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RESEARCH PAPER

Antigenicity prediction and vaccine recommendation of human influenza virus A
(H3N2) using convolutional neural networks
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ABSTRACT
The rapid evolution of influenza A viruses poses a great challenge to vaccine development. Analytical
and machine learning models have been applied to facilitate the process of antigenicity determination.
In this study, we designed deep convolutional neural networks (CNNs) to predict Influenza antigenicity.
Our model is the first that systematically analyzed 566 amino acid properties and 141 amino acid
substitution matrices for their predictability. We then optimized the structure of the CNNs using particle
swarm optimization. The optimal neural networks outperform other predictive models with a blind
validation accuracy of 95.8%. Further, we applied our model to vaccine recommendations in the period
1997 to 2011 and contrasted the performance of previous vaccine recommendations using traditional
experimental approaches. The results show that our model outperforms the WHO recommendation and
other existing models and could potentially improve the vaccine recommendation process. Our results
show that WHO often selects virus strains with small variation from year to year and learns slowly and
recovers once coverage dips very low. In contrast, the influenza strains selected via our CNN model can
differ quite drastically from year to year and exhibit consistently good coverage. In summary, we have
designed a comprehensive computational pipeline for optimizing a CNN in the modeling of Influenza
A antigenicity and vaccine recommendation. It is more cost and time-effective when compared to
traditional hemagglutination inhibition assay analysis. The modeling framework is flexible and can be
adopted to study other type of viruses.
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Significance statement

Influenza A viruses remain dangerous pathogens with the
potential to cause pandemic outbreaks. The World Health
Organization (WHO) is constantly monitoring the circulation
of influenza viruses to detect potential pandemic strains. And
each year, WHO recommends which strains should be
included in the flu vaccine to protect people from seasonal
flu. We apply a state-of-the-art deep learning approach to
tackle this problem. Our study designs an in-silico prediction
of antigenicity of Influenza A virus using convolutional neural
networks. We systematically analyze the selection of the phy-
sicochemical properties and optimize the structure of the
neural networks. This leads to a blind validation accuracy of
95.8%. Further, using our model, we show that vaccine strain
recommendations could be improved significantly.

Background

Current state-of-the-art antigenicity models

The genome of Influenza viruses is constantly changing, and
thus continuous vigilance is required to protect the world
population not only from seasonal influenza but also from

novel influenza A viruses that could trigger a pandemic.
Seasonal Influenza is an acute viral infection and is estimated
to cause 3 to 5 million cases of severe illness and around
250,000 to 500,000 deaths worldwide.1 Among the three sub-
types, type A is the only one known to cause pandemics.1

Vaccination is the most effective way to prevent Influenza
outbreaks and epidemics. To produce a qualified vaccine,
a composition virus must be evaluated and should represent
the newly emerged circulating virus which escaped from the
immune system of the human body. However, the rapid
evolution of influenza virus poses a severe challenge for fast
and accurate vaccine production.2 Modeling of Influenza
pathogenicity has focused on Hemagglutinin (HA) which
executes the function of binding with host cells and triggers
the process of virus internalization.3 Hemagglutinin is also the
primary target of antibodies. Two mechanisms have empow-
ered HA with the capability of frequent escape from the
elimination of the human immune system, one is antigenic
drift due to lack of proof-reading of RNA polymerase,4 the
other is reassortment of one or more gene segments.5,6

The “gold standard” for evaluating the efficacy of vaccine and
characterization of virus strains is the hemagglutination inhibi-
tion assay (HAI assay).7,8 However, the process of conducting
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HAI assay is labor and cost intensive. Hence, a wide range of
sequence-based methods have been proposed to infer the anti-
genicity of new Influenza virus.9-14

Numerous research efforts13,15-18 have explored point
mutations and their association of influenza epidemic, based
on a limited number of amino acid properties. However, these
models only measure the contribution of chosen amino acids
as individuals. Thus, they lack the context that changes of
amino acids in HA may have composite effects since they
form a 3D structure in space.

There are several promising approaches. YC Liao12

improved the model by quantifying the amino acid difference
with change of polarity, charge and structure; and applied an
iterative filtering algorithm, multiple regression, logistic
regression and support vector machine (SVM) algorithms.
Y Yao11 observed the limitation in the selection of amino
acid matrices in previous sequence-based methods and sys-
tematically analyzed amino acid index dataset 2. And J Qiu19

stepped beyond sequence information by incorporating spa-
tial information with a linear model.

Understanding the combinatorial effect of point mutations
of Influenza A and expanding the number of amino acids in
the analysis may better unveil the relationship between HA
sequence and its antigenicity. In this study, we designed
a computational pipeline based on CNN and fast optimization
algorithms for antigenicity prediction. Our model is the first
that explores systematically all the amino acids and their
combinatorial effect. We benchmarked our system-CNN
approach with current state-of-the-art methodologies.11,12,19

We also demonstrated our approach in finding optimal
strains for vaccination recommendation and established
a pipeline for a highly reliable and efficient recommending
system. A reliable prediction of antigenicity can be readily
applied to vaccine composition recommendation. Influenza
A virus is continuously monitored globally, and twice yearly
WHO work in collaboration with experts from WHO
Collaborating Centers and Essential Regulatory Laboratories
to make recommendations on influenza vaccine composition
for both the northern and southern hemispheres for the next
epidemic season. A successful selection of vaccine strain is
signified by highly induced immune effect against the target
virus, which requires the chosen vaccine representing the new
mutations of the current circulating virus. The selection of
vaccine strain involves the collection of clinical specimens,
diagnosis and virus isolation, antisera production, thorough
antigenic and genetic analysis, serological study of seasonal
influenza vaccine and finally the selection of candidate viruses
for vaccine use.20 The antigenic and genetic analysis process is
primarily composed of continuous HAI assay test, in which
candidate strains are tested against circulating ones and the
“antigenic distance” is measured. However, this traditional
methodology is limited by the availability of high-level bio-
safety laboratories and economic cost. Our in-silico computa-
tional model analyzes all potential amino acids and
combinatorial properties and returns a promising vaccine
recommendation that outperforms the current WHO vaccine
recommendation and other existing models. The pipeline is
cost-effective, evidence-based and can be adaptable for other
viral analysis.

