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SUMMARY

Scientists and engineers have long been interested in explosions. These ubiqui-

tous, disruptive events occur throughout the Universe, and when controlled, they

have been used by humans for both good and ill for many centuries. There are many

types of explosions, but in all scenarios they involve a tremendous release of energy.

Whether it is chemical, nuclear, or magnetic energy, the explosion event culminates

in the outward propagation of strong pressure waves. In a stellar explosion or su-

pernova, the blast wave propels large clouds of gas and dust through the interstellar

medium (ISM) populating the Universe with the heavy matter necessary for the for-

mation of stars and galaxies. More common, however, are chemical explosions, such

as those occurring from the detonation of a high-explosive. In these events, the ex-

plosion is initiated by a detonation wave that converts chemical energy into kinetic

energy providing the power to propel the blast wave. This expansion of hot gases is

further supported by the combustion of the unburnt products as they mix with the

surrounding air. The physical processes of both stellar and chemical explosions are

similar. In general, the explosive event can be divided into two parts, one concerning

the energetic conversion process, which could occur through a detonation wave, and

the second concerning the mixing of the explosive products and the interaction of the

blast wave with the surrounding environment.

Given the long history of using chemical explosives in engineering, the detonation

and explosion of a condensed-phase material is moderately understood. Nuclear and

stellar explosions, on the other hand, are far more complex and far more difficult

to observe. As a result of the magnitude and scale of the event, electromagnetic
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and gravitational forces, radiative heat transfer, and dispersed phase dynamics can

be important. In this thesis, the effects of a magnetic field are considered. Two

particular scenarios are addressed. In both cases, the effects of a magnetic field have

been observed to be important, and the two scenarios align with the two sub-divisions

of the explosion process previously mentioned, categorized so by the time scales in

which they occur; the propagation of the detonation occurs at much shorter time

scales than the blast accelerated mixing processes occurring in the aftermath of the

explosion. More importantly, these scenarios highlight the two different ways in which

a magnetic field can influence a plasma.

Since the ISM is known to have a persistent background magnetic field, it could

influence supernova. Flow instabilities driven by the explosion can amplify the mag-

netic field through an inductive electromotive force, possibly to a magnitude that

might alter the overall dynamics of the explosion. A similar process is often used

in engineering applications of detonation and explosion, i.e., using an applied mag-

netic field coupled with a detonation wave to generate energy through an inductive

electromotive force. From a more general perspective, the magnetic field can also

affect the underlying physics governing the nature of the propagation of a detonation

wave. As a result of the difficultly in extracting detailed information about how a

detonation or explosion behaves in a magnetized environment, numerical simulations

are often needed to further substantiate observation. A significant effort in this thesis

has been the implementation of numerical methods capable of simulating detonation

and explosions in such a setting, wether it be in an astrophysical environment or in

the products of a high-explosive. The challenge is a result of the requirement for the

magnetic field to be divergence free. This imposes a severe restriction on the extension

of numerical methods developed for non-magnetized flows to magnetohydrodynamics

(MHD).
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Several different numerical methods for MHD have been implemented and are as-

sessed based on their ability to simulate compressible, resistive MHD flows containing

strong shocks. These methods are grouped into two categories. The first group of

numerical methods are categorized by their common use of some type of divergence

cleaning algorithm. The second group of numerical methods use a constrained trans-

port algorithm, which builds the divergence free nature of the magnetic field into the

numerical method itself. As a result, constrained transport methods are popular and

have been commonly used in many astrophysical codes. These methods, however, are

complex and difficult to extend to high orders of accuracy. Furthermore, adapting

these methods for resistive MHD and ensuring they are consistent within a hybrid

shock capturing scheme is not straight-forward task. In order to avoid these compli-

cations, divergence cleaning methods are often used instead. This class of numerical

methods, however, suffers from the further burden of requiring proof that the cleaning

algorithm is indeed adequate, particularly since the choice of the divergence cleaning

algorithm can be problem dependent. Thus, it is beneficial to have a general numer-

ical method for MHD allowing for the choice between many different options. This

allows for a careful assessment of the “right” numerical method for the application

such that the simulation is robust, computationally efficient, and has a high order of

accuracy.

Using these numerical methods, a gaseous ionizing detonation wave is simulated in

a domain allowing the detonation to freely propagate in an unconfined environment.

While not all explosions necessarily produce detonation waves, most condensed-phase

explosions do (it is still uncertain whether deflagration to detonation transition occurs

in supernovae). In terrestrial applications, the temperature of the explosive products

of a condensed-phase detonation are high enough for ionization reactions to be signif-

icant. Values of the electrical conductivity computed from numerical simulations are

comparable to those measured in experiments. When a detonation wave propagates
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in an applied magnetic field, numerical simulations indicate that the magnetic field

affects the structure of the detonation wave, ultimately affecting the propagation of

the wave. By varying the electrical conductivity through the addition of potassium

and by changing the magnitude of the magnetic field, the detonation propagation

is shown to be dependent on the Stuart number with the length scale based on the

half-reaction distance and the time scale dependent on the velocity of the detonation

wave.

Whether or not detonation occurs, the fluid mixing processes in the post-explosion

flow are similar. Flow instabilities drive fluid entrainment, and as the surface area

of the material interface between the different fluids increases, mixing at a molecular

level becomes more significant. Eventually the mixing zone transitions from a laminar

to a turbulent mixing process resulting in a final state of fully-developed turbulence.

This process is altered in a magnetized plasma. In this thesis, the Richtmyer-Meshkov

instability (RMI) is used to study fluid mixing. Depending on the electrical conduc-

tivity of the plasma, the magnitude of the magnetic field, and the time-scales of the

RMI, the instability can be stabilized. A criteria for this is established for both ideal

and resistive plasma. In a resistive plasma, the magnetic Reynolds number deter-

mines the effectiveness of the magnetic field to influence the growth rate of the RMI.

If mixing is not initially inhibited by the stabilization of the RMI, the mixing pro-

cess is shown to excite a dynamo process which amplifies the magnetic field until

it becomes saturated. Once saturation occurs, the large-scale fluid entrainment is

inhibited. Both the amplification of the magnetic field and variable density mixing

in magnetized plasma has important implications in the ISM.
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CHAPTER I

INTRODUCTION

With an equal sense of awe and foreboding, humans have long observed the sudden

appearance and then slow fading of stars in the night sky. Perhaps the ancient

observers were correct to revere such mysteries. These “guest stars” appearing in the

night sky are as much symbols of life, death, and rebirth, as they actually are real

representations of the transformative events containing the mysteries of our existence.

For these bright, transient dots in the night sky are the last remains of a star. In death,

this progenitor expels huge clouds of rapidly expanding gas through the Universe,

populating it with the heavy matter necessary for the creation of new stars [217].

While such events are extremely rare in our galaxy, they occur with relative frequency

throughout the Universe. The first recorded observation of a supernova explosion

was made by Chinese astronomers in year AD 185 [39]. It was not until many years

later, in the year AD 1006, that a supernova was observed by a widespread number

of civilizations [75]. This supernova, occurring only 7,000 light-years away, is the

brightest to have ever been recorded. One could have seen it during the day [219].

As scientific instruments have improved, more and more detailed measurements have

been made, notably by Brahe in 1572, by Kepler in 1602, who observed the last

supernova to have occurred in our galaxy, and recently by a number of scientists in

1987 who have obtained the most detailed data of any supernova to date [112]. From

continual observation of these distant explosions and measurements of the radiation

emitted in the expanding remnants, scientists are now able to classify supernovae into

different types. Classification is far from understanding though, and there are still

many unanswered questions.
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Figure 1 is an image obtained by the Hubble Space Telescope of the remnant of the

1987 supernova (SN1987A). Generally speaking there are two types, with some sub-

classifications, of supernovae explosions. They are categorically characterized based

on the triggering mechanism of the explosion, either of the accretion/detonation type

(Type I) or the core collapse type (Type II) [217]. SN1987A was a Type II supernova.

Located in the Large Magellanic Cloud, 163,000 light-years away from Earth, it is

currently the closest supernova to have occurred in the modern age. A prominent

feature of SN1987A is that some 20,000 years prior, the dying star ejected a ring

of dense gas about its equatorial plane. This ring is easily observable in Fig. 1 by

dozens of bright spots. These distinctive “finger-like” structures were formed as a

result of a hydrodynamic fluid instability occurring when any two gases of different

density mix under the acceleration of gravity or through the momentum impulse

of the blast wave [4, 106]. The X-ray and the synchrotron radiation emitted from

the supernova remnant are still being measured today to discover more about the

dynamics of supernovae remnants [205].

Yet supernovae are just one example of explosive phenomenon. The Universe is

replete with such catastrophic events, from solar flares to magnetic reconnections.

The difference is only in the source of energy powering the explosion [145]. In other

words, the term explosion refers to any scenario in which energy (magnetic, gravita-

tional, chemical, nuclear, etc.) is injected into a system faster than it can be smoothly

equilibrated throughout the system. More exactly, an explosion occurs if the rate of

energy injection is faster than the dynamic scales defined by the characteristic time

(l0/cf ), the size (l0), and acoustic (or magneto-acoustic) velocity (cf ) of the system.

The explosion results in a rapid raise in the local pressure, and if the system is

unconfined, strong pressure waves or shock waves propagate outward while the hot

products continue to expand and cool in time [225]. This general description is as

applicable to Big Bang as it is to the explosion of a fire-cracker. Hence, a number of
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Figure 1: Image taken by the Hubble Space Telescope of SN1987A Credit: NASA /
ESA / Hubble Heritage Project. At the time when the image was taken the estimated
radius of the equatorial ring is approximately 6.23× 1012 km [150]

fundamental questions can be posed about the physics, chemistry, and dynamics of

explosions, which are intimately related to both the engineering of explosives as well as

to the understanding of the physical processes involved. The parallels are important.

Chemical explosions in comparison to astrophysical explosions are far less complex,

easier to control, and more amenable to measurement [145]. From such comparisons,

scientists can more easily develop insight into the common physical processes, such

as deflagration to detonation transition (DDT) [38], the role of compressible turbu-

lence in the mixing of hot products [194], and the interaction of shock waves with

surrounding matter [70], all of which are important in an explosion. Of particular

interest in this thesis is the influence a background magnetic field may have on an

explosion event. While such interactions are more common in astrophysical scenarios

since over 90% of the baryonic matter in the Universe is in the plasma state [49, 74],

potential terrestrial applications are investigated as well; however, in these applica-

tions, the additional consideration of plasma production must be addressed. Given
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the differences between astrophysical and terrestrial plasma, it is important to discuss

the typical characteristics of each.

In 1939, Bethe demonstrated that stars maintain their energy through the process

of thermonuclear fusion [17]. As a result, it was concluded that stars consisted pri-

marily of ionized hydrogen and helium gases. These ionized gases are visible during a

solar eclipse, where the plasma near the surface of the Sun, called the coronal plasma,

extends far from the surface, the shape of which is supported by the extending mag-

netic field lines [192]. These structures highlight the complex dynamics between a

plasma and an electromagnetic field. For example, a geometrical rearrangement of

the magnetic field lines along the surface can result in an explosion of magnetic energy

resulting in an expulsion of plasma in the form of solar flares and coronal mass ejec-

tions. These events eventually interact with the Earth’s own magnetic field creating

a dynamical system referred to as space weather [95, 111, 183].

The magnetic field also plays a fundamental role in the interior of a star or planet.

For instance, the sustainment of both the Sun’s and Earth’s magnetic field is thought

to be the caused by a non-linear mechanism resulting from the interaction between

turbulent velocity and magnetic field fluctuations. This interaction, referred to as tur-

bulent dynamo, generates an electromotive force that sustains the magnetic field [110].

Such dynamo effects, whether turbulent or laminar, are also thought to be important

in star formation and accretion disks despite the presence of the strong gravitational

force [22]. Lastly and most applicable to this thesis, inviscid fluid instabilities in

plasma are much more complex and varied [19]. For example, classical hydrodynamic

instabilities, such as the Rayleigh-Taylor instability (RTI) or the Richtmyer-Meshkov

instability (RMI) can behave dramatically different [33, 101]. This difference could

influence the dynamics of an explosion in the presence of a background magnetic

field since these fluid instabilities control the rate of mixing and the transition to

turbulence in the product gases [4].
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For instance, take the example of a supernova explosion. From observational data

of many supernovae remnants, it is apparent that all core-collapse supernovae are

non-symmetric, while Type Ia supernovae are symmetric [106, 217]. The asymmetry

of Type II SN1987A is apparent in Fig. 1. While the remnants are symmetric in

the equatorial plane, identifiable by the circle of bright structures, the two fainter

red lines in the figure form the ends of an hour-glass shaped blast wave creating

a distinct asymmetry. A possible theory is that the presence of a strong magnetic

field influences the shape of the expanding blast wave. For the magnetic field to be

strong enough to influence the explosion, instabilities, such as the magneto-rotational

instability, are likely triggered during core collapse that result in the amplification of

the background magnetic field [217]. In a similar process, as supernovae remnants

expand into the interstellar space and interact with molecular clouds of warm and

cold medium, fluid instabilities trigger vorticity production and the amplification of

the ambient magnetic field either by large scale field line stretching or by means of

a local turbulent dynamo [9, 70, 80]. These large amplifications in magnetic field,

in addition to the compressional effects of shock refraction, could contribute to an

increase in star formation [130]. From these few examples, it is clear that the magnetic

field has an important dynamical influence of the macroscopic behavior of a plasma

in an astrophysical setting.

On Earth, however, plasmas are not the norm, and given the engineering con-

straints on the possible ranges of gas densities and temperatures, terrestrial plasmas

are typically much different in composition and are often statically confined by a

strong magnetic field in comparison. For instance, the plasma in a tokamak is con-

fined by a strong magnetic field in order to maintain steady-state fusion. Any dynamic

behavior or departure from equilibrium is often disastrous. Thus, much of the early

mathematical analysis of plasmas dealt with understanding how different magnetic

field configurations affected plasma stability [36, 64]. Other examples of the controlled
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use of a plasma by an applied magnetic field exist as well, such as in electromagnetic

propulsion [97] and even in some concepts for scramjet and pulse-detonation engine

systems that envision the use of electromagnetic fields for on-board power genera-

tion, additional thrust, and added flow control [21, 102]. In this thesis, the focus

is in plasmas generated by a high energy explosion, and particularly the parallels

that such plasma dynamics may have with that of a stellar explosion. As a result,

the interest here is not how to maintain stability or control a plasma by a magnetic

field. The interest is to study what affects the dynamics of a unconstrained, explosive

plasma. Theoretical models and data suggests there is likely, but experimental data

show some discrepancy in the role magnetic field has on the propagation of detona-

tion waves [197]. Given the complexity of obtaining experimental data, numerical

modeling of the ionization processes can provide a unique insight.

Magnetohydrodynamics (MHD) is the most common mathematical framework for

studying the behavior of a plasma in a magnetic field. It is a macroscopic description

of a plasma. Therefore, in the context of MHD, a plasma is a fluid described by

the conservation laws of continuum mechanics. There is no distinction between the

individual dynamics of the electrons, ions, and neutrals; the plasma behaves as a

single constituent gas whose bulk motion responds to the influence of electromagnetic

forces. This assumption has many important implications, which are discussed in

more detail in the following chapters, but for now it is sufficient to say that while

the assumptions do impose limits on the range of length and time scales where MHD

is valid, the governing equations of MHD are still applicable to the wide range of

physical phenomenon.

Even with these simplifying assumptions, the dynamics of MHD cover a very wide

range of characteristic lengths, frequencies, and velocities [195]. This makes it dif-

ficult to develop analytical and numerical models, and to add further complexity,

experimental data is limited by the practical difficulties in obtaining measurements
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from a realistic system. Astrophysical measurements are often obtuse and difficult to

interpret [18], and only within the last ten years has it been possible to experimen-

tally observe turbulent dynamos in a laboratory, most notably in the von Kármán

sodium experiments [143]. Moreover, electrically conducting liquids available in the

laboratory are either corrosive, opaque, or very hot making them difficult to handle

and control [107]. This lack of observational data of MHD flows stresses the need for

accurate numerical models.

The objective of this thesis is to develop such a numerical model and use it to

provide further insight into the dynamics of a plasma produced by or interacting

with a flow generated by an explosion or detonation event. In the following sections,

the role of plasma and its interaction with a magnetic field is discussed within the

context of high energy explosions. The key questions are (1) how does a magnetic

field affect the hydrodynamic behavior of either a confined or unconfined explosion

or detonation, (2) what parameters govern the processes resulting in an amplification

of an ambient magnetic field, and (3) how does this generated magnetic field affect

shock-accelerated mixing processes. Given the broad context of these objectives, this

work is divided into two parts. The first part investigates the role of a magnetic field

in confined detonations. Since the energy released in a chemical detonations is much

smaller than any potential astrophysical detonation, the potential for a magnetic field

to have some effect on the flow must first be addressed; more specifically, are the gas

products electrically conducting, are they a plasma, and what are the characteristic

scales for which a MHD interaction could occur, if at all? The second part presumes

the existence of plasma and addresses a more fundamental question concerning the

dynamics of mixing in a magnetized medium resulting from an explosion or inter-

acting with a strong shock. Here, the topic of MHD instabilities and the transition

to turbulence is addressed for shock accelerated, variable density flows. Before the

objectives of this thesis are discussed in more detail, an overview of these two topics
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with a discussion of the past and current research is given below. Yet, even before

that it is useful to provide some background information on MHD and plasma.

1.1 Magnetohydrodynamics

Magnetohydrodynamics (MHD) is a macroscopic model describing the fluid dynamics

of plasma in a magnetic field. When plasma is tightly coupled to the dynamics of

the electromagnetic field, it is often referred to as a magnetized plasma to emphasize

the importance of the magnetic field. The governing equations of MHD couple the

conservation equations for mass, momentum, and energy of a fluid to the dynamics

of the electrodynamic fields, which are governed by Maxwell’s equations. Since the

plasma is treated mathematically as a fluid, the length and time scales of the plasma

must satisfy the conditions for continuum fluid behavior as well as ensuring that the

microscopic motions of the electrons and ions can be averaged such that the bulk

motion of the plasma is an accurate representation of the plasma dynamics. The

objective of this section is to provide a working definition for a plasma within the

context of MHD and then discuss qualitatively the non-linear interaction of a plasma

in a magnetic field. In the next chapter, a detailed derivation of the MHD equations

is used to substantiate the heuristic arguments provided here.

1.1.1 Definition of Plasma

A very simple definition of a plasma is to say that it is an ionized gas. Yet, such

a definition is not particularly useful. For example, the exhaust plume of a rocket

is ionized, but it is unlikely to have an significant interaction with a magnetic field.

Thus, it is useful to distinguish between partially ionized gases, i.e., the rocket plume,

and the ionized gases one typically associates with plasma. As a first measure, the

Saha equation can be used to calculate the degree of ionization of a gas in thermo-

dynamic equilibrium. If ni/nn is the number density ratio of ions to neutrals, then
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the Saha equation states [74]

n2
i

nn

=

(
2πmekBT

h2

)3/2

e−∆U/kBT , (1)

where T is the equilibrium temperature of the gas, me is the mass of an electron, kB

is the Boltzmann constant, h is the Planck constant, and ∆U is the first ionization

potential. For air at T = 300 K and with a number density of nn = 3 × 1025 m−3,

ni/nn = 2 × 10−122. Yet, inside a tokamak, where T = 108 K, ni = 1020 m−3,

ni/nn = 2.4× 1013 [74]. However, simply specifying an arbitrarily high threshold for

nion/nn is not ideal.

The following definition of a plasma is adopted. A plasma is a quasi-neutral gas

of charged and neutral particles exhibiting collective behavior by means of long-range

electromagnetic forces [36]. The consequences of this definition for a plasma are now

discussed.

1. The minimum length scale of interest, l0, must be much larger than distance over

which charge imbalance occurs.

In other words, for the length scales of interest, the plasma is effectively charge

neutral. Given a completely ionized gas, the total electron charge is qene = −nee, and

the total ion charge is niqi = Znie, where ne is the electron number density, ni is the

ion number density, Z is the atomic number of the gas, and e is the electric charge.

Quasi-neutrality implies that Zni ≈ ne. This is realizable in many applications

because charge imbalance only occurs at length scales where the kinetic energy of the

electrons is of the same order or greater than the electric potential between the charged

particles. To provide a quantitative estimate of the length scales over which charge

imbalance does occur, consider a one-dimensional model for the electric potential, φ,

in an ionized gas. The electric potential is a solution to the Poisson equation derived

from Gauss’s Law, which in a single dimension is [36]

d2φ

dx2
=

e

ǫ
(Znion − ne). (2)
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Furthermore, assume that the electron number density distribution is [36]

ne = n∞ exp

(
eφ

kBTe

)
, (3)

where Te is the electron temperature, and n∞ is the number density far away from

the electric potential. Using this expression and assuming that ni = n∞, then when

|eφ/kBTe| << 1, the electric potential can be approximated as φ = φ0 exp (−|x|/λD).

The length scale determining magnitude of the charge imbalance is then λD, the

Debye length [36],

λD =

(
kBTe

4πne2

)1/2

. (4)

This implies that if the Debye length, which is a measure of the thickness of the sheath

or the distance over which charge imbalance occurs, is much smaller than the size of

the system of interest, l0 >> λD, then the plasma is quasi-neutral, and Zni ≈ ne.

2. The number of particles in the plasma must be large, ND >>> 1.

This constraint is a corollary of the previous requirement of l0 >> λD. As the density

of the plasma increases, λD decreases, and the number of particles inside a sphere of

radius λD decreases. Thus, the ability of the plasma to shield out electric potentials

is more difficult in denser plasmas. The number of particles in the “Debye sphere” is

computed as [36]

ND =
4

3
nπλ3

D ≈
1380T 3/2

n1/2
(T in oK). (5)

Thus, in addition to l0 >> λD, the number of particles inside the Debye sphere must

be large, ND >>> 1.

3. The frequency of collisions between neutral and charged particles must be high

enough for the gas to behave like a plasma.
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Figure 2: Conditions for collective plasma behavior as a function of the number
density n ≈ ne ≈ Zni and temperature T ≈ Te ≈ Ti of the plasma. The criteria
for τn, λD, and ND are approximated based on the gas properties of hydrogen. The
reference points for the core and coronal plasma of the sun, the magnetotail, and the
tokamak as well as the scaling relationships used to compute the curves are taken
from the following references [64, 74].

For a gas to be modeled as a continuum, it is assumed that the gas particles undergo

a large number of collisions such that the distributions of the particle velocity are

given by a Maxwell distribution, and the mean distance between the fluid particles or

mean-free path, λf , is much smaller than l0. This is required even for a neutral fluid.

For a ionized gas, the electrons and ions must be strongly tied to the neutrals by the

magnetic field. In other words, the long range Coulomb interaction between charged

particles dominates over the binary collisions with neutrals and the plasma exhibits

“collective behavior.” If the frequency of collisions between the neutral and charged

particles is ω, and if τn is the mean time between collisions with neutral particles,

then ωτn > 1 is required for the gas to behave like a plasma [36].
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The first two conditions ensure that the plasma the quasi-neutral. This assump-

tions allows for a significant simplification of the governing equations since in a quasi-

neutral ionized gas, the electric field plays a secondary role. The dynamics are con-

trolled entirely by the magnetic field. The last condition is required if the dynamics

of the plasma are inherently linked to the evolution of the electromagnetic field. In

addition to these considerations, the length and time scales should be large enough

to average out the microscopic dynamics of the individual electron and ion particles.

This condition requires more mathematical sophistication in order to demonstrate

and is more quantitatively defined in the next chapter.

Figure 2 defines the conditions necessary for a plasma to exhibit collective behav-

ior. The length and time scales are computed using the criteria discussed above, but

simplified using the first order approximations [74],

τ << τn ≡
1

nnσdvth
≈ 1017

nn

√
T
, (6)

l0 >> λD ≡
√

ǫ0kBT

e2n
≈ 70

√
T

n
, (7)

ND ≡
4

3
πλ3

Dn ≈ 1.4× 106
√

T 3

n
>> 1, (8)

where σd is the effective collision cross section, which is approximated as 10−19 m2.

Using typical reference conditions, τn, λD, and ND are computed for the plasma inside

the core of the sun, the coronal plasma, the plasma in the magnetotail of the Earth,

and the plasma within a tokamak [36, 64, 74]. For the range of scales that satisfy

these limits, MHD is applicable. In the next section, a brief discussion of some of the

important physics of a magnetized plasma is provided.

1.1.2 Dynamics of a Magnetized Plasma

The mutual interaction between the magnetic field, B, and the velocity field, u, is one

of the most striking features of MHD. This mutual interaction occurs as a result of

the laws of Faraday and Ampère, and because the Lorentz force, the electromagnetic
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body force, accelerates the current carrying plasma. The non-linear interaction can

best be described by arbitrarily dividing the process into three parts [49]. First,

according to Faraday’s law of induction, an electromotive force (emf) is created as a

result of the relative movement of a plasma in a magnetic field. The emf is of order

|u×B| and induces a current density, J, of order σ|u×B| with σ being the electrical

conductivity of the plasma. Second, Ampère’s law states that a current will induce a

magnetic field. The induced current caused by the emf therefore generates an induced

magnetic field, which adds to the background magnetic field. The net result is that

the magnetic field lines seem to be dragged along by the plasma. Lastly, the total

magnetic field interacts with the induced current density resulting in a Lorentz force,

J×B. The entire process tends to reduce the relative movement of the fluid and the

field. This ability for the fluid to drag a magnetic field and for a magnetic field to

pull a plasma results in a “freezing together” of the plasma and the magnetic field.

