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This thesis describes a dynamic height estimator and controller for rotorcraft

landing and hovering in ground effect based on flowfield sensing and modeling. The

rotor downwash in ground effect is represented using a ring-source potential flow

model selected for real-time use. Experimental verification of the flow model and

an augmented flow model for tilt are presented. A nonlinear dynamic model of a

compound pendulum heave test stand that reduces to the dynamics of a rotorcraft

in ground effect is presented with open-loop analysis and closed-loop control simu-

lation. Equations of motion and stability characterization of of a heaving rotor IGE

are derived for external perturbations and it is shown that a uniform sideward wind

does not cause instability and uniform axial wind from the top can cause instability.

Flowfield velocity measurements are assimilated into a grid-based recursive Bayesian

filter to estimate height above ground in both simulation and experiment. Height

tracking in ground effect and landing using the estimated height are implemented

with a dynamic linear controller in both simulation and experiment. Mean estima-



tion and motion errors are found to be no greater than 5% and 9% respectively,

demonstrating that height estimation and control is possible with only flow sensing

and modeling.
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Dedication

妈，我爱您！

“Essentially, all models are wrong, but some are useful.”

– George E.P. Box
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Chapter 1: Introduction

1.1 Introduction

Rotorcraft operation in ground effect (IGE) presents substantial challenges for

vehicle control, including landing with low-impact velocity and maintaining near-

ground hover in low-visibility conditions such as brownout [1], fog [2], snow or dark-

ness. Safe operation IGE requires a controller capable of handling uncertainty. Pre-

vious authors have developed landing controllers based on robust or adaptive control

techniques. For example, Serra and Cunha [3] adopt an affine parameter-dependent

model that describes the helicopter linearized error dynamics for a predefined land-

ing region and implements H2 feedback control. Mahony and Hamel [4] develop a

parametric adaptive controller that estimates the helicopter aerodynamics onboard

and modulates the motor torque, rather than the collective pitch, during takeoff

and landing and takes advantage of the reduced sensitivity of the control input to

aerodynamics effects. Nonaka and Sugizaki [5] implement ground-effect compensa-

tion and integral sliding mode control to suppress the modeling error of the vehicle

dynamics in ground effect. These control techniques often require a system model

with empirically fit aerodynamic coefficients that are unique to each vehicle.

Safe operation IGE also requires accurate estimation of the proximity and
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relative orientation of the ground plane. Height-estimation methods currently exist

for micro aerial vehicles (MAVs) based on ultrasonic, barometric pressure or optical

sensors. However, ultrasonic sensors work only for proximity sensing and do not

work well for an angled or irregular ground plane [6]. Barometric pressure sensors

typically work well for large height differentials [7], but are sensitive to fluctuations

in atmospheric pressure, which results in sensor drift. Likewise, the effectiveness of

vision-based sensors is limited in degraded visual environments and the algorithms

used typically require great computational resources. This thesis develops a hover

and landing controller that uses rotor downwash flow-velocity measurements and

an aerodynamic model to estimate the height above ground, thereby providing an

additional sensing modality for hovering and landing IGE.

Previous authors have quantified ground effect empirically or through the use

of an underlying aerodynamic model. Nonaka and Sugizaki [5] take an empirical

approach to measuring the ground effect on rotor thrust as a function of motor

voltage. Mahony and Hamel [4] use an approximation of the down-flow velocity

ratio based on a piecewise linear approximation of Prouty [8] to estimate rotor-

thrust variation IGE. Higher fidelity analytical models include free vortex modeling

[9] and other Computational Fluid Dynamics method, which seek to accurately

predict the nature of the rotor wake vortices. Cheeseman and Bennett [10] provide

a classic analytical model for ground effect, which I adopt for this work, based on

aerodynamic modeling using the method of images. The use of an aerodynamic

model permits comparison to measurements from sensors such as multi-component

differential-pressure airspeed sensors [11]. Lagor et al. [12] and DeVries et al. [13]
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have previously shown that a reduced-order flow model can be rapidly evaluated

within a Bayesian filter to perform estimation and control tasks in an uncertain flow

environment.

My previous paper [14] developed the theoretical framework for a dynamic

controller for hover and landing IGE based on a flow model for height estimation.

Rotorcraft downwash IGE was modeled using potential flow theory. I extended the

model of Cheeseman and Bennett [10] using multiple ring sources; the mirror images

create a ground plane. The reduced-order model relates the flowfield velocities to

height IGE; it is capable of relatively fast evaluation for control purposes. A nonlin-

ear dynamic model of rotorcraft landing IGE was presented, assuming a rigid rotor

commonly found in MAV rotorcraft [15]. Height estimation of rotorcraft IGE using

spatially distributed airspeed measurements was accomplished in simulation with

a grid-based recursive Bayesian filter. The Bayesian framework is capable of fus-

ing data from additional sensing modalities and for estimation of additional states,

such as roll and pitch relative to the landing platform. The feedback controller was

implemented in simulation to illustrate the theoretical results.

My following paper [16] outlined an improved ring-source potential flow model

consistent with experimental observations. I derived a nonlinear dynamics model of

a compound pendulum heave test stand that reduced to the dynamics of a rotor-

craft IGE. Experimental results of the open-loop pendulum dynamics were detailed.

I also presented experimental validation of the flow model and height estimation

framework.
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1.2 Motivation

Figure 1.1: Flow visualization of rotor in Ground Effect [17].

Modeling the flowfield of a rotor IGE is a nontrivial task due to the complexity

of the flowfield, as shown in Fig. 1.1 [17]. Many previous attempts at modeling

have been made, as detailed above, but the main motivation for me as a control

engineer is to develop a flow model that can be recursively evaluated in real-time

within a high bandwidth control loop. Ideally, the estimation algorithms and control

laws developed would also be computationally efficient. This framework would be

useful for no-visibility altitude estimation using only flow sensors, with applications

including autonomous shipboard landing.

This thesis proposes using reduced-order flow modeling to model the rotor

flowfield IGE. Flow velocity components are measured using multi-component dif-

ferential pressure probes [11] and compared with the flow model in a grid-based
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recursive Bayesian filter to estimate rotorcraft height. Finally, an observer based

closed-loop controller seeks to drive the vehicle to the commanded height.

1.3 Contributions

The contributions of this thesis are

1. A ring-source potential flow model for heave consistent with experimental

observations and for roll or pitch. Previous potential flow models [10] are

capable of predicting rotor performance IGE but do not predict the flowfield

velocities well. Flowfield velocity components are crucial for height estimation

IGE as they are directly measurable quantities. The ring-source potential flow

model is capable of generating rotor flowfield velocity components and is also

computationally efficient enough to be evaluated in real-time. The flow model

is also augmented for roll or pitch for prediction of the flowfield velocities and

streamlines of a tilting rotor.

2. Experimental validation of the ring-source potential flow model for heave. The

flow model makes certain assumptions based on potential flow theory and only

captures the mean velocity components. These assumptions are essential to the

flow model predictions and have to be validated since previous potential flow

models in literature have been lacking in flow velocity predictions. The velocity

predictions are compared against experimental results for varying parameters.

The comparisons validate the model, certify its parametric region of validity

and illustrate the tradeoff between real-time efficiency and model fidelity.
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3. A nonlinear dynamic model of a compound pendulum heave test stand. The

dynamics of the heave stand is shown to reduce to the dynamics of a ro-

torcraft IGE with certain assumptions, demonstrating that the experimental

setup mimics the system being studied, while being an effective setup. The

dynamic model also allows for the study of the open-loop system dynamics

and facilitates the design of a model-based closed-loop controller.

4. Equations of motion and stability characterization of of a heaving rotor IGE

with external perturbations. It is shown that a uniform sideward wind does

not cause instability of the rotor in ground effect, but rather increases its

thrust. A uniform axial wind from the top of the rotor can cause instability,

if it has greater magnitude than the induced velocity.

5. Experimental validation of the flow-sensing based height estimation and closed-

loop height tracking framework. Experiments were conducted to validate the

Bayesian filter height estimation framework with multiple differential pressure

sensors measurements. Height estimation was found to be accurate to within

5% of the actual height. Subsequently, the estimated height was fedback for

validation of the observer-based closed-loop height tracking controller, with

height tracking accurate to within 9% of the desired height. It is shown that

height estimation and tracking is possible using only flow sensing and model-

ing.
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1.4 Thesis Outline

Chapter 2 describes the ring-source potential flow model representing a rotor

flowfield IGE for both heave and roll or pitch. Chapter 3 derives the dynamics of

a compound pendulum heave test stand and a rotorcraft operating IGE, with and

without external perturbations. Chapter 4 details the prefiltering, Bayesian filter

height estimation and speed estimation algorithms. Chapter 5 presents the control

design of a Linear Quadratic Regulator and a Proportional Integral controller with

feedfoward. Chapters 6 and 7 outline the experimental setup and validation for

the flow model, height estimation and observer-based feedback control. Chapter 8

provides the conclusion to this thesis.
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Chapter 2: Flow Model

2.1 Cheeseman and Bennett Potential Flow Model

Figure 2.1: Cheeseman and Bennett [11] potential flow model of rotor downwash in
ground effect.