Application of convolutional neural network

Deep convolutional neural network (CNN) has been applied
successfully in visual analysis21-24 and natural language
processing.25-27 A CNN is usually composed of one or more
convolutional layers. However, instead of each neuron in one
layer being connected to all neurons in the next layer, regu-
larization of CNNs takes advantage of the hierarchical pattern
in data and assembles more complex patterns using smaller
and simpler patterns. Therefore, on the scale of connectedness
and complexity, CNNs are on the lower extreme.

Each convolutional layer scans through the input and gen-
eralizes higher level characteristics of the input. The process
starts by choosing a filter/kernel size and scans the input
systematically through a sliding window to identity critical
features. This is usually followed by non-linear activation,
pooling and dropout. Each convolutional layer may contain
multiple kernels, each of which focuses on a specific charac-
teristic of the input, such as edges, corners, diagonal lines, etc.
The summarized characteristics can be further used in many
applications, such as image classification, and generative mod-
els. Appendix 1 includes a simplified example of a CNN and
various components.

Given its outstanding performance in image processing,
CNN is heavily applied in medicine especially within the realm
of cancer detection28-30 and neurology.31-33 DQuang34 proposed
a hybrid convolutional and recurrent deep neural network to
predict the function of non-coding regions of DNA. J Kim35

applied CNN on climate heat maps to detect Influenza out-
breaks. S Zhong36 applied CNN to predict Influenza dynamics
in a location network for location-oriented intervention strategy.
This paper marks the first application of CNN to antigenicity
analysis of influenza.

The structural design of a neural network is critical for its
performance. Tuning the hyperparameters and structure (e.g.,
how many convolutional layers, kernel sizes, step size, pooling
approach, dropout rates, etc.) of a deep neural network via
a manual process requires much expertise and experience and
remains a challenge due to the large number of architectural
design choices. Numerous approaches have been proposed to
optimize the architecture of neural networks.37-48 Despite
their successes, most of them are restricted to a fixed search
space and cannot handle non-continuous space. To address
this issue, biological inspired algorithms have been applied
including particle swarm optimization (PSO)37,47 and genetic
algorithms.46,48 Among these approaches, PSO is able to opti-
mize the structure, hyperparameters and activation of a neural
network simultaneously while maintaining good computa-
tional performance.37

Study objective

In this study, we designed a systems biology deep learning
framework to analyze all prior years’ viruses to predict and
select a set of strains for vaccine development. We first eval-
uated the combinatorial effect of point mutations of Influenza
A virus using a CNN approach for antigenicity quantifying
(Figure 1). The CNN model was designed to scan a large sub-
region of the Influenza sequence, which enables the model to
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potentially quantify the spatial relationship and interaction of
amino acids that are not necessarily adjacent in a sequence.
The CNN model extracted and formulated high-level patterns
from the sequence through intermedia layers, advancing the
understanding of pathogenicity of the virus. We optimized the
CNN model and its feature space. The fast PSO heuristic
offers an efficient computational environment while achieving
good performance in the resulting CNN model.

Specifically, leveraging CNN’s effectiveness in recognizing
patterns in images, we innovatively constructed the patterns
of the HA protein sequence using amino acid indices.
Training on these patterns, the CNN model analyzed the
contributions introduced by individual mutations and their
associated combinational effects. Furthermore, we systemati-
cally analyzed all available amino acid properties for the pre-
dictability of H3N2 antigenicity.

We next applied the predicted antigenicity results to vac-
cine composition recommendation and contrast our results
with existing approaches. Specifically, we first reported the
efficacy of the World Health Organization (WHO) vaccine

recommendation. Next, we analyzed the ideal scenario: an
optimal vaccine recommendation when the circulating strains
are known. This was followed by exploring optimal vaccine
recommendations using our CNN model.

Materials and methods

This study is composed of six major steps:

(1) Collect data from public sources and construct anti-
genicity cartography,

(2) Define antigenic distance and select the threshold for
discriminating antigenic variant versus antigenic
similar,

(3) Select amino acids to represent HAI pairs via evolu-
tional conservation threshold, regression model and
information theory,

(4) Optimize the selection of AAindex using PSO to
obtain the best combinatorial amino acids properties
that result in the best prediction accuracy,

Figure 1. A computational pipeline for antigenicity prediction. HA sequence and HAI assay data were used to construct HAI sequence pairs. HAI assay was also used
to make antigenic cartography to generate more HA pairs (augmented set via multi-dimensional scaling). The HA sequence pairs were filled with data using the
metrics in AAindex, the choice of which was optimized using a PSO algorithm. Upon obtaining the optimal antigenicity descriptor, the optimal CNN model is
constructed using PSO.

HUMAN VACCINES & IMMUNOTHERAPEUTICS 3



(5) Optimize the hyperparameters of CNNs via particle
swarm heuristics to obtain the best prediction,

(6) Determine the vaccine strain recommendation and
contrast it with the WHO selection and the optimized
“ideal” scenario.

Dataset

HAI assay data were collected and combined from T Bedford49

and WHO reports. The T Bedford dataset includes HAI titer for
seasonal A/H3N2 influenza viruses and ferret antisera isolated
between 1968 and 2011, which has a total of 10,059 recordings of
antigen-antiserum pairs. The dataset from WHO was obtained
via batch search, weekly epidemiological records, and Influenza
summary, covering the period from 1980 to 2017. After filtering
for A/H3N2, we obtained a total of 755 HAI titer pairs from
these WHO records. Duplicates in the datasets were averaged
into one entry and titer numbers indicated as “<20” and “<40”
were taken as half of the value. The final set contains 6,166
unique HAI titer pairs. Among the HAI titer data, 5,916 pairs
involving virus strains from 1968 to 2010 were used as the
training set, while the remaining 250 pairs from 2011 to 2016
were used as an independent blind validation set.