This effect is what causes the coronal plasma loops on the surface of the Sun [49].

The extent to which the above process can occur in a plasma is dependent upon the

conductivity of the plasma, the velocity of the plasma, the strength of the imposed

magnetic field, and the magnitude of the induced magnetic field, which is in turn

dependent on the length scale of the flow. From these parameters as well as the

density, ρ, the kinematic viscosity, ν, and the magnetic permeability of free space,

µ0, four non-dimensional parameters can be defined: the magnetic Reynolds number,

Rem, the Lundquist number, S, the interaction parameter or Stuart number, N ,

and the magnetic Prandtl number, Prm. These four non-dimensional parameters in

addition to the typical non-dimensional parameters of hydrodynamic flows govern the

dynamics of MHD flows. Note that the Reynolds number, Re, is directly related to

Rem and Prm number, so only two are independent.

The magnetic Reynolds number is a non-dimensional measure of conductivity. It

can also be interpreted as the ratio between the flow time scale, τ = u/l0, and the

13



magnetic dissipation time scale, τm = l20/η, where η is the magnetic diffusivity of

the flow defined as 1/µ0σ. The currents induced by the emf convert electromagnetic

energy into heat by Ohmic dissipation which results in the diffusion of the magnetic

field. When Rem >> 1, Ohmic dissipation is small, and the magnetic field lines act

like elastic bands frozen into the conducting flow. As a consequence, the magnetic flux

through any closed material loop tends to be conserved during the motion of the fluid.

This is in direct analogy to Kelvin’s theorem of vortex tubes and is often referred to

as Alfvén’s theorem [49]. The analogue between vorticity and magnetic fields pro-

vides for a qualitative understanding of the dynamics of high Reynolds number MHD

flows. Dynamo action (turbulent or laminar) can be understood as the result of the

stretching of magnetic flux tubes; hence, in order to conserve flux as the incremental

area of the flux tube decreases, the magnetic field strength must increase. Magnetic

fields are thereby intensified as a result of the stretching of vortex tubes. A second

consequence of high magnetic Reynolds numbers is the importance of Alfvén waves

as a mechanism for propagating energy and momentum. Alfvén waves are transverse

inertial waves traveling at the velocity, va = B/
√
ρµ0. At high magnetic Reynolds

numbers, these waves propagate disturbances in a near elastic manner along the mag-

netic field lines. Colliding Alfvén wave packets have been proposed by Iroshnikov [96]

and Kraichnan [109] as a mechanism for the cascade of turbulent energy in the inertial

range.

At low magnetic Reynolds number, Rem << 1, the magnetic field induced by fluid

motion, which is of order RemB0, is negligible by comparison with the background

magnetic field, B0. The induced electromagnetic field, however, still plays a dominant,

although dissipative, role since the Lorentz force now acts to convert mechanical

energy into heat on a time scale of τJ = ρ/σB2 [49]. Unlike viscous dissipation,

Joule dissipation does not involve a derivative of velocity implying that the scales of

motion predominately contributing to Joule dissipation are not concentrated at the
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small scales [107]. The structure of turbulence can thus be drastically altered by the

presence of a magnetic field. The Stuart parameter, N = σB2
0 l0/ρu, is a measure of

the influence of the magnetic field. It is defined as the ratio of inertial to magnetic

forces in the flow or similarly, the ratio of eddy-turnover time to the Joule dissipation

time. Thus, the turbulent eddies only get stretched by the magnetic field if they

survive long enough, and this only occurs if the Lorentz force is of the same order as

the non-linear inertial term. When the interaction parameter is large, vorticity is still

transported along the field lines by Alfvén waves, but the process is now diffusive and

not oscillatory as it is in high magnetic Reynolds number limit [49]. The Lundquist

number, S, is a better measure of the determining how the Alfvén waves behave

in a plasma. If the Lundquist number is smaller than unity or smaller than Prm,

Alfvén waves are suppressed by diffusion and thus disturbances propagating along

the magnetic field lines are dissipated [3]. These non-dimensional parameters will be

discussed later in more mathematical terms when the MHD equations are derived.

1.1.3 Limitations and Applicability of MHD

In the application of the MHD to the modeling of astrophysical and terrestrial plas-

mas, a number of additional assumptions are made. First, the plasma is assumed to

be non-relativistic. The assumption is reasonable in many situations. However, in

some astrophysical systems, highly collimated jets of plasma with velocities near the

speed of light can be generated in the proximity of very massive objects, such as a

black hole or neutron star. The energy supplied by the accreting material is converted

into the kinetic energy used to power the jets. As a result, the effects of relativity are

important in the simulation of the Active Galactic Nuclei, compact X-ray binaries,

quasars, etc. [52, 134]. Additionally, relativistic jets can form in supernovae explo-

sions, such as SN1987A, and the high energy blast shock can often relativistically

accelerate particles near the shock causing gamma-ray bursts. The study of such
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phenomenon is not addressed in this thesis. However, the MHD equations have been

extended to include relativistic (both special and general) effects [52].

Second, radiative heat transfer is assumed to be negligible. These processes can be

important both in astrophysical and terrestrial plasmas; however, they are typically

only important during the initial transients. For instance, neutrinos play a critical

role in the transfer of energy within the post-explosion products of a supernova [89].

Also, radiative heating is used in tokamak to sustain the temperature of the plasma

[64]. The inclusion of radiation into the modeling of a plasma can be done without

altering the base numerical methods developed for MHD in this thesis. They are,

however, not specifically addressed here.

Lastly, as discussed in the previous section, the non-dimensional numbers can be

used to justify the simplification of the MHD governing equations. For high magnetic

Reynolds number flows, the dissipative effects can often be neglected. In the asymp-

totic limit of Rem → ∞, the ideal MHD equations can be derived. In the opposite

limit, the quasi-static MHD equations can be derived. At very low magnetic Reynolds

number, the dynamics of the plasma are separated from the evolution of the magnetic

field, which plays a purely dissipative role. In these cases, it is not important for the

criteria of a plasma to be met, since the behavior of the ionized gas is not coupled to

the evolution of the magnetic field. As is discussed in the next section, this is often

true of the ionized gases in a post-detonation flow.

1.2 Plasma Production by High-Energy Explosions

1.2.1 Detonation Theory

A detonation wave forms when a strong shock-wave dynamically couples to a reaction-

wave in such a way that a balance occurs between the release of chemical energy and

the energy expended by expansion. In the simplest of models, a detonation wave

is described as a one dimensional discontinuity propagating through the mixture.
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The detonation wave is presumed to propagate at the Chapman-Jouget (CJ) velocity

[63], which occurs when the thermodynamic state is defined by the tangency of the

Rayleigh line to the Hugoniot curve. This point also corresponds to the sonic solution

and the point of minimum entropy change across the detonation. Even though the

proposition of the CJ criterion is somewhat arbitrary, the theory is surprisingly well-

supported. Experimental measurements are within 1-2% of the predicted CJ velocity

[116].

Yet this simple theory is lacking. While the strong detonation solution can be

shown to be unstable to perturbations for freely propagating detonations, thermody-

namic and stability arguments cannot debunk the possibility of a weak solution [224].

The theoretical possibility of such a solution was demonstrated by von Neumann,

ultimately proving the necessity of the considering the structure of the detonation

in calculating the detonation speed [211]. These weak detonations or pathological

detonations have been shown to occur in detonations with fast exothermic reac-

tions followed by slower endothermic reactions, such as in H2-Cl2 detonations [56].

The incorporation of structure into a one dimensional model is generally credited to

Zeld́ovich [224], von Neumann [211], and Döoring [57] and is often referred to as the

ZND model. According to this model, the reaction zone begins at the shock discon-

tinuity or von Neumann pressure spike and is followed by an induction zone ending

at a sonic surface, the CJ-plane [186]. The shock discontinuity can be described by

the Rankine-Hugoniot conservation equations. As a result, both the ignition process

and the acceleration of the gas backwards via expansion are accounted for properly.

To determine the detonation velocity, the ZND model requires iteratively solving an

eigenvalue-based problem where the CJ-plane and the shock discontinuity bound the

problem [116]. There is no direct extension of ZND theory to MHD, but similar ap-

proximations have been made to study the electromagnetic effects using a simplified

one dimensional detonation model.
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Numerical integration of the reactive, hydrodynamic equations in one dimension

confirm the ZND model. From these one dimensional simulations the stability of the

detonation wave can easily be investigated. In the simplest of models, the chemi-

cal reactions are modeled by a global, one-step reactant to product Arrhenius rate

mechanism, and thus the most important parameter governing stability is thus the

activation energy, Ea. Increasing this value makes the detonation wave more sensitive

to small changes in the temperature. Since most detonations in gas mixtures have a

reasonably high activation energy (Ea > 27), they are only quasi-stable [116]; hence,

they fluctuate in speed, and the CJ pressure correspondingly alternates, sometimes

between one half to double the value. Yet on average, the detonation speed is close

the predicted CJ velocity.

One dimensional models still lack the necessary physics to describe the self-

sustaining mechanism of a freely propagating detonation wave. Experiments show

that detonations are inherently unsteady and multi-dimensional. Internal transverse

waves wrinkle the detonation front creating alternating weak incident shocks and

stronger Mach stems, which are connected with the transverse wave at the triple-

point. These local zones of amplified temperature and pressure cause the detonation

front to pulsate in the direction of propagation forming the classical large-scale cel-

lular structures. In the absence of weak or strong transverse waves, the detonation

wave is no long self-sustaining. Experimental evidence of this has been shown by in-

vestigating the effect of detonation propagation through a channel with acoustically

absorbing walls [161].

This sensitivity of detonation propagation to instabilities suggests that any mecha-

nism interfering with cell generation and/or the chemical exothermicity of the reaction

will affect the dynamics of the detonation wave. Indeed additional source terms such

as frictional forces or heat loss have been shown to reduce the detonation velocity
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[116]. As discussed in the next section, the electrical conductivity of gaseous detona-

tion products are typically only a few orders of magnitude larger than the electrical

conductivity of salt water. Thus, in order to increase the ionization fraction of the

gaseous detonation products, the gas mixture is often seeded by low ionization par-

ticles. The inclusion of endothermic ionization reactions of the seed particles can

impact on the propagation of a detonation. For condensed-phase detonations, how-

ever, this is not necessary since the electrical conductivity is much larger as a result of

the significantly higher post-detonation temperatures. As discussed in Section 1.1.2,

the dynamics of a plasma in a magnetic field are dependent on the Rem, which is a

non-dimensional representation of the electrical conductivity. One of the objectives

of this thesis is to study the influence a magnetic field may have on a propagating

detonation for terrestrial applications [102, 104, 156, 197]. The first requirement of

such a study is to determine the values of Rem in post-detonation flows. This is

discussed in the next section. Following that a discussion of previously conducted

experiments of a condensed-phase detonation in magnetic fields is discussed.

1.2.2 Ionization by Detonation Waves

The first measurements of the electrical conductivity in a post-detonation flow were

conducted by Basu and Fay [15] for the gaseous detonation of H2/O2 and C2H2/O2

mixtures with the inclusion of 0.667% N2 using a D.C. probe technique. From theo-

retical calculation and comparison to the experimental results, the formation of NO

ions was concluded to be the dominating contribution to the rise in the electrical

conductivity followed by contributions from O2 and H2O ions. The initial pressure

was varied from 0.1 to 1.0 atm. Higher initial pressures resulted in higher values

of conductivity. In the case of C2H2/O2 (N2) mixtures, the theoretical calculation

of conductivity included a model for the ionization of solid carbon particles. The

percent concentration of C2H2 was varied from 30 to 80 percent. Above 50 percent
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concentration C2H2, solid carbon particle ionization contributes most to the electri-

cal conductivity of the plasma. Without the inclusion of this effect, the measured

values of conductivity would be much larger than predicted by theory. This suggests

that the finely dispersed soot particles contribute in some manner to the electrical

conductivity of the gas. Following the work of Basu et al. [15], further experiments

were conducted in C2H2/O2 detonation showing time dependence in the conductiv-

ity measurements resulting from the differing ionization mechanism in the reaction

zone as compared to those in the downstream products [32, 178]. Edwards et al.

[59] have compiled a large amount of data for both H2/O2 and C2H2/O2 mixtures.

The measured conductivities are in the range of 10−3-10−1 S·m−1 depending on the

conditions. More recent studies of electrical conductivity in gaseous detonation have

reported similar trends [129, 213].

At such low electrical conductivities, however, the dynamics of the magnetic field

and the fluid are effectively decoupled, Rem << 1. The electrical conductivity must

be increased. In order to do this, particles with low ionization potentials, such as

potassium carbonate, are injected into the flow where the formation of potassium

ions increases the electrical conductivity. Basu and Fay [14] report an electrical

conductivity of 270 S·m−1 in oxy-acetylene detonations at initial pressures of 0.1

atm when seeded with 3% potassium acetylide–a four-order of magnitude increase

compared to the non-seeded electrical conductivity. More recently, similar studies

using a potassium carbonate seed were done in hydrogen-oxygen detonations [129].

In this work the measured electrical conductivity was much less than expected. The

researchers attribute this to poor mixing and incomplete oxidation of the potassium

carbonate, however, a two-order of magnitude increase in the electrical conductivity

is still observed for a 1% addition of potassium carbonate by weight. The effect of

alkali metals has been studied more extensively in flames [190]. In these studies a 1%

addition of potassium carbonate can result in flame extinction due to heat absorption
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by the seed particle during phase transition and the increased competition for atomic

oxygen in the reacting mixture. Similar affects occur in detonation waves and are

explored in more detail in a later chapter.

Another method to increase the ionization fraction of the post-detonation products

is to increase the release of energy in the detonation such that the post-detonation

temperatures are significantly higher, i.e., 8000-10000 K in comparison to 2000-3000

K for gaseous denotations. Thus, condensed phase, heterogenous explosions produce

an ionized gas with an electrical conductivity one or two orders of magnitude larger

[71]. The mechanisms of ionization in such explosions are poorly understood. Theo-

retical predictions of the equilibrium conductivity using the Saha equation are orders

of magnitude smaller than the experimentally measured values [42]. This suggests

that other mechanisms are important. Arguments have been made that the plasma is

highly cohesive and behaves as metal-like lattice structure. Supporting this argument

are observations of long-lasting conductivities [44], density-conductivity correlations

similar to metals [16], and the sudden increase in conduction when the plasma is

compressed [43]. Despite this, there have been arguments against cohesion in plasma

[50, 196]. The close coincidence of the shock front (i.e., the von Neumann pressure

spike) and the conduction front in experimental data suggests that ionization starts

long before the heat-release occurs. This supports the theory of shock-induced con-

duction of the unreacted explosive and the conduction by species formed early in

reaction zone rather than the coalescence of condensed carbon products [196]. Mea-

surements of electrical conductivity for a wide variety of high explosives including

explosives with metal additives for enhanced conductivity have been made by many

researchers [71]. The electrical conductivity for most explosives is roughly 100 S-m−1,

but values as high as 105 S-m−1 (liquid TNT) have been observed [71]. This suggests

the potential for the plasma generated by the explosion to interact with an applied

magnetic field.
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1.2.3 Electromagnetic and Detonation Wave Interaction

Experimental evidence supporting the hypothesis that an externally applied magnetic

field affects the structure and the propagation of a detonation is contradicting. Theo-

retically, an applied magnetic field can be shown to change the pressure, density, and

speed of sound at the CJ point of a detonation [86, 87]. Such predictions, however,

assume the post-detonation gases are infinitely conducting, which is not likely to oc-

cur at least for gaseous detonations. In the experiments of Cook et al. [42], a plasma

was generated by a liquid explosive Dithekite 13 (nitrobenzene/nitric acid/water in

a 63/24/13 weight ratio) and projected into a 6.4 cm diameter glass tube that then

entered a 0.1 T magnetic field at a speed of 17.0 km-sec−1. The plasma left the field

at speed of 1.3 km-sec−1. A similar experiment was conducted by Tasker et al [197]

using an HMX-cast cured explosive and a 1 T magnetic field, but they did not observe

any significant magnetic field effects. The conductivity of HMX is, however, much

smaller than that of Dithekite 13, which could possibly explain the discrepancy. The

geometrical configuration of the experiment was also different. Cook et al. [42] also

report observing the plasma propagating in a helical path. As was noted by Tasker et

al. [197] , this is not very likely owing to the very small Hall numbers estimated. Ad-

ditional configurations using PBX-9501 were also investigated by Tasker et al. [197]

to determine if any magnetic field effects could be observed. None were. There are

no other known experiments nor have there been any numerical simulations of the

phenomenon.

In the Dithekite 13 experiments, the Rem is estimated to be anywhere between

1.11 and 1.78 depending on the length scale used. In the lower bound, a length

scale of 0.04 m was used, an estimate of the conduction zone width recorded in ex-

periments, and in the upper bound the diameter of the glass tube was used as the

length scale. An electrical conductivity, σ, of 1300 S/m was assumed. Given this

estimate, the ionized gases in the post-detonation flow could behave as a magnetized
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plasma, exhibiting collective behavior. If such were the case, the magnetic field could

alter the physical processes of the detonation. For gaseous detonations, Rem << 1

is expected. In this case, the dynamics of the magnetic field are decoupled from the

dynamics of the fluid and the plasma does not exhibit collective behavior. However,

joule dissipation converts the magnetic energy of the applied magnetic field into heat.

The non-linear interaction between joule dissipation and the chemical kinetics could

result in an altercation of the detonation. This is investigated in a later chapter.

In astrophysical applications of detonation and explosions, Rem >> 1 is expected

given the extremely large amounts of energy released. In the next section, the po-

tential influence a magnetic field could have in a post-detonation flow of this type is

investigated by studying the Richtmyer-Meshkov instability.

1.3 The Richtmyer-Meshkov Instability

In this section, the dynamics of fluid mixing in an explosion is discussed. As previously

reviewed, the post-detonation flow is characterized by large-scale cellular structures

generated by the shock-shock interaction between the transverse wave, incident shock,

and Mach stem. These large-scale structures are dynamically unstable, and as a

result, the burnt products and any unreacted fuel mix on a time-scale related to

the vorticity production at the detonation front. In an unconfined environment, the

released energy results in an outward propagating blast wave and a rarefaction wave

propagating towards the center of the explosion causing implosion and a subsequent

reflected shock that then propagates back through the post-detonation flow. This

re-shock of the explosion products further compresses the flow and accelerates the

rate of fluid mixing through the creation of a larger range of turbulent flow scales,

which eventually drive the flow to a final state of fully-developed decaying turbulence

[4, 29, 185]. The primary mechanism controlling the fluid dynamics and mixing in

shock-accelerated, variable-density flows is the Richtmyer-Meshkov instability (RMI).
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For instance, the luminous spots or “fingers” in the image of SN1987A shown in

Fig. 1 are a result of the this instability. Additionally, the study of the RMI in

conducting fluids not only offers insight into the behavior of MHD flows, but also

has direct relevance to many engineering applications since laminar fluid instabilities

are important in the transition to turbulence in real systems, and the possibility

that transition could be delayed or excited using a magnetic field is relevant to many

terrestrial applications, such as inertial confinement fusion [153].

1.3.1 Hydrodynamics

The Richtmyer-Meshkov instability (RMI) [135, 165] develops when a shock wave

accelerates an initially perturbed interface between two fluids of different properties.

During shock refraction, a misalignment between the density and pressure gradients

causes vorticity generation by baroclinic torque along the interface. This unstable

vortex sheet drives the amplification of the initial perturbations, which can be char-

acterized either by a sinusoidal function of a given wavelength and amplitude (i.e.,

single-mode RMI) or a superposition of these perturbations (i.e., multi-mode RMI)

[29]. Additional instabilities, such as the Kelvin-Helmholtz instability, result in vor-

tex roll-up and an increase in the growth of the mixing layer. Furthermore, possible

secondary shocks impacting the evolving mixing layer can substantially amplify the

mixing processes [206] and quicken the transition of the layer to a fully turbulent

mixing zone.

Figure 3 shows the process of shock refraction and the vorticity generation by

baroclinic torque along interface. In the schematic, a single-mode interface separating

the light fluid of density ρ1 from the heavy fluid of density ρ2 is impulsively accelerated

by a shock wave initially traveling with the Mach number Ms. The configuration

results in a positive density gradient across of the contact discontinuity (∇ρ > 0.)

and a negative pressure gradient across the shock wave (∇p < 0). The difference in
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Figure 3: Schematic of the wave patterns formed during the refraction of the shock
wave and the initial deposition of baroclinic torque along the interface of between a
light (ρ1) and heavy (ρ2) gas.

the density and pressure gradient during shock refraction results in the generation of

vorticity. The vorticity transport equation for a inviscid flow without body forces is

Dω

Dt
= (ω · ∇)− ω (∇ · u) + 1

ρ2
∇ρ×∇p, (9)

where the vorticity is defined as curl of the velocity field, ω = ∇× u. The last term

on the right is the baroclinic torque term. As a result of this term, a vorticity sheet is

generated along the contact discontinuity making it unstable. Also shown in Fig. 3

are the resulting transmitted and reflected waves that form a shock train of transverse

waves as they propagate through the gas. For a complete review of the physics of the

RMI, please refer to the review articles of Zabusky [222] and Brouillette [29].

RMI is a fundamental fluid instability ubiquitous in both nature and engineering.

Thus it is the topic of much experimental, analytical, and computational study [29].

The basic configuration of the RMI problem in a Cartesian geometry is shown in

the Fig. 4. The first analysis of the RMI was by Richtmyer [165], who treated the

RMI as the impulsive limit of the Rayleigh-Taylor instability and was able to show

that the interface amplitude grows linearly in time. Experiments [34, 93, 100] show
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Figure 4: Schematic of a typical initial configuration of the RMI in Cartesian ge-
ometry.

good agreement with the impulsive formulation; however, as the interface amplitude

increases to roughly a tenth of the perturbation wavelength [29], the RMI transitions

to non-linear growth, and the linear theory is no longer valid. This phase of the

instability is often described as having “bubbles” rising into the heavier fluid and

“spikes” falling into the lighter fluid. Several non-linear models have been developed

to predict the bubble/spike velocities and the subsequent reduction in growth of

the interface width from mode saturation [85, 175, 227]. Such models show good

agreement to two- and three-dimensional numerical simulations [206].

In realistic applications, however, the initial interface is more accurately quan-

tified as a superposition of perturbations spanning a large range of amplitudes and

wavelengths. In this case, the RMI quickly transitions to non-linear growth following

a self-similar power-law dependence with time, h ≈ tθ, where h is the peak-to-valley

amplitude with values of θ ranging from 0.2 to 1.0. The exact value of θ is an on-

going topic of discussion [29, 30, 177]. Assuming the just-saturated mode dominates

the mixing dynamics, Dimonte et al. [53] determine the overall growth of the mixing

layer to have a growth exponential of θ ≈ 0.5. Modifications to include the effects

of initial conditions, however, show that the growth from mode-coupling alone re-

sults in θ = 0.24, concluding that any measured growth-rate larger than that must
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be dependent on the initial conditions [199]. Recent experiments [54, 55, 158] and

other analytical models [147, 162, 176] show similar discrepancies complicating the

understanding of the driving factors in the RMI growth-rate. In addition, several

computational studies have attempted to better understand how the RMI growth-

rate depends on a number of factors including the initial multi-mode perturbations

[199], the impulse strength [93, 126, 146], and the fluid composition [125].

Re-shock RMI occurs when a second shock perturbs the already evolving interface.

All experiments indicate that this second impulse results in a significant increase

in the mixing layer growth-rate [7, 30, 118, 210]. Yet, once again there is some

discrepancy in determining functional relationship of the re-shocked RMI growth-

rate. In the experiments by Leinov et al. [118] and Vetter and Sturtevant [210], the

re-shock growth is observed to be linear in time (θ = 1) and is proportional to the

velocity jump at the re-shock interface. This is consistent with theoretical predictions

[30, 35, 137], numerical parametric studies [206], and several computational studies

[40, 90, 182] of the experiments by Vetter and Sturtevant[210], all of which show a

linear growth-rate after re-shock. Only at very late times is there an indication of

mode saturation and non-linear growth. Yet, experiments by Houas and Chemouni

[94] show a growth exponential somewhere between θ = 2/3 and θ = 1.0, and in the

gas-curtain experiments of Balakumar et al. [7] and the corresponding computational

simulations of Gowardhan and Grinstein [79], the re-shock growth is much more non-

linear. Thornber et al. [200] have proposed to reconcile these differences by modifying

the linear model of Mikaelian [138] to depend on the molecular mixing fraction.

