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SUMMARY

Demand for intercity transportation has increased significantly in the past

decades and is expected to continue to follow this trend in the future. In the mean-

time, concern about the environmental impact and potential climate change associ-

ated with this demand has grown, resulting in an increasing importance of climate

impact considerations in the overarching issue of sustainability. This results in dis-

cussions on new regulations, policies and technologies to reduce transportation’s cli-

mate impact. Policies may affect the demand for the different transportation modes

through increased travel costs, increased market share of more fuel efficient vehicles,

or even the introduction of new modes of transportation. However, the effect of poli-

cies and technologies on mobility, demand, fleet composition and the resulting climate

impact remains highly uncertain due to the many interdependencies. This motivates

the creation of a parametric modeling and simulation environment to explore a wide

variety of policy and technology scenarios and assess the sustainability of transporta-

tion. In order to capture total transportation demand and the potential mode shifts,

a multimodal approach is necessary.

The complexity of the intercity transportation System-of-Systems calls for a hy-

brid Agent-Based Modeling and System Dynamics paradigm to better represent

both micro-level and macro-level behaviors. Various techniques for combining these

paradigms are explored and classified to serve as a hybrid modeling guide. A Sys-

tem Dynamics approach is developed, that integrates socio-economic factors, mode

performance, aggregated demand and climate impact. It is used to explore differ-

ent policy and technology scenarios, and better understand the dynamic behavior of

the intercity transportation System-of-Systems. In order to generate the necessary

xix



data to create and validate the System Dynamics model, an Agent-Based model is

used due to its capability to better capture the behavior of a collection of sentient

entities. Equivalency of both models is ensured through a rigorous cross-calibration

process. Through the use of fleet models, the fuel burn and life cycle emissions from

different modes of transportation are quantified. The radiative forcing from the main

gaseous and aerosol species is then obtained through radiative transfer calculations

and regional variations are discussed. This new simulation environment called the

environmental Ground and Air Mode Explorer (eGAME) is then used to explore

different policy and technology scenarios and assess their effect on transportation de-

mand, fleet efficiencies and the resulting climate impact. The results obtained with

this integrated assessment tool aim to support a scenario-based decision making ap-

proach and provide insight into the future of the U.S. transportation system in a

climate constrained environment.

xx



CHAPTER I

INTRODUCTION

“Most persons think that a state in order to be happy ought to be large; but even if

they are right, they have no idea of what is a large and what is a small state... To

the size of states there is a limit, as there is to other things, plants, animals,

implements; for none of these retain their natural power when they are too large or

too small, but they either wholly lose their nature, or are spoiled.”

(Aristotle, 322 BC, cited in Limits to Growth, 1972)

“The benefit derived from the modeling efforts of large scale systems [using dynamic

systems modeling techniques invented by Forrester] suggests that the techniques may

be beneficially applied to other large-scale systems. Transportation provides many

problems of a large scale where new and more effective approaches are needed.”

(Hansen and Kahne, 1975)
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1.1 Motivation

Over the past decades, the issue of sustainability has gained a lot of momentum. The

most widely cited definition of sustainability was from Norway’s Prime Minister in

1987: “sustainable development is development that meets the needs of the present

without compromising the ability of future generations to meet their own needs”

[3, 164]. Sustainability is increasingly discussed in the field of transportation, and

the definitions of sustainable transportation derive from the concept of sustainable

development. It comes with multiple objectives and should equally account for the

sector’s impact on local society, economy, and the environment [184]. With a sus-

tainable transportation system, the basic access needs of individuals and societies are

met safely, at a reasonable price, and with limited emissions [10]. It is related to a

large number of variables such as overall economy, employment, operators’, manufac-

turers’ and airports’ economic viability, passenger comfort, travel cost, travel time,

safety, energy consumption, climate impact, local air quality and noise emissions. To

achieve sustainability, the proper balance between current and future environmental,

social, and economic qualities must be found [156]. Due to the multiple objectives

of sustainability, and the many variables and stakeholders involved, which result in

significant complexity, specific modeling methods are needed. Both micro-level types

of behaviors (such as individual decisions to travel) and macro-level behaviors (such

as overall system’s performance and the effects of policies) must be captured.

1.1.1 A New Set of Constraints for Sustainability

As the carbon dioxide concentration in the atmosphere recently passed the milestone

level of 400 parts per million (ppm), concern about climate change keeps growing.

The Intergovernmental Panel on Climate Change (IPCC) goal of 450 ppm could be

reached as early as 25 years from today [166]. This results in an increasing importance

given to climate impact among sustainability considerations. In developed countries,
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transportation is one of the major sources of greenhouse gases. In the United States,

it is the second main emitter behind electricity generation, and the first end-use

sector, as illustrated in Figure 1. With the expected increase in demand for inter-

city transportation, emissions are likely to keep increasing if no new technologies are

introduced. Technological improvements supported by regulations and policies are

proposed to address the concern for transportation climate impact and reach specific

given targets. The relevance of the target and the potential environmental and eco-

nomic consequences is beyond the scope of this research. However the transportation

system might be affected by new policies that aim to reduce emissions in an attempt

to reach a given target. Therefore tools are needed to assess these effects and appro-

priately design a sustainable transportation system. In this research, the focus will be

on mobility and climate impact of transportation. Through scenario exploration and

future demand and climate impact forecasts, transportation designers and decision

makers can gain valuable insight in terms of policy and technology impacts.

Figure 1: 2009 End-Use Sector Emissions of CO2, CH4 and N2O from Fossil Fuel
Combustion [43]
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1.1.2 Mobility under Climate Constraints

The transportation system is essential to the social and economic welfare of the so-

ciety. It is often viewed as a creator of jobs and a catalyst for economic growth.

Throughout history, it has been an enabler for many of the nation’s developments.

In the second half of the 19th century, the railroad system linked different parts of

the country into a single national market, in which goods could be shipped across

the nation. With the democratization of the automobile, the national highway sys-

tem expanded, culminating with the interstate system, shaping the society and urban

areas. Finally, the air transportation system became more affordable and popular,

making most destinations reachable within a few hours. Long distance travel demand

has grown significantly, resulting in near maximum capacity operations at some air-

ports, and is expected to grow further. In the meantime a new set of constraints has

appeared exemplified by the Kyoto protocol and the European trading scheme. The

International Civil Aviation Organization (ICAO), Committee on Aviation Environ-

mental Protection (CAEP) plans on implementing Market-Based Measures by 2020

[48]. Market-based measures are policy intruments that aim to provide incentives for

environmental impact reduction by incorporating the external cost of consumption.

Limiting transportation operations would be undesirable and exploring the different

scenarios to maintain mobility with limited climate impact is necessary. Technologies

and policies are crucial to reach the desired system efficiency and meet the demand

without exceeding future constraints. It is important to consider the transportation

system as a whole, including all modes of transportation, to account for competition,

mode shift as well as the introduction of new modes of transportation. Predicting the

behavior of the system requires careful attention because it brings together multiple

transportation systems and a myriad of stakeholders (operators, manufacturers, pas-

sengers, airports, policy makers etc.) from a variety of disciplines (such as science,

engineering and law). This variety of interacting systems and stakeholders constitutes
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a transportation System-of-Systems (SoS), which exhibits typical characteristics of a

complex system: autonomous agents (travelers and other stakeholders), adaptability

(competition between suppliers), self-organization, emergent and dynamic behaviors,

feedbacks, nonlinearity (congestion and delays) and phase transitions (introduction

of a new mode).

1.2 Research Statement

Forecasting transportation demand and climate impact is a challenging task due to

the many interdepedencies involved and the wide variety of possible scenarios. Fur-

thermore, large uncertainties remain in terms of climate impact from specific sectors

and species. The perception of climate change can be incorrect and may lead to

non-optimum decisions [38]. In order to help decision making using a scenario based

approach, modeling and simulation tools need to be developed. These tools need to

capture all aspects of transportation and thus climate impacts must be integrated. A

holistic view of the system including all modes is needed to fully assess transportation

sustainability. Since transportation climate impact is the result of species emitted by

different modes of transportation, and the amount of these species depends on the

fleet fuel efficiencies and the demand for each mode of transportation, one of the most

important tasks is to develop a good demand and fleet forecasting tool that considers

multiple modes of transportation. This tool should be parametric to allow decision

makers to explore multiple scenarios of interest. These scenarios should capture the

relationships that exist between technologies, policies, demand and fleets. For exam-

ple, an increase in fuel price would result in a higher cost of travel, which may in turn

reduce demand, while simultaneously increase the market share of fuel efficient vehi-

cles, and eventually result in a decrease in climate impact. The complexity associated

with the integrated assessement of demand, climate impact, policies and technologies

requires some specific modeling paradigms. As further discussed in the next chapter,
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micro-level behaviors at the passenger level call for Agent-Based Modeling (ABM)

while macro-level policies are better represented with System Dynamics (SD).

For a given socio-economic scenario, the demand is generated, and emissions can

be quantified using fleet models. Based on these emissions, climate impact can be

assessed. While quantifying the impact on climate is not trivial, due to the large num-

ber of parameters and the physics involved, it is necessary to provide insight into the

sustainability of the transportation System-of-Systems. Measuring the effectiveness

of climate policies is a relatively new effort [161]. Policies may be implemented in an

attempt to change the demand and/or the fleet efficiency and help achieve a given

climate impact target. However assessing the effectiveness of some policies such as a

carbon tax can be challenging due to the multiple variables involved and interactions

between them. An integrated assessment tool for transportation is needed that quan-

tifies demand and climate impact into one simulation environment. The objective of

this thesis is to create a framework for scenario based assessment of transportation

demand and climate impact. In particular, this research will show that the multi-

modal, hybrid ABM-SD approach provides insight into the future design

of transportation SoS and the effect of technologies and policies on demand

and climate impact.

The following chapter provides some necessary background on a number of theo-

ries and modeling techniques for transportation SoS integrated assessment modeling,

that include demand for different modes of transportation, fleet and emissions, and

transportation climate impact. The third chapter gives an overview of the method

used in this research. The fourth chapter introduces the multi-paradigm methodol-

ogy used for demand modeling. The fifth chapter discusses how the climate impact

is quantified through the use of fleet models and a radiative transfer code. Finally,

the sixth chapter explores different policy and technology scenarios and introduces

the decision-making process for sustainable transportation systems’ design.
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CHAPTER II

BACKGROUND AND PROBLEM DEFINITION

The goal of this research is to create a parametric modeling and simulation environ-

ment for transportation demand and climate impact forecast and scenario exploration.

The scope is multimodal intercity transportation in the continental U.S. The litera-

ture provides a myriad of models and approaches which could potentially be used to

achieve this goal. A demand forecasting tool including multiple modes of transporta-

tion needs to be created and integrated with fleet models of sufficient granularity to

better predict the transportation system’s climate impact and be able to quantify

the effect of policies and technologies. A short history of policies aiming to reduce

transportation emissions is presented in the following section. Then, integrated as-

sessment models are introduced as a way to assess the effect of policies. Finally the

different building blocks necessary to create the relevant integrated assessment tool

are presented. They include demand and fleet models to quantify emissions, and

climate models to quantify the climate impact resulting from these emissions.

2.1 Climate Policies

Climate policies are often implemented nationally and by sector. The first carbon

tax was introduced in Finland in 1990. In the U.S., states have started to join

forces and introduced regional programs. Nine states (Connecticut, Delaware, Maine,

Maryland, Massachussets, New Hampshire, New York, Rhode Island, and Vermont)

participate in the Regional Greenhouse Gas Initiative (RGGI) launched in 2009 to

achieve power sector CO2 emissions 10 percent below 1990 levels by 2018. Under the

Midwest Greenhouse Gas Reduction Accord six states and one Canadian province

developed a cap-and-trade system. Under the Western Climate Initiative, seven states
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and four Canadian provinces were planning to reduce emissions from electricity and

large industrial and commercial sources and expand the program to emissions from

transportation and residential fuel use.

The transportation sector is one of the main targets for climate policies due to its

significant contribution to emissions of greenhouse gases. In the case of the U.S.

air transportation system, the International Civil Aviation Organization (ICAO)

Committee on Aviation Environmental Protection (CAEP) has defined Landing and

takeoff (LTO) emissions standards for soot, unburned hydrocarbon (UHC), carbon

monoxide (CO) and nitrogen oxides (NOx). While no regulations for cruise emissions

have been established yet, they are likely to be proposed in the future [27]. Other

regions have already implemented policies on carbon dioxide (CO2) emissions. This is

the case in Europe where domestic flights have recently been added to the European

Trading Scheme (ETS) in order to achieve the goals set by the Kyoto protocol. Un-

der the Kyoto protocol, Annex-I countries (which includes the industrialized countries

that were members of the Organisation for Economic Co-operation and Development

(OECD) in 1992, plus countries with economices in transition) agree to maintain their

emissions below a predetermined level. Emission Trading Schemes are market-based

policies. They encourage efficiency improvements and technological innovation [172].

Allowances are allocated to airlines based on historic average of emissions. A large

portion of these allowances are free, the rest is auctioned. Due to the recent economic

crisis and the associated drop in demand, the price of carbon remained lower than

expected. Studies on the impact of this cap and trade program have been conducted

recently [104, 151]. Carbon taxes are policy instruments that put a price on green-

house gas emissions. It may be argued that the gasoline tax is essentially equivalent

to a carbon tax [110].

Ground vehicles are also subject to regulations. The Corporate Average Fuel

Economy (CAFE) regulation was introduced in 1975 following the oil crisis. The
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CAFE standards apply to car manufacturers that sell over 10,000 light-duty vehicles

(LDVs) and put a limit on the fleet average fuel efficiency of the vehicles that can be

sold in a year [41]. The Environmental Protection Agency (EPA) defined standards

under the Clean Air Act Amendments in 1990. These amendments limit emissions

of CO, NOx, and particulate matter (PM), which consist mostly of black carbon,

formaldehyde (HCHO) and non-methane organic gases or non-methane hydrocarbons.

The states are responsible for implementing plans [42]. Under the Clean Air Act, fuels

are better refined, car manufacturers are required to build cleaner cars, and inspection

and maintenance programs are introduced in areas with high pollution [88].

The purpose of these policies is primarily to maintain a healthy level of pollution

especially in highly populated regions. A transition is happening towards more global

climate concerns. In both cases, policies encourage new technologies and higher fuel

efficiency. Other policies might encourage mode shift. An example is suggested by

Jamin et al. [76], where high speed rail transport is used as a substitute for some short-

distance flights. In order to reduce the impact on climate, multiple options exist such

as carbon sequestration, hydrogen based technologies, and advanced transportation

technologies [39].

Observation 1: Climate policies on transportation have been imple-

mented and future policies are actively discussed.

In this research, the focus is on transportation policies that would affect the

cost of transportation, such as cap-and-trade systems and carbon taxes, which are

environmental mechanisms that put a price on emissions. These policies are discussed

in more detail in Section 6.1.1. They encourage more efficient travel through an

increased market share of fuel efficient modes of transportation and vehicles in the

fleets. Therefore there is a need to model and quantify the potential effect of policies

in an integrated assessment of transportation.
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2.2 Integrated Assessments

Climate impact assessment is challenging because it requires information from various

fields of study. For example in the case of transportation, socio-economics define

human activity, aeronautical and automobile engineering define the efficiency of the

vehicles used to perform different trips and the resulting emissions, and climate science

quantifies the effects of these emissions on the energy balance of the planet. Integrated

assessments gather this information and provide decision makers with the necessary

knowledge. With the growing environmental concerns and the emergence of climate

policies, integrated assessments are increasingly needed [35]. They can be materialized

into a tool called an Integrated Assessment Model (IAM).

IAMs are a set of models that integrate different aspects of a system, including

socio-economics, technologies, and policies. IAMs date back to the early seventies

with the club of Rome models. The club of Rome, founded in April 1968, is a group

of politicians, diplomats, scientists, economists and business leaders from around the

globe. One of the first models is the World Dynamics developed by system dynamicist

Jay Forrester following a meeting with the club of Rome. IAMs are widely used

for climate impact assessment, climate policy, and decision making by researchers

and decision makers in a wide variety of disciplines. Consequently, IAMs differ in

scope. As described by Rothman and Robinson [141], they can include parts or the

entire cycle: human activity, pressure exerted, change of state, impacts, response.

They have sectoral and regional boundaries. Depending on their spatial and sectoral

resolution, as well as the level of detail used for technology, policy representation can

be uneasy because the resolution may be unsuitable for the type of policy that is to

be explored. The resolution of assessment models is often coarser than the resolution

required for policy making. For instance, spatial resolution at the continental scale

is unsuitable for decisions made by countries. Similarly, decisions are often made by

sector, which requires enough sectoral resolution. With enough detail, it becomes
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possible to introduce policies that regulate a specific metric (such as fuel efficiency,

cited as an example by Parson [126]).

The main limitation of IAMs is the difficulty in establishing credibility [140],

and their associated uncertainty. IAMs use approximations of the system’s behavior

in order to enable fast comparison of policy scenarios with relatively simple and

transparent tools [40]. Many IAMs simply use an energy per GDP factor as the only

technology variable. The results from IAMs are only as good as their underlying

assumptions and parameter values. It is thus important to wisely select the right

model for the purpose of the research. Table 1 gives a list of existing IAMs, and

their scope (for a more complete description of availale IAMs, see Reference [125] and

Table 1 in Reference [35]).

IAMs can help with the analysis of different climate policies. The choice of the

right IAM is crucial and tradeoffs must be made between the right sectoral and

regional level of detail and the ability to explore different scenarios and variables. In

some cases it may be wise to use an existing IAM, in others it may be necessary to

develop a new IAM with existing tools matching the scope of the research. Most IAMs

are ill-suited to examine potential travel demand changes and travel mode shifts given

climate policies and changes in fuel prices, as they rarely establish the link between

demand and its drivers such as fuel price and technology investment decisions [30].

Furthermore there is no IAM readily available that matches the desired scope and

level of detail required for this research.

Observation 2: There is a lack of IAM tools available to assess the effect

of policies on the multimodal intercity transportation in the continental

U.S.

Therefore a new integrated assessment model for the continental U.S. intercity

transportation system needs to be created. As described by Dallara et al. [29], the

following building blocks are needed to quantify climate impact:

11



Table 1: Existing IAMs and their scope

IAM Scope and goal Reference
DICE Global model for identification of optimal

emissions reduction trajectories, valuation of
information, and policy evaluation under un-
certainty

[122, 45]

NICE Critique and extension of DICE [44, 45]
TIME Generation and evaluation of energy sector

scenarios
[33]

ICAM Assessment of uncertainty, including implica-
tions for different regions and interest groups

[35]

IMAGE Focuses on complex atmospheric, climatic
and physical effects and feedbacks dis-
tributed in 13 World regions

[181]

FREE Investigation of implications of bounded ra-
tionality, embodied energy requirements, de-
pletion, and endogenous energy technology

[45]

GCAM Long-term, global, technologically detailed,
partial-equilibrium model. It has a resolu-
tion of 14 World regions and includes indus-
trial, buildings and transportation sectors.

[115]

AIM Policy assessment tool for aviation, environ-
ment and economic interactions at local and
global levels

[2]
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• A multimodal demand model to forecast the demand for each long-distance

mode of transportation. Quantifying travel need is indeed the first step in the

process.

• Fleet models to forecast the fuel consumption and resulting emissions due to

the travel demand. Fuel burn is indeed quantified based on demand and the

fleet composition.

• A climate impact module to quantify the impacts of these emissions on the

atmosphere. Different metrics may be envisioned and will be discussed in detail

in Section 5.2.1.

Each of these building blocks are further described in the following sections.

2.3 Transportation Demand

Transportation Demand models have been the topic of many research efforts. A wide

variety of models has been proposed, which leads to the following research question:

Research Question 1: What methodology is the most suitable for Trans-

portation System-of-Systems Demand modeling?

2.3.1 Existing Tools for Transportation Demand Modeling

2.3.1.1 Multinomial Logit Model

Mode choice decisions have been studied both at the city and intercity scales. Well

established mathematical formulations are used by transportation engineers to predict

mode shares and demands. The most widely used is the multinomial logit model. In

this model, travelers make decisions based on the utility of each alternative. Utility

is an indicator of value to an individual [83]. An alternative is chosen when its utility

is higher than other alternatives’ utilities. Based on utilities, it is possible to predict

which mode would be chosen for a given trip, as depicted in Figure 2.
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Figure 2: Example of time-value chart [36]

However, this deterministic approach does not take into account the lack of in-

formation and understanding of travelers’ decisions. Therefore, probabilistic choice

theory is used. The probability P (k) of choosing alternative k from a set of alterna-

tives i=1,2,...,N is:

P (k) =
eUk∑N
i=1 e

Ui
(1)

where Ui is the deterministic component of the utility of alternative i.

This deterministic portion depends on individual characteristics, the attributes

of the alternative and an interaction term between the attributes of the alternative

and the characteristics of the individual. The attributes of the alternative are travel

time, travel cost, access distance, transfers required. These attributes are weighted

to generate the utility. The characteristics of the travelers include their income, age,

and number of adults in the household. Interaction effects may include the value

of time, which defines the importance of the cost of travel relative to the time of

travel. An error term is added to account for the fact that the analyst cannot fully
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comprehend travelers’ decisions. This error term captures many factors, which have

relatively little impact on the value of each alternative. The central limit theorem

suggests that the sum of these small errors will be distributed normally [83]. This

leads to the Multinomial Probit probabilitic choice model, which is mathematically

complex. Thus, an alternative model, the multinomial logit model is used. In the

multinomial logit model, the error term is assumed to be Gumbel distributed, and er-

ror components are identically and independently distributed both across alternatives

and individuals. The Gumbel distribution is chosen for its similarity to the normal

distribution and closed form probabilistic choice model [83].

2.3.1.2 Four Step Model

A common approach to transportation forecasting is the four-step model, pioneered

by Mitchell and Rapkin (1954) [116]. The four steps are trip generation, trip dis-

tribution, primary mode choice and trip assignment. Trip generation computes the

trip frequency based on demographics and socio-economic factors. Trip distribution

matches origin with destinations using models such as the Fratar model or a gravity

model function. Mode choice computes the modal share for each origin and desti-

nation combination. These first three steps determine the transportation demand

profile (origin/destination matrix for each mode of transportation). The last step de-

termines the exact route used. This type of model has been used for a large number

of studies, mostly at the intra-urban scale but also for intercity travel. For example,

Stopher and Prashker (1976) [159], Koppelman (1990) [84] and Baik et al. (2008) [11]

explored the US multimodal demand including automobile, commercial air transport,

train and general aviation, and using different geographic granularities (metropolitan

statistical areas, counties). Models using this traditional four step approach share

the same structure and would thus result in predetermined volume, frequency and

destination profiles of trips given socio-economic conditions.
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2.3.1.3 Other Models and Approaches

Other models of the transportation system exist such as the Transportation System

Analysis Model (TSAM) [12], which is a nationwide transportation planning model

that forecasts travel behavior in the United States up to 2030, and includes multiple

modes (automobile, commercial airline, air taxi and rail). It gives county-to-county

passenger demand, as well as airport-to-airport passenger demand for air transporta-

tion modes [167]. On the ground side of transportation, models such as CORSIM

(CORridor SIMulation) and TRANSIMS (TRansportation ANalysis SIMulation Sys-

tem) simulate traffic and detailed movements of people through the transportation

network [90].

Recently, a new approach appeared using Agent-Based Modeling, which imple-

ments steps similar to the Four Step Model, but at the microscopic level and in a

different order. This modeling approach seems particularly appropriate due to the

various sentient entities that are involved in the transportation system.

2.3.2 Agent-Based Modeling

2.3.2.1 Formulation

Agent-based Modeling (ABM) is a bottom-up modeling technique, which aims to

capture emerging behavior from a set of relatively simple rules. It is especially well

suited for complex systems with interactions between agents that are difficult to fully

comprehend. The main building block is the agent, which is defined as an entity

that interacts with a given environment. It is adaptative, which means it can use

experiences to improve its capabilities, and it is autonomous, which means it can

act without guidance. As depicted in Figure 3, the agent senses its environment

and makes a decision to act in a certain way, therefore potentially changing this

environment. The agent then captures these changes and updates its knowledge,

leading to a new action or a new goal. This results in emergent behavior, which
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provides information otherwise difficult to capture.

Figure 3: Agent interaction with environment [26]

Most systems are composed of multiple agents. They may be independent and

only interact individually with the environment. But in many cases they interact

with each other. One example of such interaction is the behavior of a flock of birds,

in which case the pattern emerges from the simple interaction rules followed by each

bird to avoid collision with other birds and stay within the group. This interaction

between agents is called the information layer. Agents interact with the environment

and the information layer. There may be multiple information layers, representing

separate groups of agents. An example is the stock market where individual and

institutional investors form different groups [90]. Finally in some cases, there may be

a “super agent” that defines a top-level information layer through which it interacts

with lower level agents as depicted in Figure 4.

2.3.2.2 Applications

Since the 1980s, Agent-Based Modeling has been increasingly applied across many

different fields including natural sciences, social sciences and engineering. For exam-

ple, in natural science, Fishwick et al. [47] used individual-based models (which is
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Figure 4: Multi-agent system with hierarchical organization [90]

another name for agent-based models) to model the Everglades ecosystem. In social

sciences, Helbing et al. [66] modeled crowd behavior in a panic situation. An ex-

ample of engineering application is the TRansportation ANalysis Simulation System

(TRANSIMS) developed at the Los Alamos Laboratory. TRANSIMS is an agent-

based model model that simulates traffic through urban areas. Other transportation

applications include Jet:Wise and Mi. Jet:Wise is an agent-based model that cap-

tures the airline industry’s interactions with the National Airspace System (NAS)

[121]. Its outputs include fleet mix, itineraries, schedules, and fares. It models two

types of passengers, business and leisure. While the focus of this model is on the

airline, it can be used as a scenario generator for inputs to other simulations using

models such as the Total Airport and Airspace Modeler (TAAM) [16] or the Detailed

Policy Assessment Tool (DPAT) [176] that focus on traffic and trajectory. Another

agent-based model, which focuses more on the passenger demand for different modes

of transportation is the Mi model [90]. Mi is capable of generating the demand for
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multiple modes of transportation between Metropolitan Statistical Areas in the con-

tinental United States, based on socio-economic characteristics of agents (travelers)

and mode performance. More detail is provided in the following section.

2.3.2.3 Agent-based Modeling for Transportation Demand

Many entities, subsystems and stakeholders are involved in the transportation SoS,

making it suitable for an agent-based approach. In demand forecasting, the main

actors are the travelers. An agent-based modeling approach is well suited to rep-

resent individual households with given geographic, demogaphic and socio-economic

properties, as has been done in the model Mi developed at the Georgia Institute

of Technology. This model was initially created for a study on the personal air ve-

hicles under the ground rules from NASA’s Small Aircraft Transportation System

program [91]. It has been modified for general aviation demand [96, 90]. The most

recent version of Mi uses the Metropolitan Statistical Area (MSA) as a node for the

network of transportation and assesses commercial air transportation supply and de-

mand [98, 97]. Each agent in the continental United States chooses a transportation

mode to achieve its traveling needs, based on a given mobility budget space (which

includes a time and a monetary budget). Transportation demand originates from

each household’s need to travel and available budget, which is represented by the

budget space concept in Mi. Agents have unique socio-economic characteristics and

have therefore their own unique budget as depicted in Figure 5. They are able to

take trips until they reach a given constraint (cost or time constraint). In Figure 5,

trips 1-6 can be performed, until the monetary constraint is reached before trip 7.

Mi uses the widely used logit model formulation for mode choice introduced in

Section 2.3.1.1. It was calibrated against the 1995 American Travel Survey (ATS)

which is the only available multimodal long distance travel survey. Multiyear cali-

bration was performed using a set of databases including T100 [92]. Forecasts were
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Figure 5: Mobility budget space [90]

compared to FAA’s national forecast for commercial aviation, which uses a linear

econometric model. Results for both calibration of past data and forecast are shown

in Figure 6. Further details on Mi calibration is provided in Appendix A. A con-

vergence study was performed to evaluate the necessary number of batches to obtain

convergence of the results at the national and the market level. As mentioned in Lewe

et al. [92], a compromise between convergence and simulation time was reached with

24 batches, which represents about 200,000 agents.

Mi is capable of creating the demand for multiple modes of transportations in-

cluding long distance commercial air transportation and ground transportation. New

mode such as general aviation can be added. As mentioned above, the MSA is chosen

as the spatial resolution. 204 MSAs are considered. The model output is thus a 204

by 204 origin destination matrix (OD matrix) of total demand for each market. How-

ever this bottom-up, micro-level view of the system is inadequate for some macro-level

variables such as climate impact and policies implementation. Mi is unable to cap-

ture macro-level behavior such as capacity constraints and cannot easily produce time

series of demand, which is the desired output in this forecasting effort. Furthermore,
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Figure 6: Demand forecast [92]

the very high fidelity modeling capability of Mi comes at a high computational cost,

which is a showstopper for quick scenario assessment.

