca < C2. According to Figure 2(A) the direction of spine transition is
s → m → t. Indeed, as Figure 4(A) (right) shows, the thin spines dominate while mush-
room and stubby spine densities decay toward zero. It is important to note that the total
spine density remains constant at all times, since we are modelling transitions between
spine types.

As the diameter increases, the calcium levels for all three spine types shift upward.
Figure 4(B) (left) shows the case where the thin spine calcium concentration rises aboveC2,
mushroom calcium is partially above C2, while stubby calcium remains below this critical
value. Figure 2(A) indicates that both thin and stubby spines should transition to mush-
room spines. The mushroom spine calcium concentration oscillates above and below C2,
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spending most of the time above C2. From Figure 2(A), a larger fraction of mushroom
spines should become stubby, while a smaller fraction becomes thin. This scenario cre-
ates the possibility for coexistence between spine types. Figure 4(B) (right) demonstrates
that this is the case; for large time, the mushrooms dominate stubbys, while the thin spines
decay to low but nonzero values.

To better understand how coexistence comes about and obtain an analytic estimate of
the spine densities for this case, consider subsystem (23)–(25) for large time in conjunction
with Figure 4(B) (left). To simplify the analysis assume that the function f (Ca) in Figure 4
(Equation (19)) is replaced by a piecewise continuous function that transitions between
1 and −1 at C2. Since the large time calcium concentration for stubby spines falls below
C2, from Equation (12) the rate K+

1 = δ1. The thin spine concentration lies above C2, so
K−
3 = δ3. The mushroom spine concentration straddles C2 spending fraction p of its time

above and (1 − p) below the critical value; therefore K−
2 = pδ2 and K+

2 = (1 − p)δ2. In
the simulation δi = δ, i = 1, 2, 3 (δ = 2 × 10−3 ms−1), and the approximating linear
subsystem is

d
dt

⎛
⎝n1
n2
n3

⎞
⎠ = δ

⎛
⎝−1 p 0

1 −1 1
0 (1 − p) −1

⎞
⎠

⎛
⎝n1
n2
n3

⎞
⎠ , (26)

with initial conditions ni(0) = 20, i = 1, 2, 3. The solution to this linear system is⎛
⎝n1
n2
n3

⎞
⎠ = 30

⎛
⎝ p

1
1 − p

⎞
⎠ + 20(1 − 2p)

⎛
⎝ 1

0
−1

⎞
⎠ e−δt + 10

⎛
⎝ p

−1
1 − p

⎞
⎠ e−2δt . (27)

For large time ⎛
⎝n1
n2
n3

⎞
⎠ −→ 30

⎛
⎝ p

1
1 − p

⎞
⎠ , (28)

demonstrating coexistence. In Figure 4(B) (left), p ≈ 0.9, and from Equation (28) the long
time spine density values are estimated asn2 ≈ 30 (mushroom type),n1 ≈ 27 (stubby type)
and n3 ≈ 3 (thin type), which agrees well with the numerical results in Figure 4(B) (right).
Note from Equation (28)) that the density of stubby and thin spines depend on the frac-
tion of time the calcium values for mushroom spines stay above or below C2, whereas the
mushroom spines approach a final density (half the total density) that is independent of its
straddling configuration.

For diameter d = 1.5 in Figure 4(C) (left), both thin and mushroom calcium concen-
trations eventually exceed C2, but this time the calcium for the stubby spines straddle C2.
In this case, K+

1 = (1 − p)δ, K−
2 = δ, K+

2 = 0, and K−
3 = δ, and for large time

⎛
⎝n1
n2
n3

⎞
⎠ −→ 60

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 − p

1 − p
2 − p

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (29)
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Figure 5. Bifurcation diagrams of steady-state density n vs. diameter d for six configurations of stubby
(s), mushroom (m), and thin (t) spines. Steady-state spine densities are computed numerically in
response to a 50 Hz input. Scale factors governing calcium steady-states are chosen to represent the
six permutations of s,m, and t. For example, t > m > s simply denotes the order in which steady-state
calcium concentrations dominate (e.g. see Figure 4 left). Other parameters and initial conditions are the
same as in Figure 4. (A): s > m > t: κ1 = 6.2, κ2 = 6.0, κ3 = 5.7; s > t > m: κ1 = 6.3, κ2 = 5.4,
κ3 = 6.5. (B): t > s > m: κ1 = 5.5, κ2 = 5.3, κ3 = 7.0; t > m > s: κ1 = 5.0, κ2 = 5.8, κ3 = 6.8. C:m
> t > s: κ1 = 4.9, κ2 = 6.8, κ3 = 6.4;m > s > t: κ1 = 5.5, κ2 = 6.6, κ3 = 5.7.

