
Brigham Young University

BYU ScholarsArchive

All Theses and Dissertations

2016-04-01

Stiffness Reduction Strategies for Additively
Manufactured Compliant Mechanisms
Ezekiel G. Merriam
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations

by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Merriam, Ezekiel G., "Stiffness Reduction Strategies for Additively Manufactured Compliant Mechanisms" (2016). All Theses and
Dissertations. 5873.
https://scholarsarchive.byu.edu/etd/5873

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F5873&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F5873&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F5873&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F5873&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F5873&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F5873&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/5873?utm_source=scholarsarchive.byu.edu%2Fetd%2F5873&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Stiffness Reduction Strategies for Additively

Manufactured Compliant Mechanisms

Ezekiel G. Merriam

A dissertation submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Larry L. Howell, Chair

Spencer P. Magleby

Paul W. Richards

Eric R. Homer

Mark B. Colton

Department of Mechanical Engineering

Brigham Young University

April 2016

Copyright © 2016 Ezekiel G. Merriam

All Rights Reserved

ABSTRACT

Stiffness Reduction Strategies for Additively

Manufactured Compliant Mechanisms

Ezekiel G. Merriam

Department of Mechanical Engineering, BYU

Doctor of Philosophy

This work develops and examines design strategies for reducing the stiffness of 3D-printed

compliant mechanisms. The three aspects of a flexure that determine its stiffness are well known:

material, boundary conditions, and geometry. In a highly constrained design space however, flex-

ure stiffness may remain unacceptably high even while arriving at the limits of design constraints.

In this work, changes to geometry and boundary conditions are examined that lead to drastically

reduced stiffness behavior without changing flexure thickness, width, or length. Changes to ge-

ometry can result in very complex mechanisms. However, 3D-printing enables almost arbitrarily

complex geometries. This dissertation presents three design strategies for stiffness reduction: static

balancing, lattice flexures, and compound joints.

Static balancing refers to changes in the boundary conditions that result in a near-zero net

change in potential energy storage over the useful deflection of a flexure. In this work, I present a

method for static balancing that utilizes non-dimensional parameters to quickly synthesize a joint

design with stiffness reduced by nearly 90%. This method is not only simple and straightforward,

it is applicable to a wide range of flexure topologies. The only requirements on the joint to be

balanced are that it must be approximated as a pin joint and torsion spring, and it must have a

well-understood stiffness when subjected to a compressive load.

Lattice flexures result from modifications to geometry that reduce cross-sectional area with-

out changing width. However, the reduction in stiffness is greater than the reduction in cross sec-

tional area. This can occur because the bending load is now carried by beams partially in torsion.

Two lattice geometries are proposed and analyzed in detail using analytic and numeric techniques.

It is shown that the off-axis stiffness behavior of lattice flexures can be better than that of conven-

tional blade flexures while bending stiffness is reduced >60%.

Compound joints are those that consist of arrays of flexures arranged co-axially. This

arrangement provides increased range of motion, generally decreased stiffness, and improved sta-

bility. Additionally, a method is herein presented to reduce the parasitic center shift of a compound

joint to nearly zero at a specified deflection.

The penultimate chapter demonstrates how all three strategies can be used together, and

includes new results to facilitate their combination.

Keywords: compliant mechanisms, static balancing, lattice flexures, compound joints, load-dependent

stiffness, 3D printing

ACKNOWLEDGMENTS

I could not have completed this dissertation without the help of many people. Larry Howell

has been more than an advisor to me over the years; he has truly been a mentor and a source of

wisdom in many of the large and small things that make a man worth admiring. Kevin Cole, Ken

Forster, Nick Hawkins, Miriam Busch, Judy Stoudt, and the other members of the department

staff have been wonderful support in fabricating prototypes, building DAQs, and handling the

paperwork required to complete my studies.

My peers have also been an invaluable source of support. In particular, Jason Lund, Shan-

non Zirbel, Jared Bruton, and Todd Nelson have helped solve many issues, from de-bugging code

to securing funding to technical discussion and simple comedy relief. Abraham Lee’s particle

swarm optimiztion algorithm proved invaluable in many of my design efforts. Patrick Walton’s

help constructing several of my prototypes is gratefully acknowledged.

This work would have been impossible without the financial support of NASA’s Office

of the Chief Technologist; its support is gratefully acknowledged, along with the mentorship of

Jonathan Jones and Douglas Hofmann. Additionally, Jonathan Jones and Kenneth Cooper of

NASA Marshall Space Flight Center are profusely thanked for the fabrication of the titanium pro-

totypes. Additional funding was provided by NASA Grant No. NNX13AF52G.

Finally, my wife Kayla deserves the highest praise for her unflinching and unfailing sup-

port. She has been my wellspring of encouragement and motivation. It is to her that this dissertation

is dedicated.

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . x

NOMENCLATURE . xiv

Chapter 1 Introduction . 1

1.1 Problem Statement . 1

1.2 Background . 2

1.2.1 Improving Range of Motion . 2

1.2.2 Reducing Actuation Effort . 4

1.2.3 Additive Manufacturing . 5

1.2.4 Combining Additive Manufacturing with Compliant Mechanisms 6

1.3 Research Objectives . 7

1.3.1 Reducing Actuation Effort . 8

1.3.2 Improving Range of Motion . 9

1.4 Research Methods . 10

1.5 Relevance to Additive Manufacturing . 10

1.6 Collaboration . 11

Chapter 2 Design of 3D Printed Titanium Compliant Mechanisms 13

2.1 Abstract . 13

2.2 Introduction . 13

2.3 Material Considerations . 14

2.3.1 Porosity of EBM-Produced Parts . 14

2.3.2 Thickness Correction Factor . 15

2.3.3 Allowable Stress . 15

2.4 Geometry Constraints . 16

2.4.1 Feature Geometry . 16

2.4.2 Thermal Stresses and Part Warping . 17

2.4.3 Manufacturing Clearances . 18

2.4.4 Powder and Support Removal . 18

2.5 Summary . 19

Chapter 3 Non-Dimensional Approach for Static Balancing of Rotational Flexures . 21

3.1 Introduction . 21

3.2 Nomenclature . 22

3.3 Balancing of Load-Independent Hinge-Spring System 24

3.4 Extending to Load-Dependent Joints . 28

3.5 Example Design . 30

3.6 Experimental Results and Discussion . 32

3.7 Conclusion . 34

iv

Chapter 4 A Method for Determining Load-Dependent Stiffness of Flexures 35

4.1 Introduction . 35

4.2 Background . 35

4.3 Methods . 36

4.4 Verification . 40

4.5 Load Dependent Stiffness . 40

4.5.1 Cross-Axis Flexural Pivot (CAFP) . 40

4.5.2 Triangle Flexure (TF) . 40

4.5.3 Cartwheel Hinge (CH) . 41

4.5.4 Small-Length Flexural Pivot (SLFP) . 42

4.6 Discussion . 43

4.6.1 Cross-Axis Flexural Pivot (CAFP) . 43

4.6.2 Triangle Flexure and Cartwheel Hinge . 44

4.6.3 Small-Length Flexural Pivot (SLFP) . 45

4.7 Conclusion . 45

Chapter 5 Lattice Flexures: Geometries for Stiffness Reduction Of Blade Flexures . 47

5.1 Introduction . 47

5.2 Approach . 49

5.2.1 Stiffness of Lattice Flexures . 50

5.2.2 Off-Axis Stiffness Considerations . 54

5.3 Prototype Testing and Performance . 58

5.3.1 Bending Stiffness . 59

5.3.2 Torsional Stiffness . 61

5.4 Discussion . 63

5.5 Conclusions . 64

Chapter 6 Compound Joints: Behavior and Benefits of Flexure Arrays 67

6.1 Introduction . 67

6.2 Approach . 68

6.2.1 Range of Motion . 68

6.2.2 Stiffness . 69

6.2.3 Center Shift . 69

6.2.4 Off-Axis Stiffness . 73

6.3 Experimental Setup . 74

6.3.1 Stiffness . 74

6.3.2 Center Shift . 75

6.4 Results . 76

6.4.1 Stiffness and Off-Axis Stiffness . 76

6.4.2 Center Shift . 77

6.5 Example Mechanism . 78

6.6 Discussion . 79

6.6.1 Stiffness . 79

6.6.2 Center Shift . 81

v

6.7 Conclusions . 83

Chapter 7 Integration of Advanced Stiffness-Reduction Techniques Demonstrated

in a 3D-Printable Joint . 87

7.1 Background . 87

7.2 Lattice Flexures . 89

7.2.1 Overview . 89

7.2.2 Load-Dependent Stiffness Behavior . 89

7.3 Static Balancing . 91

7.4 Printable Balancer . 94

7.5 Flexure-Balancer Integration . 98

7.6 Experimental Validation . 99

7.7 Discussion and Conclusion . 101

Chapter 8 Conclusions and Recommendations . 105

8.1 Summary . 105

8.2 Contributions . 106

8.3 Conclusions . 108

8.4 Recommendations . 109

REFERENCES . 111

Appendix A Codes and Scripts used in Static Balancing 119

A.1 Finding the Π-Group Relationship . 119

A.2 Balanced Spring Design . 126

A.3 FEA Confirmation . 134

Appendix B Codes and Scripts used in the Analysis of Lattice Flexures 139

B.1 ANSYS Scripts . 139

B.1.1 Lattice Macros . 144

B.1.2 Off-Axis Stiffness Analysis . 147

B.1.3 Analysis of Conventional Blade Flexures 158

B.2 MatLab Scripts . 161

Appendix C Codes and Scripts used in the Analysis of Compound Joints 171

C.1 Center Shift Scripts . 171

C.1.1 ANSYS Scripts . 171

C.1.2 MatLab Scripts . 182

C.2 Off-Axis Stiffness . 183

C.2.1 ANSYS Scripts . 183

C.2.2 MatLab Scripts . 196

C.3 Image Processing . 206

Appendix D Codes and Scripts used in Static Balancing of a Compound Lattice-Flexured

CAFP . 213

vi

D.1 Determining Load-Dependent Stiffness . 213

D.2 System Design . 227

D.3 Balancer Design . 231

D.4 Confirmation of Final Design . 250

Appendix E Setup and Use of the Torque-Rotation Measuring Apparatus 259

E.1 Overview . 259

E.2 Hardware . 259

E.2.1 DAQ . 259

E.2.2 Sensors . 260

E.2.3 Mechanisms . 262

E.3 Software . 262

E.3.1 Spreadsheet . 263

E.3.2 Labview DAQ . 263

E.4 Procedures . 264

E.4.1 Setup . 264

E.4.2 Calibration . 268

E.4.3 Measurement . 274

vii

LIST OF TABLES

2.1 Summary of titanium strength data. 16

3.1 Tabulated values of Π1 and Π2, with the expected reduction in joint stiffness. . . . 27

3.2 Design parameters for balanced CAFP. 30

3.3 Design parameters for hypothetical Load-Independent CAFP. 31

4.1 Mesh density used in different joint types. 37

4.2 Published data used for FEA validation. 40

5.1 Comparison of lattice flexure off-axis stiffness to conventional blade flexure. 59

5.2 Geometric parameters for test specimens. 60

5.3 Summary of measured CAFP stiffness and lattice flexure stiffness reduction. 62

5.4 Summary of measured titanium CAFP stiffness and lattice flexure stiffness reduction. 62

6.1 Coefficients for surface fits for non-dimensional stiffness of compound joints. . . . 82

6.2 Comparison of FE model and literature. 83

7.1 Values of the βi coefficients to describe the stiffness of lattice-flexured CAFPs. . . 91

7.2 Parameters for the balanced lattice flexure system. 92

7.3 Variables to be optimized in the design of the balancer spring. 96

7.4 Balancer parameters achieved with printable balancer. 97

7.5 Actuation energy reduction measured in a titanium prototype. 102

E.1 Part numbers of purchased hardware. 260

E.2 Wiring connection of the torque transducer. 266

viii

LIST OF FIGURES

1.1 A folded beam suspension. 2

1.2 An illustration of static balancing. 3

1.3 A compliant titanium hinge produced with EBM. 5

1.4 A two-degree-of-freedom pointing mechanism produced with EBM in titanium. . . 6

1.5 Examples of additively manufactured compliant mechanisms. 7

1.6 An early lattice-flexured CAFP. 9

1.7 Compound joint examples. 9

2.1 A compliant titanium hinge produced with EBM. 14

2.2 Titanium prototypes used to validate models. 16

2.3 Two design modifications that increase likelihood of build success. 17

2.4 Build failure due to warping of slender flexures. 18

2.5 Support material removal. 19

3.1 An idealized load-independent system. 23

3.2 A cross-axis flexural pivot with associated variables. 24

3.3 The relationship between Π1 and Π2. 27

3.4 Normalized balanced stiffness as a function of Π1. 28

3.5 Comparison of unbalanced and balanced stiffness of a CAFP. 31

3.6 A prototype joint designed using the method detailed in this chapter. 32

3.7 The stiffness of the balanced and unbalanced joints plotted for comparison. 33

3.8 The percent reduction in stiffness of the balanced joint. 34

4.1 Joint arrangement and loading. 37

4.2 Comparison of FEA results with analytic solution for a symmetric CAFP. 39

4.3 Schematics for each flexure analyzed. 41

4.4 Finite element models for each flexure analyzed. 42

4.5 Stiffness behavior of the triangle flexure. 43

4.6 Stiffness behavior of the cartwheel hinge. 44

4.7 Stiffness behavior of the small-length flexural pivot. 45

5.1 Examples of different flexure types. 49

5.2 An early lattice-flexured CAFP. 49

5.3 Nomenclature for the X-type flexure. 50

5.4 Nomenclature for the V-type flexure. 53

5.5 Plot of stiffness reduction for the two lattice types. 53

5.6 Off-axis stiffness behavior of the X-type lattice with square lattice elements. 56

5.7 Off-axis stiffness behavior of the V-type lattice with square lattice elements. 57

5.8 Off-axis stiffness behavior compared to a blade flexure. 58

5.9 CAFP prototypes used validate stiffness models. 60

5.10 Titanium prototypes used in the measurement of lattice flexure stiffness. 61

5.11 Experimental setup for measuring bending stiffness. 61

5.12 Experimental setup for determining torsional stiffness. 63

5.13 Off-axis (torsional) stiffness behavior of both lattice types. 63

x

6.1 Flexure configurations. 68

6.2 Variables used in this work. 68

6.3 An example of a cross-axis flexural pivot. 70

6.4 CAFP center shift behavior. 70

6.5 Effects of angular offset on center shift. 72

6.6 Center shift reduction in angularly offset joints. 73

6.7 Components used in the experimental validation 75

6.8 Test setup for measuring the center shift of various configurations of flexures. . . . 76

6.9 Stiffness behavior of cartwheel hinges in series. 77

6.10 Stiffness behavior of cross-axis flexural pivots in series. 78

6.11 Stiffness behavior of cartwheel hinges in series-and-parallel. 79

6.12 Stiffness behavior of cross-axis flexural pivots in series-and-parallel. 80

6.13 Comparison of CAFP stiffness for different models. 81

6.14 Center shift behavior for cartwheel hinges. 84

6.15 Center shift behavior for cross-axis flexural pivots. 85

6.16 Measured center shift data for a cartwheel hinge. 86

6.17 A pointer mechanism incorporating compound joints. 86

7.1 An example lattice flexure printed in titanium. 88

7.2 Printed titanium flexure with its parts labeled. 89

7.3 Plots used in the selection of the balancer parameters. 93

7.4 Preliminary statically balanced design confirmed by FEA. 94

7.5 Topology of the proposed printable balancer. 95

7.6 Pseudo-rigid-body approximation of the balancer topology shown in Figure 7.5. . . 95

7.7 FEA model of the balancer used in the balancer optimization routine. 97

7.8 Force-displacement curve of the optimized balancer spring. 98

7.9 Torque-displacement plots. 99

7.10 Finite element model of the lattice flexure complete with printable balancer. 100

7.11 Printed titanium flexure. 101

7.12 Printed titanium flexure in the test setup. 101

7.13 Torque-displacement behavior of the prototype. 102

E.1 A sampling of measurement setups. 260

E.2 Elements of the DAQ hardware. 261

E.3 Sensors used to collect torque and displacement data. 261

E.4 Mechanism used during calibration of the torque transducer. 262

E.5 Elements of the torque application mechanism. 263

E.6 Connecting the chassis. 264

E.7 Inserting modules into the chassis. 265

E.8 Assembly of the hardware - connection of the transducer. 265

E.9 Assembly of the hardware - wiring the DAQ modules. 266

E.10 The main interface of the DAQ software. 267

E.11 block diagram of the DAQ program. 267

E.12 The DAQ assistant. 268

E.13 Selection of the measurement channel. 269

xi

E.14 Selecting the proper measurement channel. 269

E.15 Select into which channel the encoder and module are connected. 270

E.16 Reset the calibration constants. 270

E.17 Balance bar setup. 271

E.18 Apply torque by hanging weights from the balance bar. 271

E.19 Calibration of the system. 272

E.20 Add a trendline to your plot. 273

E.21 Select “linear,” and check the box for “Display Equation on chart.” 273

E.22 Determining the calibration coefficients. 274

xii

NOMENCLATURE

Variables used in Chapter 1

E Potential energy

l Distance from center of rotation to the attachment point of the spring

λ Included angle of the spring attachment points

x0 Initial length of the springs

k Dimensional stiffness—can be linear or rotational

T Dimensional torque

θ Angular deflection

Variables used in Chapter 2

Sy Yield strength

Sut Ultimate strength

Se Endurance limit

Variables used in Chapter 3

kθ Torsional stiffness of a joint, either load-independent stiffness or corrected load-

dependent stiffness

kl Stiffness of balancing spring

k Stiffness of balanced system

d Distance from pivot center to balancing spring attachment points

x0 Free length of balancing spring

P Preload applied to balancing spring

θ Angle of deflection of the load-independent or load-dependent joint

T = kθ Torque required to deflect hinge through angle θ

Π1 =
kθ
Pd

Π group governing torsional stiffness

Π2 =
kld
P

Π group governing stiffness of balancing spring

E Young’s modulus of the flexure material

b Width of CAFP flexure strip

t Thickness of CAFP flexure strip

I = bt3

12
Moment of inertia of CAFP flexure strip

L Length of CAFP flexure strips

k′θ Uncorrected torsional stiffness of load-dependent joint (no applied loads)

V Vertical load applied to hinge

H Horizontal load applied to hinge

α Half the intersection angle of the CAFP flexures

v = V L2 sec(α)
EI

Non-dimensional applied vertical load

h = HL2 csc(α)
EI

Non-dimensional applied horizontal load

βi Dimensionless parameter describing the forces in CAFP flexures

φi Dimensionless parameter describing the stiffness of the individual CAFP

flexures

xiv

Variables used in Chapter 4

T Torque

∆θ Change in angular position

η = HL2

EI
Non-dimensional applied horizontal load

ν = V L2

EI
Non-dimensional applied vertical load

H Horizontal load applied to hinge

V Vertical load applied to hinge

L Characteristic flexure length

E Young’s modulus of the flexure material

I Moment of inertia of CAFP flexure strip

κ Non-dimensional rotational stiffness

K Rotational stiffness

φi Dimensionless parameter describing the stiffness of the individual CAFP

flexures

βi Dimensionless parameter describing the forces in CAFP flexures

ρ Dimensionless parameter that describes the location where the strips

of a CAFP cross

Variables used in Chapter 5

kb Bending stiffness of a flexure subject to an end moment

E Young’s modulus of the flexure material

ν Poisson’s ratio of the flexure material

I = bh3

12
Moment of inertia of CAFP flexure strip

h Thickness of conventional flexure or lattice flexure

w Overall width of blade flexure

b Distance between rail centers of lattice flexure

α Lattice angle

L1 Lattice element half-length

η Aspect ratio of lattice flexure

θ Rotational deflection of lattice element

M0 Total moment applied to lattice element

M1 Moment applied to lattice rail or rails

M2 Moment applied to diagonal lattice element

L2 Length of diagonal lattice element

Ir Second moment of area of the rail element in a lattice flexure

Il Second moment of area of the diagonal element in a lattice flexure

θt Rotational deflection of lattice element due to torsion

θb Rotational deflection of lattice element due to bending

K Section property analogous to the second moment of area, but for torsional

loading of the diagonal lattice element

G Modulus of rigidity of the diagonal lattice element

kX Stiffness of a single lattice element of the X-type

kV Stiffness of a single lattice element of the V-type

kt Torsional stiffness of a flexure subject to an end torque

xv

Variables used in Chapter 6

κx Non-dimensional linear stiffness along x-axis

κy Non-dimensional linear stiffness along y-axis

κz Non-dimensional linear stiffness along z-axis

κθx Non-dimensional rotational stiffness about x-axis

κθy Non-dimensional rotational stiffness about y-axis

κθz Non-dimensional rotational stiffness about z-axis

n Number of joints in series, or on one side of a series-and-parallel joint

Fi Applied force along the i (x, y, or z) axis

Mi Applied moment about the i (x, y, or z) axis

L Characteristic flexure length

δi Deflection along the i (x, y, or z) axis

θi Deflection about the i (x, y, or z) axis

EI Flexural stiffness of flexure element

h Flexure thickness

b Flexure width

Variables used in Chapter 7

η = HL2

EI
Non-dimensional horizontal load

ν = V L2

EI
Non-dimensional vertical load

κ = KL
EI

Non-dimensional rotational stiffness

L1/b Lattice length parameter

h/h+b Lattice aspect ratio parameter

EIeff Effective flexural stiffness for a lattice flexure

E Young’s modulus

Ir Second moment of area of the lattice rail

Il Second moment of area of the lattice diagonal element
L1
b

Lattice length ratio

K Torsional stiffness term for the diagonal element

βi Coefficients for the non-linear regression describing κ

Π1 =
kθ
Pd

Π group involving rotational stiffness

Π2 =
kld
P

Π group involving stiffness of linear spring

kθ Rotational load-dependent stiffness of joint to be balanced

kl Stiffness of linear spring used as balancer

d Distance from center of rotation to anchor point of balancer

P Preload on balancer

n Number of flexures on one side of a series-and-parallel compound joint

L Length of flexure

h Thickness of flexure

Li Length of first and second legs of balancer spring

bi Width of first and second legs of balancer spring

hi Thickness of first and second legs of balancer spring

Ii Second moment of area of first and second legs of balancer spring

xvi

Variables used in Chapter 7 (cont.)

θ10 Angular offset of parallel guiding section of balancer spring

θ20 Angular offset of driver dyad section of balancer spring

Ki Stiffness of torsion springs representing first and second legs of balancer spring

Kieq Equivalent stiffness of torsion springs representing first and second legs of

balancer spring

Pdesired Target preload for the balancer spring

kl desired Target stiffness of the spring when preloaded with force Pdesired

σmax Maximum bending stress in psuedo-rigid-body model

xvii

CHAPTER 1. INTRODUCTION

1.1 Problem Statement

While compliant mechanisms have been shown to hold great promise in improving the

performance of a variety of mechanisms [1], realizing these advantages can be difficult in some

applications because of disadvantages inherent to compliant mechanisms. Some of the drawbacks

of compliant mechanisms include the lack of sufficient flexibility (as in stress-limited design) and

excessive actuation effort (due to energy storage in the deflected mechanism) [2]. In some cases

the production of advanced or specialized compliant mechanisms is difficult because of limitations

in production technology [3]. Although solving every design challenge is beyond the scope of this

work, improving the desirable flexibility of compliant mechanisms will allow their application in

a greater variety of products and mechanisms.

The rising technology of additive manufacturing holds great promise as a method for pro-

ducing compliant mechanisms [4, 5]. However, materials produced by additive manufacturing are

often somewhat inferior to traditional materials in terms of strength and fatigue properties [6,7]. In

general, this means that compliant mechanisms produced with additive manufacturing have a re-

duced range of motion. Most strategies for increasing flexibility rely on increased complexity [8],

which usually precludes their adoption. However, additive manufacturing is relatively insensitive

to design complexity, thus allowing complex geometries to be created [9, 10]. These complex

geometries allow increased range of motion and decreased actuation effort, making compliant

mechanisms a viable choice for many applications in space and elsewhere.

Therefore, this work seeks to improve flexibility of compliant mechanisms by finding novel

strategies for reducing the actuation effort and improving range of motion. This will enable these

mechanisms to take advantage of recent advances in additive manufacturing technologies. Thus,

both compliant mechanisms and additive manufacturing will become more useful from taking

advantage of each others’ strengths.

1

Figure 1.1: A folded beam suspension. This device is often used where linear motion is needed.

Distributing the deflection between two serial stages allows a greater displacement than would be

possible otherwise.

1.2 Background

A compliant mechanism derives its motion from the deflection of its constituent members.

Compliant mechanisms offer decreased part count, decreased complexity, lower weight, longer

life, and lower cost. Since compliant mechanisms can be designed with no surface contact, wear

and all its associated issues are eliminated. In many cases, bearings may be eliminated, along with

their weight, complexity, and failure modes. [1] Preliminary work has shown the applicability of

compliant mechanism technology to space applications [11]. Additionally, compliant mechanisms

lend themselves to monolithic construction [12].

1.2.1 Improving Range of Motion

The range of motion of a compliant mechanism of given geometry is generally limited by

stress. Depending on the application of the mechanism, it can be designed for finite or infinite

fatigue life, but in both cases some threshold stress is determined, and the mechanism is designed

such that this threshold stress is not exceeded [10]. Howell explains that the three factors that

determine a mechanism’s flexibility (and thus, its range of motion) are: material (its elastic prop-

erties and strength), boundary conditions (how it is attached to whatever needs movement), and

geometry (thickness and length for rectangular cross sections) [1, 2].

2

(a) Unbalanced system where a non-zero

value of F is required to maintain the po-

sition.

(b) A balanced system where the position

can be maintained with F = 0.

Figure 1.2: An illustration of static balancing. Figure 1.2a shows an unbalanced system where a

non-zero value of F is required to maintain the position. Figure 1.2b shows a balanced system

where the position can be maintained with F = 0.

Although this seems to be a straightforward problem, non-obvious solutions can be found.

For example, the range of motion of a linear displacement mechanism can be increased by using

a folded-beam suspension [2]. An example of a folded-beam suspension is shown in Figure 1.1.

Effectively, this configuration increases the flexure length without increasing the mechanism foot-

print. Other examples of similar strategies include the ortho-planar spring [13] and the Flex-

16 [14]. Increasing effective length in this way is one of the most effective ways to increase a

mechanism’s range of motion, but can result in unwanted compromises in off-axis stiffness [15].

Other strategies for increasing range of motion could include manipulating boundary conditions,

as well as exploring methods for increasing effective length without sacrificing off-axis stiffness.

Finally, because the envelope of a mechanism can be an important design consideration, it is de-

sirable to enable large motion in a small envelope.

While increasing the strength of the material or using a material of lower Young’s Modulus

can also increase the range of motion for a particular compliant mechanism, materials research to

modify the material properties is not part of this work.

3

1.2.2 Reducing Actuation Effort

The strain energy associated with the actuated mechanism means that the force or torque

required to maintain a mechanism’s actuated position is often non-zero [16]. For many applications

this results in increased actuator size compared to traditional mechanisms, which leads to higher

mass and cost. Reducing actuation effort of compliant mechanisms could make them acceptable

for applications that require compact or low-mass actuators, or where mechanism transparency

is desired [8, 17]. Here again, the stiffness of a mechanism is governed by material properties,

geometry, and boundary conditions [1, 2]. One simple way to reduce stiffness would be to reduce

the width. However, this would result in reduced off-axis stiffness which could make the design

unacceptable for its original application. Therefore, strategies must be found for reducing effective

width without losing off-axis stiffness.

Another approach to reduced actuation effort requires the addition of auxiliary energy stor-

age elements, and is known as static balancing [18, 19]. Static balancing offers the potential of

exploiting the benefits of compliant mechanisms but mitigating the detrimental effects of strain

energy.

Consider the gravity balanced mechanism in Figure 1.2. For the unbalanced system, a non-

zero input force is needed to maintain position, except when θ = ±90◦; the system’s potential

energy is a function of θ . In the balanced system, this need not be the case. It can be shown that

with a zero-free-length spring and the proper selection of the spring constant, k, F = 0 for all θ ;

system energy is constant [20–22]. Thus, the introduction of a pre-loaded spring has decoupled

mechanism position from mechanism potential energy, reducing the input force.

Herder described the concept of using springs to compensate for undesired changes in

strain energy [18]. Much work has been done in reducing input force in surgical instruments

and prosthetics [17, 23]. Leishman et al. applied static balancing to a haptic interface with good

success [24]. These designs incorporate a pre-load and some finite potential energy. Stored energy

is released from the pre-loading members as the device is actuated. This energy release aids in the

actuation of the mechanism. Because the net change in energy is small, the input force is reduced,

and in some cases can be nearly eliminated [25,26]. However, statically balanced mechanisms are

often complex and bulky, which constitutes an obstacle to their widespread adoption.

4

Figure 1.3: A compliant titanium hinge produced with EBM. This hinge is capable of ±90◦ of

motion. Images provided courtesy of Robert Fowler.

1.2.3 Additive Manufacturing

Advances in Electron Beam Melting (EBM) enable additive manufacturing (also referred

to as rapid manufacturing) in a variety of metals, including alloys of titanium. The EBM process is

well documented [27–31]. Case studies have shown that rapid manufacturing offers reduced costs

when production volumes are low, many design iterations are to be explored, high geometric com-

plexity is needed, or when new materials are to be explored [32, 33]. Additionally, material scrap

rate can be significantly reduced by printing a near-net-shape part rather than machining it from

solid billet [34]. Combining compliant mechanisms with rapid manufacturing techniques opens up

interesting possibilities for creating compliant space mechanisms that have unprecedented perfor-

mance. Figure 1.3 shows a compliant hinge built by EBM in titanium. It features large deflection

capabilities and linear torque-displacement behavior [14].

Rapid manufacturing processes have been used in multiple aerospace applications, includ-

ing ductwork [32, 33] and a capacitor housing on the International Space Station [35]. These

applications used selective laser sintered nylon parts, which established a basis for rapid manu-

facturing as a viable method for producing parts. Structural brackets [27], a shrouded cryogenic

impeller [27,36], and brackets for the Juno spacecraft [34] have also been manufactured in titanium

using rapid manufacturing processes. While most parts built thus far have been structural members

(brackets, etc.) or non-structural assemblies (ductwork and housings), in our work we use additive

manufacturing to create monolithic mechanisms for aerospace applications.

5

Figure 1.4: A two-degree-of-freedom pointing mechanism produced with EBM in titanium.

Figure 1.4 shows another mechanism developed as a proof-of-concept to demonstrate the

potential of EBM-produced parts. This mechanism is a two-degree-of-freedom pointing mecha-

nism with multiple axes of rotation, meant to replace complex, failure-prone assemblies for orient-

ing instruments on spacecraft while enabling simplification of design and reduction of mass [10].

Other EBM-built parts are shown in Figure 1.5.

1.2.4 Combining Additive Manufacturing with Compliant Mechanisms

Thus far, it has been shown that the EBM process holds great promise as a method for pro-

ducing highly complex geometries. Additionally, we have shown that compliant mechanism de-

velopment is currently constrained by mechanism complexity. Because compliant mechanisms are

often monolithic, they are well suited to adaption for additive manufacturing processes. Exploit-

ing additive manufacturing together with compliant mechanisms could allow the design of highly

complex compliant mechanisms. However, design of compliant mechanisms for additive manu-

facturing production is limited by fatigue life. Rafi et al. have published fatigue strengths for EBM

produced titanium and shown that the fatigue strength is far below that of wrought titanium [6].

6

Figure 1.5: Some compliant mechanisms manufactured with electron beam melting. Clockwise

from top left: linear suspension element, cryogenic valve concept, split-tube flexure, one-way

torsion spring.

For this reason, it is difficult to design EBM-produced mechanisms for large displacements and

low actuation efforts while maintaining reasonable stability and fatigue life.

1.3 Research Objectives

The purpose of this research is to determine general methods for improving flexibility of

compliant mechanisms. This work builds on previous work to reduce actuation effort and in-

creasing the range of motion of compliant mechanisms. This is accomplished through exploiting

changes to boundary conditions and mechanism geometry. The use of additive manufacturing

allows us to relax constraints on design complexity in favor of reduced actuation torque and in-

creased range of motion. The following subsections outline the technical approach to reducing

actuation effort and improving range of motion. While methods previously existed to accomplish

my research objectives, they generally result in undesirable design trade-offs. In this work, we

seek to circumvent these negative trade-offs using novel flexibility strategies.

7

1.3.1 Reducing Actuation Effort

Two strategies for stiffness reduction are investigated: static balancing and lattice flexures.

Static Balancing

Static balancing is one way to achieve reduced joint stiffness. It is usually accomplished

by adding auxiliary springs to a compliant joint [3]. The results of static balancing are impressive,

but a general method for the static balancing of rotational joints is still needed [25]. Mersch et

al. showed one configuration of joint that added a negative stiffness mechanism to a hinge and

optimized the assembly for constant potential energy [3].

Chapter 3 presents a general method for static balancing of rotational joints. Like previous

methods, this uses an auxiliary spring to change how energy is stored in the joint. However, this

method uses non-dimensional parameters that allow the rapid design of a balancer using only

four physical parameters. It results in excellent stiffness reduction over a large range of motion.

Stiffness reduction of 87% has been measured over ±40◦ of motion. One additional consideration

to this method is the accounting for the change in joint stiffness due to the the loads introduced by

the balancer spring. A method for determining this load-dependent stiffness behavior is provided

in Chapter 4.

Lattice Flexures

Changes to flexure dimensions (eg. reducing thickness or width) will certainly reduce ac-

tuation effort. However, changing the joint in this way may be undesirable for other reasons (eg.

the limits of the manufacturing process or reduced off-axis stiffness). One possibility for useful

gains with minimal trade-offs is the reduction of effective width by using what we term here a

“lattice flexure.” A cross-axis flexural pivot using this principle is shown in Figure 1.6. The off-

axis stiffness and other performance characteristics of this joint have not been fully evaluated, but

its stiffness has been markedly reduced from the traditional flexure geometry. Finding an optimal

geometry for such lattice geometry could greatly reduce actuation effort for many different joint

topologies without seriously affecting off-axis stiffness.

8

Figure 1.6: A cross-axis flexural pivot designed and built with lattice flexures to reduce the effective

width, and thus the stiffness of the joint. It should be noted that although the actuation effort will

be reduced with such designs, changes to the effective width of a flexure do not increase its range

of motion.

Figure 1.7: A LEGOr and FlexLinks [37] prototype that demonstrates cross-axis flexural pivots

arranged in series and series-and-parallel. The blue and red bar rotates to a maximum displacement

four times greater than it would be if only a single cross-axis flexural pivot were used.

In Chapter 5 we present analytic stiffness calculations for two lattice flexure geometries,

and surface fits of finite element simulations that quantify off-axis stiffness behavior.

Finally, a statically balanced lattice flexure incorporates both of these design strategies.

Chapter 7 details how to combine the advantages of lattice flexures with static balancing.

1.3.2 Improving Range of Motion

Joint range of motion and stiffness can be manipulated by employing compound joints, eg.

arranging joints in series or parallel. For example, two hinges arranged in series that individually

9

have a ±15◦ range of motion will have a total range of motion of ±30◦. When the stiffness of such

a compound joint is considered, recall that the effective stiffness of two springs in series is given

by keq =
k1k2

k1+k2
. If k1 = k2 = k, keq = k/2. Thus, the range of motion is increased, but at the new

maximum deflection the actuation torque will be the same (as T = kθ = k
2
(2θ)). However, adding

a second hinge in series has changed the off-axis stiffness of the joint. Adding symmetry restores

off-axis stiffness, but it increases actuation torque unless other design changes are implemented.

One example of a possible joint using these principles is shown in Figure 1.7.

Quantifying the design trade-offs of various arrangements of compound joints is the subject

of Chapter 6. Other results include a method for dramatically reducing a joint’s center shift.

1.4 Research Methods

The development of flexibility improvement strategies proceeded along the following gen-

eral steps:

1. Survey of literature for general joint topologies

2. Development of analytic/pseudo-rigid-body model of proposed method

3. Development of finite element model incorporating method

4. Ensure agreement between analytic/PRB and FE models

5. Produce prototypes to validate methods

1.5 Relevance to Additive Manufacturing

Because the strategies for increasing range of motion and reducing actuation effort have the

potential to greatly increase joint complexity [24], it is anticipated that non-traditional manufactur-

ing techniques will be required for prototyping these new hinge configurations. For example, some

of the obstacles to the adoption of the joint presented by Morsch et al. are its relative bulkiness and

complexity [3]. Additive manufacturing can produce parts of great complexity, provided a few

10

guidelines are followed during the design process [10, 12]. As EBM is a relatively young tech-

nology, its potential has not been fully explored. Developing new design methods for compliant

mechanisms will allow full exploitation of the capabilities of additive manufacturing.

1.6 Collaboration

The majority of this work was performed on BYU campus, but will include on-site ex-

periences at NASA marshall Space Flight Center and the Jet Propulsion Laboratory. Because of

our partnership with NASA on this project, the rapid manufacturing facilities at NASA Marshall

Space Flight Center have been used for prototyping test mechanisms in titanium. Our lab at BYU

is equipped with a MakerBot® Replicator™ 2 for in-house rapid prototyping work.

Much of this work has been done in collaboration with Jonathan Jones of NASA Marshall

Space Flight Center. Collaboration with Dr. Jones has provided context and motivation for the de-

velopments of this dissertation. The on-site research provided exposure to the space and aerospace

community, with many opportunities for peer review of work. All this has helped ensure that my

research is relevant and aids in rapid dissemination of technical developments.

11

CHAPTER 2. DESIGN OF 3D PRINTED TITANIUM COMPLIANT MECHANISMS

2.1 Abstract

1 This chapter describes 3D-printed titanium compliant mechanisms for aerospace appli-

cations. It is meant as a primer to help engineers design compliant, multi-axis, printed parts that

exhibit high performance. Topics covered include brief introductions to both compliant mechanism

design and 3D printing in titanium, material and geometry considerations for 3D printing, model-

ing techniques, and case studies of both successful and unsuccessful part geometries. Key findings

include recommended flexure geometries, minimum thicknesses, and general design guidelines for

compliant printed parts that may not be obvious to the first time designer.

2.2 Introduction

A compliant mechanism derives its motion from the deflection of its constituent members.

Compliant mechanisms offer decreased part count, decreased complexity, lower weight, longer

life, and lower cost. Since compliant mechanisms can be designed with no surface contact, wear

and all its associated issues are eliminated. In many cases, bearings may be eliminated, along with

their weight, complexity, and failure modes [1]. Preliminary work has shown the applicability of

compliant mechanism technology to space applications [11]. Additionally, compliant mechanisms

lend themselves to monolithic construction through additive manufacturing processes. Advances in

Electron Beam Melting (EBM) enable additive manufacturing (also referred to as rapid manufac-

turing) in a variety of metals, including alloys of Titanium. The EBM process is well documented

[27, 28]. Case studies have shown that rapid manufacturing offers reduced costs when production

volumes are low, many design iterations are to be explored, high geometric complexity is needed,

or when new materials are to be explored [32, 33]. Additionally, material scrap rate can be signif-

1This chapter has been published in Proceedings of the 42nd Aerospace Mechanisms Symposium with Jonathan

Jones and Larry Howell contributing as co-authors.

13

Figure 2.1: A compliant titanium hinge produced with EBM. This hinge is capable of ±90◦ of

motion. Images provided courtesy of Robert Fowler [14]

icantly reduced by printing a near-net-shape part rather than machining it from solid billet [34].

Combining compliant mechanisms with rapid manufacturing techniques opens up interesting pos-

sibilities for creating compliant space mechanisms that have unprecedented performance.

Rapid manufacturing processes have been used in multiple aerospace applications, includ-

ing ductwork [32, 33] and a capacitor housing on the International Space Station [35]. These

applications used selective laser sintered nylon parts, which established a basis for rapid manu-

facturing as a viable method for producing parts. Structural brackets [27], a shrouded cryogenic

impeller [27,36], and brackets for the Juno spacecraft [34] have also been manufactured in titanium

using rapid manufacturing processes. A large-displacement hinge for space applications is shown

in Figure 2.1 [14]. While most parts built thus far have been structural members (brackets, etc.)

or non-structural assemblies (ductwork and housings), in our work we use additive manufacturing

to create monolithic mechanisms for aerospace applications. As part of that effort, it is desirable

to know what to expect when printing slender geometries, and maximum allowable stresses in

EBM-produced titanium parts.

2.3 Material Considerations

2.3.1 Porosity of EBM-Produced Parts

EBM produced parts can achieve full density [38]. Wooten and Dennies claim that the

fully dense region occurs in bulk parts about 1.25 mm (0.05 in) below the surface [27], but give

14

no explanation of how this figure was arrived at. This depth is more than the thickness of many

printed flexures. While the region near the surface may not be fully dense, Murr et al. mention that

such micropores have no effect on short-term tensile properties [7]. However, surface roughness

and micro-cracks contribute to reduced fatigue life. Because of the slender geometry, machining

of flexures is often impractical, so surface porosity is difficult to eliminate and must be accounted

for in the design. This surface porosity constitutes a major obstacle to high cycle fatigue life. Hot

isostatic pressing (HIP) improves the fatigue life of EBM produced parts [39]. If HIP treatment

is impractical, property data obtained from raw (not treated with HIP or finish machined) tensile

samples are available [6].

2.3.2 Thickness Correction Factor

Early design work for a two-degree-of-freedom (2 DOF) pointing mechanism [10] required

testing the fabrication and performance of cross-axis flexural pivots (CAFP). These flexures have

a number of good characteristics, including good stability and load carrying capacity [40]. The

flexure was modeled in ANSYS to predict its torsional stiffness, which was compared to analytical

solutions. Finally, the flexures were produced using EBM, and an example is shown in Figure 2.2,

along with the pointing mechanism. The torque and deflection characteristics of three printed

flexures were found. The FE model significantly over-predicted (30%) the stiffness of the printed.

Because of high surface roughness, it was thought that perhaps not all of the thickness of the

flexure contributes to its bending stiffness. Applying a correction factor of 0.83 to the thickness

resulted in good agreement between the FEA and measured stiffness of the flexures. Later this

correction factor was used to predict the overall stiffness of the pointing mechanism, again resulting

in good agreement. Therefore, when using thin flexures, a thickness correction factor of 0.83 is

recommended to accurately predict the torsional stiffness of printed flexures.

2.3.3 Allowable Stress

Two grades of titanium powder are currently produced for use in EBM machines: Ti6Al4V

and Ti6Al4V ELI (ELI is extra low interstitials, which improves ductility and fracture toughness

of the alloy). These two alloys have slightly different strength characteristics, but Ti6Al4V has

15

Figure 2.2: Cross-axis flexural pivot and 2 DOF pointing mechanism used to compare FEA and

analytical models to measured stiffness.

slightly higher strength [39]. Table 2.1 presents strength data from several sources. These data

were gathered from samples prepared in different ways; some used highly polished samples while

other samples are tested in the as-built condition, with no post-processing or heat treatment. Rafi

et al. found a strong correlation between build orientation and strength [6], while the manufacturer

data make no distinction between build orientations [39].

2.4 Geometry Constraints

2.4.1 Feature Geometry

Minimum wall or flexure thickness depends on feature orientation. A minimum thickness

of 0.75 mm is recommended for flexures that have the thickness orthogonal or parallel to the build

direction. If the flexure is built at other angles, 1.00 mm is recommended as the minimum thick-

Table 2.1: Summary of strength data gathered from other sources.

(*) indicates that sample underwent HIP process. Strength

units are MPa.

Material Sy Sut Se Notes

Ti6Al4V 950 1020 600* Manufacturer data [39]

Ti6Al4V ELI 930 970 600* Manufacturer data [39]

Ti6Al4V ELI 782 842 120 As-built vertical [6]

Ti6Al4V ELI 844 917 225 As-built horizontal [6]

Ti6Al4V ELI 869 928 325 Machined vertical [6]

Ti6Al4V ELI 899 978 300 Machined horizontal [6]

16

(a) Flexures built at angles not

orthogonal or parallel to build

plate should be slightly thicker.

(b) Horizontal flexures build

more successfully when sup-

ported by build plate as shown

on the right.

Figure 2.3: Two design modifications that increase likelihood of build success.

ness. If the flexure is built at some angle from the vertical, the larger dimension is recommended.

Figure 2.3a illustrates this orientation dependence. The authors have had good success building

flexures that rise at 45◦ from the horizontal when the flexures are 1.00 mm thick.

2.4.2 Thermal Stresses and Part Warping

Because the build chamber is maintained at between 500◦C and 700◦C, most stresses are

relieved during the parts build cycle [11, 3], but some warping due to thermal stresses has been

observed. Figure 2.4 shows a part where enough warping occurred that the part failed to build

correctly. Although not fully understood, it is thought that this warping is due to stresses that

occur when the molten metal solidifies but are subsequently relieved as the part is held at high

temperature. Usually the part is bulky enough that these low stresses do not cause warping. For

the geometry shown in Figure 2.4, the part was redesigned to have the flexures rest on the build

plate (illustrated in Figure 2.3b). Supporting the flexures in this way eliminated the warping and

allowed a successful build. It is postulated that other ways to avoid warping include better support

of the cantilevered flexure from underneath (by having it connect to another portion of the part) or

making it wider. In general, narrow, unsupported flexures are to be avoided.

17

Figure 2.4: Build failure due to warping of slender flexures.

2.4.3 Manufacturing Clearances

Clearances are important to ensure that the completed mechanism can move freely, without

fusing sections that should move relative to one another. On a number of mechanisms with small

(<2.0 mm) gaps, the final gap dimension was significantly less than was specified in the part file.