As a summary, Mi ’s ABM approach, which enables to capture consumer behavior

in a versatile way, scope (intercity travel in the continental U.S.), availability, and

the author’s experience and confidence in the model make it a potentially useful tool

for this research. However its high computation time makes it unsuitable for an

interactive decision-making environment.

Observation 3: An existing ABM is capable of generating the demand

for each mode of transportation but its micro-level view and computation

time make it unsuitable for interactive policy and technology scenario

assessment.

Therefore a new model needs to be created. This model should be able to replicate

the behavior of Mi, while enabling the assessment of macro-level behavior with lim-

ited computational cost. The following section discusses a modeling technique that
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can be leveraged to address these issues.

2.3.3 System Dynamics

As previously introduced, the transportation system is a complex system, with po-

tential feedback loops and nonlinear behavior. Feedback loops describe the fact that

a decision changes the state of the surrounding system and results in new informa-

tion provided for future decisions. Many systems are complex and may therefore be

difficult to understand and control. This is the case for the management structure of

a corporation, an urban area, a national government, economic processes, etc. [50].

Complex systems are often counterintuitive, may be insentitive to some parameters

while being very sensitive to others. They may resist policy changes, compensate for

corrective efforts, react differently in the short term and long term to a policy, or even

tend toward lower performance. System Dynamics models are needed to capture and

understand these types of behaviors.

2.3.3.1 History of SD

System Dynamics has been used for integrated assessments and policy decisions. It

appeared in the 1960s as an application of control system theory to complex sys-

tems, specifically industrial production and distribution system [49], which includes

Forrester’s first system dynamics publication on the role of advertising in industrial

dynamics [51]. These industrial dynamics models have four main foundations listed

by Pfaender [133] and summarized here:

• Information feedback control theory, which was applied to real systems such as

electrical systems, hydraulic systems, and was extended to industrial systems

which represent virtual elements.

• Modeling of decision-making processes: Forrester explores the effect of supply
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chain decision. Oscillations are observed because the system reacts to purchas-

ing decisions with material shortages or surpluses.

• Experimental approach to system analysis: by representing elements and rela-

tionships visually, the understanding of the model is more accessible.

• Use of computer simulation: Forrester initiated the use of simulations with

differential equations describing the main processes and parameters.

Forrester later applied this theory to model social systems such as urban systems

[50]. He then expanded the scope of his research to create the aforementioned World

Dynamics model. This model captures a number of non-technical variables such as

capital investment, natural resources, quality of life and pollution [133]. The model

was used in a book titled “The Limits to Growth” [109] which explores a number

of scenarios for human welfare and human ecological footprint from 1972 to 2100.

In this book, Forrester concluded that trends in human footprint could be altered

to avoid reaching global limits and obtain economic stability and sustainable future,

and that the sooner steps are taken, the better it is in terms of sustainability. He

also points out that there are particular challenges with emissions of species such as

CO2, which have an unknown upper limit and natural delay in ecological processes.

Finally, he argues that the combination of technological developments with checks on

growth is the key to better futures. This motivates the use of models to try to predict

and quantify the effects of different scenarios.

2.3.3.2 Steps in creating SD model

The developement of a System Dynamics model follows the steps summarized in

Figure 7. First, the modeler identifies the main variables, starting with what can be

represented as a stock. A stock is traditionally used to model the accumulation of

something. A parallel may be drawn with a tank of water with incoming and outgoing

flow. A stock represents a state variable as defined in Equation 2:
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Figure 7: Developing an SD model (adapted from [18])

St =

∫ t0

t

(Fi − Fo)dt+ St−1 (2)

where

St is the value of the stock at time t

Fi is the sum of the inflow rates

Fo is the sum of the outflow rates

dt is the time step

Causal relationships between variables are then identified and quantified if pos-

sible. This is a challenging step conducted through literature and/or results from

other models. The model then needs to be properly calibrated and validated against

existing data before being used for policy analysis. As described in Forrester, 1969

[50], a model is a theory describing the structure and interrelationships of a system.

The main challenges often lie with validation against the real system. Validation may

be done through available experience and data.

2.3.3.3 Relevant applications of SD

System Dynamics has been applied to a wide variety of problems such as decision-

making under uncertainty [105], evaluating the impact of decisions and alternatives
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on a system [32], identifying scenarios of interest for policy/strategy evaluation [101],

and this across many domains such as socio-economic sciences [52], energy [118],

public health [71]. System Dynamics is a suitable technique for IAMs as showed

by Fiddaman [45] and the Feedback-Rich Energy-Economy (FREE) model. System

Dynamics has been encouraged for transportation applications [5]. It has been used

for aerospace application: Lyneis [101] modeled the aircraft market, as shown in

Figure 8. This model is built around four main stocks, which are the demand, the

operating aircraft fleet, the order backlog, and the fare. Many feedback loops are

represented, such as traffic congestion effect on demand.

Figure 8: System Dynamics model of aircraft market [101]

Galvin [57] created a system dynamics model to investigate the impact of a Small

Aircraft Transportation System on the behavior of future Air Traffic Control sys-

tem. Bonnefoy and Hansman [19] developed a System Dynamics model that captures

airport performance and its impact on other regional airports. Suryani et al. [162]
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created a System Dynamics model to evaluate the future need for additional capac-

ity at Taiwan Toyuan International Airport. Abad and Clarke [4] modeled different

portfolios of airspace infrastructure investments for National Airspace System (NAS)

modernization.

SD has been adopted for various policy assessment studies aiding policy-makers in

reaching an optimum design policy [5]: CO2 emission mitigation policy for inter-city

passenger transport [63], vehicle ownership intervention policy in an urban area [175],

congestion pricing policy for a transportation socio-economic system [100], runway

and terminal capacity expansion policy [162]. Most SD efforts take transportation

demand as an explanatory variable. Different forms exist to serve their own study

purposes and scopes: a projection of volume growth rate [63], a simple function of

parameters such as GDP and population [62], or more sophisticated sub-models using

SD [100, 175, 162]. Because the goal is in general to understand the dynamics of policy

impacts rather than obtaining exact values, demand models are not required to be

precisely calibrated. Suryani et al. [162], however, calibrated the demand model with

historical data but the scope of the model is aviation, at a particular airport. To the

author’s knowledge, no SD model of the intercity transportation system demand in

the continental U.S. is available.

Observation 4: System Dynamics is a well suited approach for modeling

complex systems such as the Transportation System-of-Systems.

2.3.4 ABM and SD Summary and Comparison

ABM is an inductive, bottom-up modeling approach, based on a set of agents and

interaction rules in a given environment. Due to its flexible nature, it can be used to

model a large variety of systems. It enables sophisticated interactions between agents

with heterogeneous state space, which often leads to discovery of emergent behaviors.

As described in Lattila et al. [87], ABM is the preferred modeling method when actors

26



are not homogenous, structure is flexible and complex events exist. The advantages

of ABM may be overshadowed by a number of difficulties. The parameterization

and validation can be demanding [165], and computational cost is usually very high

[124, 135, 136]. Consequently the assessment of a large number of scenarios with

ABM is not practical and time progressive simulation is challenging.

In contrast, SD is a top-down modeling approach that focuses on dynamic com-

plexity which arises from the system’s structure, feedbacks and time lags [152]. It

enables easier model construction and validation but makes assumptions about the

homogeneity of modeling entities [165]. As mentioned in Lattila et al [87], SD works

particularly well with systems following a policy. Lyneis [101] and Randers and

Goluke [137] advocate the use of system dynamics models for forecasting in situa-

tions where there is a significant deterministic backbone in the system or dominant

structural momentum, which presupposes that the structure of the system determines

future behavior with little uncertainty due to noise and complexity. SD is essentially

equation-based and needs quantified metrics and relationships between variables, of-

ten difficult to obtain for complex systems with unknown structure. On the other

hand, in situations with incomplete knowledge of the system’s structure, ABM may

still reasonably represent the system based on a limited number of relatively simple

rules through emergent behavior. The main differences between the two modeling

paradigms are summarized in Table 2 (adapted from [145, 146, 87, 124, 134]).

These modeling and simulation methods have been widely accepted and applied to

a myriad of topics. In the field of transportation, Agent-Based modeling has been used

for travel demand modeling [61] and System Dynamics has been encouraged for policy

analysis and decision-making [5]. There has been a growing recognition of using both

ABM and SD as a potential approach to model complex systems [147], especially for

cases where statistics are not available to feed into the SD model. It is apparent that

the complexity of the transportation SoS calls for a hybrid ABM/SD modeling and
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Table 2: ABM and SD comparison

Paradigm System Dynamics Agent-Based Modeling
Perspective Top-down Bottom-up
Level of aggregation Aggregates (homogeneity) Individual agents (hetero-

geneity)
Unit of analysis System’s structure Agents’ rules
Main building block Feedback loop Individual agent
Major mechanism Feedback between different

parts of the system
Emergent behavior due to
interactions

System structure Fixed Flexible
Origin of dynamics Levels Events
Handling of time Continuous Discrete
Simulation time Relatively low Relatively high
Calibration and vali-
dation time

Relatively low Relatively high

simulation framework. This research thus explores the multi-paradigm methodologies

through a literature review, and applies a new approach to the transportation system.

2.3.5 Hybrid ABM/SD

As introduced in the above sections, both ABM and SD are suitable techniques for

transportation SoS demand modeling (Observation 3 and 4). This leads to

Assertion 1: A hybrid ABM/SD modeling and simulation framework

is the most suitable approach to model the transportation SoS demand.

The resulting research question is

Research Question 1.1: How is a hybrid model created?

The first hybrid simulation models combining both ABM and SD appeared in

the late 1990s (e.g. Kim and Juhn [82] created a SD model with array variables

representing agents). This pioneering work faced a lack of integrated environments

and toolsets, especially for ABM, making hybrid models a challenge to build. In-

tegration tools have been developed to facilitate this process and discussed notably
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by Borshchev and Filippov [21], Osgood [124] and Grossler et al. [59] among others.

Meanwhile, an interest for multi-paradigm techniques has been building up, demon-

strated by the increasing number of discussions, tools, applications and literature

reviews for hybrid modeling.

ABM and SD have been used together in a variety of applications: Akkermans

[7] developed a model of supply networks in a system dynamics environment using

concepts from ABM. Scholl [148] compared ABM and SD results and used the example

of the bullwhip phenomenon. Pourdehnad et al. [134] compared ABM and SD in the

context of learning and concluded that both are powerful tools. Shieritz and Grossler

[145] developed another hybrid model for supply chains and used system dynamics to

model agents’ schemata. Other applications include cellular receptor dynamics [174],

long term firm performance [149], food web evolution [123], the dynamics of diffusion

[136], strategy decisions in the automotive industry [81], energy systems [69]. In Teose

et al. [165], an Agent-Based Model with an embedded System Dynamics model was

used to simulate complex adaptive systems and was applied to epidemiology and

ecology.

Some literature reviews have appeared: Schieritz and Milling [146] contrasted SD

(modeling the forest) and ABM (modeling the trees), and discussed potential inte-

gration of these two fundamentally different approaches. Lattila et al. [87] offered a

literature review of hybrid models using ABM and SD and their use in the context

of expert systems. Swinerd and McNaught [163] organized various hybrid simulation

approaches into a classification that includes the interfaced, the integrated and the

sequential hybrid designs. These publications illustrate the recent shift from stitching

codes together and simple comparisons to a simultaneous development of hybrid tech-

niques that benefit from the best of both paradigms. As can be seen in the citation

graph in Figure 9, the field initially built around a small set of publications and is

quickly expanding.
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Figure 9: Hybrid ABM-SD citation graph

In this research, the ABM model Mi is readily available, which leads to the

following hypothesis:

Hypothesis 1.1: With proper analysis, derivations, and aggregation, a

SD model can be derived from an ABM.

Thus ABM can be used as a supporting tool in the first steps of the SD develop-

ment that can be challenging. With this approach the shortcomings of both ABM

(long computation time, some macro-level behavior hard to capture) and SD (key

variable and relationship identification can be difficult to identify) are addressed.
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2.3.6 Model Calibration and Databases

Models used in this research need to be calibrated in order to generate meaningful

results. As mentioned above the calibration of an SD model is often the challenging

part of the modeling process. This leads to the following research question:

Research Question 1.2: How is rigorous calibration achieved?

This section summarizes databases available for calibration of transportation de-

mand. The most suitable resource for multimodal demand analysis is the 1995 Amer-

ican Travel Survey (ATS). This survey based database provides information on long

distance travel patterns of American residents and covers all transportation modes:

automobile, commercial air transport, general aviation, train, buses, etc. The 1995

ATS offers a solid reference for calibration of demand models, however it was con-

ducted for 1995 only. Consequently, in order to carry out multiyear calibration of the

multimodal transportation model, other databases need to be investigated.

The Bureau of Transportation Statistics (BTS) provides a large amount of data on

air transportation. The T-100D is a complete enumeration of the airline domestic op-

erations. This database is crucial to this study as it provides important metrics such

as the total Revenue Passenger Miles (RPM). The Airline Origin and Destination Sur-

vey (DB1B) database provides a 10-percent sample of airline ticket information from

reporting carriers and is the only publicly available database of passenger itineraries.

T-100D presents data from the market standpoint, whereas DB1B presents data from

the passengers’ standpoint.

For ground transportation, it is a lot more challenging to find sets of data on long

distance travel behavior. The publicly available databases include the 1995 ATS, the

1995 National Personal Transportation Survey (NPTS), the 2001 National Household

Transportation Survey (NHTS) and the 2009 NHTS. NPTS and NHTS provide trip-

related data such as mode of transportation, duration, distance and purpose of trip.

They also gather demographic, geographic, and economic data for analysis purposes.
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The above databases provide transportation demand for different modes, and can

be used as calibration data for demand models. In order to generate demand forecasts,

the environment in which the consumers live and make decisions needs to be defined.

In particular socio-economic variables, such as Gross Domestic Product (GDP), Con-

sumer Price Index (CPI), population, household size, and consumer sentiment using

the Michigan Consumer Sentiment Index (MCSI), which define the amount of money

a person is willing to spend on travel, need to be quantified. Databases used for

these variables are listed in Lewe et al. [92] and may be found in Appendix A of this

document.

These databases have been used to calibrate the ABM Mi. As a result, Mi can be

used as a data generator for calibration purposes, and thus help with the calibration

of SD. This is particularly important since the goal is to have a standalone SD model

that captures the behavior of Mi with a faster computation time and more macro-

level view of the system. Hence the following hypothesis:

Hypothesis 1.2: Through a cross-calibration process, SD can produce

results similar to ABM within given ranges.

If this hypothesis is true, then SD can be used as a surrogate of the ABM.

In order to explore the impact of different policies and technologies on transporta-

tion sustainability (mobility and climate impact) the output from demand models is

used to quantify emissions and climate impact. This leads to the following research

question:

Research Question 2: How is the transportation system’s impact on

the atmosphere quantified?

As introduced in Section 1.1, sustainability is defined as finding the proper bal-

ance between current and future environmental, social and economic qualities. In

the context of this research, it was narrowed down to mobility and climate impact
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of transportation. In order to quantify the climate impact of the U.S. transporta-

tion system, actual fuel burn and life cycle emissions from the different modes of

transportation need to be obtained. Fleet models are needed to account for different

scenarios in terms of technology implementation, adoption rates and resulting fleet

fuel efficiencies. The following section discusses these aspects in more detail.

2.4 Transportation Fuel burn and Emissions Modeling

2.4.1 Transportation Emissions

2.4.1.1 Emissions from Air Transportation

Current commercial aircraft engines burn Jet A-1 fuel, which is a mixture of hy-

drocarbons (CnHm). Combustion of this fuel results in carbon dioxide, water vapor

(H2O) and sulfur oxides (SOx) for ideal combustion. It also releases unburned hydro-

carbons (UHC), carbon monoxide (CO), soot and nitrogen oxides (NOx). The Jet

Fuel Combustion equation is:

CnHm + S + N2 + O2 −−→ CO2 + H2O + N2 + O2 + NOx + CO + SOx + Soot + UHC

Because the exact quantities of CO2, H2O and SOx are a function of the fuel

composition, emission rates for each fuel type can be used to obtain emissions from

fuel burn. NOx emissions can be obtained using empirically derived correlations

based on the P3T3 method (which utilizes temperature and pressure information

to estimate NOx emission indexes) and the current inventory combustor data found

in the ICAO Engine Emissions Databank (EEDB). More details on NOx modeling

can be found in Reference [131]. Emission rates for other species can be estimated

using the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation

(GREET) Model, developed by the Argonne national laboratory, which provides a life

cycle analysis of different modes of transportation. Then the only remaining building

block is a fleet forecasting tool to predict fuel burn.
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2.4.1.2 Emissions from Ground Transportation

Similar to aircraft engine combustion, most ground vehicles use hydrocarbons and

air and produce carbon dioxide and water vapor under perfect conditions. A typical

engine emits unburned hydrocarbons, nitrogen oxides and carbon monoxide. Hydro-

carbon is emitted when fuel molecules are only partially burned. Nitrogen oxides are

formed from nitrogen and oxygen under high pressure and high temperature condi-

tions in the engine. Carbon monoxide comes from partial oxidation of the carbon in

the fuel.

Catalytic converters were introduced in 1975 to decrease hydrocarbon and carbon

monoxide emissions. At the same time, unleaded gasoline was introduced because

lead was proven toxic and it inactivates the catalysts used in converters [56]. This

introduction came with large health benefits. Second generation emission control

systems were introduced in 1980 to convert carbon monoxide and hydrocarbons to

carbon dioxide and water, and reduce nitrogen oxides to nitrogen and oxygen.

In order to monitor ground vehicles’ emissions, tools were developed by the EPA

and the Argonne National Laboratory. The MOtor Vehicle Emission Simulator

(MOVES), developed by the EPA, estimates emissions from highway vehicles. Simu-

lations can be run to obtain emissions from different vehicle types, road types, weather

conditions, etc. MOVES currently estimates emissions for mobile sources (cars, trucks

and motorcycles). It covers a broad range of pollutants and enables multiple scale

analysis.

With the introduction of the electric car, often advertised as zero-emission car in

terms of operating emissions, further considerations are needed to account for the

higher relative effect of upstream emissions. The whole life cycle emissions including

well to pump emissions need to be accounted for. A new type of vehicle will only

reduce emissions if the emission saving during operation is higher than the additional

energy consumed in other stages of the life cyle [58]. Life cycle emissions are described
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in Figure 10.

Figure 10: Life cycle emissions

The Greenhouse Gases, Regulated Emissions, and Energy Use in Transporta-

tion (GREET) Model, provides a life cycle analysis of the transportation, computing

emissions from vehicle usage (pump to wheel) as well as upstream emissions (well to

pump). It can simulate passenger cars and light duty trucks for many different fuel

systems such as conventional engines, hybrids, plug-in hybrids, electric and fuel cell

vehicles.

For each mode of transportation, different vehicle types, and fuel types, will re-

sult in different fuel efficiencies and emission factors, which leads to the following

observation, research question and hypothesis:

Observation 5: Existing modes of transportation emit a number of

gaseous and aerosol species whose quantities vary based on fleet composi-

tion.

Research Question 2.1: How can fuel burn and emissions from different

modes of transportation be quantified?

Hypothesis 2.1: The integration of parametric demand and fleet re-

placement models, and the use of life cycle emission factors enables scenario-

based environmental analysis.

Fleet forecasting models are thus needed for each mode of transportation. With

the fleet composition, fuel burn and resulting emissions, it is then possible to assess

35



the impact on climate.

2.4.2 Fleet Replacement Modeling

2.4.2.1 Air transportation Fleet Modeling

More fuel efficient aircraft are currently being designed that will be available in a given

number of years. When they become available, airlines will start purchasing them

based on financial considerations and compliance to noise and emissions regulations.

Therefore, in order to quantify future emissions, a fleet replacement tool is needed.

The Integrated Dynamics Environmental Analysis (IDEA) model is a SD model that

is capable of modeling this fleet replacement. In IDEA, the Net Present Value of

aircraft is used and airlines decide to replace an aging aircraft with a new aircraft

when it is no longer economically valuable to operate with an aging aircraft. Older,

less efficient aircraft with higher maintenance requirements are potentially retired

and replaced with newly available aircraft based on financial consideration focused

on the acquisition cost and improvements in operating cost amortized over a time

period [95]. The outputs from IDEA include fuel burn, CO2 and NOx [132]. For more

information on the retirement and replacement algorithms, see Reference [77].

IDEA uses results from the vehicle analysis tool Environmental Design Space

(EDS), which is a physics based tool that estimates aircraft emissions. EDS uses

an engine multi-point design loop with a solver that parametrically design fan and

compressor maps, sizes the specified engine cycle, and performs flow-path analysis to

estimate the weight of the engine. Once the engine converges on a solution, Numerical

Propulsion System Simulation (NPSS) creates an engine deck and the aircraft is flown

on a design mission using the Flight Optimization System (FLOPS). Another fleet

assessment tool that produces results similar to IDEA is the Aviation Environmental

Design Tool (AEDT). AEDT models aircraft performance in 4-dimensional space

and time to produce fuel burn, emissions and noise [1]. The Aviation Environmental

Portfolio Management Tool (APMT) can take results one step further by estimating
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the environmental impact from aircraft operations through changes in health and

welfare endpoints for climate, air quality and noise. It models airline and aviation

market responses to environmental policy options [103]. For the purpose of this

study, which is to quantify fuel burn from different fleet replacement scenarios, IDEA

has the appropriate level of detail and is therefore the most suitable tool. It needs

to be integrated with the demand model. Results from the demand model need

to be inputted into the fleet model to generate fleet replacements. Once the fleet

composition is obtained, an average fuel burn can be computed that may have an

impact on the ticket price and therefore on the demand. If airlines change their ticket

price with fuel burn improvement, a rebound effect on demand will be observed, and

iterations between demand and fleet models are needed.

2.4.2.2 Fleet model for ground transportation

With improvements in technologies, emissions are reduced over time due to the re-

placement of older vehicles with new more fuel-efficient ones. Quantifying and fore-

casting the rate at which these changes occur is crucial and has been the subject

of numerous studies [15, 9, 85]. The market share of different types vehicles, based

on their size and fuel type, is an important variable to determine the fuel burn from

ground transportation activities [15]. Consequently, a fleet replacement model for the

ground transportation, similar to IDEA for the air transportation is needed. Market

shares vary with a number of parameters resulting in different life cycle emissions.

Once fuel burn and emissions are quantified as introduced above, the climate

impact can be determined. The following section discusses how the different species

emitted impact the atmosphere.

2.5 Climate Impact Assessment

The emissions introduced in the previous section affect the atmosphere and may have

non negligible impact on climate. A number of studies and tools exist to assess the
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impact of different species on the climate, but they rarely are sector specific. In the

context of policy and technology scenario exploration, a sector specific approach is

needed. In order to appropriately design the policies, the way the transportation

system affects the energy balance of the Earth needs to be understood and modeled

with an appropriate level of accuracy and computation time. It is important to choose

the right metric for climate impact assessment. Hence the following research question:

Research Question 2.2: What metric is appropriate for transportation

climate impact assessment?

The transportation sector impacts the Earth radiative balance through a variety

of gaseous and aerosols emissions. These emissions result in Radiative Forcing (RF),

a commonly used metric for climate impact assessment, that quantifies the difference

between radiative energy received by the Earth and energy radiated back to space. As

defined by the Intergouvernmental Panel on Climate Change (IPCC), RF is a change

of radiative flux at the top of the atmosphere (TOA) due to an external perturbation.

∆F = Fnet,pertubed(TOA)− Fnet,clean(TOA) (3)

where Fnet,pertubed(TOA) is net flux in perturbed atmospheric conditions at the TOA

and Fnet,clean(TOA) is net flux in clean atmospheric conditions at the TOA.

Positive values of RF imply warming while negative values imply cooling of the

Earth-atmosphere system [129]. High values of RF may result in significant changes

in climate that would be associated with a number of consequences that are beyond

the scope of this research but are discussed in the literature [108, 60]. RF has been

used in previous studies on the climate impact of the transportation sector [54].

Observation 6: RF is a standard way of comparing the effects of the

various emissions on climate and usually compare present day forcing with

pre-industrial times [55].

Considering only CO2 can lead to non optimum designs for immediate climate
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impact [28]. An example is the altitude variation and the tradeoff between fuel

consumption and contrail avoidance strategy [6]. As can be seen in Figures 11 and 12,

many non-CO2 emissions are significant and need to be taken into account to increase

the accuracy of the climate impact assessment.

Figure 11: Radiative Forcing in 1992 [129]

2.5.1 Climate Impact of Transportation

The main gas emitted is carbon dioxide (CO2). It is a long-lived gas in the atmo-

sphere and the location of emission has no effect on its climate impact. At subsonic

cruise altitudes, aircraft emitted nitrogen oxides (NOx) cause the amount of ozone

(O3) to increase, and in turn, results in warming of the atmosphere. Supersonic air-

craft flying at higher altitude result in ozone depletion. NOx emissions also result

in methane (CH4) concentration decrease, which tends to balance the warming effect

due to ozone. In addition aircraft have short lived effects such as condensation trails

(contrails), which form behind the aircraft under ice-supersaturated atmospheric con-

ditions. They reflect solar radiation and stop outgoing longwave radiation, with the
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Figure 12: Radiative Forcing expected in 2050 [129]

second effect dominating. With increasing air traffic in the future, it is expected that

the impact from contrails will increase. A linear relationship between the RF of con-

trails and flight distance or fuel burn is often assumed, based on the constant emission

factor of water vapor per amount of fuel. However, this assumption may not always

hold and many other factors need to be accounted for, such as ambient conditions

(tropopause temperature [168], etc.). Another impact that is not well understood

is the transition from contrails to cirrus clouds, which could significantly increase

the impact from contrails alone if taken into account. Remote sensing techniques

have been used to estimate contrail coverage and contrail characteristics, and will be

discussed in more detail in subsection 2.5.4. Knowing the coverage and the optical

properties (optical depth and effective particle radius), the RF can be computed using

the mean fractional contrail coverage per distance traveled or per fuel burned.

Ground transportation also emits both long lived and short lived species that
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affect the energy balance of the atmosphere. The main concern in terms of atmo-

spheric composition is due to nitrogen oxides, non-methane hydrocarbones and car-

bon monoxides, which are precursors of ozone. In the presence of sunlight, nitrogen

oxides result in ground-level ozone, which is a major component of smog [171], as

depicted in Figure 13 [170]. Ground transportation emitted species impact air qual-

ity at the urban scale, but they also impact the global climate (which is the focus of

this research). The major climate impact is through CO2, similar to aviation, but in

much larger quantities (ground transportation, as a whole, results in a much larger

total emissions than air transportation). Ozone has a shorter lifetime and is non-

homogeneously distributed. A mean impact can be calculated and is usually smaller

than the impact from aviation because of the altitude of emission (aircraft emissions

occur close to the tropopause) [170]. Due to NOx emissions, a decrease in methane in

the atmosphere is observed. Nitrous Oxide (N2O) has a small impact on climate in

spite of its large warming potential. Ground transportation also emits aerosols which

interfere with radiation through reflexion, absorption and scattering. Black carbon

is the main aerosol. Some indirect effects of aerosols on cloudiness are possible but

much smaller than aviation cirrus induced clouds [170]. Regulating these emissions

can result in non negligible climate and health impact as demonstrated by Shindell

et al. [153].

Due to the large variety of sources of climate forcing from the transportation

sector, emission based metrics (such as total CO2 emitted) are less useful than RF

and temperature based metrics [29]. Therefore quantifying CO2 emissions is not

sufficient and leads to the following assertion and research question:

Assertion 2.2: To fully address transportation climate impact, all gases

and aerosols must be considered and Radiative Forcing is an appropriate

metric.

Research Question 2.3: What is the RF of the species with the most
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Figure 13: Basic processes in tropospheric chemistry [170]

impact?

In order to quantify RF, climate models are needed.

2.5.2 Climate Models

Climate models help simulate Earth’s climate system and predict future climate.

They solve the conservation of mass, momentum and energy and radiant exchange in

each box of a three dimensional grid [103]. These models provide an increasingly high

level of understanding of atmospheric processes, but are computationally expensive.

They are located at the top of the climate modeling pyramid presented in Figure 14.

They can be integrated with carbon cycle models to better simulate feedback effects.