As summarized above, much of the focus on RMI has been on the development of

the instability within the parameter space encompassing three parameters: the scales

and type of initial perturbations, the impulse strength, and the fluid composition. Yet,

in many applications, such as in chemical explosions with burning metal particles [6],

in astrophysical dusty plasmas [189], or in the presence of a magnetic field, the growth
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of the instability is altered. As discussed in the first section, gaseous detonations

require seeding by low-ionization potential particles to achieve appreciable electrical

conductivity. Moreover, high electrical conductivities are often achieved in condensed-

phase explosions by using similar additives [71]. Thus, it could be expected that the

RMI occurring in the post-detonation flow would occur in a dispersed-phase flow

[185]; this, however, is not investigated here. In this thesis, the RMI is investigated

with the assumption that the flow is sufficiently ionized and places no distinction of

the type of plasma in question. The conclusions of this study are expected to be

relevant not only to astrophysical systems, where the RMI in a magnetized plasma

is most often encountered, but in terrestrial applications as well; however, in these

applications the processes of ionization would introduce an additional time scale into

the analysis. In the next section, the physics of the RMI in a magnetized plasma is

reviewed.

1.3.2 Magnetohydrodynamics

The RMI is of fundamental importance to the study of laminar and turbulent mixing

in variable density flows undergoing shock acceleration. Since for a wide variety

of flows turbulent mixing is the paramount driving mechanism controlling the fluid

dynamics, numerical simulations and experiments of the RMI, particularly in the

condition of re-shock, are fundamental to our understanding of the mixing process.

Recent advances in improving both the experimental repeatability and the diagnostic

capability of the RMI have made such experiments both practical and elucidating

[7]. They continue to aid and re-enforce corresponding numerical simulations. Yet

given these advances, there has been very little investigation into turbulent mixing in a

magnetized plasma despite its relevance to most astrophysical environments [4]. Only

recently has the combined effect of scalar mixing and the turbulent MHD dynamics

been investigated using simulations of forced isotropic turbulence [194].
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There is direct evidence that the magnetic field influences the mixing processes

in a supernova explosion. Synchrotron X-ray emission of young supernovae remnants

show variations on the time scale of a year suggesting the existence of a milligauss

magnetic field. Sano et al. [181] propose that the RMI, which is triggered by the

passage of the supernova shock through the cold and warm interstellar medium (ISM),

could be a potential mechanism for the amplification of the magnetic field, which is

nominally only of the order of microgauss. Shock compression alone can not explain

the increase, thus the amplification might also be the result of magnetic field line

stretching induced by the vorticity generated in the RMI. Sano et al. [181] study

the single-mode RMI in conditions similar to those that would occur in the ISM

using two-dimensional MHD simulations. They estimate that the Mach number of

the supernova shock to be 10-100 and the density ratio between the cold and warm

neutral media to be 10-100. The simulations conclude that an ambient magnetic field

can be easily amplified by at least a factor of 100 for Mach numbers above 50. Once

the magnetic field increases beyond a certain level, it saturates as the magnetic field

lines develop enough tension to suppress further growth of the RMI. In other words,

both the magnetic field and velocity fields are driven to a state of equilibrium. The

results of this study indicate the RMI is a promising mechanism for the explanation

of the existence of strong magnetic fields in supernovae remnants.

When the ambient magnetic field is large, Samtaney et al. [179] demonstrate using

two-dimensional numerical simulations that the growth of the RMI can be entirely

suppressed. Note that in the simulations of Sano et al. [181], the initial background

magnetic field is 5-10 orders of magnitude smaller than values used in the study of

Samtaney et al. [179]. For the purposes of comparison, the magnitude of the magnetic

field is often normalized by the thermodynamic pressure, β−1 = B2/2µ0p. Theoreti-

cally, a magnetic field perpendicular to contact discontinuity can not physically alter

the production of vorticity at the interface via the baroclinic torque. Wheatley et

29



al. [214] explain that in magnetized plasma when there is a component of the mag-

netic field vector normal to the contact discontinuity, discontinuities in the transverse

components of the velocity across a contact discontinuity are prohibited. Figure 5

shows the differences in the shock refraction physics for MHD. Instead of a vortex

sheet forming along the interface of the two fluids and persistently driving the am-

plification of the interface perturbations, vorticity is instead transported away from

the contact discontinuity by Alfvén waves or rotational discontinuities, which travel

along the magnetic field lines. In other words, the vorticity generated by baroclinic

torque during shock refraction is not given sufficient time to destabilize the interface

and promote mixing.

By linearizing the ideal, incompressible magnetohydrodynamic (MHD) equations,

Wheatley et al. [215, 216] show that the linearized equations predict an initial linear

growth rate that reduces to zero such that the asymptotic mixing layer width is

inversely proportional to the strength of the magnetic field. This inverse relationship

is ultimately related to the velocity of the Alfvén wave, which Wheatley et al. [216]

assume is always larger than some critical value that would be required if the RMI

were to be suppressed. Such a critical value must exist, since if the magnetic field

is finite, but small, it is possible for the RMI to develop unadulterated [181]. The

velocity at which this transport occurs is given by the Alfvén speed, va = B0/
√
µ0ρ⋆,

where ρ⋆ is the post-shock density. If the velocity is greater than the initial growth-

rate of the RMI, then growth of the mixing layer is suppressed. In the linear regime,

the growth velocity (vlinear) is easily estimated and a critical magnetic field strength

can be defined, Bcrit =
√
µ0ρ⋆vlinear.

In the other scenario, where the magnetic field is parallel to the initial density

interface, the RMI is stabilized for the same reason as the RTI in a parallel magnetic

field. The movement of the flow is resisted as it moves across magnetic field lines

[49]. The tensile forces causing this resistance are manifested through the Lorentz
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Figure 5: Wave diagram of an incident shock (I) interacting with a contact disconti-
nuity (CD) which for (a) hydrodynamic gas generates a reflected (R) and transmitted
(T) wave while for (b) magnetohydrodynamic gas generates two rotational disconti-
nuities (RD), a fast reflected (RF) and a fast transmitted (TF) wave.

force, and in the case of the RTI and the RMI, the perturbations amplified by the

deposition of vorticity during shock refraction are inhibited by this force. As a result,

the instability behaves more like mass-spring-damper system where the growth-rate

of the ensuing dynamics is some combination of amplification, dampening, and os-

cillation [49]. Analytical models derived from the linearized MHD equations seem to

corroborate this explanation [31, 105, 122, 159]. In real systems, a combination of

effects is likely to occur since the background magnetic field is typically randomly

distributed. While such a study would be interesting, the focus in this thesis is only

on the case of a magnetic field orientated normal to the contact discontinuity. A more

complete understanding of this scenario is important before more general applications

are studied.

While a critical magnetic field strength can be defined for the suppression of the

RMI in the case two dimensional, single-mode RMI, it is worthwhile to study the
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behavior in a more general set of initial parameters. As has been shown in hydro-

dynamic simulations of the RMI, there are observable differences in the evolution

of the two dimensional and three dimensional RMI as well as for single-mode and

multi-mode initializations. In three dimensional, multi-mode RMI simulations, mode

coupling saturates the growth rate of the RMI faster since the full range of length

scales are allowed to develop [206]. Even in the case of multi-mode, two dimensional

RMI, the growth-rate is in nonlinear regime and a critical magnetic field strength is

less quantifiable. Additionally, all previous numerical studies and theoretical mod-

els have assumed the plasma to be infinitely conducting (Rem = ∞). In a resistive

plasma, a propagating Alfvén wave is dissipated. It would be expected that for finite

values of Rem the criteria for RMI suppression in a magnetized plasma is altered.

Investigating these effects is the objective of this thesis.

1.4 Computational Methods for MHD

Two key topics introduced previously are now summarized. First, the mutual inter-

action of a magnetic field and velocity field in a plasma is important in a variety

of astrophysical and terrestrial applications and could alter the gas dynamics of an

explosion. Second, this interaction, which is macroscopic in nature, is described by

the governing equations of MHD, a mathematical model that treats plasma as a fluid

in continuum. As a result, the governing equations of MHD, in their most simplistic

form, are a set of hyperbolic partial differential equations similar to those of hydrody-

namics (HD). Thus, there is significant overlap between the numerical methods used

to solve the HD equations and those used to solve the MHD equations. The numer-

ical challenges of simulating HD flows thus equally apply to MHD. The difference,

and correspondingly the difficulty, in the designing numerical methods for MHD is a

result of the involution condition on the magnetic field requiring zero divergence in

time.
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This thesis addresses two challenges in the numerical modeling of MHD flows

for explosion applications. Since the governing equations of MHD are solved using

methods “similar” to those used in the study of hydrodynamics, the first challenge

is one typical of numerical methods applied to any high-speed flow where physical

discontinuities, such as shocks, are present in an otherwise continuous, but turbulent

flow. The difficulty is a result of the opposing requirements for a shock-capturing

scheme, which requires numerical dissipation in order to limit numerical oscillations

near discontinuities, and a low-dissipation scheme, which is needed for an accurate

resolution of the turbulent flow features [117].

The second challenge is specific to MHD and stems from Gauss’s law of magnetism,

which states that the divergence of the magnetic field is zero, ∇ · B = 0. Here, ∇

is the divergence operator and B is the magnetic field vector. Mathematically, the

requirement is an involution condition for the magnetic field [46], not technically a

constraint. This means that if the magnetic field is initially divergence free, then

it is so for all time. In the discrete approximation of this condition, however, the

magnetic field divergence is not maintained. MHD numerical simulations therefore

require some method to maintain the condition of zero magnetic divergence.

The simulation of magnetized plasma in a flows containing physical discontinuities

as well as turbulence requires a numerical methodology that mets the criteria set forth

by both of the aforementioned challenges. In the next section, an overview of shock-

capturing schemes for both HD and MHD flows is presented, followed by a discussion

of a hybrid methods, which have been used successfully in HD simulations to resolve

the opposing requirements of shock-capturing and low-dissipation numerical schemes.

Lastly, the algorithms traditionally used to maintain a zero magnetic divergence are

discussed.
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1.4.1 Shock-capturing schemes for high-speed flows

Numerical methods are typically classified based on the method of discretization of

the spatial derivatives. The most straight-forward and oldest method is the finite

difference (FD) method, which using the properties of Taylor expansions provides

estimates of the spatial derivatives by a simple application of the theoretical definition

of a derivative involving the ratio of differences across neighboring points in the

discretization. Theoretically, an infinite set of difference formulas of arbitrary order

can be derived [92]. As the order of approximation increases, the number of adjacent

points involved in the finite difference approximation or bandwidth increases. For

many high order finite difference formulas, the derivatives at different grid points are

related to one another. Expressed in this way, the method becomes implicit requiring

the solution to an algebraic system. Such formulations are more efficient since they

limit the size of the bandwidth. They are referred to as “compact” [92, 119]. The FD

method is particularly useful for a structured, uniform discretization or grid, since the

actual order of the numerical approximation can be reduced if the grid is non-uniform

[92]. These methods are often not amiable for applications with complex geometries.

A criteria of the FD method is that the discretized function is smooth and has

continuous derivatives. In high-speed flows, this is not satisfied in the regions near

flow discontinuities, and non-physical oscillations can develop since the derivatives

at these points are unbounded. Thus, alternative numerical schemes are necessary.

These schemes are often referred to as shock-capturing or upwind schemes since some

directional biasing is necessary in order to maintain numerical stability. The first such

approach highlighted the need for the numerical scheme to preserve the conservative

property of the partial differential equations. In 1959, Godunov proposed a first order

conservative scheme whereby the numerical fluxes were computed based on a finite

volume representation of a set Riemann problems at each boundary between grid

points. Most significantly, Godunov’s theorem states that “linear numerical schemes
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for solving partial differential equations, having the property of not generating new

extrema, can be at most first-order accurate” [73].

Finite volume (FV) methods are naturally conservative since they are based on a

direct discretization of the integral form of the conservation laws [92]. In contrast to

FD methods, FV methods are formulated based on cell-averaged values rather than

point values, thus the order of accuracy of the scheme is dependent on how these cell-

averaged values are computed. Control volumes are defined by the local cell volumes

of the each grid point in the mesh, and the numerical fluxes are computed at the cell

faces. FV methods, first applied to the governing equations of fluid dynamics in the

early 1970s [133, 131], rapidly became popular, particularly because of their adapt-

ability in applying them to problems complex geometries. In particular, significant

improvements in accuracy were made to Godunov’s method.

Lax and van Leer [114, 207] formulated the foundations necessary for achieving

more accurate and stable upwind schemes while still preserving the monotonicity of

the solution, i.e., meaning the scheme produces no new local extrema in the solution.

Of particular importance was the development by van Leer of the Monotone Upstream

Centered Schemes for Conservation Laws (MUSCL) approach [208, 209], which is a

specific type of total variation diminishing (TVD) scheme [82]. Detailed discussions

of these schems can be found in many standard books on numerical methods [92,

201]. The technique uses slope limiters to achieve higher accuracy while restricting

the interpolation order if necessary in order to ensure the scheme is monotonicity

preserving. Further developments in accuracy followed in the 1980s, when Colella

and Woodward introduced the Piecewise-Parabolic Method (PPM) [41]. All of these

schemes are considered to be of the Godunov-type since they employ a Riemann

solver to compute the flux at the interface of computational cell. This approach is

more generally referred to as a flux difference splitting (FDS) scheme.

Beginning the late 1980s, these methods were extended to MHD [10, 28], most
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notably the extension of the PPM to MHD by Dai and Woodward [47]. Since FDS

methods rely on accurate solutions to the Riemann problem and since exact solutions

are computationally expensive, any practical scheme must use approximate solutions

to the Riemann problem, which for MHD is complicated by existence of seven char-

acteristic waves, rather than three in HD flows. Brio and Wu [28], proposed the first

approximate MHD Riemann based on a Roe-type linearized Riemann solver [167].

Since then, there have been many other approximate MHD Riemann solvers pro-

posed [10, 223, 174]. Most significantly, a family of approximate Riemann solvers of

the HLL-type, named for the developers Harten, Lax, and van Leer [83], has been

adapted for MHD called the multi-state HLLD Riemann solver [142]. The majority

of numerical methods in astrophysics use some type of FDS methods.

A somewhat different approach to the FDS schemes represented by MUSCL

schemes [209], TVD schemes [83], and PPM schemes [41], which are usually at most

second order accurate, is the class of high order essentially non-oscillatory (ENO)

schemes, which are generalizations of the TVD schemes of Harten [84, 188]. Weighted

essentially non-oscillatory (WENO) schemes are based on ENO schemes, but use

weighting functions to select the points on the stencil over which the flow is “smooth”

[187]. Since these schemes use an adaptive stencil, they are capable of sufficiently re-

solving both the smooth regions of the flow with high accuracy as well as resolving

any discontinuity. Additionally, they are less dissipative than ENO schemes [99]. In

1994, Liu, Osher, and Chan [124] developed the first WENO scheme using a third

order accurate finite volume method, and Jiang and Shu [98] later developed a gen-

eral framework to achieve an arbitrary order of accuracy for finite difference WENO

schemes. Their fifth order accurate finite difference WENO scheme was later ex-

tended to MHD [99]. The approach has also been adapted to provide solutions to the

Hamilton-Jacobi equations for MHD [37]. A detailed discussion of WENO schemes

can be found elsewhere [1]. These finite difference WENO schemes generally employ
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a flux vector splitting scheme (FVS) and decompose the flux into characteristic space

in order to perform directional biasing rather than requiring a Riemann problem.

For flux splittings, either a Roe averaging [168] or a local or global Lax-Friedrichs

averaging [201] procedure is used for the flux computation. Specific types of flux

splitting methods can be necessary to avoid numerical instability [160]. While a

WENO scheme can be computationally expensive in comparison to a high resolution

second order method, .i.e., a MUSCL scheme, it can offer advantages if it lowers the

resolution requirements [187].

Even though WENO schemes adaptively adjust to the highest possible order of

accuracy based on the flow, they can still be more dissipative than a pure central

differencing method [117]. Hybrid schemes have been proposed to avoid the use of

a FDS or FVS upwind method in smooth regions of the flow where a low dissipa-

tion numerical scheme is necessary to directly resolve the turbulent features of the

flow. switches between the numerical evaluation of the fluxes depending on the flow

conditions. For stationary flows, the use of a hybrid scheme is straight-forward. Oth-

erwise some criteria is necessary to signal the method used to evaluate the numerical

flux. Hybrid schemes are often used in the study of shock / turbulence interaction.

For instance, Larsson and Lele [113] use a fifth order WENO scheme with Roe flux

splitting near the shock and the sixth order central difference scheme of Ducros et

al. [58] elsewhere. A dynamic switch determines which scheme to use and is based

on the ratio of the dilatation to the sum of the absolute value of the dilatation and

the mean vorticity. Any number of combinations between shock-capturing schemes

and low dissipation schemes can be developed and applied using a variety of different

dynamic switches [66, 69, 163, 166]. In addition to optimizing the accuracy of the

numerical flux computation, hybrid schemes also tend to be more computationally

efficient than a pure WENO scheme.
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1.4.2 Numerical Methods for Preserving ∇ ·B = 0

The direct implementation of standard numerical methods to MHD is complicated

by the criteria imposed on the magnetic field by Gauss’s law of magnetism requiring

that the magnetic field is divergence free. Since any numerical method, particularly

a shock-capturing scheme, tends to generate non-zero values of magnetic divergence

as a result of errors in the numerical discretization, some modifications to the scheme

are necessary in order to avoid the accumulation of these errors in time, which if not

managed can result in the unphysical transport of energy across magnetic field lines

[26] as well as the potential for numerical instability [12, 37, 202]. Generally speak-

ing, there are two approaches to numerically maintain the magnetic field divergence,

divergence cleaning methods and divergence free methods.

Divergence cleaning methods can be split into two categories. The intent of the

first category of divergence cleaning methods is to propagate any non-zero divergence

out of the computational domain. The differences between each of the methods

belonging to this category stem from how the non-zero magnetic field divergence is

propagated. Powell et al. [157] introduced a method that includes source terms

proportional to the magnetic field divergence, which are derived by assuming ∇ · B

is non-zero. These source terms propagate the magnetic divergence errors through

the computational domain at the characteristic convection time scale of the flow.

The method is often referred to as the eight wave formulation, since the degenerate

characteristic related to ∇ · B = 0 is explicitly included. There are two drawbacks

in this approach. The first is that the numerical formulation is non-conservative,

thus there is the possibility for the shock capturing scheme to predict incorrect jump

conditions near discontinuities [202]. The second is that the error propagation is

dependent on the convective time scales, which could be produce errors in regions of

flow recirculation.

A similar idea is developed by Dedner et al. [51], but an additional transport
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equation is solved for a generalized Lagrange multiplier (GLM), which propagates

errors in the magnetic field divergence out of the domain. In addition to the hyper-

bolic component, an optional parabolic diffusion term can be added to also dissipate

the errors. The method is relatively simple to implement, conservative, and can be

coupled with any numerical scheme. The primary difficulty with this method is that

the transport coefficients for the GLM are arbitrarily chosen and can be problem

dependent.

The second category of the divergence cleaning methods uses the properties of

Hodge-Helmhotlz decomposition to split the magnetic field into solenoidal and non-

solenoidal components. By solving a Poisson equation, the divergence errors in the

magnetic field can be corrected. The method was first suggested by Brackbill and

Barnes [26] and originally used by Zachary et al. [223], where it is now commonly

referred to as the projection scheme. There are two benefits to using the projection

scheme. The first benefit is that the projection scheme is easily coupled with any

numerical scheme [10, 45, 174], and while solving the Poisson equation is an implicit

calculation, several standard numerical implementations are available to perform this

calculation efficiently [61]. Second, the Hodge-Helmholtz decomposition guarantees

that the magnetic field is divergent free in the entire domain. This is not necessarily

true for either the GLM method or Powell’s eight-wave formulation. However, there

is some criticism of the projection scheme. First, since an implicit solve of the Poisson

equation is necessary, specification of the boundary conditions is more complex. The

second criticism is that the successive application of the projection scheme can corrupt

the magnetic field at high wave numbers in turbulence simulations [11]. Lastly, in a

practical implementation of any divergence cleaning method, there is a certain degree

of finesse involved in their application since these methods are not “built-in” to the

numerical method.

In contrast, divergence free methods maintain the magnetic divergence by design.
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In general, these methods are referred to as constrained transport (CT) schemes, but

in their practical implementation there is a wide variation in the design. Evans and

Hawley [60] first introduced the concept of CT to applications of MHD. In their orig-

inal formulation, staggered electric and magnetic fields were used to design difference

operators that ensure that the discrete magnetic divergence error is always of the

order of mesh discretization. Since then, there have been many variations on the

concept of CT [37, 67, 115, 127, 193]. Differences in these schemes result in how the

magnetic field variables defined at the staggered grid points are used to compute the

cell centered magnetic fields and how the magnetic field components of the numer-

ical fluxes are computed and combined in the CT scheme to update the magnetic

field. For instance, Balsara and Spicer [13], Dai and Woodward [48], Ryu et al. [174]

all construct expressions using Ohm’s law for the electric field as a function of the

fluxes computed at each cell-face, which is then differenced to update the staggered

magnetic field component within the CT approach. Gardiner et al. [67, 68] develop

a spatially unsplit CT method using the corner transport update (CTU) method of

Collela [41], and Londrillo et al. [127] also develop a multidimensional implemen-

tation of CT based on a third order ENO scheme. Additionally, there are several

unstaggered CT methods [37, 88, 62, 103, 171], which are useful for simulations using

adaptive mesh refinement. The popularity of the CT scheme is a result of its assur-

ance that the magnetic divergence is properly maintained. The primary drawback in

these methods, which is particularly true of the multidimensional implementations,

is that they can be quite difficult to implement and highly sensitive to particulars of

the implementation.

1.5 Objectives

The motivation of this thesis is to develop a general approach to the simulation of

MHD flows. By implementing several different numerical methods, the advantages
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and disadvantages of certain combinations of algorithms and models can be assessed.

While a particular emphasis is placed a certain class of problems in this thesis, the

approach adopted here can be applied to a wide variety of MHD astrophysical and

terrestrial flows. These applications, particularly to turbulence modeling, will be

discussed in the final chapter. The contribution of this thesis is demonstrated in

following three objectives.

1. Implement a numerical method for magnetohydrodynamics capable

of simulating turbulence in high-speed flows for a wide variety appli-

cations.

In development of a numerical method for MHD in this thesis, three important

criteria have been identified that need to be satisfied for a general class of tur-

bulent high-speed flows. The first is not unique to MHD. Since high-speed flows

contain discontinuities in the conservative variables, shock-capturing methods

are required. By design, however, these methods are often too dissipative to

adequately resolve turbulent motions in continuous regions of the flow without

imposing severe restrictions on the required grid resolution. A hybrid methodol-

ogy, unique to this thesis, is proposed. The second criteria is that the numerical

method must satisfy the condition for a divergence free magnetic field. Several

methods are implemented. This thesis proposes that there is not a single algo-

rithm ideally suited for maintaining a divergence-free magnetic field. The last

requirement relates to the assumptions about transport properties in a plasma.

A general approach to implementing a numerical method for resistive MHD

is again adopted. For instance at low magnetic Reynolds number flows, accu-

rate calculations of the electrical conductivity are essential. In other instances,

power-law models are adequate to the physical processes incorporated by the

inclusion of the non-ideal MHD terms. Several numerical tests are used to verify

the proper implementation of each numerical method.
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2. Determine the effect of an external magnetic field on the propagation

of a gaseous detonation.

In the application of the numerical method implemented in this thesis, gaseous

detonations are simulated in mixtures of hydrogen and air seeded with potas-

sium carbonate, a low ionization potential molecule, which is used to increase

the electrical conductivity of the flow. A detailed model for the ionization and

computation of the electrical conductivity of the mixture in the post-detonation

flow is implemented. The reduced kinetic model for the ionization process in-

cludes rates for electron impact ionization, charge exchange, and dissociative

recombination. The mixture-averaged transport model for the calculation of

the electrical conductivity is based on Chapman-Enskog theory. The computed

electrical conductivity in gaseous hydrogen-air detonations are compared to

experimental measurements. This, along with comparisons of the detonation

properties to theoretical calculations, validate the numerical approach. Next,

the effect of a magnetic field on the propagation of a detonation wave is in-

vestigated. The numerical method is capable of solving either the full MHD

equations or the quasi-static form of the MHD equations, which are valid for

low magnetic Reynolds number flows. Numerical simulations indicate that the

magnetic Reynolds number of the post-detonation is small enough for the quasi-

static assumption to valid. Using the quasi-static MHD numerical method, the

effect of the magnetic field on the propagation of a detonation wave is found to

be a function of a Stuart number based on the length scale of the half-reaction

zone and a time-scale of the detonation velocity.

3. Investigate how the Richtmyer-Meshkov instability (RMI) develops

in a resistive magnetized plasma.

In another application of the numerical method, the RMI in a magnetized
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plasma is simulated. As previously discussed, the RMI is an important mech-

anism for initiating mixing in the post-explosion flow. It is also particularly

relevant to understanding the mixing processes in the ISM. Additionally, sim-

ulations of the RMI are used to evaluate each of the different numerical meth-

ods. The RMI is analyzed in a variety of configurations in both a strongly and

weakly magnetized medium. While the RMI has been shown to be stabilized

in a magnetized plasma, this thesis proposes a generalized criteria for stability

that includes non-ideal MHD affects. In a strongly magnetized medium, the

affects of resistivity are investigated as a function of the Lundquist number. In

weakly magnetized medium, the role of the small-scale dynamo is discussed.