Additionally, gaps must be wide enough that un-melted powder can be easily removed to allow

motion in the mechanism. Experience with successful mechanisms suggests a minimum gap of 1.0

mm. The final gaps are less than the specified gap. In one instance, a gap as small as 0.66 mm was

specified and the part successfully printed without fusing the two sections together; the measured

clearance was 0.23 mm. These clearances were measured in the horizontal direction (parallel to

the build plate). Vertical clearances should be specified larger, especially in areas where powder

removal is difficult.

2.4.4 Powder and Support Removal

Another design consideration is that the geometry must allow for removal of un-melted

powder and any support structure. Closed geometries should be avoided, or openings should be

provided to allow access to loosen packed powder with hand tools or media blasting. In some

cases this may not be possible, and post machining using special fixtures or tooling must be used.

Figure 2.5 shows the tooling required to allow machining the inside of a particular feature. In

another example, a linear spring was printed that consisted of Belleville washers stacked end-to-

18

Figure 2.5: The 2 DOF pointer mechanism in fixture for removal of powder and supports from

inside a split-tube flexure.

end. The internal areas of the spring were inaccessible, but by using a press to compress the spring,

enough powder was removed from between each washer segment to allow the spring to function

as intended.

2.5 Summary

The following checklist can be used for designing compliant mechanisms for EBM manu-

facturing:

• Select minimum thickness for desired flexure orientation (0.75 mm for horizontal or vertical

flexures and 1.0 mm for other angles)

• Find flexure length sufficient to bring stress into allowable range, subject to deflection and

thickness

• Select flexure width to support applied loads without requiring excessive actuation torque

• Ensure minimum gap width is observed (1.0 mm)

• Ensure horizontal flexures are supported at both ends

• Ensure that geometry allows powder removal

• If post-machining is necessary, provide geometry for fixturing

• Orient part so that every feature is built up from build plate or supported in some way

19

CHAPTER 3. NON-DIMENSIONAL APPROACH FOR STATIC BALANCING OF RO-

TATIONAL FLEXURES

3.1 Introduction

1 The objective of this research is to develop a general method for the approximate static

balancing of compliant hinges. A compliant mechanism obtains its motion from the deflection

of its constituent members. Because this eliminates sliding contact of surfaces, friction and sub-

sequent wear can be avoided, leading to higher performance [1]. Because of the strain energy

associated with bending the flexible members, compliant mechanisms generally have higher ac-

tuation effort compared to traditional mechanisms [16]. This can require larger actuators, which

increases mass and cost. Static balancing is one strategy for reducing the actuation effort of com-

pliant mechanisms [17, 18, 23, 26, 41, 42].

Static balancing is often accomplished by adding auxiliary springs that provide energy stor-

age [18, 41]. As the mechanism is actuated, energy stored in the balancing elements is transfered

to the deflected mechanism [42]. This means that less energy must be added during actuation, thus

reducing actuation effort [26]. This strategy has been effectively incorporated into applications

such as the design of surgical instruments and prosthetics [17, 23, 42].

Balancing elements commonly incorporate a negative stiffness mechanism, such as buck-

led beams in linear systems [43], or preloaded linear springs in rotational systems [3]. Other

approaches use gravity balancing or systems of ideal springs [21, 42, 44].

Static balancing strategies do exist that do not require optimization; these rely on math-

ematically exact solutions [45, 46]. However, the design of statically balanced systems often re-

quires the use of optimization routines [43, 47, 48]. Usually, the optimization problem minimizes

the change in a mechanism’s stored energy or searches for an appropriate negative-stiffness mech-

anism [3]. Depending on the system under consideration, this optimization may incorporate finite

1This chapter has been published in Mechanism and Machine Theory with Larry Howell contributing as a co-author.

21

element analysis (FEA) and topology optimization. This means that to design a statically balanced

compliant mechanism, significant resources must be available to develop and validate the model

being used. Additionally, optimization routines utilizing FEA can quickly become cumbersome

due to the relatively long solution time of non-linear FEA and the many function calls of most

optimization routines.

Finally, building practical statically balanced mechanisms is difficult because the balancing

element is often bulky, making the system much larger than is convenient [21].

The method herein presented provides an approximate solution to the static balancing prob-

lem. Although perfect balancing is not achieved, an average reduction in stiffness of 87% is

achieved for an eighty degree range of motion. This method does not require FEA, and can avoid

some of the optimization required by other approaches for static balancing. For code examples,

see Appendix A.

3.2 Nomenclature

In this work, “load-independent (LI) joint” is a joint with a rotational stiffness that is not a

function of applied lateral loads. This is modeled as a pin joint with a torsional spring. A “load-

dependent (LD) joint” is a joint whose stiffness changes when a lateral load is applied. An LD

joint can be modeled as an LI joint if a relationship can be found between the applied lateral loads

and joint stiffness.

In this work the statically balanced system consists of an LI joint of finite, constant stiffness

that is balanced by the addition of a pre-loaded constant-stiffness linear spring. The spring connects

at points equidistant from the pivot, as shown in Figure 3.1. This simplified system can represent

load-dependent systems with proper application of the pseudo-rigid-body model [1].

Variables and their relationships are included in the following lists. The first list is for

variables directly related to balancing of LI compliant hinges, illustrated in Figure 3.1

kθ = Torsional stiffness of LI joint, or corrected stiffness of LD joint (with applied loads)

kl = Stiffness of balancing spring

k = Stiffness of balanced system

22

θ

d

k
l

kθ

d

T

Figure 3.1: A LI system with balancing spring and associated variables.

d = Distance from pivot center to balancing spring attachment points

x0 = Free length of balancing spring

P = kl(2d − x0) = Preload applied to balancing spring

θ = Angle of deflection of the LI or LD joint

T = kθ = Torque required to deflect hinge through angle θ

Π1 = kθ/(Pd) = Pi group governing torsional stiffness

Π2 = kld/P = Pi group governing stiffness of balancing spring

The following list contains variables related to the design of a cross-axis flexural pivot

(CAFP) that has a stiffness that is load-dependent. See Figure 3.2 for a depiction of geometric

variables.

E = Young’s modulus of the flexure material

b = Width of CAFP flexure strip

t = Thickness of CAFP flexure strip

I = bt3/12 = Moment of inertia of CAFP flexure strip

L = Length of CAFP flexure strips

23

L

t

b

α

V

H

Figure 3.2: A cross-axis flexural pivot with associated variables.

k′θ = Uncorrected torsional stiffness of LD joint (no applied loads)

The following list contains variables used to correct the stiffness of a CAFP to account

for the effects of applied loads. Adapted from Wittrick [49]. See Figure 3.2 for a depiction of

geometric variables. The loads V and H are applied to the moving block of the CAFP.

V = Vertical load applied to hinge

H = Horizontal load applied to hinge

α = Half the intersection angle of the CAFP flexures

v =V L2 sec(α)/(EI) = Non-dimensionalized applied vertical load

h = HL2 csc(α)/(EI) = Non-dimensionalized applied horizontal load

βi = Dimensionless parameter describing the forces in CAFP flexures

φi = Dimensionless parameter describing the stiffness of the individual CAFP flexures

3.3 Balancing of Load-Independent Hinge-Spring System

Because a general solution to static balancing is sought, it is desirable to use dimensional

analysis techniques to analyze the balanced systems.

Recall the Buckingham-Pi theorem:

24

If an equation involving k variables is dimensionally homogeneous, it can be reduced

to a relationship among k− r independent dimensionless products, where r is the min-

imum number of reference dimensions required to describe the variables [50].

The energy of a load-independent system, E, can be written as the sum of the potential energies of

the torsional and linear springs, as follows:

E =
kθ

2
θ 2 +

kl

2
(
√

2d2(1+ cos(θ))− x0)
2 (3.1)

Since the objective is to minimize torque (T), and T = dE
dθ , we can take the derivative with

respect to θ as

T = kθ θ − kl(
√

2d2(1+ cos(θ))− x0)d
2 sin(θ)

√

2d2(1+ cos(θ))
. (3.2)

Approximating the torque is a linear function of theta allows us to divide by θ , giving the

mechanism stiffness (k = T
θ) as

k =
kθ θ − kl(

√
2d2(1+cos(θ))−x0)d

2 sin(θ)√
2d2(1+cos(θ))

θ
. (3.3)

This result will be used later. Setting the torque from Equation (3.2) equal to zero and using

x0 = 2d −P/kl gives:

kθ θ =
kl(
√

2d2(1+ cos(θ))− (2d −P/kl))d
2 sin(θ)

√

2d2(1+ cos(θ))
(3.4)

Equation (3.4) is a homogeneous equation with four dimensioned variables - kθ , kl , P, and

d and two dimensions (force and length). Thus, k = 4 and r = 2, and the system can be described by

two non-dimensional parameters, designated Π1 and Π2. Since it is desirable that these parameters

have a physical, intuitive meaning it is convenient to select force P and distance d as repeating

variables so that each pi-group deals with a stiffness term independently. Through application of

dimensional analysis, we have:

Π1 =
kθ

Pd
(3.5)

25

and

Π2 =
kld

P
. (3.6)

We now assume that a relationship between our pi-groups exists, written as Π2 = φ(Π1). As

a result of the Buckingham-Pi theorem, this relationship will govern the stiffness of the system. If

a relationship between Π2 and Π1 can be found that results in a balanced system, any combination

of system parameters kθ , kl , P, and d that follows this relationship will yield a statically balanced

system. This relationship was found using an optimization algorithm, giving a relationship between

the Π-groups that guarantees approximate statically balanced behavior for a system governed by

kθ , kl , P, and d.

A program was written to find the relationship between Π1 and Π2 for 0.2 ≤ Π1 ≤ 1.

This script used a particle swarm optimization [51] routine to minimize | k
kθ
| (see Equation (3.3))

calculated over a range of 0 < θ ≤ 20◦ for a given value of Π1. Optimization variables were kl ,

P, and d. kθ was found from Equation (3.5). After minimizing the normalized stiffness | k
kθ
|, Π2

was calculated from Equation (3.6) using the final variable values. A particle swarm algorithm

was used because of its ability to find a global optimum. See Appendix A for more details on the

optimization code.

This was repeated for other values of Π1 in the range of 0.2 ≤ Π1 ≤ 1 to find Π2 as a

function of Π1 (see Figure 3.3). Figure 3.4 plots | k
kθ
| against Π1. The plot shows that in the region

of Π1 = 0.5 a close approximation of perfect balancing is achieved. By plotting Π2 as a function

of Π1, as in Figure 3.3, we can see that using Π1 ≥ 0.5 gives Π2 < 0, which is inconvenient for

design purposes (it could require kl to be negative). Table 3.1 lists convenient Π terms along with

the expected reduction in stiffness. A curve fit for the data in Figure 3.3 is

Π2 =−102.54Π1 +51.104 : 0.2 ≤ Π1 ≤ 0.81 (3.7)

with an R2 value of 1.

Rearranging the data in Figure 3.4 and applying a curve fit gives the % reduction in stiffness

as

26

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−40

−30

−20

−10

0

10

20

30

40

Π
2

Π
1

Figure 3.3: Π2 plotted as a function of Π1. The flat line occurring at Π1 = 0.82 is an artifact of the

optimization constraints.

kθ − k

kθ
×100 =











2414Π3
1 −3336Π2

1 +1679Π1 −206.7 : 0.2 ≤ Π1 ≤ 0.5

111.85Π2
1 −215.42Π1 +179.53 : 0.5 ≤ Π1 ≤ 0.8

(3.8)

with an R2 value of 0.9998.

Table 3.1: Tabulated values of Π1 and Π2,

with the expected reduction in joint stiff-

ness.

Π1 Π2
kθ−k

kθ
×100

0.5 -0.1673 100.0

0.49 0.8581 98.8

0.48 1.884 97.6

0.47 2.909 96.3

0.46 3.934 95.0

0.45 4.96 93.6

27

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Π
1

|k
/k
θ|

Figure 3.4: Normalized balanced stiffness as a function of Π1.

This method only works when the flexure is load-independent; that is, when kθ is not a

function of applied lateral loads. The designer is free to choose two of any of the four parame-

ters (kθ , kl , P, and d). The other two parameters are found from the Π group relation given in

Equation 3.7 for the desired level of balancing (see Equation 3.8).

3.4 Extending to Load-Dependent Joints

In LD systems, torsional stiffness can vary with deflection and any applied loads. For

simplicity here it is assumed that the stiffness dependence on deflection is small, and that load

dependent effects dominate the joint behavior. Furthermore, it is assumed that only vertical and

horizontal loads are applied to the flexure. Neither off-aixs moments nor axial loads are considered,

although in some systems they certainly could have a strong influence on joint stiffness. Because

the balancing spring exerts a pre-load on the flexure to be balanced, its stiffness (kθ) is no longer

the same as its stiffness without any applied loads (k′θ). To use the Π-groups with a LD joint, a

prediction of joint stiffness under load is required. Once the corrected stiffness kθ is found for a

specified pre-load P, the other joint parameters can be found from Π1 and Π2.

28

In this work, we will consider the static balancing of a cross-axis flexural pivot, sometimes

called a cross-spring pivot. This is a type of flexure formed by crossing two flexible strips and has

been used extensively to allow motion in many applications [40, 49, 52–54]. Additionally, it has

been the subject of other investigations into static balancing strategies [3]. Morsch and Herder were

able to balance a CAFP using a pair of zero-free-length springs with an average stiffness reduction

of 70% in the physical prototype [3]. A final motivation for the use of a CAFP is the availability of

published load-dependent behavior [49, 52]. In this work we employ the methods described here

to take into account the change in CAFP stiffness when subjected to the compressive load.

Wittrick established that the stiffness of cross-axis flexural pivots is dependent on applied

lateral loads [49,52]. He discussed how applied loads change the moments and loads applied to the

constituent flexures, which effects their deflections. This same principle applies to many flexure

systems commonly in use. A balancing method that accounts for the change in stiffness due to

applied loads can provide a more balanced system. In this case, the applied load is due to the

compressive pre-load of the balancing spring.

Wittrick’s results are summarized here for convenience. He gives the stiffness of a CAFP

as [49]:

kθ =
EI

L
(φ1 +φ2) (3.9)

where

φi = βi(cotβi −βi)

β 2
1 =

1

8
(v+h) (3.10)

β 2
2 =

1

8
(v−h)

See Appendix A for a code implementation of these equations. Recall that v and h are

non-dimensionalized horizontal and vertical loads. The balancing spring exerts a vertical load on

the hinge because of its pre-load, P. Choosing an acceptable value of P and letting V = −P and

H = 0, allows the computation of kθ for a given geometry. Choosing a Π1 and its associated Π2

29

for the desired stiffness reduction allows one to find the required d and kl from Equations (3.5)

and (3.6). Thus the Π-groups reduce the balancing problem to a system of two equations and four

unknowns. Choosing two unknowns as design parameters allows the equations to be solved.

Alternatively, if it is desirable to select a value of P and kl with flexures of a given moment

of inertia, the associated kθ can be found to satisfy Equation (3.5), and L can be found with an

optimization loop. Because Equations (3.4) and (3.9) contain trigonometric terms, a non-gradient

based optimization routine such as particle swarm optimization is effective.

3.5 Example Design

This approach was followed to design a CAFP. Convenient values of kl and P were chosen

to match those of a commercially available tension spring, and a flexure moment of inertia was

selected so that the CAFP could be built from available spring steel. A flexure length was found

along with torsional stiffness kθ and d. The resulting design variables are listed in Table 3.2.

For comparison, let us attempt to also design a balanced joint using the same Π-groups and

flexure geometry but without accounting for the LD behavior of the CAFP. Joint parameters for

this joint are given in Table 3.3. Its behavior was simulated with FEA and is plotted in Figure 3.5

with the unbalanced CAFP and balanced CAFP that was designed with considerations made for

LD behavior. From this plot it is clear that the load-dependent behavior cannot be neglected when

Table 3.2: Design parameters for balanced

CAFP.

Parameter Value Units

Π1 0.49

Π2 0.8581

E 207 GPa

L 6.594 cm

t 0.381 mm

b 1.272 cm

I 5.865×10−6 cm4

kθ 0.6446 N-m/rad

kl 228 N/m

P 18.7 N

d 7.042 cm

x0 5.877 cm

30

-0.1

0

0.1

0.2

0.3

0.4

0.5

-45 -30 -15 0 15 30 45

St
iff

ne
ss

 (N
-m

/ra
d)

Rotation (Degrees)

Comparison of LI and LD Balancing

Unbalanced CAFP LI Balanced CAFP LD Balanced CAFP

Figure 3.5: The stiffness of an unbalanced CAFP, together with its LI balanced and LD balanced

versions.

designing a balancing mechanism. Even though the Π-groups predict balanced behavior, they do

not capture load-dependent effects; this resulted in a joint that was only partially balanced.

The CAFP designed with considerations for load dependence was fabricated and tested.

Simulations showed a stress-limited deflection of about 40◦, so the prototype was designed with

this physical limit in mind. The completed joint is shown in Figure 3.6. Experimental results are

given in Section 3.6.

Table 3.3: Design parameters for hypotheti-

cal LI CAFP.

Parameter Value Units

kθ 0.3672 N-m/rad

kl 129.7 N/m

P 10.64 N

d 7.042 cm

x0 3.347 cm

31

Figure 3.6: A prototype joint designed using the method detailed in this chapter.

3.6 Experimental Results and Discussion

The prototype balanced joint was designed and fabricated according to the design parame-

ters of Table 3.2. Rigid sections were machined from 6061 aluminum bar stock while the flexures

were cut from spring steel. Torque was measured using a torque transducer while the joint was

displaced with a worm-wheel gear-set.

Figure 3.7 shows the predicted and actual stiffness in both the unbalanced and balanced

configurations. The finite element results shown were obtained from an ANSYS simulation that

used BEAM23 elements for the flexures and COMBIN14 elements for the linear spring. The

balanced stiffness is not as low as predicted; this is due to deviation of the linear spring stiffness

from nominal (193 N/m instead of 228 N/m), which causes P and kθ to deviate from their optimal

values. Changing any of these parameters changes the Π-groups that determine whether the system

will be balanced. The curve labeled “Balanced, FEA Off-Nominal” was obtained by re-running the

FEA using measured values for kl , and P, with updated values of Π1 and Π2. This curve matches

the measured stiffness values more closely than the FEA that used the nominal values for spring

stiffness, etc,̇ demonstrating that this was a significant source of error. The other source of error is

32

-0.05

0.05

0.15

0.25

0.35

0.45

-45 -30 -15 0 15 30 45

St
iff

ne
ss

 (N
-m

/ra
d)

Rotation (Degrees)

Comparison of Balanced and Unbalanced Stiffness

Unbalanced Measured Balanced Measured
Unbalanced, FEA Balanced, FEA
Balanced, FEA Off-Nominal

Figure 3.7: The stiffness of the balanced and unbalanced joints plotted for comparison.

in the measurement of the deflection angle, which was done by counting the revolutions applied to

the worm of a 40:1 worm-wheel gearset. At small angles, small errors in angle measurement have

a large effect on the observed stiffness. This explains the large errors that occurred near θ = 0 in

Figures 3.7 and 3.8, while at larger angles the error is significantly less.

Figure 3.8 shows the percent stiffness reduction calculated as
k′θ−k

k′θ
×100. Again, the stiff-

ness reduction was not as great as was predicted due to manufacturing errors. An average stiffness

reduction of 87% was achieved. The deviation from the reduction in Table 3.1 can be explained by

how stiffness reduction is calculated. Stiffness reduction in Table 3.1 is calculated as |(kθ −k)/kθ |,
while the stiffness reduction shown in Figure 3.8 is |(k′θ − k)/k′θ |, and the compressive load P

makes k′θ < kθ .

This prototype verifies the balancing method presented here. Using non-dimensional pa-

rameters as a balancing criterion simplifies the design process for load-independent joints, which

can be extended to load-dependent joints. This makes the rapid design of balanced joints practi-

cal in many applications. By taking into account the change in stiffness of a flexure due to joint

pre-load, a better balancing solution can be achieved than if the flexure stiffness is assumed to be

independent of load.

33

0

10

20

30

40

50

60

70

80

90

100

-45 -30 -15 0 15 30 45

%
 R

ed
uc

tio
n

in
 S

tif
fn

es
s

Rotation (Degrees)

Stiffness Reduction

Measured Finite Element Prediction

Figure 3.8: The percent reduction in stiffness of the balanced joint.

3.7 Conclusion

It has been shown that the use of the Π-groups can simplify the design of balancing mecha-

nisms for compliant hinges that exhibit load-independent behavior. It has also been shown that the

Π-groups are equally valid when used in conjunction with load-dependent joints whose stiffness

under load can be predicted.

A prototype CAFP was built and tested. Results show that the stiffness-correction method

results in highly balanced joints with large deflection capabilities. Although the balancing method

and stiffness correction were demonstrated with a cross-axis flexural pivot, the result is general for

any joint having load-dependent stiffness.

34

CHAPTER 4. A METHOD FOR DETERMINING LOAD-DEPENDENT STIFFNESS

OF FLEXURES

4.1 Introduction

1 Because compliant mechanisms derive their motion from the deflection of flexible mem-

bers [1], they often posses inherent stiffness that may be undesirable [17, 18]. Static balancing is

one method used to reduce mechanism stiffness [3,20–22,24,25,42,44,48,55,56]. Static balancing

usually is done by adding auxiliary bodies or springs to an existing mechanism. By careful design

of the auxiliary bodies and springs, the effective stiffness can be greatly reduced.

In Chapter 3 we outlined a method for static balancing that relies on a set of non-dimensional

parameters to design a statically balanced mechanism [57]. The method uses a single auxiliary

spring with a known preload P. By predicting the stiffness of a given flexure subjected to a com-

pressive load P, a balanced system can be designed.

To make the non-dimensional balancing method more generally usable, in this chapter we

present a method for determining the load-dependent stiffness behavior for a number of common

flexure types. This behavior has interesting implications for static balancing. Interesting aspects

of each joint’s behavior are discussed while identifying new strategies for static balancing.

4.2 Background

Compliant mechanisms derive their motion from deflection [1]. The strain energy associ-

ated with deflection in the actuated mechanism means that the force required to maintain position

is usually non-zero [16]. This often requires larger actuators, which have higher mass and cost.

Static balancing mitigates the effects of strain energy, allowing the use of smaller actuators while

still benefiting from the use of compliant mechanisms.

1This chapter has been published in Proceedings of the ASME IDETC 2015 with Jared Bruton and Larry Howell

contributing as co-authors.

35

Herder described the concept of using springs to compensate for undesired changes in

strain energy [18]. Early work focused on reducing input force in surgical instruments and pros-

thetics [17, 23]. These designs incorporate a preload and some finite potential energy. Stored

energy is released from the preloading members as the device is actuated. This energy release aids

in the actuation of the mechanism. Because the net change in energy is small, the input force is

reduced, and in some cases can be nearly eliminated [26].

By using a simplified set of joint parameters, it is possible to quickly design an approxi-

mately balanced rotational joint [57]. This balancer incorporates a linear spring exerting a com-

pressive preload on the flexure to be balanced. This preload has the potential to alter the flexure

stiffness. If the load-dependent stiffness behavior of a joint is known, it can be balanced using this

method.

Wittrick [49, 52] quantified this load-dependent stiffness behavior for cross-axis flexural

pivots (CAFPs) of various configurations. We show that this model can also be applicable to a

triangle flexure (TF) [54,58] and, by extension, the cartwheel hinge (CH) [58,59]. This work seeks

to establish a method for determining load-dependent stiffness using finite element analysis (FEA)

and results are compared to analytic results to confirm that the method has the desired accuracy.

Once the load-dependent stiffness behavior of a joint is understood, it is possible in some cases to

find static balancing strategies that rely only on a pre-load and no balancing element.

4.3 Methods

Finite element modeling was done using commercial software (ANSYS). Models used

beam elements (BEAM23) for flexible members. Vertical and horizontal loads were applied to

the moving block at the pivot center (see Figure 4.1), following the convention established by Wit-

trick [49, 52]. This was done by extending a section of the moving block to the theoretical center

of motion and applying force loads to that point. The moving block was rotated 1◦, following Wit-

trick’s convention of assuming small displacements.The reaction torque was recorded and stiffness

found as T/∆θ . During this study it was found that a high mesh density was required to obtain

a mesh-independent solution when high loads were involved. Mesh densities used are listed in

Table 4.1.

36

Figure 4.1: The joint arrangement and application of horizontal (H) and vertical (V) loads for a

cross-axis flexural pivot (CAFP).

For convenience and to remain consistent with the literature [52, 54, 58] horizontal and

vertical loads were non-dimensionalized using

η =
HL2

EI
(4.1)

and

ν =
V L2

EI
(4.2)

where H and V are force loads in the horizontal and vertical directions, L is the characteristic

flexure length, E is the material’s Young’s modulus, and I is the flexure’s area moment of inertia.

H is positive to the right, while a positive value of V is a tension load and a negative value a

compression load. The rotational stiffness was non-dimensionalized using

Table 4.1: Mesh density used in different

joint types.

Joint Number of

elements/flexure

CAFP 80

TF 160

CH 160

SLFP 40

37

κ =
KL

EI
(4.3)

where K is the rotational stiffness of the flexure, and other variables are the same as defined pre-

viously. In these equations, Greek letters indicate non-dimensional parameters while Latin letters

indicate dimensioned quantities.

A thorough analytic treatment of the CAFP is given in [49, 52]. Stiffness behavior was

shown in Figure 4.2. The analytic solution is given as

κ = φ1 +φ2 (4.4)

where

φi = βi(cothβi −βi)+
ρ2β 3

i

(βi − tanhβi)
(4.5)

and

β 2
1 = (ν +η)

√
2/8

β 2
2 = (ν −η)

√
2/8

(4.6)

This formulation differs from Wittrick [49] because the non-dimensionalization used here

for the vertical and horizontal loads does not account for variation in the angle at which the blades

of the flexure cross. This model was developed to analyze CAFPs, but with additional modifi-

cations Equations (7.3), (4.5), (4.6) can represent other flexure types, including triangle flexures

and cartwheel hinges. Namely, for a symmetric CAFP ρ = 0, and for a triangle flexure ρ = 1. A

cartwheel hinge is simply two triangle flexures joined at the center. Thus, a single model can be

used to analyze joints with distinctly different behavior.

Our method can be summarized in the following steps:

1. Identify for what range of non-dimensional loads the joint behavior need be evaluated

2. Develop an FEA model to represent the chosen joint

(a) Find an analytical model for comparison

38

−50−40−30−20−10 0 10 20 30 40 50
−12

−10

−8

−6

−4

−2

0

2

4

6

Analytical Solution

FEA Solution

0
10

20
30

40

 κ

ν

η = 50η = 50

Figure 4.2: Comparison of FEA results with analytic solution for a symmetric CAFP [49].

(b) Beam elements are often the most appropriate for flexure analysis

(c) Displacement loads generally solve more reliably than force loads

(d) Using parametric geometry definitions can yield more versatile and useful models

(e) Carefully consider boundary conditions to avoid over- or under-constraining the prob-

lem

(f) Automating post-processing can save significant amounts of time

3. Ensure that the FEA model behaves as expected when unloaded

4. Calculate stiffness from rotation and reaction torque, and non-dimensionalize it

5. For a given η , iterate through the desired range of ν (or vice versa)

6. Repeat step 5 at increased mesh densities to ensure a mesh-independent solution

7. Repeat steps 5 and 6 for every desired value of η

39

4.4 Verification

The FEA results were compared to analytic results for the cross-axis flexural pivot. Fig-

ure 4.2 plots analytic results alongside results for the CAFP obtained through FEA, which agree

with results reported in [49]. Additionally, stiffness values for each joint with zero applied loads in

both the horizontal and vertical directions were compared to published values for stiffness of the

unloaded flexures [40, 58, 60]. This data is tabulated in Table 4.2.

4.5 Load Dependent Stiffness

The above method was repeated for triangle flexures [58], cartwheel flexures [59], and

small-length flexural pivots [60]. Schematics of these joints are shown in Figure 4.3. Their associ-

ated FEA models are shown in Figure 4.4.

4.5.1 Cross-Axis Flexural Pivot (CAFP)

Equations (7.3), (4.5), (4.6) describe the behavior of the symmetric CAFP discussed here.

Its behavior is shown in Figure 4.2.

4.5.2 Triangle Flexure (TF)

By recognizing that the triangle flexure is a special case of the CAFP where the strips cross

at their extreme ends, we can use ρ = 1 in Equation (4.5) to calculate its stiffness.

Table 4.2: Comparison of unloaded stiffness de-

termined by FEA to published stiffness values.

Stiffnesses are non-dimensional.

Joint Unloaded

Stiffness

(κ)

Published

Stiffness

(κ)

% Difference

CAFP 2.00 2.154 [40] 7.70%

TF 7.79 8.0 [58] 2.70%

CH 4.01 4.0 [58] 0.25%

SLFP 1.00 1.0 [60] 0.00%

40

(a) The cross-axis flexural

pivot. Note that the strips cross,

but are not joined, at the center.

(b) The triangle flexure.

This is a special case of

CAFP where the strips cross

at their extreme ends.

(c) The cartwheel hinge,

composed of two triangle

flexures joined in the center.

(d) The small-length flexu-

ral pivot.

Figure 4.3: Schematics for each flexure analyzed.

Stiffness behavior is shown in Figure 4.5. It was found that an applied rotation of 5◦ yielded

a solution closer to the analytic model than the 1◦ rotation used in the other analyses.

4.5.3 Cartwheel Hinge (CH)

By recognizing that a cartwheel hinge consists of two triangle flexures in series [58] we can

modify the analytic model to analyze its load-dependent stiffness, given in Equations (4.5), (4.6),

and (4.7),

41

(a) The cross-axis flexural pivot. (b) The triangle flexure. This

is a special case of the CAFP

where the strips cross at the ex-

treme ends.

(c) The cartwheel hinge, com-

posed of two triangle flexures

connected in the center.

(d) The small-length flexural

pivot.

Figure 4.4: Finite element models for each flexure analyzed. Deflection has been exaggerated.

κ =
φ1 +φ2

2
(4.7)

where ρ = 1 in Equation (4.5). Note that the FEA solution is truncated for values of ν that cause

the flexure to become unstable. Stiffness behavior is shown in Figure 4.6.

4.5.4 Small-Length Flexural Pivot (SLFP)

The small-length flexural pivot stiffness behavior is shown in Figure 4.7. As can be seen,

the SLFP becomes unstable even under small values of η and ν . This characteristic makes the

SLFP a poor choice for applications that requires load-carrying capability. Inverting the flexure

may improve this behavior for some loading cases [61].

42

Analytical Solution

FEA Solution

−12

−10

−8

−6

−4

−2

0

2

4

6

8

10

12

14

−50−40−30−20−10 0 10 20 30 40 50

10
20

30
40
η = 50η = 50

0

 κ

ν

Figure 4.5: Stiffness behavior of the triangle flexure.

4.6 Discussion

The results of these models reveal interesting behavior of these joints, some of which is

highlighted below.

4.6.1 Cross-Axis Flexural Pivot (CAFP)

The CAFP has the capability of carrying loads in all directions without becoming unstable.

This makes it suitable for a large variety of load-bearing applications. However, its stiffness can

vary significantly if the loading is not carefully controlled. Wittrick noted that a CAFP may be

modified by changing the point at which the strips cross to have sensibly constant stiffness [49].

For the symmetric pivot considered here, a constant stiffness is achievable by operating

in a loading regime where κ is at or near its maximum value for a given η . In fact, there exists

a value of η at which κ ≈ 0 for a range of ν . Solving Equations (7.3), (4.5), (4.6) gives η ≈
32.5, which results in κ ≈ 0 for −4.3 < ν < −2.1. When this loading condition is imposed, it

43

 κ

Analytical Solution

FEA Solution

−8

−6

−4

−2

0

2

4

6

8

10
20

30
40
η = 50η = 50

0

ν

−50−40−30−20−10 0 10 20 30 40 50

Figure 4.6: Stiffness behavior of the cartwheel hinge.

would result in an approximately statically balanced flexure with no additional springs or auxiliary

bodies. Additionally, for given values of η < 32.5, two values of ν exist that yield a CAFP with

zero stiffness. Finally, in regions where the CAFP exhibits negative stiffness behavior it could be

coupled to a hinge with equal and opposite stiffness to yield a statically balanced mechanism [43].

4.6.2 Triangle Flexure and Cartwheel Hinge

Because of the similarity in the behavior of triangle flexures and cartwheel hinges they are

considered together. Like the CAFP, there exist loading regimes where the stiffness of the joint

becomes negative. However, in our simulations this negative stiffness tended to coincide with

flexure buckling. Another principle difference between the behavior of these joints and the CAFP

is that stiffness tends to increase with ν . Certain values of ν yield zero-stiffness joints, but these

tend to be sensitive to variations in ν . Importantly though, both joints exhibit highly predictable

load-dependent stiffness, making them candidates for statically balanced joints.

44

−10 −5 0 5 10 15 20
−14

−12

−10

−8

−6

−4

−2

0

2

4

6

8

10

-0.2

0

0.2

-0.4

 κ

ν

η = 0.4η = 0.4

Figure 4.7: Stiffness behavior of the small-length flexural pivot.

4.6.3 Small-Length Flexural Pivot (SLFP)

The preloaded SLFP was analyzed using FEA and it exhibited the greatest range of behav-

ior. Unlike the other flexures examined, at ν = 0, κ remained invariant for all values of η . When

subjected to moderate values of ν its stability decreased dramatically, and even very small changes

in η drastically affect not only the magnitude of κ (when ν 6= 0), but its slope in relation to ν . Be-

cause of this, the SLFP has been used in motion applications but has been avoided in load-carrying

applications. Additionally, its sensitivity to varying loads makes the SLFP an unlikely candidate

for static balancing.

4.7 Conclusion

The method presented here is a straightforward way to determine the load-dependent stiff-

ness behavior of compliant flexures. We have demonstrated the method on four different flexure

types, including cross-axis flexural pivots, triangle flexures, cartwheel flexures, and small-length

flexural pivots. The approach prescribes a set of non-dimensional parameters consistent with the

literature, a dense FEA mesh, and the application of horizontal and vertical force loads at a small

45

applied rotation. It was shown that this method accurately captured the behavior when compared

with load-dependent stiffness predictions available in the literature.

We have also shown that by more fully understanding joint behavior while under load

it is possible to identify strategies for static balancing that have heretofore gone unnoticed. It

may be possible to statically balance flexures and mechanisms without the addition of springs or

auxiliary bodies; perhaps the load applied to the mechanism could function as the balancer in

some applications. Additionally, we have indicated strategies that would result in a more robust

balancing solution; by operating a flexure in regimes where stiffness is nearly invariant, fluctuations

in its loading conditions will not disturb its balanced behavior.

Because this method can be applied to models of arbitrary geometry, it can be used with

any joint that can be modeled with FEA. Further, we have demonstrated its use on single-axis

joints with forces applied in the plane perpendicular to the axis of rotation, but this method could

be extended to multi-axis joints with three dimensional loadings.

46

CHAPTER 5. LATTICE FLEXURES: GEOMETRIES FOR STIFFNESS REDUCTION

OF BLADE FLEXURES

5.1 Introduction

1 This chapter introduces the lattice flexure as a means to reduce the motion-direction ro-

tational stiffness of compliant mechanisms. A compliant mechanism obtains its motion from the

deflection of its constituent members. This eliminates sliding contact of surfaces, avoiding friction

and subsequent wear, and leading to higher performance [1]. Because of the strain energy associ-

ated with bending the flexible members, compliant mechanisms often have higher actuation effort

compared to traditional mechanisms [16]. Static balancing is one way of reducing this actuation

energy [17, 18, 23, 26, 41, 42]. Static balancing functions by introducing balancing elements that

store and release energy as the mechanism is actuated. Because the net change in energy stored by

the mechanism is small, the actuation effort is reduced. However, stiffer mechanisms require that

more strain energy be stored by the balancing element [57]. By reducing the initial mechanism

stiffness, simpler balancing elements can be used.

The stiffness of a flexure is governed by its material, boundary conditions, and geome-

try [1]. This work will consider the stiffness of an arbitrary material with elastic linear stiffness

(i.e. constant Young’s modulus in the elastic range). The boundary conditions are that of a can-

tilever beam subject to an end moment load. Therefore, the aspect of beam stiffness to be examined

is beam geometry.

The conventional blade (or leaf-spring) flexure design is that of a prismatic rectangular-

section beam [62] shown in Figure 5.1a. Much work has been done studying this kind of flexure

to gain greater insight into its non-linear deflection and stiffness [63]. Changing the beam length,

width, or thickness will result in a change in stiffness. The bending stiffness of a cantilever beam

subject to a moment load is kb = EI/L [64]. E is the Young’s Modulus, I is the second moment

1This chapter has been published in Precision Engineering with Larry Howell contributing as a co-author.

47

of area, which for rectangular sections is given by wh3/12. L, w, and h are the length, width, and

thickness of the flexure, respectively.

Decreasing a flexures thickness can be a straightforward and efficient way of decreasing

the bending stiffness. The lower bound of thickness is generally dictated by the available materials

(stock sizes) and manufacturing processes or other design constraints. For example, in 3D printing,

a process such as electron beam melting may be able to reliably print features no smaller than 1.0

mm thick [12]. Flexure width is limited in a similar way, with the addition that the flexure stability

(its ability to withstand off-axis loads) decreases as the width decreases. Flexure length is often

limited by mechanism envelope. Thus a flexure designer may arrive at the practical geometric

limits of a flexure but still be unsatisfied with its performance [65]. The lattice flexure is introduced

as one way of addressing this issue. This can be important in applications where it is necessary

to reduce actuation effort while maintaining comparable stiffness in off-axis directions (such as

in space applications where actuation effort can be proportional to actuator size, which can be

proportional to actuator mass).

Flexures are important elements in many mechanical systems [47, 66, 67]. Different types

of flexures have been the focus of recent studies, including cross-axis flexure pivots [68], cartwheel

flexures [69], trapezoidal flexures [70], and others [71]. Methods for modeling and design of flex-

ures include the pseudo-rigid-body model [60, 72], FACT [73], screw theory [74], matrix meth-

ods [75], and analytic methods paired with finite element analysis [62]. These methods differ in

accuracy and complexity, but all are meant to aid the designer in arriving at a suitable configuration

of flexures. Common concerns in flexure design include stiffness [47], stress and fatigue life [1],

and off-axis (non motion-direction) stiffness [69].

In this work we introduce the lattice flexure, a new flexure type that has an envelope similar

to a blade flexure but has dramatically reduced motion-direction bending stiffness and an increased

ratio of support-direction to motion-direction bending stiffness. This reduced stiffness lowers the

required actuation effort and simplifies the design of any static balancing system incorporating

a lattice flexure. Lattice flexures have significantly lower mass while maintaining good off-axis

stiffness. Figure 5.2 shows an early lattice flexure design in a 3D-printed titanium cross-axis

flexural pivot. While this chapter cannot exhaustively investigate every aspect of lattice flexure

behavior, some investigation of its bending and torsional stiffness properties is presented. The

48

(a) A conventional blade flexure.

h

b

rails

L1

(b) An X-type lattice flexure.

h
b

diagonal lattice
elements

L1

(c) A V-type lattice flexure.

Figure 5.1: Examples of different flexure types. Note that b is the distance between the rail centers,

not the full width of the flexure.

Figure 5.2: A 3D printed titanium cross-axis flexural pivot with an early lattice flexure design.

improved performance is countered by increased manufacturing complexity, higher stresses, and

lower load-carrying capacity. Advances in additive manufacturing and make monolithic fabrication

of such flexures feasible. See Appendix E for examples of the ANSYS and Matlab code used in

this work.

5.2 Approach

Figure 5.1 shows a conventional blade flexure and the proposed geometry for two lattice

flexure types. Figure 5.1b shows the geometry of an X-type flexure, so named for the crossing of

the diagonal lattice elements. Figure 5.1c shows the geometry of a V-type lattice flexure, so named

because of the diagonal elements’ resemblance to the letter “V.” Both the X-type and V-type flex-

49

α

L1

L2

M0
L1

M1

α

L1

L2

M2

= +

M0

θ

line of symmetry
diagonal lattice

 element

rail

Figure 5.3: The X-type flexure is analyzed using the symmetry about the central plane of the

flexure, using the variables L1, L2, and α .

ures are characterized by the ratio L1/b and the aspect ratio η , where (for square lattice elements)

η = h/(h+ b) (the thickness over the overall width). By removing material from the middle of

the blade flexure the effective width is reduced. This reduces stiffness, and because the diagonal

elements of the lattice are in combined bending and torsion (rather than pure bending), the per-

cent reduction in bending motion stiffness is greater than the percent of material removed. While

many geometries incorporating these concepts can be conceived, the geometries herein presented

are meant to be a proof-of-concept and a starting point for further development.

5.2.1 Stiffness of Lattice Flexures

In this section we derive the stiffness of X-type and V-type lattice flexures. Figure 5.3

shows a single geometric unit of a lattice flexure and the nomenclature used in the derivation.

First we will derive the stiffness of an X-type lattice flexure. Variables used in this deriva-

tion are depicted in Figures 5.1 and 5.3. Note that the stiffness of only one quadrant of the X is

analyzed and the overall stiffness is found from symmetry. The bending moment M0 applied to the

lattice element can be decomposed into the moments M1 and M2. M1 is the moment carried by the

“rails” of the lattice, while M2 is the moment carried by the diagonal lattice element. The deflected

angle θ induced by M1 can be found from elementary beam theory as

θ =
M1L1

EIr
(5.1)

50

where Ir is the second moment of area of the rail, E is the Young’s modulus, and L1 is the length

of one half-unit cell of the X-type flexure.

Because the ends of the two segments are rigidly joined, the diagonal lattice element must

also be deflected to this angle (θ). The angular deflection of the diagonal lattice element due to

torsion (θt) in the beam is given by

θt =
M2 sin(α)L2

KG
(5.2)

where L2 is the length of the diagonal lattice element, M2 is the component of the applied moment

(M0) reacted by the diagonal lattice element, K is a section property (a function of lattice ele-

ment cross-section [64]), G is the modulus of rigidity, and α is the lattice angle (see Figures 5.1b

and 5.3). The angular deflection due to bending (θb) is given by

θb =
M2 cos(α)L2

EIl

(5.3)

where Il is the second moment of area of the diagonal lattice element.

The vector sum of these two angular displacements perpendicular to the flexure axis must

be equal to θ , and substituting sinα = b/2L2 and cosα = L1/L2 can be written as

θ =
M2b2

4L2KG
+

M2L2
1

L2EIl

(5.4)

This expression is similar to that arrived at by Delimont et al. for a surrogate fold with similar

geometry [76].

By factoring out M2 and dividing, we can find an expression for the load carried by the

diagonal element

M2 =
4L2KGEIlθ

b2EIl +4L2
1KG

(5.5)

The total moment M0 is the sum of M1 and M2, or

M0 =
EIrθ

L1
+

4L2KGEIlθ

b2EIl +4L2
1KG

(5.6)

51

Recalling that G = E
2(1+ν) , this can be simplified to:

M0 =
Eθ

L1

(

Ir +
2KL1L2Il

b2Il(1+ν)+2L2
1K

)

(5.7)

From Equation (5.7) we can find the stiffness of the lattice section, k, as k = M0/θ . To find

the total X-type lattice stiffness kX this should be doubled to account for symmetry:

kX =
2E

L1

(

Ir +
2KL1L2Il

b2Il(1+ν)+2L2
1K

)

(5.8)

With the substitution of L2 =
√

L2
1 +(b/2)2 and some rearranging, Equation 5.8 then be-

comes

kX =
2E

L1









Ir +
2Il

L1
b

√

(

L1
b

)2

+1/4

(1+ν) Il

K
+2
(

L1
b

)2









(5.9)

The stiffness of a rectangular blade flexure is given by

kblade =
EIb

L1
(5.10)

The reduction in stiffness can be found from (kblade − kX)/kblade.

% ReductionX =









1− 2

Ib









Ir +
2Il

L1
b

√

(

L1
b

)2

+1/4

(1+ν) Il

K
+2
(

L1
b

)2

















×100 (5.11)

Thus, the stiffness reduction is a function of the cross section of the lattice elements, the

cross section of the blade flexure it replaces, and the ratio of L1/b.

Using a similar procedure to that outlined above, and the variables depicted in Figure 5.4,

similar equations can be found for the V-type flexure. V-type flexures reduce stiffness more than the

X-type. However, V-type flexures may be more difficult to fabricate because their slender sections

are generally longer than those in similarly-sized X-type flexures. The stiffness of a V-type lattice

52

α

L1

L2

M0
L1 M1

α

L1

L2

M2

= +

Figure 5.4: The V-type flexure is analyzed using the variables L1, L2, and α .

0 0.5 1 1.5 2 2.5 3 3.5 4
L

1
/b

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

St
iff

ne
ss

 R
ed

uc
tio

n

X Analytic
V Analytic
X FEA
V FEA
X measured
V measured

Figure 5.5: Stiffness reduction of the two lattice types as a function of L1/b. The flexure geometry

has η = 0.08 and the lattice elements have square cross sections with Ir = Il .

flexure kV is given by

kV =
E

L1









2Ir +
Il

L1
b

√

(

L1
b

)2

+1

2(1+ν) Il

K
+
(

L1
b

)2









(5.12)

The stiffness reduction when compared to a rectangular blade flexure is given by

% ReductionV =









1− 1

Ib









2Ir +
Il

L1
b

√

(

L1
b

)2

+1

2(1+ν) Il

K
+
(

L1
b

)2

















×100 (5.13)

Equations (5.11) and (5.13) are plotted in Figure 5.5 and compared to calculated (using

finite element analysis) and measured stiffness values of the two lattice types. The finite element

53

analysis (FEA) models were created in ANSYS using BEAM188 elements (see Appendix E for

APDL code). This element type is suitable for 3D analysis, is based on Timoshenko beam theory,

and includes shear deformation effects. The FEA results match the analytical solutions to within

0.58%. If the lattice elements are of a round cross section (holding η and h constant), stiffness

reduction is even greater than for the square cross sections shown here. Equations (5.9) and (5.12)

can be used to describe the stiffness of lattice flexures for any lattice element cross section. If

a blade flexure is to be replaced with a lattice flexure of identical outer dimensions, (EI)lattice =

(1−% Reduction)(EI)blade. This allows us to calculate the stiffness of the new flexure (whether

that flexure is a simple lattice flexure, or incorporated in a cross-axis flexural pivot or cartwheel

hinge, etc.) as

klattice = (1−% Reduction)kblade (5.14)

5.2.2 Off-Axis Stiffness Considerations

Considerations besides bending stiffness often come into play during mechanism design.