Earth system models of intermediate complexity are simplified models with lower

spatial resolution. Some aim to capture a given process such as chemical transport

models (CTMs) for atmospheric dynamics. One-dimensional radiative convective

(RC) models are single column models which represent the temperature profile of the

atmosphere with radiative transfer and convective energy transport. Energy balance

models (EBM) are zero or one dimensional models, which perform energy balance

calculations between incoming and outgoing radiation of the planet.
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Figure 14: Climate modeling pyramid [154]

Reduced-order approaches used in integrated assessment models include the im-

pulse response function (IRF) and system dynamics (SD) models. The IRF is an

expression of the climate response due to a small perturbation [103] and is estimated

using carbon cycle models. It has been used in previous studies [107, 143] to help

reduce computational time. Other carbon cycle approaches can be envisioned in Sys-

tem Dynamics as done by Fiddaman with the DICE model [45]. Running a full blown

climate model can be particularly computationally expensive. Hence, when building

an IAM, it is crucial to take into account the uncertainties associated with a given

approach as well as computational burden. To compute radiative forcing, radiative

transfer codes are necessary. In order to gain a better understanding of how the

different species emitted by the transportation modes impact the energy balance of

the planet, a short background on Radiative Transfer (RT) theory is provided in the

following section.
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2.5.3 Principles of Radiative Transfer

The sources of radiations are the sun, which emits in the visible spectrum, and the

Earth, which emits in the Infrared (IR) spectrum. When going through the atmo-

sphere, radiation is absorbed and scattered. The energy decreases due to absorption

by molecules and deviation of the beam due to scattering. However energy also

increases due to emission by these same molecules. The energy flows through the

system are represented in Figure 15. A common approximation is the plane parallel

atmosphere, which depicts the atmosphere as one-dimensional and bounded at the

top and bottom by horizontal plane surfaces.

Figure 15: Global annual mean Earth’s energy budget for the 2000-2004 period
(W.m-2) [169]

Climate is defined as the average state of the atmosphere observed as weather in

terms of the mean and its statistical deviations that measure the variability over a

period of time [99]. Natural changes may occur due to the solar constant, atmospheric
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composition after volcanic eruptions, causing external forcing. Changes due to human

activity also cause forcing. Gaseous species that absorb radiation result in forcing.

Aerosols interact with radiation by reflecting and absorbing sunlight, and absorbing

and scattering IR radiation. They also have indirect effects through their interactions

with clouds.

Radiative Transfer (RT) codes are used to quantify Radiative Forcing from these

species. The Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART)

radiative transfer code uses the discrete ordinate method, a commonly used approach

that reduces the full radiative transfer equation to a set of coupled linear first-order

differential equations, to solve the equations of plane-parallel radiative transfer in a

vertically inhomogeneous atmosphere [139]. It accounts for absorption and scattering

from gaseous and aerosol species. Important parameters in the RT calculations in-

clude aerosol characteristics, different species concentrations, vertical profiles, surface

albedo (which measures the reflecting power of a surface). From the fluxes given by

the simulations, the radiative forcing may be obtained.

2.5.4 Remote Sensing

In order to quantify the necessary inputs to the RT calculations, some remote sensing

data is used. Remote sensing of the Earth-Atmosphere system with the increasing

number of satellites specifically designed for this purpose has tremendously improved

the capability to accurately quantify radiative forcing from aerosols. Using remote

sensing techniques, better characterization of aerosol physical properties and distribu-

tion is possible. Remote sensing is useful for proper setting of the Radiative Transfer

codes, such as surface albedo, and aerosol profile. It has been used in previous studies

on the Radiative Impact of aerosol: Young et al. [182] studied the regional impact

of a volcanic eruption and used data from multiple satellites to properly constrain

the radiative transfer calculations. As discussed in [182], the type of surface, solar
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zenith angle and the altitude of aerosols are significant parameters hence the following

hypothesis:

Hypothesis 2.3: Radiative Forcing efficiencies vary based on the mode

of transportation, location and season of emission.

Radiative Forcing efficiencies are defined as radiative forcing per unit of emitted

species.

Some examples of satellites that may be useful include but are not limited to:

• The CALIOP lidar onboard the Cloud-Aerosol Lidar and Infrared Pathfinder

Satellite Observations (CALIPSO) that operates at 532 nm and 1064 nm wave-

lengths. CALIPSO was developed by NASA and CNES and is on a sun-

synchronous orbit at 705 km of height with 15 orbits per day [24]. The analysis

from the CALIOP instrument focuses on desert aerosols and smoke (soot and

organic carbon mostly). The CALIPSO vertical feature mask is used to deter-

mine the location of aerosols in the atmosphere.

• The MODIS instrument onboard the Terra and Aqua satellites may be used to

determine aerosol optical depth and horizontal distribution of aerosols.

Both of these are part of the NASA A-Train satellite constellation shown in Figure 16.

It gathers some of the most powerful instruments for the better understanding of the

climate.

Contrails are visible on satellite imagery as captured in Figure 17 by the Terra

satellite over western Europe in April 2010. Based on this image, conditions over the

UK and Ireland appeared to have been favorable to the formation of contrails. The

National Oceanic and Atmospheric Administration (NOAA) Advanced Very High

Resolution Radiometer (AVHRR) split-window pattern recognition technique has

been used by Mannstein et al. [106] for detection of line-shaped contrails. The
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Figure 16: A-Train constellation of satellites (credit:NASA)

Geostationary Operational Environmental Satellite (GOES) Imager Detection Tech-

nique was used by Minnis et al. [114] for the detection of persistent contrails and

cirrus. Some similar work using NOAA/AVHRR has been accomplished by DeGrand

et al. [34] for the 1977-1979 time period and by Travis et al. [168] for 2000-2002.

Minnis et al. [113] used an automated contrail detection algorithm (CDA) using the

Moderate Resolution Imaging Spectroradiometer (MODIS) data taken by Terra and

Aqua over the United States during 2006-2008. Other regions have been studied as

well, southern and eastern Asia by Meyer et al. [111], and Western Europe by Meyer

et al. [112].

With each one of the previously introduced building blocks (demand, fleet and

climate models), it is possible to build an IAM for the U.S. intercity transportation

system. The resulting model development will be presented in the following chap-

ters. Once the IAM is completed, it can be used for policy and technology scenario

exploration, and answer the following research question:
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Figure 17: Contrails visible on MODIS image from April 10, 2010

Research Question 3: What are the impacts of policies and technologies

on the demand and fleet of different modes of transportation?

A subquestion arises:

Research Question 3.1: Can transportation emissions and climate im-

pact stabilization goals be achieved through market measures alone?

The impact of an increased cost of travel will be explored using different fleet

scenarios and the following hypothesis is made:

Hypothesis 3.1: Climate impact goals may be achieved through a com-

bination of technologies and policies.
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The stabilization and reduction of emissions and climate impact is one of the

multiple attributes to take into account when looking at policies and technologies

for the sustainability of the transportation system. It is indeed also important to

maintain a certain level of mobility for social and economic welfare of the society.

Hence the following observation:

Observation 7: The evaluation of policy and technology scenarios in

terms of transportation sustainability involves tradeoffs between climate

impact and mobility.

Once the demand and fleet models are integrated and the radiative forcing quan-

tified for multiple policy and technology scenarios, some Multi-Attribute Decision

Making (MADM) techniques are needed to help identify the best scenario. More

details on MADM are provided in the following section.

2.6 Multi-Attribute Decision Making

Different policy and technology scenarios can be envisioned. Policies may include fuel

taxes, or cap and trade systems, which would result in an increased cost of travel, at

a given time and with a given value. Depending on socio-economic parameters and

fleet fuel efficiencies, the demand for transportation modes and the market share of

different vehicles would change. Evaluating and ranking scenarios in terms of climate

impacts is necessary to support decision making.

2.6.1 MADM for Policy and Technology Scenarios

Decision making is often associated with tradeoffs and competing objectives, espe-

cially in the case of sustainability and policy. There is not a single objective, but

multiple, conflicting goals such as increasing mobility while decreasing climate im-

pact. In order to identify the most suitable option based on multiple attributes,

established methodologies may be used. Multi Attribute Decision Making (MADM)
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is used when multiple conflicting goals exist. The first step is to identify the objec-

tives, for example reducing cost, increasing demand, reducing climate impact. Then

available alternatives are identified. These alternatives may be different technologies

or different policies. Finally, alternatives may be ranked based on a scoring system.

Climate policies aim to identify strategies to limit long-term environmental impact

and highlight tradeoffs between the main areas involved in sustainability: environ-

mental, economic and social criteria. While one option for policy making could be to

aggregate performance indices into a single economic metric, doing so would require

to assign a value on variables that are sometimes difficult to compare. MADM, on

the other hand, motivates discussions between policy makers by explicitly showing

multiple criteria [14].

Bell et al. [14] provide some insight into the need and challenges of MADM.

In particular they identify the following considerations as having an impact on the

decision being made:

• the choice of metric for decision making

• the granularity of the models

• the spatial and temporal scope

• the physical and socio-economic models and related assumptions

• the treatment of uncertainty

• the visualization of outputs

• the policy and technology alternatives considered

2.6.2 Pareto Frontier

The best alternative will lie along the pareto frontier which defines the set of non-

dominated solutions. If the goal is to minimize F (x) = [f1(x), f2(x), ..., fn(x)], a
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feasible solution is Pareto optimal if and only if there is no other feasible solution

such that fi(X) ≤ fi(X
∗) for all fi and fi(X) < fi(X

∗) for at least one fi. However,

it is sometimes difficult to identify which solution on the pareto frontier is best,

especially in multiple dimensions. Hence the use of ranking systems.

2.6.3 Ranking System

The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is a

MADM technique developed in the 1980s by Yoon and Hwang [72]. It ranks alterna-

tives based on their Euclidean distance from the positive and negative ideal solutions,

as depicted in Figure 18. The positive ideal represents an imaginary design, which

combines the best performance attributes of the entire set of designs considered [86].

Similarly, the negative ideal is an imaginary design representing the worst attributes

of the set of designs. It is a powerful technique and is widely used. However, it

requires to sometimes arbitrarily define the relative weights of each objective, which

may have a non negligible impact on the final ranking.

Figure 18: TOPSIS
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The Analytic Hierarchy Process (AHP) was developed in the 1970s by Saaty. It

ranks alternatives based on pairwise comparisons. It can be used for alternatives

ranking or objective prioritization and can handle qualitative inputs. However, due

to the potentially high number of pairwise comparisons, it can be time consuming

[86].

Using MADM, different approaches exist to identify the best set of policy and

technology alternative and address the following research question:

Research Question 3.2: How can different policies and technologies be

assessed?

Since sustainability is associated with multiple attributes and many interdepen-

dencies, the following hypothesis is made:

Hypothesis 3.2: Due to the many interdependencies involved in trans-

portation sustainability, a scenario-based approach is best to assess differ-

ent policies and technologies.

This will be verified through modeling and simulation as discussed in the following

chapters.

2.7 Summary of Observations, Research Questions and Hy-
potheses

The literature review resulted in a number of observations, which led to research ques-

tions and hypotheses that will be verified using the modeling and simulation environ-

ment developed in this research. A summary of these observations, research questions

and hypotheses and how they relate to each other is provided in Figures 19, 20 and 21.
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Figure 19: Observations, Research Questions and Hypotheses part 1

Figure 20: Observations, Research Questions and Hypotheses part 2
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Figure 21: Observations, Research Questions and Hypotheses part 3
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CHAPTER III

PROPOSED APPROACH

As introduced in the previous chapter, growing concern about the environmental im-

pact of anthropogenic activity, and more specifically the climate, results in increasing

discussions and implementations of policies and technologies. The climate impact and

the effect of policies and technologies come with significant uncertainty. In an attempt

to gain knowledge and explore interdependencies and potential effects of policies and

technologies, modeling and simulation is needed. With an appropriate modeling and

simulation environment, multiple scenarios may be explored and thus help address

the overarching goal of this research which is to create a framework for scenario

based assessment of transportation demand and climate impact. A number

of models called integrated assessment models aim to quantify climate impact under

different scenarios. However their scope and level of details are not always suitable

for specific studies. In this research, the focus is on long distance transportation, as

this is a significant segment of the economy in terms of emissions and an engine for

social and economic welfare of the society.

Research Objectives:

• Generate Transportation Mode Demand for given scenarios.

• Quantify the resulting climate impact.

• Explore a variety of policy and technology scenarios to assess the sustainability

of the transportation system.

The methodology proposed in this research aims to support the aforementioned
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research goal and objectives and address the research questions and hypotheses pre-

sented in the previous chapter. First, it is necessary to gain insight into the demand

for energy in different sectors. In this research, the sector is transportation, and

includes different modes of transportation. Then the energy efficiency must be de-

termined. In this research, the changes that airlines may apply to their fleet, as well

as ground mode fleet composition are explored. From the demand and the energy

efficiency, the climate impact can be quantified. This is the purpose of the proposed

framework called environmental Ground and Air Mode Explorer (eGAME), which in-

cludes a set of modules necessary to perform this integrated assessment as illustrated

in Figure 22. The first step is to generate forecasts of demand for the different modes

of transportation under different scenarios including socio-economic variables as well

as vehicle design variables. Fuel burn is obtained using fleet models for each mode of

transportation and the feedback to demand is explored. Finally the climate impact of

emissions resulting from transportation activities is assessed. Based on the observed

impact, different policies and technologies scenarios can be implemented and fed back

into the demand models to recreate the new demand, emissions and climate impact.

The different steps presented in Figure 22 are described in more detail in the

following chapters. The first part of this research will focus on the best available

techniques for transportation System-of-Systems demand modeling using a hybrid

ABM and SD as introduced in section 2.3. Then the climate impact will be quantified,

using a two step process: first, fleet efficiency and emissions will be determined using

fleet models as described in section 2.4, then radiative forcing will be quantified using

a radiative transfer code as introduced in section 2.5.3. Finally, policy and technology

scenarios will be explored in order to show how decision making can be performed

using eGAME. An overview of these steps is provided in the following sections.
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Figure 22: U.S. Transportation SoS integrated assessment framework

3.1 Hybrid Agent-Based and System Dynamics Demand
Modeling

The Transportation System is a complex System-of-System composed of many inter-

acting systems and stakeholders, which calls for specific modeling techniques. The

stakeholders in the transportation system are adaptive autonomous agents. They are

entities that try to fulfill a set of goals in a complex, dynamic environment, they have

internal information processing and decision-making capabilities [90]. Therefore ABM
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is a well-suited modeling approach for transportation demand modeling. This micro-

level, agent-based formulation captures consumer behavior in a versatile way which is

not easily accomodated with an equation based modeling approach [94]. However, the

advantages of ABM come with high computational cost that makes quick interactive

assessments difficult. Furthermore, some macro-level characteristics, feedbacks and

dynamic behaviors may not be captured. To address these challenges, an aggregated,

System Dynamics modeling approach is most suitable. As discussed in Section 2.3,

both ABM and SD have advantages and a hybrid model is best for the multimodal

intercity transportation demand. Through this “multiscale modeling” approach, im-

portant features of the system are captured at both the micro and macro scales, and

microscale models may be used to build the macroscale model. In this research, an

ABM model is already developed and validated. Therefore, a System Dynamics model

is developed based on the validated ABM presented in section 2.3.2.3, following the

steps listed below:

• Screening of variables is performed with the ABM to identify a set of input

variables that have the most impact on the desired output.

• An aggregation strategy is created to find the proper balance between model

simplicity and accuracy of results.

• The ABM is used to generate data when statistics are not available.

• The SD model is then calibrated using ABM in order to increase the credibility

of the results. To perform this cross-calibration, a range is defined for each

input, and a number of cases are run within these ranges. Results from both

models are compared and the SD model is adjusted until results match.

More details are provided in Chapter 4.
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3.2 Transportation System’s Climate Impact

The hybrid model quantifies demand for different modes of transportation. With this

demand, and using fleet models and a radiative transfer code, climate impact can

be quantified. A number of tools are available to quantify fleets fuel efficiencies and

assess the transportation system’s impact on the atmosphere. The first set of tools,

fleet models, are used to quantify fuel burn. The second step uses existing radiative

transfer theory to quantify climate impact.

3.2.1 Fuel burn and Emissions

To quantify fuel burn and emissions, an energy efficiency of each system needs to be

quantified. For transportation systems, the following two steps are used:

• First, the composition of the fleet for each mode of transportation is determined

using fleet models for each mode of transportation, thus providing fuel burn.

• Then life cyle emission factors are used to determine the life cycle emissions of

different species based on the fuel burn.

The fleet replacement tools must be parametric to enable scenario-based exploration,

and give market shares of different vehicles under different scenarios. Fleet replace-

ment tools need to be properly integrated with the demand models in order to best

capture the system’s behavior. This is further described in section 5.1.1. The tool

IDEA presented in section 2.4 is used in this research for its capability to model fleet

replacements under different environments. As previously discussed, no tool is read-

ily available for long distance ground transportation. Therefore data from existing

models is used to create a ground module in eGAME. The fleet model determines an

attractiveness of different vehicle types based on a number of characteristics related

to the cost of transportation and keeps track of vehicle replacements. A detailed de-

scription of the ground module is provided in section 5.1.2. Once the fleet is known,
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fuel burn can be quantified. Based on the fuel burn and life cycle emission factors,

emissions of different species are determined. Life cycle emissions include upstream

emissions, that become more significant when alternative fuels such as Electric Ve-

hicles are introduced in the modeling framework. The emitted species from trans-

portation activities impact the radiative transfer through the atmosphere, and these

effects can be quantified.

3.2.2 Climate Impact Assessment

In order to find the best scenario for climate impact reduction, the first step is to

find the proper metric to assess this climate impact. As discussed in section 2.5.1,

Radiative Forcing is a widely used metric. It is chosen and quantified for each mode,

taking into account uncertainties associated with location and time of emission. Mul-

tiple simulations are run using radiative transfer codes to assess the different radiative

forcing under different conditions (different regions, seasons and modes of transporta-

tion). The following steps are implemented:

• Define a grid that represents different regional and seasonal characteristics.

• Define each region/season characteristics (solar zenith angle, surface albedo,

aerosol vertical profile, atmospheric conditions, etc.)

• Define each aerosol characteristics.

• Run a Radiative Transfer code with different weather conditions (cloud cover).

• Derive an average Radiative Forcing efficiency for each mode of transportation.

This approach is presented in section 5.2. The observations resulting from this

section enable better quantification of the relative climate impact of different modes

of transportation.
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3.3 Policy and Technology Scenario Exploration

With the modeling and simulation environment (eGAME) developed in the steps

introduced above, it is then possible to implement policy scenarios and assess their

impact on demand and fleets. These policies may be associated with technology

scenarios to capture potential interaction effects. Therefore a number of technology

and policy scenarios are defined and evaluated using eGAME, as further discussed in

Chapter 6.
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CHAPTER IV

HYBRID AGENT-BASED AND SYSTEM DYNAMICS

DEMAND MODELING

4.1 Modeling Paradigms for the Transportation System-of-
System Demand

As depicted in Figure 23, the first step in the framework is to quantify demand from

different modes of transportation using demand forecasting tools. Transportation

demand is the foundation of any transportation system design effort. Forecasting

demand is, however, a challenging task due to the complexity of the transportation

system, which has increased with the level of mobility. People have a need to travel,

and they choose from all existing modes, routes and infrastructure. Moreover, a wide

variety of stakeholders are involved in the transportation systems: travelers them-

selves, suppliers (such as airlines), manufacturers and government. This variety of

interacting systems and stakeholders constitutes a transportation System-of-Systems

(SoS), which exhibits typical characteristics of a complex system: autonomous agents

(travelers and other stakeholders), adaptability (competition between suppliers), self-

organization, emergent and dynamic behaviors, feedbacks, nonlinearity (congestion

and delays) and phase transitions (e.g. new mode introduction as demonstrated by

significant shifts in demand for different modes in history). A holistic approach is

critical for proper representation in capturing the complexity of the system. As in-

troduced in Section 2.3, well established paradigms such as Agent Based Modeling

(ABM) and System Dynamics (SD) are suitable modeling techniques [21, 180]. Each

has its advantages and limitations in terms of representation of the system behavior.
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Research Question 1: What methodology is the most suitable for trans-

portation System-of-Systems demand modeling? was answered through liter-

ature and led to the following assertion:

Assertion 1: A hybrid ABM/SD modeling and simulation framework

is the most suitable approach to model the transportation SoS demand.

More details on hybrid approaches are provided in the following section.

Figure 23: Step 1: Demand modeling
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4.2 Hybrid Methodologies

Multiple approaches can be envisioned to combine ABM and SD, with different per-

spectives and levels of integration. This variety of possible hybrids may create some

confusion in the initial phases of the modeling effort. In order to help modelers in

their modeling architecture choice, a generic classification of hybrid techniques is

proposed [94]. It can be used as a guide and gathers concepts from an extended liter-

ature review. Two main categories are identified. The first set of models are distinct

standalone ABM and SD models, with their specific capabilities. The second set of

models represents fully integrated models, where the two models are tightly linked.

4.2.1 Standalone Models

The first group of models mixes two submodels of different paradigms. These sub-

models can be separated and retain their capability, identity and characteristics. Two

subcategories are identified: cross-validation (class 1A) and sequential models (class

1B). In the cross-validation (Figure 24) category, modelers from each school develop

their own model with their respective methodology and calibrate them with available

data. Results from both models are then compared to further validate the results.

This approach was used by Rahmnandad [135] for the model of contagion. Upon

comparison, models may be modified in order to converge to similar results.

Figure 24: Cross validation

With the sequential approach (Figure 25), a model is used to obtain sufficient
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knowledge or data to build a new model with a different paradigm. With this scheme

multiple consecutive connections are also possible, where a unit simulation begins

once it has received necessary information from the other model. An instance of this

process is given by Schieritz and Milling [144], who suggest that ABM be used to

quantify macro structures in SD. Conversely, SD can be used to provide some neces-

sary information to a bottom-up approach that cannot capture macro-level behavior,

as illustrated in He et al. [65].

Figure 25: Sequential approach

These standalone models suggest that hypothesis 1.1 is true. It will be further

verified through the creation of a SD demand based on the existing ABM Mi .

4.2.2 Fully Integrated Models

In this second category, models are integrated more fully and their separation requires

some treatment and induces a loss of capability. At each simulation the models run

together and at each time step data is needed from both models. Models can be

embedded (Figure 26). These schemes can be traced back to as early as the 1990s.

For instance, Parunak et al. [127] discussed two approaches for combining ABM and

SD models: agents can exist in a System Dynamics model or System Dynamics can be

used to model each agent. Multiple options are available depending on the embedded

and the primary models. ABM can be embedded in SD (class 2A), in which case

the ABM model can be used to influence a stock or a parameter in the SD model.

An example is given in Kieckhafer et al. [81] for automotive manufacturers under

CO2 emission regulations. SD can be embedded in ABM (class 2B) to model agents
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internal structure. An example is given by Duggan [37]. These embedded designs can

be directly mapped to the integrated design in Swinerd and McNaught [163].

Figure 26: Embedded systems

Another fully integrated option is a model where both ABM and SD are equally

important (class 2C) (Figure 27). There is no primary/overarching paradigm. Both

ABM and SD are equally balanced in terms of role and treatment. SD is used to

model the environment in the ABM model [173]. In this scheme, SD can model

dynamics of the agents’ environment which are beyond agents’ limited rules [147].

Both paradigm interact closely, coordinate, but their domain of application remain

separate.

Figure 27: ABM with SD environment

The main characteristics of these hybrid models are summarized in Table 3. Even

though a wide spectrum of diverse approaches can be created, the suggested clas-

sification scheme offers a parsimonious and primal way to group most cases and

applications, as illustrated by Table 4. This limited and comprehensive list of classes

enhances the readability of the different hybrid approaches. In some instances, a

combination of classes may be used. For example, the research from Sterman [157]
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Table 3: Hybrid Models Characteristics

Hybrid Cross-validation Sequential Fully integrated
Time Progres-
sion

Independent Asynchronous Synchronous

Integration
Level

Totally separate Information
transfer

Fully integrated

Purpose Mutual learning Partial learning Problem solving

Table 4: Hybrid Models Examples

Hybrid 1A 1B 2A 2B 2C
[135] X
[65] X
[81] X
[37] X
[173] X
[157] X X
[158] X X

and Sterman and Wittenberg [158] can be classified as derivative subclasses using

a combination of embedded systems (classes 2A and 2B). As described in Swinerd

and McNaught [163], in these examples, scientific paradigms can be seen as “agents

with rich internal structure” and the behavior of the model is driven by a number of

interacting feedback loops.

Other derivatives are possible using a combination of the different hybrid cat-

egories. The above classification organizes a wide spectrum of different methods.

Depending on what the modeler is trying to achieve, standalone models or fully inte-

grated models may be preferred. Generally speaking, standalone models are used to

get a better understanding of the complexity of the system so that a single or multi

paradigm model can be created with good fidelity. Standalone models can thus be

used as a step toward a fully integrated model. Through the cross-validation process,

models mutually learn about the system as a whole, and each model can then be used
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independently with enough confidence. In the sequential approach, the final model

partially learns from the initial model to derive the necessary information. It can be

trained to eventually function on its own or it may call the other model for input

at every simulation. Fully integrated models are used when the problem structure

is understood, in order to answer a specific question quantitatively. Each paradigm

requires data from the other paradigm at every step of the simulation. In this case,

each paradigm achieves a different task and is fully connected to the other.

In this research, the modeling target is the transportation SoS with an empha-

sis on demand. The ultimate purpose is to develop an interactive tool that helps

decision-makers explore and compare different policy and technology scenarios. Due

to the complexity of the transportation SoS, both learning and problem solving strate-

gies are needed. An existing agent-based model has been validated as discussed in

section 2.3.2.3. It has, however, some limitations which motivated the use of a SD

model, that is described in Section 4.3. The SD model complements the ABM and

introduces a novel hybrid approach using classes 1A and 1B.

4.3 Hybrid Methodology for Transportation System-of-Systems
Demand

ABM is a bottom-up approach capable of capturing micro-level types of behaviors,

whereas SD is a top-down approach better suited for macro-level types of behaviors.

As introduced in Sections 2.3 and 3.1, both types of behaviors are expected and a

hybrid approach is justified. The tool Mi is a good ABM candidate and is used as

a starting point for this research. It is however not well suited for some macro-level

views necessary for climate policy and it is too computationally expensive for an

integrated assessment.

Two questions arose, with their associated hypotheses. The first question relates

to the classification established in Section 4.2:

Research Question 1.1: How is a hybrid model created?
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The literature suggests that an ABM can be used for SD model development.

Hence the following hypothesis:

Hypothesis 1.1: With proper analysis, derivations, and aggregation, a

SD model can be derived from an ABM.

An ABM is available but has limitations. Therefore a SD model is developed. In

the process presented in Figure 7, the ABM can help at different steps, such as the

identification of significant variables, the quantification of some relationships, as well

as the validation. The latter relates to the following research question:

Research Question 1.2: How is rigorous calibration achieved?

Hypothesis 1.2: Through a cross-calibration process, SD can produce

results similar to ABM within given ranges.

These research questions will be discussed in more details in the following sections.

4.3.1 Ground and Air Mode Explorer (GAME) System Dynamics Model

In the beginning stages of the development of a System Dynamics model, little is

known about the system. The ABM model can help identify the main parameters

and their impact on the behavior of the system. Creating accurate forecast at this

aggregated level can be challenging. Some behavior can be difficult to represent and

model, which requires the use of an ABM to derive the necessary information and

appropriately model the system. Therefore, the approach is to use a pre-validated

ABM to teach and train the system dynamics model. The standalone model approach

presented above is adopted to create a SD surrogate of the existing ABM model.

Each model therefore remains independent. The ABM is used to build the SD model

and derive aggregate numbers and relationships. The main parameters are identified

and screening of variables is performed. Once the ABM model has been created

and validated, it can be used as a data generator, particularly to initialize the SD

model. However, as mentioned in Table 2, the two modeling paradigms have different
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Table 5: Modes’ Design Variables

Variable Type Commercial Air Trans-
portation

Ground Transportation

Exogenous GDP, MCSI, jet fuel price GDP, MCSI, gasoline price
Design Block speed, Range, Air-

craft size, Operating Cost
Fuel efficiency, Speed, Per-
sons per vehicle

Operational Airport operating hours,
maximum operations, De-
lays

Speed limit, Congestion

Infrastructure Number of runways and
airports, Access distance,
Transit time

Road type

aggregation levels, which requires some treatment of the data. Intelligently aggregated

quantities are derived from the ABM and transferred to the SD model.