Let R be the rotor radius, vi denote the rotor induced velocity and h be the

rotor height. Cheeseman and Bennett [10] model the rotor downwash IGE impinging

on the ground plane by representing the rotor as a three-dimensional source with

strength s = R2vi/4 and the ground plane as a mirror-image source to enforce no

flow through the ground plane, as shown in Fig. 2.1. The sources are separated by

a distance 2h.
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The velocity potential for the location (x, y, z) in the flowfield is [10]

φ = − s
√

x2 + y2 + (z − h)2
− s
√

x2 + y2 + (z + h)2
. (2.1)

Taking the gradient of the velocity potential with respect to position yields the flow

velocity components [10].

Although the Cheeseman and Bennett flow model has been experimentally

shown to accurately capture the relationship between rotor thrust IGE and rotor

height [10], it represents the physical flowfield of a rotor IGE with insufficient accu-

racy for my purposes. As shown in Fig. 2.1, the flow vectors just below the rotor

plane extend radially outward as opposed to downward. Since the rotor is modeled

as a point source, the strongest vectors are at the hub and diffuse in strength radially

outward.

2.2 Ring-source Potential Flow Model

Similar to the Cheeseman and Bennett model, I model the physical flowfield

using potential flow theory. However, I replace the single source of Cheeseman

and Bennett with multiple ring sources to allow uniform spatial distribution of the

flowfield sources.

As shown in Fig. 2.2, the rotor is modeled by N ring sources and the ground

plane is modelled by their mirror images to enforce no flow through the ground

plane. Note that ring k = 1 is at the rotor tip and the ring indices move radially

9



Figure 2.2: Schematic of ring-source potential flow model nomenclature.

inward with equal radial spacing of R/N . The radial location of each ring k is

rk = R− (k − 1)
R

N
. (2.2)

Similar to the inflow ratio distribution of a rotor [18], the strength sk of ring k varies

with radial location according to

sk =
smax

R
rk, (2.3)

where the maximum source strength smax is located at the rotor tip r1 = R. I choose

the source strengths according to the total volumetric flow through the rotor disk,

similar to Cheeseman and Bennett. Let A = πR2 denote the rotor disk area. The
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strength of each ring source sk represents the volumetric flow rate per unit length

and the total flow rate satisfies

1

2

N
∑

k=1

2πrksk −
1

4
(2πRsmax) = Avi. (2.4)

Although the ring sources emanate in all directions, only the bottom half of the

emanation should be modeled as the rotor flow. Additionally, the outer most ring

source, which happens to be the strongest, should only have a quarter of its emana-

tion considered because the emanation outwards and upwards do not contribute to

the rotor flow. From arithmetic series and sum of a sequence of squares,

N
∑

k=1

k =
N(N + 1)

2
and

N
∑

k=1

k2 =
N(N + 1)(2N + 1)

6
. (2.5)

Substituting (2.2), (2.3) and (2.5) into (2.4) yields

smax =
6NRvi
2N2 + 1

. (2.6)

The velocity potential of ring source k is [19]

φk(r, rk, z) =
−skrkK(M)

π
√

ρ1(r, rk, z)
, (2.7)

where ρ1 = (r+ rk)
2 + z2, r and z are the radial location and elevation of the query

point in the rotor body frame (positive down), respectively, and M = 4rrk/ρ1. The
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radial vk(ρ1, ρ2) and vertical wk(ρ1, ρ2) velocity components of ring source k are [19]

vk =
rksk

2πr
√
ρ1

[

K(M) +
r2 − r2k − z2

ρ2
E(M)

]

(2.8)

and wk =
−skrkzE(M)

πρ2
√
ρ1

, (2.9)

where ρ2 = (r − rk)
2 + z2 and K(M) and E(M) are the first and second complete

elliptic integrals respectively (K(M) and E(M) are evaluated using the ellipke

function in MATLAB). The velocity components of the flowfield are the sum of

each ring source and their image ring-source contributions, i.e.,

v(r, z) =
N
∑

k=1

vk(ρ1, ρ2) +
N
∑

k=1

vk(ρ̄1, ρ̄2), (2.10)

w(r, z) =
N
∑

k=1

wk(ρ1, ρ2) +
N
∑

k=1

wk(ρ̄1, ρ̄2), (2.11)

where ρ̄1 = (r + rk)
2 + (2h− z)2 and ρ̄2 = (r − rk)

2 + (2h− z)2.

Fig. 2.3 shows the flowfield generated by the ring-source potential flow model,

with streamlines and speed distribution shown for various heights. Speed is denoted

by ‖V ‖ =
√
v2 + w2. The variations in speed distribution with height serve as an

informative tool for the placement of sensors to measure the flowfield experimentally.

The potential flow model is qualitatively similar to the flow visualization model of

the flowfield below a rotor IGE by Lee et al. [17], as shown by Fig. 2.4.

Moving from the rotor plane to the ground close to the rotor hub, the flow

decelerates and forms a stagnation region. Moving radially outward, the flow de-

celeration region is easiest to distinguish for h=1.0R in Fig. 2.3 from the light blue

12



Figure 2.3: Flowfield of ring-source potential flow model evaluated at vari-
ous heights, depicting streamlines and speed distributions, where speed ‖V ‖ =√
v2 + w2.

Figure 2.4: General developments of rotor flowfield in Ground Effect [17]
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color map. In contrast, the flow acceleration region is where the streamlines change

direction from pointing downward to pointing radially outward. As the rotor ap-

proaches the ground, the streamlines are compressed, which is best illustrated for

h=0.5R in Fig. 2.3. Evidently, the flow speed is the highest in the flow acceleration

region for the h=0.5R case as opposed to the h=2.0R case, since the flow is being

compressed more with less space between the rotor plane and the ground. This

effect is analogous to moving a water jet (the rotor) closer to a wall (the ground

plane), since the jet speed in the flow acceleration region is highest when it is close

to the wall.

Although the rotor downwash IGE as visualized in the work of Lee et al. [17] is

not laminar, I model it using potential flow theory and account for turbulence with

process noise (see Height and Speed Estimation Section). I model the mean velocity

of the dominant flow and treat the turbulence and other secondary effects, such as

blade tip vortices, as fluctuations away from the mean. Flow velocity component

measurements Ṽ are collected below the rotor in the experimental setup. Airspeed

measurements of the sort described in [11] contain two flow velocity components,

radial ṽ and vertical w̃, at each airspeed probe set location and are collected in an

array configuration to sample the flowfield at multiple spatial locations. In reality,

differential pressure is measured and converted into airspeed, so it is more accurate

to call them differential pressure probes. Measurement Ṽ corresponds to either the

radial ṽ or the vertical w̃ velocity component. I assume the velocity component V

is corrupted by zero-mean Gaussian white noise η with standard deviation ση and
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zero mean, resulting in the measurement model

Ṽ = V + η. (2.12)

2.3 Ring-source Potential Flow Model with Tilt

The ring-source potential flow model can be augmented to generate the flow-

field of a rotor with a roll or pitch angle relative to a horizontal ground plane. Since

it’s easier to work in Cartesian coordinates for tilt, I convert the radial location of

the query point r (in rotor body frame A) to x and y as follows

x = r cos γ, y = r sin γ, (2.13)

where γ is the angle from the positive rotor body frame âx-axis to r as shown in Fig.

2.5. Note that the ring-source is mirrored by its image source about the horizontal

ground plane such that a rotor roll or pitch angle θ is introduced. The rotation

matrix from inertial frame I to rotor body frame A is

ARI =

















cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

















, (2.14)

where θ is the roll or pitch angle relative to the horizontal ground plane.

Evaluation of the velocity components with rotor tilt is similar to the heave
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Figure 2.5: Schematic of nomeclature for ring-source potential flow model with tilt.

case but with some subtle differences. I evaluate the velocity components of the

ring source and its image separately in their body frames respectively. The velocity

components of the ring source in its body frame A is

Auθ(x, y, z) = cos γ
N
∑

k=1

vk(ρ1, ρ2), (2.15)

Avθ(x, y, z) = sin γ
N
∑

k=1

vk(ρ1, ρ2), (2.16)

Awθ(x, y, z) =
N
∑

k=1

wk(ρ1, ρ2). (2.17)
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The rotation matrix from inertial frame I to image source body frame A
′ is

A′

RI =

















− cos θ 0 − sin θ

0 1 0

sin θ 0 − cos θ

















. (2.18)

Location of the query point in the image body frame A
′ is

















x

y

z

















A′

= A′

RI

















x

y

2h− z

















. (2.19)

The velocity components of the image in the image body frame A′

uθ,
A′

vθ,
A′

wθ are

evaluated using the coordinates (2.19) in (2.15), (2.16) and (2.17). Finally, the

velocity components of the flowfield in the inertial frame I are the sum of the rotated

source and image velocity components,

















Iuθ

Ivθ

Iwθ

















=IRA

















Auθ

Avθ

Awθ

















+IRA′

















A′

uθ

A′

vθ

A′

wθ

















. (2.20)

The rotation matrices from body to inertial frames are IRA = (ARI)T and IRA′

=

(A
′

RI)T .