Antigenic Cartography is the process of creating maps of
antigenically variable pathogens Using multidimensional scaling
proposed by DJ Smith,50 we constructed the antigenic cartogra-
phy and acquired 156,255 HAI pairs calculated using the coor-
dinates of the strains. This augmented dataset supplements the
pair-wise relationships between virus and antigenic serum,
which were too expensive to acquire via traditional experimental
approaches. This augmented set was then partitioned into
145,930 training samples and 10,325 blind validation samples
using the same partition time range.

In total, we obtained 463 strains and theHAI protein sequences
were downloaded from NCBI Influenza Virus Database,51

Influenza Research Database52 and GISAID.53 The sequences
were aligned using MUSCLE54 with the default parameters.

Antigenic distance

The HAI titer value Hij is the maximum dilution of serum
containing antibody raised against virus j, which is necessary
to inhibit erythrocytes agglutination induced by virus i. We
followed Smith’s50 definition of antigenic distance:

Dij ¼ bj � log2 Hij
� �

(1)

bj ¼ log2max HAI of antiserum jð Þ (2)

If Dij is greater than 4, virus i and j are considered antigenic
variant (positive), otherwise they are antigenic similar (nega-
tive). An antigenic variant pair represents that one virus can
“escape” from the immune system that was vaccinated by the
other virus.

Modeling antigenic variance

Conservation scores were calculated using ConSurf55 for the
selection of amino acids. Amino acid positions in the align-
ment with no gaps and a conservation score smaller than 0.99

were collected as the basis for making quantitative descriptors
of antigenic variance. A logistic regression model, Equation
(3), was constructed to further filter the candidate amino
acids.

y ¼ 1

1þ e� β0þβ1xð Þ (3)

For each amino acid position, a binary vector x was con-
structed across all HAI pairs which represent the difference
between virus and serum. After convergence, the mutual
information (MI), Equation (4), of predicted and true
response was calculated and a threshold of 1e-4 was used to
filter the amino acids candidates.

I X;Yð Þ ¼
X
x2X

X
y2Y

p x; yð Þ log p x; yð Þ
p xð Þp yð Þ

� �
(4)

Unlike previous studies11,15,19 which limit the selection of
candidate amino acids to surface accessible ones, we consid-
ered the potential importance of inner amino acids.

For all the amino acid positions, we constructed a vector
corresponding to the HAI titer pairs with the value in the
vector deduced from selected amino acid indices56 and the
representing aligned HA sequences. The value is obtained by
subtracting the value of amino acid in serum virus from that
of antigen virus. The AAindex database is a flat file database
that consists of three sections: AAindex1 for the amino acid
indices, AAindex2 for the amino acid substitution matrices
and AAindex3 for the amino acid contact potentials. We
applied logistic regression to test the predictability of three
amino acid indices one at a time. A moving window techni-
que was used to produce 10 training and testing sets based on
the year of the virus, thus guaranteeing that older pairs were
used to predict the newer pairs. The performance was aver-
aged among the 10 sets.

After comparing both Matthews correlation coefficient
(MCC) and MI of the training and testing sets, only
AAindex 2 and 3 merited further analysis. Upon filtering
out the non-applicable values, we obtained 92 matrices of
AAindex 2 and 43 matrices of AAindex 3. We used PSO to
further narrow the candidates from these AAindex 2 and 3
matrices.

Convolutional neural networks (CNN)

We next implemented the CNN models using Keras v2.0.8.57

Our CNN includes the convolution layers, the pooling layers,
the dropout layer, and the fully connected layers.
A convolution layer is defined by the number of filters, filter
size, stride size, and activation function. A pooling layer is
defined by the kernel size and stride size. A dropout layer is
defined by the probability of dropout. And a fully connected
layer is defined by the number of neurons and activation
function. Figure 2 illustrates the structure of our CNN
model. We formed a vector using the CNN hyperparameters,
along with the number of CNN modules and number of dense
layers. We normalized it appropriately and then optimized
using PSO. Table 1 summarizes the range of hyperparameters
used in the CNN model.
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Particle swarm optimization

PSO58,59 was designed to optimize the choice of amino acid
indices, and the structure and the hyperparameters of our
CNN model. Our PSO algorithm was implemented in
Python 3.6 and worked as follows:

Step 1. Initialize the optimization process with a set of 25
particles with random locations and velocities.

Step 2. Define the von Neumann neighborhood60 for the
initialized particles.

Step 3. Evaluate the fitness function for each particle. If the
fitness value is better than the particle’s best value, update the
personal best position ppbest, and the personal best value vpbest
accordingly.

Step 4. Compute the local best value vlbest, local best posi-
tion plbest to update all particles. Change the velocity and
position of particles according to the following formula:61

vtþ1 ¼ w � vt þ r1 � c1 � ppbest � ppt
� �þ r2 � c2

� plbest � ppt
� �

(5)

pptþ1 ¼ ppt þ Δt � vtþ1 (6)

Step 5. Go to Step 3 until the maximum number of iterations is
met or the change of global best value is less than a pre-set
threshold.

We selected 10 indices from the AAindex. A binary vector was
used to represent the selection of the AAindex and served as the
position vector of the particles. The PSO algorithmwas initialized
with 25 particles, and a random speed uniformly initiated
between −1 and 1. The algorithm terminates when the maximum
number of iterations reaches 50, or when the change in the global
best value is smaller than 1e�6. In the process of updating the
particle’s position vector, the top ten ranked elements were set to
1 and the rest to 0, which maintains the conceptual rule of the
position vector. The fitness value was returned by a simple CNN
model (Table 2), which uses the position vector as the choice of
AAindex and trained with 10 epochs and batch size of 600.