One concern may be the off-axis stiffness of a flexure when subjected to transverse loads or mo-

ments [77].

One way to characterize the off-axis stiffness is to compare the support-direction bending

stiffness to the motion-direction bending stiffness [15]. Here, the motion-direction bending stiff-

ness is denoted as simply k, and the two support-direction stiffness values are denoted as kb and

kt . kb denotes bending stiffness perpendicular to the beam’s long axis but orthogonal to its motion

direction. kt denotes the torsional stiffness of the beam (twisting along its long axis).

Because of the difficulty in obtaining an analytic solution, FEA was used to find the stiff-

ness ratio for lattice flexures of both types. This was done by building a representative section of

lattice flexure in the FEA model and meshing it with ANSYS BEAM188 elements (see Appendix E

for APDL code). A z-axis rotation was applied to the free end of the flexure and the corresponding

motion-direction bending moment calculated. This rotation was released and a warping-restrained

x-axis (torsional) rotation was applied with the corresponding torque calculated. This torsional

rotation was then released and a y-axis rotation was applied. The stiffness at each step was then

54

found. This process was repeated and the results calculated for multiple values of η and L1/b for

each flexure type. A blade flexure was also analyzed to provide a basis for comparison.

These FEA data were approximated by a polynomial surface fit. The behavior of the X-type

lattice, shown in Figure 5.6 is approximated by

(kt/k)X =

[

0.03276+0.9915
L1

b
−0.6835

L1

b
η +0.332

(

L1

b

)2

−0.8216η2

]

×

(

L1

b

)−1.746+0.2498η−0.4555
L1
b

(5.15)

and

(kb/k)X =

[

0.001667+11.17η −3.911η
L1

b
−31.88η2 +0.1754

(

L1

b

)2
]

×

η−2.869+0.2764
L1
b +1.675η (5.16)

which are valid for 0.0974 ≤ L1
b
≤ 2.3659 and 0.0196 ≤ η ≤ 0.2063. These surface fits have R2

values of 0.9995 and 0.9943, respectively.

Similarly, the behavior of the V-type lattice, shown in Figure 5.7 is approximated by

(kt/k)X =

[

0.01173+0.299
L1

b
1.813

L1

b
η +1.815

(

L1

b

)2

−0.05857η2

]

×

(

L1

b

)−2.223−0.9335η−0.1808
L1
b

(5.17)

and

(kb/k)X =

[

0.5964+43.57η −3.288η
L1

b
−131η2 −0.02594

(

L1

b

)2
]

×

η−2.428−0.03889
L1
b +4.121η (5.18)

which are valid for 0.0974 ≤ L1
b
≤ 2.3659 and 0.0196 ≤ η ≤ 0.2063. These surface fits have R2

values of 0.9993 and 0.9992, respectively.

55

0
0.2

5

10
k

t/k

1

 (k
t
/k)

X
 as a function of L

1
/b and η

15

η

0.80.1

L
1
/b

20

0.60.40.2

(a) Ratio of torsional stiffness to motion-direction bending stiffness.

-5000
0.2

0

5000

k
b
/k

1

10000

 (k
b
/k)

X
 as a function of L

1
/b and η

η

0.80.1

L
1
/b

15000

0.60.40.2

(b) Ratio of support-direction bending stiffness to motion-direction bending

stiffness.

Figure 5.6: Off-axis stiffness behavior of the X-type lattice with square lattice elements.

The stiffness ratios for the two lattice types were plotted in Figure 5.8 side-by-side with the

stiffness ratios for a blade flexure as a function of η . A constant value for L1/b was chosen to be

0.75. Other values of L1/b will yield similar curves, though the exact values will differ.

Other results are tabulated for comparison in Table 5.1. These predictions indicate that in

some cases lattice flexures will have higher kt/k and kb/k ratios than conventional blade flexures.

56

0
0.2

5
k

t/k

10

2

 (k
t
/k)

V
 as a function of L

1
/b and η

η

1.50.1

L
1
/b

15

10.5

(a) Ratio of torsional stiffness to motion-direction bending stiffness.

0
0.2

0.5

1

×104

k
b
/k

2

 (k
b
/k)

V
 as a function of L

1
/b and η

1.5

η

1.50.1

L
1
/b

2

10.5

(b) Ratio of support-direction bending stiffness to motion-direction bending

stiffness.

Figure 5.7: Off-axis stiffness behavior of the V-type lattice with square lattice elements.

In the case of the V-type lattice flexure, the off-axis stiffness ratio can be increased by a factor of

6.5 over a blade flexure of equal aspect ratio. Other configurations (different L1/b or non-square

lattice elements) may yield even greater improvements. This could help designers achieve higher

performance in situations where high support-direction stiffness and low motion-direction stiffness

are important.

57

0 0.05 0.1 0.15 0.2 0.25
η

1.2

1.3

1.4

1.5

1.6

1.7

1.8
k

t/k
(k

t
/k)

X
 Compared to a Blade Flexure

Rectangular cross-section flexure
Lattice flexure, L

1
/b=0.75

(a) Ratio of torsional stiffness to motion-direction

bending stiffness.

0.05 0.1 0.15 0.2
η

0

200

400

600

800

1000

k
b
/k

(k
b
/k)

X
 Compared to a Blade Flexure

Rectangular cross-section flexure
Lattice flexure, L

1
/b=0.75

(b) Ratio of support-direction bending stiffness to

motion-direction bending stiffness.

0 0.05 0.1 0.15 0.2 0.25
η

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

k
t/k

(k
t
/k)

V
 Compared to a Blade Flexure

Rectangular cross-section flexure
Lattice flexure, L

1
/b=0.75

(c) Ratio of torsional stiffness to motion-direction

bending stiffness.

0.05 0.1 0.15 0.2
η

0

200

400

600

800

1000
k

b
/k

(k
b
/k)

V
 Compared to a Blade Flexure

Rectangular cross-section flexure
Lattice flexure, L

1
/b=0.75

(d) Ratio of support-direction bending stiffness to

motion-direction bending stiffness.

Figure 5.8: Off-axis stiffness behavior compared to a blade flexure for a range of η . L1/b for the

lattice flexures is fixed at 0.75.

5.3 Prototype Testing and Performance

This section describes the prototype flexures used to validate the analytic and numeric

expressions developed in Section 5.2.

58

5.3.1 Bending Stiffness

An initial set of prototypes was built from polylactic acid (PLA) filament using a Maker-

Bot® Replicator™ 2 desktop 3D printer. Table 5.2 lists the geometric parameters that were con-

stant for all lattice flexures, while Table 5.3 includes values of L1/b for each flexure. Cross-axis

flexural pivots (CAFPs) were chosen as the test specimens because of their well-understood stiff-

ness behavior and low center shift [40,49,52,53,72,78–81]. To improve flexure quality, the flexure

strips were built flat on the build plate with 100% infill and press-fit into base and top sections to

create the CAFPs. Representative prototypes are shown in Figure 5.9. Flexure geometries tested

included conventional blade flexures, seven X-type lattice flexures and six V-type lattice flexures

with different values of N for the same flexure length (listed in Table 5.3.)

Additionally, a pair of cross-axis-flexural pivots was built from 3D printed titanium using

the electron beam melting process. These have L = 2, b = 0.46 in, and h = 0.04 in. One flexure

was an X-type flexure with n = 2 and the other was a V-type flexure with n = 5. Figure 5.10 shows

the titanium flexures.

To measure the stiffness of each CAFP a rotational displacement was applied using a worm-

wheel gearset. Torque was measured using an Omega TQ103 socket torque sensor and displace-

Table 5.1: Comparison of lattice flexure off-axis stiff-

ness to conventional blade flexure with the same

value of η . Lattice elements are square with

Ir = Il .

Type L1/b η kt

k
/
(

kt

k

)

blade

kb

k
/
(

kt

k

)

blade

X 0.75 0.02 1.18 3.06

X 0.75 0.10 1.15 2.27

X 0.75 0.20 1.16 1.01

V 0.75 0.02 1.66 6.16

V 0.75 0.10 1.60 5.06

V 0.75 0.20 1.60 3.35

X 1.5 0.02 0.57 2.95

X 1.5 0.10 0.57 1.07

V 1.5 0.02 1.10 6.46

V 1.5 0.10 1.06 5.10

V 1.5 0.20 1.05 3.11

59

Figure 5.9: Cross-axis flexural pivot prototypes used in the measurement of lattice flexure stiffness.

ment was measured using a US Digital optical encoder with 5000 counts per revolution. By using

quadrature counting, a resolution of 0.018◦ was achieved. Both the torque transducer and the

encoder output were read using Labview. Figure 5.11 shows the experimental set-up. By apply-

ing rotations of approximately ±2,3,4,5,6,7,and 8◦ and recording torque and rotation, the static

torque-displacement curves for each flexure were obtained. Matlab’s fit function was used to ap-

proximate this torque-displacement curve with a linear curve fit (average R2 value of 0.9912). The

slope of this curve fit was recorded as the CAFP bending stiffness k′b. Table 5.3 summarizes the

stiffness results while the reduction in stiffness is shown in Figure 5.5.

The titanium flexures were tested with the same equipment and methods as the PLA flex-

ures. Test results for the titanium prototypes are summarized in Table 5.4.

Table 5.2: Geometric parameters for test

specimens. Note that a square cross section

was used for both the rails and the diag-

onal lattice elements, giving Ir = Il .

Parameter Value

η 0.08

h 1.5 mm

b 17.5 mm

bl 1.5 mm

L 5.08 cm

60

Figure 5.10: Titanium prototypes used in the measurement of lattice flexure stiffness.

Input gears

Torque transducer

Optical encoder

Test specimen

Figure 5.11: Experimental setup for measuring bending stiffness. A rotational displacement was

applied using a known torque.

5.3.2 Torsional Stiffness

The same measurement equipment was used to measure the torsional stiffness of each flex-

ure. However, instead of using the flexures in a CAFP, a single flexure was printed and assembled

into a fixture that put the flexure in pure torsion. Figure 5.12 shows the test setup. Each flexure

was deflected to ±0.5,1,1.5,2,2.5 and 3◦, with stiffness calculated using a curve fit function as

with the bending stiffness. To compare the torsional stiffness of a single flexure with the bending

stiffness of a single flexure, the bending stiffness must be extracted from the measured bending

stiffness of the CAFPs. Jensen [40] reports the stiffness of a CAFP as k′ = 2.154EI/L. To extract

the stiffness of a single flexure (k = EI/L), the measured k′ values are divided by 2.154. The mea-

sured values of kt are divided by this resulting stiffness. Thus, kt/k values reported in Table 5.3 are

for a single flexure. Results are presented graphically in Figure 5.13.

61

Table 5.3: Summary of measured CAFP stiffness and lattice flexure

stiffness reduction. k′ is the measured stiffness of the CAFP spec-

imen. kt is the torsional (off-axis) stiffness of a single flex-

ure. kt/k is computed as kt/
k′

2.154
so that only the stiffness

of a single flexure is considered. % Reduction is based

on a blade flexure with k′ = 0.6689N-m/rad (k =
0.3105N-m/rad). Each design consists of whole

unit-cells.

Type L1/b k′ (N-m/rad) % Reduction kt (N-m/rad) kt/k

Blade NA 0.6689 NA 0.6816 2.195

X 1.45 0.2478 63% 0.1633 1.4196

X 0.72 0.2443 63.5% 0.1965 1.7320

X 0.48 0.2260 66% 0.2031 1.9349

X 0.36 0.2252 66.5% 0.2412 2.3065

X 0.29 0.2279 66% 0.1708 1.6140

X 0.24 0.2067 69% 0.2869 2.9897

X 0.21 0.1679 75% 0.2477 3.1767

V 0.72 0.1720 74.5% 0.1585 1.9849

V 0.48 0.1943 71% 0.1418 1.5725

V 0.36 0.2017 70% 0.1933 2.1275

V 0.29 0.1733 74% 0.2260 2.8097

V 0.24 0.1848 72.5% 0.2337 2.7242

V 0.21 0.1771 73.5% 0.2177 2.6468

Table 5.4: Summary of measured titanium CAFP stiff-

ness and lattice flexure stiffness reduction. % Reduc-

tion is in comparison to a CAFP with blade flex-

ures of the same outer dimensions as the lattice

flexures. % Error is in comparison to Equa-

tions (5.11) and (5.13); the reported stiffness

reduction is greater than expected. This

is due to the printed flexure thickness

being slightly undersized.

Type L1/b k′ (N-m/rad) % Reduction % Error

X 1.3096 0.8195 84.7% 19.6%

V 0.5238 0.6126 88.6% 8.2%

62

Figure 5.12: Experimental setup for determining torsional stiffness. A rotational displacement was

applied co-linear with the axis of a single flexure using a known torque. Note that only the rotation

is constrained on the left end of the specimen; displacement along the beam axis is not constrained.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
L

1
/b

0

0.5

1

1.5

2

2.5

3

3.5

k
t
/k

Blade Flexure
X FEA
V FEA
Blade Measured
X Measured
V measured

Figure 5.13: Off-axis (torsional) stiffness behavior of both lattice types for η = 0.08. FEA predic-

tions compared to measured behavior.

5.4 Discussion

The lattice geometries presented here were selected as proof-of-concept geometries; they

may not be optimal in terms of maximum stiffness reduction or off-axis stiffness behavior.

It has been shown that these lattice flexures have lower motion-direction stiffness than a

conventional blade flexure of similar dimensions and material. The deviation of measured behavior

from theoretical is approximately 11%, with measured stiffness being higher than predicted. This

63

deviation is attributed to lack of precision in the manufacturing process, as well as deviation from

the beam model. Thickness of the lattice elements causes them to be joined not at points, but

regions. This contributes to error in the analytic and FEA models, as well as stress concentrations.

The increase in stress in areas where lattice elements join is small, but whould be accounted for

when fatigue life is a concern. Additionally, the reduced motion-direction bending stiffness is

accompanied by a reduction in the load-carrying capacity of any joint constructed from lattice

flexures. Thus, alttice flexures may not be suited for applications expected to experience high

loads.

It has been shown that for some values of L1/b, both X-type and V-type lattice flexures with

square diagonal lattice elements and Ir = Il exhibit higher transverse bending/motion-direction

bending stiffness and torsion/bending stiffness ratios than a conventional blade flexure. This result

is especially significant for designs where the off-axis stiffness drives design. For example, suppose

a particular mechanism requires a flexure with kt = 10 N-m. Suppose a candidate blade flexure

has a kt/k of 1.4. This results in a bending stiffness of k = 7.14 N-m. Now suppose this flexure is

replaced with an X-type lattice flexure having an kt/k = 2.5. This flexure can have kt = 10 N-m

with k = 4.0 N-m. This design change yields a 44% reduction in bending stiffness without any

reduction in torsional stiffness.

This chapter has introduced lattice flexures and explored their fundamental characteristics.

However, as a new device there remain other aspects that could be further studied and applied.

5.5 Conclusions

The lattice flexure has been introduced as a new flexure type not common before additive

manufacturing techniques were widely available. X-type and V-type lattice flexures were presented

and analytic models describing their bending stiffness were developed and the results were verified

using finite element analysis and physical measurements. Finite element models were used to

predict their off-axis stiffness. Lattice flexures can be readily used in engineering applications

where their advantages of reduced bending stiffness and higher off-axis stiffness ratios are valuable.

Additive manufacturing provides a production method that can provide monolithic lattice flexure

systems.

The following conclusions can be made from the results presented in this chapter:

64

• Lattice flexures have a lower bending stiffness compared to blade flexures of the same size.

• The analytical models developed provide reliable estimates of the lattice flexure stiffness, as

verified by FEA and experiment.

• The ratio of support-direction stiffness to motion-direction bending stiffness of some lattice

flexures is higher than for blade flexures.

• Arrangements of lattice flexures can be built monolithically using additive manufacturing.

65

CHAPTER 6. COMPOUND JOINTS: BEHAVIOR AND BENEFITS OF FLEXURE

ARRAYS

6.1 Introduction

1 Compliant mechanisms achieve their motion through deflection of flexible members [1].

They can have significant advantages when compared to traditional mechanisms, including higher

precision, reduced friction, reduced wear, lower mass, and lower cost [1, 82]. However, because

actuating a compliant mechanism includes loading the flexible members with strain energy, actua-

tion effort can be high [16]. Displacements are limited by the strength of the flexure material [1].

Many types of flexures do not have a constant center of rotation [15, 40, 52, 53, 58, 59, 78], limit-

ing their applications to those where center shift can be neglected or accounted for with software.

Finally, off-axis stiffness can be an important aspect of the design, and should be accounted for if

off-axis loads are anticipated [77].

Flexures are important elements in many mechanical systems [47, 66, 67]. Different types

of flexures have been the focus of recent studies, including but not limited to cross-axis flexural

pivots [68], cartwheel flexures [69], and trapezoidal flexures [70]. Methods for modeling and

design of flexures include the pseudo-rigid-body model [60, 72], FACT [73], screw theory [74],

matrix methods [75], and analytic methods paired with finite element analysis [62]. These methods

differ in accuracy and complexity, but all are meant to aid the designer in arriving at a suitable

configuration of flexures.

Compound joints are proposed as one way to mitigate several challenges associated with

flexures. This chapter introduces compound joints and evaluates their stiffness, displacements [53],

off-axis stiffness characteristics, and center shift [53, 83] and compares them to conventional flex-

ures of similar type and size.

1This chapter has been published in Precision Engineering with Jason Lund and Larry Howell contributing as

co-authors.

67

(a) An example of a single

cross-axis flexural pivot to be ar-

rayed into a compound joint.

(b) An example of a compound

joint with flexures arranged in

series.

(c) An example of a compound

joint with flexures arranged in

series-and-parallel.

Figure 6.1: Flexure configurations.

(a) Axes used to define rotations

and displacements. The positive

z-axis is out of the page.

L

h

(b) Dimensions used for cross-

axis flexural pivots. Note that b

is the width out of the page for

a single flexure, and the flexi-

ble members are not connected

where they cross.

L

h

(c) Dimensions used for

cartwheel hinges. Note that b is

width out of the page and that

the flexible members join in the

center.

Figure 6.2: Variables used in this work.

6.2 Approach

In this work, a compound joint is an arrangement of identical flexures (see Figure 6.1a)

along a common axis of rotation [53]. Two configurations are considered: series compound joints

(Figure 6.1b) and series-and-parallel compound joints (Figure 6.1c). In such joints, n is the number

of flexures in series on one side of the joint. Thus, even though the joint shown in Figure 6.1c

consists of 8 flexures, it has n = 4. Figure 6.2 shows the coordinate system used in this work. Note

that the z-axis is positive out of the page.

See Appendix C for examples of ANSYS and Matlab code used in this work.

6.2.1 Range of Motion

The force (F), stiffness (k), and displacement (x) of a single linear spring are related by x =

F/k. If two identical springs are placed together in series and a force F is applied, its displacement

68

is given by xtotal = 2F/k = 2x. The displacement for n springs in series is given by nx. Similarly,

for rotational springs, θtotal = nθ . Maximum displacement increases linearly with the number of

springs in series. Similarly, compliant flexures in series have the same relationship if they have a

constant stiffness and their axes of rotation are co-linear.

6.2.2 Stiffness

The stiffness of two springs in series is given by keq = k1k2/(k1+k2). If k1 = k2 this reduces

to keq = k/2. For n identical springs in series keq = k/n. Thus, stiffness is reduced as more springs

are added in series. This result applies to flexures in series, and is discussed more in Section 6.2.4.

In the case of flexures arrayed in parallel, stiffness increases as keq = nk. Although rotational

stiffness can change under transverse loads [57], load-dependent stiffness was not addressed in

this work.

6.2.3 Center Shift

Center shift is evaluated as in [78]; the trajectory of a single point on the moving block

is considered as a function of rotation angle. The point chosen coincides with the initial center

of rotation. Minimizing center shift is important for precision mechanisms such as pointers and

robots. For example, calculating the inverse kinematics of a robot arm constructed from non-

stationary-center joints becomes very difficult. Finally, a load applied through the center of a joint

exerts zero moment, but if the center shifts the moment caused by that force may be significant.

Consider the cross-axis flexural pivot (CAFP) [40, 49, 52], shown in Figure 6.3. Several

authors have attempted to determine its center shift analytically [52, 53, 78–81]. Although there

is not a consensus on the exact trajectory of the center, it is generally agreed that the center shift

closely resembles a quadratic curve, and that the rotational center’s trajectory is predictable in x

and y.

A representative trajectory obtained by finite element analysis (FEA) using ANSYS with

BEAM188 elements and an applied rotation is shown in Figure 6.4. The finite element model used

to obtain these curves is substantially the same as that used in the off-axis stiffness analysis, and

is detailed in Section 6.2.4, with the principal difference being in the loading conditions. Rather

69

Figure 6.3: An example of a cross-axis flexural pivot.

−0.02 −0.01 0 0.01
0

0.005

0.01

0.015

0.02

0.025

dx/L

d
y/

L

A

 B

 C C

 n = 1
 n = 2
 n = 2

(a)

−4 −2 0 2 4 6
x 10−3

0

2

4

6

8
x 10−3

dx/L

d
y/

L

A

 B

 C

(b)

Figure 6.4: Normalized center shift behavior for cross-axis flexural pivots (CAFPs) as predicted

by FEA. Figure 6.4b is a magnified view of Figure 6.4a. Blue circles show the trajectory of the

center of rotation of a single CAFP rotated to 30◦ at 1◦ increments. The red triangles predict the

trajectory of the center of rotation for a second flexure in series with the first (obtained using a

rotated vector sum). Green squares show the trajectory of the center of rotation for two CAFPs

arranged in series for the same total angular deflection.

than loading the model with forces in various directions, z-rotation displacements were applied in

increments and the displacement of a node rigidly connected to the output and initially coincident

with the center of rotation was recorded. This provided the displacement of the center of rotation

as a function of angular displacement.

The path traced by the blue circles is the path of the center of rotation for a single CAFP.

Point A marks the initial position of the center of rotation. Point B marks the center of rotation at

15◦ of deflection. If an undeflected CAFP were rotated 180◦ with its initial center of rotation at

70

B, point C would be the location of its center of rotation at 15◦ of deflection. Vector
−→
AB describes

the center shift of the first CAFP at 15◦ of deflection. Vector
−→
BC describes the center shift of the

second CAFP at 15◦ of deflection. The center shift for two CAFPs (each is deflected 15◦ for a

total of 30◦) in series can be found as the vector sum of
−→
AB+

−→
BC =

−→
AC. Because the total angular

deflection of the joint is distributed evenly between the two flexures, the vectors
−→
AB and

−→
BC are

equal in magnitude. However,
−→
BC rotated by an angle π + θ/2 (because the second flexure is

oriented 180◦ from the first, which is then deflected an angle θ/2).
−→
AC is then given by

−→
AC =











cos(π +θ/2) −sin(π +θ/2) 0

sin(π +θ/2) cos(π +θ/2) 0

0 0 1











−→
AB+

−→
AB (6.1)

where θ is the total angular deflection of the compound joint (see Figure 6.2). This analysis

assumes that the two flexures are co-planar. The green squares in Figure 6.4 show the trajectory

of the center of rotation predicted by FEA for a compound joint whose flexures are not co-planar.

The green squares are not coincident with point C (see Figure 6.4b) due to lateral flexibility in the

joints not accounted for in the vector sum. Thus, the co-planar assumption introduces a small error.

For more than two flexures, Equation (6.1) can be extended to become

−→
AC =

n

∑
i=1











cos((i−1)(π +θ/n)) −sin((i−1)(π +θ/n)) 0

sin((i−1)(π +θ/n)) cos((i−1)(π +θ/n)) 0

0 0 1











−→
AB (6.2)

which gives a first estimate of center shift. Equation (6.2) also gives a clue to another center-shift-

reduction strategy. The term π + θ/n appears because we have so far assumed that flexures are

added in series in a co-axial manner, where each flexure is oriented 180◦ from the previous flexure

and θ is the total angular deflection of the joint.

If instead of orienting each flexure 180◦ from the previous flexure, they were oriented

180◦− (θ/n)◦, the center shift of co-planar flexures would be reduced to zero at displacement θ

for n∈ even. This is illustrated in Figure 6.5. Figure 6.5a shows a compound joint (n= 2) where the

CAFPs are oriented 180◦ from each other. When this joint is deflected to an angle θ (Figure 6.5b),

71

(a) An undeflected compound joint where

each CAFP is oriented 180◦ from the pre-

vious CAFP

(b) The compound joint deflected to an an-

gle θ . The center shift is non-zero.

(c) The compound joint redesigned to in-

clude an angular offset of θ/2 between the

flexures.

(d) The compound joint from Figure 6.5c,

deflected to an angle θ . The center shifts

sum to zero at full displacement.

Figure 6.5: A compound joint consisting of cross-axis flexural pivots (n = 2). The blue block is

grounded and the red block is the output. The gray blocks are the rigid connection between the

first and second CAFPs of the joint. The blue and red arrows represent the center shifts of the

individual CAFPs (not to scale).

the center shift is non-zero. The blue arrow tracks the change of the center of rotation of the first

CAFP and the red arrow tracks the center of rotation of the second CAFP. In contrast, Figure 6.5c

shows a compound joint (n = 2) where the CAFPs are oriented π − θ/2 from each other. When

this joint is displaced an angle θ (Figure 6.5d) the center shift is zero (the blue and red arrows are

equal in magnitude and opposite in direction).

This behavior can be confirmed with finite element analysis. Figure 6.6 shows examples of

cartwheel flexures arranged to have reduced center shift.

72

0 5 10 15 20 25 30
Rotation, degrees

0

2

4

6

8
δ
/L

×10-4

 n = 2
 n = 4
 n = 2offset

 n = 4offset

(a) Center shift of four different configurations of

compound flexures deflected to 30◦.

0 5 10 15 20 25 30 35 40 45 50 55 60
Rotation, degrees

0

2

4

6

δ
/L

×10-3

 n = 2
 n = 4
 n = 2offset

 n = 4offset

(b) Center shift of four different configurations of

compound flexures deflected to 60◦.

Figure 6.6: By choosing an appropriate angular offset for compound joints, center shift can be

dramatically reduced at specific angles of deflection.

6.2.4 Off-Axis Stiffness

Off-axis stiffness is the stiffness of the joint in support directions when subjected to loads

or moments in those directions. In this work, off-axis stiffness is evaluated using non-dimensional

stiffness [49, 52]. This allows flexures of different sizes and topologies to be rapidly compared.

We define the non-dimensional linear stiffness as

κi =
FiL

3

δiEI
(6.3)

and the non-dimensional torsional stiffness as

κθ i =
MiL

θiEI
(6.4)

where F is applied force, L is a characteristic flexure length (which will be different for each flexure

topology), E is the modulus of elasticity, I is the second moment of area of the flexure elements, δ

is the deflection when subjected to force F , M is the applied moment, and θ is the rotational dis-

placement when subjected to moment M. A θ in the subscript of κ indicates a rotational stiffness,

while no subscript indicates a linear stiffness. The i in a subscript can be x, y, or z to denote action

73

along or about the indicated axis. For example, a cantilever beam with a force at the free end would

have κy = 3 and a cantilever beam with a moment at the free end would have κθz = 1 [64].

To evaluate off-axis stiffness, cross-axis flexural pivots and cartwheel flexures were ana-

lyzed using finite element software (ANSYS). Flexures were modeled with BEAM188 elements,

which are capable of 3D and nonlinear analysis. For all flexures in this analysis, the slenderness

ratio GAL2/EI was calculated to be 2953, which is much greater than the recommended minimum

value of 30. Each flexure was meshed with fifty elements along its length to ensure a mash-

independent solution. A range of joint configurations was analyzed by varying the aspect ratio

of the flexures (their width-to-thickness ratio b/h) and the number of flexures in each compound

joint. A force or moment was applied along a single axis, the displacement along that axis was

recorded, and then the force or moment was removed and applied to the next axis. In this way each

geometry was rapidly analyzed for all six degrees of freedom. See Appendix C for APDL scripts

of these analyses.

6.3 Experimental Setup

Two aspects of joint performance were subjected to physical testing: motion-direction stiff-

ness and center shift. The procedures used in these measurements are outlined in the sections

below.

6.3.1 Stiffness

To confirm the modeled results experimentally, a modular joint was built that could be

configured as a series or series-and-parallel compound joint using cartwheel flexures (shown in

Figure 6.7a). The flexures were made of 12.7 mm (0.5 in) thick polypropylene, with L = 44.5 mm

(1.75 in), h = 2.0 mm (0.08 in), and b = 12.7 mm (0.5 in). This setup is shown in Figure 6.7b. To

actuate the joint, a worm-wheel gearset applied a rotational displacement. The resulting reaction

torque and displacement were measured by an Omega TQ103 torque socket in series with a US

Digital optical encoder with 5000 counts per revolution. An angular resolution of 0.018 degrees

was achieved by employing quadrature encoding. All instruments were read using Labview. The

compound joint was configured for n ∈ {1,2,3,4}. The torque and displacement were recorded

74

(a) One of the cartwheel flexures that can

be used to assemble the modular joint for

testing.

Torque socket

Optical encoder

Flexures

in series

Torsion bar

Flexures in

series-and-parallel

Worm-wheel

gearset

(b) Experimental setup for determining κθz

of cartwheel hinges in series-and-parallel

with n = 3.

Figure 6.7: Components used in the experimental validation

for rotations about the z axis. To avoid the effects of gravity on the L-shaped torsion bar, this

measurement was made with a vertical axis of rotation. The stiffness was obtained by taking a

linear curve fit of the resulting torque-displacement data.

6.3.2 Center Shift

The center shift behavior was measured using a digital microscope and Matlab’s Computer

Vision System Toolbox. First the flexure to be measured was clamped on a workbench and gravity

compensated to avoid any sagging. A flat panel with a random, high-contrast pattern and known

grid (to supply an accurate scale) was attached to the flexure output. The digital microscope was

positioned over the center of the flexure. The flexure was filmed as a deflection was applied and

then slowly removed. A Matlab script extracted features common to sequential frames and calcu-

lated the rotation and translation between one frame and the next. From this data, and the initial

center point of the flexure, center shift was obtained. A photo of the experimental setup is shown

in Figure 6.8. Center shift was measured for a single cartwheel hinge deflecting to about 60◦, and

for compound joints with n = 2 with offsets of 0◦, 15◦, and 30◦.

75

Figure 6.8: Test setup for measuring the center shift of various configurations of flexures.

6.4 Results

6.4.1 Stiffness and Off-Axis Stiffness

Figure 6.9 shows the stiffness data for cartwheel hinges in series and Figure 6.10 shows the

stiffness data for cross-axis flexural pivots in series as a function of b/h (as defined in Figure 6.2)

and n. The data were approximated with a surface-fit using Matlab’s fit function with a custom-

specified fit type. See Appendix C for the Matlab scripts used. Data for cartwheel hinges and

cross-axis flexural pivots in series-and-parallel are shown in Figure 6.11 and 6.12, respectively.

The equation for the surface fit is

κ = (A(b/h)4 +B(b/h)3 +C(b/h)2 +D(b/h)+E)nF(b/h)+G (6.5)

where the coefficients A, B, C, D, E, F , and G are listed in Table 6.1, along with the R2 value for

each surface fit.

After measuring the motion-direction (z-axis rotation) stiffness of the physical prototype,

its non-dimensional z-rotation stiffness was compared to values predicted by the surface fits given

in Table 6.1. As can be seen in Figure 6.13, there is agreement between the finite element results,

the surface fit predictions, and the measured stiffness.

76

1 3 5 7 9 111315

1
4

7
10

0

1000

2000

3000

b/hn

κ
x

(a) κx as a function of n and b/h.

1 3 5 7 9 111315

1
4

7
10

0

500

1000

1500

b/hn

κ
y

(b) κy as a function of n and b/h.

1 3 5 7 9 111315

1
4

7
10

0

200

400

600

b/hn

κ
z

(c) κz as a function of n and b/h.

1 3 5 7 9 111315

1
4

7
10

0

50

100

150

b/hn

κ
θ
x

(d) κθx as a function of n and

b/h.

1 3 5 7 9 111315

1
4

7
10

0

100

200

300

b/hn

κ
θ
y

(e) κθy as a function of n and

b/h.

1 3 5 7 9 11 13 15

1
4

7
10

0

2

4

b/hn

κ
θ
z

(f) κθz as a function of n and

b/h.

Figure 6.9: Non-dimensional stiffness behavior of cartwheel hinges in series.

Achieving accurate measurements of the off-axis stiffness in the remaining five degrees of

freedom (κx, κy, κz, κθx, and κθy) is difficult [69] due to the small displacements generally involved

with off-axis deflections. Attempts were made to measure rotational stiffness about the x- and y-

axes, but these were unsuccessful because of relative motion between the assembled parts in the

modular joint. Therefore, other methods of validating the FEA model were sought.

To validate the FEA model, the analytic results of Kang and Gweon [69] for a single

cartwheel hinge were confirmed using the same finite element model used in the generation of

the surface fits presented in Table 6.1. Close agreement between our FEA model and the ana-

lytic result of [69] for a single flexure was achieved, as seen in Table 6.2. This close agreement,

combined with the agreement of κθz with FEA indicate that the surface fits presented here are

appropriate for 1 ≤ n ≤ 10 and 1 ≤ b/h ≤ 15.

6.4.2 Center Shift

Unlike stiffness and off-axis stiffness, center shift is independent of flexure aspect ratio b/h

(assuming slender beams); it is a function only of the flexure type. Figures 6.14 and 6.15 depict

77

1 3 5 7 9 111315

1
4

7
10

0

500

1000

1500

b/hn

κ
x

(a) κx as a function of n and b/h.

1 3 5 7 9 111315

1
4

7
10

0

500

1000

1500

b/hn

κ
y

(b) κy as a function of n and b/h.

1 3 5 7 9 111315

1
4

7
10

0

1000

2000

3000

b/hn

κ
z

(c) κz as a function of n and b/h.

1 3 5 7 9 111315

1
4

7
10

0

100

200

300

b/hn

κ
θ
x

(d) κθx as a function of n and

b/h.

1 3 5 7 9 111315

1
4

7
10

0

100

200

300

b/hn

κ
θ
y

(e) κθy as a function of n and

b/h.

1 3 5 7 9 11 13 15

1
4

7
10

0

1

2

b/hn

κ
θ
z

(f) κθz as a function of n and

b/h.

Figure 6.10: Non-dimensional stiffness behavior of cross-axis flexural pivots in series.

the trajectory and vector sum of center shift normalized by the characteristic length of the flexure,

L, defined in Figure 6.2. For a cartwheel hinge, L is the length of a single spoke of the flexure,

while for a CAFP L is the length of a single blade flexure. These data were obtained using the

finite element model described in Sections 6.2.3 and 6.2.4.

To confirm FEA predictions of center shift, data was gathered using the procedure outlined

in Section6.3.2. This data is presented in Figure 6.16. Notice that for n = 1 there is very little

disagreement between the FEA and measured center shift.

6.5 Example Mechanism

The mechanism shown in Figure 6.17a is a fully compliant 3D-printed titanium pointing

mechanism [10]. It incorporates six cross-axis flexural pivots and a split-tube flexure to provide

two degrees-of-freedom and ±15◦ of motion about the two axes. The output is mounted on a

stage supported by two series-and-parallel compound joints with n = 1 in series. This arrangement

allows the output stage to rotate around two orthogonal axes with high stability under load. This

extra stability theoretically allows the mechanism to function under a 445 N (100 lb) load.

78

1 3 5 7 9 111315

1
4

7
10

0

5000

10000

b/hn

κ
x

(a) κx as a function of n and b/h.

1 3 5 7 9 111315

1
4

7
10

0

5000

10000

b/hn

κ
y

(b) κy as a function of n and b/h.

1 3 5 7 9 111315

1
4

7
10

0

500

1000

1500

b/hn

κ
z

(c) κz as a function of n and b/h.

1 3 5 7 9 111315

1
4

7
10

0

500

1000

b/hn

κ
θ
x

(d) κθx as a function of n and

b/h.

1 3 5 7 9 111315

1
4

7
10

0

500

1000

1500

b/hn

κ
θ
y

(e) κθy as a function of n and

b/h.

1 3 5 7 9 11 13 15

1
4

7
10

0

5

10

b/hn

κ
θ
z

(f) κθz as a function of n and

b/h.

Figure 6.11: Non-dimensional stiffness behavior of cartwheel hinges in series-and-parallel.

To achieve a greater range of motion this pointer could be redesigned with series-and-

parallel joints with n = 2, and the other CAFPs replaced with series compound joints, also of

n = 2. If greater precision is sought, an angular offset could be incorporated. Increasing n further

would continue to increase its range of motion, but complexity would greatly increase as well.

From the equations presented in Table 6.1, it can be predicted that changing from n = 1 to n = 2

will reduce κx and κy by approximately a factor of 20. A version of what this might look like is

shown in Figure 6.17b.

6.6 Discussion

6.6.1 Stiffness

Comparison of Figure 6.9 with Figure 6.11 and comparison of Figure 6.10 with Figure 6.12

illustrate that adding flexures in parallel increases the stiffness and off-axis stiffness of compound

joints. Stiffness increased by a factor of 2-8, depending on flexure geometry and which stiffness is

79

1 3 5 7 9 11 13 15

1
4

7
10

0

1

2
x 104

b/hn

κ
x

(a) κx as a function of n and b/h.

1 3 5 7 9 11 13 15

1
4

7
10

0

1

2
x 104

b/hn

κ
y

(b) κy as a function of n and b/h.

1 3 5 7 9 111315

1
4

7
10

0

2000

4000

6000

b/hn

κ
z

(c) κz as a function of n and b/h.

1 3 5 7 9 111315

1
4

7
10

0

5000

10000

b/hn

κ
θ
x

(d) κθx as a function of n and

b/h.

1 3 5 7 9 111315

1
4

7
10

0

5000

10000

b/hn

κ
θ
y

(e) κθy as a function of n and

b/h.

1 3 5 7 9 11 13 15

1
4

7
10

0

2

4

6

b/hn

κ
θ
z

(f) κθz as a function of n and

b/h.

Figure 6.12: Non-dimensional stiffness behavior of cross-axis flexural pivots in series-and-parallel.

being considered. Although the figures show 1 ≤ n ≤ 10, a proposed practical limit on n is n ≤ 4.

Past this point the joint grows ever larger without an appreciable increase in performance.

It can be seen from Figures 6.9, 6.10, 6.11, and 6.12 that κz, κθx and κθy increase as b/h

increases. κx, κy and κθz are generally independent of b/h.

As an example, consider a single cartwheel flexure with a maximum deflection Θ to a

compound joint of identical cartwheel flexures in series with n = 2. The maximum deflection of

the compound joint is 2Θ. Stiffness along all axes drops significantly — by 50% in most cases.

Depending on the design constraints this may be unacceptable. However, if flexures are added in

parallel, stiffness values return to their original (single flexure) value, with κθx and κθy improved

by factors of 4 and 3, respectively. Thus, range of motion has been doubled with no appreciable

loss in off-axis stiffness, and the desired stiffness κθz remains unchanged.

Now compare a cartwheel flexure in series where n = 2 with a cartwheel flexure in series-

and-parallel where n = 4. For these two compound joints, κx, κy, κz, and κθz will be unchanged,

but the off-axis stiffnesses κθx and κθy will be approximately four times higher with the parallel

80

1 2 3 40
1
2
3
4
5
6
7
8

n

κ
θ
z

FEA Series
Measured Series
Surface Fit Series
FEA Parallel
Measured Parallel
Surface Fit Parallel

Figure 6.13: A comparison of FEA, surface fit predictions, and measured stiffness behavior for

cartwheel flexures in series-and-parallel with b/h = 5.05.

configuration. Additionally, the range of motion of the series-and-parallel configuration will be

double that of the series configuration.

6.6.2 Center Shift

As n increases, center shift generally decreases due to two complementary factors. First,

center shift is roughly a quadratic function of rotation. If the same rotation is divided between

more joints, the sum of the center shift will be less (x2 > n(x/n)2 = x2/n).

Second, the total center shift of a compound flexure is the vector sum of the center shifts

of the individual flexures. When n is even the center shift reduction is more dramatic. For n = 2

the relatively large center shift of the first flexure is counteracted by the equal and nearly opposite

center shift of the second flexure. An approximately order-of-magnitude reduction in center shift

can be achieved by using n = 3, while using n = 2i, where i is a non-zero positive integer, reduces

center shift by two orders of magnitude or more. As shown in Section 6.2.3, if the flexures are

properly arranged the theoretical center shift is zero for a given rotation.

From Figures 6.14 and 6.15 it can be seen that center shift of a series compound joint

will be approximately equal to that of a series-and-parallel joint for equal n. This is because the

81

flexures added in parallel have the same center shift behavior as the original flexures in series. That

is, flexures added in parallel do nothing to alter the vector sum that governs center shift.

Figure 6.16 shows measured center shift data for several configurations of a cartwheel

hinge series joint. While not all data matches perfectly with what would be expected from FEA,

the general trend of reduced center shift with n = 2 is reinforced.

Table 6.1: Coefficients for surface fits for non-dimensional stiffness of compound joints. The

equation takes the form κ = (A(b/h)4 +B(b/h)3 +C(b/h)2 +D(b/h) +E)nF(b/h)+G.

R2 values are > 0.988 for all surface fits.

A B C D E F G

Cartwheel hinge in series

κx 0.05331 -1.916 23.74 -157.7 2489 -0.01846 -2.437

κy 0.1221 -4.645 62.86 -359.3 1699 -0.006181 -2.936

κz -0.001132 -0.0342 3.098 0.5135 0.8849 0 -1

κθx 0 0.003429 0.4524 0.2865 0.1134 0 -1

κθy 0.002091 -0.1179 2.592 -1.134 1.095 0 -1

κθz 0 0.000192 -0.00242 0.01205 3.964 0.0001123 -1.001

Cartwheel hinge in series-and-parallel

κx 0.009293 -0.3172 3.517 -15.16 7549 -0.02463 -1.872

κy 0.01332 -0.5096 6.893 -36.63 7565 -0.0233 -2.737

κz -0.002264 -0.06839 6.196 1.027 1.77 0 -1

κθx -0.0003471 0.01537 3.786 1.139 0.3603 -0.001232 0.9802

κθy 0.004218 -0.26 8.846 -3.472 3.272 -0.009498 -0.545

κθz 0 0 -0.0003177 0.001591 7.961 0 -1

Cross-axis flexural pivots in series

κx 0.07014 -2.743 38.64 -234.3 1629 -0.01401 -3.444

κy 0.07092 -2.772 39.02 -236.4 1638 -0.01312 -3.459

κz 0.03476 -1.938 34.19 -22.56 15.55 0 -1

κθx -0.000193 0.007113 0.922 0.5791 0.2221 0 -1.001

κθy -0.0002213 0.008256 0.919 0.5862 0.2151 -0.0004537 -1.001

κθz 0 0 -0.000322 0.00167 1.987 0 -1

Cross-axis flexural pivots in series-and-parallel

κx 0.004806 -0.1831 2.451 -12.91 15040 -0.03316 -4.259

κy 0.006235 -0.2228 2.81 -14.09 15040 -0.03313 -4.259

κz 0.06812 -3.841 68.1 -43.95 30.05 0 -1

κθx -0.0007577 0.03358 40.66 2.371 0.8576 -0.0033 -2.331

κθy -0.001892 0.06504 40.38 3.309 0.02026 -0.003264 -2.332

κθz 0 0 -0.0002778 0.001087 3.999 0 -1

82

6.7 Conclusions

It has been shown that compound joints offer increased range of motion and reduced center

shift compared to single flexures. Off-axis stiffness can be maintained while improving desired

stiffness and joint range-of-motion. Compound joints offer performance advantages with increased

off-axis stiffness, greater range of motion, and potentially zero center shift. However, compound

joints have a larger envelope than a single flexure, are more complex, and the theoretically zero

center shift only occurs at certain deflections.

Table 6.2: A comparison of the FEA model used for a single cartwheel flexure

compared to analytical results obtained by Kang and Gweon [69]. Because

the values of b/h used by Kang and Gweon are outside the range of the

surface fits, the finite element model was re-run using the material

properties and dimensions reported in [69]. Finally, the coor-

dinate system used in [69] switched the x and y axes from

what is defined in Figure 6.2 and the point at which

the forces are applied is slightly different (which

change was reflected in the FE model).

Quantity Analytic [69] Non-dimensional FEA % Difference

Set 1: L = 15 mm, b = 10 mm, h = 0.4 mm

κx 9073 N/m 7.97 7.98 0.04%

κy 9.607×106 N/m 8443.7 8443.5 0.00%

κz 0.491×106 N/m 431.54 433.46 0.44%

κθx 80.19 N-m/rad 313.23 313.28 0.02%

κθy 179.27 N-m/rad 700.27 713.88 1.91%

κθz 1.02 N-m/rad 3.99 3.99 0.01%

Set 2: L = 12 mm, b = 5 mm, h = 0.3 mm

κx 3740 N/m 7.98 7.98 0.02%

κy 4.503×106 N/m 9606.4 9605.98 0.00%

κz 95×103 N/m 202.67 202.76 0.05%

κθx 9.42 N-m/rad 139.61 139.67 0.04%

κθy 27.5 N-m/rad 407.47 413.19 1.39%

κθz 0.27 N-m/rad 3.99 3.99 0.21%

Set 3: L = 8 mm, b = 10 mm, h = 0.2 mm

κx 7479 N/m 7.98 7.98 0.03%

κy 9.006×106 N/m 9606.4 9606.0 0.00%

κz 1.340×106 N/m 1429.3 1449.1 1.36%

κθx 75.04 N-m/rad 1250.7 1250.8 0.00%

κθy 112.54 N-m/rad 1875.7 1907.2 1.65%

κθz 0.24 N-m/rad 4.00 3.99 -0.16%

83

0 1 2 3
x 10−3

−10

−8

−6

−4

−2

0
x 10−3

dx/L

d
y/

L

θ = 10
θ = 12

θ = 14
θ = 16

θ = 18

θ = 20

θ = 22

θ = 24

θ = 26

θ = 28

θ = 30

 n = 1
 n = 2
 n = 3
 n = 4

(a) Rotational center trajectory of a series joint.