Fig. 2.6 shows the flowfield of ring-source potential model (2.20) with pre-

scribed motion of varying tilt angles. The illustration shows the streamlines being
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compressed on the side that the rotor tilts towards the ground. On the tilting side,

the corresponding speed ‖V ‖ =
√

Iu2
θ +

Iv2θ +
Iw2

θ is relatively higher as shown by

the fifty shades of blue. The flow model allows the tilt of the rotor relative to a

horizontal ground plane and is useful for estimation of roll or pitch angle.

Figure 2.6: Flowfield of ring-source potential model with prescribed motion of vary-
ing tilt angle, showing streamlines and speed where speed ‖V ‖ =

√

Iu2
θ +

Iv2θ +
Iw2

θ .
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Chapter 3: Dynamics

3.1 Dynamics of a Compound Pendulum Heave Test Stand

Figure 3.1: Compound pendulum heave test stand.

Two heave test stands were built for experimental verification of the flow-

sensing and control framework, one static and another dynamic. Fig. 3.1 shows

the compound pendulum heave test stand used to verify the flow model, dynamics

and closed-loop control. The compound pendulum test stand is constructed as a

parallelogram setup so that the rotor is always parallel to the ground plane with
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one degree of freedom in the heave direction. This setup allows the use of journal

bearings, which are smoother than linear carriages and rails in a vertical configura-

tion for my static test setup. This setup also has the added benefit of allowing a

counterweight to balance the system weight and to reduce the motor load.

Fig. 3.2 shows the free-body diagram of the compound pendulum. The lateral

(êy) displacement can be minimized by mounting the setup at the midstroke, i.e.,

at a height of 1.25R.

Figure 3.2: Free body diagram of compound pendulum heave test stand.

3.1.1 Dynamics

The angular momentum of the compound pendulum is

ho = Ioθ̇ex, (3.1)
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where Io is the moment of inertia about point O, θ is the positive clockwise angle

from vertical and θ̇ is the angular velocity of the pendulum. The time derivative of

the angular momentum equals the moment about point O. In the êx direction,

Ioθ̈ = LTIGE sin θ − l1g sin θ(m+M1) + l2M2g sin θ − b2θ̇, (3.2)

where θ̈ is the angular acceleration; l1, l2 and L are the distances from O to the

center of mass, O to counterweightM2 and O to rotor massm respectively; M1 is the

mass of the pendulum setup and b2 is the damping coefficient due to aerodynamics

and/ or friction. Table 3.1 shows these parameter values for my setup.

Table 3.1: Parameter values for compound pendulum heave test stand with rotor
radius R = 0.1778 m (7 in).

Parameter l1 l2 L m M1 M2

Value 0.2921 m 0.4572 m 0.9398 m 0.35 kg 0.304 kg 0.34 kg
(11.5 in) (18 in) (37 in) (0.7714 lb) (0.6702 lb) (0.7496 lb)

The rotor thrust is augmented for ground effect TIGE using the Cheeseman and

Bennett model [10], which captures the essential characteristic of the relationship

between thrust T and height IGE, i.e.,

TIGE =
1

1− R2

16h2

T =
16h2

16h2 −R2
T . (3.3)

Based on experimental data, Leishman [18] suggests that model (3.3) is valid for 2.0

≥ h/R ≥0.5.
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In terms of the height h = L2 − L cos θ,

ḣ = Lθ̇ sin θ, (3.4)

ḧ = Lθ̇2 cos θ + Lθ̈ sin θ. (3.5)

Since the compound pendulum is mounted at midstroke, I approximate θ ≈ π/2,

which implies

h ≈ L2, ḣ ≈ Lθ̇ and ḧ ≈ Lθ̈. (3.6)

Likewise, the moment of inertia Io is

Io = mL2 +
1

3
M1(L+ l2)

2 +M2l2
2. (3.7)

Substituting (3.3) and (3.6) into (3.2) yields the dynamics of the compound

pendulum heave test stand,

ḧ =
1

Io

[

16h2TL2

(16h2 −R2)
− l1Lg(m+M1) + l2LgM2

]

− bḣ, (3.8)

where b = b2/Io. Note that as the mass of the compound pendulum setup M1 and

the counterweight M2 go to zero, i.e. if I ignore the mass of the support structure,

the compound pendulum dynamics (3.8) reduce to the rotorcraft IGE dynamics

(3.16).
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3.1.2 Linear State Space Form

The state vector Z ∈ R
2 is defined as

Z =









h

ḣ









=









z1

z2









, (3.9)

where ḣ is the landing speed. I define the control input for the compound pendulum

heave test stand as

ν1 = T , (3.10)

where T is the thrust out of ground effect. Note that the control input for the heave

test stand ν1 is defined slightly differently than the control input for the rotorcraft

ν2 (3.17).

The nonlinear state space form is

Ż =









ḣ

ḧ









=









z2

1
Io

(

16h2TL2

(16h2
−R2)

− l1Lg(m+M1) + l2LgM2

)

− bḣ









. (3.11)

The Jacobians

A =









0 1

−2gR2

z∗
1
(16z∗2

1
−R2)

0









and B =









0

16z∗2
1

16z∗2
1

−R2









(3.12)

are the partial derivatives of the right-hand side of (3.11) with respect to Z and ν1,
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respectively. The linear system dynamics are

Ż = AZ +Bν1. (3.13)

3.2 Dynamics of Rotorcraft Operation IGE

3.2.1 Dynamics

Figure 3.3: Free-body diagram of rotorcraft in ground effect.

Fig. 3.3 shows the free-body diagram of a rotorcraft in which the tail rotor

counter-torque is not shown. Applying Newton’s second law in the êz direction

yields

mḧ = TIGE −mg − b1ḣ, (3.14)

where TIGE is the rotor thrust IGE, m is the mass of the rotor, ḣ and ḧ are the
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vertical velocity and acceleration respectively, g is the gravitational acceleration and

b1 is the damping coefficient due to aerodynamics or another source. Modeling the

rotor thrust T as a function of rotor rotational speed ω yields [15]

T = kω2. (3.15)

It is assumed henceforth that the rotorcraft has landed when h/R =0.5, which

is reasonable since the rotor distance above the landing gear is typically greater

than 0.5R. Thrust IGE (3.3) is substituted into (3.14) to obtain the dynamics of a

rotorcraft IGE,

ḧ =
16h2kω2

(16h2 −R2)m
− g − b1ḣ. (3.16)

3.2.2 Linear State Space Form

For the rotorcraft operating IGE, I define the control input as

ν2 =
kω2

m
. (3.17)

The nonlinear state space form is

Ż =









ḣ

ḧ









=









z2

16z2
1

16z2
1
−R2

ν2 − g









. (3.18)

An equilibrium control input ν∗

2 is necessary to keep the rotorcraft hovering at
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a corresponding equilibrium height z∗1 (or to land safely). Solving (3.25) for the

equilibrium condition, Ż∗ = 0, the equilibrium control input is

ν∗

2 = g
16z∗21 −R2

16z∗21
. (3.19)

Figure 3.4: Open-loop dynamics of rotorcraft without damping in ground effect with
constant input ν2 = ν∗

2 . Initial conditions for height and speed are (1.5m, 0.25m/s).

Fig. 3.4 depicts the simulation results of the open-loop nonlinear dynamics without

damping for initial height and speed (1.5m and 0.25m/s) and constant input ν2 = ν∗

2 .

In order to implement a linear controller for the nonlinear dynamics (3.25), the

Jacobian matrices are needed. The Jacobians are

A =









0 1

−2gR2

z∗
1
(16z∗2

1
−R2)

0









and B =









0

16z∗2
1

16z∗2
1

−R2









. (3.20)
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3.3 Dynamics of Rotor IGE with Sideways and Axial Perturbation

Micro-rotorcraft are known to exhibit difficulties in flight when they encounter

perturbations such as gusts or even flight under an air-condtioning duct. This

phenomenon is exacerbated during applications such as shipboard landing when even

small perturbations of a rotorcraft in ground effect can have disastrous effects, let

alone micro-rotorcraft. The section derives the equations of motion and characterizes

the stability of a heaving rotor IGE under external perturbation.

3.3.1 Sideways Perturbation

Figure 3.5: Control volume of rotor with perturbance W for momentum theory
analysis.