Upon termination, the optimal position vector was
reported and the corresponding AAindex were retrieved.
The selected 10 AAindex were then used to calculate the
value difference between virus strain and serum strain. The
resulting values form the feature matrix for each HAI pair. In
the final step, a tensor (size: sample size� amino acid candi-
dates� selected AAindices) was generated and split accord-
ingly for further training and blind validation.

Figure 2. Design schema of our CNN networks.

Table 1. Range of hyper-parameters used in our CNN.

Hyperparameter Min Max

Number of CNN modules 1 4
Number of filters 32 256
Filter size 2 5
Filter stride 1 3
Pooling size 1 4
Pooling stride 1 4
Dropout probability 0.1 0.5
Number of dense modules 1 3
Number of neurons in dense layers 72 256
Dropout probability 0.1 0.5
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In the optimization of the CNN structure, a vector of
length 26 with continuous values ranging between 0 and 1
was used to represent the structure of the underlying CNN. In
the optimization process, the constant inertia w is set to 0.5,
cognitive constant c1 and social constant c2 are both set to 2.

Performance metrics

The performance of the models was evaluated using accuracy,
sensitivity, specificity, MCC and f-score on their predictability
of antigenic variance. Specifically,

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

(7)

Sensitivity ¼ TP
TP þ FN

(8)

Specificity ¼ TN
TN þ FP

(9)

MCC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp

(10)

F � score ¼ 2 � precision � recall
precisionþ recall

(11)

where TP represents true positive, TN represents true nega-
tive, FP represents false positive and FN represents false
negative. We recognize the problem of accuracy/sensitivity/
specificity. Our study is guided in part by our CDC collabora-
tors who advise us. This study uses MCC and f-score to
compensate for bias.

We also contrasted our model performance with the cur-
rently most promising approaches from the literature: YC
Liao’s,12 J Qiu’s19 and Y Yao’s.11

Optimization of vaccine recommendation

The recommendation of H3N2 vaccine composition was col-
lected from the data repository of WHO, among which we
chose six strains for analysis (Table 3).

The efficacy of vaccine composition can be measured by
antigenicity coverage which is defined as

Ca;i ¼ Ka; i

Mi
(12)

Here Ca,i denotes the antigenicity coverage of strain a in year
i, Ka,i represents the number of strains similar to strain

a in year i, and Mi means the total number of newly emerged
vaccine strains in year i.

We proposed the following optimization to obtain the
optimal recommendation of vaccine composition:
max

Pn�1
i¼1 w sijyið Þ þ wðsiþ1jyiþ1Þ½ �

s:t: g sið Þ< yi; i ¼ 1; . . . ; n (13)

where g(si) represents the year of virus strain si, and w(si|yi) is
the antigenicity coverage of virus strain si in the year of yi.
Constraint (13) restricts the selection of candidate vaccine to
emerge earlier than the year of recommendation.

Results

Selection of candidate amino acids

We extend the traditional way of selecting antigenicity-dominant
positions from surface ones to all non-conserved amino acids.
This was based on two assumptions: 1) Surface amino acids may
directly interact with antibodies, and inner amino acids are
equally important in the role of affecting the overall 3D structure
of the protein; 2) The change of antigenicity introduced by point
mutations is more complicated than a linear addition of indivi-
dual contributions, thus requiring comprehensive modeling of
spatial and long distance interactions.

We collected amino acid positions in the alignment of the
463 HAI protein sequences with no gaps and a conservation
score smaller than 0.99 as the basis for making quantitative
descriptors of antigenic variance. This resulted in a total of
116 most mutated amino acid positions (Figure 3). The num-
ber was further reduced to 96 using a MI threshold.

The relationship between spatial and sequential distances of
the 96 candidate amino acid positions is explored in Figure 4.
We observe that due to the complexity of HA1, the distances
are not linearly related. This phenomenon indicates that amino
acids on the HA structure can interact even with large sequence
distances between them. To facilitate our model to learn this
phenomenon, the size of the first kernel of our CNN networks
was fixed at 96, equaling the total number of amino acids
selected for prediction.

Systematic analysis of predictability of AAindex

AAindex56 is a database of numerical values representing
physicochemical and biochemical properties of single and
paired amino acids. AAindex has three sections: amino acid
physicochemical properties (AAindex1), substitution matrices
(AAindex2) and statistical protein contact potentials
(AAindex3). The choice of AAindex is crucial to the predict-
ability of machine learning models.

Table 2. CNN structure used for optimizing AAindex selection.

Layer Index Layer

1 Convolution; Filter: 32, Filter size: 3, stride: 1, activation: relu.
2 Max pooling; Kernel size: 2, stride: 2.
3 Dropout; Dropout rate: 0.3.
4 Dense; Neurons: 128, activation: relu.
5 Dropout; Dropout rate: 0.5.
6 Dense; Neurons: 64, activation: relu.
7 Dropout; Dropout rate: 0.5.
8 Dense; Neurons: 1, activation: sigmoid.

Table 3. WHO’s recommendation of H3N2 vaccine composition.

Strain Start year End year

A/Sydney/5/1997 1998 2000
A/Moscow/10/1999 2000 2004
A/Fujian/411/2002 2004 2005
A/California/7/2004 2005 2006
A/Wisconsin/67/2005 2006 2008
A/Brisbane/10/2007 2008 2010

6 E. K. LEE ET AL.



After filtering out missing data in AAindex, we obtained 553,
92, and 43 recordings of AAindex 1, 2, and 3, respectively. Each
of the recording was used to construct the feature vector based
on the resulting 96 amino acid positions. The predictability
measured byMCC andMI was obtained using a simple logistical
model (Figures 5 and 6). The sorted MCC and MI slopes of
AAindex 2 and 3 indicate sufficient potential in predictability,
whereas AAindex 1 does not. The best MCC of training samples
using AAindex 2 and 3 reaches as high as 0.465 and 0.409,
respectively, while AAindex 1 only achieves 0. This result reflects
the fact that AAindex 2 and 3 measure the properties involved in
amino acid interaction and interchanging instead of merely the

physical and chemical features as in AAindex 1. We then per-
formed the final feature selection step restricted to the sets
AAindex 2 and 3.