In Figure 4(C) (left), p ≈ 0.8, and from Equation (29), the long time spine density values
for this case are estimated as n1 ≈ 50 (stubby type), n2 ≈ 10 (mushroom type) and n3 ≈ 0
(thin type), which agree well with Figure 4(C) (right).

Figure 5 depicts bifurcation diagrams that plot the steady-state values of spine densities
for t, m, and s over the dendritic cable diameter range 0.5 ≤ d ≤ 2, for a synaptic input
frequency of 50Hz. We refer to each panel in this figure as bifurcation diagrams since
steady-states are computed for each value of d, as opposed to using the full PDE model to
compute the steady-state solution over a cable that has a continuously increasing diameter
(a flared cable). In the figure, scale factors κi are chosen to represent six permutations of the
steady-state calcium levels for the three spine types. To clarify, consider the steady-state Ca
levels for spine types t,m, and s in Figure 4 (left panels). Here, the choice of κi determines
that the calcium levels in the steady-state have the configuration of t>m> s independent
of d. For d = 1.0 the steady-state values of the spine densities form, s and t in Figure 4(B)
(right) correspond to spine density values in the bifurcation diagram of Figure 5(B) (right)
for d = 1.0.

In all panels of Figure 5, thin spines dominate for d<0.7 whereas stubby spines domi-
nate for d>1.4. This result, for passive spines, suggests that for a cable that tapers from the
soma, stubby spines dominate near the soma whereas thin spines dominate distally. This
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Figure 6. Bifurcation diagrams of steady-state density n vs. frequency of synaptic input for the six
configurations and scale factors used in Figure 5. Other parameters are the same as in Figure 5. Steady-
state spine densities are computed numerically for a dendrite with diameter d = 1.5μm. (A–C): The
bifurcation structure in each panel is remarkably similar to the corresponding structure in Figure 5.

result for passive spines is consistent with the theoretical results of Rinzel [22]. Finally, note
that for medium range diameters multiple spine types can coexist.

In Figure 6 the bifurcation parameter is now the synaptic input frequency rather than
the cable diameter. In this figure the cable diameter is fixed (d = 1.5). The bifurcation
structures of Figure 6 are remarkably similar to the corresponding structures in Figure 5.
Figure 6 shows for higher frequencies of synaptic input the stubby spines dominate the
other spine types due to excessive levels of calcium, whereas in the low frequency range
thin spines dominate. In the middle range of frequency we see a coexistence between
spine types. Figure 4 and 5 suggest the possibility of an interesting interplay between
a hard-wired geometric parameter (cable diameter) and a dynamic variable (the fre-
quency of synaptic input). A possible implication of this interplay is addressed in the
Discussion.

4. Forging a pathway for propagation

Similar to previous results [3], the stage-structured continuum spine model suggests that
the propagation of a pulse along the cable is correlated with the density of spines with a
medium range of stem resistance. Here, we have categorized these spines as the mushroom
spine type. Also, higher densities of stubby and thin spines along with mushroom spines
can enhance pulse propagation, but stubby and thin types without mushroom type spines
do not lead to propagation.
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In this section, we present results of numerical simulations for the model described
by Equations (13)–(18), and Hodgkin-Huxley kinetics (Equation (5)) for ionic currents.
We apply a repetitive synaptic input with a frequency of 50Hz to the spine heads at one
end (0 ≤ X ≤ 0.2) of a dimensionless cable of length L = 3 studded uniformly with 180
spines (60 of each type). Here, parameters that reflect the scaling of calcium dynam-
ics are κ1 = 1.7, κ2 = 1.92, and κ3 = 2.4 nM/(mA·ms). Biological evidence suggests that
persistent synaptic activity leads to mushroom type spines that are more stable and resis-
tant to morphological changes [4, 5, 29]. To reflect this, we reduce the rate of change
for mushroom spines δ2 from 0.001 to 0.0001ms−1. The model implementation employs
a semi-discretization with a first-order numerical differentiation approximation for the
second derivative and then solving the system of resulting ordinary differential equa-
tions using MATLAB’s ODE15 solver. The results for this numerical approximation are
represented in Figures 7–9.