In order to account for the change in the surrounding environment due to wind,

I need a new expression for thrust. Bangura et. al [20] propose using momentum
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theory analysis on a control volume shown in Fig. 3.5, such that thrust is [20]

T = 2ρAviU , (3.21)

where ρ is air density, A = πR2 is the rotor disk area and vi is the rotor induced

velocity. U = |U | is the normed resultant velocity of the air through the rotor given

by [20]

U =
√

u2 + v2 + (vi − w)2, (3.22)

where u, v and w are the velocity components in the b̂x, b̂y and b̂z direction respec-

tively.

Now assume a uniform sideward wind v = |W | impinges on the rotor. The

rotor thrust due to this sideward wind is given by (3.21)

T = 2ρAvi

√

v2 + v2i . (3.23)

The dynamics (3.16) then become

ḧ =
32ρAh2

(16h2 −R2)m
vi

√

v2 + v2i − g − b

m
ḣ,. (3.24)
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The nonlinear state space form is

Ż =









ḣ

ḧ









=









z2

32ρAz2
1

(16z2
1
−R2)m

V − g − b
m
z2









, (3.25)

where V =
(

vi
√

v2 + v2i

)

for the sideward wind v case. The Jacobian

A =

















0 1

a21 − b
m

















(3.26)

is the partial derivative of the right-hand side of (3.25) with respect to Z about the

hover equilibrium, Z∗ = [z∗1 , 0]
T , where

a21 =
−64πρR4z∗1

(

vi
√

v2 + v2i

)

m(16z∗21 −R2)2
. (3.27)

In order to characterize the stability of the rotor perturbed by a sideward wind v,

consider the eigenvalue of A

λ = − b

2m
± 1

2

√

√

√

√

(
b

m
)2 −

256πρR4z∗1

(

vi
√

v2 + v2i

)

m(16z∗21 −R2)2
. (3.28)

Since only a positive real eigenvalue will cause instability, I only focus on the

positive square root part of the characteristic equation. In order to further simplify

the eigenvalue, consider the boundary conditions for ground effect, i.e. z∗1 = R/2

29



and 2R. For z∗1 = R/2, the eigenvalue of interest is

λ = − b

2m
+

√

(
b

2m
)2 − 11.17ρR

m

(

vi

√

v2 + v2i

)

. (3.29)

Since the square-root term is always smaller than b
2m

, the eigenvalue is always neg-

ative and hence the system is stable for the boundary condition of z∗1 = R/2, where

ground effect is the strongest. For the case of z∗1 = 2R, similar steps are taken as

before such that (3.29) is then

λ = − b

2m
+

√

(
b

2m
)2 − 0.1013ρR

m

(

vi

√

v2 + v2i

)

. (3.30)

Similarly, the square-root term is always smaller than b
2m

, hence the eigenvalue is

always negative and the system is stable for z∗1 = R/2, where ground effect is the

weakest. Hence, the rotor being perturbed IGE by a with sideward wind v is stable.

Physically, (3.23) means that the rotor generates more thrust due to the sideward

wind v and is referred to in the literature as translational lift [18].

3.3.2 Axial Perturbation

Now assume that an axial wind w = |W | impinges on the rotor from the top.

I follow a similar procedure as the analysis of the sideward wind to characterize the

stability. The rotor thrust caused by the wind is

T = 2ρAvi(vi − w). (3.31)
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The dynamics of a rotor IGE under the influence of uniform axial wind w is

ḧ =
32ρAh2

(16h2 −R2)m
vi(vi − w)− g − b

m
ḣ,. (3.32)

Note that a few sources in the literature including [21] and [22] do not in-

clude the damping or drag term b into the heave dynamics but only do so for the

translational dynamics. The reason cited was that the classical drag model predicts

significant residual drag in hover [21]. Instead, Bangura and Mahony [21] (simplified

even further by Leishman et. al. [22]) only include a simplified drag term on the

translational dynamics.

My previous work [14] simulated the rotor heave dynamics IGE without damp-

ing with open-loop constant input, as shown in Fig. 3.4. This system represents a

spring-mass system that constantly oscillates, but experimental observations dictate

that these oscillations damp out pretty quickly, both due to drag and also friction

from the connection points of a heave test stand. Also, without damping, the real

parts of the system eigenvalues are zero, as is evident by setting b = 0 in (3.26),

hence rendering the system stability inconclusive, which is not the case. As such, I

proceed with the assumption that b is a positive constant.

The nonlinear state space form (3.25) has

V = vi(vi − w), (3.33)
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and a21 (3.34) in the the Jacobian (3.26) is

a21 =
−64πρR4z∗1 (vi(vi − w))

m(16z∗21 −R2)2
. (3.34)

Similarly, the eigenvalue of the system which may cause instability is associated

with the positive square-root term as in (3.28). Looking at the boundary condition

z∗1 = R/2, the eigenvalue of interest is

λ = − b

2m
+

√

(
b

2m
)2 − 11.17ρR

m
v2i +

11.17ρR

m
viw. (3.35)

If vi >> w, the v2i term within the square root dominates and I have a stable

system. However, if w >> vi, the w term dominates and (3.35) becomes

λ = − b

2m
+

√

(
b

2m
)2 +

11.17ρR

m
viw. (3.36)

The square-root term for this case is larger than b
2m

and as such, the real part of

the eigenvalue becomes positive for w >> vi, which means the system is unstable!

The same argument can be made for the z∗1 = 2R case, where the eigenvalue

of interest is

λ = − b

2m
+

√

(
b

2m
)2 − 0.1013ρR

m
v2i +

0.1013ρR

m
viw. (3.37)

Similar to the previous case, we have a stable system if vi >> w, but if w >> vi,
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the w term dominates, (3.37) becomes

λ = − b

2m
+

√

(
b

2m
)2 +

0.1013ρR

m
viw, (3.38)

and I have an unstable system.

If I examine (3.31), it is obvious that when v = w, the rotor stops producing

thrust! This phenomenon is the onset of instability, since the system is perturbed

far away from the equilibrium condition of hover it was linearized about and has no

means of returning to the equilibrium point without thrust. If w >> vi, the rotor

then produces negative thrust. Physically, as the wind passes through the rotor,

which has a constant speed regulated by a motor, the wind speed increases due to

this additional power from the rotor and generates thrust, albeit antiparallel to the

initial direction of rotor thrust. In essence, the wind is extracting power away from

the rotor and if w >> vi, all the thrust is generated by the wind in the opposite

direction of the original rotor thrust.

Figs. 3.6(a), (b), (c) and (d) show the phase portraits of (3.32) with increasing

vertical wind w magnitude. Fig. 3.6(a) shows a center (equilibrium point) at (z∗1 , z
∗

2)

= (0.7, 0), which is the equilibrium condition for vi = 4m/s. Note that the lower

limit of the horizontal axes is z1 = 0.25 because this is the point at which the

denominator for (3.3) goes to zero and the model breaks down. Fig. 3.6(b) shows

the equilibrium point moving towards z1 = 0.25 as w increases. Fig. 3.6(c) is when

thrust is equal to zero, so the first term in (3.32) goes to zero. This is the onset

of bifurcation as the equilibrium point has vanished and the system transitions into
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Figure 3.6: Open-loop dynamics of rotorcraft without damping in ground effect with
constant input ν2 = ν∗

2 . Initial conditions for height and speed are (1.5m, 0.25m/s).

being unstable (from previously being stable). Fig. 3.6(d) shows the phase portrait

of the unstable system, where again there are no equilibrium points.

Finally, as axial wind comes from below the rotor, it is akin to the rotor flow

in descending flight, which enters into vortex ring state, turbulent wake state and

windmill brake state and momentum theory does not hold for these states. Hence,

stability analysis with simple momentum theory cannot be conducted on axial wind

from the bottom of the rotor.
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Chapter 4: Height and Speed Estimation

4.1 Grid-based Recursive Bayesian Filter

The Bayesian filter [13] [23] is a probabilistic approach for estimation that

assimilates noisy measurements into a probability density function (PDF) using

nonlinear system dynamics and observation operators. The optimal Bayesian filter

for linear systems with linear measurements and Gaussian noise is the Kalman

filter [24], whereas a common Bayesian filter for nonlinear systems with nonlinear

observation and noise models is the particle filter [25].

A grid-based recursive Bayesian filter can be rapidly implemented for a low-

dimensional state-space representation of the rotorcraft downwash with linear pa-

rameter estimates and a nonlinear measurement model. It is of note that even

though linear paramater estimates and Gaussian white noise is assumed for my

measurement and process noise, these are not required assumptions for the Bayesian

filter.

Familiar estimation tools in the literature, such as the Kalman filter and the

Extended Kalman filter, were not used as they require linear observation models.