The approach is to derive some necessary knowledge from the ABM model to build

and calibrate the SD model. First, the main output variables are identified. The

variables tracked are number of passengers, Revenue Passenger Miles (RPM) for the

commercial air transportation mode (ALN mode) and Vehicle Miles Traveled (VMT)

for ground transportation mode (GND mode). Then, the main input parameters

are screened: Gross Domestic Product (GDP), Michigan Consumer Sentiment Index

(MCSI), fuel price, mode design variables. The main variables are listed in Table 5.

Exogenous variables such as GDP and MCSI have a direct impact on the number

and types of trips people can afford. Gasoline price has a direct impact on the cost of

traveling by car. However, for the commercial air transportation system, a supplier

entity, the airline, makes it more difficult to predict the impact of fuel price increase

on the cost of flying (ticket price). Market fuel prices increased by a factor of five

between 2002 and 2008, and reached their highest values in the summer of 2008

(Figure 28), resulting in an increase in fuel cost and direct operating cost.
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Figure 28: Fuel Price History

Brueckner and Zhang [23] found that an increase in fuel price, or an equivalent im-

position of airline emissions charges, may lead to a higher fare, lower flight frequency,

a higher load factor, more fuel-efficient aircraft, and an unchanged aircraft size. In

an attempt to try to better capture the relationship between fuel price and ticket

price, a study is performed using the Airline Origin and Destination Survey DB1B,

which is a 10 percent sample of airline tickets from reporting carriers. The Ticket

Fare varies significantly, even for a given origin, a given airline and a given distance.

Therefore, a process is needed in order to try to identify some trends over time and

potential correlations with fuel price. The methodology is as follow: for each airline,

an average of the ticket fare is calculated for each distance group (from 0 to 3000

miles, with increments of 500 miles). Only domestic flights are considered and values

that are not credible are removed. Correlations for the one coupon data (one way

tickets), and the two coupons roundtrip data (which represent the 50-70 percent of

the flights) are calculated. Two periods are identified due to the restructuration of

the airline industry observed in the early 2000s. In order to try to better capture the

fuel price effect, the period 2005-2010 is used. Results for the two coupons data are

listed in Table 6, including two Network Legacy Carriers (NLC) and two Low Cost
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Table 6: R-squared values for ticket price 2 coupons round trip data

Airline Average R-squared (all dis-
tances), 2000-2010

R-squared for 2005-2010

NLC 1 0.1934 0.3051
NLC 2 0.2702 0.3717
LCC 1 0.6650 0.3101
LCC 2 0.9058 0.8437

Carriers (LCC). As can be observed in Table 6, LCC 2 shows a higher correlation

between ticket price and fuel price (R-squared value closer to 1). Other carriers may

not have passed the extra cost on to the customer, or may have used fuel hedging

strategies.

A rapid and direct way for airlines to increase revenue in order to account for

the operating cost increase is to increase air fares. It can be observed that airlines

increased their fares when fuel price went up, and that long distance flights were more

sensitive to fuel price than short distance flights. However, the correlation between

air fare and fuel price is relatively low for most airlines. A lot of other parameters

can have an impact on air fare, such as lower competitor’s fare, changing demand,

etc. Moreover, data includes the ticket price, taxes and airport fees, but does not

include extra fees charged by airlines such as baggage fees, internet in-flight and select

coach fee. More details on the impact of fuel price increase on airlines’ strategies are

provided in Appendix B.

Although some small correlation may be observed for specific airlines at a given

time, system wide variations may be non significant. A system wide average ticket

price is obtained by weighing each distance group average ticket price with the number

of tickets sold. This analysis shows little correlation between ticket price and fuel

price, as can be observed in Figure 29. Ticket price historically had small correlation

with fuel price. Due to the low correlations observed, an average ticket price is used
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Figure 29: Ticket Price and Fuel Cost

for past data, with no relationship to fuel price. In the future, if jet fuel price increases

more significantly and for a longer period of time, it is very likely that airlines will

pass the fuel price increase on to the passengers. Therefore, fuel cost will need to be

considered.

Other variables also have an impact on the demand for each mode of transporta-

tion. They relate to the time and cost it takes to travel using the given mode. For

the ground mode, it is straightforward that the average driving speed and the fuel

efficiency of the vehicle will determine the time and cost respectively. For the com-

mercial air transportation, other parameters are important such as the distance to

the closest airport, the transit time, potential delays, etc.

The Ground and Air Modes Explorer is created using the following concept: the

System Dynamics model GAME provides the demand for each transportation mode,

which is represented as a stock of passengers as shown in the conceptual sketch in Fig-

ure 30 [93]. This stock of passengers varies with modes’ characteristics (endogenous

variables such as vehicle speed) that define an attractiveness of each mode (which will

be discussed in section 4.3.3 in more details), based on time and cost it takes to travel

using different modes of transportation. Demand also varies with exogenous variables

73



such as population, income, consumer sentiment index and fuel price. The fuel price

variations result in changes in ticket price based on the pass through model described

in section 5.1. An aggregated capacity module introduces a negative feedback loop

on air transportation demand and enables forecast in a capacity constrained environ-

ment. The stocks are initialized using Mi results listed in Appendix C. The results

from Mi may be used as actual data since Mi has previously been validated. A

more detailed view of GAME is provided in Figures 31, 32 and 33, which represent

the modules for time of travel with the air transportation mode, the cost of travel with

the air transportation mode, and the time and cost of travel using the ground mode,

respectively. As can be observed in Figure 31, time of travel increases due to delays

when the system approaches saturation, which result in a decrease in attractiveness.

Demand is adjusted based on GDP, MCSI, and population growth. Figure 32 shows

the ticket price adjustment with fuel price and fuel consumption. More details on the

effect of fuel consumption on demand is provided in Section 5.1.1.

Figure 30: GAME concept
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Figure 31: GAME Airline mode time module

4.3.2 Aggregation

As introduced in Table 2, the aggregation levels of ABM and SD are notably differ-

ent. Therefore, an aggregation strategy needs to be created to aggregate data from

the ABM to feed into the SD model. It is necessary to aggregate without losing

correct representation of some fundamental system behavior. In terms of transporta-

tion mode choice, the time and cost are the main factors. Therefore, distance is

a key parameter. As can be seen in Figure 34, significant changes in mode choice

occur when distance increases, with more variations in the shorter distances, requir-

ing smaller distance groups as distance decreases. The data in Figure 34 is from the
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Figure 32: GAME Airline mode cost module

U.S. Department of Transportation, Research and Innovative Technology Administra-

tion, Bureau of Transportation Statistics, Federal Highway Administration, National

Household Travel Survey, long-distance file, 2001 (Washington, DC). The Distance

Groups (DG) listed in Table 7 were defined to capture mode share and travel behavior

as precisely as possible with five categories. Since the region of study is the continen-

tal United States (CONUS), these DGs cover all great circle distances between any

two cities.

Another important factor is the metro market type: the flight between two large

metropolitan areas is likely to be direct, whereas a flight between two remote locations

might have so many connections and long airport access distances that driving may

become preferable. The access distance (distance to the closest airport) mentioned

in the list of variables in Table 5 depends on metro market group. Therefore, four
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Figure 33: GAME Ground module

metropolitan areas, resulting in 16 Metro Market Groups (MMG) are considered

(Figure 35). The number is reduced to 10 MMG when considering the symmetry due

to roundtrip travels. In terms of total demand, it is indeed the same to go from a

medium metropolitan statistical area to a large, and then from a large to a medium,

as to go from a large to a medium, and then from a medium to a large. These MMGs

are listed in Table 8.

To go from the 204 by 204 OD matrix obtained from the ABM to the data aggre-

gated by DG and MMG in SD, a matlab code is used (as described in Appendix C),

that goes through each cell of the OD matrix and counts the number of passengers
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Table 7: Distance Groups

DG1 100 to 200 miles
DG2 200 to 400 miles
DG3 400 to 800 miles
DG4 800 to 1600 miles
DG5 1600 to 3200 miles

Table 8: Metro Market Groups

MMG1 Large to Large
MMG2 Large to Medium
MMG3 Large to Small
MMG4 Large to Non-metro
MMG5 Medium to Medium
MMG6 Medium to Small
MMG7 Medium to Non-metro
MMG8 Small to Small
MMG9 Small to Non-metro
MMG10 Non-metro to Non-metro
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Figure 34: Percent trips by mode for one way distance

Figure 35: Geographic aggregation

or the passenger miles traveled based on the DG and MMG that the OD matrix cell

falls into. Initialization data for GAME is provided. The DG and MMG subscripts

represent the granularity of the GAME SD model and the calculations are performed

for each one of the 50 DG-MMG combinations.

4.3.3 Model Equations: Demand and Mode Attractiveness

Mi ’s main output is the transportation volume of passengers and is a function of

time, exogenous variables such as income, and transportation mode’s characteristics

such as vehicle speed and range. The abstract concept of attractiveness of a mode is
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introduced to account for its measurable (such as time and cost) and non-measurable

characteristics (such as comfort, flexibility, or perception of safety). Due to the chal-

lenging task of quantifying non-measurable characteristics, and assuming that their

effect can be considered as negligible compared to measurable characteristics, attrac-

tiveness is based on measurables only. For these reasons the attractiveness is chosen

to be limited to time and cost of travel. The volume of demand for a given mode is

a function of time, attractiveness and exogenous variables.

Vm = Vm(t, Am, X) (4)

where Vm, t, X and Am denote the volume of mode m, time, a set of exogenous

variables, and attractiveness of mode m, respectively. The attractiveness can be

expressed as followed:

Am =
eUm∑M
i=1 e

Ui

(
1 + γ

Um − Um(refyear)

Um(refyear)

)
(5)

where τm is the time of travel with mode m, µm the cost of travel with mode m,

Um the disutility of mode m, and γ a parameter that adjusts the impact of demand

increase from mobility improvements. The definition of attractiveness was found to

be a critical step toward a correct representation of the SoS behavior. It is indeed

challenging to find the right formulation to replicate the ABM behavior. As defined

above, variations in demand depend on variations in attractiveness, which depends

on the endogenous variables of the system that affect time and cost of travel. A

multinomial logit model was considered to define the attractiveness of each mode,

similar to what was done in the ABM model. However, the logit model has some

limitations when it comes to forecasting future changes in demand, since the total

demand for transportation is expected to increase. In the ABM, a smaller cost of

transportation or a shorter time will result in more trips being taken due to the budget

space concept described in section 2.3.2.3. An increase in total trips, including all

modes of transportation is possible. However, in the SD model, this agent’s budget
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space is not represented. Mode choice is based on attractiveness, and demand is

scaled up with population, and other exogenous variables, such as consumer sentiment

index. With a standard logit model, the probabilities sum up to one, therefore only

mode shift can be captured. Induced demand due to global improvements in mobility

throughout the years is not accounted for. Therefore, a modified logit model is used to

account for both mode redistribution and demand increase. Adjusting the parameter

γ in Equation 5 changes the sensitivity to global improvements in mobility.

The disutility Um is defined as

Um = α (wt.V OT.τm + wc.µm) (6)

with α the scale parameter, wt and wc the weights that define the importance of the

time and cost attributes on the disutility of mode m, and VOT the value of time.

The ABM approach is most suitable to represent agents’ heterogeneity. In an

attempt to facilitate the development of GAME, a single agent type is used, thus

the value of time VOT is estimated as an average income per household per working

hour. This value of time can change with income growth. The model could be refined

by adding an agent group and a trip purpose subscript in the discussion about aggre-

gation in Section 4.3.2. This would be necessary if the calibration exercise described

in Section 4.4 shows that output similarity between ABM and SD is unreachable.

Based on the behavior of Mi and the above formulation of attractiveness, the

attractiveness of a mode can change with changes in any mode of transportation, as

demonstrated in the equations below. This, in turn, justifies the use of a multimodal

approach. Unlike the ABM formulation where demand emerges from agents’ rules,

the rate of change of demand stock variables is one of the main parameters that

needs to be quantified in System Dynamics. The change in demand for each mode is

a function of the change in exogenous variables and the change in attractiveness of

this mode:
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dVm
dt

=
∂Vm
∂t

+
∂Vm
∂Am

dAm
dt

+
N∑
i=1

(
∂Vm
∂Xi

dXi

dt

)
(7)

The change in attractiveness depends on the change in time and cost it takes to

travel using each mode:

dAm
dt

=
M∑
i=1

∂Am
∂τi

dτi
dt

+
∂Am
∂µi

dµi
dt

(8)

with τ the time of travel, function of the mode design variables xk, and µ the cost

of travel, function of the mode design variable and some exogenous variables such as

fuel price. Thus changes in the mode’s design variables will result in a change in time

of travel

dτm
dt

=
n∑
k=1

∂τm
∂xk

dxk
dt

(9)

And changes in mode design variables and/or exogenous variables result in changes

in cost of travel:

dµm
dt

=
n∑
k=1

∂µm
∂xk

dxk
dt

+
N∑
i=1

∂µm
∂Xi

dXi

dt
(10)

These equations show how ABM can be used to obtain necessary information for

the SD model. The sensitivities ∂Vm
∂Am

and ∂Vm
∂Xi

in Equation 7 are originally unknown

and experiments need to be run with the existing ABM to observe the system’s be-

havior and adjust these parameters to replicate this behavior. These experiments aim

to derive expressions for the unknown parameters above. A variation in exogenous

variable dXi is applied and the change in volume Vm is obtained through ABM sim-

ulation. Then, the sensitivity parameters in the SD model are adjusted so that, for

the same variation in exogenous variable, a similar change in volume Vm is measured.

These sensitivities are initially assumed to be constant but a non-linear relationship

can be found based on ABM simulations. In this case, a polynomial equation is fitted

to ABM data using the least squares fit and used in the SD model. An example is

given in Figure 36, where a change in GDP results in a change in RPM. The extent
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of this change decreases with higher values of GDP due to the fact that agents run

into their time constraint (as depicted in the budget space concept in Figure 5).

Figure 36: Change in RPM due to change in GDP from Mi simulations

Through this process, some information is obtained from the analysis of the ABM

model, mathematical formulation and relationships are derived and an aggregation

strategy is developed. Therefore the following hypothesis is verified:

Hypothesis 1.1: With proper analysis, derivations, and aggregation, a

SD model can be derived from an ABM.

In order to gain confidence in this SD model, the next step is to validate the

model.

4.4 Validation

To validate the SD model, the pre-validated ABM is used to generate data. The

results from the ABM and the SD models are compared. The parameters in SD are

then adjusted. Sensitivities to each input within given ranges are checked, and further

validation is obtained through the comparison of more data points generated using

a Design of Experiments. GAME was cross-calibrated using the two basic modes of

transportation (ALN and GND). GAME was originally developed with a time step
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of a quarter due to the fact that most databases are available quarterly. It can be

changed to a yearly time step if yearly RPM, VMT, and emissions are needed in the

forecast. It is relatively easy to switch from one time step to the other depending on

the purpose of the study. The time span can also be changed depending on whether

we need past data or not. In order to calibrate the model, past data is included,

starting in 1995, and the quarterly version of GAME is used. To validate the model,

GAME results are compared to databases and results from the ABM. Results need to

be checked for past values and potential future values. The equivalency box concept

is used to calibrate the results. The rates of change of stock variables are adjusted

until results from GAME are close enough to Mi.

4.4.1 Equivalency Box

In order to ensure equivalency of the SD and ABM models, the SD model GAME

is developed parametrically and the parameters are adjusted until results from the

SD model are close enough to the results obtained from the ABM. This means an

error that remains below a few percent, and an R-squared value close to 1. For this

exercise, an equivalency box is introduced that defines the ranges of input variables

within which SD must replicate the ABM’s results. These ranges are defined based on

potential future values of the input variables. Data points are generated within the

equivalency box and cases are run using both models. Then, results are compared,

as done in the cross validation scheme described in section 4.2.

4.4.2 Sensitivity Analysis

Sensitivities within the equivalency box are adjusted until GAME is able to replicate

the behavior of Mi. As can be seen in Figure 38, an increase in GDP results in a

nonlinear increase in RPM and VMT, with a stronger impact on RPM. The non-

linearity is due to the time constraint imposed on the agents and is introduced in

GAME. GDP has the biggest impact: a better economy increases total volume and
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Figure 37: Equivalency box

commercial air transportation market share. The sensitivity to MCSI is relatively

low (Figure 39). It is interesting to see that almost no variation is observed for the

ground mode with MCSI, which captures how people feel about the economy. This

may be explained by the fact that, as MCSI increases, total volume may grow but

people use air transportation more. Similarly, as MCSI decreases, total volume may

shrink but people use ground transportation more, so overall ground transportation

demand variations with MCSI are negligible. As observed in Figure 40, an increase in

gasoline price results in an increased market share of air transportation. The ticket

prices remain the same, while gasoline price and thus cost of driving increases which

puts the air transportation at an advantage. Finally, the sensitivity to ticket price is

high for both modes, demonstrating a significant modal shift effect (Figure 41).

4.4.3 SD as a Surrogate of ABM

Overall, sensitivities of both models are very similar which suggests that results should

match for any point within the equivalency box. A system dynamics model that would

replicate the behavior of the ABM Mi would essentially be a surrogate model of Mi .

A short background on surrogate models and Design of Experiments is provided in
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Figure 38: Sensitivity of RPM and VMT to GDP

the following paragraphs.

4.4.3.1 Surrogate model definition

A surrogate model is a model of a more complex and computationally expensive

model. To create a surrogate model, first, the most important input variables in

terms of output variability are identified, and the behavior is captured through a set

of equations. Common techniques include but are not limited to Response Surface

Methodology (RSM), neural networks and Kriging. RSM consists in developing linear

regression models. Non-linear systems are usually not well represented with RSM, and

methods such as neural networks and Kriging models are prefered. Neural Networks

are inspired by nervous systems capable of machine learning. They approximate

complex functions with a combination of simple elementary functions to automatically

build models describing complex relations between inputs and outputs with a low

computational cost [80]. Kriging uses a combination of a polynomial model and a
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Figure 39: Sensitivity of RPM and VMT to MCSI

localized deviation using a normally distributed Gaussian random process [155]. In

order to generate the sampling data that is used to fit the chosen mathematical model,

design of experiments are used.

4.4.3.2 Design of Experiments

Through surrogate modeling, the simulation time can be reduced and enable faster

scenario exploration and tradeoff analysis, a requirement for an interactive decision-

making tool. Design of Experiments are used to generate points for simulation results.

A Design of Experiments (DOE) is an approach that is an efficient means to obtain in-

formation about the interactions of factors and the system’s behavior. DOEs provide

a maximum amount of knowledge with minimal time and compuational expenditures.

The simplest design is obtained by simulating every high, low and mid-point setting

for each variable, and is referred to as a full factorial design. More efficient designs ex-

ist, such as the Box-Behnken design (represented in Figure 42), which requires fewer
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Figure 40: Sensitivity of RPM and VMT to gas price

executions.

In order to ensure that GAME can indeed be used as a surrogate of Mi within

the equivalency box, the results must be compared for various, representative inter-

mediate points in the equivalency box. A DOE is used to generate data points within

this equivalency box. Specifically, a Box-Behnken design is selected since it requires

fewer runs and explores the midpoints where the behavior needs to be checked. It is

a three-factor case with respect to Gas price multiplier (X1), GDP multiplier (X2)

and Ticket price multiplier (X3). MCSI (X4) is kept fixed at 1x to reduce the num-

ber of simulations but also because MCSI has negligible impact on both VMT and

RPM, and little interactions with other factors. The results of the 13 DOE points

are presented in Table 9 for VMT and Table 10 for RPM. An error between the SD

and the ABM results is also computed. The error for RPM is slightly higher due to

the higher sensitivity of RPM to changes in input variables. R2 values are shown in

Figure 43 for RPM and Figure 44 for VMT.
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Table 9: DOE results for VMT [94]

X1 X2 X3 Mi VMT GAME VMT VMT error
1 1 1.5 4.55E+10 4.54E+10 -0.15%
2 1 1.5 4.39E+10 4.37E+10 -0.43%
1 2 1.5 4.71E+10 4.81E+10 2.23%
2 2 1.5 4.53E+10 4.64E+10 2.45%
1 1.5 1 4.30E+10 4.32E+10 0.62%
2 1.5 1 4.20E+10 4.15E+10 -1.15%
1 1.5 2 5.09E+10 5.12E+10 0.55%
2 1.5 2 4.96E+10 4.96E+10 0.05%

1.5 1 1 3.97E+10 3.99E+10 0.37%
1.5 2 1 4.31E+10 4.26E+10 -1.09%
1.5 1 2 4.80E+10 4.79E+10 -0.20%
1.5 2 2 4.95E+10 5.06E+10 2.35%
1.5 1.5 1.5 4.67E+10 4.70E+10 0.63%

Table 10: DOE results for RPM [94]

X1 X2 X3 Mi RPM GAME RPM RPM error
1 1 1.5 8.56E+10 8.27E+10 -3.35%
2 1 1.5 8.91E+10 8.95E+10 0.47%
1 2 1.5 1.95E+11 1.92E+11 -1.42%
2 2 1.5 1.93E+11 1.99E+11 2.81%
1 1.5 1 1.87E+11 1.91E+11 1.84%
2 1.5 1 1.92E+11 1.96E+11 1.88%
1 1.5 2 1.25E+11 1.32E+11 5.42%
2 1.5 2 1.30E+11 1.40E+11 7.82%

1.5 1 1 1.18E+11 1.18E+11 -0.10%
1.5 2 1 2.23E+11 2.27E+11 1.89%
1.5 1 2 6.27E+10 6.10E+10 -2.72%
1.5 2 2 1.73E+11 1.70E+11 -1.93%
1.5 1.5 1.5 1.56E+11 1.62E+11 3.51%

89



Figure 41: Sensitivity of RPM and VMT to ticket price

The results in Figures 43 and 44 show that, through the cross-calibration pre-

sented, SD is able to replicate ABM results with good accuracy within the given

ranges, and thus the following hypothesis is verified:

Hypothesis 1.2: Through a cross-calibration process, SD can produce

results similar to ABM within given ranges.

This cross-calibration process using the equivalency box concept may be replicated

for any study using a hybrid ABM/SD approach.

4.4.4 Forecasting Capabilities

The results in Figures 43 and 44 justify the use of GAME as a surrogate of Mi as

long as inputs remain in the equivalency box, which was designed to include both past

data and expected future variations. Consequently, GAME is expected to replicate

the past historical trend of RPM, which is confirmed in Figure 45. Over a time span

of 17 years, results from GAME match Mi ’s and historical data (retrieved from T-100
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Figure 42: Box-Behnken Design

domestic data limited to continental US), with limited and acceptable discrepancy.

A better match of historical could potentially be achieved, but it may result in a

worse representation of other data points in the equivalency box. When adjusting

the parameters in the SD model, it is important to remember its purpose which is

to be able to accurately predict the behavior throughout the equivalency box. From

the approach used in this validation process, it can be inferred that Mi ’s forecasting

capability within the equivalency box is carried over to GAME.

The forecasting capability of GAME proved to be good: as seen in Figure 46 it

gives results similar to the 2012 FAA forecast, slightly higher than predicted by Mi,

and slightly lower than the 2011 FAA forecast.
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Figure 43: R2 values Mi versus GAME for RPM

4.5 Demand Scenarios

With the model calibrated, it is then possible to quantify the effects of socio-economic

variables, as well as technologies and policies, as will be discussed in the following

sections.

4.5.1 Socio-economic Effects on Demand

Different scenarios are run with different sets of socio-economic exogenous variables.

Optimistic and pessimistic forecasts are used for population growth, GDP growth,

MCSI, and fuel price. These socio-economic scenarios are defined in Table 11. They

result in different demand for each mode. Generally speaking, a high economic growth

is favorable to the more expensive air transportation mode as can be seen in Figures 47

and 48. Indeed, a strong economy results in an increase in RPM and decrease in VMT,

while a slow economy results in an increase in VMT and a decrease in RPM. In a

strong economy, households have a higher income and they spend a higher portion
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Figure 44: R2 values Mi versus GAME for VMT

of their income on traveling, which allows them to travel more and use the more

expensive ALN mode. In a slow economy, they will reduce their number of trips and

prefer the less expensive GND mode.

The commercial air transportation system with its current operational capacity

may reach maximum capacity some time in the future and it may be impossible to

satisfy the forecasted demand. The capacity module implemented in GAME approxi-

mates saturation by assuming uniform flight distribution accross airports and time of

Table 11: Socio-economic scenarios settings

Scenario Baseline Strong economy Slow economy
GDP adjustment in
2035 (1 in 1995)

2.40 2.89 1.92

MCSI adjustment in
2035 (1 in 1995)

0.77 1.000 0.69

Fuel price in 2035
(dollars per gallon)

2.287 3.287 2.287
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Figure 45: GAME validation with Mi and T-100 data

Figure 46: Future RPM

day. Delays would occur earlier at some specific airports but this type of local behav-

ior is not captured at the aggregated level used in GAME. Therefore, GAME gives an

approximate time when saturation might occur, knowing that local issues will emerge
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Figure 47: Socio-economic scenarios impact on ALN

Figure 48: Socio-economic scenarios impact on GND

earlier. As can be seen in Figure 49, the system would be saturated in 2038-2039

approximately. This results in a zero growth of this mode after 2039 (Figure 50) and

a significant decrease in attractiveness compared to other modes (Figure 51) due to

the extra delays and time of travel. At the same time, these extra delays trigger a

mode shift towards ground transportation which becomes relatively more attractive.

4.5.2 New Mode Introduction

The equivalency box is used in the version of GAME with only two modes of trans-

portation (commercial air transportation and ground transportation). As presented
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Figure 49: Percentage of maximum capacity at large airports

Figure 50: Capacity limit impact on ALN RPM

Figure 51: Capacity limit impact on ALN attractiveness
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below, the introduction of a new mode creates a discontinuity in demand. To en-

sure that this discontinuity is properly quantified, the change in demand for existing

modes, and the demand for the new mode are also calibrated against Mi ’s results.

This process can be seen as an equivalency box on the new mode design variables.

Different new mode characteristics will indeed result in different impacts on existing

modes and different new mode demand.

The new mode example used here is a point to point mode using small aircraft (6

to 24 passengers) to utilize the existing community airport infrastructure and thus

reduce congestion at major airports. Multiple scenarios can be run with different

assumptions on the main modes characteristics, as well as on the new mode. These

characteristics will define the relative advantage of each mode in terms of travel time

and travel cost, and thus attractiveness.

The new, point to point air transportation (P2P) mode is introduced and cali-

brated based on different design characteristics, that include aircraft size, range and

speed, as depicted in Figure 52. The main design parameters that impact the de-

mand are the size of the aircraft, which defines the ticket price, the range of the

aircraft, which defines the distance groups that can be served and the cruise speed.

It appears that the introduction of P2P results in a small decrease in the demand

for the ALN mode, as seen in Figure 53. As the size of the P2P aircraft increases,

the ticket price decreases and the demand for P2P increases (Figure 54). Similarly,

as the range increases, more routes can be served and the attractiveness increases for

longer distances (Figure 55).

Mobility metrics were tracked. Mobility is quantified as an average time and cost

spent traveling with each mode, which is then weighted with each mode’s demand

to obtain an aggregated time and cost. It can be considered as an average time and

money spent per head for a typical trip. Variations in this metric may come from

travel cost and time variations for a given trip, or from a shift towards longer trips.
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Figure 52: P2P module in GAME

Figure 53: Introduction of P2P: impact on ALN

98



Figure 54: Introduction of P2P: impact of aircraft size on P2P demand

Figure 55: Introduction of P2P: impact of aircraft range on P2P demand

Multiple scenarios were compared: first it is observed in Figure 56 that capacity

constraints result in a significant increase in average travel time. The introduction of

P2P results in an increase in average cost and decrease in average time because the

P2P mode introduced here, using small aircraft, is a more expensive mode. It can

also be observed that P2P helps offload the large hub airports and slightly delays the

saturation of the system.

Similarly, more simulations could be run that include a new high speed train sys-

tem in some regions of the CONUS. The train system could be introduced between
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Figure 56: Mobility: Effect of capacity constraints and P2P introduction

large metropolitan areas when distance does not exceed a certain value. The intro-

duction of the train mode would therefore only affect a subset of the DG-MMG pairs

defined in GAME. Due to the flexibility of the hybrid ABM-SD approach, a wide va-

riety of scenarios can be represented, with different levels of detail depending on the

purpose of the study. The SD model can invoke the ABM whenever a finer granularity

is needed, and the cross-calibration process then ensures that GAME captures the

system’s behavior. The hybrid methodology presented in this chapter may be used

for other studies. In this research, the purpose is to assess climate impact and the

effects of climate policies on transportation demand and fleets. With the demand gen-

erated with GAME, the climate impact can be quantified and the methodology will

be described in the next chapter. The following research question will be addressed:

Research Question 2: How is the transportation system’s impact on

the atmosphere quantified?