Figure 7(A) shows the dynamics of spines andmembrane potential during the first 6ms
of initial synaptic input. The left panel shows the dynamics of spines along the cable, the

Figure 7. Impulse Propagation for Repetitive Synaptic Input. A cable of dimensionless length 3 (λ =
250μm) and diameter 0.7μmwith both ends sealed, and R∞ = 454.73 M� represents a dendrite with
a uniform distribution of 180 excitable spines (60 of each type). The spine density for each type is initially
n1 = n2 = n3 = 20. Calcium scale-factors are κ1 = 1.7, κ2 = 1.92, and κ3 = 2.4 nM/(mA ·ms). Spines
near X = 0 (0 ≤ X ≤ 0.2) are periodically activated every 20mswith peak conductance 0.074 nS, where
Isyn is given by Equations (6) and (7). (A): Initially (1st input) the spine densities are uniformly distributed
(left panel). Membrane potentials in the spine heads (middle panel) and dendrite (right panel) are shown
for three spatial locations: X = 0.12 in the the stimulated cluster, and X = 1.2 and X = 2 in the unstim-
ulated region. (B): After 600 ms (30 inputs), the left panel shows that mushroom spines dominate the
other two spine types. The additional figures demonstrate the propagation of potential along the cable.
(C): After 1,600ms (80 inputs), themushroom spine density increases and dominates the twoother spine
types. Spine density dynamics forge a pathway for propagation of an action potential along the entire
cable.
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Figure 8. Correspondence of Impulse Propagation and Mushroom Spine Dynamics. For active spines
with activity-dependent densities, the peak head and dendritic potentials increase slowly as the mush-
room spine density increases. Herewe employ the sameparameter values as Figure 7. The time evolution
of the peak spine head potential and the dendriticmembrane potential, alongwith themushroom spine
density, are plotted for three spatial locations: at the input site X = 0.12, at X = 1.2, and distant from
the input site at X = 2. (A): Rise in peak potential in the mushroom spine head at three spatial points
along the dendrite. (B): Peak dendritic potential rises with the same shape as the peak head potentials
at the same spatial location, but with smaller peak values due to the spine stem resistance. (C): After 50
inputs, themushroom type spine density increases at all locations, with the highest increase at the input
site.

Figure 9. The Effects of Frequency on the Propagation Range of an Impulse. The frequency of the
synaptic stimuli changes the range of impulse propagation along the cable. The figure depicts the peak
potential in the mushroom spine heads, Vsh2, after 0.8 seconds. As the frequency increases, pulses reach
the other end of the cable more quickly. Other parameter values are the same as those in Figure 7.

middle panel is themembrane potential atmushroom spine’s head and the right panel is the
dynamics of dendritemembrane potential over time for three different locationsX = 0.12,
X = 1.2, and X = 2. Figure 7(B) left shows how the density of three spine types changes
toward the domination of mushroom spine type along the cable. The middle and right
panels demonstrate how the potential at mushroom spine’s head and dendrite will change
at three different locations of the cable. At the Figure 7(C) left the complete dominant of
mushroom spine type is visible after 80 synaptic input. This domination of mushroom
spines lead to prorogation of pulse along the dendrite.
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Figure 8 shows the change in the peak membrane potential at three different locations
along the cable, X = 0.12, X = 1.2, and X = 2, as a result of the changes in the mushroom
spine densities at these locations. Parameter values are the same as those used in simula-
tions shown in Figure 7. When repetitive stimulation is applied to the spines heads in the
initial portion of the cable, 0 ≤ X ≤ 0.2, the synaptic current term Isyn in Equation (4) and
Hodgkin-Huxley kinetics for ionic current trigger firing in the spine head. This increase
in the spine head potential Vsh increases the spine stem current Iss, resulting in a change in
the calcium level at the spine head (Equation 13). Changes in the levels of calcium cause
the dominance of the mushroom spine type for the chosen values of calcium scale-factors
(κ1 = 1.7, κ2 = 1.92, κ3 = 2.4 nM/(mA·ms)). This increase in Iss also increases the den-
drite potential Vd in Equation (3). Due to the voltage gradient, this increment propagates
along the dendritic cable, changing the value of Iss outside of the stimulated area. This
increase in turn generates spikes on the spine heads, and this chain reaction increases the
number of mushroom spines throughout the cable, forging a pathway for propagation of a
spike along the dendrite.

In Figure 9, we compare the propagation of impulses along the dendritic cable for dif-
ferent frequencies of synaptic stimulation. This figure depicts the propagation of the peak
potential for mushroom type spine heads for different frequencies following 0.8ms of sim-
ulation time. We increased the frequency from 20 to 100Hz by 20Hz increment, while
the other parameters are the same as those in the Figure 7. For synaptic stimulation at a
frequency of 20Hz, the spike in potential for mushroom type spines reaches the location
X = 1 after 0.8ms. The maximum distance of the spike propagation obtained after 0.8ms
increases with increases in frequency, e.g for a frequency of 40Hz, propagation reaches
X = 1.5, and for a frequency of 60Hz, propagation almost reaches X = 1.8. The spike
reaches the other end of the cable at a input frequency of 100Hz, and the visibly higher
peak potential seen near the end of the cable is due to the sealed end boundary condition.