Other tools such as the Unscented Kalman filter (UKF) [26], Ensemble Kalman

Filter [27] and Particle filter [25] allow for nonlinear dynamics and measurement
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models. As an alternative, the Unscented Kalman filter [26] is an approximate

nonlinear estimator that differs the inevitable divergence with highly nonlinear sys-

tems or measurements and approximates the estimated PDF as a Gaussian distribu-

tion. [24]. The Ensemble Kalman filter typically requires a sampling ensemble size

of 50 to 100 for the estimation of thousands of states [27], with applications such as

weather forecasting. The particle filter provides high performance estimation but it

requires careful selection of its estimation state vector because it is prone to sample

impoverishment, requires careful tuning and comes at a higher computational cost.

Simon [24] derives and compares these other filters while detailing their applications

and limitations.

Fig. 4.1 shows the general principles of a grid-based recursive Bayesian filter. I

begin with prior knowledge of the estimated system state that is expressed in terms

of a PDF. The next step involves collecting measurements and evaluating the like-

lihood that the measurement resulted from a nearby state. The likelihood function

is then assimilated with the prior PDF according to Bayes’s theorem to generate a

posterior PDF. A prediction is made by shifting and diffusing the posterior using

the system dynamics and process noise. The estimation is finally made by taking

the mode of the final PDF and the process is repeated.

4.2 Estimation Step

The Bayesian framework consists of the estimation and the prediction step.

In the estimation step, the Bayesian filter in the form of [13] estimates the vehicle
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Figure 4.1: General principles of grid-based recursive Bayesian filter. Credit: Frank
D. Lagor.

height based on the flow-velocity measurements from an array of differential pressure

sensors. Grid-based Bayesian estimation is performed recursively, in which the finite

parameter space over height h is discretized and the PDFs are evaluated on this

grid for each new measurement. Let h be the single state of a one-dimensional

Bayesian filter. Recall that the noisy flow measurement Ṽ is corrupted with zero

mean Gaussian noise as in (2.12). Let L = {Ṽ1, ..., Ṽm} denote the set of observations

from m sensors. Note that each velocity component measurement (even at the same

location) is treated as a separate measurement. The posterior probability of the

state h given the measurements L is [13]

P (h|L) = cP (L|h)P (h|L0), (4.1)

37



where c is the scaling factor chosen so that P (h|L) has unit integral over the state

space. The likelihood function P (L|h) is the conditional probability of the obser-

vations L given the state h and P (h|L0) represents the prior probability distribu-

tion. During initialization or in the absence of measurements, the prior probability

P (h|L0) is uniform.

I choose a Gaussian likelihood function for the measurements Ṽl, l = 1, ...,m,

i.e.,

P (Ṽl|h) =
1√
2πσ

exp

[

− 1

2σ2
(Ṽl − Vl)

2

]

, (4.2)

where Vl is the flow at height h generated from the flow model (2.10) or (2.11) and

σ2 is the measurement variance. The posterior probability density of the state h is

obtained using the joint measurement likelihood combining the measurements taken

from all m sensors [13], i.e.,

P (h|L) = c

(

m
∏

l=1

P (Ṽl|h)
)

P (h|L0). (4.3)

The estimated height ĥ corresponding to the mode (supremum) of the posterior

probability P (h|L) provides the maximum likelihood estimate of the flowfield pa-

rameters.

Spatial integration over the sensor array is accomplished by (4.3), whereas

temporal integration is accomplished by assigning the posterior of the current time

step to be the prior for the next time step.
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4.3 Prediction Step

The prediction step consists of shifting and diffusing the probability mass to

account for the vehicle dynamics using the Chapman-Kolmogorov equation [25],

P (h(t+∆t)|L(t))

=

∫

P (h(t+∆t)|h(t))P (h(t)|L(t))dh(t), (4.4)

where t is the current time step and ∆t is the time step interval. Numerically, the

probability density is shifted along the grid according to the estimated speed ẑ2. If

the estimated speed ẑ2 is positive, I shift the PDF to the right and vice-versa. The

number of grid points to shift is determined by the product of the estimated speed

ẑ2 and time interval. After shifting, the probability density is normalized to ensure

the PDF integrates to one.

To account for uncertainty in the motion model, the probability density is

diffused with process noise κ by convolution with a grid-sized Gaussian window

whose width is inversely proportional to the standard deviation of the process noise

σκ. (This step is done with the MATLAB functions gausswin and convn.)
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4.4 Prefiltering and Filter Tuning

4.4.1 Prefiltering

It was observed that the measurements collected were extremely noisy, which

causes unreliable estimation even after significant Bayesian filter tuning efforts. In

order to improve the performance of the filter, an extra prefiltering step was intro-

duced to prefilter the noisy measurements before they are passed into the Bayesian

filter. Given the corrupted measurement Ṽ from (2.12), the goal is to compute an

estimate V̂ of the original velocity component signal V through a process known as

signal reconstruction, which is also known as denoising or smoothing [28].

The quadratic smoothing convex optimization method is implemented. The

reconstruction method uses the quadratic smoothing function [28]

Λquad(V ) =
n−1
∑

i=1

(Vi+1 − Vi)
2 = ‖DV ‖22, (4.5)

where V is the velocity component signal I wish to reconstruct and D ∈ R
(n−1)xn is

the bidiagonal matrix

D =

































−1 1 0 ... 0 0 0

0 −1 1 ... 0 0 0

... ... ... ... ... ...

0 0 0 ... −1 1 0

0 0 0 ... 0 −1 1

































. (4.6)
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The optimal trade-off between ‖V̂ − Ṽ ‖2 and ‖DV̂ ‖2 is obtained by minimizing [28]

‖V̂ − Ṽ ‖22 + δ‖DV̂ ‖22, (4.7)

where δ > 0 parametrizes the optimal trade-off curve. The solution to this quadratic

problem is [28]

V̂ = (I + δDTD)−1Ṽ , (4.8)

and it can be efficiently computed as I + δDTD is tridiagonal [28].

Figure 4.2: Comparison between measurements and quadratically smoothed values
of velocity components.

Fig. 4.2 shows the comparison between measurements Ṽ and quadratically

smoothed values of the velocity components V̂ , with δ = 500. The trends of the
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measurements are still preserved in the smoothed values and the mean of both values

are identical. Most importantly, the standard deviations of the smoothed values for

u, v, w are reduced compared to that of the measurements, which means that the

Bayesian filter can trust the smoothed values more and focus on estimation.

4.4.2 Filter Tuning

The standard deviations of measurement noise ση and process noise σκ in the

Bayesian filter can be used as tuning knobs to improve the filter performance in

terms of estimation accuracy and convergence speed. Simple statistical analysis

such as computing the mean and standard deviation of the measurements in hover

is useful for figuring out the nominal values.

The value of ση for each measurement signifies how much the Bayesian filter

should trust the measurement, with a higher value implying noisier measurements.

The ratios between ση for u, v and w is an indicator of how noisy each measurement

is relative to each other. Standard deviation of the process noise σκ is an indicator of

the system dynamics speed. Higher values of σκ signify that the state space evolves

quickly. By tuning ση and σκ, the accuracy of the estimates can be improved.

Another pertinent issue is the convergence speed of the filter, which is an indi-

cator of the time required for convergence between the actual height and estimated

height. Ideally, I want a fast observer that converges to the actual height as quickly

as possible. The convergence speed is also determined by ση and σκ. ση >> 1

implies a slow observer because the filter trusts the measurements less and has to
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extract the trends of the noisy measurements. On the other hand, σκ >> 1 implies

a fast observer because larger process noise indicates faster dynamics which allows

the observer to converge to different heights quickly.

4.5 Speed Estimation

The vertical velocity ẑ2 is estimated from the estimated height ẑ1 by finite

differencing, i.e.,

ẑ2,p = αẑ2,p−1 + (1− α)
ẑ1,p − ẑ1,p−1

∆t
, (4.9)

where 0 < α < 1, the index p indicates the current time step and ∆t is the time

interval between each simulation step. Eq. (4.9) is a low-pass-filter that removes

most of the effects of noise.
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Chapter 5: Control Design

The controller is designed and implemented for height tracking operations

which include hover, climb and descent to new equilibrium heights and landing.

Design requirements for these operations include short rise time, small overshoot

and steady-state error. Three controllers are designed, which include an optimal

Linear Quadratic Regulator (LQR) and a Proportional-Integral (PI) controller with

Feedforward. The LQR controller is verified in simulation, while the PI-Feedforward

controller is implemented on the heave test stand.