The climate impact quantification in the environmental GAME (eGAME) will

then enable the exploration of climate policy and technology scenarios.
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CHAPTER V

TRANSPORTATION SYSTEM’S CLIMATE IMPACT

5.1 Fuel Burn and Emissions

This section adresses the following research question and hypothesis:

Research Question 2.1: How can fuel burn and emissions from different

modes of transportation be quantified?

Hypothesis 2.1: The integration of parametric demand and fleet re-

placement models, and the use of life cycle emission factors enables sce-

nario based environmental analysis.

Fleet models that integrate the demand generated by GAME are used to obtain

fuel burn and emissions for the different modes of transportation and to eventually as-

sess climate impact and policies as shown in Figure 57. Fundamental differences exist

between modes and separate modules are used. In the commercial air transporta-

tion system, airlines make decisions for the replacement of their aircraft fleet based

on a number of parameters, which include financial considerations, socio-economic

variables, environmental impact, etc. Due to the long lifetime of aircraft, fleet re-

placements occur over many years, and future technologies may significantly change

future fleet efficiency. On the other hand, the ground fleet is determined by individual

decisions, and fleet turnover happens over a shorter period of time.

Going from transportation demand to fuel burn and emissions requires that as-

sumptions be made on technologies and fleet composition. Technologies can be opera-

tional such as NextGen Air Transportation System technologies, Continuous Descent

Approach, contrail avoidance trajectories, etc. They may also be technologies related

to the vehicle, its performance, efficiency, etc. This type of technology is considered
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Figure 57: Step 2: Fuel burn and Emissions

in the IDEA fleet replacement model. Other types of technologies may focus on a new

mode such as point to point, on demand aviation, high speed train. As presented

by Argawal [6], a myriad of technologies are possible to reduce the environmental

impact of both ground and air modes. The focus in this research is on mode and

vehicle technologies to reduce fuel burn. Consequently, a subset of technologies is

selected to study their impact on transportation demand and emissions. The focus is

on technologies that might significantly affect these variables. Therefore, new tech-

nologies are considered with future fleet replacement scenarios that include aircraft
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recently made available, future concepts such as NASA N+2 aircraft, automobiles

with expected future fuel efficiencies, and electric vehicles. These new technologies

will considerably reduce fuel burn, thus decreasing emissions, and potentially travel

cost.

5.1.1 Air Transportation Emissions

As discussed in Section 2.4, the existing tool IDEA provides the necessary capability

with sufficient flexibility and level of detail. It is therefore used for this research. It

is important to properly integrate IDEA with GAME, and ensure that all necessary

interactions between the models are taken into account and represented as accurately

as possible.

IDEA takes the output from GAME as an input and run the fleet renewal code

based on a given scenario. The integration of GAME and IDEA is further discussed

in Reference [95]. IDEA takes the time series of RPM for each distance group. The

RPM is then converted to operations. IDEA tracks the change in operations and

determines the necessary changes in the airline fleet. Aircraft that are no longer

economically valuable compared to new aircraft are retired. IDEA then gives the

total fuel by distance group. The fleet system dynamics model computes fuel burn by

fitting aircraft characteristics to a second order quadratic polynomial of flight distance

[130]. IDEA provides outputs for fuel burn, CO2 and NOx. Using the fuel burn and

emission factors provided in Table 12, all species of interest in terms of climate impact

can be quantified.

5.1.1.1 Ticket Price Model

When GAME is run independently, assumptions on ticket price need to be made.

Each distance group has a different average ticket price as shown in a study on past

ticket price data using DB1B. It was also found that the ticket price changed very

little due to the increase in fuel price. Further investigation led to the observation
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Table 12: Air Transportation Emissions Factors from GREET (g per pax/km)

Species WTP PTW WTW
CO2 12 57 70
CH4 0.094 0 0.094
N2O 0 0 0
VOC 0.006 0.010 0.016
CO 0.009 0.072 0.081
NOx 0.034 0.281 0.315
PM10 0.005 0.003 0.008
PM2.5 0.003 0.003 0.006
SOx 0.018 0.025 0.044

Table 13: Fuel Cost to Ticket Price Ratio

Distance Group Fuel Cost to Ticket
Price Ratio

DG 1 0.12
DG 2 0.15
DG 3 0.23
DG 4 0.30
DG 5 0.35

that airline did not noticably change their fleet in response to the 2008 fuel price hike,

as described in Appendix B. This lack of a strong correlation between fuel price and

airlines’ decisions is likely due to the short term increase in fuel price in 2008. Had

this increase been stronger and had lasted longer, airlines would have been forced

to adjust their fleet and pass the increase on to the customer by increasing their

ticket price, to ensure their economic viability in the long term. Therefore, the model

assumption in this research is that airline adjust their ticket price to account for fuel

cost increase. A pass through model was created by quantifying the fuel cost portion

of the ticket price for each distance group. Knowing the fuel burn by distance group

from the fleet model, and the average ticket price from DB1B, the fuel cost to ticket

price ratio can be determined as shown in Table 13.
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With these assumptions, any fuel burn improvement measured in IDEA needs to

be fed back to GAME. The process is as follow: GAME is first run with a no fuel

burn improvement assumption, then IDEA uses the demand from GAME to generate

the fleet fuel burn and a fuel burn factor is computed and fed back into GAME to

adjust the ticket price as depicted in Figure 58.

Figure 58: Link between GAME and IDEA

The fuel burn factor is obtained using the following equation:

FBF (t) =
Fuelburn(t)/PAX(t)

Fuelburn(t0)/PAX(t0)
(11)

This fuel burn factor is combined with the fuel price factor defined as:

FPF (t) =
Fuelprice(t)

Fuelprice(t0)
(12)

With these fuel burn and fuel price adjustment factors, a new ticket price is

computed.

TP (t) = TP (t0) + PT.FC(t0).(FBF (t).FPF (t)− 1) (13)

PT is the pass through assumption (value between 0 and 1) which represents the

amount of extra cost due to fuel price and fuel burn variation that the airlines pass

on to the customer. Using the Airline Origin and Destination Survey (DB1B database,

a 10 percent sample of airline ticket data), a baseline ticket price (TP (t0)) is obtained.
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A baseline fuel cost (FC(t0)) per ticket is computed based on fuel burn data from

IDEA.

This results in a new demand. This new demand is used to run IDEA and the

process is repeated until convergence. Even with a low convergence threshold, results

converge quickly after about 3 iterations.

5.1.1.2 Fleet scenarios

As explained above, different fleet scenarios result in different emissions and demand.

A high efficiency fleet is more environmentally friendly and results in lower fuel burn,

which in turn lowers the cost and creates more demand based on the pass through

model previously described.

Different airline fleet scenarios may be used [68]:

• Business As Usual (BAU) scenario which only includes currently available air-

craft types and technologies. Once out-of-production aircraft are retired, the

fleet behaves as a fixed technology mix of current in-production types. As a

result, after a transition period of less than 30 years, the fleet efficiency remains

constant. This represents the worst-case scenario.

• Industry Response (IND) scenario which includes improved technology aircraft

that have been announced (Figure 59).

• N+2 scenario in which future more efficient aircraft across all sizes become

available for purchase in the 2025 time frame [120] (Figure 60). The underlying

adoption rate is based on the airlines estimated NPV of continuing to operate

an older less efficient aircraft with higher maintenance cost versus a new more

efficient aircraft with lower maintenance costs.

The results from IDEA show that for a given demand, the total fuel burn varies

dramatically between the different fleet scenarios. The Business As Usual (BAU)
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Figure 59: IND scenario characteristics [131]

Figure 60: N+2 scenario characteritics [77]

scenario results in a fuel burn that follows the increase in demand. This is due to

the minor efficiency increase of this fleet. The industry only replacement scenario

(IND) results in slightly better results. When N+2 aircraft are introduced, the gain

in fuel burn is significant, as can be observed in Figure 61. Simulations were run

with iterations between the demand and the fleet model in order to feed back the

efficiency improvement and change the ticket price accordingly. Results are plotted

in Figure 62. The rebound effect is observed: a more fuel efficient fleet result in a

lower ticket price and thus a slightly higher demand for the ALN mode. With a pass

through of 50 percent, there is about 10 percent increase in demand between the BAU
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and N+2 scenario due to the rebound effect. This confirms that if airlines change

their ticket price with fuel burn improvements, a non-negligible rebound effect on

demand will be observed.

Figure 61: Impact of fleet on fuel burn

Figure 62: Impact of fleet on RPM

5.1.2 Ground Transportation Emissions

For the ground transportation, no existing model can directly be linked to GAME.

Therefore a ground module is created using available data and tools. Two sets of

variables are identified that determine emissions: the first one relates to the fleet

composition, the market share of each vehicle type and fuel type, the second relates
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to operating conditions. In order to quantify these effects, the research follows two

paths:

• The development of a fleet replacement model to derive vehicle market shares.

• The quantification of fleet composition and operating conditions impact on fuel

burn and emissions.

The fleet replacement model is created using a logit model and literature on the

main characteristics that influence vehicles’ attractiveness. Market shares vary based

on a number of parameters resulting in different life cyle emissions. The impact of

different variables on fuel burn is assessed through the use of the MOVES model,

using CO2 emissions as a proxy variable for fuel consumption. A set of variables

that significantly impact emissions is identified. Emissions are obtained from the fuel

consumption through emission factors that can be obtained from GREET. The fleet

fuel efficiency has stagnated over the past few years and is expected to increase in

the future due to higher expected miles per gallon (mpg) targets. The mpg targets

cannot be directly used as an average fleet efficiency due to delays related to the time

it takes for older vehicles in the fleet to be retired. With the demand from GAME

and the fleet efficiency computed with the fleet module, the ground emissions are

obtained and future climate impact can then be assessed.

5.1.2.1 Emission Factors

Emission factors are derived from MOVES for different vehicle types, and operating

conditions. Experiments are run varying one variable at a time, and the most im-

portant variables are identified. For instance, it was observed that CO2 emissions

are highly dependent on vehicle age, driving speed, and outside temperature. Older

designs indeed have lower fuel efficiency. Automobiles have an optimum operational

speed where fuel consumption is minimum. Lower speeds with stop and go traffic

result in higher fuel consumption, as well as high speeds. When outside temperature
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Table 14: Emissions Factors for gasoline vehicle from GREET (g per mile)

Species Feedstock fuel operation
CO2 20 60 377
CH4 0.444 0.207 0.015
N2O 0 0.005 0.012
VOC 0.018 0.117 0.180
CO 0.029 0.033 3.745
NOx 0.135 0.099 0.141
PM10 0.013 0.024 0.029
PM2.5 0.008 0.011 0.015
SOx 0.056 0.068 0.006

is above a certain threshold, fuel consumption increases due to the use of Air Con-

ditioning. The process of identifying the main variables with an impact on emission

is repeated for each species of interest. Functions of these variables are fitted to the

data. More details are provided in Appendix D. These functions are derived using

2010 as the simulation year, which means that the emissions per mile correspond to

the 2010 vehicle fleet mpg. Car fuel efficiency expected improvements are applied and

future average fuel economy is obtained from the fleet replacement model. Emissions

are then adjusted accordingly. Given the vehicle type distribution obtained from the

fleet model, and emission factors for each fuel type, emissions of species of interest

are quantified.

Upstream emissions can represent a significant part of total emissions, especially

for Electric Vehicles. Simulations are run in GREET to determine life cycle emissions

and emission factors. The following results are obtained from GREET and used in

eGAME to generate life cycle CO2 and NOx emissions for EVs. The well to pump

CO2 emissions for EVs is 352 g/mile (using the U.S. energy mix), as opposed to 80

g/mile for a conventional gasoline vehicle. NOx emissions for EVs are 0.36 g/mile as

opposed to 0.234 g/mile for conventional vehicles. A complete list of emission factors

can be found in Tables 14, 15 and 16.
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Table 15: Emissions Factors for diesel vehicles from GREET (g per mile)

Species Feedstock fuel operation
CO2 23 45 323
CH4 0.370 0.156 0.003
N2O 0 0.001 0.012
VOC 0.015 0.018 0.088
CO 0.024 0.025 0.539
NOx 0.113 0.074 0.141
PM10 0.011 0.017 0.030
PM2.5 0.007 0.009 0.016
SOx 0.047 0.051 0.002

Table 16: Emissions Factors for EV from GREET (g per mile)

Species Feedstock fuel operation
CO2 12 340 0
CH4 0.889 0.007 0
N2O 0 0.004 0
VOC 0.026 0.006 0
CO 0.016 0.076 0
NOx 0.061 0.299 0
PM10 0.440 0.021 0.021
PM2.5 0.110 0.011 0.007
SOx 0.034 0.741 0
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5.1.2.2 Market Share

The market share of each vehicle type is determined using the ground fleet module

(Figure 63), which uses a logit model for vehicle attractiveness. Vehicles are retired

using a survival curve. People’s decisions when it comes to buying a new vehicle is

highly dependent on the economy, gas prices, the average cost of driving the vehicle,

and tax incentives (such as those for EVs). It is therefore necessary to include a

personal vehicle module that can account for different cost scenarios and result in

different fleet forecasts. Depending on the cost of gasoline, and other cost related

metrics, people will make decisions to keep their older vehicle or replace it, with a

similar but more fuel-efficient or more comfortable vehicle. Different socio-economic

and environmental scenarios will result in different decisions and therefore different

ground vehicle fleets, which in turn will affect the emissions and climate impact. A

utility can be defined based on the following list of parameters:

• purchase cost for each car category

• taxation cost for each car category

• maintenance cost

• fuel cost per car category

and a logit model may be implemented within the eGAME system dynamics frame-

work. Car survival rates may be computed with the sigmoid equation:

survival(t) = 1− 1

1 + exp(−λ(t− τ))
(14)

where λ defines the curvature of the survival curve, and τ is the age at which 50

percent of the vehicles have been removed from the fleet.

The retired vehicles are replaced by new vehicles based on the logit model that

defines an attractiveness for each vehicle type. Six vehicle types are defined that
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Figure 63: Ground fleet module

represent large and small vehicles using gasoline, diesel, or electricity. A utility of

each vehicle is defined based on acquisition cost, maintenance cost, and operating

cost. The model keeps track of the market share of each fuel type, in order to use the

right emission factors. Depending on the price premium of EV, the market shares

vary as seen in Figure 64. From the emission factors listed in Tables 14, 15 and 16,

different life cycle emissions will be obtained.

5.1.3 Fleet Replacements in the Context of Climate Policy

The above discussion on fleet models and emission factors for each mode of trans-

portation leads to the verification of the following hypothesis:
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Figure 64: EV market share with and without purchase cost premium

Hypothesis 2.1: The integration of parametric demand and fleet re-

placement models, and the use of life cycle emission factors enables sce-

nario based environmental analysis.

When fuel price increases due to policies such as a carbon tax, demand is expected

to decrease and more efficient vehicles become more attractive and have an increased

market share, which in turn result in a potential increase in demand. Responses may

be faster for ground vehicles than aircraft due to the differences in acquisition cost

and average retirement age. Other policies that encourage more fuel efficient vehicles

include Corporate Average Fuel Economy (CAFE) standards, retirement programs,

purchase/usage tax etc. Policies aiming at increasing the ground fleet efficiency are

promising due to the quick turnover (rarely more than 20 years). In some cases,

as discussed by Boucher and Reddy [22], some trade-off situations may exist when

policies on BC aerosols result in higher fuel consumption and thus more long term

CO2. The focus of this research is on policies and technologies that would affect fuel

burn, and emissions of different species are computed with emission factors that are

assumed to remain constant. Therefore, this type of tradeoff between different species
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is not considered here.

In order to reduce overall transportation’s climate impact, new modes of trans-

portation may be envisioned. The approach presented in this research is flexible and

can be repeated to include other modes. For example, if a high speed train mode

is added, life cycle emissions will need to be quantified as well using assumptions

on electricity consumption. Assuming a given energy mix, the emissions from this

electricity consumption can then be quantified. A study has been performed on the

high speed rail in California [25] and assumed a vehicle electricity consumption of 170

kWh per vehicle kilometer traveled.

Based on the technology level, the demand for each mode may vary significantly.

The fuel consumption has indeed a direct effect on cost of traveling, which is one of

the key parameter of mode choice. Increasing technology level will not only decrease

emissions per mile traveled, it may also increase the demand. It is therefore important

to assess fleet fuel efficiency, emissions and demand together as competing effects

exist that might change total emissions. A given technology scenario is chosen, and is

used to compute both the demand from GAME and the emissions from fleet models.

eGAME provides a framework that captures these types of interactions and thus helps

assess the effect of policies on both demand and fleet and capture rebound effects.

From demand and fleet models, a number of emissions are quantified, which can

then be used to determine the impact on climate. The following section presents an

approach to quantify the effect of emissions on the climate.

5.2 Climate Impact Assessment

In policy making, emissions may be used directly, and CO2 is a widely accepted

metric for certification requirements [20]. Some non-CO2 metrics have been discussed

in European Parliament though they are unlikely to be implemented in the near

future [178]. As the transportation community becomes increasingly aware of the
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Figure 65: Step 3: Climate impact

impact of other gases and particles emitted by the transportation modes, and the

climate modeling capabilities improve, other policies affecting these species might be

envisioned and further climate impact quantification is needed in order to allow for

all impact metrics and policies to be assessed. This step is depicted in Figure 65.

5.2.1 Climate Impact Metrics

As the scientific understanding of the impact of different species increases, the ac-

curacy of the quantification of the climate impact of transportation modes improves

and more appropriate and targeted policies can be envisioned. In order to enable for
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this flexibility in policy making, it is necessary to allow for many different scenarios

with different levels of complexity. With the fuel burn and emissions quantified using

the methodology described in section 5.1, further atmospheric modeling is needed to

assess the climate impact at different level of relevance and uncertainty, as described

in Figure 66.

Figure 66: Uncertainties in climate impact assessment (adapted from Dallara et al.
[29])

In order to introduce policies and assess their impact, the right metric for policy

assessment needs to be identified, hence the following research question:

Research Question 2.2: What metric is appropriate for transportation

climate impact assessment?

To answer this question, a tradeoff between relevance and uncertainty is inevitable

as depicted in Figure 66. The current understanding and the state of the science

is such that the effects of anthropogenic emissions are increasingly better modeled

and understood. Consequently the uncertainty may be reduced, which shows that
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the relevant metric for policies might evolve through time. The Aviation-Climate

Change Research Initiative report on climate metrics and aviation [179] lists the

characteristics that such metrics must have:

• Provide flexible, rapidly available input regarding the ability to minimize impact

of human activities on climate system

• Assess the relative contributions of emissions

• Compare and rank climate effects from competing technologies

• Rank emissions from various countries

• Establish a basis for comparing reductions in various countries

• Function as a signal for policy considerations

• Analysis tool for industries and countries to determine the best approach for

meeting commitments to reduce climate impact

It must be scientifically well grounded, but also simple to use and easy to understand.

As introduced in Section 2.5.3 on radiative transfer theory and Section 2.5.1 on

the transportation climate impact, a number of species emitted by transportation

modes have an impact on the climate. Depending on a number of characteristics,

their effect on the energy balance of the planet will vary. Some species may have a

stronger impact on radiative transfer through the atmosphere than others. Emission-

based metrics are a necessary step toward policy making and have the advantage of

having more limited uncertainty. But to assess the relative contributions of emissions

on climate impact, RF is a more relevant metric, and is used by the IPCC and

throughout the literature. Hence the following assertion:

Assertion 2.2: To fully assess transportation climate impact, all gases

and aerosols need to be considered and radiative forcing is an appropriate

metric.
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5.2.2 Main Species for Transportation Climate Impact

Emissions from transportation affect the atmosphere in a number of ways. As de-

scribed in Chapter 2, a number of gases and particles from transportation modes

impact the energy balance of the Earth atmosphere. The RF from each species needs

to be estimated in order to decide which species to include in the framework to assess

climate impact and make decisions on policies and technologies. Hence, the following

research question:

Research Question 2.3: What is the RF of the species with the most

impact? First the impact of different species is estimated through literature review,

and the species with the main impact are chosen and incorporated into the eGAME

framework.

Below is a list of short and long lived gaseous species and their impact:

• CO2 is emitted by both modes of transportation. It is also emitted by electricity

generation for electric vehicles. Its lifetime in the atmosphere vary between

30 years and thousands of years. It has a warming effect with a radiative

efficiency of 1.4.10−5W.m−2.ppb−1 [75]. Its global mean radiative forcing due to

all emissions is 1.46W.m−2 [74]. The level of understanding for CO2 is good.

• NOx (NO and NO2) is produced by both the air and ground transportation

modes. Its impact is associated with significant uncertainty [70]. Due to spatial

and temporal dependence, the radiative efficiency of NOx has no prescribed

value [119]. Wild et al. [177] estimated the RF for different regions and the

study showed that NOx had a cooling effect due to the combined O3 and CH4

effects. However without the CH4 effect, the NOx-O3 radiative efficiency of

6.10−13W.m−2.kg−1 is obtained [119].

• O3 from NOx comes from both the aviation and the ground modes of trans-

portation. It is short lived and has a warming effect. Its total gobal mean RF
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from IPCC’s Third Assessment Report (TAR) [74] is 0.35W.m−2 with a poor

level of understanding.

• CH4 impact from NOx is produced by both modes of transportation as well. CH4

has a 12 years lifetime in the atmosphere and NOx-CH4 has a cooling effect.

The radiative efficiency of CH4 is 3.7.10−4W.m−2.ppb−1. The total global mean

radiative forcing from TAR is 0.48W.m−2 with a poor level of understanding.

• H2O produced by both modes has a lifetime of approximately 1 week and a small

warming effect. The concentration of water vapor is not significantly changed

by anthropogenic emissions.

• CO produced by both modes of transportation is short lived and has a warming

effect.

• Volatile Organic Compounds (VOC) are produced by both modes and have a

warming effect.

Aerosols and clouds resulting from transportation activity also have a significant

impact on the Earth Radiative Balance.

• Sulfate aerosols are produced by both modes and have a cooling effect.

• Soot, also called black carbon, is short-lived (3.8 to 11.4 days based on Bond

et al. [17]) and has a warming effect with a forcing efficiency of 90 to 270

W.m−2perAAOD varying regionally and seasonaly. These values are obtained

by comparing radiative transfer (RT) calculations with and without BC emis-

sions.

• Contrails are generated by aircraft engines under certain atmospheric condi-

tions. They are short-lived and their positive radiative forcing is fairly well

understood. Previous studies quantified contrail cloud cover and resulting ra-

diative forcing.
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• Cirrus clouds. Contrails sometimes become cirrus clouds which have a warming

effect but the transition from contrail to cirrus is poorly understood.

Physical properties of aerosols are important for correct estimation of their radia-

tive efficiency. Regional and seasonal variations are observed with short-lived species

due to significant spatial and temporal variability of emissions and parameters with

influence on the radiative transfer calculations. Hence the following hypothesis:

Hypothesis 2.3: Radiative Forcing efficiencies vary based on the mode

of transportation, location and season of emission.

In this research, the CONUS is the spatial limit. Seasonal variations in emissions

can be captured using the quaterly version of demand models. This study will focus

on the effect of aerosol species with a warming effect and a good or fair level of

understanding. The goal is to assess the difference in demand and emissions resulting

from “CO2 only” policies versus policies that include short-lived aerosols effects.

After estimating the impact of the different species emitted by the main trans-

portation modes, CO2, black carbon and contrails are considered and are included

in the eGAME modeling and simulation environment. Black carbon is considered as

the second most significant warming species [17]. As can be observed in Figure 12,

contrails are the second most significant warming effect for aviation. For each species,

a radiative forcing efficiency of transportation emissions is defined. This forcing ef-

ficiency can be quantified using radiative transfer codes [13, 102, 53, 67]. Surface

albedo and clouds have a non negligible impact on the radiative effects of aerosols.

Remote sensing techniques are commonly used to derive aerosol optical depth. A

common metric is the aerosol radiative efficiency defined as the ratio between direct

radiative forcing and optical depth at 550 nm. It is determined by aerosol size dis-

tribution, single-scattering albedo and phase function [183]. Remote sensing data is

used to determine necessary characteristics for radiative transfer simulations.
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5.2.3 Regional and Seasonal Characteristics Based on Remote Sensing
Data

Due to the regional and seasonal variations, impacts of aerosols have a range of

uncertainty. For policy making, an average effect will be considered, with given

ranges of uncertainty, that are determined through radiative transfer calculations.

A number of parameters need to be determined for radiative transfer calculations.

The BC aerosol optical depth used for the simulations is based on retrievals from a

global network of ground-based sun-/sky-radiance observation (AERONET), and is

estimated at 0.01 by Bond et al. [17]. The aerosol vertical profile is obtained from the

CALIOP lidar aboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder

Satellite Observations), which measures backscattered radiation at 532 and 1064 nm.

Seasonal and regional variations may be observed. Therefore, multiple images are

retrieved for different seasons and regions. Aerosols are found in the lower 3 to 5

km depending on season. Different profiles were indeed observed for the winter and

summer seasons. Summer is characterized by higher aerosol mixing (as was observed

by Andrews et al. [8]). Ground aerosols are distributed up to 3 km in winter, 5 km

in summer. An example is given in Figure 67 for the East coast in the summer. It

is difficult to identify emissions from aircraft, however they can be assumed to be

concentrated at cruise altitude (around 10 km). Aircraft emitted aerosol were thus

distributed between 9 and 11 km for the high cruise altitude case, and between 7 and

9 km for the low cruise altitude case. The surface albedo has a significant impact

on radiative forcing. Regional and seasonal variations may therefore be observed

due to the surface albedo of different regions at different seasons. A combination

of snow, seawater, sand and vegetation can be defined. A study of land cover for

the chosen regions at different seasons helps determine appropriate conditions. Land

cover was estimated for each region using the USGS land cover viewer. The East coast

is mostly covered by the vegetation type. Some land cover that could be categorized
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under the sand type is observed in the South West region. Monthly snow cover data

from NOAA’s national snow analyses (Figure 68) was retrieved for multiple years. It

showed significant snow cover over the North East and North West regions in winter.

Four regions were selected based on observed land cover. Two seasons were defined

to account for snow cover variations at higher latitudes.

Figure 67: Calipso vertical feature mask for 30 July 2011

5.2.4 Radiative Forcing Efficiencies from Main Species

For each one of the considered species (CO2, black carbon and contrails) the radiative

forcing due to transportation needs to be determined. The approach is to obtain

radiative forcing efficiencies (radiative forcing per emissions), which can then be used

with emissions forecasts to determine future radiative forcings, and help quantify

transportation’s climate impact. Radiative forcing efficiencies (RFE) are derived from

the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) radiative

transfer code.

The basic equation for plane-parallel atmospheres describes the physical phenom-

ena of absorption, scattering and emission [99] (Equation 15). On the right hand side

of the equation, the first term relates to absorption, the last term relates to emission
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Figure 68: Snow Cover on 1 February 2013

and the other terms relate to scattering.

µ
dI(τ,Ω)

dτ
= I(τ,Ω)− w0

4π

∫
4π

I(τ,Ω′)P (Ω,Ω′)dΩ′

−w0

4π
FOP (Ω,−Ω0)e−τ/µ0 − (1− w0)B[T (τ)]

(15)

• with µ = cosΘ and Θ is the inclination to the upward normal

• I(τ,Ω) is the intensity, τ the optical depth, Ω the direction of propagation

• Ω = (µ, φ) with φ the azimuthal angle

• τ =
∫∞
τ
βedτ

′ the optical depth, which is the vertical path from a given altitude

to outer space.

• βe = βa + βs the extinction coefficient, sum of the absorption βa and the scat-

tering βs coefficients

• w0 = βs
βe

the single scattering albedo, ratio of scattering efficiency to total ex-

tinction efficiency.
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• P (Ω,Ω′) the phase function, which is the angular distribution of light intensity

scattered by a particle at a given wavelength.

• FO the solar flux density at the top of the atmosphere

• B[T ] the Planck function, which defines the electromagnetic radiation emitted

by a black body in thermal equilibrium at a definite temperature.

Simulations are run for different concentrations of gases and aerosols under given

environmental conditions (surface, atmosphere). A spectral resolution of 5 nm for the

shortwave (SW) and 20 cm−1 for the longwave (LW) is used. Net fluxes are computed

for LW and SW (Equation 16). The Radiative Forcing Effiency (RFE) is obtained

from Equation 17. The RFE is computed at the top of the atmosphere (TOA), and

the surface. The RFE of an aerosol layer is the difference between the RFE at the

TOA and the RFE at the surface. Atmospheric heating rates can be calculated using

Equation 18.