0 5 10 15 20 25 30
0

0.002

0.004

0.006

0.008

0.01

0.012

Rotation, degrees

δ
/L

 n = 1
 n = 2
 n = 3
 n = 4

(b) Vector sum of center shift of a series joint.

0 1 2 3
x 10−3

−10

−8

−6

−4

−2

0
x 10−3

dx/L

d
y/

L

θ = 10
θ = 12

θ = 14
θ = 16

θ = 18

θ = 20

θ = 22

θ = 24

θ = 26

θ = 28

θ = 30

 n = 1
 n = 2
 n = 3
 n = 4

(c) Rotational center trajectory of a series-and-

parallel joint.

0 5 10 15 20 25 30
0

0.002

0.004

0.006

0.008

0.01

0.012

Rotation, degrees

δ
/L

 n = 1
 n = 2
 n = 3
 n = 4

(d) Vector sum of center shift of a series-and-

parallel joint.

Figure 6.14: Center shift behavior for cartwheel hinges in series (Figures 6.14a and 6.14b) and

series-and-parallel (Figures 6.14c and 6.14d). Note that the two cases are nearly identical.

The contributions of this chapter include:

• Demonstrating the intuitive advantage of increased range of motion and increased off-axis

stiffness

• Identifying the drawbacks of larger flexure envelope and increased complexity

• Creating models to describe compound joints’ behavior

• Verifying models numerically and experimentally (where possible)

• Demonstrating the practical limit of n ≤ 4

84

−8 −6 −4 −2 0
x 10−3

0

0.005

0.01

0.015

0.02

0.025

dx/L

d
y/

L

θ = 10
θ = 12

θ = 14
θ = 16

θ = 18

θ = 20

θ = 22

θ = 24

θ = 26

θ = 28

θ = 30

 n = 1
 n = 2
 n = 3
 n = 4

(a) Rotational center trajectory of a series joint.

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025

0.03

Rotation, degrees

δ
/L

 n = 1
 n = 2
 n = 3
 n = 4

(b) Vector sum of center shift of a series joint.

−8 −6 −4 −2 0
x 10−3

0

0.005

0.01

0.015

0.02

0.025

0.03

dx/L

d
y/

L

θ = 10
θ = 12

θ = 14
θ = 16

θ = 18

θ = 20

θ = 22

θ = 24

θ = 26

θ = 28

θ = 30

 n = 1
 n = 2
 n = 3
 n = 4

(c) Rotational center trajectory of a series-and-

parallel joint.

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025

0.03

Rotation, degrees

δ
/L

 n = 1
 n = 2
 n = 3
 n = 4

(d) Vector sum of center shift of a series-and-

parallel joint.

Figure 6.15: Center shift behavior for cross-axis flexural pivots in series (Figures 6.15a and 6.15d)

and series-and-parallel (Figures 6.15c and 6.15d). Note that the two cases are nearly identical.

• Developing methods to predict and measure center shift

• Describing a method to design joints with zero center shift at a specified deflection

85

0 15 30 45 60 75
Rotation, degrees

0

0.015

0.03

0.045

δ
/L

FEA n = 1
FEA n = 2
 n = 1
 n = 2
 n = 2, 15°
 n = 2, 30°

Figure 6.16: Measured center shift data for a cartwheel hinge, compared with FEA predictions.

FEA predictions are for n = 1 and n = 2 with no angular offset, and experimental data is shown

for n = 1, n = 2 (no offset), n = 2 (15◦ offset) and n = 2 (30◦ offset).

(a) A two-degree-of-freedom pointer

mechanism that incorporates two com-

pound joints of n = 1.

(b) The same mechanism, redesigned with

n = 2 for joints along one axis. Also incor-

porated is an angular offset to reduce center

shift to near zero at 15◦ rotation.

Figure 6.17: A pointer mechanism incorporating compound joints.

86

CHAPTER 7. INTEGRATION OF ADVANCED STIFFNESS-REDUCTION TECH-

NIQUES DEMONSTRATED IN A 3D-PRINTABLE JOINT

7.1 Background

1 Static balancing is a method whereby the required actuation effort of a joint is de-

creased [17, 18, 23, 26, 41, 42, 46]. This is usually done through the addition of springs or aux-

iliary bodies that function to store and release energy in a manner opposite that of the target

joint [18, 41, 44, 84–86]. This results in a small net input of energy to the joint during actua-

tion [21,23,26,42,43,47,86]. One challenge to balancer design is the pre-stressing required [86,87].

Creep and stress relaxation resulting from this pre-stressing negatively effect mechanism perfor-

mance [1]. Joints of lower initial stiffness generally require less pre-stressing of the balancer,

making the system easier to design.

The recently introduced lattice flexure [88] (see Figure 7.1) has drastically reduced stiffness

(60-80% lower) compared to a blade flexure of the same material and outer dimensions. It will be

shown here that using compound lattice flexures in concert with static balancing drastically reduces

actuation effort.

The development of 3D printing technology has made many advances in recent years, but

obtaining useful motion from 3D-printed mechanisms is difficult without incorporating flexures.

The minimum feature size of most 3D printers puts a lower-bound constraint on flexure thickness

that results in high mechanism stiffness. By applying stiffness reduction strategies to 3D printing,

it is demonstrated that a 3D-printed titanium part can have low stiffness.

To statically balance a flexure using the non-dimensional approach of Merriam et al., a

balancer spring is required [57]. If this joint is to be 3D-printed, its balancer spring must be 3D-

printable. Previous balancer designs have used coil springs or leaf springs [3, 57]. However, coil

springs do not lend themselves to 3D printing, and leaf springs lack the pre-load and stiffness

1This chapter has been submitted for publication to Mechanism and Machine Theory with Kyler Tolman and Larry

Howell contributing as co-authors.

87

(a) Front view of cross-axis flexural pivot (CAFP)

made with lattice flexures.

(b) Side view of lattice-flexured CAFP.

Figure 7.1: An example lattice flexure printed in titanium.

behavior required by the balancing method used here. In this work a fully printable balancer will

be presented.

The presence of the balancer spring introduces another challenge; it exerts a compressive

load on the flexure to be balanced. Moreover, if this compressive load is not applied through the

center of the joint it will result in an off-axis torque on the joint. To remedy this, a compound joint

will be employed [89]. By arranging two flexures in parallel with the balancer spring between

them, the stability of the joint is improved and the load from the balancer spring does not exert an

unbalanced torque on the flexures.

Figure 7.2 shows the statically balanced 3D-printed lattice-flexured cross-axis flexural pivot

developed here. Each element of the mechanism is discussed herein. An overview of lattice

flexures is presented first, along with an evaluation of their load-dependent stiffness that allow them

to be statically balanced. Next static balancing is discussed, followed by a detailed discussion on

the design of the nonlinear tension spring used as a balancer. Finally, integration of these elements

is discussed and experimental results are presented for a titanium prototype.

The objectives of this work are:

1. Evaluate the load-dependent stiffness behavior of lattice-flexured CAFPS.

2. Design a printable balancing spring.

88

Figure 7.2: Printed titanium flexure with its parts labeled.

3. Design a statically balanced CAFP incorporating compound lattice flexures.

4. Validate the resulting design with measurements of a physical prototype.

7.2 Lattice Flexures

7.2.1 Overview

Lattice flexures were recently introduced as a new flexure geometry [88]. They are char-

acterized by reduced motion-direction stiffness and improved off-axis stiffness behavior compared

to blade flexures. This is achieved by the removal of material in a perforated lattice pattern. The

reduction in stiffness is predictable using an analytic model, and off-axis stiffness behavior can be

predicted using finite element analysis (FEA) [88].

7.2.2 Load-Dependent Stiffness Behavior

The stiffness of a joint when subjected to transverse loads is an important factor for consid-

eration when designing balancers [57,90]. To successfully design a statically balanced joint incor-

89

porating lattice flexures, this load-dependent behavior must be evaluated. Following the methods

outlined in [90], dimensionless loads η and ν are defined as

η =
HL2

EI
(7.1)

and

ν =
V L2

EI
(7.2)

with dimensionless stiffness defined as

κ =
KL

EI
(7.3)

In addition to varying η and ν , the dimensionless parameters L1/b and h/(h+ b) were

varied to fully investigate the variation of load-dependent stiffness behavior with lattice geometry.

In all, 11,900 data points were analyzed for the X- and V-type flexures with square lattice elements.

To non-dimensionalize the loads and stiffness of a lattice flexure, a flexural stiffness term is

needed. For a blade flexure, this term is EI, the Young’s modulus multiplied by the second moment

of area. The stiffness is then calculated as k = EI/L. Similarly, a flexural stiffness term can be

defined for a lattice flexure by multiplying the stiffness from [88] (Equations (9) and (12) in that

publication) by a length term. The result is given by

EIeff =



































2E



Ir +
2Il

L1
b

√

(

L1
b

)2
+ 1

4

(1+ν)
Il
K +2

(

L1
b

)2



 X-type

E



2Ir +
Il

L1
b

√

(

L1
b

)2
+1

2(1+ν)
Il
K +
(

L1
b

)2



 V-type

, (7.4)

where E is the Young’s modulus, Ir is the second moment of area of the lattice rail, Il is the second

moment of area of the lattice diagonal element, L1
b

is a lattice length ratio, and K is a torsional

stiffness term for the diagonal element.

90

A parametric FE model was developed that could analyze the two lattice types with varying

applied loads and geometries. Applying a nonlinear fit function to the data, it was found that the

load-dependent dimensionless stiffness of X- and V-type lattice flexures is given by

κ = νβ1 +
L1

b
β2 +β3 +η2β4 +ν2β5 (7.5)

where βi are coefficients given in Table 7.1, κ is dimensionless stiffness, and η and ν are dimen-

sionless horizontal and vertical loads, respectively. This expression was found by assuming that

the stiffness expression would follow a quadratic expression of all four variables, then eliminating

all terms that could be eliminated without significantly lowering the value of R2. Equation (7.5) is

valid for −6 ≤ η ≤ 6, −8 ≤ ν ≤ 8, 0.02 ≤ h
h+b

≤ 0.20, and 0.2041 ≤ L1
b
≤ 2.5000.

7.3 Static Balancing

Once the load-dependent stiffness behavior is known and a lattice geometry has been se-

lected, the balancer can be designed using the method outlined in [57]. In summary, a pair of

non-dimensional parameters Π1 = kθ/Pd and Π2 = kld/P is selected such that the resulting mech-

anism is approximately balanced for ±20◦ of rotation. In this way a balanced joint can be de-

signed knowing only its stiffness kθ under compressive load P due to a tension spring of stiffness

kl mounted a distance d from the center of rotation.

Table 7.1: Values of the βi coefficients used

in Equation (7.5), and R2 values for each

set of coefficients. These coefficients are

used to describe the stiffness of X-type

and V-type lattice flexures subjected

to lateral loads.

X-type V-type

β1 -0.2263 -0.2280

β2 -0.0911 -0.0541

β3 2.0862 2.0502

β4 -0.0031 -0.0027

β5 -0.0029 -0.0026

R2 0.9949 0.9964

91

In previous work on static balancing, the figure-of-merit is often stiffness reduction. This is

useful if the torque-displacement curve of the statically balanced mechanism can be approximated

as linear. In this work the figure-of-merit is actuation energy reduction. The actuation energy

is evaluated as the energy required to displace a joint to its full range of motion. The actuation

energy reduction (AER) is then calculated as the difference in actuation energies of the original

and modified joints divided by the original joint actuation energy.

A V-type lattice was selected for the joint because it generally is less stiff than a similar

X-type flexure. To improve stability, a compound joint with two CAFPs arranged in parallel (co-

axially and both attached to either side of ground and output) was used [89]. To account for this

symmetry, the EIeff in Equation (7.4) was doubled. Parameters for the flexure were determined

and are listed in Table 7.2. To choose balancer parameters, the load-dependent stiffness kθ of the

lattice flexure was found from Equation (7.5) for a range of preload P. The corresponding kl and

d were then found for the resulting kθ and P. Figure 7.3 shows how the selection of the value of

preload, P, affects the other parameters’ values. P was chosen so that the value of d would be

acceptably small.

To confirm that the resulting cross-axis flexural pivot is statically balanced, a finite element

model was built using the commercial code ANSYS. The model uses BEAM188 elements for

Table 7.2: Parameters for the balanced lattice

flexure system.

Parameter Value Units

L 76.2 mm

Type V —

E 111×109 GPa

n 5 —

h 1.0 mm
h

h+b
0.04 —

L1
b

0.3125 —

Π1 0.49 —

Π2 0.8581 —

kθ 1.7385 N-m

kl 0.3063 N/mm

P 35.6 N

d 9.97 cm

92

4 8 12 16 20 24 28 32 36
 P, N

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
 k
θ
, N

-m
/ra

d

(a) Load-dependent stiffness kθ as a function of

preload P.

4 8 12 16 20 24 28 32 36
 P, N

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 k
l, N

/m
m

(b) Balancer linear stiffness kl as a function of

preload P.

4 8 12 16 20 24 28 32 36
 P, N

4
8

12
16
20
24
28
32
36
40

 d
, c

m

(c) Distance d as a function of preload P.

Figure 7.3: Plots used in the selection of the balancer parameters. These plots allow a designer to

quickly visualize the effects of P on joint stiffness, spring stiffness, and mounting distance.

the lattice flexures, COMBIN14 elements for an ideal balancing spring with a specified initial

preload, and MPC184 elements for the rigid sections that attach the spring to the flexible elements.

The model and results (compared to an unbalanced version and a CAFP with conventional blade

flexures) are shown in Figure 7.4. The predicted actuation energy reduction (AER) compared to the

blade flexure is 99.7%, i.e. the actuation energy of the balanced joint is 0.3% that of the unbalanced

joint. Compared to the unbalanced lattice flexure, the predicted AER is 97.2%.

93

(a) FEA model of a CAFP with lattice flexures and

ideal spring used as a balancer.

0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 15
Rotation, degrees

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

 T
or

qu
e,

 N
-m

Blade Flexure
Lattice Flexure
Balanced Lattice

(b) Torque-rotation curve obtained from FEA, con-

firming that the mechanism in 7.4a is statically bal-

anced.

Figure 7.4: Preliminary statically balanced design confirmed by FEA.

7.4 Printable Balancer

While the statically balanced system presented in Section 7.3 appears to perform well, it

relies on a mathematically ideal spring for its balancer. To build a physical prototype, a printable

spring is desired. As listed in Table 7.2, this spring needs a stiffness of 0.3063 N/mm at a preload

of 35.6 N. This could be achieved by designing a linear spring with the desired stiffness and

deflecting it until the preload is reached. Alternatively, a nonlinear spring could be designed that

quickly reaches the desired preload and then matches the desired stiffness. In this work, the latter

strategy was adopted.

Because the desired stiffness is relatively small, it was decided to adapt a constant-force

mechanism into a nonlinear balancing spring [91]. A diagram of the proposed balancer topology is

shown in Figure 7.5. The balancer consists of an angularly offset parallel-guiding mechanism and a

driver dyad. This is mirrored about a centerline. Its geometry is completely defined by lengths L1,

L2, angle θ10, the cross section widths and thicknesses (b1 & b2, h1 & h2), and the offset distance.

θ20 is found as θ20 = arccos(L1 cos(θ10)/L2).

A pseudo-rigid-body model of this mechanism was developed. Symmetry was employed

to reduce the model to a slider-crank mechanism with two torsion springs. A diagram of this model

94

θ2

θ1

P L1

L2

offset

Figure 7.5: Topology of the proposed printable balancer.

P

K1

K1

K1

K2

K2

x
K1

(a) Full model of the parallel-guiding mechanism

and driver dyad.

θ2

θ1

P

R2

R1

x

K1eq

K2eq

(b) The model in Figure 7.6a reduced to a slider-

crank. Letting K1eq
= 4K1 and K2eq

= 2K2 results in

equal force-displacement behavior.

Figure 7.6: Pseudo-rigid-body approximation of the balancer topology shown in Figure 7.5.

is shown in Figure 7.6, and the force output, which is also the compressive preload for the system

(−P), is

P = K1eq
(θ1 − θ10)

(−sin(θ2)

R1 sin(θ2 −θ1)

)

+ K2eq
(θ2 − θ20)

(−sin(θ1)

R2 sin(θ2 −θ1)

)

(7.6)

To adapt this mechanism for use as a balancing spring, its geometry was optimized using

Matlab’s built-in interior-point optimization algorithm. The objective function was designed to

give the desired preload P and the desired (locally) constant stiffness kl . Therefore, the objective

function was

95

fit =

(

P

Pdesired

−1

)2

+

(

dP
dx

kl desired

−1

)2

+
d2P

dx2
(7.7)

subject to the constraint that bending stress not exceed 413.6 MPa. The bending stress was calcu-

lated as

σmax = max











K1(θ1−θ10)
t1
2

I1

K2(θ2−θ20)
t2
2

I2

(7.8)

Equation (7.7) was minimized with respect to the variables listed in Table 7.3. First, the

pseudo-rigid-body model (PRBM) was optimized. The resulting optimal values were used as the

starting point for a second optimization routine. This second routine used a finite element model

to evaluate the fitness function. The constraint on stress was included in the PRBM as a nonlinear

constraint, while in the finite element code it was included as a penalty on the fitness function.

This tiered optimization strategy saved time compared with trying to optimize a solution using

only a finite element model, and results in a better solution than relying exclusively on the PRBM.

The finite element model used is shown in Figure 7.7. It used ANSYS BEAM188 elements of the

appropriate cross-sections for all flexible members.

The resulting force-displacement curves of the optimized balancer spring are shown in

Figure 7.8 Note that the performance predictions for the PRBM and FEA Initial seem close to the

target values, but the optimal value obtained from FEA is substantially different. It was found that

the PRBM under-predicted stress enough that its optimal values were not feasible. The proposed

Table 7.3: Variables to be optimized in the design of the balancer spring. PRBM

value is the optimized value according to the PRBM equations, while final value

indicates the optimized value obtained from the finite element model.

Parameter Units Lower Bound Upper Bound PRBM Value Final Value

L1 mm 25.4 152.4 89.26 86.54

L2 mm 25.4 152.4 90.65 88.05

b1 mm 0.254 17.8 4.653 4.98

b2 mm 2.54 25.4 17.31 19.51

h1 mm 1.0 1.52 1.183 1.16

h2 mm 1.0 1.52 1.35 1.35

θ10 rad 0.0 0.7854 0.0974 0.10319

96

(a) Initial (gray) and deflected (blue) position of the

balancer.

(b) Plot of Von Mises stress of the balancer while

deflected. Units are Pa.

Figure 7.7: FEA model of the balancer used in the balancer optimization routine.

topology does not have enough freedom in the feasible design space to match both the target

preload and the target stiffness. Thus, the balancer can be operated at the optimal preload, the

optimal stiffness, or somewhere in between. It was found that operating at the desired preload

yielded better performance than operating at the desired stiffness. This is because the preload has

a great effect on rotational stiffness kθ , which has more effect on the balancing effectiveness than

variation in the stiffness kl .

The performance metrics for the optimized balancer are summarized in Table 7.4. Although

the desired stiffness was not met, these values were tested in the FEA model shown in Figure 7.4a

(where the balancer is represented as an ideal spring with the given preload and stiffness). It was

found that the actuation energy reduction (AER) of the off-nominal balancer was nearly the same

as the ideal balancer and no further optimization was pursued.

Table 7.4: Balancer parameters achieved with

printable balancer.

Parameter Units Target Final

P N 35.6 35.6

kl N/mm 0.3063 0.9422

∆x mm — 4.47

97

0 2 4 6 8 10 12

x, mm

30

35

40

45

P
,
N

PRBM

Design Point

FEA Initial

FEA Final

Figure 7.8: Force-displacement curve of the optimized balancer spring. The solid line labeled

“PRBM” is the curve predicted by the pseudo-rigid-body model at the analytically predicted op-

timum, with the ideal preload indicated by the red circle for the design point. The dotted line

labeled “FEA Initial” shows the FEA prediction of performance for the parameters obtained from

the PRBM. Finally, the dashed line labeled “FEA Final” indicated the optimum performance ob-

tained from the FE model.

7.5 Flexure-Balancer Integration

To ensure that the balancer performed adequately, the finite element model of the lattice

flexure and ideal spring was re-run using the balancer values listed in Table 7.4. The results are

plotted in Figure 7.9. The predicted actuation energy reduction (AER) (compared with the unbal-

anced lattice) was 99.8%.

Finally, the finite element models of the lattice flexure and the printed balancer were com-

pletely integrated into a single finite element model, shown in Figure 7.10. The balancer was

anchored to connection points on the lattice model using a slender rod consisting of solid circular

ANSYS BEAM188 elements 1.0 mm in diameter (the minimum feature size in an ARCAM 3D

printer is 1.0 mm). To apply the preload, the lower end of the balancer was displaced downward

by the preload distance ∆x, then fixed in all other degrees of freedom. This model exhibits an AER

(compared with the unbalanced lattice) of 92.5%.

98

0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 15
Rotation, degrees

-0.125

-0.0625

0

0.0625

0.125

0.1875

0.25

0.3125

0.375
 T

or
qu

e,
 N

-m

Lattice Flexure
Balanced Lattice
Balanced, Off-Nominal
Printable Balancer

(a) Comparison of the blade flexure to the lattice

flexure design with and without balancing mecha-

nisms.

0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 15
Rotation, degrees

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

 T
or

qu
e,

 N
-m

Balanced Lattice
Balanced, Off-Nominal
Printable Balancer

(b) Comparison of the printable balancer perfor-

mance with performance of an ideal spring (with

nominal and off-nominal stiffness and preload val-

ues).

Figure 7.9: Torque-displacement plots. “Balanced Lattice” shows results for the lattice flexure with

an ideal spring used as the balancer with spring parameters at their nominal values. “Balanced,

Off-Nominal” shows results for the lattice flexure balanced by an ideal spring, but with spring

parameters at values predicted for the printable balancer. “Printable Balancer” shows results for

the lattice flexure with the printable balancer.

The slender rod (see Figure 7.2) must undergo the same total deflection as the lattice flex-

ure. It was found that deflection in the rod was concentrated near the anchor points where it

attaches to the flexure. The distance d from the center of rotation to the spring attachment point

assumes a frictionless pivot. To preserve the location of this pivot, the characteristic pivot of the

rod must be located a distance d from the center of rotation. Therefore, the distance to the anchor

point of the connecting rod was found by d/γ , where γ ≈ 0.85 is a parameter for describing the

location of the characteristic pivot in the pseudo-rigid-body-model [1]. In this way, the distance

from the center of rotation to the pivot point of the spring is preserved at near its optimal value.

The resulting torque-displacement data are shown in Figure 7.9.

7.6 Experimental Validation

The mechanism was designed and built using EBM 3D-printed titanium at NASA Mar-

shall Space Flight Center. The printed flexure (after removal of support material) is shown in

Figure 7.11. This was tested to determine its torque-displacement behavior. An Omega TQ-103

99

Figure 7.10: Finite element model of the lattice flexure complete with printable balancer.

torque transducer was used to measure applied torque, while position was measured with a US

Digital optical encoder. The instruments were read using Labview. The test setup is shown in

Figure 7.12.

The flexure was deflected to various positions between ±15◦. Although the analysis pre-

dicts a displacement for optimal preload, the roughness of the titanium surface made an accurate

measurement of the preload difficult. Therefore, the preload was adjusted by turning the jack-screw

to apply more or less tension to the balancing spring.

Figure 7.13 shows the torque-displacement data. Actuation energy reduction (AER) was

calculated from the torque-displacement data using the trapezoidal rule for numerical integration.

Table 7.5 summarizes these results. The maximum observed AER was 99%. This is in comparison

to a CAFP made from blade flexures of the same width, thickness, and length as the lattice flexures

used here. In other words, the actuation energy of the balanced flexure was 1% of the actuation

energy of an equally sized blade flexure.

100

Figure 7.11: Printed titanium flexure.

Titanium

prototype

Optical

encoder Torque

transducer

Worm-wheel

gearset

Figure 7.12: Printed titanium flexure in the test setup.

7.7 Discussion and Conclusion

We have presented the design of a mechanism exhibiting very high AER accomplished us-

ing three methods of stiffness modification: compound joints, lattice flexures, and static balancing.

While each method has been presented in the literature, this work discusses an example of integrat-

101

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
Rotation, Radians

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

T
o
rq

u
e,

 N
-m

Lattice Flexure
Balanced

Figure 7.13: Torque-displacement behavior of the prototype without a preload (lattice flexure) and

with a preload (balanced).

ing all three methods. Additionally we have presented a solution describing the load-dependent

stiffness behavior of lattice-flexured CAFPs, and the design of a 3D-printable nonlinear tension

spring has been presented.

Key results include:

• Defined a flexural stiffness term for use in lattice flexure analysis

• Quantified load-dependent stiffness behavior for two lattice flexure types

• Proposed a figure-of-merit for comparing nonlinear stiffness behavior

• Presented a method and topology for 3D-printable nonlinear tension spring design

Table 7.5: Actuation energy reduction measured

in a titanium prototype, compared to an ana-

lytic model of a blade flexure (AER (blade))

and prototype lattice flexure (AER (lat-

tice)) with no preload applied to the bal-

ancer spring.

AER (blade) AER (lattice)

Lattice Flexure 96% —

Balanced Joint 99% 75%

102

• Demonstrated a statically-balanced 3D-printed mechanism

• Measured two orders of magnitude actuation energy reduction (AER) compared to conven-

tional blade flexures

The presented joint was designed to demonstrate the validity of integrating compound

joints, lattice flexures, and static balancing. Using lattice flexures or static balancing individu-

ally can yield impressive reductions in required actuation energy, but employing both strategies is

feasible and beneficial when reducing actuation energy is required. Not only does 3D printing fa-

cilitate the fabrication of such mechanisms, but continuing to explore new design methods tailored

for 3D printing will increase the utility and appeal of additive manufacturing technologies.

103

CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS

8.1 Summary

This work has explored three strategies for improving the flexibility of flexures. Compliant

mechanisms designers often seek flexures that are less stiff, have a greater range of motion, are

more precise, or have an improved response to off-axis loads. This work provides strategies to

accomplish each of those design goals. Not only does 3D printing facilitate the fabrication of such

mechanisms, but design methods discussed herein allow for greater exploitation of additive man-

ufacturing. Achieving low-stiffness motion from 3D printed parts allows additive manufacturing

to be employed in a wider range of applications where motion is an important consideration in the

design.

Chapter 2 is a brief discussion of some considerations when designing for 3D printing,

especially using metal alloys. The principles therein have been used throughout this work.

Chapter 3 details a non-dimensional approach for the static balancing of rotational flexures.

By using a set of simple non-dimensional parameters, a static balancer can be designed with a very

small set of calculations. This chapter is a significant contribution to the field of static balancing

because it greatly simplifies the design of static balancing systems. The mothed presented in this

chapter is general, and can be applied to any flexure system that can be approximated as a pin joint

with a torsion spring.

Chapter 4 is a supplement to Chapter 3, and presents a method for determining the load-

dependent stiffness of flexures. Any flexure topology may be analyzed in this way. Understanding

of the load-dependent stiffness behavior is necessary to use the static balancing method presented

in Chapter 3.

Chapter 5 introduces the concept of the lattice flexure. By removing material from the

flexure, its stiffness is reduced. However, the stiffness is reduced more than the simple reduction in

cross section would predict. This is due to the diagonal elements of the lattice being in combined

105

bending-torsion. Additionally, lattice flexures can exhibit improved off-axis stiffness behavior

compared with conventional blade flexures. These benefits come with the trade-offs of increased

design complexity, increased stresses, and lower load-carrying capacity.

Chapter 6 presents the concept of compound joints. By arranging arrays of flexures in

series and series-and-parallel, the range of motion increases, the stiffness can be decreased, the

off-axis stiffness can be increased, and the rotational precision of the joint can be increased.

Chapter 7 expands and combines the methods and strategies detailed in the other chapters.

A definition of the flexural stiffness (EIeff) of a lattice flexure is derived, and used to quantify

lattice flexure load-dependent stiffness behavior. A fully printable balancing spring design is also

presented. It is demonstrated that static balancing, lattice flexures, and compound joints can be

used in concert to achieve unprecedented performance.

8.2 Contributions

A number of publications have been produced as part of this work, listed below:

• Merriam, E.G., Jones, J.E., and Howell, L.L., “Design of 3D Printed Titanium Compliant

Mechanisms,” in: Proceedings of the Aerospace Mechanisms Symposium, 2014 (included as

Chapter 2)

• Merriam, E.G., and Howell, L.L., 2015.“Non-dimensional approach for static balancing of

rotational flexures.” Mechanism and Machine Theory, 84, pp. 90-98 (included as Chapter 3)

• Merriam, E.G., Bruton, J.T., Magleby, S.P., and Howell, L.L. “A Method for Determining

Load-Dependent Stiffness of Flexures,” in: Proceedings of ASME 2015 IDETC, 2015 (in-

cluded as Chapter 4)

• Merriam, E.G., and Howell, L.L. “Lattice Flexures: Geometries for Stiffness Reductions

of Blade Flexures.” Precision Engineering, Available online 24 February 2016 (included as

Chapter 5)

• Merriam, E.G., Lund, J.M., Howell, L.L. “Compound Joints: Behavior and Benefits of Flex-

ure Arrays.” Precision Engineering, Available online 2 February 2016 (included as Chap-

ter 6)

106

• Merriam, E.G., Berg, A.B., Willig, A., Parness, A., Frey, T., and Howell, L.L., “Microspine

Gripping Mechanism for Asteroid Capture,” in: Proceedings of the Aerospace Mechanisms

Symposium, 2016

Additionally, two papers have been submitted for publication and are currently under re-

view:

• Merriam, E.G., Tolman, K.A., and Howell, L.L., 2016.“Integration of Advanced Stiffness-

Reduction Techniques Demonstrated in a 3D-Printable Joint.” submitted to Mechanism and

Machine Theory, submitted April 7 (included as Chapter 7)

• Tolman, K.A., Merriam, E.G., and Howell, L.L., 2016.“Compliant Constant-Force Linear-

Motion Mechanism.” in review for publication in Mechanism and Machine Theory, submit-

ted March 5

I have been able to do some outreach work with artists and capstone teams:

• Consulted on creation of animations describing satellite antenna and thruster applications for

the 3D-printable space pointing mechanism

• Consulted with capstone team designing 3D-printable BSM covers

• Consulted with capstone team designing 3D-printable Isotruss Interstage for NanoLaunch1200

launch vehicle

I have submitted two invention disclosures to NASA, covering work done during my mas-

ters degree and during my time as a visiting technologist at NASA Marshall Space Flight Center:

• “Monolithic Two-Degree-of-Freedom Compliant Pointing Mechanisms, Merriam, E.G., How-

ell, L.L., and Jones, J.J., with Brigham Young University and NASA Marshall Space Flight

Center (NASA Case number MFS-33068-1).

• “Aft-End Plug-Style 3D-Printable Solid-Rocket-Motor Igniter, Merriam, E.G., Matthias, S.

and Jones, J.J., with NASA Marshall Space Flight Center.

107

During my time as a visiting technologist at NASAs Marshall Space Flight Center I helped

design an aft-end plug-style second-stage solid-rocket-motor 3D-printable igniter for the Nanolaunch

rocket program. Additionally, during my time at the Jet Propulsion Laboratory I helped develop a

compliant suspension for a microspine gripping mechanism intended for use on an asteroid capture

mission.

As of the conclusion of this work, I have produced:

• Three distinct and complementary methods for improving the flexibility of compliant mech-

anisms

• Analytic and numeric models that describe these methods

• A method for determining load-dependent stiffness of flexures

• Prototypes demonstrating the validity of these models

8.3 Conclusions

The following conclusions may be drawn from the work herein presented:

• Complex mechanisms can be built using additive metal manufacturing

• Static balancing can be accomplished using simple non-dimensional parameters

• Load-dependent stiffness must be adequately understood before a joint can be statically bal-

anced

• Load-dependent stiffness can be determined from a straightforward finite element analysis

• Lattice flexures reduce bending stiffness and increase off-axis stiffness ratios

• Compound joints can improve flexibility and off-axis stiffness

• Compound joints can have significantly reduced center shift for specified target deflections

• Static balancing, lattice flexures, and compound joints can be used in concert to dramatically

reduce flexure stiffness

108

• The potential utility of additively manufactured parts has been increased by low-actuation-

effort design strategies

Additionally, several general conclusions can be drawn in light of this work. At the outset

of this work it seemed that reducing stiffness would not be anything more than making a flexure

thinner or longer. In fact, very subtle alterations to a flexure’s design and use can result in dra-

matic changes in behavior. The reduced center shift discussed in Chapter 6 was not an anticipated

contribution of this work. It was discovered as data was examined and as we attempted to explain

observed behavior, then asking ‘what if’ questions to see if that behavior could be manipulated.

Finally, in many cases I would have been satisfied with only basic results, but was spurred onward

by my adviser, anonymous reviewers, my wife, and others, to achieve more meaningful, profound

results than I could have hoped for. There is always more to see, more to explore, and more to

learn than meets the eye.

8.4 Recommendations

This work is by no means the definitive answer when it comes to reducing the stiffness of

3D printed compliant mechanisms. The mechanisms demonstrated herein can still be improved,

made smaller, and simplified.

The Π groups presented in Chapter 3 were determined for a joint undergoing ±20◦ of

deflection; for larger or smaller deflections, a slightly different relationship may give better results.

A catalog of the load-dependent stiffness behavior of common flexures other than those

presented in Chapter 4 should be compiled to aid mechanism designers, not only in static balancing,

but in other applications where flexures are subject to transverse loading.

The X- and V-type lattice flexures presented in Chapter 5 were never optimized in any way.

Significant benefit may be derived from optimizing lattice flexure geometry for greater stiffness

reduction or higher off-axis stiffness ratios.

Other configurations of compound joints should be explored, perhaps allowing for hybrid

joints where not all flexures are identical, or where the axes of rotation are not co-linear.

A more compact and parameterized printable balancer spring is one step that would greatly

simplify the static balancing of printed flexures.

109

In short, this work could be taken forward in many different directions. If I had to choose

one I would investigate the application of static balancing to multi-axis mechanisms. That could

provide a compliant approximation of a ball-and socket joint, which has many potential application

in space as a pointer mechanism or on earth in prosthetics or other fields.

110

REFERENCES

[1] Howell, L. L., 2001. Compliant Mechanisms. John Wiley Sons, Inc. 1, 2, 4, 13, 21, 22, 35,

47, 48, 67, 87, 99

[2] Howell, L. L., Magleby, S. P., and Olsen, B. M., 2013. Handbook of Compliant Mechanisms.

Wiley Online Library. 1, 2, 3, 4

[3] Morsch, F. M., and Herder, J. L., 2010. “Design of a generic zero stiffness compliant joint.” In

ASME 2010 International Design Engineering Technical Conferences and Computers and In-

formation in Engineering Conference, American Society of Mechanical Engineers, pp. 427–

435. 1, 8, 10, 21, 29, 35, 87

[4] Ma, R. R., Belter, J. T., and Dollar, A. M., 2015. “Hybrid deposition manufacturing: Design

strategies for multimaterial mechanisms via three-dimensional printing and material deposi-

tion.” Journal of Mechanisms and Robotics, 7(2), p. 021002. 1

[5] Moon, S. K., Tan, Y. E., Hwang, J., and Yoon, Y.-J., 2014. “Application of 3d printing tech-

nology for designing light-weight unmanned aerial vehicle wing structures.” International

Journal of Precision Engineering and Manufacturing-Green Technology, 1(3), pp. 223–228.

1

[6] Rafi, H. K., Karthik, N. V., Starr, T. L., and Stucker, B. E. “Mechanical property evaluation

of ti-6al-4v parts made using electron beam melting.”. 1, 6, 15, 16

[7] Murr, L. E., Gaytan, S., Ceylan, A., Martinez, E., Martinez, J., Hernandez, D., Machado, B.,

Ramirez, D., Medina, F., Collins, S., et al., 2010. “Characterization of titanium aluminide

alloy components fabricated by additive manufacturing using electron beam melting.” Acta

materialia, 58(5), pp. 1887–1894. 1, 15

[8] Lamers, A., Snchez, J. A. G., and Herder, J. L., 2015. “Design of a statically balanced fully

compliant grasper.” Mechanism and Machine Theory, 92, pp. 230 – 239. 1, 4

[9] Queral, V., 2015. “3d-printed fusion components concepts and validation for the ust 2 stel-

larator.” Fusion Engineering and Design, 9697, pp. 343 – 347 Proceedings of the 28th

Symposium On Fusion Technology (SOFT-28). 1

[10] Merriam, E. G., Jones, J. E., Magleby, S. P., and Howell, L. L., 2013. “Monolithic 2 DOF

fully compliant space pointing mechanism.” Mechanical Sciences, 4, pp. 381–390. 1, 2, 6,

11, 15, 78

[11] Fowler, R. M., Howell, L. L., and Magleby, S. P., 2011. “Compliant space mechanisms: a

new frontier for compliant mechanisms.” Mechanical Sciences, 2, pp. 205–215. 2, 13

111

[12] Merriam, E. G., Jones, J. E., and Howell, L. L., 2014. “Design of 3d printed titanium com-

pliant mechanisms.” In Proceedings of the Aerospace Mechanisms Symposium. 2, 11, 48

[13] Parise, J. J., Howell, L. L., and Magleby, S. P., 2001. “Ortho-planar linear-motion springs.”

Mechanism and machine theory, 36(11), pp. 1281–1299. 3

[14] Fowler, R. M., 2012. “Investigation of compliant space mechanisms with application to

the design of a large-displacement monolithic compliant rotational hinge.” Master’s thesis,

Brigham Young University, Fulton College of Engineering and Technology. 3, 5, 14

[15] Trease, B. P., Moon, Y.-M., and Kota, S., 2005. “Design of large-displacement compliant

joints.” Journal of mechanical design, 127, p. 788. 3, 54, 67

[16] Kim, C., and Ebenstein, D., 2012. “Curve decomposition for large deflection analysis of

fixed-guided beams with application to statically balanced compliant mechanisms.” Journal

of Mechanisms and Robotics, 4(4). 4, 21, 35, 47, 67

[17] Stapel, A., and Herder, J. L., 2004. “Feasibility study of a fully compliant statically balanced

laparoscopic grasper.” Vol. 2004, ASME, pp. 635–643. 4, 21, 35, 36, 47, 87

[18] Herder, J. L., 2001. Energy-free Systems. Theory, conception, and design of statically bal-

anced spring mechanisms. Ponsen en Looijen BV. 4, 21, 35, 36, 47, 87

[19] Martini, A., Troncossi, M., Carricato, M., and Rivola, A., 2015. “Static balancing of a

parallel kinematics machine with linear-delta architecture: theory, design and numerical in-

vestigation.” Mechanism and Machine Theory, 90, pp. 128 – 141. 4

[20] Schenk, M., Guest, S., and Herder, J., 2007. “Zero stiffness tensegrity structures.” Interna-

tional Journal of Solids and Structures, 44(20), pp. 6569 – 6583. 4, 35

[21] Deepak, S. R., and Ananthasuresh, G., 2012. “Static balancing of a four-bar linkage and its

cognates.” Mechanism and Machine Theory, 48(0), pp. 62 – 80. 4, 21, 22, 35, 87

[22] Deepak, S. R., and Ananthasuresh, G. K., 2012. “Perfect static balance of linkages by

addition of springs but not auxiliary bodies.” Journal of Mechanisms and Robotics, 4(2),

p. 021014. 4, 35

[23] Tuijthof, G. J., and Herder, J. L., 2000. “Design, actuation and control of an anthropomorphic

robot arm.” Mechanism and Machine Theory, 35(7), pp. 945 – 962. 4, 21, 36, 47, 87

[24] Leishman, L. C., Ricks, D., and Colton, M. B., 2010. “Design and evaluation of statically

balanced compliant mechanisms for haptic interfaces.” Proc. ASME Dynamic Systems and

Control Conference, September. 4, 10, 35

[25] Radaelli, G., Gallego, J. A., and Herder, J. L., 2011. “An energy approach to static balancing

of systems with torsion stiffness.” Journal of Mechanical Design, 133, p. 091006. 4, 8, 35

[26] Pluimers, P., Tolou, N., Jensen, B. D., Howell, L. L., and Herder, J., 2012. “A compli-

ant on/off connection mechanism for preloading statically balanced compliant mechanisms,

DETC2012-71509.” In Proceedings of the ASME International Design Engineering Techni-

cal Conferences, ASME. 4, 21, 36, 47, 87

112

[27] Wooten, J., and Dennies, D. P., 2008. “Electron beam melting manufacturing for production

hardware, paper number 08amt-0061.” SAE International. 5, 13, 14

[28] Murr, L. E., Gaytan, S. M., Ramirez, D. A., Martinez, E., Hernandez, J., Amato, K. N.,

Shindo, P. W., Medina, F. R., and Wicker, R. B., 2012. “Metal fabrication by additive manu-

facturing using laser and electron beam melting technologies.” Journal of Materials Science

& Technology, 28(1), pp. 1–14. 5, 13

[29] Smith, C., Derguti, F., Nava, E. H., Thomas, M., Tammas-Williams, S., Gulizia, S., Fraser,

D., and Todd, I., 2016. “Dimensional accuracy of electron beam melting (ebm) additive man-

ufacture with regard to weight optimized truss structures.” Journal of Materials Processing

Technology, 229, pp. 128 – 138. 5

[30] Vutova, K., and Donchev, V., 2016. “Non-stationary heat model for electron beam melt-

ing and refining–an economic and conservative numerical method.” Applied Mathematical

Modelling, 40(2), pp. 1565–1575. 5

[31] Baumers, M., Dickens, P., Tuck, C., and Hague, R., 2016. “The cost of additive manu-

facturing: machine productivity, economies of scale and technology-push.” Technological

Forecasting and Social Change, 102, pp. 193 – 201. 5

[32] Fox, B., 2006. Rapid Manufacturing: An Industrial Revolution for the Digital Age. John

Wiley & Sons, Ltd, ch. Rapid Manufacture in the Aeronautical Industry, pp. 221–231. 5, 13,

14

[33] Wooten, J., 2006. Rapid Manufacturing: An Industrial Revolution for the Digital Age. John

Wiley & Sons, Ltd, ch. Aeronautical Case Studies Using Rapid Manufacturing, pp. 233–239.

5, 13, 14

[34] Rawal, S., Brantley, J., and Karabudak, N., 2013. “Additive manufacturing of Ti-6Al-4V

alloy components for spacecraft applications.” In Recent Advances in Space Technologies

(RAST), 2013 6th International Conference on, IEEE, pp. 5–11. 5, 14

[35] Spielman, R., 2006. Rapid Manufacturing: An Industrial Revolution for the Digital Age.

John Wiley & Sons, Ltd, ch. Space Applications, pp. 241–248. 5, 14

[36] Halchak, J., Wooten, J., and McEnerney, B., 2005. Layer build of titanium alloy components

for complex-geometry rocket engine. 5, 14

[37] Brigham Young University Compliant Mechanisms Research Group Flexlinks

http://compliantmechanisms.byu.edu/downloads/flexlinks Accessed 2012-11-1. 9

[38] Arcam AB Ebm electron beam melting - in the forefront of additive manufacturing

http://www.arcam.com/technology/electron-beam-melting/ Accessed 2013-10-17. 14

[39] Arcam AB Ebm-built materials - way beyond average

http://www.arcam.com/technology/electron-beam-melting/materials/ Accessed 2013-9-

20. 15, 16

[40] Jensen, B., and Howell, L., 2002. “The modeling of cross-axis flexural pivots.” Mechanism

and Machine theory, 37(5), May, pp. 461–476. 15, 29, 40, 59, 61, 67, 69

113

[41] Sangamesh, D. R., 2012. Static balancing of rigid-body linkages and compliant mechanisms.

India Institute of Science. 21, 47, 87

[42] Herder, J. L., 1998. “Design of spring force compensation systems.” Mechanism and Machine

Theory, 33(12), pp. 151 – 161. 21, 35, 47, 87

[43] Tolou, N., 2012. Statically balanced compliant mechanisms for mems and precision engi-

neering Dissertation. 21, 44, 87

[44] Wang, J., and Gosselin, C., 2000. “Static balancing of spatial four-degree-of-freedom parallel

mechanisms.” Mechanism and Machine Theory, 35(4), APR, pp. 563–592. 21, 35, 87

[45] French, M., and Widden, M., 2000. “The spring-and-lever balancing mechanism, george

carwardine and the anglepoise lamp.” Proceedings of the Institution of Mechanical Engineers,

Part C: Journal of Mechanical Engineering Science, 214(3), pp. 501–508. 21

[46] LaCoste Jr, L. J., 1934. “A new type long period vertical seismograph.” Journal of Applied

Physics, 5(7), pp. 178–180. 21, 87

[47] Dunning, A., Tolou, N., and Herder, J., 2013. “A compact low-stiffness six degrees of free-

dom compliant precision stage.” Precision Engineering, 37(2), pp. 380 – 388. 21, 48, 67,

87

[48] de Lange, D. J., Langelaar, M., and Herder, J. L., 2008. “Towards the design of a statically

balanced compliant laparoscopic grasper using topology optimization.” In ASME 2008 In-

ternational Design Engineering Technical Conferences and Computers and Information in

Engineering Conference, American Society of Mechanical Engineers, pp. 293–305. 21, 35

[49] Wittrick, W., 1951. “The properties of crossed flexure pivots, and the influence of the point

at which the strips cross.” Aeronautical Quarterly, 2(4), pp. 272–292. 24, 29, 36, 38, 39, 40,

43, 59, 69, 73

[50] Munson, B. R., Young, D. F., and Okiishi, T. H., 2006. Fundamentals of Fluid Mechanics.