5.1 Linear Quadratic Regulator

Given the linear system dynamics (3.25) with known states Z, non-zero initial

conditions Z(0) and noiseless dynamics, the optimal control ν which takes the system

to zero state (Z = 0) is the Linear Quadratic Regulator (LQR) problem. The

optimal control ν is computed by minimizing the cost function [29]

J =

∫

∞

0

(ZTQZ + νTSν)dt, (5.1)
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where Q and S are appropriately chosen constant weighting matrices such that

Q = QT ≥ 0 and S = ST ≥ 0. The optimal solution for any initial state which

minimizes the cost function is the full-state feedback control input ν = −KX [29]

where

K = S−1BTX, (5.2)

and X = XT ≥ 0 is the unique positive-semidefinite solution of the algebraic Riccati

equation [29]

ETX +XE −XFS−1F TX +Q = 0. (5.3)

5.1.1 LQ Full State Feedback Control

The state space system of a rotorcraft IGE (3.25) in control affine form is

Ż = f(Z) + g(Z)ν2, (5.4)

where

f(Z) =









z2

−g









and g(Z) =









0

16z2
1

16z2
1
−R2









. (5.5)

Fig. 3.4 shows that the constant-input open-loop nonlinear system with ν2 = ν∗

2

oscillates about the equilibrium point, which implies that feedback control is needed
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to asymptotically stabilize z1 to the desired height. A linear controller to be used

with the nonlinear system dynamics is

ν2 = ν∗

2 +∆ν2, (5.6)

where ∆ν2 = −K(Z − Z∗) and K = [K1 K2]. The closed-loop dynamics with the

linear full state feedback controller (5.6) are

Ż =









z2

−g









+









0

16z2
1

16z2
1
−R2









(ν∗

2 +∆ν2), (5.7)

i.e.,

Ż=









z2

−g +
16z2

1

16z2
1
−R2

(

g
16z∗2

1
−R2

16z∗2
1

−K1(z1 − z∗1)−K2z2

)









. (5.8)

The gains K1 and K2 are chosen by LQR (5.2).

If the states of the system are assumed to be known, LQ full-state feedback

control can be implemented using the linear controller (5.8). Figure 5.1 compares

the nonlinear closed-loop dynamics (5.8) to the linear closed-loop dynamics (3.13),

using linear controller (5.6). The Jacobian matrices in (3.26) are evaluated at the

equlibrium height. Initial conditions for the height and speed are (1.8m, 0.9m/s)

and desired steady-state conditions are (0.75m, 0m/s).
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Figure 5.1: Closed-loop dynamics of rotorcraft in ground effect with full-state feed-
back using the linear controller (5.6).

5.1.2 LQ Observer-based Feedback Control

Lack of knowledge of actual states of the system is common in most real-world

applications. As such, observers or filters are typically implemented to estimate

these states and the observed states are then used for feedback control. I can

estimate the height z1 of my rotorcraft IGE using a Bayesian filter and the vertical

speed z2 using (4.9). With these estimates, I can implement an LQ observer-based

feedback control with (5.8) by letting Z = Ẑ.

Fig. 5.2 shows the evolution of the posterior probability density of estimated

height during Bayesian filter-based closed-loop ascent (Fig. 5.2(a)) and descent (Fig.

5.2(b)). Fig. 5.2(a) shows an ascent maneuver from initial normalized height and

speed (with respect to R) of (0.7, 0/s) to a commanded height of 1.8 and process and
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Figure 5.2: Simulations of the closed-loop control system with estimated height
using the Bayesian filter framework show the posterior probability density of nor-
malized height h/R and normalized speed plotted versus time. (a) Ascent maneuver
from initial height and speed of (0.7, 0/s), commanded height of 1.8 and process
and measurement noise standard deviation of (0.1, 0.15/s); (b) descent maneuver
from initial height and speed of (1.8, 0.2/s), commanded height of 0.6 and process
measurement noise standard deviation of (0.08,0.1/s); (c) estimated speed using
low-pass-filtered (LPF) finite differencing for ascent maneuver in (a); (d) estimated
speed using low-pass-filtered (LPF) finite differencing for descent maneuver in (b).

measurement noise standard deviation of (0.1, 0.15/s). Fig. 5.2(b) shows a descent

maneuver from initial height and speed of (1.8, 0.2/s) to a commanded height of 0.6

and process and measurement noise standard deviation of (0.08, 0.1/s). Fig 5.2(c)

and (d) show the estimated speeds using the low-pass-filtered finite-differencing

method (4.9) for ascent in (a) and descent in (b), respectively.

These manuevers are simulated using the closed-loop dynamics (5.8) with

Z = Ẑ. Process noise κ, which is Gaussian white noise with standard deviation

σκ and zero mean, is added to (5.8) in the filter. The estimated height ẑ1 is evalu-
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ated recursively by the one-dimensional Bayesian filter. The vertical velocity ẑ2 is

estimated using the finite-difference low-pass filter method (4.9).

Fig. 5.2(a) and (b) show that the initial height estimation error is large be-

cause the prior PDF is uniformly distributed. As the Bayesian filter assimilates

measurements over time, the posterior probability density peaks and the estimated

height converges to the actual height. As more measurements are taken, the filter

narrows the probability density. Note that Fig. 5.2(a) has a bigger spread through-

out its probability density distribution than Fig. 5.2(b), due to the higher noise

variances.

Fig. 5.2(c) and (d) show that the initial speed estimates are relatively large

as the difference between succesive height estimations is also relatively large. This

effect is influenced by the Bayesian filter initiation and also the controller, which

is driving the system to the comanded height. As the system reaches steady state

at about 4s, the speed estimates begin to more closely track the actual speed. The

first-order speed estimation could be improved by using a higher-order estimation

method.

5.2 Proportional Integral (PI) Controller with Feedforward

As shown in Fig.5.3, a Proportional Integral (PI) controller with feedforward

is implemented on the heave test stand due to its ease of implementation. The heave

test stand is actuated with a brushless motor that is controlled with an Electronic

Speed Controller (ESC) that takes Pulse Width Modulation signals as control in-

49



put for motor rotational speed regulation. The PWM control input from feedback

control is computed with a PI controller

νPI = KP (z
∗

1 − ẑ1) +KI

∫

(z∗1 − ẑ1)dt, (5.9)

where KP and KI are the proportional and integral gains.

Figure 5.3: Block diagram of Proportional Integral controller with feedforward.

Feedforward control is typically used to speed up the closed-loop system re-

sponse and compensate for unmodeled dynamics by feeding in set inputs. I imple-

mented the feedforward controller in order to compensate for the transient dynamics

of the brushless motor-ESC, which is dissimilar from the steady-state dynamics. The

feedforward control input νFWwas based on a curve fit for the open-loop transient

PWM-height curve shown in Fig. 5.4. The sum of the feedback and feedforward

control inputs

ν1 = νPI + νFW (5.10)
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are then rate limited and saturated before being input into the ESC.

Figure 5.4: Open-loop transient PWM versus height for feedforward controller.
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Chapter 6: Experimental Setup and Validation of Flow Model

6.1 Test Setup

Figure 6.1: Static-height test stand.

Experiments were conducted to verify and implement the theoretical frame-

work presented in the previous chapters. These experiments were conducted on two

experimental test stands. The dynamic compound pendulum heave test stand is

shown in Fig. 3.1, while the static-height test stand is shown in Fig. 6.1.

The static-height test stand was built with linear carriages and rails in a ver-

tical configuration and it was observed that this configuration was not sufficiently

smooth. As such, the static-height test stand was used to collect measurements of
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radial v and vertical w velocity components at static heights.

6.2 Experimental Instrumentation

Figure 6.2: Block diagram for experimental instrumentation.

Fig. 6.2 shows a block diagram of the experimental instrumentation, which

is categorized into three parts: sensing (blue), estimation and control (green) and

actuation (purple). The differential pressure probe sets are connected to differen-

tial pressure sensors to measure radial and vertical flow pressure. The pressure

measurements are then collected by a Teensy microcontroller for prefiltering and

conversion into velocity components. These velocity measurements are transmitted

to the computer for height estmation and closed-loop control. The actuation of

the experimental setup consists of a Brushless Direct Circuit (BLDC) motor and

Electronic Speed Controller (ESC) pair. Speed-control input requires Pulse Width
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Modulation (PWM) square wave signals with variable timescales, which are gener-

ated by the RC receiver or Arduino Nano microcontroller according to control inputs

from the computer. All physical data connections are made through Universal Serial

Bus (USB) cables.

Table 6.1: Experimental Equipment.

Equipment Model & Make

Brushless Direct Circuit Motor 850Kv AC2830-358
Differential Pressure Sensors Honeywell

HSCDRRN001NDAA3
Direct Circuit Power Supply Mastech HY3030E
Electronic Speed Controller eRC Rapid Drive 25A
Modular Aluminum Profiles MakerBeam & 8020

Microcontroller: Cortex-M4 Teensy 3.1
Data Acquisition
Microcontroller: ATmega328

Motor Speed Arduino Nano
Remote Control Radio Spektrum DX6i

Rotor HobbyKing 14X4.7
Carbon Fiber

Motion Capture Facility OptiTrack Flex 3

Table 6.1 lists the make and model of the experimental equipment. Note that

the Remote Control (RC) radio is used for manual motor-speed control, whereas the

Arduino Nano microcontroller is used for automatic speed control. My scaled rigid

rotor has rotor radius R = 17.78 cm (7 in.).