Optimized selection of AAindex

Our analysis showed that PSO is a robust solution engine for
selecting the amino acids. We benchmarked several optimization
algorithms including Newton’s method, Nelder-Mead,62 Powell’s
algorithm,63 the Conjugate Gradient method,64 the Broyden–
Fletcher–Goldfarb–Shanno algorithm (BFGS),65 the limited-
memory BFGS-B (L-BFGS-B),66 the truncated Newton (TNC)

Figure 3. Conservation score calculated using the alignment of all protein sequences and shown on the 3D structure of 3HMG. The 96 selected amino acids are
shown as sphere and the rest are shown as ribbon. Red represents the most conserved, and blue represents the most non-conserved.

Figure 4. Spatial and sequential distances of candidate amino acids. Each amino acid pair is represented by a dot in the figure. There are 4,560 pairs for the 96 amino
acids.

HUMAN VACCINES & IMMUNOTHERAPEUTICS 7



algorithm,67 constrained optimization by linear approximation
(COBYLA),68 and sequential least squares Programming
(SLSQP).69 In a scenario where there are multiple local maxima
(Figure 7(a)), the PSO algorithm is able to find the global max-
imum when other algorithms failed (Figure 7(b)). All these algo-
rithms were trapped in a local maximum which is close to the
initial starting point, while the Nelder-Mead algorithm failed to
converge.

The PSO algorithm returns 10 matrices from AAindex 2
and 3 (Table 4). Our results differ notably from previous
findings: the amino acids PAM250 and BLOSUM62 were
not selected, although they are commonly thought to have
good predictability.12,70,71 These two matrices were also absent
in one previous research result.16 After ranking the MCC of

AAindex candidates using a logistical regression model, it
shows that the selected candidates are not merely
a collection of best performing single variates. Rather in
combination they produce the best results. This is not possible
to achieve using a step-wise optimization algorithm.

Optimized deep neural network structure

An optimized structure of CNN is reported back with three
convolutional layers and one fully connected layer (Table 5).
The convolutional layers treat the input tensor as an image of
size 96*10 with only one channel, and scan through the “image”
with specific kernel size and stride steps, which extract and form
the upper level features from the previous layer.

Figure 5. Comparing Matthews correlation coefficients produced using each of the AAindex as predicting variable via a logistic regression model.

Figure 6. Comparing mutual information produced using each of the AAindex as predicting variable via a logistic regression model.
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Performance of the CNN model

We tested our CNN model extensively and validated using two
sets of data: the original data set and the augmented set obtained
via multi-dimensional scaling. The first data set contains 5,916
HAI pairs for training and 250 for blind validation. This results
in a well-balanced positive case ratio of 0.432 and 0.412. The
augmented set contains 145,930 for training and 10,325 for blind
validation. This augmented dataset results in positive case ratio
of 0.780 and 0.923, respectively. This significant increase in
positive case ratio reveals that a large number of similarity
relationships in H3N2 viruses were previously unknown due to
limited and costly experimentation of HAI assays. This again
asserts the necessity of in silicomodeling of Influenza pathogeni-
city. Ourmodels report an overall accuracy of 0.921 and 0.924 on
the training data, and 0.832 and 0.958 on the blind validation
data (Tables 6 and 7).

Tables 6 and 7 contrast our results against the three most
promising approaches from the literature. YC Liao applied three
linear models with scoring method being polarity, aromaticity,
PAM25 and BLOSUM52. J Qiu stepped beyond sequence

information by incorporating spatial information with a linear
model. Y Yao’s joint random forest method innovatively trans-
formed more than one AAindex metrics into a feature matrix
and achieved an excellent result with blind validation accuracy
0.938 and MCC 0.632. Our optimized CNN with multi-
dimensional scaling performed well with blind validation accu-
racy as high as 0.958 and MCC 0.732. Both Y Yao’s and our
approaches are more stable in maintaining similar levels of
accuracy, sensitivity and specificity.

To further test if the CNN model overfits the data, we ran
a permutation test as a ‘negative control’ by randomly per-
muting the features and response in the training set. We then
repeated the entire analysis (Figure 1) on this permuted data-
set. The CNN model reports prediction accuracy of 0.443 and
0.360 on the permuted training and test sets, respectively. The
MCC of the test set is −0.245 (Table 8). Hence, the CNN
model fails to predict antigenicity when the relationship
between amino acid sequence and antigenicity is removed
by randomization. The worse-than-random-guess prediction
confirms that there exists a causal relationship between the

Figure 7. (a) A scenario with numerous local maxima. (b) Comparison of optimization algorithms on 25 instances.
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information in the protein sequences and antigenicity and
proves that our CNN model learnt the relationship.

Antigenicity analysis and optimal vaccine
recommendation

Simulating the vaccine recommendation process, we contrasted
our CNN model to YC Liao’s,12 J Qiu’s19 and Y Yao’s11 models
in predicting antigenicity for a sequential year range (Table 9).

Our model outperformed these previous models on 11 out of 14
cases with a higher blind validation MCC. Our model is espe-
cially robust in giving a high specificity which is useful in
determining the closest strains in antigenicity.

The antigenicity coverage was calculated for all the recom-
mended strains by WHO from 1997 to 2010 using our aug-
mented dataset. Figure 8(a) shows the antigenicity coverage of
WHO recommended vaccine strains. In general, the antigeni-
city coverage of vaccine displays two major phases: ascending
and descending. Among the six strains, ‘A/Sydney/5/1997ʹ
and ‘A/California/7/2004ʹ represent two successful vaccine
recommendation cases, which actually increase in coverage
after being chosen in 1998 and 2005 respectively and achieve
high coverage percentage. However, a four-year-long recom-
mendation of ‘A/Moscow/10/1999ʹ dropped in coverage tre-
mendously after 2001, indicating a vaccine failure, which is
confirmed by the CDC report.72 Similarly, the antigenicity
coverage of H3N2 vaccine drops to around 20% during the
time of the 2009 H1N1 pandemic. Mediocre vaccine effective-
ness for 2004–200573 and good vaccine effectiveness for
1998–2000,74 2005–2007,73 2007–200875 have been confirmed
in published literature, which is consistent with the antigeni-
city coverage analysis (Figure 8(a)).