5. Discussion

The goal of this study is to provide a framework for modelling populations of multi-
ple spine types and transitions between them. Novel to this study is the introduction of
stage-structured dynamics applied to distinct populations of dendritic spines. The stage
transition between spine types is formulated to depend on intraspine calcium levels that
modulate in response to patterns of electrical activity. In this framework, the electrical
activity is generated by repetitive synaptic input to spine heads. The magnitude of the
spine stem current is used as the electrical influence that drives the changes in intracellular
calcium levels [7, 26].

In response to repetitive synaptic input, we find for passive stubby, mushroom and thin
spine-types that thin spines emerge as dominant for small dendritic cable diameters, stubby
spines dominate for large diameters, and multiple spine types including mushroom spines
coexist at intermediate diameters (Figure 5). A remarkably similar pattern or configura-
tion of passive spines emerges when the dendritic diameter is fixed, but the frequency
is varied. Here, thin spines dominate in response to low frequency input, stubby spines
dominate at high frequencies, and mushroom spines coexist in the mid-frequency range
(Figure 6). This interplay between a hard-wired parameter (cable diameter) and a dynamic
variable (the frequency of synaptic input) leads to an interesting interpretation. Figures 5
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and 6 suggest the following: Consider a uniform constant diameter cable where all spines
are stimulated by a repetitive synaptic input. However, suppose the frequency is spatially
dependent; specifically, the frequency alternates periodically between high and low values
along the cable. Figures 5 and 6 infer that the steady-state structure of emerging spine
types would be equivalent to a dendritic cable with varicosities with all spines stimu-
lated synchronously at the same frequency. The implication is that a steady subthreshold
background pattern of synaptic input could have the virtual effect of morphing the cable
geometry!

When spines are excitable, the analysis and equations that determine the bifurcation
structure in Figures 5 and 6 are no longer applicable. Using the full model (Equa-
tions (13)–(18)), we find that excitable spines drive the spread of membrane potential away
from the input site, influencing the spine distribution pattern far from the input region. In
this way, the model forges a pathway for impulse propagation due to the distal formation
of mushroom spines. In our model, the mushroom spines have intermediate stem resis-
tance values that sufficiently isolate the spine heads for generating local action potentials,
but spine heads are not so isolated as to preclude action potential propagation. This result
is consistent with early studies of spine impulse propagation dynamics [2, 3]. Our com-
putations studies reveal spatial distributions of mushroom spine densities along the cable
that facilitate impulse propagation (Figures 7–9). It is important to add that currently it is
extremely difficult to test the key predictions of this model experimentally. It is difficult to
count spines and it is even more difficult to obtain accurate data identifying and counting
spine types. With this said, we expect that as imaging and the precise control of synaptic
input is perfected it will be possible to test the key predictions of this model.

In this stage-structured population model, all spine transitions are considered sequen-
tial; that is, a stubby spine undergoing transition to a thin spine, must first go through
the mushroom spine stage, and vice versa. In this formulation we assume that there is no
spine pruning or formation of new spines, so the total density of spines is conserved. How-
ever, previous models of activity-dependent changes in spine structure allowed for overall
changes in spine density [7, 26]. For example, in line with biological observations [23], the
model described by Crook et al. [7] allows for the creation of new spines for intermediate
levels of calcium, like those associated with spine elongation. Note that in the brain, newly
formed spines begin as long, thin filopodia, which probe the environment prior to form-
ing a functional synapse and becoming a thin spine. In contrast, for very low or very high
levels of calcium like those typically associated with spine stem shortening, spines may
completely disappear resulting in a decrease in spine density. These mechanisms could be
added easily to the stage-structured formulation described here by allowing for increases
in the density of thin spines to reflect the creation of new spines and decreases in the den-
sity of stubby spines to reflect the loss of spines, known as spine pruning, based on calcium
levels.

In the simulation studies considered here, repetitive synaptic input at a single frequency
is applied to spine heads in specific areas of the dendritic cable, similar to controlled exper-
imental studies that aim to carefully manipulate spine structure in specific locations. In
further computational studies, more biologically realistic synaptic inputs with multiple
frequencies or complex spatio-temporal patterns of synaptic inputs could be applied to the
model. In addition, the stage-structured populationmodel formulation provides themeans
to administer inputs with different frequencies or patterns to different, specific spine types.
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