John Wiley & Sons. 25

[51] Kennedy, J., Eberhart, R., et al., 1995. “Particle swarm optimization.” In Proceedings of

IEEE international conference on neural networks, Vol. 4, Perth, Australia, pp. 1942–1948.

26

[52] Wittrick, W., 1948. “The theory of symmetrical crossed flexure pivots.” Australian Journal

of Scientific Research A Physical Sciences, 1, p. 121. 29, 36, 37, 38, 59, 67, 69, 73

[53] Hongzhe, Z., and Shusheng, B., 2010. “Accuracy characteristics of the generalized cross-

spring pivot.” Mechanism and Machine Theory, 45(10), pp. 1434–1448. 29, 59, 67, 68,

69

[54] Zhao, H., and Bi, S., 2010. “Stiffness and stress characteristics of the generalized cross-spring

pivot.” Mechanism and Machine Theory, 45(3), pp. 378–391. 29, 36, 37

[55] Dede, E., and Trease, B., 2004. “Statically-balanced compliant four-bar mechanism for grav-

ity compensation.” 2004 ASME Student Mechanism Design Competition. 35

114

[56] Merriam, E. G., Colton, M., Magleby, S., and Howell, L. L., 2013. “The design of a fully

compliant statically balanced mechanism.” In ASME 2013 International Design Engineering

Technical Conferences and Computers and Information in Engineering Conference, Ameri-

can Society of Mechanical Engineers. 35

[57] Merriam, E. G., and Howell, L. L., 2015. “Non-dimensional approach for static balancing of

rotational flexures.” Mechanism and Machine Theory, 84, pp. 90–98. 35, 36, 47, 69, 87, 89,

91

[58] Shusheng, B., Hongzhe, Z., and Jingjun, Y., 2009. “Modeling of a cartwheel flexural pivot.”

Journal of Mechanical Design, 131(6), p. 061010. 36, 37, 40, 41, 67

[59] Pei, X., Yu, J., Zong, G., Bi, S., and Su, H., 2009. “The modeling of cartwheel flexural

hinges.” Mechanism and Machine Theory, 44(10), pp. 1900–1909. 36, 40, 67

[60] Howell, L., and Midha, A., 1994. “A method for the design of compliant mechanisms with

small-length flexural pivots.” Journal of Mechanical Design, 116(1), March, pp. 280–290.

40, 48, 67

[61] Guerinot, A. E., Magleby, S. P., Howell, L. L., and Todd, R. H., 2005. “Compliant joint design

principles for high compressive load situations.” Journal of Mechanical Design, 127(4),

pp. 774–781. 42

[62] Brouwer, D., Meijaard, J., and Jonker, J., 2013. “Large deflection stiffness analysis of parallel

prismatic leaf-spring flexures.” Precision Engineering, 37(3), pp. 505 – 521. 47, 48, 67

[63] Teo, T. J., Chen, I.-M., Yang, G., and Lin, W., 2010. “A generic approximation model for

analyzing large nonlinear deflection of beam-based flexure joints.” Precision Engineering,

34(3), pp. 607 – 618. 47

[64] Young, W. C., Budynas, R. G., and Sadegh, A. M., 2012. Roark’s Formulas for Stress and

Strain., 8 ed. McGraw-Hill New York. 47, 51, 74

[65] Rahmatalla, S., and Swan, C. C., 2005. “Sparse monolithic compliant mechanisms using

continuum structural topology optimization.” International Journal for Numerical Methods

in Engineering, 62(12), pp. 1579–1605. 48

[66] Awtar, S., and Quint, J. M., 2012. “In-plane flexure-based clamp.” Precision Engineering,

36(4), pp. 658 – 667. 48, 67

[67] Chu, C.-L., and Fan, S.-H., 2006. “A novel long-travel piezoelectric-driven linear nanoposi-

tioning stage.” Precision Engineering, 30(1), pp. 85 – 95. 48, 67

[68] Zhao, H., Bi, S., and Yu, J., 2011. “Nonlinear deformation behavior of a beam-based flexural

pivot with monolithic arrangement.” Precision Engineering, 35(2), pp. 369 – 382. 48, 67

[69] Kang, D., and Gweon, D., 2013. “Analysis and design of a cartwheel-type flexure hinge.”

Precision Engineering, 37(1), pp. 33 – 43. 48, 67, 77, 83

115

[70] Noll, T., Holldack, K., Reichardt, G., Schwarzkopf, O., and Zeschke, T., 2009. “Parallel

kinematics for nanoscale cartesian motions.” Precision Engineering, 33(3), pp. 291 – 304.

48, 67

[71] Wiersma, D. H., Boer, S. E., Aarts, R. G. K. M., and Brouwer, D. M., 2014. “Design and

Performance Optimization of Large Stroke Spatial Flexures.” Journal of Computational and

Nonlinear Dynamics, 9(1), JAN. 48

[72] Pei, X., Yu, J., Zong, G., and Bi, S., 2010. “An effective pseudo-rigid-body method for

beam-based compliant mechanisms.” Precision Engineering, 34(3), pp. 634 – 639. 48, 59,

67

[73] Hopkins, J. B., and Culpepper, M. L., 2011. “Synthesis of precision serial flexure systems

using freedom and constraint topologies (FACT).” Precision Engineering, 35(4), pp. 638 –

649. 48, 67

[74] Hopkins, J. B., and Panas, R. M., 2013. “Design of flexure-based precision transmission

mechanisms using screw theory.” Precision Engineering, 37(2), pp. 299 – 307. 48, 67

[75] Lobontiu, N., 2014. “Compliance-based matrix method for modeling the quasi-static re-

sponse of planar serial flexure-hinge mechanisms.” Precision Engineering, 38(3), pp. 639 –

650. 48, 67

[76] Delimont, I. L., Magleby, S. P., and Howell, L. L., 2015. “A family of dual-segment compliant

joints suitable for use as surrogate folds.” Journal of Mechanical Design, 137(9), p. 092302.

51

[77] Goldfarb, M., and Speich, J. E., 1999. “A well-behaved revolute flexure joint for compliant

mechanism design.” Journal of Mechanical Design, 121(3), pp. 424–429. 54, 67

[78] Zelenika, S., and De Bona, F., 2002. “Analytical and experimental characterisation of high-

precision flexural pivots subjected to lateral loads.” Precision Engineering, 26(4), pp. 381–

388. 59, 67, 69

[79] Young, W. E., 1944. “An investigation of the cross-spring pivot.” Journal of Applied Me-

chanics, 11(2), pp. 113–120. 59, 69

[80] Haringx, J. A., 1949. “The cross-spring pivot as a constructional element.” Applied Scientific

Research, 1(1), pp. 313–332. 59, 69

[81] Troeger, H., 1962. “Considerations in the application of flexural pivots.” Automatic Control,

17(4), pp. 41–46. 59, 69

[82] Henein, S., and Spanoudakis, P., 2003. “Flexural pivot for aerospace mechanisms.”. 67

[83] Pei, X., Yu, J., Zong, G., Bi, S., and Hu, Y., 2009. “A novel family of leaf-type compliant

joints: Combination of two isosceles-trapezoidal flexural pivots.” Journal of Mechanisms

and Robotics, 1(2), p. 021005. 67

[84] Wang, J., and Gosselin, C. M., 1999. “Static balancing of spatial three-degree-of-freedom

parallel mechanisms.” Mechanism and Machine Theory, 34(3), pp. 437 – 452. 87

116

[85] Walsh, G., Streit, D., and Gilmore, B., 1991. “Spatial spring equilibrator theory.” Mechanism

and Machine Theory, 26(2), pp. 155 – 170. 87

[86] Chen, G., and Zhang, S., 2011. “Fully-compliant statically-balanced mechanisms without

prestressing assembly: concepts and case studies.” Mech. Sci, 2(2), pp. 169–174. 87

[87] Hoetmer, K., Herder, J. L., and Kim, C. J., 2009. “A building block approach for the design

of statically balanced compliant mechanisms.” In ASME 2009 International Design Engi-

neering Technical Conferences and Computers and Information in Engineering Conference,

American Society of Mechanical Engineers, pp. 313–323. 87

[88] Merriam, E. G., and Howell, L. L., 2016. “Lattice flexures: Geometries for stiffness reduction

of blade flexures.” Precision Engineering. 87, 89, 90

[89] Merriam, E. G., Lund, J. M., and Howell, L. L., 2016. “Compound joints: Behavior and

benefits of flexure arrays.” Precision Engineering, pp. –. 88, 92

[90] Merriam, E. G., Bruton, J. T., Magleby, S. P., and Howell, L. L., 2015. “A Method for

Determining Load-Dependent Stiffness of Flexures, DETC2015-46628.” In Proceedings of

the ASME International Design Engineering Technical Conferences, ASME. 89, 90

[91] Tolman, K. A., Merriam, E. G., and Howell, L. L., 2016. “Compliant constant-force linear-

motion mechanism.” Submitted to Mechanism and Machine Theory. 94

117

APPENDIX A. CODES AND SCRIPTS USED IN STATIC BALANCING

The code and scripts used in this appendix are referenced in Chapter 3. In some of the

ANSYS scripts, the ellipses (. . .) are used to indicate that the command continues on the next line.

However, . . . is not a valid ANSYS command. All ellipses should be removed from the file and the

commands consolidated in a text editor so they are all on one line. This will enable the script to

run correctly. Matlab scripts, however, should need no such cleanup.

A.1 Finding the Π-Group Relationship

This Matlab script finds the relationship between two non-dimensional numbers for a wide

range of values. It requires the functions pi stiffness.m and pso.m (included below).

%Pi1 is Kt/(P*l) - a relation of torsional stiffness

%Pi2 is Kl*P/l - a relation of linear stiffness

clc

clear

start = .2;

step = .01;

final = 1.;

global Pi1;

PI1 = start:step:final;

PI2 = zeros(1,length(PI1));

en = PI2;

options = optimoptions(’fmincon’,’Algorithm’,’sqp’);

LB = [-1 .3 .3]; %Kl P l

UB = [60 10 10]; %Kl P l

X = [1 3 1]; %Kl P l

119

x0=X;

for R = 1:length(PI1)

Pi1 = PI1(R);

opt = pso(@pi_stiffness, LB, UB);

X = opt{1};

E = opt{2};

PI2(R) = X(1)*X(3)/X(2); %Pi2 = Kl*l/P

en(R) = E;

end

A = [PI1’ PI2’];

A = sortrows(A,1);

figure(1)

plot(A(:,1),A(:,2))

xlabel(’\Pi_1’)

ylabel(’\Pi_2’)

figure(2)

plot(PI1’,en(:))

ylabel(’|k/k_\theta|’)

xlabel(’\Pi_1’)

title(’Average Normalized Stiffness’)

This is the function pi stiffness.m, used with the above script to solve for the relationship between

Π1 and Π2.

%this function is called as part of optimization routine

%Pi1 = Kt/(P*l) - a relation of torsional stiffness

%Pi2 = Kl*l/P - a relation of linear stiffness

function E = pi_stiffness(x)

global Pi1;

Kl = x(1);

P = x(2);

120

l = x(3);

%Kl = Pi2*P/l;

Kt = Pi1*P*l;

step = .02;

theta_final = 20*pi/180;

theta = 0.02:step:theta_final;

energy = zeros(size(theta));

stiffness = energy;

torque = stiffness;

for R = 1:length(theta)

torque(R) = (Kt*theta(R)-Kl*((sqrt(2*l^2*(1+cos(theta(R))))-(2*l-P/Kl))*...

l^2*sin(theta(R)))/sqrt(2*l^2*(1+cos(theta(R)))));

stiffness(R) = torque(R)/theta(R);

end

E = mean(abs(stiffness))/Kt;

This particle swarm optimization algorithm (for Matlab) was used with the above script to solve

for the relationship between Π1 and Π2. Much thanks to Abraham Lee for the original code.

function out = pso(func, lb, ub)

% Perform a particle swarm optimization (PSO)

%

% Parameters

% ==========

% func : function

% The function to be minimized

% lb : array

% The lower bounds of the design variable(s)

% ub : array

% The upper bounds of the design variable(s)

%

121

% Optional

% ========

% ieqcons : list

% A list of functions of length n such that ieqcons[j](x,*args)

% >= 0.0 in a successfully optimized problem (Default: [])

% f_ieqcons : function

% Returns a 1-D array in which each element must be greater or equal

% specified, to 0.0 in a successfully optimized problem. If f_ieqcons

% is ieqcons is ignored (Default: None)

% swarmsize : int

% The number of particles in the swarm (Default: 10)

% omega : scalar

% Particle velocity scaling factor (Default: 0.5)

% phip : scalar

% Scaling factor to search away from the particle’s best known

% position (Default: 0.5)

% phig : scalar

% Scaling factor to search away from the swarm’s best known

% position (Default: 0.5)

% maxiter : int

% The maximum number of iterations for the swarm to search

% (Default: 100)

% minstep : scalar

% The minimum stepsize of swarm’s best position before the search

% terminates (Default: 1e-8)

% minfunc : scalar

% The minimum change of swarm’s best objective value before the

% search terminates (Default: 1e-8)

% debug : boolean

% If True, progress statements will be displayed every iteration

122

% (Default: False)

% Returns

% =======

% g : array

% The swarm’s best known position (optimal design)

% f : scalar

% The objective value at ‘‘g‘‘

%

assert(length(lb)==length(ub),...

’Lower- and upper-bounds must be the same length’);

assert(all(ub>lb),...

’All upper-bound values must be greater than lower-bound values’);

% Check the default options

ieqcons = [];

f_ieqcons = @(x) [0];

swarmsize = 300;

omega = 0.5;

phip = 0.5;

phig = 0.5;

maxiter = 100;

minstep = 1e-8;

minfunc = 1e-8;

debug = false;

vhigh = abs(ub - lb);

vlow = -vhigh;

% Check for constraint function(s) #####################

obj = @(x) feval(func, x);

cons = @(x) f_ieqcons(x);

function check = is_feasible(x)

check = all(cons(x)>=0);

123

end

function out = zeros_like(x)

out = zeros(size(x));

end

% Initialize the particle swarm #####################

S = swarmsize;

D = length(lb); % the number of dimensions each particle has

x = rand(S, D); % particle positions

v = zeros_like(x); % particle velocities

p = zeros_like(x); % best particle positions

fp = zeros(1, S); % best particle function values

g = []; % best swarm position

fg = 1e100; % artificial best swarm position starting value

for i=1:S

% Initialize the particle’s position

x(i, :) = lb + x(i, :).*(ub - lb);

% Initialize the particle’s best known position

p(i, :) = x(i, :);

% Calculate the objective’s value at the current particle’s

fp(i) = obj(p(i, :));

% If the current particle’s position is better than the swarm’s,

% update the best swarm position

if fp(i)<fg && is_feasible(p(i, :))

fg = fp(i);

g = p(i, :);

end

% Initialize the particle’s velocity

v(i, :) = vlow + rand(1, D).*(vhigh - vlow);

end

% Iterate until termination criterion met ##############

124

it = 1;

while it<=maxiter

rp = rand(S, D);

rg = rand(S, D);

for i=1:S

% Update the particle’s velocity

v(i, :)=omega*v(i, :)+phip*rp(i, :).*(p(i, :)-x(i, :))+...

phig*rg(i, :).*(g - x(i, :));

% Update the particle’s position, correcting lower and upper bound

% violations, then update the objective function value

x(i, :) = x(i, :) + v(i, :);

mark1 = find(x(i, :)<lb);

mark2 = find(x(i, :)>ub);

x(i, mark1) = lb(mark1);

x(i, mark2) = ub(mark2);

fx = obj(x(i, :));

% Compare particle’s best position (if constraints are satisfied)

if fx<fp(i) && is_feasible(x(i, :))

p(i, :) = x(i, :);

fp(i) = fx;

% Compare swarm’s best position to current particle’s position

% (Can only get here if constraints are satisfied)

if fx<fg

tmp = x(i, :);

stepsize = sqrt(sum((g-tmp).^2));

if abs(fg - fx)<=minfunc

fprintf(...

’Stopping search: Swarm best objective change less than: %12.8f\n’,...

minfunc)

out = {tmp, fx};

125

return

elseif stepsize<=minstep

fprintf(...

’Stopping search: Swarm best position change less than: %12.8f\n’,...

minstep);

out = {tmp, fx};

return

else

g = tmp;

fg = fx;

end

end

end

end

it = it + 1;

end

fprintf(’Stopping search: maximum iterations reached --> %d\n’,...

maxiter);

out = {g, fg};

return

end

A.2 Balanced Spring Design

This Matlab script (balanced spring design.m) accepts design parameters for a cross axis

flexural pivot and outputs design parameters to statically balance that CAFP. It is assumed that

this CAFP has strips that cross in the middle and are at 90◦ angles to each other. Requires files

get Kt.m, get P.m, get I.m, and , get L.m (included below).

% units are in ips

clc

126

clear

global E I L Pi1 Pi2 d a Klin Kt P;

Pi1 = 0.49; %kt/(P*d)

Pi2 = 0.8581; %k*d/P

L = 2.596; %length of flexures

t = .015; %thickness of flexures

b = .25*2; %width of flexures

E = 30.e6;%Elastic modulus (steel)

I = b*t^3/12.; %moment area of inertia

alpha = pi/4; %half angle of joint intersection angle

ro = 0;

%method 1 specifies joint geometry and d. outputs P and Kl

%method 2 specifies joint geometry, and Kl. outputs Kt and d

%method 3 takes joint geometry and preload, outputting Klin and d

%method 4 takes Klin, P, and flexure L and finds flexure I and d

%method 5 takes Klin, P, and flexure I and finds flexure L and d

%method 6 accepts Klin and d and finds P and joint geometry

%method 7 accepts Klin, P, d, Ktheta, and flexure length and

%finds flexure I

%other methods pending

method = 1; % choose solution method based on what variables knowns and

%unknowns

switch method

case 1 %method 1 specifies joint geometry and d. outputs P and Kl

a = 0.65; %a = d/L %this overconstrains the problem

d = a*L;

%an initial guess of the stiffness of the CAFP

Kguess = 4.30792*E*I/(2*L);

x0 = Kguess;

options = optimoptions(’fmincon’,’Algorithm’,’sqp’);

127

LB = .1; %Kt

UB = 20; %Kt

[x fval] = fmincon(@get_Kt,x0,[],[],[],[],LB,UB);

Kt = x(1);

P = Kt/(Pi1*d); %pounds of preload from spring

Klin = Pi2*P/d; %find the stiffness of the balancing spring

x0 = 2*d-P/Klin; %find the unstretched spring length

case 2 %method 2 specifies joint geometry, and Kl. outputs Kt and d

Klin = 8.35; %pounds/inch

Pguess = 3;

x0 = Pguess;

options = optimoptions(’fmincon’,’Algorithm’,’sqp’);

LB = .01; %P

UB = 20; %P

x = fmincon(@get_P,x0,[],[],[],[],LB,UB);

P = x(1);

V = -P;

H = 0;

v = V*L^2*sec(alpha)/(E*I);

h = H*L^2*csc(alpha)/(E*I);

beta1 = sqrt((v+h)/8);

beta2 = sqrt((v-h)/8);

phi1 = beta1*(coth(beta1)-beta1)+ro^2*beta1^3/(beta1-tanh(beta1));

phi2 = beta2*(coth(beta2)-beta2)+ro^2*beta2^3/(beta2-tanh(beta2));

%find an adjusted stiffness that accounts for applied preload

Kprime = phi1 + phi2;

%the sping stiffness of the joint with applied preload

Kt = Kprime*E*I/L;

d = Pi2*P/Klin;

x0 = 2*d-P/Klin; %find the unstretched spring length

128

case 3 %method 3 takes joint geometry and preload, outputting Klin and d

P = 4; %lbs

V = -P;

H = 0;

v = V*L^2*sec(alpha)/(E*I);

h = H*L^2*csc(alpha)/(E*I);

beta1 = sqrt((v+h)/8);

beta2 = sqrt((v-h)/8);

phi1 = beta1*(coth(beta1)-beta1)+ro^2*beta1^3/(beta1-tanh(beta1));

phi2 = beta2*(coth(beta2)-beta2)+ro^2*beta2^3/(beta2-tanh(beta2));

%find an adjusted stiffness that accounts for applied preload

Kprime = phi1 + phi2;

%the sping stiffness of the joint with applied preload

Kt = Kprime*E*I/L;

d = Kt/(P*Pi1);

Klin = Pi2*P/d;

x0 = 2*d-P/Klin; %find the unstretched spring length

case 4 %method 4 takes Klin, P, and flexure L and finds flexure I and d

Klin = 1.3;

P = 4.2;

L = 2.596; %specify length

d = Pi2*P/Klin;

Kt = Pi1*P*d;

P = P;

LB = 0;

UB = Kt*2*L/(4.30792*E)*10;

opt = pso(@get_I, LB, UB);

x = opt{1};

fval = opt{2};

I = x(1)

129

x0 = 2*d-P/Klin; %find the unstretched spring length

case 5 %method 5 takes Klin, P, and flexure I and finds flexure L and d

Klin = 1.3;

P = 4.2;

d = Pi2*P/Klin;

Kt = Pi1*P*d;

LB = 0;

UB = 4.30792*E*I/(2*Kt)*10;

opt = pso(@get_L, LB, UB);

x = opt{1};

fval = opt{2};

L = x(1)

x0 = 2*d-P/Klin; %find the unstretched spring length

case 6 %method 6 accepts Klin and d and finds P and joint geometry

%one for L

%one for I

case 7 %accepts Klin, P, d, Ktheta, and flexure length and finds

%flexure I

Klin = 1.3;

P = 4.2;

L = 3.; %specify length

d = Pi2*P/Klin;

Kt = Pi1*P*d;

LB = 0;

UB = Kt*2*L/(4.30792*E)*10;

opt = pso(@get_I, LB, UB);

x = opt{1};

fval = opt{2};

I = x(1)

x0 = 2*d-P/Klin; %find the unstretched spring length

130

end

Kt %torsional stiffness adjusted for applied compressive load

Klin %linear stiffness of balancing spring. must be positive

x0 %unstretched length of balancing spring. must be positive

d %distance from pivot center to spring attachement point

P %preload resulting from stretched spring

This is the file get Kt.m, used by balanced spring design.m.

%This funtion is called to solve for stiffness of a

% CAFP with an applied load

function K_diff = get_Kt(x)

global E I L Pi1 d a;

Kguess = x(1);

P = Kguess/(Pi1*d); %pounds of preload from spring

V = -P;

H = 0;

alpha = pi/4; %half angle of joint intersection angle

ro = 0;

%we need to non-dimensionalize our vertical and horizontal loads

v = V*L^2*sec(alpha)/(E*I);

h = H*L^2*csc(alpha)/(E*I);

beta1 = sqrt((v+h)/8);

beta2 = sqrt((v-h)/8);

phi1 = beta1*(coth(beta1)-beta1)+ro^2*beta1^3/(beta1-tanh(beta1));

phi2 = beta2*(coth(beta2)-beta2)+ro^2*beta2^3/(beta2-tanh(beta2));

%find an adjusted stiffness that accounts for applied preload

Kprime = phi1 + phi2;% + a*(v*cos(alpha)*sin(10*pi/180))/(10*pi/180);

Kt = Kprime*E*I/L; %the sping stiffness of the joint with applied preload

K_diff = abs(Kt-Kguess);

end

131

This is the file get P.m, used by balanced spring design.m.

%This funtion is called to solve for load on a CAFP with an applied load

function P_diff = get_P(x)

global E I L Pi1 Pi2 d Klin;

Pguess = x(1); %pounds

V = -Pguess;

H = 0;

alpha = pi/4; %half angle of joint intersection angle

ro = 0;

v = V*L^2*sec(alpha)/(E*I);

h = H*L^2*csc(alpha)/(E*I);

beta1 = sqrt((v+h)/8);

beta2 = sqrt((v-h)/8);

phi1 = beta1*(coth(beta1)-beta1)+ro^2*beta1^3/(beta1-tanh(beta1));

phi2 = beta2*(coth(beta2)-beta2)+ro^2*beta2^3/(beta2-tanh(beta2));

%find an adjusted stiffness that accounts for applied preload

Kprime = phi1 + phi2;

%the sping stiffness of the joint with applied preload

Kt = Kprime*E*I/L;

d = Kt/(Pguess*Pi1);

P = Klin*d/Pi2;

P_diff = abs(Pguess-P);

end

This is the file get I.m, used by balanced spring design.m.

%This funtion is called to solve for load on a CAFP with an applied load

function I_diff = get_I(x)

global E L Kt P;

Iguess = x(1); %in^4

V = -P;

132

H = 0;

alpha = pi/4; %half angle of joint intersection angle

ro = 0;

v = V*L^2*sec(alpha)/(E*Iguess);

h = H*L^2*csc(alpha)/(E*Iguess);

beta1 = sqrt((v+h)/8);

beta2 = sqrt((v-h)/8);

phi1 = beta1*(coth(beta1)-beta1)+ro^2*beta1^3/(beta1-tanh(beta1));

phi2 = beta2*(coth(beta2)-beta2)+ro^2*beta2^3/(beta2-tanh(beta2));

%find an adjusted stiffness that accounts for applied preload

Kprime = phi1 + phi2;% + a*(v*cos(alpha)*sin(10*pi/180))/(10*pi/180);

%the sping stiffness of the joint with applied preload

Ktheta = Kprime*E*Iguess/L;

I_diff = abs(Ktheta-Kt);

end

This is the file get L.m, used by balanced spring design.m.

%This funtion is called to solve for load on a CAFP with an applied load

function L_diff = get_L(x)

global E I Kt P;

Lguess = x(1); %in

V = -P;

H = 0;

alpha = pi/4; %half angle of joint intersection angle

ro = 0;

v = V*Lguess^2*sec(alpha)/(E*I);

h = H*Lguess^2*csc(alpha)/(E*I);

beta1 = sqrt((v+h)/8);

beta2 = sqrt((v-h)/8);

phi1 = beta1*(coth(beta1)-beta1)+ro^2*beta1^3/(beta1-tanh(beta1));

133

phi2 = beta2*(coth(beta2)-beta2)+ro^2*beta2^3/(beta2-tanh(beta2));

%find an adjusted stiffness that accounts for applied preload

Kprime = phi1 + phi2;

%the sping stiffness of the joint with applied preload

Ktheta = Kprime*E*I/Lguess;

L_diff = abs(Ktheta-Kt);

end

A.3 FEA Confirmation

This script builds a cross-axis-flexural pivot with an ideal spring balancer. The spring is

designed and preloaded according to the Π group relations to result in a statically balanced flexure.

/cwd, ’C:\ANSYS’

finish

/clear

!Units in, lbf, psi

pi = acos(-1) !pi

len = 2.5961 !length of flexible segments

thk = .015 !thickness of compliant members

wid = .5 !width of material

alpha = pi/4

cor = len*sin(alpha) !x and y coordinates

!mod = 1.61e7 !modulus of titanium

!mod = 246500. !modulus of SLS nylon

mod = 30.e6 !modulus of steel

mod2 = 10.e6 !modulus of aluminium for rigid sections

nu = 0.3 !PR of steel

thk2 = .125 !thickness of rigid members

I1 = wid*thk**3/12 !Iz for compliant members

I2 = wid*thk2**3/12 !Iz for rigid members

134

esz1 = len/20

esz2 = len/8

ang = 40 !20 degrees of rotation

ang = ang*pi/180

Kt = 5.7054

d = 2.7723

Pi1 = 0.49

Pi2 = 0.8581

P = Kt/(Pi1*d)

Klin = P*Pi2/d

x0 = 2*d-P/Klin

/prep7

!element type for flexures

et,1,beam23

keyopt,1,6,0

r,1,thk*wid,I1,thk

!element type for rigid sections

et,2,beam23

keyopt,2,6,0

r,2,thk2*wid,I2,thk2

mptemp

mptemp,1,0

mpdata,ex,1,,mod

mpdata,prxy,1,,nu

mptemp

mptemp,1,0

mpdata,ex,2,,mod2

mpdata,prxy,2,,nu

!element type for balancing spring

ET,3,COMBIN14

135

KEYOPT,3,1,0

KEYOPT,3,2,0

KEYOPT,3,3,0

!enter real constants for balancing spring

R,3,Klin,0,0, , ,x0,

rmore,,

nlgeom,1

k,1,0,0,0 !define keypoints

k,2,cor,cor,0

k,3,0,cor,0

k,4,cor,0,0

k,5,cor/2,cor/2+d,0 !spring attachement point 2

k,6,cor/2, cor/2-d, 0 !spring attachement point 1

lstr,1,2 !line 1 define lines

lstr,3,4 !line 2

lstr,2,5 !line 3

lstr,1,6 !line 4

lstr,5,3 !line 5

lstr,4,6 !line 6

esize,esz1,0

lsel,s,line,,1,2 !selects lines for flexible members

latt,1,1,1

lmesh,all

lsel,all

esize,esz2,0

lsel,s,line,,3,6 !selects lines for rigid members

latt,2,2,1

lmesh,all

lsel,all

!displays mechanism and depicts relative size and shape of beam elements

136

/ESHAPE,1

/EFACET,1

/RATIO,1,1,1

/CFORMAT,32,0

/REPLOT

!we need to find nodes to attach our spring to

ksel, all

ksel,s,kp,,6

nslk,s

*get,spr1,node,,num,max

ksel, all

ksel,s,kp,,5

nslk,s

*get,spr2,node,0,num,max

nsel, all

ksel, all

type,3

real,3

e,spr1,spr2

*get,spring,elem,0,num,maxd

!set boundary conditions

dk,6,all,0,

!d,1,uy,0,,,,uz,

!fk,5,fy,-P !applies force to moving block

nsteps = 40

lswrite,1

*do, count,1,nsteps,1

dk,5,rotz,ang*count/nsteps

nsubst,4,7,3

lswrite,count+1

137

*enddo

finish

/solve

LSSOLVE,1,nsteps+1,1

FINISH

/POST1

AVPRIN,0, ,

ETABLE,smxi,NMISC, 1

AVPRIN,0, ,

ETABLE,smxm,NMISC, 3

AVPRIN,0, ,

ETABLE,smxj,NMISC, 5

AVPRIN,0, ,

ETABLE,smni,NMISC, 2

AVPRIN,0, ,

ETABLE,smnm,NMISC, 4

AVPRIN,0, ,

ETABLE,smnj,NMISC, 6

finish

/post26

! Define variables

NSOL,2,spr2,rot,z,rot

rforce,3,spr2,M,z,torque

esol,5,spring,,smisc,1,spr_force

!divide torque by rotation and call resulting variable stiffness

quot,4,3,2,,stiff

PRVAR,rot,torque,stiff,spr_force

138

APPENDIX B. CODES AND SCRIPTS USED IN THE ANALYSIS OF LATTICE FLEX-

URES

The codes and scripts in this appendix are referenced in Chapter E. In some of the AN-

SYS scripts, the ellipses (. . .) are used to indicate that the command continues on the next line.

However, . . . is not a valid ANSYS command. All ellipses should be removed from the file and the

commands consolidated in a text editor so they are all on one line. This will enable the script to

run correctly. MatLab scripts, however, should need no such cleanup.

B.1 ANSYS Scripts

Building lattice flexures in finite element code may seem daunting at first due to the geo-

metric complexity, but by building macros to build each lattice type parametrically, the task was

greatly simplified. The first script included is on that builds a cross-axis-flexural pivot in ANSYS.

To build each flexure it calls a macro that must be located in teh working directory.

!This script buils a CAFP with lattice flexures. It requires

!the files x_lat.mac and v_lat.mac in the same directory

!also, change the /cwd command to the directory where this file,

! x_lat.mac, and v_lat.mac are stored.

/cwd, ’C:\ANSYS’

finish

/clear

!Units in, lbf, psi

*SET,pi,acos(-1) !pi

len = 2. !length of flexible segments

cor = len*sin(pi/4) !x and y coordinates

!mod = 320000. !modulus of ABS-M30

139

mod = 1.61e7 !modulus of titanium

nu = .34

thk = .04 !*.83 !thickness of compliant members

r = 0.02

n = 10 !number of lattice cells along length use 6 for b and 8 for c

wid = .5 !total width of flexure

b = wid-thk !center-to-center distance

I_l = thk**4/12

I_r = I_l

L1b = (len/(2*n))/b

bigK = 2.25*thk**4

EI_eff = mod*(2*I_r+(I_l*L1b*(L1b**2+1.0)**.5)/(2*(1+nu)*I_l/bigK+L1b**2))

stiff_pred = EI_eff*2.154/len

alphac = atan(b/(len/(n/2))) !the lattice angle for X-type

alphab = atan(b/(len/n)) !the lattice angle for V-type

type = ’v’!may be type x or v

ang = 45 !20 degrees of rotation

ang = ang*pi/180

/prep7

et,1,beam188

!section 1 is for the lattice elements

sectype,1,beam,rect

secdata,thk,thk

sectype,2,beam,rect

secdata,thk*8,thk*8

sectype,3,beam,csolid

secdata,r,,,

et,2,mpc184

keyopt,2,1,1

keyopt,2,2,1

140

mptemp

mptemp,1,0

mpdata,ex,1,,mod

mpdata,prxy,1,,nu

nlgeom,1

!define keypoints

k,1,0,0,b+.05

k,2,0,0,.05

!build a lattice flexure anchored to KPs 1

!and 2 with n divisions and alpha angle

%type%_lat,1,2,n,len,45

k,,0,cor,-.05

k,,0,cor,-.05-b

*get,maxkp,kp,,num,maxd

%type%_lat,maxkp-1,maxkp,n,len,-45

*dim,anchor,array,4 !store KP numbers in array called anchor

*get,maxkp,kp,,num,maxd

anchor(1) = 1

anchor(2) = 2

anchor(3) = maxkp-1

anchor(4) = maxkp

ksel,s,loc,y,cor

*get,topend,kp,,num,max

!create a top section with a point for applying loads

lstr,topend,topend-1

lstr,topend-1,topend-2

lstr,topend-2,topend-3

lstr,topend,topend-3

k,,cor/2,cor/2

lstr,topend,maxkp+1

141

allsel

*get,maxl,line,,num,maxd !get the max line defined

esize,,20

lsel,s,line,,1,maxl-5 !selects lines for flexible members

!latt,MAT,REAL,TYPE,ESYS,KB,KE,SECNUM

!use secnum = 3 for round and 1 for square

latt,1,,1,,,,1 !

lsel,inve

!latt,,,2,,,, !MAT,REAL,TYPE,ESYS,KB,KE,SECNUM

latt,1,,1,,,,2 !

lsel,all

lmesh,all

!displays mechanism and depicts relative size and shape of beam elements

/ESHAPE,1

/EFACET,1

/RATIO,1,1,1

/CFORMAT,32,0

/REPLOT

ksel, all

ksel,s,kp,,topend

nslk,s

*get,end,node,0,num,max

ksel, all

*do,i,1,4,1

dk,anchor(i),all,0,

*enddo

!d,end,rotx,0

!d,end,roty,0

allsel, all

*do, count,1,10,1

142

d,end,rotz,ang*count/10

lswrite,count

*enddo

finish

/SOL

!/STATUS,SOLU

LSSOLVE,1,10,1

finish

/post26

! Define variables

NSOL,2,end,rot,z,rot

rforce,3,end,M,z,torque

!divide torque by rotation and call resulting variable stiffness

quot,4,3,2,,stiff

PRVAR,rot,torque,stiff

*get,stiffness,vari,4,rtime,10 !get stiffness value at final load step

kappa = stiffness*len/EI_eff

FINISH

/POST1

/SHOW,WIN32C

SET,FIRST

/PLOPTS,INFO,3

/CONTOUR,ALL,18

/PNUM,MAT,1

/NUMBER,1

/REPLOT,RESIZE

PLNSOL,S,EQV

143

B.1.1 Lattice Macros

This file is x lat.mac. It accepts several arguments and builds an X-type lattice flexure from

the specified keypoints in the given direction

!this file builds an X-type lattice flexure connected to the two

!given keypoints angled up at angle theta (degrees), and

!with the specified number of lattice cells at the given lattice

! angle

/pmacro

kp1 = arg1 !number of first keypoint

kp2 = arg2 !number of second keypoint

num_cells = arg3 !number of lattice cells

leng = arg4 !length of flexure desired

theta = arg5 !incline angle

!get location of these keypoints

!x location and y location should be the same for both kp

*get,xloc,kp,kp1,loc,x

*get,yloc,kp,kp1,loc,y

*get,zloc1,kp,kp1,loc,z

*get,zloc2,kp,kp2,loc,z

zoffst = (zloc1+zloc2)/2 !find location for new origin

!define a new coordinate system relative to default global CS

clocal,11,CART,xloc,yloc,zoffst,theta

xpos = 0.0

delx = leng/(2*num_cells)

*do,i,1,n,1

xpos = xpos+delx

k,,xpos,0,0

xpos = xpos+delx

k,,xpos,0,b/2

144

k,,xpos,0,-b/2

!xpos = xpos+delx

!k,,xpos,0,0

!xpos = xpos+delx

!k,,xpos,0,b/2

!k,,xpos,0,-b/2

*enddo

*get,maxkp,kp,,num,maxd !get the value of the

!highest defined keypoint and store it as maxkp

!generate lines to represent geometry

*do,i,kp1,maxkp-4,3

lstr,i,i+2

lstr,i+1,i+2

lstr,i,i+3

lstr,i+1,i+4

lstr,i+2,i+3

lstr,i+2,i+4

*enddo

csys,0

This file is v lat.mac. Its operation is similar to x lat.mac, given above.

!this file builds a V-type lattice flexure connected to the two given

!keypoints angled up at angle theta, and with the specified number

!of lattice cells at the given lattice angle

/pmacro

kp1 = arg1 !first keypoint

kp2 = arg2 !second keypoint

num_cells = arg3 !number of cells

leng = len !desired flexure overall length

theta = arg5 !incline angle

145

!get location of these keypoints

!x location and y location should be the same for both kp

*get,xloc,kp,kp1,loc,x

*get,yloc,kp,kp1,loc,y

*get,zloc1,kp,kp1,loc,z

*get,zloc2,kp,kp2,loc,z

zoffst = (zloc1+zloc2)/2 !find location for new origin

!define a new coordinate system relative to default global CS

clocal,11,CART,xloc,yloc,zoffst,theta

xpos = 0.0

delx = leng/(num_cells*2)

*do,i,1,n,1

xpos = xpos+delx

k,,xpos,0,b/2

xpos = xpos+delx

k,,xpos,0,-b/2

*enddo

k,,xpos,0,b/2

*get,maxkp,kp,,num,maxd !get the value of the

!highest defined keypoint and store it as maxkp

!generate lines to represent geometry

lstr,kp1,kp2+1

lstr,kp2,kp2+1

lstr,kp2,kp2+2

*do,i,kp1,maxkp-4,2

lstr,i,i+2

lstr,i+1,i+2

lstr,i+1,i+3

lstr,i+2,i+3

*enddo

146

!lstr,maxkp-2,maxkp-1

lstr,maxkp-2,maxkp

csys,0

B.1.2 Off-Axis Stiffness Analysis

This script finds the off-axis stiffness characteristics of the X-type lattice flexure. It gener-

ates results files for a range of lattice angles.

!this file analyzes the effect of perforating flexure blades

!as a method of reducing stiffness

/cwd, ’C:\ANSYS’

finish

/clear

!Units in, lbf, psi

/PNUM,KP,1 !turn line and keypoint numbering on

/PNUM,LINE,1

pi = acos(-1) !pi

*dim,angs,array,9,1,1

angs(1) = 22.5

angs(2) = 30.

angs(3) = 37.5

angs(4) = 45.

angs(5) = 52.5

angs(6) = 60.

angs(7) = 67.5

angs(8) = 75.

angs(9) = 82.5

b = .5 !total width of flexure

n = 8. !number of truss units

ndiv = 20.

147

/prep7

mod = 1.61e7 !modulus of titanium

nu = .36 !actual value of nu is 0.34, but use 0.36 for consistency

!with other flexure data

nlgeom,on !use non-linear solving

!define material properties

mp,ex,1,mod

mp,prxy,1,nu

*do,index,1,9,1

alpha = angs(index) !angle that defines incline of truss elements

alpha = alpha*pi/180.

nstep = 25

*dim,k_ratio,array,nstep,5,1

*do,j,1,nstep,1

rot = .05 !scale factor for curvature

hoverb = 0.01*j+0.01 !dimensionless parameter

h = b*hoverb

eta = h/(b+h)

r = h/2

!define beam element

et,1,beam188

sectype,1,beam,csolid

secdata,r,,,

sectype,2,beam,rect

secdata,h,h,4,4

et,2,mpc184

keyopt,2,1,1

wid = b/2-r

xpos = 0.0

delx = .5*(b-2*r)/tan(alpha)

148

k,,0,0,wid

k,,0,0,-wid

*do,i,1,n,1

xpos = xpos+delx

k,,xpos,0,0

xpos = xpos+delx

k,,xpos,0,wid

k,,xpos,0,-wid

xpos = xpos+delx

k,,xpos,0,0

xpos = xpos+delx

k,,xpos,0,wid

k,,xpos,0,-wid

*enddo

l1overb = delx/b

*get,maxkp,kp,,num,maxd !get the value of the

!highest defined keypoint and store it as maxkp

!generate lines to represent geometry

*do,i,1,maxkp-4,3

lstr,i,i+2

lstr,i+1,i+2

lstr,i,i+3

lstr,i+1,i+4

lstr,i+2,i+3

lstr,i+2,i+4

*enddo

!set mesh size and line attributes

esize,,ndiv

!use secnum 1 for round, 2 for rectangular

latt,1,,1,,,,2 !MAT,REAL,TYPE,ESYS,KB,KE,SECNUM

149

lmesh,all

!get node numbers at maxkp and maxkp-1

ksel,s,kp,,maxkp-1,maxkp,1,

nslk,s

*get,n1,node,,num,max

*get,n2,node,,num,min

allsel

!get node numbers to take reactions

ksel,s,kp,,maxkp

nslk,s

*get,end1,node,0,num,max

allsel

ksel,s,kp,,maxkp-1

nslk,s

*get,end2,node,0,num,max

allsel

ksel,s,kp,,1

nslk,s

*get,base1,node,0,num,max

allsel

ksel,s,kp,,2

nslk,s

*get,base2,node,0,num,max

allsel

type,2

e,end1,end2

!define boundary conditions

d,base1,all,0

d,base2,all,0

d,end1,rotz,rot

150

lswrite,1

d,end1,rotz,0

!ddele,end1,rotz !remove motion direction constraint

!ddele,end2,rotz

lswrite,2

ddele,end1,rotz !remove motion direction constraint

d,end1,rotx,rot !apply torsional (’support direction’ constraint)

!d,end2,rotx,rot/10.

lswrite,3

d,end1,rotx,0

!ddele,end1,rotx !remove torsional constraint

lswrite,4

ddele,end1,rotx !remove torsional constraint

d,end1,roty,rot/1000. !apply transverse bending constraint

lswrite,5

finish

/sol

lssolve,1,5,1,

finish

/post26

numvar,20

rforce,2,end1,m,z,m1

rforce,3,end1,m,x,tor1

rforce,4,end1,m,y,tb1

nsol,5,end1,rot,z,zrot

nsol,6,end1,rot,x,xrot

nsol,7,end1,rot,y,yrot

prvar,m1,tor1,tb1

prvar,xrot,yrot,zrot

*get,momz,vari,2,rtime,1

151

*get,thetaz,vari,5,rtime,1

k_tz = momz/thetaz

*get,momx,vari,3,rtime,3

*get,thetax,vari,6,rtime,3

k_tx = momx/thetax

*get,momy,vari,4,rtime,5

*get,thetay,vari,7,rtime,5

k_ty = momy/thetay

k_ratio(j,1) = l1overb

k_ratio(j,2) = eta

k_ratio(j,3) = k_tx

k_ratio(j,4) = k_ty

k_ratio(j,5) = k_tz

fini

/prep7

lclear,all

ldele,all,,,1

*enddo

*CFOPEN,k_rat%index%,txt,,

*VWRITE,k_ratio(1,1),k_ratio(1,2),k_ratio(1,3),k_ratio(1,4),k_ratio(1,5)

(F16.8, F16.8, F16.8, F16.8, F16.8)

*CFCLOS

*enddo

This script finds the off-axis stiffness characteristics of the V-type lattice flexure. It generates

results files for a range of lattice angles.

!this file analyzes the effect of perforating flexure blades

!as a method of reducing stiffness

/cwd, ’C:\ANSYS’

finish

152

/clear

!Units in, lbf, psi

/PNUM,KP,1 !turn line and keypoint numbering on

/PNUM,LINE,1

pi = acos(-1) !pi

*dim,angs,array,9,1,1

angs(1) = 22.5

angs(2) = 30.

angs(3) = 37.5

angs(4) = 45.

angs(5) = 52.5

angs(6) = 60.

angs(7) = 67.5

angs(8) = 75.

angs(9) = 82.5

b = .5 !total width of flexure

n = 8. !number of truss units

ndiv = 20.