Figure 8(b) shows the “ideal” optimal vaccine recommen-
dation based on the principle of maximizing the antigenicity
coverage year by year. The optimal recommendation is
obtained by solving the optimization problem retrospectively
(This is the ideal case where it is assumed that knowledge of
the circulating strains is known). The optimized result sug-
gests a different virus strain for each year and presents a much
better antigenicity coverage when compared to the WHO
recommendation (Figure 8(a)). Specifically, the yearly cover-
age from 1997 to 2000 reaches up to 100% and above 90%
from 2001 to 2008. In the optimized result, the model avoids
recommending virus strains such as ‘A/Moscow/10/1999ʹ or
‘A/Brisbane/10/2007ʹ, for which coverage drops dramatically
in 2002 and 2009, respectively. Instead, the optimized recom-
mendation suggests ‘A/Netherlands/301/1999ʹ, ‘A/Fujian/140/
2000ʹ, ‘A/Netherlands/816/1991ʹ, ‘A/Kumamoto/102/2002ʹ,
‘A/Philippines/825/2003ʹ, as replacement for ‘A/Moscow/10/
1999ʹ and ‘A/Singapore/57/2006ʹ, ‘A/Santiago/6881/2007ʹ for

Table 4. Optimized AAindex for further feature construction.

AAindex ID
AAindex
Source Description Rank

BENS940104 2 Genetic code matrix (Benner et al., 1994) 18
LUTR910108 2 Structure-based comparison table for alpha

helix class (Luthy et al., 1991)
53

MUET010101 2 Non-symmetric substitution matrix (SLIM)
for detection of homologous
transmembrane proteins (Mueller et al.,
2001)

63

KOLA920101 2 Conformational similarity weight matrix
(Kolaskar-Kulkarni-Kale, 1992)

75

AZAE970101 2 The single residue substitution matrix from
interchanges of spatially neighboring
residues (Azarya-Sprinzak et al., 1997)

86

BONM030104 3 Distances between centers of interacting
side chains in the antiparallel orientation

1

TANS760101 3 Statistical contact potential derived from 25
x-ray protein structures

5

ZHAC000106 3 Environment-dependent residue contact
energies (rows = coil, cols = coil)

7

BETM990101 3 Modified version of the Miyazawa-Jernigan
transfer energy

22

BONM030103 3 Quasichemical statistical potential for the
parallel orientation of interacting side
groups

29

Table 5. Optimized structure of convolutional neural network.

Filter/Neurons Kernel size Stride Pooling Dropout

Conv 1 193 96*10 3 1 0.1
Conv 2 212 5*10 2 1 0.165
Conv 3 109 5*10 3 1 0.1
Dense 1 256 N/A N/A N/A 0.241

Table 6. Performance and comparison of models in training set.

Model Accuracy Sensitivity Specificity MCC F-score

Liao’s 0.701 0.748 0.599 0.335 0.775
Qiu’s 0.718 0.782 0.577 0.354 0.792
Yao’s 0.881 0.927 0.722 0.653 0.924
CNN 0.921 0.877 0.954 0.839 0.906
CNN+ MDS 0.924 0.958 0.807 0.777 0.952

Table 7. Performance and comparison of models in blind validation set.

Model Accuracy Sensitivity Specificity MCC F-score

Liao’s 0.762 0.773 0.724 0.442 0.833
Qiu’s 0.742 0.680 0.948 0.531 0.802
Yao’s 0.938 0.953 0.765 0.632 0.966
CNN 0.832 0.757 0.884 0.651 0.788
CNN+MDS 0.958 0.970 0.817 0.732 0.977

Table 8. Model performance trained with randomly permuted training set.

Accuracy Sensitivity Specificity MCC F-score

Training 0.443 0.925 0.076 0.002 0.589
Test 0.360 0.495 0.265 −0.245 0.389

Table 9. Comparing YC Liao’s, J Qiu’s and Y Yao’s model on sequential
prediction.

Test MCC

Year of
test set Accuracy Sensitivity Specificity

Our
CNN Liao’s Qiu’s Yao’s

1998 0.920 0.933 0.852 0.732 0.556 0.811 0.727
1999 0.913 0.940 0.781 0.697 0.536 0.261 0.697
2000 0.892 0.969 0.506 0.565 0.000 −0.218 0.517
2001 0.904 0.948 0.728 0.693 0.533 0.548 0.686
2002 0.766 0.830 0.650 0.486 0.402 0.452 0.393
2003 0.776 0.722 0.876 0.571 0.455 0.353 0.567
2004 0.855 0.888 0.790 0.676 0.189 0.220 0.664
2005 0.843 0.827 0.880 0.667 0.233 0.251 0.698
2006 0.886 0.921 0.812 0.737 0.262 0.200 0.705
2007 0.866 0.905 0.710 0.596 0.034 0.338 0.593
2008 0.844 0.828 0.877 0.672 0.385 0.364 0.595
2009 0.819 0.888 0.594 0.490 0.146 0.624 0.548
2010 0.906 0.927 0.758 0.619 0.362 0.486 0.570
2011 0.918 0.922 0.878 0.660 0.346 0.411 0.649
Overall 0.865 0.889 0.764 0.633 0.317 0.364 0.615
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‘A/Brisbane/10/2007ʹ. However, an obvious decline in cover-
age from 2009 to 2010 suggests tremendous variety in the
virus genotype. Therefore, both WHO’s suggestion and opti-
mal recommendation exhibit coverage decrease. The average
and median coverage of the optimized result are 92.80% and
95.89% with a standard deviation of 0.088, while the WHO’s
recommendation has an average and median coverage of
59.43% and 74.07% with a standard deviation of 0.335.