A differential pressure probe set that is capable of measuring the radial and

vertical differential pressure consists of two pairs of tubes, as shown in Fig. 6.3.

Each pair is connected to a differential pressure sensor [11]. The pressure sensors

are connected via an analog interface to the Teensy 3.1 Microcontroller for Data
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Figure 6.3: Two-pair differential pressure probe set providing radial and vertical
velocity components after conversion.

Acquisition (DAQ). Since the pressure measurements are relatively noisy and the

pressure sensor and DAQ microcontroller are capable of higher data rates than the

estimation and control loop in the computer, a Moving Average Filter (MAF) is

implemented on the pressure measurements to generate velocity measurements Ṽ .

The MAF implementation is

Ṽ =
p

J

J
∑

j=1

P̃j, (6.1)

where P̃j is the instantaneous measurement from the differential pressure sensor,

J is the number of datapoints to average over and p is the conversion factor from

differential pressure to velocity [11].

Fig. 6.4 shows the instrumentation setup for the compound pendulum heave

test stand, which is similar to that of the static heave test stand. Motion capture

(MoCap) markers are mounted on the probe bracket for height ground truth. Two

different probe configurations are mounted on the probe bracket, which are the

single pair and two pair sets. The single probe pair is placed close to the rotor
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plane to measure the vertical differential pressure which corresponds to the induced

velocity. This measurement is used as an input to the ring-source potential flow

models (2.10) and (2.10). The two pair probe set is capable of measuring both

radial and vertical differential pressures. In order to reduce inter-probe interference,

the induced velocity probe is mounted azimuthally 180
◦

away from the two pair

probe set and all probes are mounted above the probe bracket directly into the

rotor flowfield.

Figure 6.4: Compound pendulum heave test stand instrumentation.

6.3 Flow Model Validation for Varying Radial Locations

Fig. 6.5 compares the measured radial and vertical velocity components with

the flow model at multiple radial stations for normalized height h/R = 0.75. The

data is filtered with J = 105 data points in the MAF (6.1). The average of five

consecutive measurements are plotted. Error bars on the measured values show the
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Figure 6.5: Comparison between ring-source potential flow models (2.10), (2.11)
and experimental results of radial v and vertical w velocity components for various
radial locations. Error bars on the measured values indicate one standard deviation
away from the mean. Normalized height h/R = 0.75, normalized probe location
z/R= 0.18, rotational speed ω=2538 RPM, induced velocity IGE vi = 4.34m/s.

values one standard deviation away from the mean. The probes are placed at vertical

location z/R = 0.18 from the rotor plane, the motor rotational speed ω = 2538 RPM

and induced velocity IGE vi = 4.34 m/s. The induced velocity IGE is the average

of vertical velocities close to the rotor plane across multiple radial locations and, in

this case, the induced velocity probes are at vertical location z/R = 0.05.

The measured radial velocity v crosses over from positive to negative at r/R=0.75,

which represents suction toward the rotor hub. Taking the standard deviations into

account, some of the radial measurements agree with the model, but the model does

not predict the velocity sign changes. This is due to the geometry of the ring sources

because inward flow at opposite sides of the same ring cancel out and radial velocity

is always outward and positive. Furthermore, the radial flow is also influenced by
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turbulence and the tip vortices of each rotor blade, whereas the flow model only

captures the mean velocity.

The measured vertical velocity w increases with increasing radial station from

z/R= 0.4–0.75 and then decreases rapidly for the outboard section. The model

predicts a similar trend of increasing vertical velocity with increasing radial station

and gradually tapering off at approximately the same radial station as the measure-

ment but still underpredicts the vertical velocity component. The underprediction

is likely because the induced velocity used in this flow model is an average rather

than the local value. Another effect that my flow model does not model is the tip

losses due to tip vortices. Despite being a highly reduced-order potential flow model

which doesn’t model the unsteady aerodynamics and tip vortices, the model still

captures the general trend of both radial and vertical velocities.

6.4 Probe Placement and Flow Model Validation for Varying Heights

Figure 6.6: Probe placement in strong and weak ground effect.

Probe placement is affected by many factors, but most importantly, the probes

have to be well within the rotor slipstream boundary in order for the model to

58



Figure 6.7: Comparison between ring-source potential flow models (green) and ex-
perimental results (blue) of radial v, vertical w and induced vi (red) velocity com-
ponents for varying heights. Experiments were conducted on the compound pen-
dulum heave test stand with probe vertical locations of z/R = 0.1 (solid circle)
, 0.2 (dashed diamond) and zvi = 0.075. The probes are radially symmetrical at (a)
(x, y) = (0, 0.4672R); (b) (x, y) = (0, 0.7807R); (c) (x, y) = (0, 0.8714R).
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match the measurements, as shown in Fig. 6.6. Note that the figure is merely an

illustration and for any given experiment, either the inboard or outboard probe is

mounted and not both together in order to minimize inter-probe interference. The

following experiments illustrate the importance of proper probe location.

Fig. 6.7 compares the ring-source potential flow models (green) (2.10), (2.11)

with experimental results (blue) of radial v, vertical w and induced vi (red) velocity

components for varying heights. Experiments were conducted on the compound

pendulum heave test stand with probe vertical locations of z/R = 0.1 (solid circle)

, 0.2 (dashed diamond), zvi = 0.075 and radially symmetrical probe locations at (a)

(x, y) = (0, 0.4672R); (b) (x, y) = (0, 0.7807R) and (c) (x, y) = (0, 0.8714R). The

induced velocity probe measures local induced velocity which is used as an input

into the potential flow model.

For probe locations at (x, y) = (0, 0.4672R), Fig. 6.7(a) shows relatively con-

stant radial velocity v measurements for increasing height. The vertical velocity

w measurements increase for increasing height and decreasing vertical probe loca-

tion. The flow model captures the general trends even though it overpredicts the

radial velocity v and undepredicts the vertical velocity w. These prediction trends

are similar to those shown in Fig. 6.5, but the difference between measured and

predicted vertical velocity w is smaller for this experiment. This is likely caused by

the local induced velocity vi at a radially symmetrical location being input into the

flow model as opposed to the average for the previous experiment.

For probe locations at (x, y) = (0, 0.7807R), Fig. 6.7(b) shows that the radial

velocity measurements v begin to fluctuate for decreasing vertical probe location
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while the model stays relatively flat. The vertical velocity w measurements also

display similar trends to that of (a) but they begin to decrease after h/r = 1.5,

which is not captured by the model. The decrease in w and fluctuations in v are

likely caused by the probes being closer to the edge of the slipstream boundary

and the effects of tip vortices becoming more profound. The slipstream boundary

contracts more as the setup moves to greater heights and the ground effect becomes

weaker, which causes the vertical velocity w to be slower as the probes are closer to

the tip and the radial velocity v to fluctuate. Since the model does not model tip

vortices, these detailed effects are not captured. The general trends are somewhat

captured at this radial station for (b), albeit not as well as for the inboard case in

(a).

Finally, for probe locations at (x, y) = (0, 0.8714R), Fig. 6.7(c) shows that

the radial velocity v measurements decrease with increasing height for z/R = 0.20

and then increase slightly with decreasing height for z/R = 0.10. The general trend

is similar for the model, which still overpredicts the measurements. The vertical

velocity w measurements for both vertical sensor locations decrease with increasing

heights. However, the model diverges from the measurement trends and its vertical

velocity w still increases for increasing height and then tapers off. The divergence

is caused by the (outboard) probe being clearly outside the slipstream boundary,

as shown in Fig. 6.6. Once the probe is outside the slipstream boundary, it is no

longer measuring the flowfield due to ground effect but rather the flowfield outside

the rotor wake, which is not modeled by the ring-source potential flow model.

Since tip effects are not captured within the flow model, probe placement has a
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signifcant effect on measurement-model mismatch. In fact, a nominal 12% increase

in the radial location from y = 0.7807R to 0.8714R places the probe well outside the

slipstream boundary and causes model divergence. Hence, as shown in Fig. 6.8, it is

highly recommended that the probes be placed in a radially symmetrical fashion at

about mid-radius where tip effects aren’t as significant and the model captures the

general trends of the measurements within the operational region of ground effect.