1.6 Thesis Layout

This thesis is organized as follows.

⋄ Chapter 2 introduces the governing equations of a magnetized, electrically-conducting

flow. These equations couple the conservation equations of mass, species, momen-

tum, and energy with Maxwell’s equations, which given some assumptions result

in the governing equations of MHD. The thermodynamic and transport models

are discussed as well as kinetic models for the species source term. Lastly, some

fundamental non-dimensional numbers of MHD are introduced.

⋄ Chapter 3 provides a discussion and detailed description of the numerical methods

implemented in this thesis. These methods are verified using a series of numerical

tests that have been historically used to evaluate MHD numerical methods.

⋄ Chapter 4 discusses the application of the numerical methods implemented here

to problems relevant to the study of MHD in astrophysical and terrestrial applica-

tions. In this chapter, the base hydrodynamic numerical method is validated and

the advantages and disadvantages of each of the numerical methods is discussed.
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⋄ Chapter 5 gives a detailed analysis of ionization in gaseous detonation waves and

discusses how the propagation of the detonation is affected by an applied magnetic

field. This application utilizes the quasi-static form of the MHD equations and

highlights the ability of the numerical method to compute the properties of a

plasma in a complex, reacting flow.

⋄ Chapter 6 details how the physics of variable density mixing in shock accelerated

flows are modified in a magnetized plasma. The numerical results are compared

to theoretical predictions and a criteria for the stability of the magnetic field is

established for resistive plasmas.

⋄ Chapter 7 summarizes the motivations and objectives of this thesis with respect

to the results provided in the previous chapters. Lastly, tasks for future work are

discussed.
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CHAPTER II

GOVERNING EQUATIONS OF MHD

In an ionized gas, many new physical processes become important. For example, since

electrons are less massive than ions, there is a likelihood for thermodynamic non-

equilibrium to develop between the electrons and ions of the ionized gas. Also, in the

presence of an electromagnetic field, the motions of the electrons and ions are altered.

This adds a new range of dynamics. Thus, it is important to understand the range

of physics described by the governing equations of MHD. To develop an appreciation

for the assumptions of the MHD model, the governing equations are derived starting

with a microscopic description of an ionized gas and ending with the macroscopic

fluid model of MHD. Figure 6 illustrates this approach. The discussion below follows

that of several introductory text books. The kinetic theory of ionized gases is most

rigorously discussed in Braginskii [27]. Both Freidberg [64] and Sutton [195] derive

and introduce the MHD equations from an engineering perspective, while Goedbloed

and Poedts discuss the MHD equations from the perspective of astrophysics [74]. For

more details on the derivation presented in this chapter, particularly Sec. 2.2, see the

previously mentioned authors. Goedbloed and Poedts [74] is particularly useful, and

their discussion is used as a primary guideline for the approach adopted here.

As a note to the reader, in Secs. 2.1 and 2.2 vector notation is used extensively.

Thus, all subscripts are used for distinguishing different variables. In Sec. 2.3, tensor

notation is adopted since it is more commonly used in the literature concerning the

type of studies conducted in this thesis. The tensor form of the MHD equations

presented here has been previously used as the basis for deriving the filtered equations

for the large-eddy simulation (LES) of the MHD equations [139, 140].
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Kinetic Theory
Boltzmann equation + Maxwell’s equations

frequent collisions
τf ≫ τi

Two-fluid Theory
Conservation equations for electrons and ions

large length and time scales
l0 ≫ Ri, τ ≫ Ω−1

i

Magnetohydrodynamics (MHD)
Navier-Stokes equations + Magnetic induction

Figure 6: Theoretical descriptions of a plasma and the required criteria for each
model. More details are provided within the text. τf is characteristic time scale of a
fluid, l0 and τ are the characteristic length and time scales of a plasma as described
by MHD, τi is the ion-collision time scale (> τe, the electron collision time scale),
and Ri amd Ωi are the ion gyro-radii and gyro-frequency, both of which represent the
largest microscopic length and time scales of a plasma. This figure is adapted from
Goedbloed and Poedts [74].

2.1 Single-particle Motion

From a fundamental perspective, Lagrangian equations for the force and heat balance

of each individual particle can be used to describe the plasma dynamics. While it is

probably apparent that such an approach is untenable for a large number of particles.

The analysis of the equation of motion for a single particle is instructive. Consider the

time-dependent motion of a non-relativistic, charged particle moving in an electric

and magnetic field, given by E(x, t) and B(x, t), respectively, where the vector x in

Cartesian space is defined as x = (x, y, z), and the variable t represents time. The
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Figure 7: Schematic of the motion of a single electron and single ion in a magnetic
field.

equation of motion for each particle is given by [25, 36] as

mα
dvα

dt
= qα (E+ vα ×B) , (10)

where qα is the charge of the particle, mα is the mass of the particle, and vα is the

velocity of the particle. The subscript α = (i, e) is used to differentiate between the

negatively charged electrons and the positively charged ions. Given values for the

electric and magnetic fields, it is possible to determine the particle velocity v(x, t) in

time.

As an example, consider a charged particle moving in a constant magnetic field

orientated in the z-direction and defined by B(x, t) = B0k. The electric field is zero.

With this simplification, an analytical solution to Eq. 10 is possible. In the direction

parallel to the orientation of the magnetic field, the particle velocity is constant,

v‖ = vz = constant. In the perpendicular plane, the particle’s motion is defined by a

system of two ordinary differential equations [36, 74],

v̇x − (qαB/mα)vy = 0, (11)

v̇y + (qαB/mα)vx = 0. (12)

where v̇x and v̇y represent the acceleration of the particle in the x and y direction. It
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is now possible to define the gyro- or cyclotron frequency as

Ωα ≡
|qα|B
mα

, (13)

and the gyro- or cyclotron radius,

Rα ≡
v⊥
Ωα

, (14)

where v⊥ is the magnitude of the particle’s velocity in the plane perpendicular the

magnetic field, which in this example is also a constant. The meaning of these terms

is clear given the solution of the particle’s motion [74],

x(t) = xc +Rα cos(Ωαt), (15)

y(t) = yc −Rα sin(Ωαt), (16)

z(t) = v‖t. (17)

Thus, a charged particle moves along the magnetic field line orbiting around a guiding

center defined by the orientation of the field. In this regard, the magnetic field defines

the large scale geometry of the plasma. BothRα and Ωα define the characteristic scales

of the motion of a charged at the microscopic level. Since the difference between the

mass of an electron is large, then the following scalings can be deduced [74],

Ωe ≡
eB

me

≫ Ωi ≡
ZeB

mi

, (18)

Re ≡
v⊥,e

Ωe

≪ Ri ≡
v⊥,i

Ωi

. (19)

As a result, Ri and Ωi provide measures of the largest length and lowest frequency

characteristic scales of the microscopic particle motion in an ionized gas. An impor-

tant result is that for an ionized gas, the gyro-frequency is only dependent on the

magnitude of the magnetic field. Thus, measurements of cyclotron radiation are an

important diagnostic for determining the magnitude of the magnetic field [74, 205].
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2.2 Kinetic Theory

Since an ionized gas typically consists of a many charged particles, Eq. 10 is not the

most feasible representation of a plasma. Particularly since unlike neutral gases, the

interaction between particles do not occur only through short-range, binary collisions.

In a plasma, this interaction is long-range and collective [36]. As a result, each

particle moves in the average electrostatic field created by all other particles. In

order to develop a trackable mathematical framework, a statistical model for the

time-dependent distribution function of each particle type is developed using kinetic

theory. The result is a set of Boltzmann equations for the particle distributions,

which are coupled to Maxwell equations for the electromagnetic. More details on the

independent derivation of the Boltzmann equation and the Maxwell equations can be

found elsewhere [20, 64].

For the purposes of this discussion, consider a fully ionized gas consisting of elec-

trons and only one type of ion (α = (e, i)). Thus, for a gas with atomic number Z,

the positive ion charge is qi = Ze, where e is the electric charge. Since the gas is fully

ionized, the processes of ionization, recombination, and charge exchange reactions are

in equilibrium and thus can be neglected. Kinetic theory then describes the motion

of the electrons and ions by a time-dependent distribution function, fα(x,v, t) which

is a six-dimensional phase space of three position coordinates xi = (x, y, z) and three

velocity coordinates vi = (vx, vy, vz). The quantity fα(x,v, t)d
3xd3v is interpreted as

the average number of particles of type α in the physical volume d3x centered about

x and the velocity-space d3v centered at v at time t. This time-dependent behavior

of fα(x,v, t) is then described by the Boltzmann equation,

∂fα
∂t

+ v · ∇fα +
qα
mα

(E+ v ×B) · ∂fα
∂v

=

(
∂fα
∂t

)

coll

= Cα, (20)

which depends on the electric field E and the magnetic field B given by Maxwell’s

49



equations,

∇× E = −∂B

∂t
, (21)

∇×B = µ0J+
1

c2
∂E

∂t
, (22)

∇ · E =
ρc
ǫ0
, (23)

∇ ·B = 0, (24)

where the explicit dependence on x and t for each vector field has been dropped

for convenience. This set of equations completes the kinetic model of a plasma.

In the above equations, c is the speed of light, ρc is the charge density, and J is

the current density. Both ρc and J provide the link between the electron and ion

Boltzmann equations and the Maxwell equations. Averaging fα(x,v, t) over velocity

space results in the particle number density,

nα(x, t) =

∫
fα(x,v, t)d

3v. (25)

Likewise, the average electron or ion velocity is

uα(x, t) =
1

nα

∫
vfα(x,v, t)d

3v. (26)

From these definitions, the charge density σ and current density J are defined, re-

spectively, as

ρc(x, t) =
∑

qαnα, (27)

J(x, t) =
∑

qαnαuα, (28)

where the summation is taken over all particle types α. As given above, the Maxwell

equations do not explicitly include the effects of polarization and magnetization, i.e.

all charges and currents in the plasma are free. The permittivity and permeability

are given by their vacuum values, ǫ0 = 8.854× 10−12 F/m and µ0 = 4π× 10−7 N/A2,

respectively.
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The term on the right-hand-side of Eq. 20, Cα, represents the effects of inter-

particle collisions between particles of type α and all other particles (Cα =
∑

β Cαβ).

As a result of collisions, the particles are scattered in an out of the volume and velocity

elements d3x and d3v. This term, however, is fundamentally different from the binary

collision integral originally derived by Boltzmann. In brief, in a plasma it is necessary

to distinguish the short-range, binary collisions from the long range interactions.

There is a significant body of literature dedicated to this task [8, 170, 204], which is

not discussed here. One simplification is to neglect this term completely. This results

in the Vlasov equation [74],

∂fα
∂t

+ v · ∇fα +
qα
mα

(E+ v ×B) · ∂fα
∂v

= 0 (29)

where the long-range interactions between particles are still retained through E and

B, but the plasma is effectively collisionaless. Equations 20-28 represent a closed

system for the microscopic dynamics of a plasma.

In order to obtain a macroscopic equations and remove the dependence on velocity

space, the Boltzmann equations are expanded in a series of finite moments. However,

since the expansion is truncated, a closure model is necessary to include the effects of

the still unspecified higher order moments. In general, it is necessary only to consider

the following moments [64, 74]:

∂nα

∂t
+∇ · (nαuα) = 0 (30)

∂

∂t

(
nαmαuα

)
+∇ ·

(
nαmα〈vv〉α

)
− qαnα (E+ uα ×B) =

∫
Cαβmαvd

3v (31)

∂

∂t

(
nα

1

2
mα〈v2〉α

)
+∇ ·

(
nα

1

2
mα〈v2v〉α

)
− qαnαuα · E =

∫
Cαβ

1

2
mαv

2d3v (32)

where Cαβ is only nonzero for α 6= β, and the quantities 〈vv〉α, 〈v2〉α, and 〈v2v〉α are

higher moments and in general defined as

〈Q〉α(x, t) ≡
1

nα

∫
Q(x,v, t)fα(x,v, t)d

3v, (33)
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which cannot be evaluated unless some assumptions are made. The next step involves

defining the particle velocity, v, as the sum of the average component uα and a

fluctuating component defined to have a zero mean. The fluctuating particle velocity

is then defined as

wα = v − uα. (34)

As a result, thermal quantities, which have some physical significance, can be defined

[64, 74]. These are the temperature,

Tα ≡
mα

3kB
〈w2〉α, (35)

the total pressure tensor,

Pα ≡ nαmα〈ww〉α, (36)

the heat flow from random motion,

hα ≡
1

2
nαmα〈w2w〉α, (37)

and the transfer of momentum and heat by collisions of unlike particles,

Mα ≡
∫

Cαβmαwαd
3w, (38)

Qα ≡
∫

Cαβ
1

2
mαw

2
αd

3w. (39)

Substituting these expressions in Eqs. 30-46, the equations of continuity, momentum,

and energy balance are [64, 74]

∂nα

∂t
+∇ · (nαuα) = 0 (40)

nαmα

(
∂uα

∂t
+ uα · ∇uα

)
+∇ · Pα − nαqα (E+ uα ×B) = Mα (41)

nα

(
∂Eα
∂t

+ uα · ∇Eα
)
+∇ · (uα · P+ hα)− qαnαuα · E = Qα + uα ·Mα (42)

where Eα = mαu
2
α/2 + 3kBTα/2 is the total energy. The total pressure tensor can be

decomposed into isotropic and anisotropic terms. The scalar pressure is defined as

pα = nαkBTα, (43)
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and the anisotropic part is πα. Thus, in Eq. 41,

∇ · Pα = ∇pα +∇ · πα (44)

As discussed in Freidberg [64], the energy equation is often further reduced by com-

puting the dot product of Eq. 41 with vα and then subtracting the result from Eq.

42. As a result, the complete set of the two fluid equations (α = e, i) are [64]

(
dnα

dt

)

α

+ nα∇ · uα = 0 (45)

nαmα

(
duα

dt

)

α

+∇pα − nαqα (E+ uα ×B) +∇ · πα = Mα (46)

3

2
nαkB

(
dTα

dt

)

α

+ Pα : ∇uα +∇ · hα = Qα (47)

∇× E = −∂B

∂t
(48)

∇×B = µ0e (niui − neue) +
1

c2
∂E

∂t
(49)

∇ · E =
e

ǫ0
(ni − ne) (50)

∇ ·B = 0 (51)

where (
d

dt

)

α

≡ ∂

∂t
+ uα · ∇ (52)

The above equations are still require closure since the expressions πα, hα, Mα, and Qα

involve higher order moments and the collision operator, Cαβ. In order to determine

expressions for these terms, some assumptions are necessary [64, 74]. If the each type

of particles undergo sufficient collisions, then it is possible to define a reference state

based on the assumption of local thermodynamic equilibrium, which is expressed by

the Maxwell distribution,

f 0
α(x,v, t) = nα

(
mα

2πkBTα

)3/2

exp

(
−mαw

2
α

2kBTα

)
. (53)

Based on this assumption, the temperature then defines the random thermal velocity,
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VTα = (2Tα/mα)
1/2. For the ions, the dominant collision mechanism is from ion-

ion collisions, while the electrons equilibrate both through electron-ion and electron-

electron collisions [64]. For a a characteristic MHD frequency, ω ≈ ∂
∂t
≈ VTi

/l0, where

l0 is the reference MHD length scale. A quantitative criteria for this assumption is

based on the collision time scales of the electrons and ions, τii and τee ≈ τei, which

must be less than the time scales for which a hydrodynamic description of each of the

particles is valid [64, 74]. This requires

ωτii ≈ VTi
τii/l0 << 1, (54)

ωτee ≈ (me/mi)
1/2VTi

τii << 1. (55)

In the above expression, τee ≈ (me/mi)
1/2τii. Additionally, the macroscopic length

scale must be larger than the mean free path of the electrons and ions. This require-

ment is more restrictive for the electrons [64]. In conclusion, for the plasma to be

collision dominated, the following criteria must be satisfied [64, 74],

VTi
τii/l0 ≈ VTi

τee/l0 << 1 (56)

A more detailed discussion is given elsewhere [8, 20, 27, 74]. Using transport theory

along with similar scaling arguments, the following approximate expressions for the

higher order moments are derived

πe,i ≈ µe,i∇ue,i (57)

he,i ≈ −κe,i∇(kBTe,i), (58)

Me = −Mi ≈ −eneηJ, (59)

Qe +Qi = −(ue − ui) ·Me ≈ η|J|2 (60)

where only the leading terms are included. The transport coefficients, µe,i, κe,i, and

η are the electron and ion coefficients of viscosity, the electron and ion coefficients

of heat conductivity, and the electrical resistivity, respectively. In general, they are
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anisotropic tensors functionally dependent on the density, temperature, and magnetic

field. The anisotropy of the tensor form of the transport coefficients is related to the

gyro-frequencies of the electrons and ions. For instance, the electron heat conduc-

tivities, κe
⊥/κ

e
‖ ≈ (Ωeτe)

−2 << 1, where Ωe is the electron gyro-frequency defined

previously and τe is the electron collision time [74]. Obviously, electron transport can

be highly anisotropic. However, theoretical estimates of the magnetic resistivity show

much less anisotropy [74], η = η⊥ = 2η‖.

In order to reduce the two fluid equations into the single fluid MHD equations,

the macroscopic single fluid variables are defined as linear combinations of the two

fluid variables [64, 74]. For instance, the definitions

ρ ≡ neme + nimi, (61)

ρc ≡ −e(ne − Zni), (62)

u ≡ (nemeue − nimuui)/ρ, (63)

J ≡ −e(neue − Zniui), (64)

p ≡ pe + pi (65)

T ≡ Te + Ti (66)

define the gas density, the total charge density, the center of mass velocity, the current

density, the pressure, and the temperature, respectively. In order to remove all the two

fluid variables, the inverse relationships of Eqs. 61-66 are exploited using asymptotic

arguments to neglect the high frequency, short wavelength information on the range

of the length and time scales of interest [64, 74]. For instance, define the mass ratio

µm = Zme/mi, then,

ne =
Z [ρ− (mi/Ze)ρc]

mi (1 + µm)
≈ Z

mi(1 + µm)
ρ,

ni =
ρ+ µm(mi/Ze)σ

mi (1 + µm)
≈ Z

mi(1 + µm)
ρ, (67)

where the above approximations are satisfied if |ne − Zni| << ne or mi|ρc|/Ze << ρ
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[74]. Both are statements of quasi-neutrality. To demonstrate this, consider the case

of a fully-ionized, cold plasma in the two fluid approximation where all thermal effects

can be neglected (Pα, hα, Mα, and Qα are zero), but a small charge imbalance exists

[74]. The electric field is given by,

∇ · E =
ρc
ǫ0

=
e

ǫ0
(Zni − ne) . (68)

Assuming that a small perturbation in the charge imbalance results in a faster ac-

celeration electrons than ions as a result of the mass difference (mi >> me), then

the equation of motion for the ions simplify to ui = 0, and thus, ni ≈ n0/Z. Lin-

earizing the electron equations for small perturbations gives ne ≈ n0 + n1(x, t) and

ue ≈ u1(x, t). The set of equations for n1 and u1 then describe the plasma oscillations

resulting from a small charge imbalance [74]. This set is given by

∂n1

∂t
+ n0∇ · u1 = 0, (69)

me
∂ue

∂t
= −eE1, (70)

∇ · E1 = −
e

ǫ0
n1 (71)

can be reduced to a single partial differential equation [74],

∂2n1

∂t2
= −n0∇ ·

∂u1

∂t
=

n0e

me

∇ · E1 = −
n0e

2

ǫme

n1, (72)

which admits solutions of the form n1(x, t) = n̂1 exp (−iωpet). The characteristic

frequency, ωpe is the electron plasma frequency, defined as

ωpe =

√
n0e2

ǫme

(73)

The electron plasma frequency is a fundamental parameter of a plasma [74]. De-

termining the spatial variation in the amplitude of the oscillations, n̂1(x), is more

complicated, but in summary, the scale of thermal fluctuations is related to the De-

bye length,

λD ≡
√

ǫkBTe

n0

e2 =
VT,e√
2ωpe

. (74)
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The above derivation [74] demonstrates that for characteristic frequencies (ω =

1/τ) much less than the electron plasma ω << ωpe and for characteristic lengths

l0 >> λD, the plasma can effectively assumed to be charge neutral, ρc ≈ 0. The

electrons are assumed to have infinitely fast electron response time. From a similar

scaling argument as in Eq. 67, the remaining two fluid variables can be removed based

on the assumption of negligible electron inertia, me → 0 or µm → 0. This requires

that the time scales are long compared to both ωpe and the electron gyro-frequency,

Ωe, and similarly that the length scales are larger than λD and the electron gyro-

radius, Re. More restrictively, as demonstrated more exclusively elsewhere [64, 74],

this requires,

ω << Ωi, l0 >> Ri. (75)

As a result of Eq. 67, ne = ni ≡ n, and thus the mass density is ρ = min. By

a similar argument, the momentum of the fluid is dominated by the movement of

the ions, u = ui, and the current density is defined as J = en (ui − ue). The most

strenuous criteria is that of thermodynamic equilibrium between the electrons and

ions [64], which implies Te = Ti. This is only satisfied if there are sufficient electron-

ion collisions during the MHD flow time scale. This can be stated as ωτeq << 1,

where τeq is the equilibrium time scale and can be approximated as

(
mi

me

)1/2
VTi

τii
l0

<< 1 (76)

The time for thermodynamic equilibrium is long compared to the momentum ex-

change time, and thus this assumption is more restrictive than the previous assump-

tion of requiring the plasma to be collision dominated in order to establish fluid

behavior.

Through linear combinations of the two fluid equations multiplied by either mass

or charge factors and use of the asymptotic results, the conservation equations for

mass, momentum, and energy of a single fluid can be derived. Details can be found
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elsewhere [64, 74], and only a few results are highlighted here for the purpose of

demonstration. Adding the electron and ion momentum equations results in

ρ

(
∂u

∂t
+ u · ∇u

)
− J×B+∇p = −∇ · (πi + πe) (77)

where the definition Me = −Mi was used [64]. The right-hand side represents the

non-ideal effects of momentum transfer by random velocity fluctuations. Assuming

πe ≈ 0 (πi is larger by a factor of (mi/me)
1/2) and using the first order approximation

of πi with µ as the mixture viscosity from Eq. 57 results in the Navier-Stokes equation

with the addition of a MHD force term,

ρ

(
∂u

∂t
+ u · ∇u

)
− J×B+∇p+∇ · (µ∇u) = 0, (78)

where the additional term for the magnetic force, J×B, is called the Lorentz force [64].

In a similar manner, though the algebra is much more complicated, the conservation

equation for the total energy can be derived were scaling arguments can be used to

eliminate the electron transport terms [64, 74]. This results in an additional source

term, J ·E, the electromagnetic power dissipation along with a work term associated

with the Lorentz force.

Simplifications to Maxwell equations are now discussed. The displacement cur-

rent, added by Maxwell to Ampére’s law of induction, can also be shown to be neg-

ligible when the velocities of the particles constituting the plasma are assumed to

be non-relativistic, u0 << c. For a length scale of L and velocity scale u0, the dis-

placement current is shown to be O(u2
0/c

2) and thereby negligible by comparison

[74],

1

c2

∣∣∣∣
∂E

∂t

∣∣∣∣ ≈
u2
0

c2
B

l0
, (79)

|∇ ×B| ≈ B

l0
.

Thus, the current density and the magnetic field are directly related through the
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pre-Maxwellian form of Ampére’s law,

J =
1

µ0

∇×B (80)

Additionally, the assumption of quasi-neutrality can be used. To demonstrate this,

it is instructive to decompose the electric field into solenoidal and non-solenoidal

components, Es and Er respectively, where the total electric field is then given as

E = Es+Ei. From Coulomb’s law, the electrostatic field Es is defined as irrotational,

and Gauss’s law states that the divergence of Es is fixed by the total electric charge

density, ρc, which on the scales of MHD is negligible. Mathematically, these two laws

state

∇ · Es =
ρc
ǫ0
≈ 0, (81)

∇× Es = 0. (82)

where the assumption of quasi-neutrality, σ ≈ 0 is used. The electric field is decom-

posed in order to illustrate that even though a plasma is quasi-neutral, the electric

field is not zero. The rotational part of the electric field Er is important since it is

generated by the induced electromotive force (emf) given by Faraday’s law,

∇ · Er = 0, (83)

∇× Er =
∂B

∂t
. (84)

Therefore, the dynamics of both the electric and magnetic field are defined entirely

by Faraday’s law. This result has the following physical interpretation. The electrons

immediately respond to any perturbation in the local charge balance, and thus, always

move to establish charge neutrality. The simplified Maxwell equations are summarized
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as

∇× E = −∂B

∂t
(Faraday’s Law), (85)

∇×B = µ0J (Ampére’s Law), (86)

∇ · J = 0, (87)

∇ ·B = 0, (88)

where the subscript “r” has been dropped from the electric field. Eq. 87 is an expres-

sion of charge conservation, and Eq. 88, which has many important consequences for

numerical methods of MHD, states that the magnetic field must remain solenoidal in

time. In MHD, the dynamics of the electromagnetic field are entirely controlled by

the magnetic field, and the electric field and the current density assume secondary

roles. In order to show this, it is necessary to relate the electric field and the current

density. This is achieved through Ohm’s law, which can be derived by rewriting the

electron momentum equation, Eq. 46 with α = e, in terms of the single fluid variables

[64, 74],

E+ u×B =
1

en
(J×B−∇pe −∇ · πe +Me) (89)

From transport theory [64, 74], the previous result

Me = ηenJ (90)

can be used to simplify Ohm’s law by

E′ = E+ u×B = ηJ+
J×B−∇pe

en
(91)

where the electron viscosity is neglected (πe → 0) and E′ is the electric field in the

frame of reference of the flow. The generalized Ohm’s Law relates the electric field

or current density to the velocity of the flow. This is more simply stated by

E′ = η · J (92)
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where η is now a tensor and includes the terms J×B and ∇pe, which represent the

Hall effect and the electron diamagnetic drift, respectively. Both of these terms are

of similar magnitude. Comparing these terms to the u × B results in the following

[64, 74],

|∇pe/en|
|u×B| ≈

Ri

l0
(93)

where ri is the ion gyro-radius. For Ri/l0 << 1, these terms are negligible [64, 74]. As

a result, in many applications, the magnetic resistivity is simply a scalar, and Ohm’s

law can be stated simply by

E+ u×B = ηJ (94)

Combining this relationship, E = ηJ−u×B and Faraday’s law results in the following,

∇× (ηJ− u×B) = −∂B

∂t
(95)

rearranging,

∂B

∂t
−∇× (u×B) +∇× (ηJ) = 0 (96)

Ampere’s law can then be used to remove the dependence on the current density.