Fnet = Fdown − Fup (16)

RFE =
∆Fnet

∆AOD(550nm)
(17)

dT

dt
= − 1

cp
ρ
dFnet
dz

(18)

A number of settings have an impact on the radiative transfer, which result in

regional differences for the climate impact of transportation:

• Atmospheric profiles: US62 is used, and sensitivity studies are run with other

atmospheric profiles based on location and season (mid-latitude summer and

winter in this research).
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• Surface albedo: combination of land cover categories, based on observations of

land cover.

• Cloud cover: simulations are run with and without low level cloud cover.

• Solar zenith angle (SZA): reasonable solar angle based on location and season.

The NOAA solar position calculator was used to obtain seasonal solar zenith

angle for each region.

BC optical properties need to be characterized: aerosol optical depth (AOD), effec-

tive radius, extinction efficiency, single scattering albedo and asymmetry parameter.

These parameters were obtained from the Optical Properties of Aerosols and Clouds

(OPAC) data. A contrail cloud thickness of 0.2 and a cloud drop effective radius of

10 micrometers were used [150]. Based on the data obtained from remote sensing

for land cover, snow cover, and aerosol vertical distribution, the parameters listed in

Table 17 were chosen to simulate plausible characteristics for the given regions and

seasons. A first set of simulations was run assuming clear sky conditions. However,

a cloud cover is also likely, therefore more simulations were run with a cloud cover

chosen to be a layer of low level stratus clouds, between 1 and 2 km, with optical

depth 8 and effective radius 10 micrometers [46]. Different atmospheres were used

(midlatitude summer and midlatitude winter) to account for seasonality but little im-

pact on the results was observed, thus standard US62 was used to quantify regional

and seasonal variations due to albedo and solar zenith angle.

Results were computed for both SW and LW, at the TOA and surface. The total

soot RFE at the top of the atmosphere is almost entirely SW. It is given for different

regions and seasons, and for both ground and air modes of transportation. For the

air transportation, two different altitudes of emissions were considered.

Large regional and seasonal variations are observed for short-lived soot/black car-

bon aerosols (Table 18). This verifies hypothesis 2.3. These variations are due to
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Table 17: Regional and seasonal characteritics

Region Season Solar Elevation Angle Albedo
South East (R1) Summer 75 vegetation
South East (R1) Winter 30 vegetation
North East (R2) Summer 70 vegetation
North East (R2) Winter 25 vegetation-snow
South West (R3) Summer 75 vegetation-sand
South West (R3) Winter 30 vegetation-sand
North West (R4) Summer 65 vegetation
North West (R4) Winter 20 vegetation-snow

Table 18: Regional soot total RFE at the TOA for different modes of transportation

Region Season RFE TOA
Ground
(W/m2/AOD)

RFE TOA
Aviation High
(W/m2/AOD)

RFE TOA
Aviation Low
(W/m2/AOD)

R1 Summer 365 490 475
R1 Winter 225 369 350
R2 Summer 357 483 469
R2 Winter 596 721 706
R3 Summer 323 449 434
R3 Winter 196 341 322
R4 Summer 348 475 460
R4 Winter 512 649 630
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Table 19: Regional soot total RFE at the TOA for different modes of transportation
with low level cloud cover

Region Season RFE TOA
Ground
(W/m2/AOD)

RFE TOA
Aviation High
(W/m2/AOD)

RFE TOA
Aviation Low
(W/m2/AOD)

R1 Summer 352 927 924
R1 Winter 117 900 889
R2 Summer 343 931 927
R2 Winter 264 997 987
R3 Summer 306 905 901
R3 Winter 100 889 878
R4 Summer 333 938 933
R4 Winter 196 918 903

the sensitivity to surface albedo and solar zenith angle (SZA). For regions with no

snow cover, summer RFE is higher due to lower SZA. Regions with sand cover have

lower RFE. In the presence of snow, RFE increases significantly. Soot is indeed an

absorbing aerosol, which is less efficient over darker surfaces because solar radiation is

absorbed anyway [117]. North East (R2) and North West (R4) winter surface albedo

includes snow and results in higher RFE. The altitude of soot aerosol also appears

to be a factor. The higher the aerosol, the higher the RFE is. Therefore, under clear

sky conditions, aviation emitted soot aerosols have a higher RFE than ground trans-

portation emitted soot aerosols. A lower cruise altitude results in a slightly lower

RFE.

Under cloudy sky conditions, soot aerosols emitted above the cloud layer have a

significantly higher RFE as can be observed in Table 19. Ground emitted soot RFE

is decreased, especially in northern region’s winters. Bond et al. found that aerosol

forcing tends to be higher for aerosols over stratus clouds, and over snow. The results

of this research are consistent with this observation.

Contrails trap outgoing LW radiation, which results in LW positive RF, and re-

flect SW radiation resulting in SW cooling, with the LW warming impact dominating.
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Table 20: Regional contrail total RFE at the TOA for different altitudes

Region Season RFE TOA Avi-
ation High
(W/m2/%coverage)

RFE TOA
Aviation Low
(W/m2/%coverage)

R1 Summer 0.211 0.165
R1 Winter 0.087 0.046
R2 Summer 0.207 0.161
R2 Winter 0.113 0.073
R3 Summer 0.207 0.162
R3 Winter 0.080 0.040
R4 Summer 0.201 0.156
R4 Winter 0.090 0.051

Contrails result in positive total RF at TOA (given in Table 20 for 1% contrail cov-

erage). As can be observed in Table 20, the higher the flight altitude, the higher

the impact is. A low level cloud cover tends to decrease the LW RFE. Most of the

observed regional and seasonal variations (especially significant under clear sky con-

ditions) come from the SW RFE, resulting in higher RFE in the summer. LW forcing

is about 0.21 W/m2/%coverage for high altitude cruise under clear sky condition,

0.17 W/m2/%coverage at lower cruise altitude, 0.18 W/m2/%coverage at high cruise

altitude under cloudy condition, and 0.14 W/m2/%coverage at lower cruise altitude

under cloudy conditions. The lower values under cloudy conditions are due to the

fact that the lower level cloud cover traps some LW radiation, resulting in smaller

fluxes at the TOA.

From these values high and low values of soot RFE and contrail RFE were derived

for each mode and used in eGAME to generate ranges of RF.

5.2.5 Radiative Forcing from Main Species

The different species emitted by transportation have different lifetime in the atmo-

sphere. Long-lived species accumulate over time while short-lived species have only

a temporary impact. This calls for different treatments. For the long-lived CO2,
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Table 21: Regional contrail total RFE at the TOA for different altitudes with low
level clouds

Region Season RFE TOA Avi-
ation High
(W/m2/%coverage)

RFE TOA
Aviation Low
(W/m2/%coverage)

R1 Summer 0.138 0.093
R1 Winter 0.141 0.099
R2 Summer 0.140 0.094
R2 Winter 0.142 0.101
R3 Summer 0.135 0.089
R3 Winter 0.139 0.098
R4 Summer 0.141 0.096
R4 Winter 0.134 0.094

Table 22: Impulse Response Function coefficients

a0 0.2173
a1 0.2240
a2 0.2824
a3 0.2763
τ1 394.4 yr
τ2 36.54 yr
τ3 4.304 yr

concentration is obtained using a carbon cycle model. Due to the high computational

cost of state-of-the art atmospheric models, a simpler representation of the complex

carbon cycle-climate model is needed in order to enable fast computation of mul-

tiple scenarios. Impulse response functions or Green’s functions are introduced as

described by Joos et al. [79] to represent the response to a delta-function forcing at

a given time t.

IRFCO2(t) = a0 +
3∑
i=1

aie
−t
τi (19)

The values of the different variables are listed in Table 22. The coefficient ai are taken

from Joos et al. [79], which performed a multi-model study.
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Knowing the impulse response functions, the concentration can then be deter-

mined:

C(t) =

∫ t

0

IRF ∗ Edτ (20)

with E the emissions in kg.

The Radiative Forcing of CO2 is obtained from CO2 concentration using equa-

tion 21.

∆F = 5.35ln
C

C0

W.m−2 (21)

where C is the CO2 concentration and C0 is the reference concentration in parts per

million by volume.

Short-lived species have a forcing only for the year considered. Their Radiative

Forcing is equal to

RFsl(t) = RFEsl ∗ AODsl(t) (22)

Radiative forcing of aerosols is computed using a box model as done by Reddy

and Venkataraman, 2000 [138]. Equation 23 gives the aerosol optical depth τ based

on the mass extinction coefficient α, and the aerosol burden B. The aerosol burden is

obtained from Equation 24 with Q the aerosol emission rate (g.day−1), Lt the aerosol

lifetime (day) and A the area of the box (m2). Using the box model, it appears that a

change in aerosol emission rate will result in a change in aerosol burden and in AOD,

thus a change in RF.

τ = αB (23)

B =
QLt
A

(24)

For contrail and cirrus induced clouds, a common assumption is based on the

work of Stordal et al. [160] and states that cloud cover increases linearly with RPM.
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Other studies have used fuel burn as a substitute for flight density [142]. A forcing

per distance can be determined: knowing the traveled distance (13.5 billion nautical

miles), the cloud cover 0.2 and the forcing per cloud cover obtained from radiative

transfer calculations (0.2 W.m−2 per cloud cover using a cloud thickness of 0.2 and a

cloud drop effective radius of 10 micrometers [150]), a forcing of 3.10−12W.m−2.nmi−1

is obtained. As highlighted in Haywood et al. [64], this number can vary greatly and

further studies are needed to assess the reliability of contrail and contrail-induced

cirrus impact estimation. Another source of uncertainty is due to the very specific

atmospheric conditions required for contrail formation. A number of studies have been

performed in order to quantify contrail coverage over time for different regions using

remote sensing data from MODIS and other instruments as described in section 2.5.4.

The reference contrail coverage of 0.15% is obtained from Minnis et al. [113]. The RF

per contrail coverage is determined using the RT code. eGAME uses the following

equation for RF from contrail and scales contrail RF with aircraft fuel burn:

RFcontrail(t) =
AircraftFuelburn(t)

AircraftFuelburn(ref)
∗RFcontrail(ref) (25)

The global mean radiative forcing can be associated with a global mean surface

temperature change when the system has reached a new equilibrium [89].

∆Ts = λRF (26)

5.2.6 Baseline Climate Impact and Policy Considerations

The baseline Radiative Forcing is shown for the species of interest. As observed in

Figures 69, 70 and 71, contrails have the most impact, followed by aviation soot and

ground transportation soot. The uncertainty in the estimation of the impact of soot

and contrail remains relatively large due to the variations in regional characteristics

that impact the RF. Uncertainty may be reduced by using a higher granularity for

the distribution of emissions through a grid within the continental U.S., and by using
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a shorter time step. In spite of this uncertainty, insight is given into the relative

climate impact of each mode of transportation when species other than CO2 are

included. In this research, total emissions are quantified and an average value of

RF efficiencies is considered. As can be seen in Figures 72 and 73, under a high

level of technology scenario (N+2 aircraft included, and MPG improvement of 50%

in 2035), CO2 emissions may be stabilized, but due to the long lifetime of CO2 in the

atmosphere, the concentration keeps increasing and therefore the RF increases.

Figure 69: Baseline RF due to ground transportation emitted soot

5.2.7 Summary and Policy Relevance

Transportation emissions result in radiative forcing. Quantifying these effects is done

through the use of radiative transfer models with characteristics derived from remote

sensing data. A number of regional characteristics result in significant variations in re-

gional impacts. For best climate impact assessment, emissions need to be distributed

in a grid based on demand from models with high granularity such as Mi. Using the

methods presented in the previous sections, it is possible to quantify climate metrics

for each mode of transportation and each trip. Policies can then be envisioned that
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Figure 70: Baseline RF due to aviation emitted soot

put a price on these impacts to shift demand towards more fuel efficient modes of

transportation, and motivate fuel efficiency improvements. However, implementing

policies with high regional and seasonal variations may be challenging. Therefore,

an average climate impact may be computed for each mode of transportation and

policies can be envisioned that increase the cost of travel accordingly. More details

are provided in the following chapter, which discusses policies and gives results from

eGAME for different policy and technology scenarios.
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Figure 71: Baseline RF due to contrails

Figure 72: Baseline total CO2 emissions
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Figure 73: Baseline CO2 RF
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CHAPTER VI

POLICY AND TECHNOLOGY SCENARIO

EXPLORATION

As demonstrated in the previous chapter, both air transportation and ground trans-

portation have an impact on the Earth radiative budget through different species, with

CO2, BC and contrails having the most warming effects. With increasing mobility

and concerns about climate change, regulations and policies are discussed. The Inter-

national Civil Aviation Organization (ICAO), Committee on Aviation Environmental

Protection (CAEP) plans on implementing Market-Based Measures (MBM) by 2020

[48]. How would these policies affect the transportation system in terms of demand

for different modes and fleet efficiencies? By how much can policies reduce climate

impact? To gain insight into these challenging questions, scenario-based simulations

are needed. With the framework described in Figure 74, it is possible to explore a

number of policy and technology scenarios for the long distance transportation in the

continental U.S. and address the following research question:

Research Question 3: What are the impacts of policies and technologies

on the demand and fleet of different modes of transportation?

The climate impact determined in Section 5.2.6 was based on the demand in

a scenario without any climate policy implemented. The demand was determined

with a given socio-economic scenario and a given level of technology (a given fleet

replacement scenario) for each mode. This level of technology was assumed based

on expected introduction dates of new aircraft or new fuel efficient cars. However,

in the case where the climate impact exceeds targets, multiple policies can be envi-

sioned and implemented in order to try to limit emissions and reduce climate impact
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Figure 74: Step 4: Climate policy assessment

through demand reduction and faster introduction of more fuel efficient vehicles. It

is challenging to predict the extent of the impact of these policies and decide on

the right policy. By using the eGAME framework (shown in Figure 74), insight can

be obtained. Policies may target a specific mode of transportation, specific species

(greenhouse gases or aerosols). They may aim to reduce demand, or introduce new

efficient technologies faster. Their impact on the demand for each mode of transporta-

tion, fleet changes, and the resulting emissions and climate impact can be quantified.

It then becomes possible to decide on the most appropriate climate impact metric
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and associated policies in order to reach a given target.

6.1 Climate Policies

Based on the climate impact of the different modes of transportation described in

the previous chapter, it appears that both modes of transportation affect the atmo-

sphere through a number of species that absorb, scatter and emit radiation. With

the quantified climate impact of transportation for the main species, new policies can

be envisioned to curb gases and aerosols emissions in order to maintain a sustainable

transportation system. This is a complex problem to address since these policies

would change the demand for the different modes, as well as encourage the introduc-

tion of new technologies. These are competing effects. It is indeed expected that

increasing the cost of traveling through policies would have a negative impact on the

demand for transportation, but if new technologies are introduced faster, a rebound

effect may be observed. These types of behavior can be captured with eGAME.

Once the climate impact is quantified, policies may be implemented and a new

simulation can be run to assess the changes in emissions and radiative forcing. In

most cases, policies will result in a change of travel cost for a given mode, which is

likely to be passed on to the customer. In this case, the demand is likely to change. A

wide variety of policies can be envisioned. Market-Based measures such as a carbon

tax result in an increased cost of travel. This increase needs to be quantified. Then

using eGAME the impact of this increase on demand and fleets can be assessed.

Other policies include regulations such as gas mileage standards. In this case fuel

efficiency standards have to be implemented and can be directly used in the model.

The following sections focus on how different types of policies may be introduced into

the framework. Policies impact demand and fleets through an increased cost of travel.

Therefore, changes in fuel price can be used to investigate sensitivities and assess the

effect of policies that would result in increased average trip cost.
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6.1.1 Carbon Tax and Carbon Trading

Some policies aim to reduce emissions through the introduction of a price of emis-

sions which affects the cost of transportation. Instances include carbon trading and

CO2 tax. The main difference between a cap and trade system and an emission fee

relate to uncertainty. In a cap and trade system, the emission limit is fixed and un-

certainty exists on the price of carbon defined by the established market (thus called

quantity-based instrument), whereas with a carbon tax the price is known while there

is uncertainty on the resulting emissions (this is a price-based instrument). Each pol-

icy has advantages. Emission trading is appealing to private industries that can make

profit by selling their allowances. A cap and trade system responds to inflation, re-

cessions by adjusting prices automatically. Based on demand, the price on the carbon

and other species markets is adjusted. When emissions increase, the price increases.

On the other hand, trading systems sometimes do not adjust to sudden changes.

With a carbon tax, it is more difficult for organizations to use strategic behavior in

an attempt to influence the cost of abatement. Carbon taxes can target more sec-

tors. Trading systems may be envisioned for private companies and countries, but it

would be difficult to target individual consumers. Therefore, trading systems are not

directly applicable to individual transportation users. Finally, carbon tax revenues

may be used to encourage technology investments. Due to the challenge of appro-

priately model market dynamics of a trading scheme, the uncertainty in the price of

carbon allowances and in the exact value of a tax, it was decided that an increase in

the cost of fuel be used in this study to represent policies and assess their potential

in terms of changing demand and fleets with the purpose of reducing climate impact.

As mentioned above, a fee would result in an arbitrary increase in the cost of

transportation. Different introduction time, and amounts can be envisioned and they

would apply no matter what the total emissions are. Carbon taxes result in a higher

price of gasoline, natural gas or coal. They can also apply to electricity consumption
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on a per kilowatt-hour basis. They may be implemented at a given year using a step

function, or gradually using a ramp function, as depicted in Figure 75.

Figure 75: Carbon Tax gradual versus step introduction

An often mentioned metric for policy quantification is the social cost of carbon

(SCC), which can be seen as a carbon tax. It is recognized that there is a large un-

certainty in the SCC value since it aims to monetize the damages caused by increases

in CO2 emissions. Estimates of SCC may be used to approximate an initial guess for

an appropriate carbon tax. The eGAME framework then allows to change the value

of this initial carbon tax to explore the effects on transportation, which is the main

goal of this research. The social cost of carbon emissions is discussed in the technical

support document from the working group on social cost of carbon [73], and values

are suggested for use in regulatory analyses. Previous values that have been used are:

7 dollars per ton CO2 increasing at 2.4 percent per year used by the Department Of

Transportation in 2008, up to 20 dollars per ton CO2 used by the Department Of

Energy in October of 2008. EPA used global mean values of 68 and 40 dollars with

discount rates of 2 and 3 percent respectively. For a SCC of 52 dollars per ton of

CO2, calculations result in a carbon tax of about 50 cents per gallon. This value is

used as a baseline carbon tax in the simulations.

6.1.2 Tax Based on Radiative Forcing

Based on the previous discussions on climate impact, policies can target different

species and physical phenomena. Carbon taxes have long been discussed and even
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implemented, but as the impact of short term effects, notably due to aerosols, be-

comes better understood, they might be included in policies. Depending on what

species the policies target, it is expected that different modes of transportation will

be at an advantage depending on how they affect the atmosphere. From the previous

sections on emissions and climate impact, an emission or radiative forcing per passen-

ger per mile traveled can be determined. With the granularity of eGAME, this mode

efficiency can be determined for each distance group, which is especially important

for modes such as the commercial air transportation, for which the fuel burn per

mile decreases with distance traveled. Once this metric has been derived, policies can

be designed in order to target less efficient modes. An average climate impact for

each mode of transportation across all trips is considered and a tax is implemented

separately for each mode.

A RF forcing tax that would take into account all gases and particles described in

the climate impact section of this document is envisioned based on the same principles

as the carbon tax. Using the baseline scenario, the total Radiative Forcing can be

determined and the ratio between RF from the main species considered in this study

and the Radiative Forcing due to CO2 only can be computed. A time frame of 40 years

(looking at 2050) is chosen to compute this ratio, which decreases with time due to

the long lifetime of CO2. From this value, the pricing strategy can be adjusted. With

the species considered in this research for transportation’s main impacts, results show

that the ratio of total RF (considering CO2, BC and contrails) to RF due to CO2 only

has an average value of 2.3 for aviation, and 1.2 for ground, resulting in a tax of 1.1

dollar per gallon for aviation versus 0.6 dollars for ground. This type of ratio applied

to the carbon tax has been discussed and an example is given in Reference [31] (page

227). Due to the uncertainty associated with the soot and contrail RF quantification

(observed in Section 5.2.6), this factor could vary from about 1.5 to 3 for aviation,

and 1.1 to 1.3 for ground. The average values are used in this study, and any increase
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or decrease in the value of this factor would emphasize or reduce the effects observed

when going from a carbon tax to a tax based on RF. This “imbalanced” tax would

result in mode shift and/or faster fuel efficient vehicle adoption rates. These effects

are further quantified in the following sections.

6.1.3 Carbon Budget

Another concept is introduced for completeness: the carbon budget. This concept

is sometimes referred to as personal carbon allowance or personal carbon trading in

the literature. This differs from the industry level trading scheme which would apply

to the airlines, because it is applied at the household level or individual level. Each

person or household would be given a certain amount of carbon allowances, and would

use them when purchasing airline tickets and gasoline for their personal vehicle. Paul

et al. [128] discuss the impact of a household level cap policy versus a tax policy and

conclude that high income households would be affected by both and reduce their

amount of emissions, whereas low income households’ emissions would be reduced in

a tax policy scenario and increased in a trade policy scenario due to the extra cash

obtained from selling allowances. This type of behavior can be explored with this

framework through simulations with Mi, which is suitable since the policy would be

introduced at the agent level. Similar to the time and monetary budget introduced

in Mi, a carbon budget could be added and the resulting budget space is represented

in Figure 76.

6.1.4 Technology Infusion and Other Policies

Policies that change the cost of travel aim to motivate changes in mobility, demand,

and fleet composition. However these effects may not be sufficient to reach climate

impact targets and standards imposed on manufacturers may be needed to achieve

a given fleet efficiency in a given year. This is done through fuel economy standard,

new aircraft standards, etc. Policies that alter fuel consumption through reduction
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Figure 76: Mobility budget space with personal carbon budget

of fleet age are also possible, using for example scrappage schemes (which encourage

the replacement of old vehicles with more recent ones through the use of monetary

incentives). Other types of policies include regulations such as the CAFE standards,

or low-carbon fuel standards. Regulations on the operations can also be implemented

such as speed limits. Policies may aim to encourage technology introduction and/or

curb demand. Johansson [78] advocates the combined use of technology and demand

based measures to meet climate goals. Malina et al. [104] argues that the European

Trading Scheme would only have a small impact on airlines and emissions. Some

tradeoff situations may exist. For example, although diesel gets better mileage and

emits less CO2, they emit more particulates which may offset and create more positive

forcing. The climate impact reduction using technologies and policies is thus a very

intricate problem, and simulation tools such as eGAME are needed to explore multiple

scenarios that include all these parameters. Simulations are run using eGAME to

answer the following research question:

Research Question 3.1: Can transportation emissions and climate im-

pact stabilization goals be achieved through market measures alone?

Reasonable changes in cost of travel are expected to have limited impact on overall
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demand and emissions, hence the following hypothesis:

Hypothesis 3.1: Climate impact goals may be achieved through a com-

bination of technologies and policies.

In order to fully assess the effects of policies, it is necessary to quantify the impact

on demand as described above, but also on technology introduction. The following

sections focus on the effect of variations in travel cost (due to a carbon tax ot a tax

based on RF) on demand, fleet efficiency and the resulting climate impact.

6.2 Effect of Policies on Demand

A number of scenarios are run in eGAME to quantify the effect of policies on de-

mand (RPM and VMT). These policies are essentially similar to changing the cost

of fuel in the modeling and simulation environment. Policies can be implemented by

mode, using a ramp function or a step function. This corresponds to a carbon tax

implemented gradually, or suddenly at a given year. The tax scenarios are defined as

follow:

• ALN: gradual tax on airline mode

• GND: gradual tax on ground mode

• both: gradual tax on both mode

• RF: gradual tax on both modes based on RF

• ALN YYYY: tax on airline mode implemented fully at year YYYY

• GND YYYY: tax on ground mode implemented fully at year YYYY

• both YYYY: tax on both modes implemented fully at year YYYY

• RF YYYY: tax on both modes based on RF implemented fully at year YYYY
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6.2.1 Mode Shift

Depending on which mode is taxed, or the relative tax on each mode, shifts in demand

from one mode to other modes of transportation may be observed, which justifies the

use of a multimodal approach. As expected, a tax on the air transportation mode

only, would result in the most significant decrease in RPM, and increase in VMT. A

tax on the ground mode would result in an increase in RPM compensating for the

decrease in VMT. A tax on both modes would lie somewhere in the middle, with a

small decrease in demand for both modes, as can be observed in Figures 77 and 78.

These figures show the difference between the baseline with no tax and cases where a

gradual tax of 50 cents per gallon is implemented on different modes. The impact on

the two main modes of transportation depends highly on a number of parameters such

as technological level (ground fleet fuel economy for example), or how airline pass the

extra cost on to the customer. Here the following assumptions are made: full pass

through for the airlines, BAU scenario for airline fleet and no mpg improvement for

ground vehicles. With different GND mode efficiency assumptions and different pass

through and ALN fleets, results could look very different. For example a zero pass

through assumption for the airlines would result in no variation in demand in the

case of a tax on the ALN mode, and identical variations for a tax on GND and a

tax on both, since increases in cost for the ALN mode would not be passed on to the

customer. The more fuel efficient and cheaper mode will be less negatively affected

by a tax on climate impact.

A gradual carbon tax of 50 cents per gallon would result in long term changes in

VMT and RPM. As listed in Table 23, a carbon tax implemented on a single mode

would result in a decrease in demand for the targeted mode and an increase in the

demand of the other due to the relative increase in attractiveness of the mode that

is not taxed. The mode shift is not a one to one relationship because some travelers

may cancel their trip, or switch mode and reduce the distance traveled (likely to
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Figure 77: Change in RPM due to a gradual carbon tax with BAU fleets

Table 23: Changes in RPM and VMT in 2050 with a carbon tax

Mode taxed change in RPM change in VMT
ALN -3.32% +0.98%
GND +1.84% -1.18%
both -1.38% -0.21%

be the case when switching to the ground mode), or travel further (using the air

transportation). When both modes are taxed, the demand for both decreases. With

the settings used here, the air transportation mode is more significantly affected than

ground transportation.

Table 24 shows that with higher fuel efficiency aircraft and automobiles, the carbon

tax would result in a smaller mode shift, which can be explained by the fact that the

extra cost introduced by the carbon tax is smaller due to lower fuel consumption.

The relative effects also change depending on the fuel efficiency improvement. In this

case aviation is less affected than ground transportation by a tax implemented on
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Figure 78: Change in VMT due to a gradual carbon tax with BAU fleets

Table 24: Changes in RPM and VMT in 2050 with a carbon tax with higher fuel
efficiency scenario

Mode taxed change in RPM change in VMT
ALN -1.42% +0.60%
GND +1.27% -0.81 %
both -0.11% -0.22%

both modes.

With the granularity offered by eGAME, it is observed that each Distance Group

will be affected differently. With a tax on air transportation, most of the mode shift

will occur in the mid-distance groups (Table 25). Two effects appear here. The first

one is the relative increase in fuel cost for the distance considered, the second is the

attractiveness of the other mode for the distance considered. Short distance trips

do not have a very significant change in price due to the tax, and the ground mode

keeps its significant advantage. Long distance trips cannot as easily be done with the

ground mode and the air transportation remains at an advantage in spite of the tax.
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Table 25: Changes in RPM by DG in 2050 with a carbon tax

Distance Group tax on ALN tax on GND tax on both
modes

DG 1 -1.99% +1.20% -0.81%
DG 2 -3.40% +2.71% -0.74%
DG 3 -5.89% +5.26% -0.62%
DG 4 -3.88% +2.53% -1.04%
DG 5 -2.06% +0.06% -1.99%

Similarly, a tax on the ground mode results in more significant increase in RPM for

mid-distance groups. This can be explained by the fact that short distances remain

cheap enough that the advantage of the ground mode holds, but as distance increases

air transportation becomes more attractive. There is very little demand for long

distances with the ground mode to begin with, which explains the almost negligible

increase in RPM for that distance group. Finally, when a tax is implemented on both

modes, demand for air transportation decreases mostly for longer distances which are

most affected by an increase in fuel cost. Similar observations are made with higher

fuel efficiency fleets, but the effects on longer distances is reduced due to the smaller

fuel cost. In this case, and with a tax on both modes, an increase in RPM for distance

groups 3 and 4 is observed in the long term due to the reduced fuel consumption and

the rebound effect.