Figure 6.8: Rotor side view showing recommended mid-radius location with radial
symmetricity for both two-pair flow probes (radial v and vertical w velocity compo-
nents) and induced velocity vi flow probe.
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Chapter 7: Validation of Estimation and Observer-based Feedback

Control

7.1 Validation of Height Estimation Framework

An experiment was conducted for the purpose of validating the height estima-

tion framework. The experiment was flow-sensing based Bayesian height estimation

and closed-loop control using the actual height provided by the motion capture fa-

cility. The grid-based recursive Bayesian height estimation was implemented with

(4.3) and the closed-loop control was performed with a PI and feedforward controller

(5.10). The probes are radially symmetrical at (x, y) = (0, 0.4672R), z/R = 0.20

and zvi/R = 0.075. The standard deviation for measurement (v, w) and process

noise are (4.8, 2.4, 10). The measurements are prefiltered by means of J = 50

points in the MAF (6.1) and δ = 500. for quadratic smoothing (4.8).

Fig. 7.1 shows the experimental results which validates the height estimation

framework. Fig. 7.1(a) shows the commanded heights in black. The heave stand

was initiated at normalized height z/r = 0.75 and ascended to z/r = 1.6 and then

descended to z/R = 1. The height estimates (blue) are plotted against ground truth

(red) provided by MoCap. The filter response was satisfactorily fast and tracked the
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Figure 7.1: Validation of flow-sensing based Bayesian height estimation with closed-
loop height tracking using motion capture. The probes are located at (x, y) =
(0, 0.4672R), z/R = 0.20 and zvi/R = 0.075. The standard deviation for measure-
ment (v, w) and process noise are (4.8, 2.4, 10), J = 50 points for the MAF and δ =
500 for quadratic smoothing. (a) Desired (black), actual(red) and estimated (blue)
normalized height h/R; (b) percentage estimation error; (c) flow model (green) and
measured (blue) radial velocity v; (d)flow model (green) and measured (blue) verti-
cal velocity w and measured induced velocity vi (red).

height changes well. Fig. 7.1(b) shows the percentage estimation error between the

estimated and actual height, with zero mean error in this sample run. The mean

estimation errors observed over multiple runs were less than 5% (1.1 cm or 0.44in.).

Most estimation errors were within the ± 20% range. As the system settled towards

a steady-state height or the system speed is sufficiently slow, the estimation quickly

converged as can be seen at 30s and 65s.

Fig. 7.1(c) shows the measured (blue) and model (green) radial v velocity.
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Fig. 7.1(d) shows the measured (blue) and model (green) vertical w velocity as

well as the induced velocity vi. The model velocity components plotted are the

components corresponding to the estimated height with the induced velocity as

input. Note that the estimation error is smallest when the model velocities match

the measured velocities, which allows the Bayesian filter to accurately evaluate the

likelihood function (4.2).

Figure 7.2: Posterior probability density of flow-sensing based Bayesian filter height
estimation framework with closed-loop height tracking using motion capture.

Fig. 7.2 shows the posterior PDF of the Bayesian height estimator shown in

Fig. 7.1. The axes are the same as that of Fig. 7.1 for comparison. For the first

20s when the heave stand does not move at z/R = 0.7, the filter is confident in

its estimate, as shown by the color map. As the heave stand ascends after 20s, the

filter converges quickly because the PDF has less spread. At 30s, the heave stand

is making small corrections which is tracked by the filter, but it is not as confident

in its estimate as it was in the first 20s, as is evident in the color map and the
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large spread. However, the dynamic filter becomes more confident in its estimate

from 50 – 60s because the heave stand is barely moving and the filter can make

more accurate estimations based on previous measurements from a similar height.

Similar performance is observed for the descent maneuver, where the filter estimate

converges with the actual height from 65 – 85s.

Beyond 85s, the filter estimate bounces around and the PDF has more spread,

which is likely caused by measurement noise. Note that the estimation error is the

smallest within this time period at 100s, which corresponds with a match between

the model and measured vertical velocity w shown in Fig. 7.1(d). Shortly before and

after 100s, the velocities do not match up closely, hence the increase in estimation

error. If the experimental period had been extended with the heave stand at steady-

state, the dynamic filter would have been able to resolve this error, as shown in the

static case of the first 20s.

7.2 Validation of Observer-based Feedback Control

The final experiment was conducted to validate the observer-based height

tracking framework using only flow-sensing based Bayesian filter height estimation

and feedback-feedforward control. This experiment is similar to the experiment con-

ducted in the previous subsection, but the height for feedback control was provided

by the Bayesian filter in this case. All other parameters are the same.

Fig. 7.3 shows the experimental results, which validates the Bayesian filter-

based feedback-feedforward height tracking framework. Fig. 7.3(a) – (d) show the
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Figure 7.3: Validation of observer-based height tracking framework using only flow-
sensing based Bayesian filter height estimation and feedback-feedforward control.
The probes are located at (x, y) = (0, 0.4672R), z/R = 0.20 and zvi/R = 0.075.
The standard deviation for measurement (v, w) and process noise are (4.8, 2.4, 10),
J = 50 points for the MAF and δ = 500 for quadratic smoothing. (a) Desired (black),
ground truth (red) and estimated (blue) normalized height h/R; (b) percentage
estimation error; (c) flow model (green) and measured (blue) radial velocity v in
m/s; (d)flow model (green) and measured (blue) vertical velocity w and measured
induced velocity vi (red) in m/s; (e) PWM control input ν1 (blue), feedforward term
(magenta), desired input (red) prior to rate limiter and saturation (dashed black).
Loop speed of 39 loops/s is acheived ; (f) percentage motion error.

same plots as Fig 7.1, with the exception that this manuever is for observer-based

closed-loop control. Fig. 7.3(e) shows the PWM commands for various terms,

including control input ν1 (5.10) (blue), feedfoward term (magenta) and desired

control input (blue) before being rate limited and saturated between 110 – 126

PWM (dashed black). Loop speed of 39 loops/s is acheived. Fig. 7.3(f) shows the

percentage motion error between desired height and actual height.

The mean estimation and motion errors for this sample case are 4% and 7%
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respectively. As before, most of the estimation and motion errors fall within the

±20% range. The biggest estimation and motion errors result from changes in the

commanded height around 18s and 55s. For multiple runs with the same parameters,

the mean estimation errors were observed to be less than 5% (1.1 cm or 0.44in.) and

the motion errors were less than 9% (2 cm or 0.79 in.). Another factor to consider

when evaluating the cause of estimation errors beyond unsteady aerodynamics, tip

effects and measurement and process noise is that the estimation error is close to

the mean probe tip-to-tip length of 1.2 cm, which is in effect the average resolution

of my probes.

Figure 7.4: Posterior probability density of observer-based height tracking frame-
work using only flow-sensing based Bayesian filter height estimation and feedback-
feedforward control.

Fig. 7.4 shows the posterior PDF of the Bayesian height estimator used

for closed-loop control, as shown in Fig. 7.3. In general, the PDF tracks height

changes well and converges to the actual height quickly. Generally, the filter for

observer-based closed-loop control is less certain of its estimation than that of Mo-
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Cap closed-loop control, as shown by their color maps (both PDF color maps have

their thresholds set at 70% of maximum probability).

From 25 – 35s, the feedback controller drives the estimated height to the

commanded height, but there is a mismatch with the actual height as the filter is

not estimating well at this time frame. The filter is also not as confident in its

estimation, as shown by the large spread in the PDF. Note that the PDF in both

observer-based and MoCap closed-loop control have large spread in their PDFs and

lower probabilities at the high end of the grid, which could be caused by weaker

ground effect at greater heights. Once again, as the system settles into steady-state

height at 40s and 105s, the filter converges to the actual height and the closed-loop

control is capable of driving the system to the right height.
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Chapter 8: Conclusions

This thesis describes a framework for dynamic height estimation and observer-

based feedback control using flow sensing for rotorcraft operation in ground effect. A

ring-source flow model for the rotor downwash in ground effect developed using po-

tential flow theory captures the essential characteristics of the relationship between

flow velocity and height. The reduced-order flow model used for fast evaluation of

the flowfield in a recursive control loop has been experimentally validated. It was

found that the flow model best predicts the flowfield with measurements collected

mid-radius. A ring-source potential flow model with tilt to introduce roll or pitch

angle is also developed. A static and a dynamic compound pendulum heave test

stand were built and their merits are discussed. A nonlinear dynamic model of the

compound pendulum heave test stand which reduces to the dynamics of a rotor-

craft landing in ground effect is derived and allows for the study of the open-loop

dynamics and facilitates the design of a closed-loop controller. It is shown that a

uniform sideward wind increases the thrust of a rotor in ground effect and does not

cause instability. A uniform axial wind from the top of the rotor can cause insta-

bility, if it has greater magnitude than the rotor induced velocity. The height of

the rotorcraft in ground effect is experimentally estimated with a grid-based recur-
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sive Bayesian filter using the three-dimensional flow model and differential pressure

probe measurements. Finally, flow-estimation-based closed-loop control is imple-

mented, demonstrating that height estimation and control is possible using only

flow sensing and modeling. Mean estimation error no greater than 5% (1.1 cm or

0.44 in.) and mean motion error no greater than 9% (2 cm or 0.79 in.) is achievable.
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