This gives the magnetic induction equation

∂B

∂t
−∇× (u×B) +

1

µ0

∇× (η∇×B) = 0 (97)

where the first term represents the time rate of change in the magnetic field by the

electromotive force and the second term is the dissipation of the induced magnetic

field by electric resistivity. This equation embodies the entirety of the electromagnetic

dynamics in MHD, which illustrates the primary role of the magnetic field.

2.3 Magnetohydrodynamics

In the previous section, the key steps in the derivation of the governing equations of

MHD from kinetic theory was given. The purpose of the derivation was to highlight

the assumptions made in MHD theory. These assumptions are implicit within the
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definition of a plasma as a quasi-neutral gas exhibiting collective behavior through

long range electromagnetic forces. A plasma is quasi-neutral as long as the length

scales of interest are larger the Debye length. This criteria requires that the electron

plasma frequency is smaller than characteristic frequencies of the plasma. Physically,

this means that the electrons respond instantaneously to any perturbations in the

charge imbalance, and therefore the electron inertia can be neglected in comparison

the momentum of the ions. Lastly, the result demonstrates that the conservation

equations for mass, momentum, and energy in MHD can be derived through the ad-

dition of two source terms in the momentum and energy balance, the Lorentz force

and the power dissipation. Most importantly, the dynamics of the electromagnetic

field is reduced to a single equation for the time rate of change of the magnetic field.

The following derivation begins with these assumptions and continues to develop the

governing equations for a multi-species, compressible gas in thermodynamic equi-

librium. Herein, tensor notation is adopted instead of the vector notation used in

previous sections.

2.3.1 Conservation Equations

As shown in the previous section, the typical fluid dynamic conservation equations

of mass, momentum, and energy of hydrodynamics are equally valid for plasma. For

MHD, it is only necessary to the include the additional electromagnetic momentum

and energy terms into the conservation balance equations and add an additional

equation of the evolution of the magnetic field, whose dynamics are determined by the

pre-Maxwell equations. In the following derivation, these terms are added as source

terms, which are then manipulated to arrive at the conservative form of the MHD

equations. The resulting set of equations still embody the assumptions highlighted in

the previous section, but are derived in a more intuitive rather than formal manner.

To begin, the governing equations for the mass, momentum, energy, and species
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conservation of a fluid can be stated in the following way

∂ρ

∂t
+

∂

∂xj

(
ρuj

)
= 0, (98)

∂ρui

∂t
+

∂

∂xj

(
ρuiuj + pδij − τij

)
= FMHD

i , (99)

∂ρE

∂t
+

∂

∂xi

[
(ρE + p) ui + qi − ujτij

]
= PMHD +WMHD, (100)

∂ρYk

∂t
+

∂

∂xi

[
ρYk (ui + Vi,k)

]
= ω̇k where k = 1, ..., Ns. (101)

In the above equations, ui is the velocity vector, E is the total specify energy, and Yk

is the kth species mass fraction of a total Ns species. Often it is convenient to define

a partial density as ρk = ρYk, which makes apparent that the sum of partial densities

must equal to the gas density. Hence, Eqs. 98 and 101 overdetermine the system.

Either the conservation of mass, Eq. 98, is neglected in lieu of Eq. 101, or the partial

densities, ρk, must be normalized to ensure that they sum to ρ, or identically, the

species mass fractions are required to sum to one. The additional variables require

further definition; the thermodynamic pressure p is computed from the equation of

state defined in Sec. 2.4, the species reaction rate ω̇k is computed from a kinetic

mechanism, and the shear-stress tensor τij, the heat transfer rate qi, and the kth

species diffusion flux Vi,k are each computed from their respective transport models,

which are discussed in the Sec 2.6.

From the previous section, the MHD source terms in the momentum and energy

conservation equations are known to be the Lorentz force FMHD
i = ǫijkJjBk, the

power disposition PMHD = JiEi, and the Lorentz work term FMHD
i ui. These terms

link the hydrodynamic governing equations to evolution equations for the magnetic

field vector Bi, the electric field Ei, and the current density Ji. The resulting set

of 10 + Ns independent governing equations define a set of 4 vector quantities, ui,

Bi, Ji, and Ei, and Ns + 1 scalar quantities, E, ρ, and Yk. If Ns = 1, then there

are 11 independent governing equations for 14 primitive variables. Using Ohm’s law,

which is discussed in the previous section, it is possible to relate Ji, and Ei through
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the definition of the electrical conductivity resulting in a single expression for the

magnetic field

∂Bi

∂t
+

∂

∂xj

(
ujBi − Bjui − η

∂Bi

∂xj

)
= 0, (102)

Thus, the system of governing equation reduces to 11 independent primitive variables

determined by 11 equations. Equations 98 - 102, however, are in a non-conservative

form. To write the MHD governing equations in conservative form, the Lorentz force

and the electromagnetic power dissipation expressions are manipulated using some

vector identities and a some algebra. As a result, the Lorentz force can be written as

a stress tensorMij, which in many ways is analogous to the kinematic stress tensor,

τij in Eq. 99. The Maxwell stress tensor is defined as

∂Mij

∂xj

= ǫijkJjBk =
∂

∂xj

(
BiBj

µ0

− BkBk

2µ0

δij

)
, (103)

where the first term is similar to a viscous stress and acts as tensile force along

the magnetic field lines. The second term is defined as the magnetic pressure,

pm = |B|2/2µ0, and since it is irrotational, it is similar to the thermodynamic pres-

sure. Often plasmas are classified as low- or high-β plasmas where β is the ratio of

thermodynamic to magnetic pressure, β = p/pm = 2µ0p/|B|2.

There are two additional source terms in the total energy equation: a work term

due to the Lorentz force, Mijuj, and a source term resulting from the electrical

power dissipation per unit volume. The later term is JiEi and can be re-written

using Faraday’s law and Ampére’s law in terms of Bi and Ei as

JkEk = −
[
∂

∂t

(
BkBk

2µ0

)
+

∂

∂xk

(
ǫkijE

′
iBj

µ0

)]
(104)

where E ′
i = Ei+ ǫijkujBk. The first term is the rate of change of the magnetic energy

density, and the second term is the Poynting flux. The Poynting flux can be re-written

in terms of only the magnetic field using Ampére’s law. The result is

ǫijkE
′
jBk

µ0

=
1

µ0σ
ǫijk

(
ǫjlm

∂Bm

∂xl

)
Bk. (105)
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If the total energy density is redefined as the summation of the gas-dynamic energy

density plus the magnetic field energy density (E = e + u2/2 + B2/2µ0ρ), then the

total energy equation for MHD can be written in a conservative form as:

∂ρ

∂t
+

∂

∂xj

(
ρuj

)
= 0, (106)

∂ρui

∂t
+

∂

∂xj

(
ρuiuj + pδij − τij −Mij

)
= 0, (107)

∂ρE

∂t
+

∂

∂xi

[
(ρE + p) ui + qi − ujτij − ujMij +

1

µ0σ
ǫijk

(
ǫjlm

∂Bm

∂xl

)
Bk

]
= 0,

(108)

∂ρYk

∂t
+

∂

∂xi

[
ρYk (ui + Vi,k)

]
= ω̇k where k = 1, ..., Ns, (109)

∂Bi

∂t
+

∂

∂xj

(
ujBi − Bjui − η

∂Bi

∂xj

)
= 0, (110)

∂Bi

∂xi

= 0. (111)

In MHD, the perfect gas equation of state is still applicable, and the fluid can still be

assumed to be Newtonian. This assumption is valid as long as the dipole moments of

the fluid particles can be assumed negligible. Fourier’s law is likewise valid. A more

general form of the governing equations for an electrically conducting fluid could be

obtained by not relating Ji and Ei through Ohm’s law, which is valid only under

the assumption that the two fields are linearly related by the electrical conductivity.

Thus in a way, Ohm’s law is akin to the Fourier’s law or Newton’s law of viscosity.

More importantly, it should be remembered that the assumptions of Ohm’s law are

implicit in the derivation of the magnetic induction equation. All that remains for

the closure of the MHD equations is a suitable definition of the electrical conductivity

introduced by Ohm’s law as well as the specification of the other transport properties

and the definition of the equation of state.
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2.3.2 Vector Form of the Governing Equations

The governing equations of MHD can be generally described as a system of time-

dependent, non-linear, partial different equations (PDEs) of first order. In Cartesian

geometry, such systems take the following structure

∂

∂t
q(x, t) +

∂

∂x

[
f(q(x, t))+fv(q(x, t))

]
+

∂

∂y

[
g(q(x, t)) + gv(q(x, t))

]

+
∂

∂z

[
h(q(x, t)) + hv(q(x, t))

]
= s(q(x, t)) (112)

where x = (x, y, z)T ∈ R
3 detonates the coordinate direction in Cartesian space. The

conservative variables can represented by the state vector

qT = [ρ, ρux, ρuy, ρuz, ρE,Bx, By, Bz] (113)

A corresponding vector of primitive variables w, which contains the variables of den-

sity, temperature, velocity, etc., can be computed from the conservative variables and

through relations, such as the equation of state of the fluid. The inviscid fluxes f , g,

h are given by

f =




ρux

ρu2
x + P ∗ − B2

x

ρuxuy − BxBy

ρuxuz − BxBz

(ρE + P ∗)ux − Bx(B · u)

0

uxBy − Bxuy

uxBz − Bxuz




, g =




ρuy

ρuyux − ByBx

ρu2
y + P ∗ − B2

y

ρuyuz − ByBz

(ρE + P ∗)uy − By(B · u)

uyBx − Byux

0

uyBz − Byuz




,
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and

h =




ρuz

ρuzux −BzBx

ρuzuy −BzBy

ρu2
z + P ∗ − B2

z

(ρE + P ∗)uz − Bz(B · u)

uzBx − Bzux

uzBy − Bzuy

0




,

and represent the inviscid, hyperbolic fluxes in the x-, y-, and z-directions, respec-

tively. The velocity and magnetic field vectors are defined as u = (ux, uy, uz) and

B = (Bx, By, Bz), respectively. Additionally, P ∗ is the total pressure given by

P ∗ = p+B2/2µ0. The viscous fluxes fv, gv, hv are given by

fv = fHD
v + fMHD

v =




0

−τxx
−τxy
−τxz

uxτxx + uyτxy + uzτxz − qx

0

0

0




+




0

0

0

0

η(ByJz − BzJy)

0

ηJz

−ηJy




,
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gv = gHD
v + gMHD

v =




0

−τyx
−τyy
−τyz

uxτyx + uyτyy + uzτzz − qy

0

0

0




+




0

0

0

0

η(BzJx − BxJz)

−ηJz
0

ηJx




,

and

hv = hHD
v + hMHD

v =




0

−τzx
−τzy
−τzz

uxτzx + uyτzy + uzτzz − qz

0

0

0




+




0

0

0

0

η(BxJy − ByJx)

ηJy

−ηJx
0




.

2.4 Thermodynamic and Mixture Properties

Since the multi-component plasma mixture is assumed to be equilibrium, each of the

kth species in the mixture has the same temperature T and a corresponding scalar

partial pressure, pk. Furthermore, if each species is treated as an ideal gas, then the

kth species partial pressure is related to the partial density, ρk, and temperature T ,

by the ideal gas law

pk = ρk
R
Wk

T = ρkRkT (114)

where the Rk is the kth species gas constant, which is related to R, the universal gas

constant, and Wk, the kth species molecular weight. From Dalton’s law of mixing,
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the thermodynamic pressure is computed from the partial pressures by

p =
Ns∑

k=1

pk (115)

The equations of state of a mixture relates the thermodynamic pressure p to the gas

density ρ and the gas temperature T . For the mixtures studied in this thesis, the

perfect gas equation of state is valid, which is given by

p ==
Ns∑

k=1

ρkRkT = RT
Ns∑

k=1

ρk
Wk

= ρ
R
W

T = ρRT (116)

where R is mixture-averaged gas constant. While the equation of state provides the

relationship between the three thermodynamic state variables, it is still necessary to

define the functional relationship between the internal energy and enthalpy of the

gas mixture and the temperature and pressure. For a thermally perfect gas, it can

be shown that the internal energy is a function of the temperature only, so that the

k − th species energy is

ek = e0k +

∫ T

T0

Cv,k(T
′)dT ′, (117)

where Cv,k(T ) is the specific heat at constant volume for the k − th species and e0k is

the reference energy evaluated at a reference temperature T0. Additionally, the k− th

species enthalpy hk is defined as hk = ek + pk/ρk, where enthalpy of species k is

hk = h0
k +

∫ T

T0

Cp,k(T
′)dT ′, (118)

where Cp,k(T ) is the specific heat at constant pressure for the k − th species and is

related to Cv,k(T ) by the gas constant.

Cp,k(T ) = Cv,k(T ) +
Ru

Wk

(119)

The temperature dependent specific heats are often obtained from curve-fits of ex-

perimental measurements [132], but can also be calculated from partition functions

[81], which is primarily only useful if the gas is not in thermodynamic equilibrium.
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For the majority of the studies conducted in this thesis, the mixture is often assumed

to be calorically perfect gas. In this model, the specific heats are independent of

temperature. In such a gas, the ratio of specific heats γ for the species becomes the

primary thermodynamic quantity and is defined as:

γk =
Cp,k

Cv,k

(120)

The mixture averaged internal energy and enthalpy can using the weighted sum,

e =
Ns∑

k=1

ekYk, h =
Ns∑

k=1

hkYk (121)

where Yk is the k-th species mass fraction. The mixture averaged specific heats, Cp

and Cv, can be computed similarly, and lastly the specific heat of the mixture is

γ = Cp/Cv. The mass fraction is defined as the ratio of partial density to the density

of the mixture,

Yk ≡
ρi
ρ

(122)

Therefore, the sum of the mass fractions is one. Other similar quantities can also be

defined, which are often used. The species molar concentrations per unit volume Ck,

which are computed as,

Ck =
ρk
Wk

= ρ
Yk

Wk

(123)

The molar concentrations are often used to compute the chemical reaction rates.

Additionally, the molar concentration is used to define the mole fraction, Xk as

Xk ≡
Ck∑

k=1 NsCk

. (124)

As with the mass fractions, the mole fractions must also sum to one. The mole

fractions and the mass fractions are related in the following manner,

Xk = Yk
W

Wk

(125)
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2.5 Magnetohydrodynamic Waves

The system of MHD equations can be shown to have eight eigenvalues. For the

moment, if the viscous and resistive fluxes fv, gv, and hv are neglected, the system

of equations can be simplified to a pure hyperbolic system of equation describing the

ideal MHD equations, which is given by

∂

∂t
q(x, t) +

∂

∂x

[
f(q(x, t))

]
+

∂

∂y

[
g(q(x, t))

]
+

∂

∂z

[
h(q(x, t))

]
= 0. (126)

Without a loss of generality, consider the one-dimensional ideal MHD equation. Let

A = ∂f(q)/∂q be the Jacobian matrix of the flux function f(q). The system, given

by Eq. 126, is consider hyperbolic if the matrix A(q) has M real eigenvalues λ1(q) ≤

· · · ≤ λM(q) and M linear independent right eigenvectors rm(q) for m = 1, . . . ,M

defined by

A(q)rm(q) = λm(q)rm(q). (127)

For the hydrodynamic conservation equations, this condition is satisfied. Since many

shock-capturing schemes rely on wave decomposition of the fluxes defined by Eq.

127, the property of hyperbolicity is extremely important. Unfortunately, the MHD

conservation equations are not strictly hyperbolic since the eigenvalues become can

become degenerate depending on the orientation and magnitude of the magnetic field.

With the appropriate normalization, however, the eigenvectors can be defined. The

dispersion relationship emits eight eigenvalues corresponding to two Alfvén waves,

two fast magneto-acoustic waves, two slow magneto-acoustic waves, and one entropy

wave:

λ2,6 = u∓ ca, λ1,7 = u∓ cf , λ = u∓ cs, λ4 = u, (128)

where

ca =
Bx

ρµ0

, cf,s =

[
1

2

(
a2 + b̃2 ±

√
(c2 + b̃2)2 − 4c2b̃2x

)] 1
2

(129)

where a is the speed of sound of the mixture and b̃2 = b̃2x+ b̃2y + b̃2z where (̃bx, b̃y, b̃z) =

(Bx, By, Bz)/
√
ρ
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y

x

λ(1) = u− cf

λ(2) = u+ cs

λ(3) = u+ ca

λ(4) = u
λ(5) = u+ ca

λ(6) = u+ cs

λ(7) = u+ cf

Figure 8: Schematic of the Riemann fan containing all the seven characteristics of
the MHD hyperbolic system where λ(1,7) = u∓ cf ,λ

(2,6) = u∓ cs,λ
(3,5) = u∓ ca, and

λ(4) = u

One of the eight eigenvalues corresponds with the divergent-free property of the

magnetic field. Information is therefore only propagated along the remaining seven

eigenvectors by three characteristic waves and an entropy wave [47]. Since cs ≤

va ≤ cf , degeneracy occurs when cs = cf , which happens in the limiting cases when

the normal, ni, is either parallel or perpendicular to the magnetic field, such that

B = Bn or Bn = 0. There are many references and introductory textbooks discussing

the mathematical nature of the MHD equations. Relying heavily on the work of

Friedrichs and Kranzer [65], a short summary is given here with emphasis on the

differences between the MHD and hydrodynamic systems. More detailed information

can be found in the above cited references.

Across fast or slow magnetosonic shocks, the direction and magnitude of the mag-

netic field is discontinuous. The tangential component of the magnetic field preserves

its direction and increases its magnitude across a fast shock, while across a slow shock

the tangential component retains or reverses its direction and decreases in magnitude.

Also it should be noted that a discontinuity in the magnetic field necessarily creates

“sheet currents” that form along the shock. The intermediate wave or Alfvén wave
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is often referred to as a transverse wave since the magnetic field undergoes a rota-

tion and the disturbances are tangential to the wave front and perpendicular to the

magnetic field. The magnitude of the magnetic field remains unchanged and only

the transverse components of the magnetic field and velocity change. Transverse

shocks are also continuously connected with slow shocks. Contrary to hydrodynamic

flows, the entropy wave or contact discontinuity does not permita discontinuity in

the tangential components of velocity provided that Bn 6= 0. This has important

consequences. A shear flow layer across which the tangential flow components vary

cannot be maintained in a conducting flow. If such a disturbance exists at initial

time, additional wave motions must develop to resolve it. The stabilization of the

Richtmyer-Meshkov instability by a magnetic field is a direct consequence of this fact

[179]. Furthermore, In a study of transition to turbulence in free-shear layers, the

Orr-Sommerfield equations adapted for MHD were used in addition to DNS to show

that a parallel magnetic field both enhanced and delayed transition depending upon

the interaction parameter [212]. The study of laminar instability in a conducting fluid

highlights the non-linear dynamics involved in MHD flows. These effects are a result

of the additional characteristic modes available in a plasma.

2.6 Transport Models

If the fluid is assumed to be Newtonian such that the stresses are proportional to the

local rate of strain, then the stress tensor can be mathematically defined by

τij = µ

(
∂ui

∂xj

+
∂uj

∂xi

)
+ λ

∂uk

∂xk

δij (130)

where µ is the viscosity coefficient of the fluid mixture and is assumed to be a function

of temperature only. The other coefficient, λ, is the bulk viscosity. From Stokes’

hypothesis, the stress tensor is assumed to be traceless requiring the bulk viscosity
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to be λ = −2/3µ. With this assumptions, the stress terms are re-written as:

τij = 2µ

(
Sij −

1

3
Skkδij

)
(131)

where Sij is the rate of strain tensor, given by:

Sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
(132)

There are many models for calculating the viscosity. For a single-species fluid, Suther-

land’s law for the viscosity is often sufficient and is given by

µ = µS

(
T

TS

)3/2
TS + S

T + S
(133)

where µS, TS, and S are reference values for Sutherland’s model and are dependent

on the species. The dependence is often given as a power-law function,

µ = µT=T0

(
T

T0

)n

(134)

where the exponent n depends on the gas mixture, but is usually near 0.7, and

µT=T0 is the viscosity at the reference temperature T0. If the fluid in consideration

is a mixture, more advanced models are necessary, particularly if the gas mixture is

ionized and consists of electrons, ions, and neutrals. These models are usually based

upon the Chapman-Enskog approximations [81]. Wright and Palmer give a review

of various methods for calculating the viscosity coefficient and their computational

efficiency [148, 149]. In summary, the viscosity of a single species gas is given by

µk =
5

8

(
kBT

Ω
(2,2)
kk

)
(135)

where Ω
(2,2)
kk is the viscosity collision integral, which has the general form,

Ω
(l,s)
ij (T ) =

√
kBT

2πµij

∫ ∞

0

exp
(
−τ 2

)
τ 2s+3Q(l)(g)dτ (136)

where µij = mimj/(mi +mj) is the reduced mass, Q(l) is the total interaction cross

section computed by integrating the differential cross sections, and τ 2 = µijw
2/2kBT ,
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where w2 is the relative molecular velocity. The collision integral represents the

average probability of a collision between two particles.The reduced collision integral

is

Ω
(l,s)∗
ij = Ω

(l,s)
ij /

[
Ω

(l,s)
ij

]
rigidsphere

. (137)

If σ2
d is the rigid sphere collision diameter, then

Ω
(1,1)
ij ≡ σ2

d

√
πkBT

2µij

(
Ω

(1,1)∗
ij

)
(138)

Ω
(2,2)
ij ≡ 2σ2

d

√
πkBT

2µij

(
Ω

(2,2)∗
ij

)
(139)

Using the reduced collision integrals, the viscosity is given by the simplified expression

µk = 2.669× 105
√
WkT

σ2
dΩ

(2,2)∗
kk

(140)

Values for the reduced collision integrals have been tabulated in the literature [148,

149]. In a gas mixture, the species gas viscosities must be combined to produce an

effective mixture-averaged viscosity. Wilke’s mixing rule [218] is used here, which

states

µ =
Ns∑

k=1

Xkµk

φk

(141)

where

φk =

∑Ns

i=1

[
1 +

√
ni

µi

(
Wi

Wk

)1/4]2

√
8
(
1 + Wk

Wi

) (142)

While this mixing rule is the most commonly used since it is the most computationally

efficient, it can be inaccurate for polar or ionized gases. In these situations, the mixing

rules proposed by Gupta et al. have been shown to be more accurate [148], which is

given by

µ =
Ns∑

k=1

(
Xk∑Ns

i=1
Xi

Wk
∆

(2)
ki

)
(143)

where,

∆
(2)
ij =

16

5

√
2πµij

kBT
σ2
dΩ

(2,2)∗
ij (144)
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The heat flux vector has contributions from the thermal conduction and from the

flux of sensible enthalpy due to species diffusion. Fourier’s law is used to relate the

thermal conduction to the local temperature gradient. The expression for the heat

flux vector is

qi = −κ
∂T

∂xi

+ ρ
Ns∑

1

YkhkVi,k (145)

where the thermal conductivity κ, is also typically a function of the temperature only.