6.2.2 Carbon Tax versus RF Based Tax

As introduced in Section 6.1.2, the Radiative Forcing from the main species to the

CO2 RF ratio is different for each mode, thus resulting in a potentially different tax

on each mode. If a RF based tax is implemented, the aviation mode is penalized

further, which may negatively affect demand for this mode and further increase the

demand for the competing mode, as shown in Table 26. Similar to the carbon tax

case, with higher vehicle fuel efficiency, the effect of the tax is attenuated, as can be
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Table 26: Changes in RPM and VMT in 2050 with different policies

tax type change in RPM change in VMT
CO2 -1.38% -0.21%
main species -6.86% +1.29%

Table 27: Changes in RPM and VMT in 2050 with different policies and high effi-
ciency fleets

tax type change in RPM change in VMT
CO2 -0.11% -0.22%
main species -1.17% +0.29%

seen in Table 27.

6.2.3 Gradual versus Sudden Tax

The modeling and simulation environment provides the option to gradually imple-

ment the tax, with a ramp function reaching the target carbon tax in a future year

(2035 here), or implement the full tax at a chosen year, for example 2020, or 2030,

as represented in Figure 75. As expected, demand would be more significantly and

suddenly affected when the tax is introduced fully at a given year. The gradual tax

is implemented using a ramp function starting at the beginning of the simulation

time, and reaching the full value in 2035. It then continues to increase past 2035.

Figures 79 and 80 show the time series of change in RPM compared to the baseline

scenario with no tax, and using the BAU airline fleets and no mpg improvement. As

can be observed, the effect on demand would be similar in 2035, but the time series

look different. Since some of the emitted species resulting from this demand have a

long lifetime in the atmosphere, the implementation year is a significant parameter.

As already observed in subsection 6.2.1, a tax on the ALN mode results in the most

decrease in RPM, followed by a tax on both modes, while a tax on the GND mode

results in an increase in RPM. These changes occur suddenly or gradually and have
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the same effect in 2035, as expected from the definition of the ramp and step function

in Figure 75. As can be observed in Figures 81 and 82, under higher fleet efficiency

scenarios, the initial decrease in demand due to the increase in fuel price may be

partially recovered over time due to the improvement in fleet efficiency and associ-

ated rebound effect on demand. The effect of the fuel price increase on technology

introduction and demand is further discussed in the following section.

Figure 79: Change in RPM due to a carbon tax implemented in 2020 or gradually
with BAU fleets

6.3 Effect of Policies on Technology Introduction

In order to fully assess the effect of policies, both changes in demand and fleet com-

position need to be accounted for. Fleets are changed based on the relative costs of

operating each vehicle, resulting in different fuel efficiencies. In the airline and ground

fleet models, the implementation of a tax will result in a higher operating cost and

the value of aircraft or vehicles with high fuel consumption will decrease, resulting in

a faster switch to more fuel efficient aircraft or automobiles.
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Figure 80: Change in VMT due to a carbon tax implemented in 2020 or gradually
with BAU fleets

6.3.1 Air Transportation

When a policy is implemented in the airline fleet model, the attractiveness of a given

aircraft changes and airlines switch to new available aircraft faster. With new policies

on emissions, the direct operating cost increases, thus changing the airlines decision

to retire old aircraft and replace them with new more efficient aircraft.

Based on the net present value approach used in IDEA for aircraft fleet strategies,

airlines will replace older aircraft faster under strict climate policy situations. An

example is shown in Figure 83 where the N+2 scenario is used, allowing for new

industry aircaft and N+2 to replace current aircraft. As can be seen in Figure 83, the

higher the tax, the faster airline switch to new more fuel efficient aircraft, resulting

in a better system’s fleet efficiency. Changes start after 2020, as more fuel efficient

aircraft become available.
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Figure 81: Change in RPM due to a carbon tax implemented in 2020 or gradually
with high efficiency fleets

6.3.2 Ground Transportation

Based on the ground module described in Subsection 5.1.2, with the attractiveness

of a vehicle based on multiple factors, including fuel cost, a carbon tax would result

in a different fleet composition. As can be observed in Figure 84, a carbon tax would

accelerate the introduction of EVs in the fleet, as the cost of operating high mpg

internal combustion engine would increase. The average fuel efficiency of internal

combustion engine vehicles would increase with the replacement of less fuel efficient

vehicles (Figure 85). The initial positive slope is due to the retirement of older less

efficient vehicles still in the fleet. After 2025, no more improvement is observed due to

the scenario chosen, which introduces no mpg improvement in the future. However,

a slight improvement is observed with policies due to changes in market shares of

different vehicles types.
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Figure 82: Change in VMT due to a carbon tax implemented in 2020 or gradually
with high efficiency fleets

6.3.3 Technology Effect on Demand

Fuel efficiency improvements for the ground mode directly affect the cost of travel

in GAME and therefore define the demand which may increase through the rebound

effect. Any improvement in fuel efficiency will result in a lower operating cost for

airlines, which may be passed on to the customer through a reduced ticket price. It is

observed that with higher fuel efficiency, the decrease in demand due to a carbon tax

is smaller than in the BAU fleet scenario. This is due to the fact that the reduction in

fuel burn results in a decrease in the fuel cost portion of the ticket price, which, under

full pass through assumptions, helps to maintain mobility in spite of increased fuel

costs as observed in Figures 81 and 82. For example, a carbon tax under BAU fleet

assumptions result in a decrease in RPM of 3.32% in 2050, but with N+2 technologies

it is reduced to 1.42%. Through these observations, it appears that policies impact

demand and fleets through the increased cost of travel. The following section discusses

the effect of policies on climate impact.
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Figure 83: Fuel burn per RPM under different policy scenarios for N+2 scenario

6.4 Effect of Policies on Climate Impact

To quantify the effect of policies on climate impact, the combined effect of these

policies on demand and fleets needs to be taken into account. This is done through

the eGAME framework and the iterations between the airline fleet model and the

demand models as described in Subsection 5.1.1. From the changes in demand and in

fleet efficiency, and the climate module described in Section 5.2, the effect of policices

on climate impact is obtained. As discussed in Section 5.2, the climate impact is

quantified through Radiative Forcing. The RF from each mode and each species can

be quantified with eGAME.

6.4.1 Long-lived versus Short-lived Species

Radiative Forcing from CO2 is based on the concentration of CO2 in the atmosphere.

Due to its long life time, a reduction of CO2 emissions due to demand and/or fleet

changes does not necessarily result in an immediate reduction in CO2 RF, as discussed

in subsection 5.2.6. Furthermore, the total CO2 RF needs to be considered since a
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Figure 84: EV market share under different policy scenarios

decrease in emissions for one mode of transportation might come with an increase in

emissions for another mode. The total CO2 RF from both modes of transportation

shows some interesting results. In cases where a tax is applied to only one of the two

modes (in this example, the ground mode), a tax may in fact, under certain conditions,

result in an increase in overall tranportation CO2 RF, as seen in Figure 86. This is

likely due to the fact that people switch to the ALN mode, which in some cases may

be less fuel efficient, and maybe fly farther, thus increasing their CO2 emissions. The

average distance flown decreases when a tax is implemented on the GND mode due

to the mode switch from GND to ALN which is mainly shorter distances. In the case

of a tax on the ALN mode only, the opposite is observed where shorter distance trips

are switched to the GND mode thus increasing the average distance flown.

However, under other circumstances, the effect of the tax may be reversed. This

is the case under the high technology scenario, as depicted in Figure 87. If the tax on

GND is implemented in 2020, the same effect is observed with an increase in CO2 RF.
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Figure 85: Fuel efficiency under different policy scenarios

But when implemented in 2030, it is the tax on ALN that would result in an increase

in CO2 RF. This can be explained by the significant reduction in fleet fuel burn per

RPM between 2020 and 2030 due to new technologies. Therefore, in this particular

case, switching to the ground mode by making the ALN mode more expensive is not

beneficial from a System-of-Systems point of view.

For short-lived species the effect may be beneficial faster due to their short life

time in the atmosphere. Under the BAU fleet scenario, a sudden tax indeed results

in a sudden reduction in RF from contrail (Figure 88) and soot (Figure 89) due to

the change in demand. This may be used in policy making to show direct effects of

policies on RF. However, in the long term, RF may still be increasing due to the long

lifetime of some species. This further shows why time series of RF from these species

is a significant piece of information for policy and technology scenario exploration.
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Figure 86: Total CO2 RF under baseline fleet scenarios

6.4.2 Hypothetical Past Policy

Models predicting the impact of policies are hard to calibrate. Very limited data exist

for validation. In this section, a comparison is made with a study by Sgouridis et al.

[151], which found a 3% decrease with a 0.5 dollar per gallon tax and 9% decrease

with a 2 dollars per gallon tax. With a carbon tax implemented in 2011 in eGAME,

demand in 2012 would have decreased by 6.32% overall. This value is of the same

order of magnitude as found by Sgouridis et al [151].

A more detailed analysis shows a 2.7% decrease for DG1, 4.3% for DG2, 7.9%

for DG3, 5.1% for DG4 and 2.7% for DG5. Long distance flight demand is not

strongly affected due to the much higher attractiveness of this mode for long distance.

Short distance attractiveness does not change significantly. The most affected are

the mid distance groups where most of the competition between modes is going to

happen. CO2 emissions would have been reduced by 1.23% for air transportation

and increased by the same amount for ground transportation due to the increase in
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Figure 87: Total CO2 RF under high fuel efficiency fleet scenarios

demand. Therefore no significant environmental benefits would have been obtained

with a carbon tax exclusively on ALN.

6.4.3 Realistic Target and Technology and Policy Portfolios

The reduction obtained with policies (CO2 and RF based taxes) is limited. Among

the gradual options explored in this study (on each mode, and on both modes based

on CO2 only and RF) the reduction in emissions achieved is at most 5.1% in the

baseline fleet assumption, and 6.7% in the N+2 fleet assumption. But the reduction

obtained from making N+2 aircraft available and increasing ground vehicle fuel effi-

ciency is about 33.6%. This shows that it is necessary to motivate new technologies

concurrently with the implementation of policies to encourage mobility changes and

fleet renewals. With no new technology available, all savings come from reduction
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Figure 88: Contrail RF under baseline fleet scenarios

in mobility. With new technologies, significant reduction can be achieved, and poli-

cies result in a faster introduction of technologies, and a smaller negative impact on

mobility.

As can be seen in Figure 90, a combination of technologies and carbon tax would

result in the stabilization of CO2 emissions. Due to the long lifetime of CO2 in the

atmosphere, the RF would keep increasing for a few years as can be observed in

Figure 91. Without technology infusion, policies would not be sufficient to stabilize

CO2 emissions, which is a target of many policies. Only relatively small reductions

are obtained with reasonable market based measures alone. This verifies hypothesis

3.1. And it is concluded that with sufficient policy and technologies, emissions and

climate impact goals can be achieved.
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Figure 89: Ground BC RF under baseline fleet scenarios

6.5 Policy Evaluation and Selection

With the eGAME framework described above, it becomes possible to run simulations

with and without climate policies, and with different climate policies and different

sets of technologies. This results in different output demand, emissions and climate

impact. It is then possible to assess the performance of each scenario with respect

to these metrics. In terms of transportation, the goal is to maintain a satisfying

level of mobility without excessive impact on the atmosphere. Some decision making

techniques can be applied in order to identify the best scenario based on a series of

criteria, address the following research question:

Research Question 3.2: How can different policies and technologies be

assessed?

and verify the following hypothesis:
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Figure 90: Transportation system’s CO2 emissions under different policy and tech-
nology scenarios

Hypothesis 3.2: Due to the many interdependencies involved in trans-

portation sustainability, a scenario-based approach is best to assess differ-

ent policies and technologies.

6.5.1 Pareto Frontier

In order to make decisions on the best climate policy and sets of technologies, several

factors need to be taken into account and decision making needs to be performed.

Total demand and climate impact are competing, with technology level being the

mean to having a high demand with limited climate impact. Therefore some mobility

metrics and climate metrics are used for decision making. Mobility metrics may be

the average or total time and/or cost it takes to travel a given distance, or the average

or total distance traveled. Climate metrics may be any of the metrics described in

section 5.2. Each scenario is run and these outputs are obtained and plotted. It

is then straightforward to identify a pareto frontier of the best scenarios as can be
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Figure 91: Transportation system’s RF under under different policy and technology
scenarios

seen in Figure 92. On the left, the total distance traveled (RPM and VMT) and

the climate impact metric of interest are considered. The objective is to maximize

distance traveled and minimize climate impact. Non-dominated solutions can be

identified as scenarios A, B and C. Scenario A will be prefered if the emphasis is

on reducing climate impact, no matter what it implies in terms of mobility, whereas

scenario C will be prefered if the goal is to maintain a satisfying level of traveled

distance. Scenario B represents a compromise between the two objectives. When

time and cost of traveling are also considered (right graph), complexity is added

because the previously non-dominated solutions may not be optimum (scenario A for

instance). Multi-attribute decision making can be performed and the best solution

identified based on priorities on objectives. The abstract scenarios A, B, C, D and

E can be mapped to a given set of policies and technologies, providing the decision

makers with the necessary policies and technological improvements to achieve the

desired mobility and climate goals.
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Figure 92: Scenarios pareto frontiers

6.5.2 Mobility versus Climate Impact

Different technology and policy packages are simulated as described in Table 28. As

can be observed in Figure 93, significant reduction in climate impact with increase in

mobility is obtained when technologies such as N+2 and higher mpg are implemented.

Policies result in a small decrease in climate impact, but a decrease in mobility.

The effect of policies is reduced with higher fuel efficiency of the fleets as shown by

the spread of the data points. When going from a policy on ALN only with high

fuel efficiency scenario to a tax based on RF, a decrease in RF and an increase in

mobility is observed, which is possible with the extra fuel savings obtained with faster

replacement of airline fleets. The best choice, in terms of climate impact, based on

this plot is the high technology scenario with a tax based on RF.

6.5.3 Travel Cost versus Climate Impact

The same scenarios were run and compared with a new metric, the average cost

of travel, which is computed based on the weighted cost spent traveling with each

mode. Figure 94 shows that technologies help reduce the cost of travel while reducing

the climate impact, and policies increase the cost of travel slightly while reducing

the climate impact. The best choice for low cost of travel is, as expected, the high

technology, no tax scenario. The best choice for climate impact reduction is the high
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Table 28: Policy and Technology scenarios

scenario Socio-economic Tax ALN Fleet GND Fleet
A Baseline None BAU MPGx1
B Baseline ALN gradual BAU MPGx1
C Baseline GND gradual BAU MPGx1
D Baseline both gradual BAU MPGx1
E Baseline RF gradual BAU MPGx1
F Baseline None N+2 MPGx1.5
G Baseline ALN gradual N+2 MPGx1.5
H Baseline GND gradual N+2 MPGx1.5
I Baseline both gradual N+2 MPGx1.5
J Baseline RF gradual N+2 MPGx1.5

technology, RF tax scenario.

6.5.4 Travel Time versus Climate Impact

Mode switch and changes in traveled distance may result in variations in average travel

time, as depicted in Figure 95. A tax results in a decrease in time spent traveling,

and the higher the tax, the lower the time spent traveling. With technologies, the

climate impact is reduced and more time may be spent traveling due to the reduced

cost.

If the goal is to minimize climate impact, scenario J is the best. If the goal is

to minimize the cost of travel, scenario F is the best. If the goal is to maximize the

miles traveled, scenario H is the best. Thus hypothesis 3.2 is verified. In order to

rank the alternatives based on the multiple attributes, the Technique for Order of

Preference by Similarity to Ideal Solution (TOPSIS) is applied as described in the

following section.

6.5.5 Ranking of Alternatives

Ranking the alternatives based on multiple alternatives (distance traveled, time and

cost, climate impact) may be challenging and the two dimension representations
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Figure 93: Climate impact (RF) versus mobility (RPM+VMT)

shown in the previous subsections are not sufficient. Therefore a Multi Attribute

Decision Making (MADM) technique is used, TOPSIS, in order to show how eGAME

scenarios may be used for policy and technology decision making. In TOPSIS, weights

of different attributes must be defined. Depending on these weights, the results of

the ranking may be different. Four main attributes were identified to quantify the

climate impact and mobility metrics:

• total transportation RF in 2050

• total RPM and VMT in 2050

• average time spent traveling

• average cost spent traveling
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Figure 94: Climate impact (RF) versus cost of travel

A number of weighting scenarios were chosen as listed in Table 29. As shown in

Table 30, all weighting scenarios favor the policy and technology scenarios that include

high fuel efficiency technologies, because they all result in lower environmental impact,

while lowering the cost and improving mobility. However when it comes to policies,

depending on the weighting scenarios, the best technology and policy package may be

different. For example, the “environmental” weighting scenario favors strong policy

scenarios such as a policy based on RF, which, as previously described, results in a

higher tax on both modes, especially on the ALN mode. On the other hand, the

weighting scenario with strong emphasis on mobility favors scenarios with little or no

tax. These policy and technology scenarios represent a small subset of all possible

scenarios that may be run in eGAME. As demonstrated here, eGAME enables the

evaluation of a number of policies and technologies for transportation at the System-

of-Sytem level, which can provide useful insights into the effects on a number of high
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Figure 95: Climate impact (RF) versus time spent traveling

level metrics.
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Table 29: TOPSIS weighting scenarios

weighting sce-
nario

RF RPM+VMT Time Cost

“environmental” 0.7 0.1 0.1 0.1
balanced 0.5 0.3 0.1 0.1
emphasis on mo-
bility

0.3 0.3 0.2 0.2

strong emphasis
on mobility

0.1 0.3 0.3 0.3

Table 30: TOPSIS results for policy and technology scenarios

environmental balanced emphasis on mo-
bility

strong emphasis
on mobility

A 0.072 0.109 0.260 0.537
B 0.093 0.109 0.221 0.429
C 0.050 0.094 0.202 0.398
D 0.063 0.083 0.149 0.267
E 0.149 0.148 0.129 0.056
F 0.886 0.887 0.900 0.953
G 0.931 0.928 0.924 0.919
H 0.880 0.880 0.879 0.874
I 0.922 0.919 0.886 0.815
J 0.968 0.952 0.872 0.739
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CHAPTER VII

CONCLUSION AND RECOMMENDATIONS

The increasing concern for climate impact of human activities and the looming poli-

cies associated with this impact may change the way we use transportation. It is

crucial to better forecast how the system would react to different scenarios in order

to make decisions and avoid severe consequences in terms of mobility and climate

impact. The literature review showed an increasing number of discussions on in-

tegrated assessments which enable this type of scenario exploration including both

economic and climate impact aspects. The scope and the level of detail of integrated

assessments is of paramount importance and should be relevant to each country and

sector that are affected by given policies. The transportation sector is one of the main

emittors in the United States. Therefore an assessment of the U.S. transportation

system is needed, including all modes of transportation. Powerful tools exist but are

not currently linked to enable these scenarios’ explorations. Furthermore their ap-

proach and computation time may not be appropriate. Therefore a new approach is

proposed: a system dynamics model (GAME) is developed and expanded to include

all aspects of transportation, including emissions and climate policies. The proposed

framework (eGAME) is depicted in Figure 96. This integrated tool aims to assess

demand, emissions and climate impact under given technology and policy scenarios.

With this new approach to perform scenario exploration of different technologies and

policies in the U.S. transportation system, insight is given into the extent of the effect

of climate policies on the system and what should the future system look like.

The purpose of this research was to explore the long distance transportation

system-of-systems behavior under climate constraints. This implies exploring the
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Figure 96: US Transportation SoS integrated assessment framework with tools

changes in demand and fleets with newly added policies such as the widely discussed

carbon tax. Two research areas are presented in this dissertation: the first relates

to new techniques to better represent the system-of-sytems, the second relates to the

quantification of the transportation system’s climate impact and the possible policies

that can be envisioned. Through this research, a tool is developed, the environmen-

tal Ground and Air Mode Explorer (eGAME) that incorporates the results of the

research and thus enables policy and technology scenario exploration.
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7.1 Contributions

The design and analysis of transportation systems can be facilitated by the devel-

opment of parametric simulation environments that may be used to explore multi-

ple scenarios and perform decision-making. Rigorous calibration is needed to gain

confidence in simulations’ results. The complexity of the transportation System-of-

Systems makes these tasks challenging and requires methodologies and mathematical

analysis with a holistic approach. It is shown that both micro- and macro-level views

- in the form of multi-paradigm Agent-Based Modeling (ABM) and System Dynamics

(SD) - are suitable and have long remained disconnected. A literature review across

a wide variety of fields indicates that their use in a synergistic manner is increas-

ingly advocated. A large number of hybrid methodologies, sometimes with strong

similarities, appear with limited conceptual framework to build on. In an attempt to

streamline efforts to create hybrid models, a complete and succinct classification is

formulated. A new hybrid approach is developed that could help expand the use of

these techniques for transportation systems’ analysis. An SD model is developed for

long distance transportation in the continental United States. Generally, SD models

lack numerical accuracy and their validity has been a subject of debates. The con-

fidence in the model’s results is improved through previous research that resulted in

an Agent-Based Model with proven ability to replicate historical data of multimodal

inter-city travel demand. ABM is used to derive the structure and mathematical

formulation of the SD model, thus verifying

Hypothesis 1.1: With proper analysis, derivations, and aggregation, a

SD model can be derived from an ABM.

The purpose of the SD model is to replicate the behavior of the ABM within a

bounded region which defines acceptable ranges for reliable forecasts. This is achieved

through a cross-calibration and verified using multiple data points. Through this

process, we show how to obtain better numerical accuracy with model refinement
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using ABM. This structured methodology ensures that the SD model inherits the

proven predictive power of the ABM and verifies

Hypothesis 1.2: Through a cross-calibration process, SD can produce

results similar to ABM within given ranges.

The hybrid methods classification aspires to establish a common ground for ABM

and SD modelers who may use it as a starting point for model development. The

methodology described in this research for the creation and calibration of an SD

model based on an ABM may be used as a guideline for other applications. The SD

surrogate created in this research may be used as a decision-making framework for

transportation problems. Its fast computation time and parametric nature make it

a good candidate for decision making through exploration of a wide variety of policy

and technology scenarios for intercity multimodal transportation design.

The demand model is linked to fleet models of each mode of transportation to

quantify fuel burn and emissions resulting from this demand. Interactions between

the models are considered in order to capture potential rebound effects of technologies

on demand. It is indeed observed that fuel efficiency improvement may result in an

increase in demand depending on airlines pricing strategies. A ground fleet model is

created based on the attractiveness of different vehicles, and life cycle emissions are

quantified using existing tools.

Hypothesis 2.1 is verified: The integration of parametric demand and

fleet replacement models, and the use of life cycle emission factors enables

scenario based environmental analysis.

With these emissions, climate impact is then quantified using the Radiative Forc-

ing metric which from literature is an appropriate metric for climate impact studies

(Assertion 2.2). The species with the main warming impact are chosen here: CO2

RF is quantified through Impulse Response Functions that model the carbon cycle,
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RF from soot and contrails is quantified using a radiative transfer code. These radia-

tive transfer simulation show large regional and seasonal variations, and thus verify

Hypothesis 2.3: Radiative Forcing efficiencies vary based on the mode

of transportation, location and season of emissions.

With the quantified demand, fuel burn and climate impact, eGAME enables policy

and technology scenario exploration. A number of policies are considered, which

essentially result in an increased fuel price. Policies impact demand and fleets through

an increased cost of travel. Though non-negligible, the results show relatively small

effects of policies on demand, and fleets, and thus little effect on climate impact,

which verifies

Hypothesis 3.1: Climate impact goals may be achieved through a com-

bination of technologies and policies.

Policies need to be associated with technology infusion in order to have sufficient

impact. By making fuel efficient technologies available, a significant decrease in cli-

mate impact is observed with limited impact on demand. Policies such as MBM can

then accelerate and increase the magnitude of this decrease, through faster replace-

ment of fleets. A number of policy and technology scenarios are run and the resulting

high level metric for mobility and climate impact quantified.

Hypothesis 3.2 is verified: Due to the many interdependencies involved

in transportation sustainability, a scenario-based approach is best to assess

different policies and technologies.

With a sustainable transportation goal in mind, multi-attribute decision making

may be performed in an attempt to identify potential policy and technology packages

that help maintain mobility with limited climate impact and thus achieve sustain-

ability.

The main contributions are summarized here:

• Create a framework for integrated assessment of the US transportation system
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(eGAME)

• Establish a methodology to create a System Dynamics surrogate of an Agent-

Based Model applied to the transportation demand

• Link multimodal transportation demand models with fleet models to quantify

fuel burn under different scenarios

• Explore different climate impact metrics for the transportation SoS

• Quantify the climate impact of the transportation SoS including both gaseous

and aerosols species

• Implement climate policies and quantify their impact on the demand, fleets and

climate impacts of different modes of transportation

7.2 Lessons Learned and Potential Research Paths

It is a significant advantage to have both bottom-up and top-down views because it

enables the representation of a wide variety of behaviors and policies. By bringing air

transportation systems together with other transportation systems, a more complete

picture on long distance transportation in the United States is obtained, and enables

the exploration of more possible futures. By using radiative transfer codes and re-

mote sensing techniques, a better and more complete assessment of climate impact is

obtained.

This thesis established the foundation for a hybrid ABM-SD for long distance

transportation systems. A number of research paths may be envisioned to further

improve the modeling capability and expand its scope.

• The current model does not represent the complex interactions related to com-

petition between airlines. The air transportation system is represented as a
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single supplier, and to better capture the dynamics within the air transporta-

tion system, an airline “agent” may be created.

• The tradeoffs considered in this study for climate impact of transportation fo-

cused on the two existing modes. The multimodal approach used here enables

the expansion to other modes as was demonstrated with the P2P mode. Sig-

nificant changes in mobility and climate impact may be observed if new modes

such as high speed train are introduced. With the granularity of the ABM at

the MSA level and/or the SD at the market level, this mode can be introduced

on some specific markets and competition with other modes can be assessed.

Some research would be needed to quantify the design variables and climate

impact associated with the life cycle emissions of potential new modes.

• As mentioned in the climate policy section, a carbon budget for agents may be

envisioned and introduced into the ABM view of the system.

• Large uncertainty remains in the assessment of demand, and climate impact,

which may be reduced by refining the assessment through gridded demand and

refined climate model simulations including more species.

• This research focused on the impact of transportation on climate. Another

interesting research field is in the effect of climate change on transportation,

and more generally on the economy. It is usually challenging to quantify but

some relationships could be envisioned that would create a feedback between

the quantified climate impact and the inputs of eGAME.

• Finally, this kind of approach may be repeated for other sectors of the econ-

omy, and in other geographic locations. Since climate change is a global issue

with recognized uncertainty which makes it the topic of many debates, gaining

knowledge by attempting to better model regional and sectoral impacts, and

176



assessing the potential for sustainable systems by using policy and technology

infusion is a challenge that can be tackled by breaking down assessments to

then aim for global sustainability.
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APPENDIX A

CALIBRATION OF THE AGENT-BASED MODEL

A.1 Databases

Mi was originally calibrated against the 1995 American Travel Survey (ATS) which

gives information on long distance travel patterns. Since this survey has not been

repeated, more databases were investigated and a set of databases was identified to

perform a multi-year calibration of Mi. For the air transportation, T-100, which

lists data from the operator’s standpoint, and the Airline Origin and Destination

Survey (DB1B), which lists data from the traveler’s standpoint, were used. T-100

gives the complete data of airline operations, and the domestic data was retrieved

for calibration of Mi. DB1B is a 10-percent sample of airline ticket information

from reporting carriers and is the best way to track passenger itineraries with pub-

licly available data. For ground transportation, VMT is tracked and data on long

distance travel is not readily available. However, a set of databases was identified,

which include the National Personal Transportation Survey (NPTS) from 1995, and

the National Household Transportation Survey from 2001 and 2009. Both the NPTS

and NHTS provide data on ground transportation, which include the mode of trans-

portation, the duration of the trip, the distance and the purpose of the trip. They

also gather demographic, geographic and economic data. Even though long distance

trip data is not directly available, it can be obtained using VMT estimates for long

and short distance trips, as well as total VMT from National Transportation Statis-

tics [92]. Other databases were used to define socio-economic variables such as the

GDP, the Consumer Price Index, Consumer Sentiment Index, population growth. A

list of databases is provided in Figure 97 from Lewe et al. [92]. A quaterly time
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period was chosen for model calibration. Not all databases were quarterly and some

treatment was required. For lower time periods, values were added or averaged, de-

pending on the type of data. For longer time period, a seasonality factor was derived

from the U.S Product Supplied of Finished Motor Gasoline for ground transportation

and from T-100 for the air transportation. The ground transportation factor showed

smaller seasonal variability due to the inclusion of short distance trips. Since the

study focuses on long distance travel, the seasonality from T-100 was used.