/prep7

mod = 1.61e7 !modulus of titanium

nu = .36 !actually 0.34, but use 0.36 for consistency

!with other flexure data

nlgeom,on !use non-linear solving

!define material properties

mp,ex,1,mod

mp,prxy,1,nu

*do,index,1,9,1

alpha = angs(index) !angle that defines incline of truss elements

alpha = alpha*pi/180.

nstep = 25

153

*dim,k_ratio,array,nstep,5,1

*do,j,1,nstep,1

rot = .05 !scale factor for curvature

hoverb = 0.01*j+0.01 !dimensionless parameter

h = b*hoverb

eta = h/(b+h)

r = h/2

!define beam element

et,1,beam188

sectype,1,beam,csolid

secdata,r,,,

sectype,2,beam,rect

secdata,h,h,4,4

et,2,mpc184

keyopt,2,1,1

wid = b/2-r

xpos = 0.0

delx = (b-2*r)/tan(alpha)

k,,0,0,wid

k,,0,0,-wid

*do,ii,1,n,1

xpos = xpos+delx

k,,xpos,0,wid

xpos = xpos+delx

k,,xpos,0,-wid

*enddo

k,,xpos,0,wid

l1overb = delx/b

*get,maxkp,kp,,num,maxd !get the value of the

!highest defined keypoint and store it as maxkp

154

!generate lines to represent geometry

lstr,1,3

lstr,2,3

lstr,2,4

*do,i,3,maxkp-3,2

lstr,i,i+1

lstr,i,i+2

lstr,i+1,i+2

lstr,i+1,i+3

*enddo

lstr,maxkp-2,maxkp-1

lstr,maxkp-2,maxkp

!set mesh size and line attritbutes

esize,,ndiv

latt,1,,1,,,,2 !MAT, REAL, TYPE, ESYS, KB, KE, and SECNUM

lmesh,all

!get node numbers to take reactions

ksel,s,kp,,maxkp

nslk,s

*get,end1,node,0,num,max

allsel

ksel,s,kp,,maxkp-1

nslk,s

*get,end2,node,0,num,max

allsel

ksel,s,kp,,1

nslk,s

*get,base1,node,0,num,max

allsel

ksel,s,kp,,2

155

nslk,s

*get,base2,node,0,num,max

allsel

type,2

e,end1,end2

!define boundary conditions

d,base1,all,0

d,base2,all,0

d,end1,rotz,rot !get ’motion direction’ stiffness

lswrite,1

d,end1,rotz,0

lswrite,2

ddele,end1,rotz !remove motion direction constraint

d,end1,rotx,rot !apply torsional (’support direction’ constraint)

!d,end2,rotx,rot/10.

lswrite,3

d,end1,rotx,0

!ddele,end1,rotx !remove torsional constraint

lswrite,4

ddele,end1,rotx !remove torsional constraint

d,end1,roty,rot/1000. !apply transverse bending constraint

lswrite,5

finish

/sol

lssolve,1,5,1,

finish

/post26

numvar,20

rforce,2,end1,m,z,m1

rforce,3,end1,m,x,tor1

156

rforce,4,end1,m,y,tb1

nsol,5,end1,rot,z,zrot

nsol,6,end1,rot,x,xrot

nsol,7,end1,rot,y,yrot

prvar,m1,tor1,tb1

prvar,xrot,yrot,zrot

*get,momz,vari,2,rtime,1

*get,thetaz,vari,5,rtime,1

k_tz = momz/thetaz

*get,momx,vari,3,rtime,3

*get,thetax,vari,6,rtime,3

k_tx = momx/thetax

*get,momy,vari,4,rtime,5

*get,thetay,vari,7,rtime,5

k_ty = momy/thetay

k_ratio(j,1) = l1overb

k_ratio(j,2) = eta

k_ratio(j,3) = k_tx

k_ratio(j,4) = k_ty

k_ratio(j,5) = k_tz

fini

/prep7

lclear,all

ldele,all,,,1

*enddo

*CFOPEN,k_rat%index%,txt,,

*VWRITE,k_ratio(1,1),k_ratio(1,2),k_ratio(1,3),k_ratio(1,4),k_ratio(1,5)

(F16.8, F16.8, F16.8, F16.8, F16.8)

*CFCLOS

*enddo

157

B.1.3 Analysis of Conventional Blade Flexures

This script generates results similar to the lattice flexure scripts given above, but for a

rectangular-cross-section beam, as a comparison.

!this file analyzes the effect of perforating flexure blades

!as a method of reducing stiffness

!/cwd, ’C:\Users\emerriam\ANSYS’

finish

/clear

!Units in, lbf, psi

/PNUM,KP,1 !turn line and keypoint numbering on

/PNUM,LINE,1

pi = acos(-1) !pi

b = .5 !total width of flexure

rot = .05 !scale factor for curvature

len = 3. !length of beam

rot = rot*len

mod = 1.61e7 !modulus of titanium

nu = .36

/prep7

nlgeom,on !use non-linear solving

!define material properties

mp,ex,1,mod

mp,prxy,1,nu

nstep = 25

*dim,k_ratio,array,nstep,5,1

*do,i,1,nstep,1

!i = 20

hoverb = 0.01*i+0.01 !dimensionless parameter

h = b*hoverb

158

eta = h/(b+h)

l1overb = len/b

!define beam element

et,1,beam188

sectype,1,beam,rect

secdata,h,b,,,

k,,0,0,0

k,,len,0,0

*get,maxkp,kp,,num,maxd !get the value of the

!highest defined keypoint and store it as maxkp

lstr,1,2

!set mesh size and line attributes

esize,,10

latt,1,,1,,,,1 !MAT, REAL, TYPE, ESYS, KB, KE, and SECNUM

lmesh,all

!get node numbers to take reactions

ksel,s,kp,,maxkp

nslk,s

*get,end1,node,0,num,max

allsel

ksel,s,kp,,1

nslk,s

*get,base1,node,0,num,max

allsel

!define boundary conditions

d,base1,all,0

d,end1,rotz,rot

lswrite,1

d,end1,rotz,0

lswrite,2

159

ddele,end1,rotz !remove motion direction constraint

d,end1,rotx,rot !apply torsional (’support direction’ constraint)

lswrite,3

d,end1,rotx,0

lswrite,4

ddele,end1,rotx !remove torsional constraint

d,end1,roty,rot/1000. !apply transverse bending constraint)

lswrite,5

finish

/sol

!nsubst,5,10,1

lssolve,1,5,1,

finish

/post26

numvar,20

rforce,2,end1,m,z,m1

rforce,3,end1,m,x,tor1

rforce,4,end1,m,y,tb1

nsol,5,end1,rot,z,zrot

nsol,6,end1,rot,x,xrot

nsol,7,end1,rot,y,yrot

prvar,m1,tor1,tb1

prvar,xrot,yrot,zrot

*get,momz,vari,2,rtime,1

*get,thetaz,vari,5,rtime,1

k_tz = momz/thetaz

*get,momx,vari,3,rtime,3

*get,thetax,vari,6,rtime,3

k_tx = momx/thetax

*get,momy,vari,4,rtime,5

160

*get,thetay,vari,7,rtime,5

k_ty = momy/thetay

k_ratio(i,1) = l1overb

k_ratio(i,2) = eta

k_ratio(i,3) = k_tx

k_ratio(i,4) = k_ty

k_ratio(i,5) = k_tz

fini

/prep7

lclear,all

ldele,all,,,1

*enddo

*CFOPEN,k_rat,txt,,

*VWRITE,k_ratio(1,1),k_ratio(1,2),k_ratio(1,3),k_ratio(1,4),k_ratio(1,5)

(F16.8, F16.8, F16.8, F16.8, F16.8)

*CFCLOS

B.2 MatLab Scripts

This script runs in MatLab. It reads the results files written by the ANSYS scripts above,

finds a surface fit equation to describe the data, and plots the results.

clc

clear

set = 2; %use 1 for X type and 2 for V type

filename = cell(1,9);

fullname = cell(1,9);

fsize = 18; %size of font in figures

textfsize = 16;

dataset = [];

for R = 1:9

161

filename{R} = sprintf(’k_rat%d.txt’,R);

switch set

case 1

fullname{R} = fullfile(’J:’,’Lattice_flexures’,’X_OAS’,...

filename{R});

case 2

fullname{R} = fullfile(’J:’,’Lattice_flexures’,’V_OAS’,...

filename{R});

end

dataset = [dataset; load(fullname{R})];

end

baseline = load(fullfile(’J:’,’Lattice_flexures’,’baseline_beam’,...

’k_rat.txt’));

% data columns are l1overb, eta, ktx, kty, ktz

% z is motion direction

% x is torsion

% y is transverse bending

torfittype = fittype(’(a+b*l1b+d*l1b*eta+e*l1b^2+f*eta^2)*l1b^’...

’(g+h*eta+k*l1b)’,’independent’,{’l1b’, ’eta’});

benfittype = fittype(’(a+b*eta+d*eta*l1b+e*eta^2+f*l1b^2)*eta^’...

.(g+h*l1b+k*eta)’,’independent’,{’l1b’, ’eta’});

fot = fitoptions(torfittype);

fob = fitoptions(benfittype);

switch set

case 1

fot.StartPoint = [0.03 1.0 -0.6 0.3 -0.8 -1.7 0.25 -0.45];

fob.StartPoint = [0.0 11.0 -4.0 -32.0 0.2 -2.9 0.3 1.7];

case 2

fot.StartPoint = [0.01 0.3 -1.8 1.8 -0.05 -2.2 -1.0 -0.2];

fob.StartPoint = [0.6 43.0 -3.2 -131. -0.026 -2.4 -0.04 4.1];

162

end

[fit_xtor gf_xtor] = fit([dataset(:,1), dataset(:,2)], dataset(:,3)./...

dataset(:,5), torfittype, fot)

[fit_xben gf_xben] = fit([dataset(:,1), dataset(:,2)], dataset(:,4)./...

dataset(:,5), benfittype, fob)

figure(1);

plot(fit_xtor,[dataset(:,1), dataset(:,2)],dataset(:,3)./dataset(:,5));

switch set

case 1

title(’\rm \it (k_t/k)_X \rm as a function of \it L_1/b \rm ’...

’and \it \eta \rm’,’FontName’,’Times New Roman’, ’FontSize’,...

fsize+4)

case 2

title(’\rm \it (k_t/k)_V \rm as a function of \it L_1/b \rm ’...

.and \it \eta \rm’,’FontName’,’Times New Roman’, ’FontSize’,...

fsize+4)

end

xlabel(’L_1/b’,’FontName’,’Times New Roman’, ’FontSize’, fsize,...

’FontAngle’,’italic’)

ylabel(’\eta’,’FontName’,’Times New Roman’, ’FontSize’, fsize,...

’FontAngle’,’italic’)

zlabel(’k_t/k’,’FontName’,’Times New Roman’, ’FontSize’, fsize,...

’FontAngle’,’italic’)

ax = gca;

ax.FontName = ’Times New Roman’;

ax.FontSize = textfsize;

figure(2)

plot(fit_xben,[dataset(:,1), dataset(:,2)],dataset(:,4)./dataset(:,5));

switch set

163

case 1

title(’\rm \it (k_{b}/k)_X \rm as a function of \it L_1/b ’...

’\rm and \it \eta \rm’,’FontName’,’Times New Roman’, ...

’FontSize’, fsize+4)

case 2

title(’\rm \it (k_{b}/k)_V \rm as a function of \it L_1/b ’...

’\rm and \it \eta \rm’,’FontName’,’Times New Roman’, ...

’FontSize’, fsize+4)

end

% title(’(k_{by}/k_{bz})_X as a function of L_1/b and \eta’)

xlabel(’L_1/b’,’FontName’,’Times New Roman’, ’FontSize’, fsize,...

’FontAngle’,’italic’)

ylabel(’\eta’,’FontName’,’Times New Roman’, ’FontSize’, fsize,...

’FontAngle’,’italic’)

zlabel(’k_{b}/k’,’FontName’,’Times New Roman’, ’FontSize’, fsize,...

’FontAngle’,’italic’)

% yTicks = get(gca,’ytick’);

% minY = min(yTicks);

% verticalOffset = 0.015;

ax = gca;

ax.FontName = ’Times New Roman’;

ax.FontSize = textfsize;

% data columns are l1overb, eta, ktx, kty, ktz

% z is motion direction

% x is torsion

% y is transverse bending

% choose a value of l1overb to compare to the baseline flexure

% 0.0974 < l1overb < 2.3659

l1overb = 0.75;

tor_comp = (fit_xtor.a+fit_xtor.b*l1overb+fit_xtor.d*l1overb.*...

164

baseline(:,2)+fit_xtor.e*l1overb^2+fit_xtor.f.*baseline(:,2).^2)...

.*l1overb.^(fit_xtor.g+fit_xtor.h.*baseline(:,2)+fit_xtor.k*l1overb);

ben_comp = (fit_xben.a+fit_xben.b.*baseline(:,2)+fit_xben.d*l1overb.*...

baseline(:,2)+fit_xben.e.*baseline(:,2).^2+fit_xben.f.*l1overb.^2)...

.*baseline(:,2).^(fit_xben.g+fit_xben.h*l1overb+fit_xben.k.*...

baseline(:,2));

figure(3)

plot(baseline(:,2),baseline(:,3)./baseline(:,5),baseline(:,2),...

tor_comp,’b.’) %plot k_t/k for a baseline beam

switch set

case 1

title(’\rm \it(k_t/k)_X\rm Compared to a Blade Flexure’,...

’FontName’,’Times New Roman’, ’FontSize’, fsize+4)

case 2

title(’\rm \it(k_t/k)_V\rm Compared to a Blade Flexure’,...

’FontName’,’Times New Roman’, ’FontSize’, fsize+4)

end

xlabel(’\eta’,’FontName’,’Times New Roman’, ’FontSize’, fsize,...

’FontAngle’,’italic’)

ylabel(’k_t/k’,’FontName’,’Times New Roman’, ’FontSize’, fsize,...

’FontAngle’,’italic’)

leg1 = legend(’Rectangular cross-section flexure’,’Lattice flexure,’...

’\it L_1/b\rm=0.75’);

leg1.FontName=’Times New Roman’;

leg1.FontSize=16;

ax = gca;

ax.FontName = ’Times New Roman’;

ax.FontSize = textfsize;

figure(4)

plot(baseline(:,2),baseline(:,4)./baseline(:,5),baseline(:,2),...

165

ben_comp,’b.’) %plot k_t/k for a baseline beam

xlabel(’\eta’,’FontName’,’Times New Roman’, ’FontSize’, fsize,...

’FontAngle’,’italic’)

ylabel(’k_b/k’,’FontName’,’Times New Roman’, ’FontSize’, fsize,...

’FontAngle’,’italic’)

axis([min(baseline(:,2)) max(baseline(:,2)) 0 1000]);

switch set

case 1

title(’\rm \it(k_b/k)_X\rm Compared to a Blade Flexure’,...

’FontName’,’Times New Roman’, ’FontSize’, fsize+4)

case 2

title(’\rm \it(k_b/k)_V\rm Compared to a Blade Flexure’,...

’FontName’,’Times New Roman’, ’FontSize’, fsize+4)

end

leg2 = legend(’Rectangular cross-section flexure’,...

’Lattice flexure, \it L_1/b\rm=0.75’);

leg2.FontName=’Times New Roman’;

leg2.FontSize=16;

ax = gca;

ax.FontName = ’Times New Roman’;

ax.FontSize = textfsize;

ben_ratio = ben_comp./(baseline(:,4)./baseline(:,5));

tor_ratio = tor_comp./(baseline(:,3)./baseline(:,5));

[baseline(:,2), ben_ratio, tor_ratio]

This script plots stiffness results and calculates stiffness reduction.

clc

clear

%Load all my data

b1 = importdata(’baseline.mat’);

166

x1 = importdata(’x1.mat’);

x2 = importdata(’x2.mat’);

x3 = importdata(’x3.mat’);

x4 = importdata(’x4.mat’);

x5 = importdata(’x5.mat’);

x6 = importdata(’x6.mat’);

x7 = importdata(’x7.mat’);

v2 = importdata(’v2.mat’);

v3 = importdata(’v3.mat’);

v4 = importdata(’v4.mat’);

v5 = importdata(’v5.mat’);

v6 = importdata(’v6.mat’);

v7 = importdata(’v7.mat’);

names = {’b1’, ’x1’, ’x2’, ’x3’, ’x4’, ’x5’, ’x6’, ’x7’, ’v2’, ’v3’,...

’v4’, ’v5’, ’v6’, ’v7’};

data = {b1,x1,x2,x3,x4,x5,x6,x7,v2,v3,v4,v5,v6,v7};

%the FEA stiffness reduction results

%coulmns are alpha, x red, v red

FEA_red = [15, 0.6901, 0.765;

30, 0.7157, 0.7779;

45, 0.7486, 0.7943;

60, 0.7822, 0.8111;

75, 0.8126, 0.8263];

fo = cell(1,14);

go = fo;

rsq = zeros(1,14);

%find curve fits to the torque and use that to calculate stiffness

for R = 1:14

[fo{R} go{R}] = fit(data{R}(:,1)*pi/180, data{R}(:,2), ’poly1’);

rsq(R) = go{R}.rsquare;

167

end

ave_rsq = mean(rsq)

%Find average stiffness values for each flexure type

k = zeros(1,14);

for R = 1:14

k(R) = fo{R}.p1;

end

kx = zeros(1,7);

kv = zeros(1,6);

for R = 1:7

kx(R) = fo{R+1}.p1;

end

for R = 1:6

kv(R) = fo{R+8}.p1;

end

r_x = (k(1)-kx)./k(1);

r_v = (k(1)-kv)./k(1);

%Define the expected reduction in stiffness

alpha = 0:pi/128:pi/2;

b = 0.69;

h = 0.06;

Is = h^4/12;

nu = 0.35;

x_perc_red_sq = zeros(1,length(alpha));

v_perc_red_sq = zeros(1,length(alpha));

for R = 1:1:length(alpha)

x_perc_red_sq(R) = 1-24*Is/((b+h)*h^3)*(1+1/(1.185*(1+nu)...

*tan(alpha(R))*sin(alpha(R))+cos(alpha(R))));

v_perc_red_sq(R) = 1-12*Is/((b+h)*h^3)*(2+1/(1.185*(1+nu)...

*tan(alpha(R))*sin(alpha(R))+cos(alpha(R))));

168

end

%calculate error between analytic and FEA solution

for R = 1:1:5

x_err(R) = (1-24*Is/((b+h)*h^3)*(1+1/(1.185*(1+nu)*tan(FEA_red(R,1)...

*pi/180)*sin(FEA_red(R,1)*pi/180)+cos(FEA_red(R,1)*pi/180)))-...

FEA_red(R,2))/FEA_red(R,2);

v_err(R) = (1-12*Is/((b+h)*h^3)*(2+1/(1.185*(1+nu)*tan(FEA_red(R,1)...

*pi/180)*sin(FEA_red(R,1)*pi/180)+cos(FEA_red(R,1)*pi/180)))-...

FEA_red(R,3))/FEA_red(R,3);

end

x_mean_err = mean(x_err)

v_mean_err = mean(v_err)

Nsx = [1; 2; 3; 4; 5; 6; 7];

Nsv = [2; 3; 4; 5; 6; 7];

x_alphas = zeros(1,length(Nsx));

v_alphas = zeros(1,length(Nsv));

x_lens = x_alphas;

v_lens = v_alphas;

x_error = x_alphas;

v_error = v_alphas;

for R = 1:1:length(Nsx)

x_alphas(R) = atan(b/(2/Nsx(R)));

x_lens(R) = b/(2*tan(x_alphas(R)));

x_error(R) = ((1-24*Is/((b+h)*h^3)*(1+1/(1.185*(1+nu)*tan(x_alphas(R))...

*sin(x_alphas(R))+cos(x_alphas(R)))))-r_x(R))/(1-24*Is/((b+h)*h^3)*...

(1+1/(1.185*(1+nu)*tan(x_alphas(R))*sin(x_alphas(R))+cos(x_alphas(R)))));

end

for R = 1:1:length(Nsv)

v_alphas(R) = atan(b/(2/(2*Nsv(R))));

v_lens(R) = b/tan(v_alphas(R));

169

v_error(R) = ((1-24*Is/((b+h)*h^3)*(1+1/(1.185*(1+nu)*tan(v_alphas(R))...

*sin(v_alphas(R))+cos(v_alphas(R)))))-r_v(R))/(1-24*Is/((b+h)*h^3)*...

(1+1/(1.185*(1+nu)*tan(v_alphas(R))*sin(v_alphas(R))+cos(v_alphas(R)))));

end

figure(6)

plot(0.5./tan(alpha),x_perc_red_sq,’b-’)

hold on

plot(1./tan(alpha),v_perc_red_sq,’m-.’)

plot(0.5./tan(FEA_red(:,1)*pi/180),FEA_red(:,2),’bd’)%unchanged

plot(1./tan(FEA_red(:,1)*pi/180),FEA_red(:,3),’mo’)%unchanged

plot(x_lens./b,r_x,’bs’)

plot(v_lens./b,r_v,’mv’)

xlabel(’L_1/b’,’FontSize’,12,’FontName’,’Times New Roman’,’FontAngle’,...

’italic’)

ylabel(’Stiffness Reduction’,’FontSize’,12,’FontName’,’Times New Roman’)

axis([0 4 0 1]);

legend1 = legend(’X Analytic’,’V Analytic’,’X FEA’,’V FEA’,’X measured’,...

’V measured’,’Location’,’SouthEast’);

set(legend1,’Location’,’SouthEast’,’FontName’,’Times New Roman’);

a=cellstr(num2str(get(gca,’ytick’)’*100));

pct = char(ones(size(a,1),1)*’%’);

new_yticks = [char(a),pct];

set(gca,’yticklabel’,new_yticks,’FontName’,’Times New Roman’)

yTicks = get(gca,’ytick’);

minY = min(yTicks);

verticalOffset = 0.03;

grid on

hold off

err = [v_error, x_error];

mean(err)

170

APPENDIX C. CODES AND SCRIPTS USED IN THE ANALYSIS OF COMPOUND

JOINTS

The codes and scripts in this appendix are referenced by Chapter 6. In some of the AN-

SYS scripts, the ellipses (. . .) are used to indicate that the command continues on the next line.

However, . . . is not a valid ANSYS command. All ellipses should be removed from the file and the

commands consolidated in a text editor so they are all on one line. This will enable the script to

run correctly. Matlab scripts, however, should need no such cleanup.

C.1 Center Shift Scripts

C.1.1 ANSYS Scripts

This ANSYS script anayzes the center shift of an array of cartwheel hinges with an angular

offset between successive joints, specified by the parameter ‘ang deg’.

!cannot be executed with copy/paste,

!must be read in using file/read input from/

/cwd, ’C:\ANSYS’

finish

/clear

!Units in, lbf, psi

*SET,pi,acos(-1) !pi

/PNUM,KP,1

/PNUM,LINE,1

alpha = pi/4

len = 7 !length of flexible segments

cor=len*sin(alpha) !x and y coordinates

boverh = 15

171

thk=.08 !thickness of compliant members

ang_deg = 0 !angular offset between flexures

ang = 60*pi/180 !30 degrees of rotation

maxstep = 60

wid = 0.5! boverh*thk !width of material

!mod = 1.61e7 !modulus of titanium

!mod = 30e6 !modulus of steel

mod = 254600. !modulus of polypropylene

nu = .27

thk2 = .125 !thickness of rigid members

maxn = 4 !maximum number of joints

*dim,shift,array,maxn,4,

esz1 = len/50

/prep7

mptemp

mptemp,1,0

mpdata,ex,1,,mod

mpdata,prxy,1,,nu

nlgeom,1

*do,n,1,maxn,1

!n = 2

!maxn = 1

et,1,beam188

sectype,1,beam,rect

secdata,thk,wid,

sectype,2,beam,rect

secdata,thk2,wid,

et,2,mpc184

keyopt,2,1,1

keyopt,2,2,0

172

z = 0

!Create keypoints and flexible segments

*do,i,1,n,1

k,,-cor,-cor,z !define keypoints

k,,cor,-cor,z

k,,0,0,z

k,,-cor,cor,z

k,,cor,cor,z

z = z-(wid+.0001)

!get the highest defined kp (a multiple of 5)

*get,kpmax,kp,0,num,maxd

lstr,kpmax-4,kpmax-2

lstr,kpmax-3,kpmax-2

lstr,kpmax-1,kpmax-2

lstr,kpmax,kpmax-2

clocal,11,CART,,,,-ang_deg/n

*enddo

!create rigid segments

*do,i,1,kpmax-3,5

lstr,i,i+1

*enddo

*do,i,4,kpmax-1,5

lstr,i,i+1

*enddo

*do,i,4,kpmax-6,10

lstr,i,i+5

*enddo

*if,n,gt,2,then

*do,i,7,kpmax-8,10

lstr,i,i+5

173

*enddo

*endif

!create rigid segment to measure deflection of center

!and apply loads. Must be attached to proper node.

*if,mod(n,2),eq,1,then

k,,0,0,z+wid/2+.001

lstr,kpmax,kpmax+1

*else

k,,0,0,z+wid/2+.001

lstr,kpmax-3,kpmax+1

*endif

*get,kpmax,kp,0,num,maxd !get the highest defined kp (a multiple of 5)

esize,esz1,0

lsel,s,line,,1,4*n !selects lines for flexible members

secnum,1

type,1

lmesh,all

lsel,inve

!secnum,2

type,2

lmesh,all

lsel,all

!displays mechanism and depicts relative size and shape of beam elements

/ESHAPE,1

/EFACET,1

/RATIO,1,1,1

/CFORMAT,32,0

/REPLOT

allsel,all

!select a node where we can apply displacements

174

ksel,s,kp,,kpmax

nslk,s

*get,input,node,,num,max

allsel,all

ksel,s,kp,,1

nslk,s

*get,grnd,node,0,num,max

allsel,all

!fix the ground node

ddele,all,all

d,grnd,all,0

*do,i,1,maxstep,1

d,input,rotz,ang*i/maxstep

lswrite,i

*enddo

finish

/SOL

!/STATUS,SOLU

allsel,all

LSSOLVE,1,maxstep,1

FINISH

/post1

!select elements to output max stress

*DIM,mystress,array,maxstep

*DO,inc,1,maxstep,1

SET,inc

PLNSOL,s,eqv

*GET,temp,PLNSOL,0,MAX

mystress(inc)=temp

*ENDDO

175

/post26

! Define variables

numvar,20

NSOL,2,input,u,x,dx%n%

NSOL,3,input,u,y,dy%n%

NSOL,4,input,u,z,dz%n%

NSOL,5,input,rot,x,rotx%n%

NSOL,6,input,rot,y,roty%n%

NSOL,7,input,rot,z,rotz%n%

/output,CH_offset_cs%n%,txt,,

PRVAR,dx%n%,dy%n%,dz%n%,rotz%n%

/output

!pull out variables to perform scalar operations

*get,kx%n%,vari,2,rtime,1

*get,ky%n%,vari,3,rtime,1

*get,kz%n%,vari,4,rtime,1

*get,rotz%n%,vari,7,rtime,1

fini

/prep7

lclear,all

ldele,all,,,1

!uncomment the following lines to output data

!*CFOPEN,series_CH_maxs%n%,txt,,

!/output,non_dim_ks%n%,txt,,append,

!*VWRITE,shift(1,1),shift(1,2),shift(1,3),shift(1,4)

!(F12.4,F12.4,F12.4,F12.4)

!*VWRITE,mystress(1)

!%18.6G

!*CFCLOS

!/output

176

*del,shift

*del,mystress

*enddo

This script is similar to the one above, but analyzes the center shift of arrays of cross-axis-

flexural pivots.

/cwd, ’C:\ANSYS’

finish

/clear

!Units in, lbf, psi

*SET,pi,acos(-1) !pi

/PNUM,KP,1

/PNUM,LINE,1

alpha = pi/4

len = 10 !length of flexible segments

cor=len*sin(alpha) !x and y coordinates

boverh = 15

thk=.025 !thickness of compliant members

ang_deg = 15.

maxstep = 30.

ang = ang_deg*pi/180 !30 degrees of rotation

wid = 0.5 !8*thk !width of material

!mod = 1.61e7 !modulus of titanium

mod = 30e6 !modulus of steel

nu = .27

thk2 = .5 !thickness of rigid members

maxn = 4 !maximum number of joints

*dim,shift,array,maxn,4,

esz1 = len/100

/prep7

177

mptemp

mptemp,1,0

mpdata,ex,1,,mod

mpdata,prxy,1,,nu

nlgeom,1

*do,n,1,maxn,1

!n = 2

!maxn = 1

et,1,beam188

sectype,1,beam,rect

secdata,thk,wid,

sectype,2,beam,rect

secdata,thk2,wid,

et,2,mpc184

keyopt,2,1,1

keyopt,2,2,0

z = 0

!Create keypoints and flexible segments

*do,i,1,n,1

k,,-cor/2,-cor/2,z !define keypoints

k,,cor/2,cor/2,z

z = z-wid-.001

k,,-cor/2,cor/2,z

k,,cor/2,-cor/2,z

z = z-wid-.001

*get,kpmax,kp,0,num,maxd !get the highest defined kp

lstr,kpmax-3,kpmax-2

lstr,kpmax-1,kpmax

clocal,11,CART,,,,-ang_deg/n

*enddo

178

!create rigid segments

*do,i,2,kpmax-2,4

lstr,i,i+1

*enddo

*do,i,1,kpmax-2,4

lstr,i,i+3

*enddo

*do,i,3,kpmax-4,8

lstr,i,i+4

*enddo

*do,i,8,kpmax-4,8

lstr,i,i+4

*enddo

!create rigid segment to measure deflection of center

!and apply loads. Must be attached to proper node.

*if,mod(n,2),eq,1,then

k,,0,0,z+wid

lstr,kpmax-1,kpmax+1

*else

k,,0,0,z+wid

lstr,kpmax,kpmax+1

*endif

esize,esz1,0

lsel,s,line,,1,2*n !selects lines for flexible members

secnum,1

type,1

lmesh,all

lsel,inve

!secnum,2

type,2

179

lmesh,all

lsel,all

!displays mechanism and depicts relative size and shape of beam elements

/ESHAPE,1

/EFACET,1

/RATIO,1,1,1

/CFORMAT,32,0

/REPLOT

allsel,all

!select a node where we can apply displacements

ksel,s,kp,,kpmax+1

nslk,s

*get,input,node,,num,max

allsel,all

ksel,s,kp,,1

nslk,s

*get,grnd,node,0,num,max

allsel,all

!fix the ground node

ddele,all,all

d,grnd,all,0

*do,i,1,maxstep,1

d,input,rotz,ang*i/maxstep

lswrite,i

*enddo

finish

/SOL

allsel,all

LSSOLVE,1,maxstep,1

FINISH

180

/post26

! Define variables

numvar,20

NSOL,2,input,u,x,dx%n%

NSOL,3,input,u,y,dy%n%

NSOL,4,input,u,z,dz%n%

NSOL,5,input,rot,x,rotx%n%

NSOL,6,input,rot,y,roty%n%

NSOL,7,input,rot,z,rotz%n%

/output,CAFP_offset_cs%n%,txt,,

PRVAR,dx%n%,dy%n%,dz%n%,rotz%n%

/output

!pull out variables to perform scalar operations

*get,kx%n%,vari,2,rtime,1

*get,ky%n%,vari,3,rtime,1

*get,kz%n%,vari,4,rtime,1

*get,rotz%n%,vari,7,rtime,1

fini

/prep7

lclear,all

ldele,all,,,1

!*CFOPEN,CAFP_offset_cs%n%,txt,,

!/output,CAFP_offset_cs%n%,txt,,append,

!*VWRITE,shift(1,1),shift(1,2),shift(1,3),shift(1,4)

!(F12.4,F12.4,F12.4,F12.4)

!*CFCLOS

!/output

*del,shift

*enddo

181

C.1.2 MatLab Scripts

This script was used to compare the center shift of compound joints with and without an

angular offset.

clc

clear

%use 1 for CAFP series, 2 for CAFP parallel, 3 for CH series, 4 for CH

%parallel

fsize = 20; %size of font in figures

textfsize = 16;

dataset = 3;

% for dataset = 1:1:4

switch dataset

%use cat(3,A,B,C...) to concatenate arrays together along the third

%dimension.

case 1

length = 10;

A = importdata(’CAFP_slender_15.mat’);

B = importdata(’CAFP_offset_slender_15.mat’);

titletext = ’Center Shift of CAFPs in Series’;

filename = ’cafp_s_cs’;

filename2 = ’cafp_s_dl’;

case 3

length = 7;

A = importdata(’CH_slender_30.mat’);

B = importdata(’CH_offset_slender_30.mat’);

titletext = ’Center Shift of CHs in Series’;

filename = ’ch_s_cs’;

filename2 = ’ch_s_dl’;

end

182

vsum = ((A(:,1,:).^2+A(:,2,:).^2).^.5)./length;

vsumB = ((B(:,1,:).^2+B(:,2,:).^2).^.5)./length;

theta = [0;A(:,4,1)*180/pi];

theta2 = [0;B(:,4,1)*180/pi];

figure(2)

hold on

plot(theta,[0;vsum(:,1,2)],’bs-’,theta,[0;vsum(:,1,4)],’md-’)

plot(theta2,[0;vsumB(:,1,2)],’gs--’,theta2,[0;vsumB(:,1,4)],’rd--’)

legend(’\it n\rm = 2’,’\it n\rm = 4’,’\it n\rm = 2^{offset}’,...

’\it n\rm = 4^{offset}’,’Location’,’Best’)

xlabel(’Rotation, degrees’,’FontName’,’Times New Roman’,...

’FontSize’, fsize)

ylabel(’\delta/L’,’FontName’,’Times New Roman’, ’FontSize’,...

fsize,’FontAngle’,’italic’)

xmin = min(theta);

xmax = max(theta);

ymin = min([0;vsum(:,1,2);vsum(:,1,4);vsumB(:,1,2);vsumB(:,1,4)]);

ymax = max([0;vsum(:,1,2);vsum(:,1,4)]);

axis([xmin xmax ymin ymax])

set(gca,’xtick’,0:5:xmax,’FontName’,’Times New Roman’, ’FontSize’, fsize)

grid on

set(gcf, ’PaperPositionMode’, ’auto’)

saveas(gcf,filename2,’eps2c’)

C.2 Off-Axis Stiffness

The off-axis stiffness behavior was also analyzed.

C.2.1 ANSYS Scripts

This script analyzes series joints composed of cartwheel hinges.

183

/cwd, ’C:\ANSYS’

finish

/clear

!Units in, lbf, psi

*SET,pi,acos(-1) !pi

/PNUM,KP,1

/PNUM,LINE,1

alpha = pi/4

len = 0.75 !length of single spoke 1.0

cor=len*sin(alpha) !x and y coordinates

boverh = 15

thk=.03 !thickness of compliant members 0.04

mod = 1.61e7 !modulus of titanium

!mod = 30e6 !modulus of steel

nu = .27

thk2 = .125 !thickness of rigid members

maxn = 10 !maximum number of joints

esz1 = len/50

/prep7

mptemp

mptemp,1,0

mpdata,ex,1,,mod

mpdata,prxy,1,,nu

nlgeom,1

*do,bh,1,boverh,1

!bh = 3

wid=bh*thk !width of material

*dim,stiff%bh%,array,maxn,7,

*do,n,1,maxn,1

!n = 2

184

et,1,beam188

sectype,1,beam,rect

secdata,thk,wid,

sectype,2,beam,rect

secdata,thk2,wid,

et,2,mpc184

keyopt,2,1,1

keyopt,2,2,0

z = 0

!Create keypoints and flexible segments

*do,i,1,n,1

k,,0,0,z !define keypoints

k,,2*cor,0,z

k,,cor,cor,z

k,,0,2*cor,z

k,,2*cor,2*cor,z

z = z-(wid+.0001)

*get,kpmax,kp,0,num,maxd !get the highest defined kp (a multiple of 5)

lstr,kpmax-4,kpmax-2

lstr,kpmax-3,kpmax-2

lstr,kpmax-1,kpmax-2

lstr,kpmax,kpmax-2

*enddo

!create rigid segments

*do,i,1,kpmax-3,5

lstr,i,i+1

*enddo

*do,i,4,kpmax-1,5

lstr,i,i+1

*enddo

185

*do,i,4,kpmax-6,10

lstr,i,i+5

*enddo

*if,n,gt,2,then

*do,i,7,kpmax-8,10

lstr,i,i+5

*enddo

*endif

!create rigid segment to measure deflection of center

!and apply loads. Must be attached to proper node.

*if,mod(n,2),eq,1,then

k,,cor,cor,z+wid/2+.001

lstr,kpmax,kpmax+1

*else

k,,cor,cor,z+wid/2+.001

lstr,kpmax-3,kpmax+1

*endif

*get,kpmax,kp,0,num,maxd !get the highest defined kp (a multiple of 5)

esize,esz1,0

lsel,s,line,,1,4*n !selects lines for flexible members

secnum,1

type,1

lmesh,all

lsel,inve

!secnum,2

type,2

lmesh,all

lsel,all

!displays mechanism and depicts relative size and shape of beam elements

/ESHAPE,1

186

/EFACET,1

/RATIO,1,1,1

/CFORMAT,32,0

/REPLOT

!select a node where we can apply displacements

ksel,s,kp,,kpmax

nslk,s

*get,input,node,,num,max

allsel,all

ksel,s,kp,,1

nslk,s

*get,grnd,node,0,num,max

allsel,all

!fix the ground node

ddele,all,all

d,grnd,all,0

!fix the input node

!d,input,all,0

M = .001

P = .001

!now perturb the input node in one DOF at a time

!d,input,rotz,.5

f,input,fx,P

lswrite,1

fdele,input,fx

f,input,fy,P

lswrite,2

fdele,input,fy

f,input,fz,P

lswrite,3

187

fdele,input,fz

f,input,mx,M

lswrite,4

fdele,input,mx

f,input,my,M

lswrite,5

fdele,input,my

f,input,mz,M

lswrite,6

finish

/SOL

allsel,all

LSSOLVE,1,6,1

FINISH

/post26

! Define variables

numvar,20

NSOL,2,input,u,x,dx%n%

NSOL,3,input,u,y,dy%n%

NSOL,4,input,u,z,dz%n%

NSOL,5,input,rot,x,rotx%n%

NSOL,6,input,rot,y,roty%n%

NSOL,7,input,rot,z,rotz%n%

rforce,8,grnd,f,x,fx%n%

rforce,9,grnd,f,y,fy%n%

rforce,10,grnd,f,z,fz%n%

rforce,11,grnd,m,x,mx%n%

rforce,12,grnd,m,y,my%n%

rforce,13,grnd,m,z,mz%n%

!find stiffness in each direction

188

quot,14,8,2,,kx%n%

quot,15,9,3,,ky%n%

quot,16,10,4,,kz%n%

quot,17,11,5,,ktx%n%

quot,18,12,6,,kty%n%

quot,19,13,7,,ktz%n%

PRVAR,dx%n%,dy%n%,dz%n%,rotx%n%,roty%n%,rotz%n%

prvar,fx%n%,fy%n%,fz%n%,mx%n%,my%n%,mz%n%

prvar,kx%n%,ky%n%,kz%n%,ktx%n%,kty%n%,ktz%n%

!pull out variables to perform scalar operations

*get,kx%n%,vari,14,rtime,1

*get,ky%n%,vari,15,rtime,2

*get,kz%n%,vari,16,rtime,3

*get,ktx%n%,vari,17,rtime,4

*get,kty%n%,vari,18,rtime,5

*get,ktz%n%,vari,19,rtime,6

stiff%bh%(n,1) = n

stiff%bh%(n,2) = -kx%n%*len**3/(mod*wid*thk**3/12)

stiff%bh%(n,3) = -ky%n%*len**3/(mod*wid*thk**3/12)

stiff%bh%(n,4) = -kz%n%*len**3/(mod*wid*thk**3/12)

stiff%bh%(n,5) = -ktx%n%*len/(mod*wid*thk**3/12)

stiff%bh%(n,6) = -kty%n%*len/(mod*wid*thk**3/12)

stiff%bh%(n,7) = -ktz%n%*len/(mod*wid*thk**3/12)

fini

/prep7

lclear,all

ldele,all,,,1

*enddo

*CFOPEN,CH_non_dim_ks_%bh%,txt,,

*VWRITE,stiff%bh%(1,1),stiff%bh%(1,2),stiff%bh%(1,3),...

189

stiff%bh%(1,4),stiff%bh%(1,5),stiff%bh%(1,6),stiff%bh%(1,7)

(F12.4,F12.4,F12.4,F12.4,F12.4,F12.4,F12.4)

*CFCLOS

*enddo

This script analyzes the off-axis stiffness for a series-and-parallel joint composed of cross-

axis flexural pivots. While series-and-parallel cartwheel hinges and series cross-axis-flexural pivots

were also analyzed, those scripts are omitted because they are so similar to the scripts included

here.

/cwd, ’C:\ANSYS’

finish

/clear

!Units in, lbf, psi

*SET,pi,acos(-1) !pi

/PNUM,KP,1

/PNUM,LINE,1

alpha = pi/4

len = 1 !length of flexible segments

cor=len*sin(alpha) !x and y coordinates

thk=.04 !thickness of compliant members

!angdeg = 0.

ang_deg = angdeg

maxstep = 30.

ang = ang_deg*pi/180 !30 degrees of rotation

!mod = 1.61e7 !modulus of titanium

mod = 30e6 !modulus of steel

nu = .27

thk2 = .125 !thickness of rigid members

maxn = 10 !maximum number of joints

boverhmax = 15

190

*do,boverh,1,boverhmax,1

wid=boverh*thk !width of material

*dim,stiff,array,maxn,7,

esz1 = len/50

/prep7

mptemp

mptemp,1,0

mpdata,ex,1,,mod

mpdata,prxy,1,,nu

nlgeom,1

*do,n,1,maxn,1

!n = 3

!maxn = 1

et,1,beam188

sectype,1,beam,rect

secdata,thk,wid,

sectype,2,beam,rect

secdata,thk2,wid,

et,2,mpc184

keyopt,2,1,1

keyopt,2,2,0

z = 0

!Create keypoints and flexible segments

*do,i,1,n,1

k,,-cor/2,-cor/2,z !define keypoints

k,,cor/2,cor/2,z

z = z-wid-.001

k,,-cor/2,cor/2,z

k,,cor/2,-cor/2,z

z = z-wid-.001

191

*get,kpmax,kp,0,num,maxd !get the highest defined kp

lstr,kpmax-3,kpmax-2

lstr,kpmax-1,kpmax

clocal,11,CART,,,,-ang_deg/n

*enddo

!create rigid segments

*do,i,2,kpmax-2,4

lstr,i,i+1

*enddo

*do,i,1,kpmax-2,4

lstr,i,i+3

*enddo

*do,i,3,kpmax-4,8

lstr,i,i+4

*enddo

*do,i,8,kpmax-4,8

lstr,i,i+4

*enddo

!create rigid segment to measure deflection of center

!and apply loads. Must be attached to proper node.

*if,mod(n,2),eq,1,then

k,,0,0,z+wid

lstr,kpmax-1,kpmax+1

*else

k,,0,0,z+wid

lstr,kpmax,kpmax+1

*endif

esize,esz1,0

lsel,s,line,,1,2*n !selects lines for flexible members

secnum,1

192

type,1

lmesh,all

lsel,inve

!secnum,2

type,2

lmesh,all

lsel,all

!displays mechanism and depicts relative size and shape of beam elements

/ESHAPE,1

/EFACET,1

/RATIO,1,1,1

/CFORMAT,32,0

/REPLOT

allsel,all

!select a node where we can apply displacements

ksel,s,kp,,kpmax+1

nslk,s

*get,input,node,,num,max

allsel,all

ksel,s,kp,,1

nslk,s

*get,grnd,node,0,num,max

allsel,all

!fix the ground node

ddele,all,all

d,grnd,all,0

!fix the input node

!d,input,all,0

M = .001

P = .0001

193

!now perturb the input node in one DOF at a time

d,input,ux,P

lswrite,1

ddele,input,ux

d,input,uy,P

lswrite,2

ddele,input,uy

d,input,uz,P

lswrite,3

ddele,input,uz

d,input,rotx,M

lswrite,4

ddele,input,rotx

d,input,roty,M

lswrite,5

ddele,input,roty

d,input,rotz,M

lswrite,6

finish

/SOL

allsel,all

LSSOLVE,1,6,1

FINISH

/post26

! Define variables

numvar,20

NSOL,2,input,u,x,dx%n%

NSOL,3,input,u,y,dy%n%

NSOL,4,input,u,z,dz%n%

NSOL,5,input,rot,x,rotx%n%

194

NSOL,6,input,rot,y,roty%n%

NSOL,7,input,rot,z,rotz%n%

rforce,8,grnd,f,x,fx%n%

rforce,9,grnd,f,y,fy%n%

rforce,10,grnd,f,z,fz%n%

rforce,11,grnd,m,x,mx%n%

rforce,12,grnd,m,y,my%n%

rforce,13,grnd,m,z,mz%n%

!find stiffness in each direction

quot,14,8,2,,kx%n%

quot,15,9,3,,ky%n%

quot,16,10,4,,kz%n%

quot,17,11,5,,ktx%n%

quot,18,12,6,,kty%n%

quot,19,13,7,,ktz%n%

PRVAR,dx%n%,dy%n%,dz%n%,rotx%n%,roty%n%,rotz%n%

prvar,fx%n%,fy%n%,fz%n%,mx%n%,my%n%,mz%n%

prvar,kx%n%,ky%n%,kz%n%,ktx%n%,kty%n%,ktz%n%

!pull out variables to perform scalar operations

*get,kx%n%,vari,14,rtime,1

*get,ky%n%,vari,15,rtime,2

*get,kz%n%,vari,16,rtime,3

*get,ktx%n%,vari,17,rtime,4

*get,kty%n%,vari,18,rtime,5

*get,ktz%n%,vari,19,rtime,6

stiff(n,1) = n

stiff(n,2) = -kx%n%*len**3/(mod*wid*thk**3/12)

stiff(n,3) = -ky%n%*len**3/(mod*wid*thk**3/12)

stiff(n,4) = -kz%n%*len**3/(mod*wid*thk**3/12)

stiff(n,5) = -ktx%n%*len/(mod*wid*thk**3/12)

195

stiff(n,6) = -kty%n%*len/(mod*wid*thk**3/12)

stiff(n,7) = -ktz%n%*len/(mod*wid*thk**3/12)

fini

/prep7

lclear,all

ldele,all,,,1

*enddo

*CFOPEN,cafp_non_dim_%boverh%,txt,,

!/output,non_dim_ks,txt,,append,

*VWRITE,stiff(1,1),stiff(1,2),stiff(1,3),stiff(1,4),stiff(1,5),...

stiff(1,6),stiff(1,7)

(F12.4,F12.4,F12.4,F12.4,F12.4,F12.4,F12.4)

*CFCLOS

!/output

*del,stiff

*enddo

C.2.2 MatLab Scripts

This script analyzes the off-axis stiffness of compound joints with various angular offsets.