For single species neutral fluid, the thermal conductivity is often calculated using

the Prandtl number (Pr) to relate κ to µ. Since at low to moderate temperatures

the Prandtl number can safely be assumed constant, κ is easily computed. These

assumptions are more difficult to justify in flows with multiple species and in ionized

gases. Just as with the viscosity, more advanced models for calculating the thermal

conductivity exist. The heat conductivity consists of two parts, k = ktr + kint, a

translational component and an internal component. Following Gupta et al. [81], the

mixture averaged translational heat conductivity is given as

ktr =
15

4
kB

Ns∑

k=1

(
Xk∑

i=1 NsαkiXk∆
(2)
ki

)
(146)

where

αij = 1 +

(
1− Wi

Wj

)(
0.45− 2.54Wi

Wj

)

(
1 + Wi

Wj

)2 (147)

The expression for the internal component of the heat conductivity coefficient is

kint =
Ns∑

k=1

(
XkC

int
p,k∑

i=1 NsXk∆
(1)
ki

)
(148)

where C int
p,k is the contribution to specific heat at constant pressure of all non-translational

degrees of freedom, which can be computed by subtracting the constant translation

component of the specific heat from the value of Cp,k computed as a function of

temperature.
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The species diffusion velocities Vi,k are modeled using a Fickian diffusion approx-

imation, such that

Vi,k = −
Dk

Yk

Wk

W

∂Xk

∂xi

(149)

where Dk is the k-th species diffusion coefficient. In a simple approximation, the

species diffusion coefficients can be obtained by assuming a constant Lewis number,

Le =
κ

ρCpDk

(150)

Depending on the composition of the gas, the assumption of constant Le may not

be realistic. For more complex gas mixture, the diffusion coefficients are computed

to a first order approximation as averages of the binary diffusion coefficient Dij,

which is typically computed from a curve-fitted approximation. An effective diffusion

coefficient can be computed using the averaging procedure

Dk =
1−Xk∑
k 6=i Xi/Dki

(151)

There are several models available to compute the electrical conductivity of an

ionized gas. Most simplistically, Lin [123] proposed that the electrical conductivity is

given by σ−1 = σ−1
en +σ−1

ei , where σen is the electrical conductivity due to the electron-

neutral collisions and σei is due to the electron-ion collisions. The Saha equation can

be used to determine the electron number density which then can be used to determine

σen and theoretical equations exist for σei. Other models are reviewed elsewhere [129].

In this work, a more detailed mixture-averaged electrical conductivity is computed

from first-order approximations to the Champan-Enskog equations. Such calculations

rely on the computation of the modified collision integral, ∆
(1)
jk , between species j and

species k. The electrical conductivity is then computed as:

σ =
e2

kT

ne∑
k 6=e nk∆

(1)
ek

(152)

where e is the electrical charge, k is Boltzmann’s constant and ∆
(1)
jk is given by:

∆
(1)
jk =

8

3

[
2WjWk

πR̂T (Wj +Wk)

]1/2
πΩ

(1,1)
jk (153)
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where πΩ
(1,1)
jk is the collision integral of the momentum transfer between species j and

species k. The number density is defined by nk = ρYkN̂/Wk, where N̂ is Avogadro’s

number and Wk is the kth-species molecular weight. Values of the collision integral

between electrons and neutrals are determined either from experimental or theoretical

data [220, 221]. For electron-ion collisions, theoretical expressions are used [191].

2.7 Alternate Forms of the MHD Equations

2.7.1 Non-dimensional numbers

In MHD, if the effects of temperature, chemistry and species diffusion are ignored so

that the only important physics is contained within the Navier-Stokes and induction

equations, the only physical properties appearing are the density, ρ, the kinematic

viscosity, ν, the electrical conductivity, σ, and the magnetic permeability, µ0. These

dimensional parameters involve four fundamental units (m, kg, s, A), though they

are not dimensionally independent since (1/µ0σ) has the same dimension as ν. For

any possible combination of length and time scales are chosen, four non-dimensional

numbers can be derived.

The ratio of the kinematic and magnetic diffusivities is referred to as the magnetic

Prandtl number:

Prm = µ0σν (154)

In fundamental studies of MHD turbulence, the magnetic Prandtl number is often

assumed to be unity. There are several instances where this is a poor assumption. In

experimental studies of the turbulent dynamo, liquid metals are often used because

of their high conductivities, however, Prm for these liquids are extremely small. The

magnetic Prandtl number is related to two other non-dimensional parameters, the

Reynolds number and the magnetic Reynolds, which are given as:

Re =
u0l0
ν

(155)

Rem = µ0σu0l0 = RePrm (156)
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Thus, the assumption of Prm = 1 is equivalent to assuming Re = Rem. The signifi-

cance of the magnetic Reynolds number as a non-dimensional measure of conductivity

has already been discussed. Another non-dimensional parameter (often confused with

the magnetic Reynolds number in literature) is the Lundquist number:

S =

√
µ0

ρ
σBL = µ0σval0 (157)

where va = B/
√
µ0ρ is the Alfvén velocity. Thus, the Lundquist number is essen-

tially a magnetic Reynolds number based on the Alfvén velocity. This expression is

used often in research on magnetic confinement of plasma. Lastly, the interaction

parameter, N , is important in MHD turbulence of low magnetic Reynolds number.

N =
σB2

0 l0
ρu0

(158)

Neglecting the energy equation and only considering the incompressible Navier-

Stokes and magnetic induction equations, a non-dimensional set of equations can be

derived based on the three dimensionless parameters, Prm, Rem, and S. Using the

following scales [49],

x̂i ←→
xi

l0
, ûi ←→

ui

u0

, (159)

t̂←→ tu0

l0
, p̂←→ p

ρu2
0

,

B̂i ←→
Bi

B0

, Ĵi ←→
µ0l0Ji
B0

,

the dimensionless governing equations are

∂ûi

∂t̂
+

∂

∂x̂j

(
ρ̂ûiûj + p̂δij

)
=

S2

Re2m

∂M̂ij

∂x̂j

+
Prm
Rem

∂τ̂ij
∂x̂j

, (160)

∂B̂i

∂t̂
=

∂

∂x̂j

(
ûjB̂i − B̂jûi

)
+

1

Rem

∂2B̂i

∂x̂2
j

. (161)

As a side note, the magnetic field is often expressed in Alfvén units, where the mag-

netic field is modified, (B′
k = Bk/

√
ρµ0), to have the same units as the velocity. The

Elassässer variables, zi = ui ∓ B′
i can then be used to simplify the incompressible

MHD equations. Such simplifications are not possible in compressible flows.
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2.7.2 MHD Approximations

When the magnetic Reynolds number, Rem, is much less than unity, several simpli-

fications to the MHD equations can be made. The benefit is that the resulting set of

equations are much easier to solve and computationally cheaper. These simplifications

can also help facilitate fundamental understanding of MHD dynamics.

At Rem << 1, the velocity field has no large influence on the magnetic field. If

we assume that a steady magnetic field, Bex,i, is applied by some external means, the

magnetic field can be decomposed into two parts: the imposed field and an induced

field, B′
i. The applied magnetic field, Bex,i, is curl-free since the current responsible for

this field lies outside the domain of interest, and the magnetic field B′
i is guaranteed

to be small since the diffusion term dominates obviously dominates in Eq. 160 when

Rem << 1. If the substitution, Bi = Bex,i + B′
i, is made in Eqs. 107 and 110, the

following equations non-dimensional can then be derived,

∂ui

∂t
+

∂

∂xj

(
ρuiuj + pδij

)
=

S2

Re2m
ǫijkJ

′
jBex,k +

Prm
Rem

∂τij
∂xj

(162)

∂B′
i

∂t
=

∂

∂xj

(
ujBex,i − Bex,jui

)
+

1

Rem

∂2B′
i

∂x2
j

(163)

where the second order terms were assumed negligible, and the notation, ⋆̂ was

dropped for convenience.This set of equations is referred to as the quasi-linear form

of the MHD equations since the induction equation is linear, and the only remaining

non-linear term is the inertial term in the Navier-Stokes equation. The current den-

sity J ′
i , is used to represent the current density to make obvious that the only current

arising in the flow is entirely a result of B′
i not Bex,i.

A more obvious form of the non-dimensional governing equations can be derived

if only two dimensionless parameters (and two scales, B and L) are used. Since Rem

is small and isn’t expected to play a dominant role, Prm and S, become the most
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important. This set of dimensionless equations is given as

∂ui

∂t
+

∂

∂xj

(
ρuiuj + pδij

)
= S2ǫijkJ

′
jBex,k + Prm

∂τij
∂xj

(164)

∂B′
i

∂t
=

∂

∂xj

(
ujBex,i − Bex,jui

)
+

∂2B′
i

∂x2
j

where the role of the Lundquist number, S, is more obvious. If it is larger than

unity and larger than Prm, then Alfvén waves will develop. In the opposite scenario,

where S is less than unity or less than Prm, Alfvén waves are suppressed by Ohmic or

viscous dissipation. In the case that no Alfvén waves develop, S < 1 or S < Prm, the

magnetic induction equation can be assumed steady and the time-dependent term

can be dropped. Thus, the induction equation simplifies to a version of Ohm’s law

and the electric field can be represented as the gradient of the electric potential, φi.

Still in dimensionless form, the final equations reads:

∂ui

∂t
+

∂

∂xj

(
ρuiuj + pδij

)
= S2ǫijkJ

′
jBex,k + Prm

∂τij
∂xj

(165)

J ′
i = −

∂φi

∂xi

+ ǫijkujBex,k

This set of equations is referred to as the quasi-static MHD equations, since the

electromagnetic equations are no time-independent. In summary, at low magnetic

Reynolds number, the Lundquist number, S, and the magnetic Prandtl number, Prm,

are the most important. The Lundquist number, being a “Reynolds” number based

on the Alfvén velocity, is representative of the ability of Alfvén waves to interact with

the non-linear inertial terms.
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CHAPTER III

NUMERICAL METHODS AND MODELS

3.1 Numerical Methods for Conservation Laws

In the previous chapter, the governing equations of MHD were introduced. In their

ideal form, the MHD equations, just like the Euler equations, can be written as a

system of hyperbolic conservation equations. Thus, given proper initial conditions

and well-defined boundary conditions, the equations admit unique solutions provided

they satisfy the admissibility condition of entropy inequality [72, 120]. For the pur-

poses of discussion and without any loss of generalization, consider a two-dimensional

Cartesian space defined by x = (x, y)T , and let x be represented by a computational

domain discretized with a rectangular grid of Nx × Ny points separated uniformly

by the widths ∆x and ∆y in each coordinate direction. The discrete computational

points are then defined by the coordinates

(xi, yi) := (i∆x, j∆y), i, j ∈ D, (166)

where D represents the integer values i = 0, 1, . . . , Nx − 1 and j = 0, 1, . . . , Ny − 1 in

the computational domain. Additionally, it is useful to define

xi+1/2 := xi +
∆x

2
, i ∈ D and yj+1/2 := ji +

∆y

2
, j ∈ D. (167)

Furthermore, let tn := n∆t, with n = 1, 2, . . . , Nt and time step ∆t. The values

at each discrete space-time point (xi, yj, tn) denoted by Qn
i,j define the piece-wise

constant state vector Q(x, t), which is an approximation of the exact solution q(x, t).

Using a suitable numerical method, initial data at Q(x, t0) can be integrated in time

to find approximate solutions at the next time step, Q(x, t + ∆t). Mathematically,
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these numerical methods can be analyzed with regards to their consistency, stability,

convergence, and order of accuracy [72, 92, 120, 201].

The hyperbolic system of equations for MHD in two-dimensions is given as

∂

∂t
q(x, t) +

∂

∂x
f(x, t) +

∂

∂x
g(x, t) = 0, (168)

where f and g are the exact conservative fluxes in the x- and y-directions. The viscous

and resistive terms as well as the source term have been neglected for moment so

that the system is purely conservative. Let the operator L represent the numerical

approximation to system of partial differential equations (PDEs) [82], such that

dQ(t)

dt
= L (Q(x, t)) (169)

In the next two sections, two different discretization operators are discussed, a finite

difference method and a finite volume method. Both methods result in a numerical

approximation in the conservative form. Therefore, they satisfy the discrete conser-

vation property
∑

i,j∈D

Qn+1
i,j =

∑

i,j∈D

Qn
i,j. (170)

3.1.1 Finite Difference Methods

Finite difference methods provide a numerical solution to the differential form of

the conservation equations by approximating the spatial operators in the governing

equations using finite differences based on the discrete expansion of a truncated Taylor

series about a point [92, 121]. If the hyperbolic system is integrated in time using a

first order Euler forward stepping method [92], the numerical approximation of the

conservative variables at time tn+1 is

Qn+1(x) = Qn(x) + ∆tL (Q(x, tn)) , (171)
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If the spatial operator L represents some r-th order the central difference formula, a

finite-difference approximation to the MHD hyperbolic equations is represented as

Qn+1
i,j = Qn

i,j −
∆t

∆x

(
Fi+1/2,j

(
Q(tn)

)
− Fi−1/2,j

(
Q(tn)

))

− ∆t

∆y

(
Gi,j+1/2

(
Q(tn)

)
−Gi,j−1/2

(
Q(tn)

))
. (172)

where Fi±1/2,j and Gi,j±1/2 are defined as the numerical fluxes evaluated at time tn

[120]. The spatial accuracy of the scheme is determined by the method in which the

numerical fluxes are computed. A family of explicit or tridiagonal compact schemes

up to sixth-order can be expressed by the following system

αcF
n
i−1/2,j + Fn

i+1/2,j + αcF
n
i+3/2,j = ac

(
F
(
Qi−2,j(tn)

)
+ F

(
Qi+3,j(tn)

))
+

bc

(
F
(
Qi−1,j(tn)

)
+ F

(
Qi+2,j(tn)

))
+

cc

(
F
(
Qi,j(tn)

)
+ F

(
Qi+1,j(tn)

))
(173)

where the values of the coefficients αc, ac, bc, and cc are given in Table 1, and the

notation Fn
i±1/2,j is used to signify that the fluxes are evaluated at time tn and at the

cell-face in the i-direction. Similar expressions are used to determine the numerical

fluxes in the other directions. For αc = 0, the numerical scheme is explicit, and for

non-zero values of αc, the numerical flux is dependent on the neighboring points,

requiring an implicit computation of the tridiagonal system. For a numerical scheme

with rth order of accuracy, the numerical stencil is defined by the required fluxes

F(Qn
i−r/2−1,j, . . . ,Q

n
i+r/2,j). At inflow and outflow boundaries, the numerical stencil

must be reduced by using left- and right-sided differences instead of central differences.

For example, the right-sided difference

Fn
i+1/2,j + α+F

n
i+3/2,j = a+F

(
Qi,j(tn)

)
+ b+F

(
Qi+1,j(tn)

)

+ c+F
(
Qi+2,j(tn)

)
+ d+F

(
Qi+3,j(tn)

)
(174)

Since the discretization is built from finite differences, the application of high-

order numerical methods is relatively easy as demonstrated. Difficulties arise when
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Table 1: List of coefficients for compact and explicit central finite-difference methods.

Scheme
Central Difference One-Sided Difference

αc ac bc cc α± a± b± c± d±

Explicit O(2) 0 0 0 1/2 0 1/2 1/2 0 0
Explicit O(4) 0 0 −1/12 7/12 0 1/4 13/12 −5/12 1/12
Explicit O(6) 0 1/60 −2/15 37/60 – – – – –
Compact O(4) 1/4 0 0 3/4 1 1/6 10/6 1/6 0
Compact O(6) 1/3 0 1/36 29/36 – – – – –

Q(x, t) is not piece-wise differentiable within the computational domain. To avoid

numerical oscillations, an upwind method is required to compute the numerical fluxes

in regions of the flow containing large gradients [201]. These methods are discussed

in more detail in a later section.

Since Eq. 172 is a only a first order time accurate approximation, a high order

time integration scheme is necessary in order to preserve the overall order of accuracy

of the scheme. The time integration should be stable and total variation diminishing

(TVD), meaning

TV (Q) =
∑

i

∣∣Qi+1 −Qi

∣∣ (175)

where the definition is provided for a single dimension, but can be extended by com-

puting the sum of TV in each computational direction. A TVD scheme has the

following property,

TV (Qn+1) ≤ TV (Qn). (176)

In general, a high order TVD and strong stability preserving (SSP) Runge-Kutta time
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integration scheme can be written in the general form [78, 172, 188]

Q(0) = Qn

Q(i) =
i−1∑

k=0

(
αikQ

(k) +∆tβikL
(
Q(k)

))
i = 1, . . . ,m

Qn+1 = Qm (177)

where the coefficients αi,k and βi,k are non-negative and the maximum Courant-

Friedrichs-Lewy (CFL) [188] is defined as

CFL = max
i,k

αi,k

βi,k

(178)

For a two-stage, second-order SSP Runge-Kutta scheme, α1,1 = 1, αi,2 = 1/2, β1,1 = 1,

and β2,2 = 1/2. For a three-stage, third-order SSP Runge-Kutta scheme, α1,1 = 1,

α1,2 = 3/4, α1,3 = 1/3, α2,2 = 1/4, α3,3 = 2/3, β1,1 = 1, β2,2 = 1/4, and β2,2 = 2/3.

Unless specified, all other values are zero. See references for more specific information

[78, 172].

3.1.2 Finite Volume Methods

In a finite-volume representation, discretization is applied to the integral form of

the governing equations instead of the differential form. For a control volume V ,

the differential form of the hyperbolic conservation equations, given by Eq. 168, is

integrated ∫

V

∂q(x, t)

∂t
dx+

∫

V

(
∂f(x, t)

∂x
+

∂g(x, t)

∂y

)
dx = 0, (179)

and then using Gauss’ theorem, the final integral form of the conservation laws is

obtained,

∂

∂t

∫

V

q(x, t)dx+

∫

S

(
f(x, t) · nx + g(x, t) · ny

)
dS = 0, (180)

where nx and ny are the unit normal outward vectors for the control surface S. Ad-

ditionally, the conservation equations are integrated in time over the discrete interval
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[tn, tn+1],
∫

V

q(x, tn+1)dx−
∫

V

q(x, tn)dx

+

∫ tn+1

tn

∫

S

(
f(x, t) · nx + g(x, t) · ny

)
dSdt = 0 (181)

For a Cartesian domain, the control volume Vi,j is defined as the rectangular region

around each computational point xi,j = (xi, yj)
T such that its domain is

Vi,j =
[
xi−1/2,j, xi+1/2,j

]
×
[
yi,j−1/2, yi,j+1/2

]
(182)

where ∆x and ∆y for each computational cell are defined as xi+1/2,j − xi−1/2,j and

yi,j+1/2−yi,j−1/2, respectively. Within each computational cell, Qi,j(t) is then defined

as the numerical approximation to the cell-averaged value at time t,

Qi,j(t) ≈
1

Vi,j

∫

Vi,j

q(x, t)dx, (183)

Additionally, the numerical fluxes are defined as averages over the cell faces

Fi+1/2,j

(
Q(t)

)
≈ 1

∆y

∫ yi,j+1/2

yi,j−1/2

(
f(xi+1/2,j, yij, t)

)
dy, (184)

Gi,j+1/2

(
Q(t)

)
≈ 1

∆x

∫ yi+1/2,j

yi−1/2,j

(
f(xij, yij+1/2, t)

)
dx. (185)

Using these expressions and substituting them into Eq. 181,

Qn+1
i,j = Qn

ij −
1

∆x

∫ tn+1

tn

(
Fi+1/2,j

(
Q(t)

)
− Fi−1/2,j

(
Q(t)

)
)
dt

− 1

∆y

∫ tn+1

tn

(
Gi,j+1/2

(
Q(t)

)
−Gi,j−1/2

(
Q(t)

)
)
dt (186)

where Qn
i,j = Qi,j(tn) and Qn+1

i,j = Qi,j(tn+1). The last step is to define a suitable

approximation to time integration of the numerical fluxes in the above equation. If

the numerical fluxes are be approximated at the half time step n + 1/2, then the

following definitions apply

F
n+1/2
i+1/2,j(Q) ≈ 1

∆y∆t

∫ tn+1

tn

∫ yi,j+1/2

yi,j−1/2

(
f(xi+1/2,j, yi,j, t)

)
dtdy, (187)

G
n+1/2
i,j+1/2(Q) ≈ 1

∆x∆t

∫ tn+1

tn

∫ yi+1/2,j

yi−1/2,j

(
f(xi,j, yi,j+1/2, t)

)
dtdx. (188)
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where F
n+1/2
i+1/2,j and G

n+1/2
i,j+1/2 are numerical fluxes in the i- and j-directions. The eval-

uation of the numerical fluxes at the half time step is similar to a predictor step

and is done in such a way that flux necessarily includes components from both the

x− and y−directions. Thus, the fluxes are multi-dimensional. The final form of the

finite-volume representation of the hyperbolic MHD conservation equations is

Qn+1
i,j = Qn

i,j −
∆t

∆x

(
F

n+1/2
i+1/2,j(Q)− F

n+1/2
i−1/2,j(Q)

)

− ∆t

∆y

(
G

n+1/2
i,j+1/2(Q)−G

n+1/2
i,j−1/2(Q)

)
. (189)

The accuracy of the finite volume scheme is dependent on the integration algo-

rithm used to compute the cell averaged quantities in Eq. 181. Extending the formal

order of accuracy of finite volume schemes to orders higher than two is not as trivial

as it is in a finite difference representation, since a high order approximation of the in-

tegrands involves integrating over multiple quadrature points. Instead, the numerical

errors of the scheme are simply reduced by using a high order interpolation proce-

dure to approximate Qn
i,j at the cell-faces. The interpolated conservative or primitive

variables are then used to compute the numerical fluxes [69]. This is an important

difference between the finite volume and finite difference methods developed in this

thesis. Yet, it is important to note that Eqs. 186 and 189 are in the same general

form as the finite-difference representation, Eq. 172. In the next sections, the de-

tails of a finite difference and finite volume methods are discussed in application to

MHD, however, in order to do that several numerical algorithms used to preserve the

magnetic divergence are first introduced.

3.2 ∇ ·B = 0 Perserving Methods

The divergence free condition on the magnetic field makes the direct extension of any

numerical method developed for the hydrodynamic conservation equations difficult,
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since when such numerical schemes are extended to MHD without modification, nu-

merical errors accumulate and create unphysical values in the pressure and density

fields. The different types of methods were reviewed in Sec. 1.4.2. Two approaches are

used to limit the non-zero errors in the magnetic divergence, the projection scheme,

a divergence cleaning method, and the constrained transport scheme, a divergence

free method. These methods are are used for the both the finite-difference and finite-

volume methods.

It is useful to think of the MHD system of equations as composed of two coupled

subsystems, one evolving the conservative variables of mass, momentum, and energy,

and another evolving the magnetic field. The first system is similar to the Euler

form of the conservative equation. For this system, the numerical methods used to

solve the Euler gas dynamic equations are directly applicable. This is referred to

as the base scheme. The second evolution equation is for the magnetic field. If the

base scheme is used for the numerical integration of the magnetic induction equation,

then a divergence cleaning algorithm is necessary. Otherwise, the magnetic induction

equation must be integrated in the particular manner, such as the method adopted

by the constrained transport (CT) scheme.

3.2.1 Projection Scheme

The projection scheme provides a correction to the magnetic field after it has been

incremented in time using a finite difference or finite volume numerical scheme. Let

Bn be the magnetic field at time tn, and let B̂ be the magnetic field at the next

time increment, t+∆t, which is not necessarily divergence free. The objective of the

projection scheme is to “project” the magnetic field updated from the base scheme

to a divergence free Bn+1. Since any vector field can be decomposed into the sum of

a curl and a gradient, then the magnetic field can be written as

B̂ = ∇×A+∇φ, (190)
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whereA is the vector potential, and φ is a scalar potential representing the unphysical,

divergent part of the magnetic filed. Taking the divergence of both sides yields a

Poisson equation for φ,

∇2φ = ∇ · B̂. (191)

Solving the Poisson equation for the scalar function φ, the magnetic field can be

corrected by

Bn+1 = B̂−∇φ (192)

The numerical divergence of Bn+1 should be exactly zero or within machine precision.

For a uniform Cartesian grid, it can be demonstrated that the projection scheme

minimizes the correction necessary to remove the divergence of the magnetic field

generated by the base scheme [202].

The projection scheme does not introduce any errors in the total energy or in the

conservation of the magnetic flux since these variables are independently computed by

the numerical scheme. Likewise, the kinetic energy does not change due to projection,

since the momentum and density are unaffected. However, the magnetic energy can

change, and as a result so can the internal energy or temperature, but small changes in

the temperature should not significantly affect accuracy. The main concern is the use

of the projection scheme for discontinuous solutions, particularly since the numerical

error associated with the magnetic divergence is larger near a discontinuity. While

the projection scheme could lower the accuracy of the base scheme by spreading the

error globally since it is implicit, numerous numerical tests indicate that this does

not happen. See Toth [202] for a comparison of between methods for many numerical

tests. In fact, even for discontinuous solutions, the projection scheme can be proved

to be consistent and as accurate as the base scheme [202].

The projection scheme requires one to solve a Poisson equation for φ. For uniform

Cartesian grid geometries with periodic boundary conditions, Poisson solvers are

usually extremely efficient, only requiring 20 to 30 % if the total CPU time [173,
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174, 202]. For more complex geometries, the computational cost may be larger. In

practice, it is not necessary to perform the projection operation at every iteration nor

is it necessary to reduce the ∇ · B̂ errors to the precision of round off error, just to

some small value relative to the initial error.

There are two primary benefits to using the projection scheme. The first is that the

projection scheme is ideally used to ensure that the initial magnetic field is divergence

free when discretized on the computational mesh. This is of particular importance in

turbulence simulations where the initial magnetic field does is not prescribed analyt-

ically. The second benefit of the projection scheme is that it can be easily combined

with any numerical scheme, even high order methods. As is discussed in the next

section, constrained transport methods can be extremely complex, particularly when

in the extension to a high order method. This makes the projection scheme ideal for

the high order finite difference schemes discussed in the previous sections.