Figure 9(a) shows the recommendation of vaccine composi-
tion produced by our CNN model using MDS. It results in an
average coverage of 90.19% and standard deviation of 0.123. The
CNNmodel produced the same vaccine recommendation as the
optimal scenario for the period 1997 to 2000. The overall recom-
mendation is different from the optimal scenario, and achieves
slightly lower mean coverage, which is expected due to intrinsic
predictive errors. Three strains (A/Texas/6/2004, A/Taiwan/83/
2006, A/Hong Kong/34430/2009) reported by our CNN models
present an upward trend in antigenicity coverage, indicating an
increased vaccine efficacy during its installment. For 2009 to
2010, the CNN model suggests A/Switzerland/1397477/2008,
which covers around 40% to 80% and achieves better perfor-
mance than the WHO’s A/Brisbane/10/2007 recommendation.
Contrasting Figures 8(a) and 9(a), we note that WHO often

selects virus strains with small variation from year to year, and
learns slowly and recovers once coverage dips very low; whereas
our system-approach CNN model selects strains that can differ
quite drastically from year to year. This rapid learning appears to
offer consistently good coverage.

The average coverage of our CNN model outperforms all
three models (Figure 9(a–d)). Table 10 summarizes and com-
pares the coverage of vaccine recommendation from eachmodel.

Discussion

Because of the continuous evolution of influenza viruses,
vaccine recommendation remains a public health challenge.
Due to the limitation of traditional HAI assay, in silico pre-
diction of antigenicity is cost-effective and has become more
widely accepted. Although many predictive models have been
developed, this work represents the first time that CNNs are
applied in this realm. Compared to other predictive models,
our CNN model outperformed all others in terms of accuracy,
sensitivity and specificity. To validate the usefulness of anti-
genic cartography, we constructed augmented models using
cartography (multidimensional scaling) and evaluated their

Figure 8. (a) Antigenicity coverage of WHO’s recommendation for H3N2 vaccine composition in northern hemisphere. In Figures 8(a,b), and 9(a–d), x-axis represents
years from 1994 to 2011 and y-axis represents vaccine coverage of each year. Solid lines represent the period of being a recommended strain and dashed lines
represent otherwise. (b) Antigenicity coverage of optimal H3N2 vaccine composition recommendation.
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performance. Our results show that the CNN model trained
with antigenic cartography can achieve better performance.

AAindex56 is an excellent source for quantifying the property
of protein sequences but has not been utilized comprehensively.
Previous research primarily focused on limited properties of
amino acids,19,76 such as polarity and hydrophobicity. Y Yao11

performed a comprehensive analysis of AAindex 2 using ran-
dom forest. In this study, we systematically analyzed the predict-
ability of all three AAindex datasets and optimized their
selection using a CNN model. Prior studies of antigenicity pre-
diction tended to select amino acid properties primarily from
AAindex 1,19,76 such as hydrophobicity, and polarity. However,
our regression model showed that AAindex 1 has relatively low
predictability compared to AAindex 2 and 3. The best blind
validation MCC achieved by AAindex 1 is merely around 0.
Combining AAindex 1 with AAindex 2 and 3 also reveals
worse than mediocre predictive performance. Our findings sug-
gest that it is reasonable to focus on AAindex 2 and 3 for
antigenicity prediction.

We developed a pipeline for optimizing the selection of
AAindex within a deep learning environment. Specifically, we
adopted a non-gradient-based optimization approach – PSO –
and used a small but carefully designed neural network to
produce a good objective function value (that corresponds to

a set of good combinations of AAindex). Multiple random
starts of the optimization pipeline produced the best AAindex
combinations with roughly half of the candidates from
AAindex 2 and half from AAindex 3. The optimized combi-
nations of AAindex elements prove to be not just a collection
of individual elements with top performance in singular blind
validation. Rather, there is a combinatorial effect from several
“weak” AAindex elements, which is captured in the CNN
model. In previous work,11 Yao et al. proposed a stepwise
method to select the AAindex elements, which initializes
a pool of candidates by adding the best performing element
sequentially. In contrast, our method starts with randomly
selected elements multiple times, and thus avoids solutions
potentially trapped in local optima. The PSO heuristic is
stochastic in nature, so it is not guaranteed to produce the
exact same result in repeated runs. However, the order of
AAindex elements is guaranteed in our code if the same set
of indices are returned as the optimizers. The mechanism
ensures that the CNN will generate the same set of rules
given the same set of AAindex elements.

The optimization of deep learning neural networks has
been a major challenge for researchers, since it requires exten-
sive empirical experiments. Although experience can help in
tuning the parameters of a neural network, optimizing neural
networks based on experience poses serious limits. Our pro-
posed computational pipeline uses PSO to choose the best
performing CNN architecture/structure, allowing flexibility in
designing and testing different optimizers and tailoring algo-
rithms to specific applications. Similarly, several random initi-
alizations were conducted when optimizing the selection of
AAindex candidates. These ensure a diverse pool in generat-
ing the best performing CNN model.

A major benefit of the in-silico prediction of antigenicity is
its application to vaccine recommendation and disease

Figure 9. (a) Antigenicity coverage of vaccine recommendation by our CNN model. (b) Antigenicity coverage of vaccine recommendation by YC Liao’s model. (c)
Antigenicity coverage of vaccine recommendation by J Qiu’s model. (d) Antigenicity coverage of vaccine recommendation by Y Yao’s model.

Table 10. Summary of model coverage.