It first generates results files by calling an ANSYS script, then loading and analyzing the results.

clc

clear

angs = 0:5:60;

for R = 1:length(angs)

ang = angs(R);

command = [’"C:\Program Files\ANSYS Inc\v150\ANSYS\bin\winx64\ansys150’...

’.exe" -p aa_r -dir "C:\ANSYS" -j "shredder" -s read -l en-us ’...

’-angdeg ’ num2str(ang) ’ -b -i "J:\Compound_Flexures\CAFP\CAFP_’...

’series_off_axis.txt" -o "C:\ANSYS\file3.out"’];

196

% dos(command)

system([’SET KMP_STACKSIZE=2048k & ’ command])

%Error code 100 means the jobname is locked

data = zeros(10,7,15);

for bh = 1:15

infile = sprintf(’cafp_non_dim_%d.txt’,bh);

f = fullfile(’C:’,’ANSYS’,infile);

data(:,:,bh) = load(f, ’ascii’);

end

outfile = sprintf(’CAFP_OAS_offset_%d.mat’, ang);

save(outfile, ’data’, ’-mat’);

end

fsize = 22; %size of font in figures

% use 1 for CAFP series, 2 for CAFP parallel, 3 for CH series,

% 4 for CH parallel

dataset = 1;

% angs = [0,15,30,45,60];

A = cell(7,length(angs));

switch dataset

case 1

for R = 1:length(angs)

infile = sprintf(’CAFP_OAS_offset_%d.mat’, angs(R));

A{1,R} = importdata(infile);

end

case 2

%Load all my data on CAFPs in parallel

A = importdata(’cafp_parallel_nds_ML.mat’);

case 3

%Load all my data on CHs in series

197

A = importdata(’ch_series_nds_ML.mat’);

%Load theta z data on CHs in series

B = importdata(’CW_series.mat’);

case 4

%Load all my data on CHs in parallel

A = importdata(’ch_parallel_nds_ML.mat’);

%Load theta z data on CHs in series

B = importdata(’CW_parallel.mat’);

end

%This is a 3D array. The first index is the number of flexures

%The second index selects which data: [n kx ky kz ktx kty ktz]

%The third index is b/h

%I want to find curve fits that relate the variable kx, ky, etc, to n and

%b/h

n = 1.:1.:10.;

for R = 1:length(angs)

%put kx in a column vector

A{2,R} = reshape(permute(A{1,R}(:,2,:),[1,3,2]),[150,1]);

%put ky in a column vector

A{3,R} = reshape(permute(A{1,R}(:,3,:),[1,3,2]),[150,1]);

%put kz in a column vector

A{4,R} = reshape(permute(A{1,R}(:,4,:),[1,3,2]),[150,1]);

%put kx in a column vector

A{5,R} = reshape(permute(A{1,R}(:,5,:),[1,3,2]),[150,1]);

%put ky in a column vector

A{6,R} = reshape(permute(A{1,R}(:,6,:),[1,3,2]),[150,1]);

%put kz in a column vector

A{7,R} = reshape(permute(A{1,R}(:,7,:),[1,3,2]),[150,1]);

end

% % so I can use it in the fit function

198

n = [n,n,n,n,n,n,n,n,n,n,n,n,n,n,n]’;

bh = ones(10,1);

for R = 2:1:15

bh = [bh;R*ones(10,1)];

end

%define a custom fittype to use with my surface fitting

% he definition includes a function and a cell array denoting which

% are the independent variables (bh and n). Matlab assumes that the rest

% are the curve fit parameters.

myfittype = fittype(’(a*bh^4+b*bh^3+c*bh^2+d*bh+e)*n^(f*bh+g)’,...

’independent’,{’bh’, ’n’});

fo = fitoptions(myfittype);

fo.StartPoint = [0 -1 30 -10 20 0 -1];

%% This section finds curve fits for all the data.

%rows are kx, ky, kz, ktx, kty, ktz. columns are angles

fits = cell(6,length(angs));

%rows are kx, ky, kz, ktx, kty, ktz. columns are angles

gfs = cell(6,length(angs));

for R = 1:length(angs)

% fo = fitoptions(’myfittype’,’StartPoint’,[0 -1 30 -10 20 0 -1]);

%The x dimension is bh, the y dimension is n

[fits{1,R}, gfs{1,R}] = fit([bh, n], A{2,R},myfittype,fo);

%The x dimension is bh, the y dimension is n

[fits{2,R}, gfs{2,R}] = fit([bh, n], A{3,R},myfittype,fo);

%The x dimension is bh, the y dimension is n

[fits{3,R}, gfs{3,R}] = fit([bh, n], A{4,R},myfittype,fo);

%The x dimension is bh, the y dimension is n

[fits{4,R}, gfs{4,R}] = fit([bh, n], A{5,R},myfittype,fo);

%The x dimension is bh, the y dimension is n

[fits{5,R}, gfs{5,R}] = fit([bh, n], A{6,R},myfittype,fo);

199

%The x dimension is bh, the y dimension is n

[fits{6,R}, gfs{6,R}] = fit([bh, n], A{7,R},myfittype,fo);

end

%***

%% find an average deviation in the stiffness from the 0-offset stiffness

err = cell(length(angs)-1,6);

for R = 2:length(angs)

for S = 1:6

%%find error as a percentage of 0-offset joint

err{R-1,S} = abs(A{S+1,R}-A{S+1,1})./A{S+1,1}.*100;

end

end

mean_err = zeros(length(angs)-1,6);

for R = 1:length(angs)-1

for S = 1:6

mean_err(R,S) = mean(err{R,S});

end

end

results = sprintf(’CAFP_data_summary.mat’);

save(results, ’fits’, ’gfs’, ’err’, ’mean_err’, ’-mat’);

This script analyzes the data files assembled by the above script.

clc

clear

%use cat(3,A,B,C...) to concatenate arrays together along the third

%dimension.

fsize = 22; %size of font in figures

dataset = 1; %use 1 for CAFP series, 2 for CAFP parallel,

% 3 for CH series, 4 for CH parallel

ang_deg = 15;

200

infile = sprintf(’CAFP_OAS_offset_%d.mat’, ang_deg);

switch dataset

case 1

%Load all my data on CAFPs in series

% A = importdata(’cafp_series_nds_ML.mat’);

A = importdata(infile);

case 2

%Load all my data on CAFPs in parallel

A = importdata(’cafp_parallel_nds_ML.mat’);

case 3

%Load all my data on CHs in series

A = importdata(’ch_series_nds_ML.mat’);

%Load theta z data on CHs in series

B = importdata(’CW_series.mat’);

case 4

%Load all my data on CHs in parallel

A = importdata(’ch_parallel_nds_ML.mat’);

%Load theta z data on CHs in series

B = importdata(’CW_parallel.mat’);

end

%This is a 3D array. The first index is the number of flexures

%The second index selects which data: [n kx ky kz ktx kty ktz]

%The third index is b/h

%I want to find curve fits that relate the variable kx, ky, etc, to n and

%b/h

n = 1.:1.:10.;

%put kx in a column vector

kx = reshape(permute(A(:,2,:),[1,3,2]),[150,1]);

%put ky in a column vector

ky = reshape(permute(A(:,3,:),[1,3,2]),[150,1]);

201

%put kz in a column vector

kz = reshape(permute(A(:,4,:),[1,3,2]),[150,1]);

%put kx in a column vector

ktx = reshape(permute(A(:,5,:),[1,3,2]),[150,1]);

%put ky in a column vector

kty = reshape(permute(A(:,6,:),[1,3,2]),[150,1]);

%put kz in a column vector

ktz = reshape(permute(A(:,7,:),[1,3,2]),[150,1]);

%so I can use it in the fit function

n = [n,n,n,n,n,n,n,n,n,n,n,n,n,n,n]’;

bh = ones(10,1);

for R = 2:1:15

bh = [bh;R*ones(10,1)];

end

%define a custom fittype to use with my surface fitting

%the definition includes a function and a cell array denoting which

% are the independent variables (bh and n). Matlab assumes that the rest

% are the curve fit parameters.

myfittype = fittype(’(a*bh^4+b*bh^3+c*bh^2+d*bh+e)*n^(f*bh+g)’,...

’independent’,{’bh’, ’n’});

fo = fitoptions(myfittype);

fo.StartPoint = [0 -1 30 -10 20 0 -1];

%The x dimension is bh, the y dimension is n

[fitkx, gfkx] = fit([bh, n], kx,myfittype,fo)

figure(1)

plot(fitkx,[bh,n],kx);

xlabel(’b/h’,’FontName’,’Times New Roman’, ’FontSize’, fsize,’FontAngle’...

,’italic’)

ylabel(’n’,’FontName’,’Times New Roman’, ’FontSize’, fsize,’FontAngle’...

,’italic’)

202

zlabel(’\kappa_x’,’FontName’,’Times New Roman’, ’FontSize’, fsize,...

’FontAngle’,’italic’)

set(gca,’xtick’,1:2:15,’ytick’,1:3:10,’FontName’,’Times New Roman’,...

’FontSize’, fsize)

%The x dimension is bh, the y dimension is n

[fitky, gfky] = fit([bh, n], ky,myfittype,fo)

figure(2)

plot(fitky,[bh,n],ky);

% title(’\kappa_y as a function of n and b/h’,’FontName’,...

% ’Times New Roman’, ’FontSize’, fsize)

xlabel(’b/h’,’FontName’,’Times New Roman’, ’FontSize’, fsize,...

’FontAngle’,’italic’)

ylabel(’n’,’FontName’,’Times New Roman’, ’FontSize’, fsize,...

’FontAngle’,’italic’)

zlabel(’\kappa_y’,’FontName’,’Times New Roman’, ’FontSize’, fsize,...

’FontAngle’,’italic’)

set(gca,’xtick’,1:2:15,’ytick’,1:3:10,’FontName’,’Times New Roman’,...

’FontSize’, fsize)

%The x dimension is bh, the y dimension is n

[fitkz, gfkz] = fit([bh, n], kz,myfittype,fo)

figure(3)

plot(fitkz,[bh,n],kz);

% title(’\kappa_z as a function of n and b/h’,’FontName’,...

% ’Times New Roman’, ’FontSize’, fsize)

xlabel(’b/h’,’FontName’,’Times New Roman’, ’FontSize’, fsize,’FontAngle’...

,’italic’)

ylabel(’n’,’FontName’,’Times New Roman’, ’FontSize’, fsize,’FontAngle’...

,’italic’)

zlabel(’\kappa_z’,’FontName’,’Times New Roman’, ’FontSize’, fsize,...

’FontAngle’,’italic’)

203

set(gca,’xtick’,1:2:15,’ytick’,1:3:10,’FontName’,’Times New Roman’,...

’FontSize’, fsize)

%The x dimension is bh, the y dimension is n

[fitktx, gfktx] = fit([bh, n], ktx,myfittype,fo)

figure(4)

plot(fitktx,[bh,n],ktx);

% title(’\kappa_\theta_x as a function of n and b/h’,’FontName’,...

% ’Times New Roman’, ’FontSize’, fsize)

xlabel(’b/h’,’FontName’,’Times New Roman’, ’FontSize’, fsize,’FontAngle’...

,’italic’)

ylabel(’n’,’FontName’,’Times New Roman’, ’FontSize’, fsize,’FontAngle’,...

’italic’)

zlabel(’\kappa_\theta_x’,’FontName’,’Times New Roman’, ’FontSize’, fsize...

,’FontAngle’,’italic’)

set(gca,’xtick’,1:2:15,’ytick’,1:3:10,’FontName’,’Times New Roman’,...

’FontSize’, fsize)

%The x dimension is bh, the y dimension is n

[fitkty, gfkty] = fit([bh, n], kty,myfittype,fo)

figure(5)

plot(fitkty,[bh,n],kty);

% title(’\kappa_\theta_y as a function of n and b/h’,’FontName’...

% ,’Times New Roman’, ’FontSize’, fsize)

xlabel(’b/h’,’FontName’,’Times New Roman’, ’FontSize’, fsize,’FontAngle’...

,’italic’)

ylabel(’n’,’FontName’,’Times New Roman’, ’FontSize’, fsize,’FontAngle’,...

’italic’)

zlabel(’\kappa_\theta_y’,’FontName’,’Times New Roman’, ’FontSize’, fsize...

,’FontAngle’,’italic’)

set(gca,’xtick’,1:2:15,’ytick’,1:3:10,’FontName’,’Times New Roman’,...

’FontSize’, fsize)

204

%The x dimension is bh, the y dimension is n

[fitktz, gfktz] = fit([bh, n], ktz,myfittype,fo)

figure(6)

plot(fitktz,[bh,n],ktz);

% title(’\kappa_\theta_z as a function of n and b/h’,’FontName’,...

% ’Times New Roman’, ’FontSize’, fsize)

xlabel(’b/h’,’FontName’,’Times New Roman’, ’FontSize’, fsize,’FontAngle’...

,’italic’)

ylabel(’n’,’FontName’,’Times New Roman’, ’FontSize’, fsize,’FontAngle’,...

’italic’)

zlabel(’\kappa_\theta_z’,’FontName’,’Times New Roman’, ’FontSize’, fsize...

,’FontAngle’,’italic’)

set(gca,’xtick’,1:2:15,’ytick’,1:3:10,’FontName’,’Times New Roman’,...

’FontSize’, fsize)

%***

% Now I need to find the stiffness values for the experimental data and

% plot them together with FEA results

b = 0.495; %inches

h = 0.098;

I = b*h^3/12;

L = 1.75;

E = 254000; %psi

fo = cell(1,4);

for N = 1:4

fo{N} = fit(B(:,1,N)*pi/180, B(:,2,N)*8.850745792, ’poly1’);

end

ktz_meas = [fo{1}.p1, fo{2}.p1, fo{3}.p1, fo{4}.p1]*L/(E*I)

ktz_fea = A(:,7,5)

figure(7)

plot([1,2,3,4],ktz_meas,’bo’,[1,2,3,4],[ktz_fea(1),ktz_fea(2),...

205

ktz_fea(3),ktz_fea(4)],’rs’)

xlabel(’n’,’FontName’,’Times New Roman’, ’FontSize’, fsize,’FontAngle’...

,’italic’)

ylabel(’\kappa_\theta_z’,’FontName’,’Times New Roman’, ’FontSize’, fsize...

,’FontAngle’,’italic’)

set(gca,’xtick’,1:1:4,’FontName’,’Times New Roman’, ’FontSize’, fsize)

C.3 Image Processing

This section includes the MatLab code used for measuring the center shift of the physical

prototypes. These scripts require the installation of the Computer Vision System Toolbox. The

first script reads in a video file, separates it into its frames, and then analyzes the rotation and

translation from one frame to the next, and then saves this data.

% This script reads in a video file, extracts its frames, then compares

% rotation in each frame

clc

clear

scale = 1.0;

%read in a video file

savename = ’n2CH60_v5.mat’;

obj = VideoReader(’n2CH60_v2.avi’);

folder = sprintf(’n2CH60_v2_frames’);

% Save each frame as a grayscale image

ii = 1;

while hasFrame(obj)

img = rgb2gray(readFrame(obj));

filename = [sprintf(’%04d’,ii) ’.jpg’];

fullname = fullfile(folder,filename);

% Write out to a JPEG file (img1.jpg, img2.jpg, etc.)

imwrite(img,fullname)

206

ii = ii+1;

end

tot_frames = ii-1;

fnamorg = [sprintf(’%04d’,1) ’.jpg’];

full_org = fullfile(folder,fnamorg);

original = imread(full_org);

x = zeros(tot_frames-1,3);

%calibrate distances by grabbing two points, and the center

imshow(original)

[x1,y1] = ginput(3);

dist = sqrt((x1(1)-x1(2))^2+(y1(1)-y1(2))^2);

%multiply by this number to convert pixel distance to inches

inch_convert = .2/dist;

trans = zeros(tot_frames-1,4);

options = optimoptions(’fminunc’, ’algorithm’, ’quasi-newton’, ’TolX’, ...

1, ’TolFun’, 1);

for R = 2:tot_frames

fnamdist = [sprintf(’%04d’,R) ’.jpg’];

full_dist = fullfile(folder,fnamdist);

distorted = imread(full_dist);

%detect features in both images

ptsOriginal = detectSURFFeatures(original);

ptsDistorted = detectSURFFeatures(distorted);

%extract feature descriptors

[featuresOriginal, validPtsOriginal] = extractFeatures(original, ...

ptsOriginal);

[featuresDistorted, validPtsDistorted] = extractFeatures(distorted,...

ptsDistorted);

%Match the features using their descriptors

indexPairs = matchFeatures(featuresOriginal, featuresDistorted);

207

%retrieve locations of corresponding points for each image

matchedOriginal = validPtsOriginal(indexPairs(:,1));

matchedDistorted = validPtsDistorted(indexPairs(:,2));

% %estimate the transform from one image to the other

[tform, inlierDistorted, inlierOriginal] = estimateGeometricTransform(...

matchedDistorted, matchedOriginal, ’similarity’);

%solve for scale and angle. tx and ty are x and y translations (center

%shift!)

% Let sc = scale*cos(theta)

% Let ss = scale*sin(theta)

% Then, Tinv = [sc -ss 0;

% ss sc 0;

% tx ty 1]

% where tx and ty are x and y translations, respectively.

Tinv = tform.invert.T;

ss = Tinv(2,1);

sc = Tinv(1,1);

tx = Tinv(3,1);

ty = Tinv(3,2);

trans(R-1,3) = sqrt(ss*ss + sc*sc); %scale

trans(R-1,4) = atan2(ss,sc)*180/pi; %theta

if R == 2

trans(R-1,1) = (tx+x1(3)*cos(trans(R-1,4)*pi/180)+y1(3)*...

sin(trans(R-1,4)*pi/180));

trans(R-1,2) = (ty+y1(3)*cos(trans(R-1,4)*pi/180)-x1(3)*...

sin(trans(R-1,4)*pi/180));

else

trans(R-1,1) = (tx+trans(R-2,1)*cos(trans(R-1,4)*pi/180)+...

trans(R-2,2)*sin(trans(R-1,4)*pi/180));

trans(R-1,2) = (ty+trans(R-2,2)*cos(trans(R-1,4)*pi/180)-...

208

trans(R-2,1)*sin(trans(R-1,4)*pi/180));

end

original = distorted;

end

trans(:,1:2) = trans(:,1:2).*inch_convert;

save(savename,’trans’, ’-mat’)

Once the above script has been run, the following script analyzes the translation and rotation data

and plots it with other data.

clc

clear

num = 4;

trans = cell(1,num);

fsize = 20; %size of font in figures

textfsize = 16;

infile1 = sprintf(’n1CH_v2.mat’);

fullname1 = fullfile(’J:’,’Image_Processing’,infile1);

infile2 = sprintf(’n2CH_v2.mat’);

fullname2 = fullfile(’J:’,’Image_Processing’,infile2);

len = 7;

fullname3 = fullfile(’J:’,’Image_Processing’,’n2CH30_v2.mat’);

fullname4 = fullfile(’J:’,’Image_Processing’,’n2CH60_v2.mat’);

names = {fullname1, fullname2, fullname3, fullname4};

%files for comparison are in columns dx,dy,dz,theta

compare_in = sprintf(’CH_slender_60.mat’);

full_compare = fullfile(’J:’,’Compound_Flexures’,’Matlab_Analysis’,...

compare_in);

compare = importdata(full_compare);

cs_compare = (compare(:,1,:).^2+compare(:,2,:).^2).^.5;

cs_angle = compare(:,4,:)*180/pi;

209

for R = 1:num

trans{R} = importdata(names{R});

end

x_abs = cell(1,num);

y_abs = cell(1,num);

theta_abs = cell(1,num);

cs = cell(1,num);

remove = cell(1,num);

for R = 1:num

x_abs{R} = trans{R}(:,1)-trans{R}(1,1);

y_abs{R} = trans{R}(:,2)-trans{R}(1,2);

theta_abs{R} = trans{R}(:,4);

cs{R} = zeros(size(trans{R}(:,1)));

end

for S = 1:num

for R = 2:length(trans{S}(:,1))

theta_abs{S}(R) = theta_abs{S}(R-1)+trans{S}(R,4);

cs{S}(R) = sqrt(x_abs{S}(R).^2+y_abs{S}(R).^2);

end

end

figure(1)

hold on

plot(compare(:,1,1)/len,compare(:,2,1)/len)

for R = 1:num

plot(x_abs{R}./len,-y_abs{R}./len)

end

legend(’FEA’,’n=1’,’n=2’,’n=2 30’, ’n=2 60’)

figure(2)

hold on

210

plot(cs_angle(:,1),cs_compare(:,1)/len, ’bo’)

plot(cs_angle(:,2),cs_compare(:,2)/len, ’ro’)

sym = {’b-’, ’r--’, ’b-.’, ’k:’};

for R = 1:num

plot([0; -theta_abs{R}],[0; cs{R}./len], sym{R})

end

legend(’FEA \it n\rm = 1’,’FEA \it n\rm = 2’,’\it n\rm = 1’,...

’\it n\rm = 2’,’\it n\rm = 2, 15{\circ}’, ’\it n\rm = 2, 30{\circ}’...

, ’location’, ’Best’)

xlabel(’Rotation, degrees’,’FontName’,’Times New Roman’, ’FontSize’, fsize)

ylabel(’\delta/L’,’FontName’,’Times New Roman’, ’FontSize’, fsize,...

’FontAngle’,’italic’)

set(gca,’xtick’,0:15:75,’ytick’,0:0.015:0.045,’FontName’,...

’Times New Roman’, ’FontSize’, fsize)

xmin = 0;

xmax = 75;

ymin = 0;

ymax = 0.045;

axis([xmin xmax ymin ymax])

grid on

211

APPENDIX D. CODES AND SCRIPTS USED IN STATIC BALANCING OF A COM-

POUND LATTICE-FLEXURED CAFP

This appendix references codes and scripts used in Chapter 7. In some of the ANSYS

scripts, the ellipses (. . .) are used to indicate that the command continues on the next line. How-

ever, . . . is not a valid ANSYS command. All ellipses should be removed from the file and the

commands consolidated in a text editor so they are all on one line. This will enable the script to

run correctly. Matlab scripts, however, should need no such cleanup.

D.1 Determining Load-Dependent Stiffness

The first step in determining the load-dependent stiffness was gathering lots of data, which

was best accomplished by automatically analyzing lots and lots of flexures. This script iterates

through one hundred geomtries for each lattice type, which are in turn analyzed at different load-

ings.

% This script sends lattice parameters to an FEA script

clc

clear

n = 1:1:10; %number of lattice cells

thk = 1:1:10; %thickness in hundredths of an inch

nlen = length(n);

tlen = length(thk);

type = ’v’; %may be x or v

filename = ’CAFP_lattice_auto.txt’;

fullname = fullfile(’J:’,’SB_Lattice’,filename);

for R = 1:nlen

for S = 2:tlen

213

command = [’"C:\Program Files\ANSYS Inc\v150\ANSYS\bin\winx64\’...

’ansys150.exe" -p aa_r -dir "C:\ANSYS" -j shredder -s ’...

’read -l en-us -nn ’ num2str(n(R)) ’ -thk ’ num2str(thk(S))...

’ -type ’ type ’ -b -i ’ fullname ’ -o "C:\ANSYS\file3.out"’];

system([’SET KMP_STACKSIZE=2048k & ’ command])

end

end

The above Matlab script instructs ANSYS to execute the following file, using the arguments

passed in by Matlab. This script outputs a bunch of results files that contain the load-dependent

stiffness bahavior of a CAFP composed of lattice flexures of the prescribed geometry.

!This script buils a CAFP with lattice flexures. It requires

!the files x_lat.mac and v_lat.mac in the same directory

!also, change the /cwd command to the directory where this

! file, x_lat.mac, and v_lat.mac are stored.

/cwd, ’C:\ANSYS’

finish

!/clear

!Units in, lbf, psi

!**********************Set parameters *****************

pi = acos(-1) !pi

len = 2. !length of flexible segments

cor = len*sin(pi/4) !x and y coordinates

!thk = 4

!type = ’x’!may be type x or v

!nn = 3.

thk = thk*.01 !*.83 !thickness of compliant members

n = nn !number of lattice cells along length

r = 0.02

214

wid = .5 !total width of flexure

b = wid-thk !center-to-center distance

I_l = thk**4/12

I_r = I_l

L1b = (len/(2*n))/b

bigK = 2.25*thk**4/16

eta = thk/(thk+b)

mod = 1.61e7 !modulus of titanium

!mod = 320000. !modulus of ABS-M30

nu = .34

ang = 45 !20 degrees of rotation

ang = ang*pi/180

/prep7

!****************Select element types ******************

et,1,beam188

!section 1 is for the lattice elements

sectype,1,beam,rect

secdata,thk,thk

sectype,2,beam,rect

secdata,thk*3,thk*3

sectype,3,beam,csolid

secdata,r,,,

et,2,mpc184

keyopt,2,1,1

keyopt,2,2,1

mptemp

mptemp,1,0

mpdata,ex,1,,mod

mpdata,prxy,1,,nu

nlgeom,1

215

!***************Define geometry*********************

!define keypoints

k,1,0,0,b+.05

k,2,0,0,.05

!build a lattice flexure anchored to KPs 1 and 2 with n divisions and

! alpha angle

%type%_lat,1,2,n,len,45

k,,0,cor,-.05

k,,0,cor,-.05-b

*get,maxkp,kp,,num,maxd

%type%_lat,maxkp-1,maxkp,n,len,-45

*get,maxkp,kp,,num,maxd

ksel,s,loc,y,cor

*get,maxl,line,,num,maxd !get the max line defined

!******************Mesh geometry ******************************

!lsel,s,line,,1,maxl-5 !selects lines for flexible members

!latt,MAT,REAL,TYPE,ESYS,KB,KE,SECNUM

!use secnum = 3 for round and 1 for square

esize,,20

latt,1,,1,,,,1 !

lmesh,all

type,2

*get,topend,kp,,num,max

ksel,s,kp,,topend

nslk,s

*get,top1,node,0,num,max

allsel, all

ksel,s,kp,,topend-1

nslk,s

*get,top2,node,0,num,max

216

allsel, all

ksel,s,kp,,topend-2

nslk,s

*get,top3,node,0,num,max

allsel, all

ksel,s,kp,,topend-3

nslk,s

*get,top4,node,0,num,max

allsel, all

n,,cor/2,cor/2

*get,end,node,,num,maxd

allsel, all

!create a top section with a point for applying loads

e,end,top1

e,end,top2

e,end,top3

e,end,top4

ksel,s,kp,,2

nslk,s

*get,base1,node,0,num,max

allsel, all

ksel,s,kp,,maxkp

nslk,s

*get,base2,node,0,num,max

allsel, all

ksel,s,kp,,maxkp-1

nslk,s

*get,base3,node,0,num,max

allsel, all

e,1,base1

217

e,1,base2

e,1,base3

allsel,all

!displays mechanism and depicts relative size and shape of beam elements

/ESHAPE,1

/EFACET,1

/RATIO,1,1,1

/CFORMAT,32,0

/REPLOT

!***************Calculate EI_eff**********************

!Used to non-dimensionalize loads

*if,type,eq,’x’,then

!use evaluation of EI_eff for x-type lattice flexures

EI_eff = 2*mod*(I_r+(2*I_l*L1b*(L1b**2+.25)**.5)/...

((1+nu)*I_l/bigK+2*L1b**2))

*else

!use evaluation of EI_eff for v-type lattice flexures

EI_eff = mod*(2*I_r+(I_l*L1b*(L1b**2+1.0)**.5)/...

(2*(1+nu)*I_l/bigK+L1b**2))

*endif

!******************Set loop parameters*********************

Vstart = -8.0

Vend = 8.0

Vstep = 1. !Increments for V load

Hstart = -6.0

Hend = 6.0

Hstep = 2.0 !Step value for H curves

steps = 3 !number of load steps being used in dk *do loop

lstep = 3 !number of steps when applying force load

array_len = (Vend-Vstart)/Vstep+1

218

*dim,kappa,array,array_len,1,1

*dim,nu_load,array,array_len,1,1

*dim,eta_load,array,array_len,1,1

angEnd = 1*pi/180 !degrees of rotation

!******************Start load loop*********************

/SOLU

!changeH = 0.0

Hindex = 1

!Iterate through values of non-dimensional horizontal load

*DO,changeH,Hstart,Hend,Hstep

!Convert dimensionless horizontal force to force in pounds

H = (changeH*EI_eff)/(len**2)

index = 1

! changeV=0.0

!Iterate through values of non-dimensional vertical load

*DO,changeV,Vstart,Vend,Vstep

!Convert dimensionless horizontal force to force in pounds

V = (changeV*EI_eff)/(len**2)

!fix base of flexure in all DOFs

d,1,all,0

d,end,rotz,0

allsel,all

*do,i,1,lstep,1

!apply horizontal load on center of cross-axis flexural pivot

f,end,fx,H*i/lstep

!apply vertical load on center of cross-axis flexural pivot

f,end,fy,V*i/lstep

lswrite,i

*enddo

*DO,i,1,steps,1

219

d,end,rotz,angEnd*i/steps

lswrite,i+lstep

*ENDDO

finish

/SOLU

LSSOLVE,1,steps+lstep,1 !Solve all load steps

FINISH

/post26

!Define variables

numvar,20

rforce,3,end,m,z,wrench

NSOL,2,end,rot,z,rot

prvar,rot,wrench

!divide torque by rotation and call resulting variable stiffness

quot,4,3,2,,stiff ,,,1,1

PRVAR,stiff

!get stiffness value at final load step

*get,stiffness,vari,4,rtime,steps+lstep

!convert to dimensionless stiffness

kappa(index) = stiffness*len/EI_eff

nu_load(index) = changeV

eta_load(index) = changeH

index = index+1

FINISH

/solu

fdele,all,all

ddele,all,all

dkdele,all,all

*ENDDO

*CFOPEN,results_H%Hindex%_n%n%_t%thk/0.01%,txt,,

220

*VWRITE,eta_load(1,1),nu_load(1,1),kappa(1,1)

(F16.8, F16.8, F16.8)

*CFCLOS

Hindex = Hindex+1

*ENDDO

FINISH

The above ANSYS script references x lat.mac and v lat.mac, which are included in Ap-

pendix E.

Once the data on load-dependent stiffness has been collected, it must be checked visually

and saved into an easily accessed format. This is accomplished with the following Matlab script.

clc

clear

format short;

close all;

numfiles = 7;

numns = 10;

numts = 10;

len = 2.;

wid = 0.5;

set = 2; %use 1 for X type and 2 for V type

filename = cell(1,numfiles);

fullname = cell(1,numfiles);

fsize = 18; %size of font in figures

textfsize = 16;

importdataset = cell(1,numfiles);

dataset = cell(numns,numts);

%This code block loads files and creates the cell array dataset

%To save time, save dataset in a separate file and comment this block on

%subsequent runs

221

for N = 1:numns

for T = 1:numts

for R = 1:numfiles

filename{R} = sprintf(’results_H%d_n%d_t%d.txt’,R,N,T);

switch set

case 1

fullname{R} = fullfile(’J:’,’SB_Lattice’,’X_type’,...

filename{R});

case 2

fullname{R} = fullfile(’J:’,’SB_Lattice’,’V_type’,...

filename{R});

end

importdataset{R} = load(fullname{R});

end

dataset{N,T} = cat(3,importdataset{1},importdataset{2});

for R = 3:numfiles

dataset{N,T} = cat(3,dataset{N,T},importdataset{R});

end

end

end

switch set

case 1

save(fullfile(’J:’,’SB_Lattice’,’X_type’,’X_data.mat’),’dataset’);

case 2

save(fullfile(’J:’,’SB_Lattice’,’V_type’,’V_data.mat’),’dataset’);

end

%If the dataset cell array from the block above has been saved, uncomment

%this code block to run faster

switch set

case 1

222

load(fullfile(’J:’,’SB_Lattice’,’X_type’,’X_data.mat’));

case 2

load(fullfile(’J:’,’SB_Lattice’,’V_type’,’V_data.mat’));

end

%dataset has columns of eta, nu, and kappa (horizontal load, vertical load,

%and stiffness, all dimensionless

linewidth = 1; %linewidth of graphed lines

%% Creating graph and setting graph properties

for N = 6:7; %numns

for T = 8:9; %numts

eta = dataset{N,T}(:,1,:);

nu = dataset{N,T}(:,2,:);

kappa = dataset{N,T}(:,3,:);

figure()

b = wid-T*0.01;

l1b = len/(2*N)/b;

little_eta = T*0.01/(T*0.01+b);

hold on

%Change font size of axis labels and title

fontsize = 16; %Font size for labels

%Max and min X and Y values to graph

xmin = min(nu(:,1,1));

xmax = max(nu(:,1,1));

ymin = -6;

ymax = 6;

%Set bounds of graph that will be displayed

axis([xmin xmax ymin ymax]);

%Set major and minor gridline widths

majorgridlinewidth = 2;

minorgridlinewidth = 1;

223

%Create tick marks on 0 axes in center of graph

ax = gca;

ax.XColor = ’k’;

ax.YColor = ’k’;

ax.FontSize = fontsize;

ax.FontName = ’Times New Roman’;

ax.XTick = xmin:2:xmax;

ax.YTick = ymin:1:ymax;

ax.XAxisLocation = ’origin’;

ax.YAxisLocation = ’origin’;

ax.XGrid = ’on’;

ax.YGrid = ’on’;

xlabh = get(gca,’XLabel’);

xlabh.Position = [0 ymin 0];

ylabh = get(gca,’YLabel’);

ylabh.Position = [xmin 0 0];

xlabel(’\nu’,’FontSize’,fontsize,’FontName’,’Times New Roman’,...

’FontAngle’,’italic’)

ylabel(’\kappa’,’FontSize’,fontsize,’FontName’,’Times New Roman’...

,’FontAngle’,’italic’)

switch set

case 1

str = [’\rm X-type lattice with \it L_1/b \rm =’,...

num2str(l1b),’ and \it \eta \rm = ’,...

num2str(little_eta)];

title(str,’FontSize’,fontsize,’FontName’,’Times New Roman’)

case 2

str = [’\rm LD V-type lattice with \it L_1/b \rm =’,...

num2str(l1b),’ and \it \eta \rm = ’,...

num2str(little_eta)];

224

title(str,’FontSize’,fontsize,’FontName’,’Times New Roman’)

end

%This loop plots all the data from the FEA results.

place = 0;

for i = 1:numfiles

plot(dataset{N,T}(:,2,i),dataset{N,T}(:,3,i),’--.’,...

’LineWidth’,linewidth)

str = [’\eta = ’,num2str(dataset{N,T}(1,1,i))];

text(dataset{N,T}(3+place,2,i),dataset{N,T}(3+place,3,i),...

str,’FontSize’,fontsize,’FontName’,’Times New Roman’);

place = place+1;

end

end

end

Finally, a surface fit for the data is found using a non-linear regression.

clc

clear

set = 1; %use 1 for X-type and 2 for V-type

len = 2.;

wid = 0.5;

switch set

case 1

load(fullfile(’J:’,’SB_Lattice’,’X_type’,’X_data.mat’));

case 2

load(fullfile(’J:’,’SB_Lattice’,’V_type’,’V_data.mat’));

end

[N, T] = size(dataset);

[etas, nums, nus] = size(dataset{1,1});

vec_len = N*T*nus*etas;

225

Y = zeros(vec_len, 1);

X = zeros(vec_len,5);

index = 1;

for n = 1:N

for t = 1:T

for v = 1:nus

for h = 1:etas

b = wid-t*0.01;

l1b = len/(2*n)/b;

little_eta = t*0.01/(t*0.01+b);

Y(index) = dataset{n,t}(h,3,v);

X(index,1) = dataset{n,t}(h,1,v); %horizontal load

X(index,2) = dataset{n,t}(h,2,v); %vertical load

X(index,3) = l1b; %L1 over b

X(index,4) = little_eta; %aspect ratio

X(index,5) = 1; %constant

index = index+1;

end

end

end

end

beta = ones(1, 5);

modelfun = @(beta,X) X(:,2).*beta(1)+X(:,3).*beta(2)+X(:,5).*beta(3)+...

X(:,1).^2.*beta(4)+X(:,2).^2.*beta(5);

[BETA, R, J, COVB, MSE] = nlinfit(X,Y,modelfun,beta);

BETA

MSE

% Find an R^2 value for this non-linear regression

SS_reg = sum((modelfun(BETA,X)-Y).^2);

SS_tot = sum(((Y-mean(Y)).^2));

226

R_sqr = 1-SS_reg/SS_tot

switch set

case 1

save(fullfile(’J:’,’SB_Lattice’,’X_type’,’beta_X.mat’),’BETA’);

case 2

save(fullfile(’J:’,’SB_Lattice’,’V_type’,’beta_V.mat’),’BETA’);

end

D.2 System Design

Now that the load-dependent behavior of the lattice-flexured CAFP is known, we can de-

sign an ideal static balancing system for it. The following Matlab script explores the design space

for balancing lattice-flexured CAFPs for given geometries and limits on P.

clc

clear

type = 2; %use 1 for X-type and 2 for V-type

% Pi group values

Pi1 = 0.49; %k_t/Pd

Pi2 = 0.8581; %k_l*d/P

%material parameters

E = 1.61e7;

nu = 0.342;

%lattice parameters

len = 3.0;

n = 5;

t = 0.04;

wid = 1.0;

b = wid-t;

L1b = len/(2*n)/b;

little_eta = t/(t+b);

227

I_l = t^4/12;

I_r = I_l;

L1 = len/n;

bigK = 2.25*t^4/16;

%stiffness without applied loads

switch type

case 1

%use evaluation of EI_eff for x-type lattice flexures

K_free = 2*E*(I_r+(2*I_l*L1b*(L1b^2+.25)^.5)/((1+nu)*I_l/bigK+2*...

L1b^2))/len*2.154;

case 2

%use evaluation of EI_eff for v-type lattice flexures

K_free = E*(2*I_r+(I_l*L1b*(L1b^2+1.0)^.5)/(2*(1+nu)*I_l/bigK+...

L1b^2))/len*2.154;

end

switch type

case 1

%use evaluation of EI_eff for x-type lattice flexures

EI_eff = 2*2*E*(I_r+(2*I_l*L1b*(L1b^2+.25)^.5)/((1+nu)*I_l/bigK+2*...

L1b^2));

load(fullfile(’J:’,’SB_Lattice’,’X_type’,’beta_X.mat’));

case 2

%use evaluation of EI_eff for v-type lattice flexures

EI_eff = 2*E*(2*I_r+(I_l*L1b*(L1b^2+1.0)^.5)/(2*(1+nu)*I_l/bigK+...

L1b^2));

load(fullfile(’J:’,’SB_Lattice’,’V_type’,’beta_V.mat’));

end

% kappa_free = K_free*len/EI_eff

P = 0:0.0025:8;

P_nd = -P.*len^2/EI_eff; %calculate non-dimensional compressive load P

228

%dimensionless stiffness due to loads and lattice geometry

stiff_fun = @(beta,X) X(2).*beta(1)+X(3).*beta(2)+X(4).*beta(3)+...

X(1).^2.*beta(4)+X(2).^2.*beta(5);

kappa = zeros(1,length(P));

for R = 1:length(P)

X = [0, P_nd(R), L1b, 1];

kappa(R) = stiff_fun(BETA,X);

end

K = kappa*EI_eff/len;

d = K./(P.*Pi1);

K_l = Pi2.*P./d;

fontsize = 18;

figure(1)

plot(P,K)

grid on

ax = gca;

ax.XColor = ’k’;

ax.YColor = ’k’;

ax.FontSize = fontsize;

ax.FontName = ’Times New Roman’;

ax.XTick = min(P):1:max(P);

ax.YTick = floor(min(K)):1:ceil(max(K));

ax.XAxisLocation = ’origin’;

ax.YAxisLocation = ’origin’;

ax.XGrid = ’on’;

ax.YGrid = ’on’;

xlabel(’\it P\rm, lbs’,’FontSize’,fontsize,’FontName’,’Times New Roman’,...

’FontAngle’,’italic’)

ylabel(’\it k_{\theta}\rm, in-lbs’,’FontSize’,fontsize,’FontName’,...

’Times New Roman’,’FontAngle’,’italic’)

229

title(’\rmLD stiffness \itk_{\theta}\rm as function of \itP’)

filename = fullfile(’J:’,’SB_lattice_paper’,’k_theta’);

set(gcf, ’PaperPositionMode’, ’auto’)

saveas(gcf,filename,’eps2c’)

figure(2)

plot(P,K_l)

grid on

ax = gca;

ax.XColor = ’k’;

ax.YColor = ’k’;

ax.FontSize = fontsize;

ax.FontName = ’Times New Roman’;

ax.XTick = min(P):1:max(P);

ax.YTick = floor(min(K_l)):0.25:ceil(max(K_l));

ax.XAxisLocation = ’origin’;

ax.YAxisLocation = ’origin’;

ax.XGrid = ’on’;

ax.YGrid = ’on’;

xlabel(’\it P\rm, lbs’,’FontSize’,fontsize,’FontName’,’Times New Roman’,...

’FontAngle’,’italic’)

ylabel(’\it k_{l}\rm, lbs/in’,’FontSize’,fontsize,’FontName’,...

’Times New Roman’,’FontAngle’,’italic’)

title(’\rm Balancer linear stiffness \itk_l\rm as function of \itP’)

filename = fullfile(’J:’,’SB_lattice_paper’,’k_l’);

set(gcf, ’PaperPositionMode’, ’auto’)

saveas(gcf,filename,’eps2c’)

figure(3)

plot(P,d)

grid on

ax = gca;

230

ax.XColor = ’k’;

ax.YColor = ’k’;

ax.FontSize = fontsize;

ax.FontName = ’Times New Roman’;

ax.XTick = min(P):1:max(P);

ax.YTick = 0:2:20;

axis([min(P), max(P), 0, 20]);

ax.XAxisLocation = ’origin’;

ax.YAxisLocation = ’origin’;

ax.XGrid = ’on’;

ax.YGrid = ’on’;

xlabel(’\it P\rm, lbs’,’FontSize’,fontsize,’FontName’,’Times New Roman’,...

’FontAngle’,’italic’)

ylabel(’\it d\rm, in’,’FontSize’,fontsize,’FontName’,’Times New Roman’,...

’FontAngle’,’italic’)

title(’\rmDistance \itd\rm as function of \itP’)

filename = fullfile(’J:’,’SB_lattice_paper’,’d’);

set(gcf, ’PaperPositionMode’, ’auto’)

saveas(gcf,filename,’eps2c’)

% The most compact joint results when P is as large as practical

load = P(length(P))

dist = d(length(P))

K_lin = K_l(length(P))

K_t_prime = stiff_fun(BETA,[0,0,L1b,1])

K_t = K(length(P))

D.3 Balancer Design

Now that we know what the stiffness of the balancer should be at a chosen preload, we

can move on to the design of the balancer itself. the following Matlab script performs a tiered

optimization strategy. First an optimal balancer design is found using gradient based methods and

231

a pseudo-rigid-body model of the proposed balancer. Then a finite element model is used to do a

second pass at the optimization routine. The second routine uses the result of the first as its starting

point. The files nonlcon.m and fit .m are included following this script, and are necessary for the

optimization.

% This script calculates geometric parameters for a printable balancer

% based on the constant force mechanism by Kyler Tolman.

% We use the PRBM to find parameters that will then be refined by an FEA

% model.

clc

clear

P_targ = 8.0;

k_l_targ = 1.7228;

smax = 60.e3; %max stress (psi) allowed

E = 1.61e7; %modulus of titanium

K_theta = 2.56;

gamma = 0.85;

% E = 480000.; % psi

bs = [0.11811, 0.11811];

hs = [0.023622, 0.03937];

lens = [1.89, 1.83]*2;

getrs = @(lens)gamma.*lens;

getr2 = @(ls)gamma.*ls(1);

getr3 = @(ls)gamma.*ls(2);

rs = getrs(lens);

t_nauts = [asin(-getr3(ls)*sin(255.5*pi/180)/getr2(ls))*180/pi, 255.5];

thet_nauts = t_nauts.*pi/180;

stiff = @(b,h,l)2*gamma*K_theta*E*b*h^3/12/l;

get_K1 = @(bs, hs, lens)2*stiff(bs(1),hs(1),lens(1));

get_K2 = @(bs, hs, lens)4*stiff(bs(2),hs(2),lens(2));

% Ks = [get_K1(bs, hs, lens), get_K2(bs, hs, lens)];

232

gett2 = @(theta, ls) asin(-getr3(ls)*sin(theta)/getr2(ls));

% F_out = @(thetas, Ks, rs)...

F_out = @(thetas, bs, hs, ls, t30)...

2*(get_K1(bs, hs, ls).*(thetas(1)-gett2(t30,ls))*(-cos(thetas(2))/...

(getr2(ls)*sin(thetas(1)-thetas(2))))+...

get_K2(bs, hs, ls).*(thetas(2)-t30)*(cos(thetas(1))/(getr3(ls)*...

sin(thetas(1)-thetas(2)))));

dist = @(t3, ls, t30) getr2(ls)*(cos(gett2(t3, ls))-cos(gett2(t30,ls)))+...

getr3(ls)*(cos(t3)-cos(t30));

%**********define functions for taking the derivative of force

dt2dt3 = @(t3, ls) -getr3(ls)*cos(t3)/(getr2(ls)*sqrt(1-getr3(ls)^2*...

sin(t3)^2/getr2(ls)^2));

dxdt3 = @(t3, ls) -getr2(ls)*sin(gett2(t3, ls))*dt2dt3(t3, ls)-...

getr3(ls)*sin(t3);

dFdt3 = @(t3, bs, hs, ls, t30) 2*(get_K1(bs, hs, ls)*(-dt2dt3(t3, ls)*...

cos(t3)/(getr2(ls)*sin(gett2(t3, ls)-t3))+...