3.2.2 Constrained Transport Methods

For simplicity, the CT method is presented here only for a two dimensional uniform

Cartesian grid. Extensions to three-dimensional geometry is simple. Note that in

a two-dimensional implementation, the Bz component of the magnetic field can be

updated directly by the base scheme since it does not contribute any error to ∇ ·B.

Typically, the CT method employs a staggered representation of the magnetic field

vectors, as illustrated in Figs. 9 and 10. In the ensuing notation, the uppercase B

is used to represent cell-centered values while the lower case b is used to represent

the staggered components. In the CT scheme, only ∇ · b = 0 is guaranteed. Let

E = −u × B + ηJ be defined at the cell corners xi+1/2,j, yi,j+1/2. Integrating over

the cell surfaces using Stoke’s theorem results in the discrete form of the induction
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equation given by

bx,n+1
i+1/2,j = bx,ni+1/2,j −

∆t

∆y

(
Ez,i+1/2,j+1/2 − Ez,i+1/2,j−1/2

)
(193)

by,n+1
i,j+1/2 = by,ni,j+1/2 +

∆t

∆x

(
Ez,i+1/2,j+1/2 − Ez,i−1/2,j+1/2

)
(194)

If the magnetic field is initially divergence free, then ∇ · bn, which is numerically

defined as

(∇ · b)i,j =
bxi+1/2,j − bxi−1/2,j

∆x
+

byi,j+1/2 − byi,j−1/2

∆y
, (195)

then substituting the expressions for bx,n+1
i+1/2,j and by,n+1

i,j+1/2 in Eqs. 193 and 194 it is easy

to show that ∇·bn+1 is zero by definition. Most CT schemes follow this formulation.

Differences between CT implementations arise in how the cell corner electric fields,

i.e., Ez,i+1/2,j+1/2, are computed. Typically, this requires some interpolation procedure

to translate the numerical fluxes computed at the cell faces, which is more natural, to

the cell corner. However, given values for the cell corner electric field, the magnetic

field is easily integrated in time. The updated values of the cell centered magnetic

field values are then computed as straight averages,

Bx,n+1
i,j =

bx,n+1
i+1/2,j + bx,n+1

i−1/2,j

2
(196)

By,n+1
i,j =

by,n+1
i,j+1/2 + by,n+1

i,j−1/2

2
(197)

These values are used in the next time step. Since the conservative variables are

integrated using the base scheme, the total energy density at the new time step En+1,

which contains the a magnetic energy term, needs to be reconciled. Thus, En+1 must

be corrected either to conserve the total energy or to keep the pressure the same

before and after the time update. The later option tends to improve the numerical

stability in some problems where it is necessary to maintain the positivity of the

pressure.

Two methods to determine Ez,i+1/2,j+1/2 are presented. The first approach, which

is most commonly used, is to define Ez,i+1/2,j+1/2 as a simple arithmetic average,
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Qijk bx,i+1/2,j,k

by,i,j+1/2,k

bz,i,j,k+1/2

x

y

z

Figure 9: Illustration of the staggered stencil for the constrained transport scheme
where the conservative variables are computed at the cell-center and the magnetic
field is computed cell-faces.

Ez,i+1/2,j+1/2, which can be computed as

Ez,i+1/2,j+1/2 =
1

4

(
Ez,i+1/2,j + Ez,i,j+1/2 + Ez,i+1,j+1/2 + Ez,i+1/2,j

)
(198)

Exploiting the fact that the electric field values at the cell faces, i.e., Ez,i+1/2,j, are

actually evaluated as fluxes in the base scheme, this averaging procedure can be

written as,

Ez,i+1/2,j+1/2 =
1

4

(
−F Ez

i+1/2,j − F Ez
i+1/2,j+1 +GEz

i,j+1/2 +GEz
i+1,j+1/2

)
(199)

where F Ez
i+1/2,j and GEz

i,j+1/2 are the corresponding transverse magnetic field compo-

nents in the Fi+1/2,j and Gi,j+1/2 numerical flux vectors. In this manner, any numer-

ical scheme can be easily coupled with a CT algorithm. It is important to mention,

however, that the averaging procedure here is at most second-order accurate, thus us-

ing this particular CT algorithm could reduce the order of a high order base scheme.

A more accurate approach is to compute an average value of Ez at the cell corner

using a spatial integration procedure. For instance, using a first order expansion, the
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Qijk

x

y

z

Fi+1/2,j,k

Gi,j+1/2,k

Hi,j,k+1/2

εy,i+1/2,j,k+1/2

εy,i+1/2,j,k−1/2

εy,i−1/2,j,k+1/2

εz,i+1/2,j+1/2,k

εz,i+1/2,j−1/2,k

εx,i,j+1/2,k+1/2

εx,i,j−1/2,k+1/2

Figure 10: Illustration of the location of the numerical fluxes for the flux constrained
transport scheme in three-dimensions.

result is

Ez,i+1/2,j+1/2 = Ez,i+1/2,j +
∆y

2

(
∂Ez
∂y

)

i+1/2,j+1/4

. (200)

Following the same procedure in each direction results in the following expression,

Ez,i+1/2,j+1/2 =
1

4

(
Ez,i+1/2,j + Ez,i,j+1/2 + Ez,i+1,j+1/2 + Ez,i+1/2,j

)

+
∆y

8

((
∂Ez
∂y

)

i+1/2,j+1/4

−
(
∂Ez
∂y

)

i+1/2,j+3/4

)

+
∆x

8

((
∂Ez
∂x

)

i+1/4,j+1/2

−
(
∂Ez
∂x

)

i+3/4,j+1/4

)
. (201)

To complete the formulation it is necessary to approximate to the derivatives of Ez.

This can be done by finding an approximate solution for the evolution equations of
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(∂Bx/∂x) and (∂By/∂y). Using a Lax-Friedrichs estimate with the maximum wave-

speed α gives the following approximations,

(
∂Ez
∂x

)

i+1/4,j+1/2

=
1

∆x

(
Ez,i+1/2,j − Ez,i,j + Ez,i+1/2,j+1 − Ez,i,j+1

)

+
α

∆x

(
bxi+1/2,j − bxi,j + bxi+1/2,j+1 − bxi,j+1

)
, (202)

and similarly in the y-direction,

(
∂Ez
∂y

)

i+1/2,j+1/4

=
1

∆y

(
Ez,i,j+1/2 − Ez,i,j + Ez,i+1,j+1/2 − Ez,i+1,j

)

+
α

∆y

(
byi,j+1/2 − byi,j + byi+1,j+1/2 − bxi+1,j

)
. (203)

For a values of α = 0, this procedure relaxes to the arithmetic averaging method

discussed previously. Other methods are addressed and compared elsewhere [68]. The

advantage of these methods is that they are consistent with the integration algorithm.

Many CT methods are not and produce errors for plane-parallel, grid-aligned flows

since they lack directional bias in the averaging formula [67].

3.3 A Finite Difference Flux Vector Splitting Scheme

While the particulars of the FD scheme presented here is not new, the method of

combining this FVS scheme with a central explicit or implicit FD scheme is a new

approach to the numerical simulation of MHD. In Sec. 3.1.1, a family of high order

FD schemes were introduced. In this section, a FVS scheme using WENO flux recon-

struction is discussed. In a later section, the details of the hybrid switching function

is discussed. This method is combined with both the projection scheme as well as

integrated into the CT method. The details of the WENO reconstruction procedure

are now discussed.

For simplicity of notation, consider a one-dimensional, hyperbolic conservation

equation,

∂Q

∂t
+

∂F

∂x
= 0, (204)
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i+ 1
2i− 2 i− 1 i i+ 1 i+ 2 i+ 3

S1

S2

S3

Figure 11: Three sub-stencils for WENO O(5) used in computing the left flux at
i+ 1/2

where Q and F now represent single, corresponding elements in the vectors Q and

F. Likewise, the semi-discrete form in a single dimension is written as,

dqi(t)

dt
= − 1

∆x

(
Fi+1/2 − Fi−1/2

)
, (205)

Then, following a classical fifth-order WENO scheme of Jiang and Shu [99], the

numerical flux, Fi+1/2, in the x-direction, is defined through the convex, weighted

combination of interpolated values of three (k = 0, 1, 2) third-order sub-stencils, Sk =

(xi+k−2, xi+k−1, xi+k). These sub-stencils are illustrated in Fig. 11. Mathematically,

Fi+1/2 =
2∑

k=0

ωkF
k
i+1/2 (206)

where

F k
i+1/2 = F k(xi+1/2) =

2∑

j=0

ckjFi−k+j (207)

The weights ωk are defined as

ωk =
αk∑2
l=0 αl

, αk =
dk

(βk + ǫ)p
(208)

The smoothness indicators βk(k = 0, 1, 2) are given by

β0 =
13

12
(Fi−2 − 2Fi−1 + Fi)

2 +
1

4
(Fi−1 − 4Fi−1 + 3Fi)

2 (209)

β1 =
13

12
(Fi−1 − 2Fi + Fi+1)

2 +
1

4
(Fi−1 − Fi+1)

2

β1 =
13

12
(Fi − 2Fi+1 + Fi+2)

2 +
1

4
(3Fi − 4Fi+1 + Fi+2)

2
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The process described above is applied to each flux in the vector F. Likewise,

the same procedure is repeated in each direction in order to compute the y- and z-

directional fluxes as well. In summary, the following general steps are used to compute

the numerical fluxes for a FVS using WENO reconstruction are as follows:

1. In the i-direction, evaluate all the conservative variables at each cell-face loca-

tion (xi+1/2,j,k, yi+1/2,j,k, zi+1/2,j,k). A simple arithmetic average is used,

Qi+1/2,j,k =
1

2
(Qi,j,k +Qi+1,j,k) (210)

2. Using Qi+1/2,j,k compute the primitive variables Wi+1/2,j,k, which are needed

to compute the left eigenvectors Li+1/2,j,k, the right eigenvectors Ri+1/2,j,k, and

the eigenvalues λi+1/2,j,k at the averaged state.

3. Project the fluxes of the conservative variables at the average state into char-

acteristic space using the left eigenvectors,

f
(s)
m,j,k = L

(s)
i+1/2,j,k · Fm,j,k, m ∈ [i− 2, i+ 3] (211)

where s represents the individual characteristic waves. For the MHD system of

equations, there are seven independent characteristics. The stencil size m spans

i − 2 to i + 3 for a fifth-order WENO reconstruction. For higher orders, m is

larger.

4. For either Roe or local Lax Friedrichs flux splitting, the sign of each eigenvalue

is checked at both sides of the interface. If λiλi+1 > 0, then Roe flux splitting

is used. If λ
(s)
i+1/2,j,k > 0, then

f
(s),+
m,j,k = f

(s)
m,j,k,

f
(s),−
m,j,k = 0, (212)
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otherwise

f
(s),+
m,j,k = 0,

f
(s),−
m,j,k = f

(s)
m,j,k. (213)

If λi,j,kλi+1,j,k < 0, the left and right characteristic fluxes are computed using

LLF flux splitting. The conservative variables are projected into characteristic

space similar to Eq. 211,

ϕ
(s)
m,j,k = L

(s)
i+1/2,j,kQm,j,k, m ∈ [i− 2, i+ 3] (214)

The left and right flux functions at the grid points in the WENO-Z stencils are

then computed using the LLF technique,

f
(s),+
m,j,k =

1

2

(
f
(s)
m,j,k + max

l∈[i−2,i+3]

∣∣∣λ(s)
l

∣∣∣ϕ(s)
m,j,k

)
,

f
(s),−
m,j,k =

1

2

(
f
(s)
m,j,k − max

l∈[i−2,i+3]

∣∣∣λ(s)
l

∣∣∣ϕ(s)
m,j,k

) (215)

5. The numerical fluxes at the xi+1/2,j,k interface can then be computing using

WENO-Z reconstruction,

f
(s),±
i+1/2,j,k =





f
(s),±Roe
i+1/2,j,k if λi,j,kλi+1,j,k > 0

f
(s),±LLF
i+1/2,j,k if λi,j,kλi+1,j,k < 0

(216)

6. Lastly, the characteristic fluxes are then projected back to physical space using

the right eigenvectors,

Fi+1/2,j,k = Ri+1/2,j,k

(
f+i+1/2,j,k + f−i+1/2,j,k

)
(217)

Once the x-directional flux is computed, the other two numerical fluxes, Fi,j+1/2,k

and Hi,j,k+1/2, are computed in a similar manner. The left and right eigenvectors

used here were derived for a multi-species mixture. Note that since the conservative

fluxes are characteristically projected, the left and right eigenvectors are based on the
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Jacobian of the conservative variables. When coupled with a CT scheme, these fluxes

are used in the computing the cell-corner electric field, which is then in turn used to

update the magnetic field. If a projection scheme is used, then no additional changes

need to be made to the time-integration procedure.

3.4 A Finite Volume Unsplit Flux Difference Splitting Scheme

A multi-dimensional unsplit FDS method is used to numerical solve the finite-volume

representation of the governing equations. For a typical finite-volume, shock-capturing

scheme, a reconstruction step is first used to compute the primitive state variables

at the points where the flux derivatives are required (i + 1/2, j + 1/2), and then a

Riemann solver is used to evaluate the numerical fluxes, F
n+1/2
i,j+1/2 and G

n+1/2
i,j+1/2 at the

half time step. The method developed here is only two-dimensional. Identifying the

Riemann solver as some function R(W), then

F
n+1/2
i+1/2,j = R(W

n+1/2
i+1/2,j) (218)

G
n+1/2
i,j+1/2 = R(W

n+1/2
i,j+1/2) (219)

where W is the primitive state vector defined by the conservative state vector Q.

In order to estimate the the numerical fluxes at the half time-step, a Taylor series

expansion in space through ∆x/2 and in time through ∆t/2 is used.

W
n+1/2
i+1/2,j = Wn

i,j +
∆x

2

∂W

∂x

∣∣∣∣
i,j

+
∆t

2

∂W

∂t

∣∣∣∣
i,j

+ . . . (220)

= Wn
i,j +

∆x

2

∂W

∂x

∣∣∣∣
i,j

− ∆t

2

(
A
∂W

∂x

)

i,j

(221)

= Wn
i,j +

1

2

[
1− ∆t

∆x
Ai,j

]
∆Wi,j (222)

This expression can be simplified by using the left and right eigenvectors, l and r,

respectively,

W
n+1/2
i+1/2,j,L = Wn

i,j +
1

2

∑

s;λ(s)≥0

[
1− ∆t

∆x
λ
(s)
i,j

](
l
(s)

i,j ·∆Wi,j

)
r(s) (223)
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Figure 12: Piecewise linear reconstruction (PLM) of the cell-centered primitive
variables. The dotted red lines show the unlimited reconstructed slopes, and the
solid blue lines show the limited slopes.

W
n+1/2
i+1/2,j,R = Wn

i+1,j −
1

2

∑

s;λ(s)≤0

[
1− ∆t

∆x
λ
(s)
i,j

](
l
(s)

i,j ·∆Wi,j

)
r(s) (224)

where the lowercase l and r eigenvectors are used to distinguish them from the eigen-

vectors L and R, which are based on the conservative rather than primitive variables.

Only those jumps moving toward the interface contribute to the interface state.

referred to as characteristic tracing, which involves decomposition in terms of the

eigenvectors and eigenvalues. The reconstruction is either linear as illustrated in Fig.

12 or parabolic as illustrated in Fig. 13. The details of the reconstruction are not

given here since this method is commonly used in many MHD codes.

The most important feature of this scheme is that it use a corner-transport update

(CTU) scheme so that the time integration is multi-dimensional. This involves an

additional step of updating the reconstructed primitives using the transverse fluxes.

The details of the scheme are given elsewhere [67, 68], but it can be summarized in

the following steps. First, the primitive x- and y-interface states are reconstructed

using the PPM algorithm. For MHD, this requires the addition of multi-dimensional

source terms in order for the method to be consistent. A Riemann solver is then used
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Figure 13: Piecewise parabolic reconstruction (PPM) of the cell-centered primitive
variables. The dotted red lines show the unlimited parabolas, and the solid blue lines
show the limited parabolas.

i i+ 1i− 1
2 i+ 1

2 i+ 3
2

wi

wi+1

wL,i+1/2

wR,i+1/2

Figure 14: One-dimensional schematic of the reconstruction process for primitive
variables using the piecewise parabolic method to compute the left and right states
defining the Riemann problem at the cell interface.
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σ
(ν)
i ∆x

Figure 15: One-dimensional schematic of the area of integration under the parabolic
profile that is swept out by each of the characteristic waves, where σ∆x = λ∆t. The
shaded region indicates the portion of the characteristics that contribute to the left
state at i+ 1/2.

to compute the fluxes, and the CT method is used to compute the electric field fluxes

at the corner. Using the transverse fluxes in each direction the primitive x- and y-

interface states computed in the first step are updated so that they are integrated to

the corner of the cell. Since the reconstruction step involves a characteristic tracing

step, these corner fluxes are evaluated at the half time step. The CT algorithm is once

again used to compute the electric field fluxes at the half time step. Once this is done,

all the conservative variables are time updated. Note that this procedure is for a two-

dimensional integration only. The CTU process is more complex in three-dimension

[68]. In the next section, the details of the Riemann solver are discussed.

3.4.1 MHD Riemann Solvers

A family of approximate Riemann solvers called HLL, named for the developers

Harten, Lax, and van Leer [83], can be easily adapted to MHD flows because of

its generality. In the HLL formulation, n characteristic waves are assumed to sub-

divide each cell interface into n+1 constant-property regions. Expressions for each

of the n+1 states and their corresponding fluxes can be derived by applying the
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Figure 16: Schematic of the Riemann fan with a single intermediate state. The
fastest left- and right-going wave speeds are given by SL and SR, respectively.

Rankine-Hugoniot jump relations across each wave and calculating (or approximat-

ing) each of n characteristic wave-speeds. Harten et al. [83] carried out a full deriva-

tion for a two-wave problem, but did not specify an procedure for the evaluation of

the the characteristic wave-speed. Since then, many variants of the HLL-type Rie-

mann solver have been developed, including the HLLD Riemann solver derived by

Miyoshi for MHD flows [142]. Since a three-wave HLL Riemann solver, HLLC, has

previously been implemented for hydrodynamic flows, the HLLD was natural choice

for extending the capability to MHD flows. The HLLD Riemann solver has also been

demonstrated to preform relatively well compared to other Riemann solvers [142].

For simplicity, consider a simple two wave HLL method. Figure 16 shows a typical

(x, t) diagram of an approximate Riemann problem evolution with two characteristic

waves. As mentioned in the previous paragraph, the HLLD Riemann solver is a

generalization of the HLL method. For the general hyperbolic conservation law in a

single dimension,

∂Q

∂t
+

∂F

∂x
= 0 (225)
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where the vectors Q and F are as previously defined, an integral form of the conser-

vation law can be stated as

∮
[Qdx− F(Q)dt] = 0. (226)

Applying this to the Riemann fan, which is defined by the rectangular region (xL, xR)×

(tn, tn+1) results in

∫ −xL

0

Q(x, 0)dx−
∫ ∆t

0

F(Q(xL, t))dt+

∫ xR

−xL

Q(x,∆t)dx

−
∫ 0

∆t

F(Q(xR, t))dt+

∫ 0

xR

Q(x, 0)dx = 0 (227)

After some re-arrangement, the average state is defined as

Q∗ =
FL − SLQL − (FR − SRQR)

SR − SL

(228)

As a result, once the left and right interface values, QL and QR, are known from the

reconstruction procedure and the wave speeds SL and SR are estimated, the states

across the Riemann fan are known. The fluxes can be calculated using the Rankine-

Hugoniot relations across the wave. For MHD, this procedure is merely complicated

by the existence of more characteristic waves. The mechanics, however, are the same.

Figure 17 shows the (x, t) diagram of the MHD Riemann problem. In this case, the

average state value can be defined

SM =
(SR − uR)ρRuR − (SL − uL)ρLuL − pTR

+ pTL

(SR − uR)ρR − (SL − uL)ρL
(229)

The normal velocity is assumed to be constance over the Riemann fan, which implies

u∗
L = u∗∗

L = u∗∗
R = u∗

R = SM , (230)

and

p∗TL
= p∗∗TL

= p∗∗TR
= p∗TR

= p∗T . (231)
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Figure 17: Schematic of the Riemann fan with a four intermediate states. The
fastest left- and right-going wave speeds, given by SL and SR, respectively, form the
outsides of the Riemann fan which is divided by the contact wave of speed SM and
two Alfvén waves with speeds approximated by S∗

L and S∗
R .

Even with this assumption contact, tangential, and rotational discontinuities can be

formed. The average total pressure is computed using the jump conditions for each

wave. The result is

p∗T =
(SR − uR)ρRpTL

− (SL − uL)ρLpTR
+ ρLρR(SR − uR)(SL − uL)(uR − uL)

(SR − uR)ρR − (SL − uL)ρL
(232)

Once SM and p∗T are known the Q∗
α states can be obtained using the jump conditions
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across Sα, where α = (L,R). These are given by

Sα




ρ∗α

ρ∗αSM

ρ∗αv
∗
α

ρ∗αw
∗
α

B∗
y,α

B∗
z,α

e∗α




−




ρ∗αSM

ρ∗αS
2
M + p∗T −B2

x

ρ∗αv
∗
αSM − BxB

∗
y,α

ρ∗αw
∗
αSM − BxB

∗
z,α

B∗
y,αSM − Bxv

∗
α

B∗
z,αSM − Bxw

∗
α

(e∗α + p∗T )SM − Bx(v
∗
α ·B∗

α)




= Sα




ρα

ραuα

ρ∗αvα

ρ∗αwα

By,α

Bz,α

eα




−




ραuα

ρ∗αu
2
α + pTα − B2

x

ρ∗αvαuα − BxBy,α

ρ∗αwαuα − BxBz,α

B∗
y,αuα − Bxvα

B∗
z,αuα − Bxwα

(eα + pTα)uα − Bx(vα ·Bα)




, (233)

The first equation gives

ρ∗α = ρα
Sα − uα

Sα − SM

(234)

Solving the third and fifth equations simultaneously, results in expressions for

v∗α = vα − BxBy,α
SM − uα

ρα(Sα − uα)(Sα − SM)− B2
x

, (235)

w∗
α = wα − BxBz,α

SM − uα

ρα(Sα − uα)(Sα − SM)− B2
x

, (236)

Likewise, solving the fourth and sixth equations simultaneously, result in

B∗
y,α = By,α

ρα(Sα − uα)
2 − B2

x

ρα(Sα − uα)(Sα − SM)− B2
x

, (237)

B∗
z,α = Bz,α

ρα(Sα − uα)
2 − B2

x

ρα(Sα − uα)(Sα − SM)− B2
x

, (238)

(239)
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Note that some care is necessary in the implementation of these expressions since

the denominators can go to zero if SM = uα, Sα = uα ± cf,α, By,α = Bz,α = 0 and

B2
x ≥ γpα. Lastly, the averaged energy state is

e∗α =
(Sα − uα)eα − pTαuα + p∗TSM +Bx(vα ·Bα − v∗

α ·B∗
α)

Sα − SM

(240)

In a similar manner, the inner intermediate states Q∗∗
α can be determined from the

jump conditions across the Alfven waves. The speed of these waves are computed as

S∗
L = SM −

|Bx|√
ρ∗L

, S∗
R = SM +

|Bx|√
ρ∗R

(241)

Considering the jump conditions for the tangential components of the velocity and

magnetic fields gives

S∗
α




ρ∗αv
∗∗
α

ρ∗αw
∗∗
α

B∗∗
y,α

B∗∗
z,α




−




ρ∗αv
∗∗
α SM − BxB

∗∗
y,α

ρ∗αw
∗∗
α SM − BxB

∗∗
z,α

B∗∗
y,αSM − Bxv

∗∗
α

B∗∗
z,αSM − Bxw

∗∗
α




= S∗
α




ρ∗αv
∗
α

ρ∗αw
∗
α

B∗
y,α

B∗
z,α




−




ρ∗αv
∗
αSM − BxB

∗
y,α

ρ∗αw
∗
αSM − BxB

∗
z,α

B∗
y,αSM − Bxv

∗
α

B∗
z,αSM − Bxw

∗
α




(242)

After some algebra, the intermediate states can be evaluated as

v∗∗ =

√
ρ∗Lv

∗
L +

√
ρ∗Rv

∗
R + (B∗

y,R − B∗
y,L)sign(Bx)√

ρ∗L +
√

ρ∗R
(243)

w∗∗ =

√
ρ∗Lw

∗
L +

√
ρ∗Rw

∗
R + (B∗

z,R − B∗
z,L)sign(Bx)√

ρ∗L +
√
ρ∗R

(244)

B∗∗
y =

√
ρ∗LB

∗
y,L +

√
ρ∗RB

∗
y,R +

√
ρ∗Lρ

∗
R(v

∗
R − v∗L)sign(Bx)√

ρ∗L +
√

ρ∗R
(245)

B∗∗
z =

√
ρ∗LB

∗
z,L +

√
ρ∗RB

∗
z,R +

√
ρ∗Lρ

∗
R(w

∗
R − w∗

L)sign(Bx)√
ρ∗L +

√
ρ∗R

(246)

where sign(Bx) is 1 for Bx > 0 and -1 for Bx < 0. From the jump condition of the

energy density, the intermediate energy state is

e∗∗α = e∗α ∓
√
ρ∗α(v

∗
α ·B∗

α − v∗∗
α ·B∗∗

α )sign(Bx) (247)
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Once all the intermediate states, Q∗
L, Q

∗∗
L , Q∗

R, and Q∗∗
R are computed, the corre-

sponding fluxes can be computed by integrating the conservation laws over the left

and right halves of the Riemann fan. For SL ≤ 0 ≤ S∗
L,

F = FL + SLU
∗
L − SLUL = F∗

L (248)

and for S∗
L ≤ 0 ≤ SM ,

F = FL + S∗
LU

∗
L ∗ −(S∗

L − SL)UL − SLUL = F∗∗
L (249)

Lastly, the fluxes are given by

FHLLD =





FL ifSL > 0,

F∗
L ifSL ≤ 0 ≤ S∗

L,

F∗∗
L ifSL ≤ 0 ≤ SM ,

F∗∗
R ifSM ≤ 0 ≤ S∗

R,

F∗
R ifS∗

R ≤ 0 ≤ SR,

FR ifSR < 0,

(250)

In the case of Bx = 0, the HLLD Riemann solver reduces to the two-state HLL Rie-

mann solver. Lastly, to complete the formulation of the HLL approximate Riemann

solver, the wave speeds must be computed. There are a variety of methods to ap-

proximate these wave speeds. Each method has a varying degree of robustness and

dissipation. In this thesis, the wave speeds are estimated in the following manner,

SL = min (uL − cL, ũ− c̃) (251)

and

SR = min (uR + cR, ũ+ c̃) (252)

where ũ and c̃ are the Roe-averaged velocity and speed of sound. The Roe-averaged
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quantities are computed as

Q̃ =
1√

ρL +
√
ρR




√
ρL




√
ρL
√
ρR

uL

vL

wL

By,L

Bz,L

eL




+
√
ρR




√
ρL
√
ρR

uR

vR

wR

By,R

Bz,R

eR







, (253)

where the Roe-averaged speed of sound is computed from the Roe-average variables.