Model
Mean

coverage (%)
Median

coverage (%)
Standard
deviation

Optimized
recommendation

92.80 95.89 0.088

WHO recommendation 59.43 74.07 0.335
Liao’s 82.19 81.32 0.127
Qiu’s 82.10 92.98 0.258
Yao’s 85.28 93.33 0.194
Our CNN model 90.19 97.19 0.123
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prevention. Vaccine recommendation remains a key challenge
in combating seasonal influenza viruses and numerous pre-
dictive models have been investigated. In the 14 years
1998–2011 of antigenicity prediction (Table 8), our models
achieved better MCC in blind validation testing when com-
pared to the most promising published approaches. The accu-
rate prediction can potentially facilitate better vaccine
candidate selection and recommendation.

We also note the limitation on the analysis for the test set
in the year 2000, where the specificity was merely 0.506,
indicating the difficulty in predicting this particular dataset.
Historical archives have shown that the flu season of
2000–2001 was especially mild and it was the first time since
1995 that H3N2 did not predominate.77 The reason for a mild
pandemic could be the lack of diverse variants, thus introdu-
cing difficulty in identifying distant mutants. Our model pre-
sents superior advantage even in such an extreme case where
it still outperforms all other models.

We only performed year by year prediction up to 2011,
since the T Bedford49 data only cover up to 2011. Currently,
we have collected only limited public data from WHO reports
that cover beyond 2011. WHO and CDC do not publish all
their antigenicity data in public reports. The quantity and
quality of data are critical for superior prediction in deep
learning. To fully explore the capacity of our CNN model,
we need to seek close collaboration with WHO and CDC
domain experts regarding better data access.

Contrasting to other approaches (Figures 8(a,b), 9(a–d)
and 10), our CNN vaccine recommendation offers good cov-
erage during the period of being a recommended strain. It
tends to suggest a different virus strain more frequently than
the WHO recommendation and presents a much better anti-
genicity coverage. The analysis supports that our model learns
rapidly and selects strains based on global knowledge, whereas
human experts take longer time (and lower coverage) to guide
them to a new strain.

Unlike other approaches where a single mutation of amino
acids is identified, our CNN model embeds their combinator-
ial relationship within a weighted matrix. One way to eluci-
date these relationships is to apply permutation to a specific
position of the protein sequence across all samples and mea-
sure the change of performance.

Computationally, it takes approximately 30 min to an hour
to train a CNN. But once trained, prediction is instant (merely
seconds). This time expense estimate applies to all
recommendations.

In summary, we demonstrated an innovative design and
application of CNNs in the realm of Influenza antigenicity
prediction. We proposed and validated the pipeline of amino
acids selection, AAindex selection, and structural optimiza-
tion of neural networks for Influenza vaccine recommenda-
tion. Our systems approach learns rapidly and advances the
development of vaccine with higher accuracy. The beneficial
effects include both saving of time and expenses.
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Appendix

In this example, a CNN is designed to analyze a gray-scale input of 28x28x1 pixels. The first layer of CNN is always a convolution layer. Here, the
first convolution employs a kernel of size 5 and scans the input using a step size of 1 to create a 24x24x1 panel. Multiple kernels are used each of
which focuses on a specific characteristic of the input, such as edges, corners, diagonal lines, etc. This results in n1 convolved features. Next max-
pooling of 2 × 2 is used to reduce the dimension from 24 to 12. The reduced convolved features are then fed into another convolution layer, using
a kernel size of 5. The resulting convolved feature layers are of size 8x8, creating n2 convolved features. Next, max-pooling of 2 × 2 is used, resulting in
the 4 × 4 panels. Finally flattening is performed to convert the matrices into a vector. This vector is then fully connected to the neural network (green)
layer via an activation function. That is, each entry of the vector is connected to each node in this green layer. A dropout is used to fully connect this
neural network to an output (red) class with reduced dimension. CNNs takes advantage of the hierarchical pattern in data and assembles more
complex patterns using smaller and simpler patterns.

Users can choose different kernel sizes, calculation functions, different orders of applying the modular functions, and whether the CNN is fully
connected or partially connected. These hyperparameters and the structure of the CNN can be optimized to arrive at a CNN design that is most
“optimal” for the application at hand.

Figure A1. Shows an example of a simplified convolutional neural network.
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Input An image input is seen as an array of pixel values on a computer. Image Dimensions = Height x Breadth x Number of color channels.
Each of these numbers is given a value from 0 to 255 which describes the pixel intensity at that point. These numbers are the inputs
to the computer. The CNN will output numbers that describe the probability of the image being a certain class.

Convolutional layer Convolutional layer first chooses a filter/kernel size. The model scans the input using the filter size. The scan moves from left to right
with a certain step size until it parses the complete width of the input. It then traverses down the input with the same step size and
repeats the process until the entire image is traversed. In this example, the 5 × 5 input matrix is scanned using a filter/kernel of size 3.
This results in a 3 × 3 convolved feature output.

(Continued )
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(Continued).

Padding In Valid Padding, the convolved feature is reduced in dimensionality as compared to the input. In Same Padding, the dimensionality is
either increased or remains the same. In this example, the input is padded with an extra layer of pixels on each side. This padded input
is convolved via a kernel of size 3.

Pooling The Pooling layer is responsible for reducing the spatial size of the Convolved Feature. This is to decrease the computational power
required to process the data through dimensionality reduction. Max Pooling returns the maximum value from the portion of the
image covered by the pool kernel. On the other hand, Average Pooling returns the average of all the values from the portion of the
image covered by the pooling kernel. In general, max pooling performs better than average pooling. This example shows a 2 × 2
pooling on the input data via the two methods.

(Continued )
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(Continued).

Flattening Flattening converts a n x n matrix representation into a n2 x 1 vector. This example represents the 3 × 3 matrix as a 9 × 1 vector.

Fully-Connected Neural
Network

Fully connected means that every node in one layer has an edge that connects to every node in another layer. This example shows
a fully connected with a dropout rate of 60%. It maps 25 green nodes to 10 red nodes. There is an edge between each pair of green-
red nodes. In the output, each green node will be classified into exactly one of the 10 classes,
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