(gett2(t3, ls)-gett2(t30,ls))*(sin(t3)/(getr2(ls)*...

sin(gett2(t3, ls)-t3))+cos(t3)*cos(gett2(t3, ls)-t3)*...

(dt2dt3(t3, ls)-1)/(getr2(ls)*sin(gett2(t3, ls)-t3)^2)))+...

get_K2(bs, hs, ls)*(cos(gett2(t3, ls))/(getr3(ls)*...

sin(gett2(t3, ls)-t3))+(t3-t30)*(-sin(gett2(t3, ls))*dt2dt3(t3, ls)/...

(getr3(ls)*sin(gett2(t3, ls)-t3))-...

cos(gett2(t3, ls))*cos(gett2(t3, ls)-t3)/(getr3(ls)*...

sin(gett2(t3, ls)-t3)^2)*(dt2dt3(t3, ls)-1))));

dFdx = @(t3, bs, hs, ls, t30) dFdt3(t3, bs, hs, ls, t30)/dxdt3(t3, ls);

%**

%check with numeric derivative

theta_3 = thet_nauts(2):pi/1000:thet_nauts(2)+pi/6;

delx = zeros(1,length(theta_3));

Force = zeros(1,length(theta_3));

233

theta_2 = zeros(1,length(theta_3));

for R = 1:length(delx)

theta_2(R) = gett2(theta_3(R), lens);

delx(R) = dist(theta_3(R), lens, thet_nauts(2));

Force(R) = F_out([theta_2(R), theta_3(R)], bs, hs, lens, ...

thet_nauts(2));

end

dtheta2 = zeros(length(theta_3),1);

dx = dtheta2;

dF = dtheta2;

ddFdx = dtheta2;

num_dtheta2 = dtheta2;

num_dx = dtheta2;

num_dF = dtheta2;

num_dFdx = dtheta2;

for R = 1:length(theta_3)-1

dtheta2(R) = dt2dt3(theta_3(R), lens);

dx(R) = dxdt3(theta_3(R), lens);

dF(R) = dFdt3(theta_3(R), bs, hs, lens, thet_nauts(2));

ddFdx(R) = dFdx(theta_3(R), bs, hs, lens, thet_nauts(2));

num_dtheta2(R) = (theta_2(R+1)-theta_2(R))/(theta_3(R+1)-theta_3(R));

num_dx(R) = (delx(R+1)-delx(R))/(theta_3(R+1)-theta_3(R));

num_dF(R) = (Force(R+1)-Force(R))/(theta_3(R+1)-theta_3(R));

num_dFdx(R) = (Force(R+1)-Force(R))/(delx(R+1)-delx(R));

end

errt2 = mean((dtheta2-num_dtheta2).^2)^.5;

errx = mean((dx-num_dx).^2)^.5;

errF = mean((dF-num_dF).^2)^.5;

errdFdx = mean((ddFdx-num_dFdx).^2)^.5;

%**

234

% fitness = @([t3, b1, b2, h1, h2, l1, l2, t03])...

fitness1 = @(X)...

(F_out([gett2(X(1), [X(6), X(7)]), X(1)], [X(2), X(3)], [X(4), ...

X(5)], [X(6), X(7)], X(8))/P_targ-1)^2+...

(dFdx(X(1), [X(2), X(3)], [X(4), X(5)], [X(6), X(7)], X(8))/...

k_l_targ-1)^2;

%this fitness1 function seems to work pretty well, but I would like a

%nearly constant stiffness for some range. So I will add a term to the

%fitness function that computes the numeric derivative of dfdx as part of

%the fitness function

dh = 0.01;

fitness2 = @(X) 0.25*((dFdx(X(1)+dh, [X(2), X(3)], [X(4), X(5)], [X(6),...

X(7)], X(8))-...

dFdx(X(1)-dh, [X(2), X(3)], [X(4), X(5)], [X(6), X(7)], X(8)))/...

(2*dh))^2;

% It seems that allowing the PRBM to also consider stress allowable is

% necessary. The FEA model is too slow and cumbersome; it doesn’t handle

% the stress condition very well.

NONLCON = @(X)nonlcon(X,E,gamma,K_theta,smax);

fitness = @(X)fitness1(X)+fitness2(X);

X0 = [4.7169 0.7 0.2 0.04 0.04 4.01 3.9 4.59];

LB = [thet_nauts(2), 0.10, 0.01, 0.04, 0.04, 1.0, 1.0, 225*pi/180];

UB = [thet_nauts(2)+pi/6, 1.0, 0.70, 0.06, 0.06, 6.0, 6.0, 3*pi/2];

options = optimoptions(’fmincon’);

options.TolX = 1.0e-12;

[X, FVAL] = fmincon(fitness, X0,[],[],[],[],LB,UB,NONLCON,options);

X;

FVAL;

t3_opt = X(1);

bs_opt = [X(2) X(3)];

235

hs_opt = [X(4) X(5)];

ls_opt = [X(6) X(7)];

t30_opt = X(8);

% theta_3 = thet_nauts(2):pi/1000:thet_nauts(2)+pi/6;

% delx = zeros(1,length(theta_3));

% Force = zeros(1,length(theta_3));

% theta_2 = zeros(1,length(theta_3));

for R = 1:length(delx)

theta_2(R) = gett2(theta_3(R), ls_opt);

delx(R) = dist(theta_3(R), ls_opt, t30_opt);

Force(R) = F_out([theta_2(R), theta_3(R)], bs_opt, hs_opt, ls_opt,...

t30_opt);

end

P_out = F_out([gett2(X(1), ls_opt), X(1)], bs_opt, hs_opt, ls_opt,...

t30_opt);

dFdX_out = dFdx(X(1), bs_opt, hs_opt, ls_opt, t30_opt);

fontsize = 18;

figure(1)

hold on

plot(delx,Force, ’b-’, dist(X(1), ls_opt, t30_opt),...

F_out([gett2(X(1), ls_opt), X(1)], bs_opt, hs_opt, ls_opt, ...

t30_opt), ’ro’)

axis([-0.6, 0.6, 2, P_targ+6])

grid on

ax = gca;

ax.XColor = ’k’;

ax.YColor = ’k’;

ax.FontSize = fontsize;

ax.FontName = ’Times New Roman’;

% ax.XTick = min(P):1:max(P);

236

% ax.YTick = floor(min(delx)):0.25:ceil(max(K_l));

ax.XAxisLocation = ’origin’;

% ax.YAxisLocation = ’origin’;

ax.XGrid = ’on’;

ax.YGrid = ’on’;

axis([0,0.5,6,10])

xlabel(’\it \deltax\rm, in’,’FontSize’,fontsize,’FontName’,...

’Times New Roman’)

ylabel(’\itP\rm, lbs’,’FontSize’,fontsize,’FontName’,’Times New Roman’)

title(’\rm Balancer Force-Displacement Curve’)

filename = fullfile(’J:’,’SB_lattice_paper’,’bal_opt_ML’);

set(gcf, ’PaperPositionMode’, ’auto’)

saveas(gcf,filename,’eps2c’)

%***

%write physical parameters to file params.txt

fileID = fopen(fullfile(’params_base.txt’),’w’);

fprintf(fileID,’mod = %0.5g\n’,E);

fprintf(fileID,’len1 = %0.5g\n’,ls_opt(1));

fprintf(fileID,’len2 = %0.5g\n’,ls_opt(2));

fprintf(fileID,’b1 = %0.5g\n’,bs_opt(1));

fprintf(fileID,’b2 = %0.5g\n’,bs_opt(2));

fprintf(fileID,’h1 = %0.5g\n’,hs_opt(1));

fprintf(fileID,’h2 = %0.5g\n’,hs_opt(2));

fprintf(fileID,’theta_02 = %0.5g\n’,gett2(t30_opt,ls_opt));

fprintf(fileID,’theta_03 = %0.5g\n’,t30_opt);

fprintf(fileID,’P_targ = %0.5g\n’,P_targ);

fprintf(fileID,’k_l_targ = %0.5g\n’,k_l_targ);

fclose(fileID);

% type params.txt %show file contents

fileID = fopen(fullfile(’params.txt’),’w’);

237

fprintf(fileID,’mod = %0.5g\n’,E);

fprintf(fileID,’len1 = %0.5g\n’,ls_opt(1));

fprintf(fileID,’len2 = %0.5g\n’,ls_opt(2));

fprintf(fileID,’b1 = %0.5g\n’,bs_opt(1));

fprintf(fileID,’b2 = %0.5g\n’,bs_opt(2));

fprintf(fileID,’h1 = %0.5g\n’,hs_opt(1));

fprintf(fileID,’h2 = %0.5g\n’,hs_opt(2));

fprintf(fileID,’theta_02 = %0.5g\n’,gett2(t30_opt,ls_opt));

fprintf(fileID,’theta_03 = %0.5g\n’,t30_opt);

fprintf(fileID,’P_targ = %0.5g\n’,P_targ);

fprintf(fileID,’k_l_targ = %0.5g\n’,k_l_targ);

fclose(fileID);

%***

%run the ansys model with the parameters calculate above

% "C:\Program Files\ANSYS Inc\v150\ANSYS\bin\winx64\ansys150.exe" -p ’...

%’aa_r -np 2 -dir "C:\ANSYS" -j "print_bal" -s read -l en-us -b -i ’...

%’"J:\SB_Lattice\Printable_Balancer\print_bal.txt" -o "C:\ANSYS\file.out"

% command = [’"C:\Program Files\ANSYS Inc\v150\ANSYS\bin\winx64\’...

%’ansys150.exe" -p aa_r -dir "C:\ANSYS" -j shredder -s read -l en-us’...

%’-nn ’ num2str(n(R)) ’ -thk ’ num2str(thk(S)) ’ -type ’ type ’ -b -i ’ ...

%fullname ’ -o "C:\ANSYS\file3.out"’];

command = [’"C:\Program Files\ANSYS Inc\v150\ANSYS\bin\winx64\ansys150’...

’.exe" -p aa_r -np 2 -dir "C:\ANSYS" -j "print_bal_graph" -s read ’...

’-l en-us -b -i "J:\SB_Lattice\Printable_Balancer\print_bal_graph.’...

’txt" -o "C:\ANSYS\file_graph.out"’];

sys = @()system([’SET KMP_STACKSIZE=2048k & ’ command]);

if exist(fullfile(’C:’,’ANSYS’,’print_bal_graph.lock’), ’file’)

delete(fullfile(’C:’,’ANSYS’,’print_bal_graph.lock’))

end

sys();

238

%read the results file and plot the results for comparison

import_data = @()load(fullfile(’J:’,’SB_Lattice’,’Printable_Balancer’,...

’ANS_out.txt’));

% columns are displacement, force, dF/dX, and d^2F/dx^2

data = import_data();

plot(data(:,1),data(:,2),’g:’)

fit_fun2 = @(X) fit_fun(X, P_targ, k_l_targ, E, smax);

X0 = [ls_opt, bs_opt, hs_opt, t30_opt];

% l1, l2, b1, b2, h1, h2, t03

% t3, b1, b2, h1, h2, l1, l2, t03

LB = [LB(6), LB(7), LB(2), LB(3), LB(4), LB(5), LB(8)];

UB = [UB(6), UB(7), UB(2), UB(3), UB(4), UB(5), UB(8)];

options.TypicalX = X0;

options.DiffMinChange = 1.0e-5;

tic

[X, FVAL] = fmincon(fit_fun2, X0,[],[],[],[],LB,UB,[],options);

toc

fileID = fopen(fullfile(’params.txt’),’w’);

fprintf(fileID,’mod = %0.5g\n’,E);

fprintf(fileID,’len1 = %0.5g\n’,X(1));

fprintf(fileID,’len2 = %0.5g\n’,X(2));

fprintf(fileID,’b1 = %0.5g\n’,X(3));

fprintf(fileID,’b2 = %0.5g\n’,X(4));

fprintf(fileID,’h1 = %0.5g\n’,X(5));

fprintf(fileID,’h2 = %0.5g\n’,X(6));

fprintf(fileID,’theta_02 = %0.5g\n’,gett2(X(7),[X(1), X(2)]));

fprintf(fileID,’theta_03 = %0.5g\n’,X(7));

fprintf(fileID,’P_targ = %0.5g\n’,P_targ);

fprintf(fileID,’k_l_targ = %0.5g\n’,k_l_targ);

fclose(fileID);

239

sys();

data = import_data();

plot(data(:,1),data(:,2),’r-.’)

legend(’PRBM’,’Design Point’,’FEA Initial’,’FEA Final’,’FontSize’,...

fontsize,’FontName’,’Times New Roman’,’Location’, ’Best’);

filename = fullfile(’J:’,’SB_lattice_paper’,’printed_bal_opt’);

set(gcf, ’PaperPositionMode’, ’auto’)

saveas(gcf,filename,’eps2c’)

This is the file nonlcon.m, which is used by the optimization routine as a constraint func-

tion.

function [C, Ceq] = nonlcon(X,E,gamma,K_theta,smax)

stiff = @(b,h,l)2*gamma*K_theta*E*b*h^3/12/l;

C = (X(1)-X(8))*stiff(X(3), X(5), X(7))*...

(X(5)/2)/(X(3)*X(5)^3/12)/smax-1;

Ceq = 0;

end

This is the file fit fun.m, which is used by the optimization routine to call an ANSYS script

and return a fitness value for a given design of the balancer.

% This function calls ANSYS to evaluate the fitness of a potential design

% for a balancer spring

function [fitness] = fit_fun(X, P_targ, k_l_targ, E, smax)

gamma = 0.85;

getr2 = @(ls)gamma.*ls(1);

getr3 = @(ls)gamma.*ls(2);

gett2 = @(theta, ls) asin(-getr3(ls)*sin(theta)/getr2(ls));

if exist(fullfile(’C:’,’ANSYS’,’print_bal.lock’), ’file’)

delete(fullfile(’C:’,’ANSYS’,’print_bal.lock’))

end

240

com = @(X) [’"C:\Program Files\ANSYS Inc\v150\ANSYS\bin\winx64\’...

’ansys150.exe" -p aa_r -np 2 -dir "C:\ANSYS" -j "print_bal" -s ’...

’read -l en-us -b -mod ’ num2str(E,’%2.10g’) ’ -len1 ’ num2str(X(1),...

’%2.10g’) ’ -len2 ’ num2str(X(2),’%2.10g’) ’ -b1 ’ num2str(X(3),...

’%2.10g’) ’ -b2 ’ num2str(X(4),’%2.10g’) ’ -h1 ’ num2str(X(5),...

’%2.10g’) ’ -h2 ’ num2str(X(6),’%2.10g’) ’ -theta_02 ’ ...

num2str(gett2(X(7), [X(1),X(2)]),’%2.10g’) ’ -theta_03 ’ ...

num2str(X(7),’%2.10g’) ’ -i "J:\SB_Lattice\Printable_Balancer\’...

’print_bal.txt" -o "C:\ANSYS\file_opt.out"’];

command = com(X);

flag = system([’SET KMP_STACKSIZE=2048k & ’ command]);

data = load(fullfile(’J:’,’SB_Lattice’,’Printable_Balancer’,...

’ANS_out.txt’));

[steps, ~] = size(data);

fit = zeros(steps,1);

max_s = 0;

if flag == 0 || flag == 8

for R = 1:steps

if data(R,5) > max_s

max_s = data(R,5);

end

if max_s < smax

fit(R) = ((data(R,2)/P_targ-1)^2+(data(R,3)/k_l_targ-1)^2+...

data(R,4)^2);

else

fit(R) = ((data(R,2)/P_targ-1)^2+(data(R,3)/k_l_targ-1)^2+...

data(R,4)^2)+max_s/smax;

end

end

fitness = min(fit)

241

else

fitness = 100000

end

The fitness function above invokes an ANSYS script to analyze the design. This script is

included below.

/cwd, ’C:\ANSYS’

!units in meters, Newtons

finish

!/clear

!Units in, lbf, psi

*SET,pi,acos(-1) !pi

/PNUM,KP,1

/PNUM,LINE,1

step = 100 !number of load steps in y

delx = 0.8

!/INPUT,’params’,’txt’,’J:\SB_Lattice\Printable_Balancer\’,, 0

b2 = 2*b2

nu = .34

ndiv = 20

/prep7

mptemp

mptemp,1,0

mpdata,ex,1,,mod

mpdata,prxy,1,,nu

nlgeom,1

et,1,beam188

!use section 1 first beam and section 2 for second beam

sectype,1,beam,rect

secdata,h1,b1,

242

sectype,2,beam,rect

secdata,h2,b2,

et,2,mpc184

keyopt,2,1,1

keyopt,2,2,0

!build geometry

k,1,0,0,0

k,2,len1*cos(theta_02),len1*sin(theta_02)

k,3,len1*cos(theta_02)+len2*cos(theta_03),len1*sin(theta_02)+...

len2*sin(theta_03)

!create compliant segments

lstr,1,2

lstr,2,3

esize,,ndiv

secnum,1

type,1

lsel,s,line,,1,1,

lmesh,all

lsel,s,line,,2,2

secnum,2

lmesh,all

allsel,all

!select a node where we can apply displacements

ksel,s,kp,,1

nslk,s

*get,grnd,node,0,num,max

allsel,all

ksel,s,kp,,2

nslk,s

*get,cntr,node,,num,max

243

allsel,all

ksel,s,kp,,3

nslk,s

*get,output,node,,num,max

allsel,all

!fix the ground node

d,grnd,all,0

d,cntr,rotz,0

d,output,rotz,0,,,uz,ux

d,output,uy,0

*do,i,1,step,1

d,output,ux,delx*i/step

nsubst,4,10,2,

lswrite,i

*enddo

finish

/SOL

allsel,all

LSSOLVE,1,step

FINISH

! Define variables

/post26

numvar,200

NSOL,2,output,u,x,dx

rforce,3,output,f,x,fx

prod,4,3,,,for,,,2.0 !double force to account for symmetry

prvar,dx,fx

deriv,5,4,2,,dfdx

deriv,6,5,2,,d2fdx2

prvar,dx,for,dfdx,d2fdx2

244

*dim,disp,array,step,1,1

*dim,force,array,step,1,1

*dim,dforce,array,step,1,1

*dim,d2force,array,step,1,1

*do,i,1,step,1

*get,dis,vari,2,rtime,i !get force at step i

*get,for,vari,4,rtime,i !get force at step i

*get,dfor,vari,5,rtime,i !get force at step i

*get,d2for,vari,6,rtime,i !get force at step i

disp(i) = dis

force(i) = for

dforce(i) = dfor

d2force(i) = d2for

*enddo

/post1

*dim,stress,array,step,1,1

/REPLOT

SET,FIRST

/PLOPTS,INFO,3

/CONTOUR,ALL,18

/PNUM,MAT,1

/NUMBER,1

*do,i,1,step,1

SET,,,,,,,i !select set number to view

etable,ben_str,smisc,32,37

esort,etab,ben_str,0,0

*GET,max_str,sort,,max

stress(i) = max_str

*enddo

*CFOPEN,J:\SB_Lattice\Printable_Balancer\ANS_out,txt,,

245

*VWRITE,disp(1,1),force(1,1),dforce(1,1),d2force(1,1),stress(1,1)

%18.6G, %18.6G, %18.6G, %18.6G, %18.6G

*CFCLOS

The optimization routine also invokes an ANSYS script called print bal graph.txt. This

script is included below. It is nearly identical to the above script.

/cwd, ’C:\ANSYS’

!units in meters, Newtons

finish

/clear

!Units in, lbf, psi

*SET,pi,acos(-1) !pi

/PNUM,KP,1

/PNUM,LINE,1

step = 100 !number of load steps in y

delx = 0.8

/INPUT,’params’,’txt’,’J:\SB_Lattice\Printable_Balancer\’,, 0

b2 = 2*b2

nu = .34

ndiv = 20

/prep7

mptemp

mptemp,1,0

mpdata,ex,1,,mod

mpdata,prxy,1,,nu

nlgeom,1

et,1,beam188

!use section 1 first beam and section 2 for second beam

sectype,1,beam,rect

secdata,h1,b1,

246

sectype,2,beam,rect

secdata,h2,b2,

et,2,mpc184

keyopt,2,1,1

keyopt,2,2,0

!build geometry

k,1,0,0,0

k,2,len1*cos(theta_02),len1*sin(theta_02)

k,3,len1*cos(theta_02)+len2*cos(theta_03),len1*sin(theta_02)+...

len2*sin(theta_03)

!create compliant segments

lstr,1,2

lstr,2,3

esize,,ndiv

secnum,1

type,1

lsel,s,line,,1,1,

lmesh,all

lsel,s,line,,2,2

secnum,2

lmesh,all

allsel,all

!displays mechanism and depicts relative size and shape of beam elements

/ESHAPE,1

/EFACET,1

/RATIO,1,1,1

/CFORMAT,32,0

/REPLOT

!select a node where we can apply displacements

ksel,s,kp,,1

247

nslk,s

*get,grnd,node,0,num,max

allsel,all

ksel,s,kp,,2

nslk,s

*get,cntr,node,,num,max

allsel,all

ksel,s,kp,,3

nslk,s

*get,output,node,,num,max

allsel,all

!fix the ground node

d,grnd,all,0

d,cntr,rotz,0

d,output,rotz,0,,,uz,ux

d,output,uy,0

*do,i,1,step,1

d,output,ux,delx*i/step

nsubst,4,10,2,

lswrite,i

*enddo

finish

/SOL

allsel,all

LSSOLVE,1,step

FINISH

/post26

! Define variables

numvar,200

248

NSOL,2,output,u,x,dx

rforce,3,output,f,x,fx

prod,4,3,,,for,,,2.0 !double force to account for symmetry

prvar,dx,fx

deriv,5,4,2,,dfdx

deriv,6,5,2,,d2fdx2

prvar,dx,for,dfdx,d2fdx2

!plot force-displacement curve

*dim,disp,array,step,1,1

*dim,force,array,step,1,1

*dim,dforce,array,step,1,1

*dim,d2force,array,step,1,1

*do,i,1,step,1

*get,dis,vari,2,rtime,i !get force at step i

*get,for,vari,4,rtime,i !get force at step i

*get,dfor,vari,5,rtime,i !get force at step i

*get,d2for,vari,6,rtime,i !get force at step i

disp(i) = dis

force(i) = for

dforce(i) = dfor

d2force(i) = d2for

*enddo

/post1

*dim,stress,array,step,1,1

/REPLOT

SET,FIRST

/PLOPTS,INFO,3

/CONTOUR,ALL,18

/PNUM,MAT,1

/NUMBER,1

249

!plot all stress states

*do,i,1,step,1

SET,,,,,,,i !select set number to view

etable,ben_str,smisc,32,37

esort,etab,ben_str,0,0

*GET,max_str,sort,,max

stress(i) = max_str

*enddo

/post26

!XVAR,2

!PLVAR,4,

*CFOPEN,J:\SB_Lattice\Printable_Balancer\ANS_out,txt,,

*VWRITE,disp(1,1),force(1,1),dforce(1,1),d2force(1,1),stress(1,1)

%18.6G, %18.6G, %18.6G, %18.6G, %18.6G

!(F16.8, F16.8, F16.8, F16.8, F16.8)

*CFCLOS

D.4 Confirmation of Final Design

This script uses the balancer design developed so far to statically balance a compound

lattice-flexured CAFP. The referenced files x lat.mac and v lat.mac are included above.

!This script buils a CAFP with lattice flexures. It requires

!the files x_lat.mac and v_lat.mac in the same directory

!also, change the /cwd command to the directory where this file,

! x_lat.mac, and v_lat.mac are stored.

/cwd, ’C:\ANSYS’

finish

/clear

/PNUM,KP,1

/INPUT,’params_opt’,’txt’,’J:\SB_Lattice\Printable_Balancer\’,, 0

250

!Units in, lbf, psi

*SET,pi,acos(-1) !pi

len = 3. !length of flexible segments

cor = len*sin(pi/4) !x and y coordinates

!mod = 320000. !modulus of ABS-M30

!mod = 1.61e7 !modulus of titanium

nu = .34

x_PrL = 0.176

pr_step = 5

step = 10

ndiv = 20

gap_wid = 1.0

offset = 0.5

thk = .04 !*.83 !thickness of compliant members

n = 5 !number of lattice cells along length use 6 for b and 8 for c

wid = 1.0 !total width of flexure

b = wid-thk !center-to-center distance

I_l = thk**4/12

I_r = I_l

L1b = (len/(2*n))/b

bigK = 2.25*thk**4/16

EI_eff = mod*(2*I_r+(I_l*L1b*(L1b**2+1.0)**.5)/(2*(1+nu)*I_l/bigK+L1b**2))

P = 8.6071 !8

d = 3.9846/0.85

k_l = 1.7763 !1.7228

type = ’v’!may be type x or v

ang = 45 !20 degrees of rotation

ang = ang*pi/180

/prep7

et,1,beam188

251

!section 1 is for the lattice elements

sectype,1,beam,rect

secdata,thk,thk

sectype,2,beam,rect

secdata,thk*8,thk*8

et,2,mpc184

keyopt,2,1,1

keyopt,2,2,1

!element type for balancing spring

ET,3,COMBIN14

KEYOPT,3,1,0

KEYOPT,3,2,0

KEYOPT,3,3,0

!enter real constants for balancing spring

R,3,k_l,0,0, , ,,

rmore,P,

mptemp

mptemp,1,0

mpdata,ex,1,,mod

mpdata,prxy,1,,nu

nlgeom,1

!build the lattice geometry

!define keypoints

k,1,0,0,b+gap_wid/2

k,2,0,0,gap_wid/2

!build a lattice flexure anchored to KPs 1 and 2 with n divisions and

! alpha angle

%type%_lat,1,2,n,len,45

*get,top1,kp,,num,maxd

k,,0,0,-gap_wid/2

252

k,,0,0,-gap_wid/2-b

*get,maxkp2,kp,,num,maxd

%type%_lat,maxkp2-1,maxkp2,n,len,45

*get,top2,kp,,num,maxd

k,,cor,,0.1+gap_wid/2+2*b

k,,cor,0,0.1+gap_wid/2+b

*get,maxkp3,kp,,num,maxd

ksel,s,kp,,1,2

ksel,a,kp,,maxkp2-1,maxkp2,1

ksel,a,kp,,maxkp3-1,maxkp3

cm,anc_kps,kp

allsel,all

!build a lattice flexure anchored to KPs 1 and 2 with n divisions and

! alpha angle

%type%_lat,maxkp3-1,maxkp3,n,len,135

*get,top3,kp,,num,maxd

k,,cor,0,-0.1-gap_wid/2-b

k,,cor,0,-0.1-gap_wid/2-2*b

*get,kpmax,kp,,num,maxd

%type%_lat,kpmax-1,kpmax,n,len,135

*get,top4,kp,,num,maxd

cmsel,s,anc_kps

ksel,a,kp,,kpmax-1,kpmax,1

cm,anc_kps,kp

allsel,all

ksel,s,kp,,top1-1,top1

*do,i,2,4,1

ksel,a,kp,,top%i%-1,top%i%

253

*enddo

cm,top_kps,kp

allsel,all

esize,,10

!mesh flexible members

latt,1,,1,,,,1 !MAT,REAL,TYPE,ESYS,KB,KE,SECNUM

lmesh,all

!***

!put a new origin in the model where we want the balancer

clocal,11,CART,cor/2,cor/2-(len1*cos(theta_02)+len2*...

cos(theta_03)+offset)/2+x_PrL,0,90

!build the spring geometry

!use section 11 first beam and

sectype,11,beam,rect

secdata,h1,b1,

!section 12 for second beam

sectype,12,beam,rect

secdata,h2,b2,

!section 13 for rigid sections

sectype,13,beam,rect

secdata,2*h1,b2,

!sectype 14 for connecting wires

sectype,14,beam,csolid

secdata,0.02

!build geometry

k,,0,0,0

*get,bal_kp,kp,,num,maxd

k,,len1*cos(theta_02),len1*sin(theta_02) !+1

k,,len1*cos(theta_02),-len1*sin(theta_02) !+2

k,,len1*cos(theta_02)+len2*cos(theta_03),0 !+3

254

k,,len1*cos(theta_02)+offset,len1*sin(theta_02) !+4

k,,len1*cos(theta_02)+offset,-len1*sin(theta_02) !+5

k,,len1*cos(theta_02)+len2*cos(theta_03)+offset,0 !+6

!create compliant segments

lstr,bal_kp,bal_kp+1 !line 1

*get,bal_line,line,,num,maxd

lstr,bal_kp,bal_kp+2 !line 2

lstr,bal_kp+3,bal_kp+1 !line 3

lstr,bal_kp+3,bal_kp+2 !line 4

lstr,bal_kp+6,bal_kp+4 !line 5

lstr,bal_kp+6,bal_kp+5 !line 6

lstr,bal_kp+1,bal_kp+4 !line 7

lstr,bal_kp+3,bal_kp+6 !line 8

lstr,bal_kp+2,bal_kp+5 !line 9

esize,,ndiv

type,1

lsel,s,line,,bal_line,bal_line+1,

secnum,11

lmesh,all

lsel,s,line,,bal_line+2,bal_line+5

secnum,12

lmesh,all

lsel,s,line,,bal_line+6,bal_line+8

secnum,13

lmesh,all

allsel,all

csys,0

!**

k,,cor/2,cor/2+d,0

*get,top_kp,kp,,num,maxd

255

k,,cor/2,cor/2-d+x_PrL,0

*get,bot_kp,kp,,num,maxd

lstr,top_kp,bal_kp+6

*get,wire1,line,,num,maxd

lstr,bot_kp,bal_kp

lsel,s,line,,wire1,wire1+1

secnum,14

lmesh,all

allsel,all

!displays mechanism and depicts relative size and shape of beam elements

/ESHAPE,1

/EFACET,1

/RATIO,1,1,1

/CFORMAT,32,0

/REPLOT

ksel,s,kp,,top_kp

nslk,s

*get,topn1,node,0,num,max

allsel,all

ksel,s,kp,,bot_kp

nslk,s

*get,topn2,node,0,num,max

allsel,all

ksel,s,kp,,bal_kp

nslk,s

*get,bal_low,node,0,num,max

allsel,all

ksel,s,kp,,bal_kp+6

nslk,s

*get,bal_hi,node,0,num,max

256

allsel,all

!create constraints

type,2

cmsel,s,top_kps

nslk,s

*get,num_top,node,0,count

*dim,top_ns,array,num_top

*do,i,1,num_top,1

*get,nod,node,,num,min

top_ns(i)=nod

nsel,u,node,,nod

*enddo

allsel,all

*do,i,1,num_top,1

e,topn1,top_ns(i)

*enddo

d,topn2,ux,0,,,,uz,rotx,roty,rotz

d,topn1,roty,0,,,,

cmsel,s,anc_kps

nslk,s

d,all,all,0

allsel,all

*do,i,1,pr_step,1

d,topn2,uy,-x_PrL*i/pr_step

lswrite,i

*enddo

*do,i,1,step,1

d,topn1,rotz,15*pi/180*i/step

lswrite,i+pr_step

*enddo

257

finish

/SOL

LSSOLVE,1,pr_step+step,1

finish

finish

/post26

! Define variables

NSOL,2,topn1,rot,z,rot

rforce,3,topn1,M,z,torque

XVAR,2

PLVAR,3

!divide torque by rotation and call resulting variable stiffness

quot,4,3,2,,stiff

PRVAR,rot,torque,stiff

258

APPENDIX E. SETUP AND USE OF THE TORQUE-ROTATION MEASURING APPA-

RATUS

During much of the research presented herein, it was necessary to measure torques and

rotations simultaneously. A test setup was developed to do this, which has been shown in several

chapters throughout this work. This appendix details the hardware, software, and procedures that

make this test setup run.

E.1 Overview

In my compliant mechanisms work I have often found it necessary to measure the torque-

deflection behavior of various mechanisms. This is useful to validate numeric or analytic models,

especially if you are designing a new kind of joint or flexure. Once you have torque and deflection

data, you can calculate stiffness or look for special behavior such as multi-stability. To fill this

need I built the torque-rotation setup, shown with a variety of mechanisms in Figure E.1.

The torque-rotation test setup consists of hardware and software. The hardware can be

divided into sensors, DAQ equipment, and the mechanisms. These will be considered in turn. The

software consists of the Labview DAQ and an Excel spreadsheet designed to aid in calibration of

the device. These systems function together to allow the collection of data.

Finally, the calibration and data gathering procedures will be discussed.

E.2 Hardware

As mentioned, the hardware consists of the DAQ, the sensors, and the mechanisms. All

part numbers and vendors are listed in Table E.1.

E.2.1 DAQ

The DAQ itself is a product of National Instruments. Its elements are shown in Figure E.2.

259

(a) Measuring the bending stiffness of a plastic

lattice-flexured cross-axis flexural pivot.

(b) Measuring the torsinal stiffness of a blade flex-

ure.

Torque socket

Optical encoder

Flexures

in series

Torsion bar

Flexures in

series-and-parallel

Worm-wheel

gearset

(c) Measuring the bending stiffness of a compound

joint. The setup is mounted vertically so the

weight of the apparatus does not affect the measured

torque.

(d) Measuring the stiffness of a statically balanced

lattice-flexured cross-axis flexural pivot.

Figure E.1: A sampling of measurement setups.

E.2.2 Sensors

The two sensors used are an optical encoder and an Omega torque transducer. The sensors

are shown in Figure E.3.

Table E.1: Part numbers of purchased hardware.

Equipment Part Number Supplier Purpose

DAQ Chassis cDAQ 9174 National Instruments Provides an interface

between the DAQ mod-

ules and the computer.

DAQ Module NI 9411 National Instruments Read digital input

DAQ Module NI 9219 National Instruments read analog input

Torque transducer TQ103-50 Omega Torque measurement

Optical encoder E2-500-375-IE-H-D-B US Digital Rotation measurement

Steel worm gear A 1C 5-N32 sdp-si.com Torque input

Brass worm wheel A 1B 6-N32040 sdp-si.com Torque input

260

(a) DAQ chassis. This is what the modules plug into

so the computer can read your data.

(b) NI 9411 module. This is used for digital input.

In this case we use it to read the optical encoder.

(c) NI 9219 module. This is a very versatile 4 chan-

nel analog input. We use it here for reading torque

transducers, but it can read any sensor with an ana-

logue voltage output up to 5 volts.

Figure E.2: Elements of the DAQ hardware.

(a) Digital encoder from US Digital. Note that the

one we have has a hole in the cover to allow it to

mount to a through-shaft. Measures rotation at res-

olutions up to 0.018◦.

(b) Omega TQ103-50 torque transducer. This mea-

sures torque, up to ±50 in-lbs.

Figure E.3: Sensors used to collect torque and displacement data.

261

(a) Balance bar with holes spaced 0.5 cm apart. (b) Balance pivot - essentially this is a piece of an-

gled aluminum inset with a small bearing.

(c) The balance bar and pivot assembled.

Figure E.4: Mechanism used during calibration of the torque transducer.

E.2.3 Mechanisms

Several mechanisms were built to aid in calibration and measurement. The balance bar

and balance pivot are used during calibration to apply a known torque. The holes are spaced 0.5

cm apart, and by hanging weights from either side of the balance bar at different distances, very

small torques can be applied to the torque transducer. More information on this procedure will be

included below. These elements are shown in Figure E.4. CAD files for the hardware described

can be found in \cmrvault\Measurements\Torque_and_Position\CAD files.

To apply and hold a torque, a worm-wheel gearset is used. This applies a rotation to a

shaft, which in turn rotates the torque transducer. The resulting rotation is passed to another shaft

to whatever mechanism is being actuated. Along the way the output shaft’s rotation is measured

by the optical encoder, mounted to a pillow block. These elements are shown in Figure E.5.

E.3 Software

Two main pieces of software are used: an Excel spreadsheet and a Labview DAQ.

262

(a) Worm-wheel assembly. Turning the knob at the

top rotates the shaft.

(b) This pillow block is essentially a piece of alu-

minum with a bearing pressed in to support the out-

put shaft and mount the optical encoder.

(c) The worm-wheel and pillow block are mounted

to a slotted plate so the whole assembly can slide

forward or back.

Figure E.5: Elements of the torque application mechanism.

E.3.1 Spreadsheet

The Excel spreadsheet (located in the CMR Vault under \cmrvault\Measurements\Torque_

and_Position\torque_calibration.xlsx) evaluates the equation T = g(m1l1 −m2l2) to cal-

culate the torque applied by weights hanging from the balance bar. By relating the output from the

torque transducer to the known applied load, a calibration can be achieved.

E.3.2 Labview DAQ

A copy of the Labview DAQ is located in the same location as the Excel spreadsheet

(\cmrvault\Measurements\Torque_and_Position\torque_and_position.vi). There are

several nuances to using this software that will be explained in Section E.4.1.

The DAQ software reads the output from the torque sensor and optical encoder and allows

you to save the data to a text or Excel file.

263

E.4 Procedures

This section lists the procedures of setting up and using the data collection system. I tried

to make this as complete as possible by tearing down the system and rebuilding it to capture each

step.

E.4.1 Setup

Before the system may be used it must be set up. First the hardware is assembled and then

the software is configured.

Hardware Assembly

Hardware assembly is accomplished with the following steps:

1. Connect DAQ chassis to computer and power (see Figure E.6) using the appropriate cords.

Figure E.6: Connect the chassis to the computer via USB and connect to power using the power

cord.

2. Plug in the DAQ modules 9411 and 9219. It doesn’t matter which slots you use except that

you will need to know which ones they’re in. See Figure E.7.

3. Connect the torque transducer wires to a channel on the 9219 module. Refer to Table E.2 for

which wires go to which terminal. See Figures E.8a and E.8b.

264

Figure E.7: Plug the modules into the DAQ chassis. Where they go doesn’t matter, but keep track

of which is where.

(a) Attaching wires to the DAQ module is done by

inserting a small flathead screwdriver as shown (into

the square hole) and then inserting the wire into the

round hole. Don’t force the screwdriver; wiggle it

gently back and forth and you’ll feel it slide down.

Removing the screwdriver secures the wire (tug a

little to be sure its connected).

(b) All transducer wires assembled to the module.

The terminal number is found written on the module

itself. Double check these connections.

Figure E.8: Assembly of the hardware - connection of the transducer.

4. Connect the optical encoder to the 9411 module, and supply 10 volts DC power to the module

using the wiring terminals marked “VSUP” and “COM.” VSUP goes to the red terminal on

the power supply, COM to the black terminal. Refer to Figures E.9a and E.9b.

Your hardware is now connected, but the software must be configured to whatever ports

you plugged things into.

Software Setup

Setup of the software is accomplished in the following steps:

265

(a) Plug the five-pin connector into the encoder. Be

careful to not damage the encoder pins. Ensure the

brown wire is connected to the pin marked “GND”.

The pins are labeled on the side of the encoder, but

you have to look closely to see them.

(b) Plug the serial port into the 9411 module. You

will also need to supply the module with approxi-

mately ten volts (DC). This is most easily done from

a bench power supply.

Figure E.9: Assembly of the hardware - wiring the DAQ modules.

1. Open the DAQ VI file (torque and position.vi). VI is the file type. It is located either on the

desktop of the computer in the back room or on the vault at \cmrvault\Measurements\

(torque_and_position.vi. The front panel should open and look something like what is

shown in Figure E.10

2. Open the block diagram by pressing Ctrl+E. A screen that looks something like Figure E.11

should appear.

3. Find the DAQ assistant for the torque transducer input (highlighted in blue in Figure E.11

- you may have to scroll around) and double click on it to bring up the window shown in

Figure E.12.

4. From this window you can add or modify channels. For example, you could add another

transducer to take multiple measurements. We need to simply tell Labview which transducer

Table E.2: Wiring connection of the torque transducer. The black wire indicated is the small black

wire, not the large shield wire that surrounds the others as they are gathered into their sheath.

Wire color Terminal number

Red 3

Black 5

Yellow 4

White 6

266

Figure E.10: The main interface of the DAQ software.

Figure E.11: The block diagram that determines how Labview collects your data and what happens

to it. This is a fairly large thing, so there is more to it; this is only a portion.

channel we wish to read. Right-click on Torque1 and select “Change Physical Channel.” See

Figure E.13.

5. Select the channel to which you wired your torque transducer. For example, in Figure E.14

we select cDAQ4Mod2 ai0.

6. Click “okay” and “okay” to return to the block diagram. A window should briefly appear

saying that “Building VI.”

267

Figure E.12: The DAQ assistant helps reconfigure your measurement channels.

7. To set which channel the encoder is connected to, minimize the block diagram and return to

the front panel window (from Figure E.10).

8. Use the dropdown menu on the front panel to select which channel reads the optical encoder

(see Figure E.15).

Your system is now ready to calibrate.

E.4.2 Calibration

After setup, the system must be calibrated. This is accomplished with the following steps:

1. Reset the calibration constants in the block diagram. See Figure E.16.

(a) Press Ctrl+E to get to the block diagram from the front panel.

(b) From the DAQ assistant, trace the orange wires to a set of constants. These constants

multiply or offset the torque output.

268

Figure E.13: Right-click on the channel you wish to use and select “Change Physical Channel.”

Figure E.14: Select the channel to which you wired the torque transducer. For example,

cDAQ4Mod2, ai0 means that we are selecting the DAQ chassis plugged into the 4th USB port

(DAQ4), using the 2nd module in that chassis (Mod2), and we want the output from the 0th chan-

nel (ai0) in that module (the channel number is printed on the side of the module as CH0, CH1,

etc.).

269

Figure E.15: Select into which channel the encoder and module are connected.

Figure E.16: Reset the calibration constants before performing the calibration procedure. The first

multiplier should be 10,000, the first and second offsets should be 0, and the second multiplier

should be 1.

(c) Double click to edit the numbers

(d) Set the first multiplier to 10,000, the second to 1, and both offsets to zero.

2. Set up the balance bar and measurement assembly. The shaft of the torque-displacement

mechanism should be co-axial with the rotation of the balance bar. You may need to place

spacers under the balance pivot. Then attach a 7/16” socket to the output shaft to interface

270

with the bolt head on the balance bar. If there is excessive backlash in the connection, wrap

a narrow strip of paper around the bolt head, or use a small dab of hot glue to connect

everything temporarily. See Figure E.17.

Figure E.17: Raising the balance bar and torque assembly above the table will give you more room

to hang masses.

3. Run the DAQ by pushing the “run” button on the DAQ front panel (see Figure E.10).

4. Apply torques to the balance bar and record the torque output. See Figure E.18

Figure E.18: Apply torque by hanging weights from the balance bar.

(a) You can get a set of masses from the ME checkout room.

(b) Hang the masses from the holes in the balance bar, ensure that the bar is level. You can

hang them from one side or both, at different distances from the center or equidistant,

equal masses or different. The purpose is to apply a net torque on the bar that is similar

in magnitude to what you expect to measure.

271

(a) Distances on the balance bar are marked in cen-

timeters, with holes spaced every 0.5 cm. Here, the

mass is hanging at 8 cm.

(b) Enter the masses and their distance from the cen-

ter pivot into the Excel spreadsheet. Mass on the

right is entered in the far left column (labeled “mass

R (g)”), its distance from center in centimeters is en-

tered in the column labeled “LR (cm)”. Mass on the

left is entered in the column labeled “mass L (g)”,

its distance from center in centimeters is entered in

the column labeled “LL (cm).” the spreadsheet will

calculate the applied torque in column E (labeled

“torque (N-m)”). Enter the current torque from the

DAQ under “output.”

Figure E.19: Calibration of the system.

(c) Record the hanging mass and distance in the Excel spreadsheet to calculate applied

torque. For example, Figure E.18 shows an 10 gram mass 8 cm from center on the

bar’s right (left in the picture) and another 10 gram mass as 6.5 cm from center on the

bar’s left (right in the picture). See Figures E.19a and E.19b.

(d) Record the torque output in the Excel spreadsheet.

5. Repeat step 4 for a range of torques across your expected load range.

6. When you’ve finished, stop the DAQ by clicking the large “STOP Program” button.

7. Apply a linear curve fit to the calibration data you’ve collected.

(a) Make a scatter plot of the data in Excel with torque output on the x-axis and actual

torque on the y-axis

(b) Click on the data in the plot, then right-click and select “Add Trendline” (see Fig-

ure E.20).

272

Figure E.20: Add a trendline to your plot.

(c) Under the trendline options, select “linear,” and check the box for “Display Equation

on chart.” See Figure E.21.

Figure E.21: Select “linear,” and check the box for “Display Equation on chart.”

8. The coefficients from the trendline become your calibration terms. If this is your first pass

at calibration, multiply the slope of the trendline by the current first multiplier (10,000) and

enter that as the new first multiplier. Replace the first offset coefficient with the b term of

the trendline. If this is your second pass at calibration, enter the slope of the trendline as the

new second multiplier. Replace the second offset coefficient with the b term of the trendline.

See Figure E.22.

273

Figure E.22: The slope and offset from the trendline are your calibration coefficients. For a line

written as y = mx+b, m is multiplier, b is your offset.

9. If you desire higher measurement accuracy, repeat steps 3-8, but now putting the trendline

coefficients in the block diagram as the second multiplier and offset coefficients. This may

get you a slightly better calibration, but may be skipped if you don’t feel like doing it.

E.4.3 Measurement

Now that the system is calibrated you can use it to measure rotation and displacement.

Attach the test specimen to the torque assembly. Try to minimize backlash in the connection.

Run the DAQ. Zero the displacement when you are at your desired start position. Displace the

mechanism, saving data points when desired. When you finish collecting data stop the DAQ and

save the data file. It saves as plain text or as .xls, with columns of torque, rotation, and stiffness.

Sample measurement setups are shown in Figure E.1.

274