Figure 97: Databases used for calibration of Mi [92]

A.2 Calibration

A number of adjustments were made to Mi to ensure that it was able to replicate

past data, and thus be considered to be calibrated. The simulation strategy was

to iteratively change Mi until its outputs were close enough to actual data. Some

modifications were applied, such as the seasonality mentioned in section A.1. A

discontinuity was introduced due to 9/11 which resulted in a massive disturbance
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in aviation operations. A consumer confidence effect was added to account for the

budget space variations with traveler’s perception of the economy. The inputs used

for the calibration are shown in Figure 98.

Figure 98: Simulation Inputs used for Mi calibration [92]

Through the calibration process, the adjusted model is able to replicate past data

for RPM and VMT with a good level of accuracy. Resuls for RPM are shown in

Figure 99, and results for VMT are shown in Figure 100. For the VMT, uncertainty

ranges were determined to account for the fact that individual trips are more difficult

to track than for air transportation. Due to the availability of long distance data, the

uncertainty grows from 1995 NPTS which was compared to 1995 ATS, to 2009, which

does not include long distance travel data. With the calibrated Mi, it is possible to

generate forecast for RPM and VMT with a higher level of confidence, by using

forecast data for the input variables. Some simulation were run in Lewe et al. [92]

and RPM data was compared to the FAA forecast.
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Figure 99: Mi and T-100D RPM [92]

Figure 100: Mi and NPTS/NHTS VMT [92]

181



APPENDIX B

AN ANALYSIS OF HISTORICAL TRENDS IN AIRLINE

FLEET AND TICKET PRICE IN RESPONSE TO

FLUCTUATING FUEL PRICES

The fuel price has been fluctuating significantly over the past few years, putting cost

pressure on the airlines and forcing them to rapidly adapt. Airlines net loss reached

record high values, requiring decisions to be made at many different levels. Airlines

had to make tradeoffs and modify their ticket price, their fleet, their route structure,

salaries, and the number of employees in order to make profit in the long term.

Decisions made by airlines involve many parameters. Correlations are therefore not

easily identified. The purpose of this appendix is to analyze airline historical data in

order to try to find some correlations between fuel price and other variables, such as

ticket price or type of aircraft in the airline fleet. These findings can then be used in

air traffic demand models, as well as fleet forecast models. First, the procedure used

for this research is presented, then the data used is described, followed by the results.

The objective of this research is to identify potential correlations between fuel

price and airline responses focusing on ticket price and fleet structure. Airlines make

decisions based on revenue and cost, trying to maximize net income. Facing financial

difficulties, layoffs and fleet reduction are common. Airlines determine the ticket

fare based on a number of parameters. Different airlines use different strategies.

They also need to make decisions on their fleet based on aircraft age, advantages of

switching to a new aircraft. These decisions are mostly based on current and expected

demand. In recent years, fuel price volatility emerged, bringing another parameter in

the picture, which impact on airline behavior is not very well known. Traditional air
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traffic forecast tools base their forecast on parameters such as economic growth and

fuel price. The uncertainty associated with these parameters has grown with the fuel

price volatility observed in the past few years. To address this issue, the procedure is

to look at historical data in order to identify some trends and potential correlations

in cost, ticket price, fleet of different airlines. The focus should be on the last ten

years since the fuel price has fluctuated significantly during this period (up to a factor

three-fold increase in 2008). A given set of airlines was chosen for the analysis, as well

as a given time of year in order to reduce variability and uncertainty of the results.

Observing the airlines’ responses to an increase in fuel price and their outcome, future

decisions can be made based on previous experiences. The results could help predict

the response to future fuel price fluctuations, anticipate the demand for new aircraft,

and forecast future activity. The airline industry was divided into airline categories

and airlines with a high market share from each category were chosen for the analysis.

Total time period studied and frequency of the data analyzed were chosen in order

to try to isolate the effect of fuel price. The focus of the study is on fleet and ticket

price. The data was taken from the Bureau of Transportation Statistics aviation data

library online.

B.1 Preliminary Considerations

Two main types of airlines are identified: Network Legacy Carriers and Low Cost

Carriers. Other types such as Regional Carrier and Commuters are not considered in

this analysis. Both Network Legacy Carriers and Low Cost Carriers are certified under

Part 121 of Title 14 of the Code of Federal Regulations. Network Legacy Carriers

are airlines that flew interstate routes before deregulation, and have international

operations. Low Cost Carriers are airlines that have a stated low fare business model.

Seasonality is a very important factor in the transportation industry. During holi-

days, the demand for travel tends to increase significantly. The number of passengers
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varies significantly from month to month. Therefore it is necessary to choose a time

of year and keep the same time each year for comparison. By averaging over a long

period of time, short time exceptional events may distort the results. Hence the need

to choose a period of time that is as short as possible. However the data available also

has a time period. Some data sets are reported monthly, but most are reported on a

quarterly basis. Thus the first quarter of each year has been chosen for the analysis.

B.2 Database Description

Air Carriers (both passenger and cargo airlines) are required by US federal law to re-

port financial and operating information to the Department of Transportation. Form

41 contains financial information on large certified U.S. air carriers such as balance

sheet, income statement, cash flow, aircraft inventory, aircraft operating expenses, and

air carrier operating expenses. Certified Carriers are carriers that hold Certificates of

Public Convenience and Necessity issued by the U.S. Department of Transportation

authorizing the performance of air transportation with annual operating revenues of

20 million dollars or more. Data is available starting in 1990. The time period is

different for each schedule: one month, quarter, or 6 months. Balance sheets are

found in schedule B-1 and schedule B-11. The first one represents quarterly reports

from major, national and large regional carriers. The second represents semiannual

reports for smaller carriers. The profit and Loss Statements are found in schedules

P-12 for large carriers, P-11 for smaller ones. More detailed data can be retrieved

from schedule P-12 Aircraft Operating Expenses, which provides expenses for each

aircraft and each region of the world. This is of interest for studies on the impact of

jet fuel price on a given carrier or aircraft. The following schedules are particularly

interesting for this study:

• Schedule P-12A contains reported fuel costs and gallons of fuel consumed by air

carrier and category of fuel use. It includes both schedule and non-scheduled,
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domestic and international service. Data is available starting in 2000, and has

a time period of one month.

• Schedule P-52 gives aircraft operating expenses such as payroll expenses, fuel

costs, maintenance, and depreciation costs for large certificated U.S. air carriers.

The time period is a quarter.

• Schedule P-10 lists the number of employees each year, and schedule P-6 con-

tains quarterly operating expenses including salaries and benefits.

The T100 Segment contains non-stop segment data for domestic flights and in-

ternational flights leaving from or arriving in the U.S. For each city pair, it gives

information on the air carrier, the aircraft type, the available capacity, the number of

scheduled departures and departures performed, the distance and the aircraft hours.

The Load Factor was retrieved by averaging the number of passengers to number of

seats ratio.

Form 41 Schedule B43 table tracts the aircraft inventory. It contains the informa-

tion on the year the aircraft was first placed in service, its status (owned or leased),

and its operating status. Data is presented for major U.S. carriers and is available for

only 2006, 2007 and 2008 (the data is reported on a yearly basis). Using this database

and the Form 41 Schedule P-52 total air hours metric, the utilization of each aircraft

can be determined.

The Airline Origin and Destination Survey is a 10 percent sample of airline tickets

from reporting carriers. The data include ticket information such as fare, distance,

carrier information, itinerary information, credibility of the reported fare. Data is

available starting in 1993, and is reported on a quarterly basis.

The Ticket Fare varies significantly, even for a given origin, a given airline and a

given distance. Therefore a process is needed in order to try to identify some trends

over time and potential correlations with fuel price. The methodology is as follow: for
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each airline, an average of the ticket fare is calculated for each distance group (from

0 to 3000 miles, with increments of 500 miles). Only domestic flights are considered

and values that are not credible are removed (values higher than 10,000 dollars and

below 50 dollars, which are assumed to be the result of Frequent Flying programs).

Correlations for the one coupon data, and the two coupons roundtrip data (which

represent the 50-70 percent of the flights) were calculated.

B.3 Results and Analysis

Market Fuel prices increased by a factor five between 2002 and 2008, and reached their

highest values in the summer of 2008. Since most of the data is obtained for the first

quarter of each year, the fuel price data was averaged over the first three months of

each year. The correlation between different variables and the fuel price are presented

below, and regressions are implemented. The R-squared value is computed. The R-

squared value represents the proportion of the variance in the considered variable

that is attributable to the variance in fuel price.

B.3.1 Cost

The direct impact of fuel price is observed on the cost data of the airlines. The

data was obtained using the Form 41 schedule P-52 database. The increase in fuel

price resulted in an increase in fuel cost per hour for the airlines. The correlation is

very high for most airlines. Airlines that hedged fuel show a lower R squared value

(Table 31). It is observed that the fuel cost became a very significant part of the

Direct Operating Cost, going from a ratio of 30 percent to 60 percent during the fuel

price peak time. This ratio is relatively constant across all airlines at a given point in

time. Correlations of this ratio to the fuel price are relatively high. Hedging strategies

explain the lower value of some airlines during the peak. The Direct Operating Cost

increased when fuel price increased, and the correlation is high. Network Legacy

Carriers have a higher Direct Operating Cost than Low Cost Carriers (about 50
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Table 31: R-squared values for Cost and Fuel Issued

Airline Airline
Fuel Cost

Fuel
Cost/DOC

DOC Fuel Issued

NLC 1 0.7960 0.8490 0.5990 0.6856
NLC 2 0.9925 0.8492 0.9070 0.0023
LCC 1 0.7968 0.9294 0.6846 0.5377
LCC 2 0.9774 0.9206 0.9592 0.5394

percent higher). Thanks to hedging strategy, some airlines managed to minimize the

impact of fuel cost on their operating cost during the fuel price peak of 2007-2008.

Low Cost Carrier pay a lower fuel cost and a lower Direct Operating Cost than

Network Legacy Carriers. The ratio of fuel cost to DOC ratio is very similar for all

LCC and NLC. For all airlines, the fuel cost increase was more significant than the

DOC increase, which explains the increase in fuel cost to DOC ratio.

The airlines reported the Fuel Issued as well as the total air hours. From this data,

the Fuel Issued per hour was determined. The trend is a slight decrease in fuel issued

over the past few years for most airlines, even when the fuel price was not increasing

significantly. The correlation to fuel price is low. It can be noticed that the decrease

seems to have been more significant in 2007 and 2008 (higher slope for most carriers).

Low Cost Carriers tend to have lower fuel issued since they operate different aircraft

and different routes (and therefore have a lower fuel cost and a lower Direct Operating

Cost as presented before). The fuel issued is the best airline estimate for the actual

fuel use. The correlation to fuel price is not obvious, since fuel consumption is highly

dependant on the fleet composition, air traffic, payload, and weather.

B.3.2 Ticket Price

A rapid and direct way for airlines to increase revenue in order to account for the

operating cost increase depicted above is to increase air fares. The correlation between

air fare and fuel price is not very high for most airlines. A lot of other parameters
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Table 32: R-squared values for Ticket Price 2 coupons round trip data

Airline Average R-squared
(all distances), 2000-
2010

Average R-squared
(all distances), 2005-
2010

NLC 1 0.1934 0.3051
NLC 2 0.2702 0.3717
LCC 1 0.6650 0.3101
LCC 2 0.9058 0.8437

can have an impact on air fare, such as lower competitor’s fare, changing demand,

etc. Data includes the ticket price, taxes and airport fees, but does not include extra

fees charged by airlines such as baggage fees, internet in-flight and select coach fee.

It can be observed that airlines increased their fares when fuel price went up, and

that long distance flights were more sensitive to fuel price than short distance flights

(peaks appear more clearly for longer distances than short distances).

The correlations between fuel price and ticket price are relatively low for most

airlines as listed in Table 32. LCC 2 fares are well correlated with fuel price. A slight

increase in R-squared value can be observed for NLC when focusing on the 2005-2010

period. LCC 1 low correlation may be related to hedging strategies which help reduce

the airline fuel cost and the correlation to market fuel price. The ticket price to fuel

price linear regressions for LCC 2 (which ticket price has a good correlation to fuel

price) are listed in Table 33. From the slopes of the linear regression, the sensitivity

of longer flights ticket prices to fuel prices is highlighted. The longer flights have a

higher slope, which represents a higher sensitivity to fuel price.

An interesting point to mention is the significant decrease in airfare in 2002-

2003 for long distance 1 coupon flights on Network Legacy Carriers. The 1 coupon

data from NLC shows a significant decrease between 2000 and 2004. During this

period, the airline industry went through a massive restructuration with a realigned

fare structure that narrowed the gap between premium and walkup fares and leisure
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Table 33: Ticket Price Linear Regression for LCC 2 (2 Coupons, 2001-2010)

Distance Group Linear Regression
0-500 miles y=0.404x+132.7
500-1000 miles y=0.5718x+110.89
1000-1500 miles y=0.5697x+158.49
1500-2000 miles y=0.5777x+237.51
2000-2500 miles y=0.7334x+225.47

fares, due to the availability of internet booking and a drop in demand in the early

2000s. Two periods can be identified: between 2000 and 2005, the airline industry

was restructuring, between 2005 and 2010, it responded to higher fuel prices. This

explains the better correlations obtained previously on the NLC 2 Coupons data by

focusing on the 2005-2010 period.

B.4 Airline Fleet

The impact of the fuel price variation on the fleet represents crucial information

when trying to quantify the magnitude of the variation that is necessary for airlines

to become interested in small decreases in fuel consumption of newer aircraft. The

two Legacy Carriers decreased the number of aircraft in their fleet between 2006 and

2008, whereas the two Low Cost Carriers increased the number of aircraft in their

fleet. Airlines decrease their number of operating aircraft and employees to reduce

capacity. It is uneasy to isolate the effect of fuel price since the data is available for

a short period of time and the situation faced by NLC and LCC were significantly

different. It is observed that the trends in fleet size are very different for the airlines

considered, which suggests that fuel price is not a determining factor for fleet size.

Fleet size is more likely to be determined by other factors such as routes, financial

situation, competition and global economical situation. It is not an easy task to

isolate the effect of fuel price since other parameters were changing at the same time.

The airlines’ fleets were analyzed. For Low Cost Carrier, it is similar to their

189



domestic operations’ fleet since LCC operate mostly domestic routes. But for NLC,

it is important to realize that some of the aircraft listed would operate international

routes. Overall, Low Cost Carriers operate a much smaller variety of aircraft. It

can also be observed that airlines fleet composition is relatively stable: the seat class

distribution of aircraft operated by each airline does not change significantly from

year to year. Generally speaking, the number of old, less efficient aircraft decreased.

Due to the difficulty of observing trends looking at the aircraft fleet reported

by each airline in Schedule B43, which presents data for only the years 2006, 2007

and 2008, System-wide data was analyzed using the T100 Segment data, presenting

aircraft operations. System-wide, the number of departures of older aircraft such

as the MD-80 decreased in the past years while its competitors the A320 and B737

increased their shares. This supports the observation that airlines replaced older and

less efficient aircraft by newer more efficient aircraft. However the trends seem to be

relatively constant over the 2005-2010 period, without significant changes during the

peak, showing that the fuel price increase magnitude in the past years did not result

in a significant change in aircraft operations.

B.5 Route Structure

In order to better understand the observations on ticket price and airline fleets, some

data on the route structure of each airline has been retrieved from the T100 Segment

data for domestic flights. The purpose is to confirm the trends in airline expansion

or contraction: from the fleet analysis, it was observed that the Network Legacy

Carriers decreased the number of aircraft in their fleet whereas the Low Cost Carrier

increased them. This suggests that NLC decreased their number of flights, whereas

LCC increased them. It can be noticed that LCC2 started with a very low number

of flights since it was created recently. The correlations with fuel price are relatively

low: Negative correlation for NLC with R-squared values of 0.59 and 0.74, positive
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correlation with R-squared values of 0.85 and 0.84 for LCC. Although the R-squared

values are relatively high for the two Low Cost Carriers, the trends are opposite.

Trends may be better explained by the fact that LCC expanded their market when

the fuel price was increasing (and when demand was increasing). NLC decreased their

number of destinations, while LCC increased them. The correlations with fuel price

are also relatively low. Similarly to the number of departures, the different trends

between LCC and NLC are better explained by the competitive market between

airlines and the changes in market share. Overall, Low Cost Carriers are increasing

their domestic market share, at the expense of the Network Legacy Carriers.

The average distance flown by passengers on each airline also changed: NLC 2

flies the longer domestic routes with an average of 1100 miles, relatively stable over

the past ten years. NLC 1 and LCC 1 increased their average passenger distance by

200 miles over the past ten years. LCC 2 opened new routes and increased its average

distance between 2000 and 2005.

B.6 Conclusion

Fuel Price fluctuations directly impact the operating cost of the airlines: the fuel

cost per hour increases, becoming a more significant part of the Direct Operating

Cost, which increases as well. As seen in this analysis, in order to respond to these

changes, airlines have several options: they can modify their fleet, change their ticket

price, their route structure, their number of employees and their salaries, and hedge

fuel. Most of these changes cannot happen too quickly: decisions associated with fleet

replacement are long term decisions, and airlines must weigh the pros and the cons

of changing aircraft now instead of later. Ticket price changes need to be minimized

otherwise the airline risks a loss of demand.

The airlines’ fleet and ticket price changed when fuel price increased. Airlines

increased their ticket price, especially for long routes. The correlations with fuel
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price remain relatively low for most of the data over the past decade. Two periods

were identified: The first half of the past decade was associated with an adaptation

of NLC fares to be able to compete on the changing market, and the second half

of the past decade was associated with an increase in ticket price due to fuel price

increase. LCC 2, a relatively small and new airline, has a high correlation between

fuel price and ticket price. For other airlines, the low correlation observed may be due

to the fact that airfares are highly dependent on other parameters such as demand,

competition, and financial situation of the airline. Therefore any attempt to link

fuel price to ticket price must be carefully made: some sort of equilibrium in market

share and other parameters that may have an impact on demand must be reached.

Network Legacy Carrier, which faced the growing market share of Low Cost Carrier,

and financial difficulties, reduced the number of aircraft they operate. Airlines retired

less efficient aircraft. Aircraft utilization and load factor increased in the past few

years.

Fuel price is not the only parameter that influences airlines’ decisions. Airlines’

behavior is also highly dependent on economical growth. The time period studied here

includes an increase in fuel price, followed by an economical downturn and a decrease

in fuel price. Some trends have been identified, some with good correlation with fuel

price, some with very low correlation. The results that show good correlation can

be used for studies of air traffic demand forecasts, and fleet forecast, based on fuel

price forecast and policy induced fuel price changes. Further study including more

parameters is needed to explain the trends that show low correlation with fuel price.
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APPENDIX C

AGGREGATION FROM ABM TO SD

The output from Mi is a 204x204 OD matrix. A portion of this matrix is given as

an example in Figure 101.

Figure 101: Mi output

Using the latitude and longitude data of each MSA, the great circle distance can

be determined using the following code.

LatLong = xlsread(’MSALatLong.xlsx’);

for i=1:204

for j=1:204

GCD(i,j)=deg2sm(distance(LatLong(i,1),LatLong(i,2),LatLong(j,1),LatLong(j,2)));

end

end

csvwrite(’GreatCircleDistance.csv’,GCD)
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Table 34: GAME ALN DG1 initialization data

DG-MMG initial demand
DG1-LL 4.11006e+006
DG1-LM 6.23184e+006
DG1-LS 5.2118e+006
DG1-LN 6.85605e+006
DG1-MM 1.85109e+006
DG1-MS 4.67987e+006
DG1-MN 2.1653e+006
DG1-SS 938874
DG1-SN 1.67513e+006
DG1-NN 418405

The aggregation of data between the 204x204 OD matrix from Mi to the data by

DG and MMG for GAME is then done by going through the cells of the OD matrix

and counting trips for each DG and MMG combination using the code listed below

(given for DG1 and Large to Large MSA as an example):

for i=1:204

for j=1:204

if strcmp(LMSN(i,2),’L’) && strcmp(LMSN(j,2),’L’) && GCD(i,j)>=100 && GCD(i,j)<200

LLDG1=LLDG1+data(i,j)*GCD(i,j);

end

end

end

If the number of passenger is desired instead of the passenger miles traveled, then

replace LLDG1=LLDG1+data(i,j)*GCD(i,j) with LLDG1=LLDG1+data(i,j). This

code is repeated for each DG and MMG combination.

GAME’s initialization data is given in Table 34, through Table 43.
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Table 35: GAME ALN DG2 initialization data

DG-MMG initial demand
DG2-LL 1.42627e+007
DG2-LM 3.49161e+007
DG2-LS 2.0109e+007
DG2-LN 1.54749e+007
DG2-MM 1.29371e+007
DG2-MS 1.70047e+007
DG2-MN 1.11023e+007
DG2-SS 4.51596e+006
DG2-SN 6.9168e+006
DG2-NN 2.08823e+006

Table 36: GAME ALN DG3 initialization data

DG-MMG initial demand
DG3-LL 1.00573e+007
DG3-LM 2.7009e+007
DG3-LS 1.73963e+007
DG3-LN 2.10796e+007
DG3-MM 1.52175e+007
DG3-MS 1.80486e+007
DG3-MN 1.95471e+007
DG3-SS 6.48207e+006
DG3-SN 1.19417e+007
DG3-NN 4.44876e+006

Table 37: GAME ALN DG4 initialization data

DG-MMG initial demand
DG4-LL 1.21771e+007
DG4-LM 3.76009e+007
DG4-LS 1.77226e+007
DG4-LN 2.29271e+007
DG4-MM 1.72424e+007
DG4-MS 2.11266e+007
DG4-MN 2.21056e+007
DG4-SS 5.4318e+006
DG4-SN 1.30884e+007
DG4-NN 6.04548e+006
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Table 38: GAME ALN DG5 initialization data

DG-MMG initial demand
DG5-LL 1.21831e+007
DG5-LM 2.25389e+007
DG5-LS 1.62328e+007
DG5-LN 1.44562e+007
DG5-MM 8.26628e+006
DG5-MS 1.40622e+007
DG5-MN 9.67638e+006
DG5-SS 4.97617e+006
DG5-SN 7.7774e+006
DG5-NN 2.45813e+006

Table 39: GAME GND DG1 initialization data

DG-MMG initial demand
DG1-LL 7.58662e+007
DG1-LM 1.15509e+008
DG1-LS 1.55229e+008
DG1-LN 1.45774e+008
DG1-MM 5.2526e+007
DG1-MS 1.34328e+008
DG1-MN 1.04527e+008
DG1-SS 5.47742e+007
DG1-SN 9.37119e+007
DG1-NN 5.03142e+007

Table 40: GAME GND DG2 initialization data

DG-MMG initial demand
DG2-LL 3.34427e+007
DG2-LM 9.0041e+007
DG2-LS 4.7233e+007
DG2-LN 6.47532e+007
DG2-MM 3.03283e+007
DG2-MS 5.77203e+007
DG2-MN 7.09511e+007
DG2-SS 2.23583e+007
DG2-SN 5.82564e+007
DG2-NN 3.26101e+007
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Table 41: GAME GND DG3 initialization data

DG-MMG initial demand
DG3-LL 1.70678e+006
DG3-LM 8.48003e+006
DG3-LS 5.13661e+006
DG3-LN 1.10268e+007
DG3-MM 5.26852e+006
DG3-MS 8.53143e+006
DG3-MN 1.91301e+007
DG3-SS 3.97688e+006
DG3-SN 1.27655e+007
DG3-NN 1.0827e+007

Table 42: GAME GND DG4 initialization data

DG-MMG initial demand
DG4-LL 537465
DG4-LM 1.83452e+006
DG4-LS 884976
DG4-LN 2.26599e+006
DG4-MM 900805
DG4-MS 1.24145e+006
DG4-MN 2.78981e+006
DG4-SS 410771
DG4-SN 2.06845e+006
DG4-NN 2.26078e+006

Table 43: GAME GND DG5 initialization data

DG-MMG initial demand
DG5-LL 243967
DG5-LM 421147
DG5-LS 322133
DG5-LN 323131
DG5-MM 165891
DG5-MS 272965
DG5-MN 246117
DG5-SS 81087.6
DG5-SN 177419
DG5-NN 75101
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APPENDIX D

GROUND EMISSIONS

This section gives more information on the experimental approach to derive the main

parameters that determine the ground vehicle emissions using existing tools. EPA’s

tool MOVES (Motor Vehicle Emissions Simulator) is used to estimate national in-

ventories and fuel consumption projections at the county level. It allows for different

scenarios and generates results on various species. MOVES consists of many different

components including various databases and analysis modules. Its execution requires

many assumptions for a large number of variables which include vehicle types, fleet

age distribution, fuel types, meteorological data, road types, speed distribution, day

and month vehicle mile traveled (VMT) fractions, etc. Screening tests were performed

to identify the most essential variables. Three variables were found to be the most

affecting factors for CO2 emission and thus fuel consumption: vehicle speed, vehi-

cle age and outside temperature. The objective was to obtain a surrogate model of

MOVES using a DOE on the three variables. Vehicle speeds of 1.25 mph, 5 mph, 10

mph, 20 mph, 45mph and 75 mph were used. Temperatures ranging from 16 to 104

with 8 degree increment, and vehicle ages of 0 to 30 years with 1 year increment were

used. Full factorial is desired which makes 2232 data points. Results are shown in

Figure 102.

The surrogate model for CO2 emissions is based on the following equation:

ΦCO2
(v, t, a) = V (v).T (t).A(a) (27)

where v, t and a are the vehicle speed, the outside temperature and the vehicle

age respectively.
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Figure 102: MOVES simulation results

The equation for speed has the following form:

V (v) = β0 + β1.v + β2.v
2 + β3.v

−β4 (28)

where βi are the regression parameters.

The equations for temperatures and age are as follow:

T (t) = Θ0 + (Θ1 −Θ0)(1 + Θ2e
−Θ3(t−Θ4))

−1
Θ5 (29)

A(a) = α0 + (α1 − α0)(1 + α2e
−α3(a−α4))

−1
α5 (30)

The best regression parameters were identified and gave an R-squared value of

0.9935. The emissions are then quantified using the following equation:

E = VMT

∫ ∫ ∫
Φ(v, t, a).ρ(v, t, a).dv.dt.da (31)

where ρ is the VMT density distribution function. MOVES uses speed distribution

for each road type. In this research focusing on long distance travel, the rural and
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urban restricted access roads are most used and their speed distributions are given in

Figure 103. Two speed bins, which vary based on congestion and driving speed, are

used.

Figure 103: MOVES speed distribution

MOVES includes a relatively detailed database of hourly average temperature

and humidity for each county and each month. A national temperature distribution

can be obtained. Weighted values were computed to account for the fact that most

VMT occurs at a given time of the day and certain regions of the country. Monthly

variations were taken into account but are negligible. As can be seen in Figure 104,

the distribution resembles a triangular distribution, which is the approximation used

in the ground module.

For vehicle age distribution, two sets of data were used. The default database

in MOVES was compared to some data from www.georgiaair.org, sample MOVES

Input Files. Both show similar trends which can be approximated by a trapezoidal

distribution as can be observed in Figure 105.
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Figure 104: MOVES temperature distribution

Figure 105: MOVES age distribution
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APPENDIX E

POLICY AND TECHNOLOGY SCENARIO

EXPLORATION WITH EGAME

The eGAME GUI is shown in Figure 106. A set of input is defined on the upper

left corner. They include a number of variables that may be used to explore a wide

variety of scenarios:

• a set of exogenous variables, such as GDP and fuel price

• policy variables with the date of introduction and value of a tax

• variables related to the air transportation system, such as pass through, capac-

ity, fleet replacement scenario

• ground transportation variables, including the expected MPG improvements,

the price premium of EV, the average driving speed

• variables related to the new mode (P2P) such as aircraft size and range.

Simulation can be run from the buttons at the bottom left corner. It is possible to

run the demand model and the fleet model independently, or run them successively

with iterations to obtain the final demand and emissions with potential rebound

effects. Results for demand and emissions of each mode of transportation are observed

on the right-hand side of the eGAME GUI. Further analysis may be performed using

the time series of the results from the demand and fleet models which are listed in

a separate tab. From this data, the radiative forcing module is used to compute

the impact of different emitted species and the total radiative forcing is obtained.

It is then used to compute policies based on radiative forcing, using the ratio of
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total radiative to the radiative forcing due to CO2 only. This ratio can be used to

appropriately scale the CO2 tax, which is computed based on the fuel CO2 content

and the social cost of carbon. These policies may then be used to adjust the inputs

and run the model again in order to quantify the potential improvements from the

implemented policies and technologies. The user may compare different scenarios by

keeping track of the desired data at each run and use the decision making tool with

the scenarios results to plot each scenarios against the main metrics of interest and

rank them using the methodology described in section 6.5.

Figure 106: eGAME GUI
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