This solver has been shown to be robust and accurate for many MHD applications.

The two-wave HLL approximate Riemann solver is non-contact-preserving since

like the HLLD Riemann solver does not explicitly include the intermediate state.

Non-contact-preserving Riemann solvers are much more dissipative, however, this

dissipation is stabilizing. The HLLD Riemann solver, as well as the HLLC Riemann

solver, the hydrodynamic analogous to the HLLD Riemann (it is a contact preserving

three-wave Riemann solver), suffer from instabilities near shock regions. The odd-

even decoupling and the carbuncle phenomena can result in post-shock oscillations

and deformation of shock fronts.

Previous studies have found that these instabilities arise when using the contact

preserving solvers in the directions transverse to the shock front. In order to limit the

onset of the instabilities the two-wave HLL Riemann solver is coupled with the HLLD

Riemann solver to add extra dissipation when necessary. In order to switch between

the HLL and HLLD Riemann solvers, a shock detection procedure is necessary.

Shock detection is also used in the reconstruction process. In addition to switching

between the HLL and HLLD Riemann solvers in the computation of the fluxes in the

directions to the propagating shock, the order of the reconstruction is reduced to

avoid instabilities related to the self-steepening property of shocks. The flattening
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method described here is implemented in the current formulation to evaluate when

to add additional dissipation to the FDS scheme. Shock wave detection is achieved

by testing following two conditions,

δpi =
|pi+1 − pi−1|

min(pi+1, pi−1)
− 1

3
> 0, (254)

δui = ui+1 − ui−1 < 0 (255)

??The shock thickness is measured by comparing the pressure difference across two

cells to the difference across four cells,

∆pi =
pi+1 − pi−1

pi+2 − pi−2

. (256)

Using this ratio, the shock sensing variable is computed as

Φ̃ = max [0,min (1, 10(∆pi − 0.75))] , (257)

where finally, the variable Φi is used to determine the computational cell is neighbor-

ing a shock. It is computed as

Φi =





max
(
Φ̃i, Φ̃i+1

)
, if pi+1 − pi−1 < 0,

max
(
Φ̃i, Φ̃i−1

)
, otherwise

(258)

3.5 Hybrid Schemes for MHD

The objective of a hybrid methodology is to optimally design a numerical scheme

with the ability to resolve any physical discontinuities arising the flow while still re-

taining the benefits of using a low numerical dissipation in smooth regions of the

flow. WENO schemes do this to some extent by changing the order of the differ-

encing stencil when necessary. However, these schemes are still more numerically

dissipative when compared to high order compact schemes, since WENO schemes

naturally introduce dissipation through the flux vector splitting procedure. In the

hybrid framework proposed in this thesis, a smoothness function is used to determine
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whether the numerical flux should be computed using a shock capturing scheme or

a low dissipation central differencing scheme. In the current hybrid methodology,

the switch variable s is given as a Heaviside step function, thus the computed fluxes

are not blended, the method either uses one or the other. The benefit of this ap-

proach is that the computational cost associated with any shock capturing scheme

can be avoided if possible. Additionally, it is not immediately obvious that a blending

procedure would be conservative. Explicitly, the numerical flux is computed in the

following manner

Fi+1/2,j,k = si+1/2,j,kF
c
i+1/2,j,k + (1− si+1/2,j,k)F

u
i+1/2,j,k (259)

where a similar procedure is used for the y- and z-directional fluxes. Here, Fc
i+1/2,j,k is

used to represent the numerical flux computed from a low dissipation central scheme,

and Fu
i+1/2,j,k is used to represent the numerical flux computed from a shock capturing

scheme.

Several smoothness indicating functions can be found in the literature. Such

functions are also used self-adjusting artificial diffusion schemes where an explicit

diffusive term is integrated into the governing equations in order to control numerical

oscillations. These functions are dynamically computed using the physical variables

of the flow. For example, the first use of a self-adjusting parameter, computed it in

the following manner,

si+i/1 = n

[ |φi+1 − φi|
maxj∈D|φj+1 − φj|

]m
, (260)

where n and m are user defined constants, and φ is a some physical variable, such

as pressure. The denominator captures the largest jump in the flow. More recent

methods adopt the Jameson artificial dissipation scheme, which was design to stabilize

central schemes near shocks. The smoothness indicator in this approach is based on

the the curvature of the pressure field, i.e.,

si =
pi+1 − 2pi + pi−1

pi+1 + 2pi + pi−1

(261)
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The concept of switching between two numerical schemes with dispersive and dissi-

pative characteristics is more recent. The design of these adopt some of the similar

ideas used for artificial dissipation methods, however, the smoothness functions are

more varied. Adams and Shariff [2] and Pirozzoli [155] use smoothness indicating

function based on the gradient in the fluxes. Hill and Pullin [91] suggest a switch

based on WENO smoothness factors. Ducros et al. [58] develop a sensor based on

the ratio of bulk dilatation to the total vorticity magnitude since large values of bulk

dilatation is associated with shock waves.

In this thesis, a previously developed hybrid methodology is applied to MHD [69].

In this approach, three types of discontinuities are detected by monitoring the change

in the flow gradients. Let the variable φ represent either the pressure or density field.

The sensor function based on φ is computed as

sφ,i =





|φi+1−2φi+φi+1|
|φi+1−φi|+|φi−φi−1|

− s0φ, if |φi+1 − 2φi + φi+1| > ǫφφi

−s0φ, otherwise

(262)

where the coefficients s0p, s
0
ρ, ǫp, and ǫρ are user determined constants, which must

be determined from numerical experimentation on a per case basis. These sensors

identify the regions where the pressure and/or density fields show rapid variations

and where these variables show significant gradients, which are combined to give the

parameter si+1/2 as

si+1/2 =





1, if max (sp,i, sρ,i, sp,i+1, sρ,i+1) ≤ 0

0, otherwise

(263)

3.6 Verification of Numerical Methods for MHD

In the following sections, the conservative finite difference and finite volume MHD

schemes are evaluated using several one dimensional and two dimensional test prob-

lems. No three dimensional verification tests are conducted, but all tests produce
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the same results regardless the orientation of the Cartesian plane. Three dimensional

simulations are used to conduct the validation tests, which are discussed in the next

chapter. In all of the following tests, the ratio of specific heats is assumed to be

constant (γ = 5/3).

The proposed method in this thesis is a finite difference, hybrid numerical method

either using a CT method or the projection method. The upwind scheme uses a fifth

-order WENO-Z reconstruction method coupled with a high order compact scheme

using the hybrid methodology. Time integration is done using a low storage, strong

stability preserving, five stage, fourth order Runge-Kutta scheme. This numerical

method is compared to the a finite volume CTU scheme using the PPM. This method

is commonly used in astrophysics for MHD simulations, and thus, it serves as a

baseline for comparison of the newly proposed finite difference hybrid scheme for

MHD.

Table 2 compares the two methods. The finite difference method is referred to as

the FD-Hybrid scheme while the baseline finite volume scheme is referred to as the FV-

CT scheme, which is a temporally and spatially un-split constrained transport method

for two-dimensional MHD simulations. This method is second order both in time and

space. As a FDS scheme, a Riemann solver is necessary to compute the inviscid fluxes.

For all tests, a hybrid HLLD / HLL approximate Riemann solver is used, and the

approximated wave speeds are computed using the Roe-type averaging. Furthermore,

to avoid numerical oscillations near very strong shocks, it is often necessary to reduce

the order of reconstruction step. A second-order flow sensor is used to detect large

gradients in the pressure or density.
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Table 2: Summary of the two different numerical methods. The finite difference
scheme is herein referred to as the FD-Hybrid scheme. The finite volume scheme is
referred to as FV-CT and is implemented as a reference case since this method is
most commonly used in the astrophysical community [67].

FD-Hybrid FV-CT

Discretization Finite Difference Finite Volume
Dimensions 1-D, 2-D, or 3-D 1-D or 2-D
Hybrid Methodology Yes No
Spatial Integration 5th-order WENO-Z / Compact 2nd-order PPM
Time Integration 5-stage, 4th-order Runge-Kutta Forward Euler
Directional Splitting Direct Split ⊥ reconstruction
∇ ·B method Projection, 2nd-order CT 3rd-order CT
Resistive MHD Yes No

3.6.1 One-Dimensional Tests

To test the ability of the numerical schemes to accurately obtain solutions to flows

with both continuous and discontinuous features, the one-dimensional MHD equa-

tions, Eq. 204, are solved in a shock tube configuration with initial conditions defined

by two MHD Riemann problems. The first test problem, originally used by Dai and

Woodward [47] (herein referred to as the DW94 Riemann problem), is designed to test

the accuracy of the numerical scheme when all seven characteristic waves are present;

fast shocks, slow shocks, and rotational discontinuities all propagate on either side of

a contact discontinuity. The second test problem, originally discussed by Brio and

Wu [28] and later modified by Ryu and Jones [173] to use a constant adiabatic index

of γ = 5/3 (herein referred to as the RJ95 Riemann problem), is designed to demon-

strate the existence compound wave solutions to the MHD hyperbolic equations. It

is worth noting that the hydrodynamic data in this test are the same as for Sod’s

Riemann problem.

• The DW94 Riemann problem
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The one-dimensional computational domain is defined in the interval −0.5 < x <

0.5 using N grid points. The numerical results are compared to the exact solution at

a time of tmax = 0.2. The solution contains two fast shocks, two rotational disconti-

nuities, two slow shocks, and a contact discontinuity [47, 173]. The Riemann problem

is initially defined by the primitive left and right state vectors given by uL for x < 0

and uR for x > 0, where

uL =




ρL

vx,L

vy,L

vz,L

Bx,L

By,L

Bz,L

pL




=




1.08

1.2

0.01

0.5

2/
√
4π

3.6/
√
4π

2.0/
√
4π

0.95




, uR =




ρR

vx,R

vy,R

vz,R

Bx,R

By,R

Bz,R

pR




=




1.0

0.0

0.0

0.0

2/
√
4π

4.0/
√
4π

2.0/
√
4π

1.0




. (264)

Figure 18 shows the discontinuous density, pressure, velocity and magnetic fields

at a time oft = 0.2 for two resolutions, N = 800 and N = 200. Besides very

small oscillations near the flow discontinuities, the results for N = 800 compare

extremely well to the exact solution. Both the FD-Hybrid and the FV-CT schemes

are able to sufficiently resolve discontinuous within 1-2 grid points without generating

large spurious oscillations. The L1 errors for both schemes are shown in Fig. 19.

Since the solution contains discontinuities, the numerical results are only expected to

demonstrate first order convergence. More importantly, both schemes have similar

error magnitudes.

• The RJ95 Riemann problem

Similar to the DW94 Riemann problem, RJ95 Riemann problem is numerically

simulated in a one-dimensional computational shock tube configuration with a domain
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Figure 18: Results of the DW94 shock tube test for the variables ρ, p, vy, vz, By,
Bz at two grid resolutions, N = 800 (black) and N = 200(red).

defined in the interval −0.5 < x < 0.5 using N grid points. The numerical results are

compared to the exact solution at a time of tmax = 0.1. The solution not only contains

ordinary waves (two fast rarefaction waves, a slow shock, and a contact discontinuity),

but also compound waves resulting from the non-convexity of the MHD hyperbolic

system. For this problem, the compound wave is formed by an intermediate shock

followed by a slow rarefaction wave [28, 173]. The Riemann problem is initially defined

by the primitive left and right state vectors, which are given by uL for x < 0 and uR
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Figure 19: Sum of the numerical errors for the finite-difference and finite-volume
schemes. The convergence is first-order because of the presence of discontinuities in
the computational domain.

for x > 0, where

uL =




ρL

vx,L

vy,L

vz,L

Bx,L

By,L

Bz,L

pL




=




1.0

0.0

0.0

0.0

0.75

1.0

0.0

1.0




, uR =




ρR

vx,R

vy,R
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


=




0.125

0.0

0.0

0.0

0.75

−1.0

0.0

0.1




(265)

Figure 20 shows the discontinuous density, pressure, velocity and magnetic fields

at a time oft = 0.1 for two resolutions, N = 800 and N = 200. Besides very

small oscillations near the flow discontinuities, the results for both the N = 800 and

N = 200 resolutions compare extremely well to the exact solution. Both the FD-

Hybrid and the FV-CT schemes are able to sufficiently resolve discontinuous within
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Figure 20: Results of the RJ95 shock tube test for the variables ρ, p, vy, vz, By, Bz

at two grid resolutions, N = 800 (black) and N = 200(red).

1-2 grid points without generating large spurious oscillations.

3.6.2 Circularly-Polarized Alfvén Wave

This test problem involves the simulation of a propagating circularly polarized (CP)

Alfv’en wave on a (x,y) Cartesian plane at angle α relative to the x-axis. The test

is particularly useful since the initial condition is a non-linear solution of the multi-

dimensional MHD system. For periodic boundary conditions, the computational do-

main is defined by 0 < x < 1/ cosα and 0 < y < 1/ sinα. Letting ξ = x cosα+y cosα

be the coordinate in the direction of wave propagation, and η = y cosα − x sinα be
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the coordinate in direction transverse to the wave propagation, the exact solution to

the propagating CP Alfv’en wave is given as

v =




vξ

vη

vz



=




0

A0 sin(2πξ)

A0 cos(2πξ)



, B =




Bξ

Bη

Bz



=




1

A0 sin(2πξ)

A0 cos(2πξ)



. (266)

where A0 is the wave amplitude. The density and pressure are constant, ρ = 1 and

p = 0.1, respectively. For these values, the Alfvén wave has a period of T = 1 and a

propagation speed of vA = 1. The sound speed is cs =
√

γp/ρ ≈ 0.4.

As has been observed by a few others, the numerical solution of this problem is

subject to a parametric decay instability due to the non-linear wave-wave interactions

of the compressive modes [128]. Once this happens, it is no longer possible to compare

the exact solution. If the wave amplitude is set to some small value, A0 = 0.1, and

the simulation only run for a few cycles, the instability can be avoided.

Figure 21 shows the error magnitudes after one cycle of the CP Alfvén wave

for various numerical methods. The finite-difference, fifth-order WENO-Z scheme

with the constrained transport method and the projection method is compared to

the finite-volume PPM method. Since the both FD-Hybrid and FV-CT use a the

same second-order constrained transport algorithm, both schemes converge to second

order. This is one of the significant drawbacks of using this type of constrained

transport method, which involves averaging the magnetic field fluxes, with high-

order finite-difference schemes. While such methods exactly preserve ∇·B = 0 to the

discretization error of the computational grid, to achieve high-order accurate solutions

other methods are required. For instance, in Fig. 21, the fifth-order WENO-Z scheme

coupled with a projection method FD-Hybrid is able to achieve an approximately

fourth-order accurate solution. The reduction in accuracy at higher resolution is a

limitation of the projection scheme. The implemented Poisson solver is only second

order accurate. Since this is a smooth flow, it is important to note that it is possible
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Figure 21: Average error for the finite-volume, piecewise parabolic method FV-CT,
the fifth-order WENO-Z method with constrained transport and a projection scheme.

to achieve a similarly accurate solution using the finite-difference methods without

any magnetic divergence method. This is because the the accuracy of the numerical

scheme is high enough to keep the errors in ∇ ·B small. This is not the case for the

finite volume scheme.

3.6.3 Magnetic Field Loop Advection

For this test problem, the advection and diffusion of weak magnetic field loop is

simulated. Since the field is weak, the magnetic field essentially propagates as a

passive scalar. The test is particularly challenging for all numerical MHD schemes. If

the magnetic field divergence errors are not properly controlled, the initial geometry

of the magnetic field loop quickly disintegrates. For the advection problem, the most

stringent test is when the magnetic field loop moves at angle α relative to the x-axis

in the (x, y) Cartesian plane. The computational domain extends from −1 < x < 1,

and −0.5 < y < 0.5 with 2N × N grid points and period boundary conditions on
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both the x− and y−boundaries.

The pressure and density are initially uniform, p = 1.0 and ρ = 1, respectively.

The velocity vector is defined by

v =




vξ

vη

vz



=




v0 cos(α)

v0 sin(α)

0



. (267)

where cos θ = 2/
√
5 and sin θ = 1/

√
5. In the diffusion tests, v0 = 0, and in the

advection tests, v0 =
√
5. The velocity is set such at that t = 2 the magnetic field

loop will have advection one complete cycle along the grid diagonal. The magnetic

field components are initialized from the magnetic vector potential where

Az =





A0(R− r) : for r ≤ R

0 : for r > R
(268)

where A0 = 10−3, R = 0.3, and r =
√
x2 + y2. Inside the magnetic field loop, the

ratio of the thermodynamic and magnetic pressure is β = 2p/B2 = 2× 106.

Figure 22 shows the magnetic pressure (B2
x + B2

y) at t = 0 and t = 2 for the

finite-difference method with constrained transport.

3.6.4 Orszag-Tang Vortex

Originally used to study the transition to supersonic MHD turbulence, the Orszag-

Tang vortex is now a standard test problem for multi-dimensional MHD codes. The

test is a useful qualitative indicator of whether the MHD scheme is correctly maintain-

ing the constraint of a divergent-free magnetic field. While the problem is sensitive

to errors in the magnetic field divergence, and over time if such errors are not main-

tained to small values, negative pressures will develop late into the simulation, but

the results seem to be more dependent on the spatial order of the numerical scheme.

As such, this test is treated only as a weak indicator of code verification.
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(a) t=0 (b) t=2, FD-Hybrid, CT

(c) t=2, FD-Hybrid, Projection (d) t=2, FV-CT

Figure 22: Magnetic pressure at t = 2 for the fifth-order WENO-Z method with
constrained transport.

The Orszag-Tang vortex problem exhibits the unsteady formation of several MHD

shock waves and the development of current sheets, and as such it is relevant to

many of the problems of interest since instabilities arising from the formation of

these current sheets results in a transition to turbulence. The initial conditions of the

problem are given by:

v =




vx

vy

vz



=




− sin(y)

sin(x)

0



, B =




Bx

By

Bz



=




− sin(y)

sin(2x)

0



. (269)

For these conditions, the initial Mach number is 1. The computational domain is

a square 0 < x, y < 2π, N × N box with periodic boundary conditions in both

directions. The final time is tmax = π. For comparisons to other results, the magnetic

field here has been normalized by 1/
√
4π.

122



(a) N = 400, FD-Hybrid, CT (b) N=200, FD-Hybrid, CT (c) N=100, FD-Hybrid, CT

(d) N = 400, FV-CT (e) N=200, FV-CT (f) N=100, FV-CT

Figure 23: The temperature at at t = π for the fifth-order WENO-Z method with
constrained transport and the finite-volume PPM scheme at difference grid resolu-
tions.
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Figure 24: (a) Line plot of the temperature at y = π, and (b) line plot of the
pressure at y = 0.625π.

3.6.5 The fast MHD rotor

This test problem was first suggested by Brackbill [26] and was used by Balsara [10] to

evaluate the ability of a numerical scheme to simulate a propagating strong torsional

Alfvén waves. These waves are a mechanism for the loss of angular momentum

during star formation, and for this reason, the test has some physical importance

besides testing the robustness of the numerical scheme. The problem is defined by

a disk of dense fluid, ρ1 = 10, with a radius R = 0.1 rotating at a high angular

velocity, ω = 20, relative to a static, magnetized background fluid of lower density,

ρ2 = 1. The ambient pressure and magnetic field are uniform, p = 1, Bx = 5
√
4π,

respectively. The adiabatic index is constant and set to γ = 1.4 in this simulation.

The computational domain defined by 0 < x < 1 and 0 < y < 1 resolved by

N×N grid points or cells. A taper function is used to smooth the numerical transition

between the dense and light species avoiding initial transients. The function is defined

as f = (R1− r)/(R1−R0) where R0 = R = 0.1 and R1 = 0.115. The velocity is then
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(a) FD-Hybrid, CT (b) FD-Hybrid, Projection

Figure 25: Contours of the magnetic pressure pm = (B2
x + B2

y)/2 at t = 0.15 for
the FVS method with fifth-order WENO-Z reconstruction using the (a) constrained
transport method, and (b) the projection scheme. For both simulations, N = 200.

specified by

vT =





(
−v0(y−0.5)

r0
, v0(x−0.5)

r0
, 0
)

: for r ≤ R0
(

−fv0(y−0.5)
r0

, fv0(x−0.5)
r0

, 0
)

: for R0 < r < R1

(0, 0, 0) : for r ≥ R1

(270)

and similarly ρ = 1 + 9f . As the magnetic field “winds up”, the rotating dense fluid

is confined eventually taking the oblong shape shown in Fig. 25. Numerical schemes

that do not maintain magnetic divergence errors well show significant oscillations

inside the disk. For both the schemes here, at N = 200, the numerical schemes

perform well. From the contour plots, shown in Fig. 25, the projection scheme is

less diffuse since it avoids the use of constrained transport second-order averaging.

The projection scheme is used once every 10 iterations. The frequency of the cleaning

depends on the problem, but ideally, the projection step should be used at a minimum

to maintain high-order accuracy.
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(a) Pressure (b) Density

(c) Magnetic Pressure (d) Current Density

Figure 26: Contours of the magnetic pressure (a) thermodynamic pressure (b) den-
sity (c) magnetic pressure pm = (B2

x + B2
y)/2(d) current density at t = 0.2 with a

resolution of N = 200.

3.6.6 MHD Blast Wave

As a final test problem, one which has some importance to the focus of this work,

the explosion of a dense central region of pressured gas into a static, magnetized

surrounding region is simulated. This test has been adopted by many others and is

used to test the numerical scheme’s ability to model the formation and propagation

of strong discontinuities. As with the rotor problem, any numerical schemes with

large magnetic field divergence errors will fail to preserve a positive thermodynamic

pressure.
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The computational domain is defined by the unit square, −0.5 < x < 0.5 and

−0.5 < x < 0.5 discretized by N × N grid points or cells. In the surrounding gas,

the density ρ = 1, the pressure P = 1, the velocity, v = 0, and the magnetic field

components Bx = By = 10/
√
2, and Bz = 0 are all uniform. In the center of the

domain, a high pressure region with a radius of R = 0.125 and pressure P = 100 is

defined. This high pressure region drives the explosion. For the plasma, in the high

pressure zone, β = 2P/B2 = 2, and in the ambient surroundings, β = 2× 10−2.

Figure 26 shows the contours of pressure, density, magnetic pressure, and current

density at a time t = 0.2 using N = 200 grid points. Two denser regions of gas

are noticeable in the contours of density. These two regions are bounded by a slow

magneto-acoustic secondary shock wave on the outside and the contact discontinuity

on the inside separating the explosively driven gases (surrounding) from the exploding

gases (products). The motion of the fluid is aligned in the direction of the magnetic

field, which is aligned along the domain diagonal. Figure 27 shows the same simulation

but with different values of the initial magnetic field. As the strength of the magnetic

field is reduced, the small-scale features associated with the fluid instabilities are

visible in the density contours.
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(a) β = 5.0× 10−9 (b) β = 5.0× 10−7

(c) β = 1.25× 10−5 (d) β = 5.0× 10−3

Figure 27: Contours of the density at t = 0.2 for three different values of the
magnetic field (a) β = 0.001 (b) β = 0.01 (c) β = 0.05, (d) β = 1.0
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CHAPTER IV

NUMERICAL STUDIES FOR MHD

In the previous section, several simple tests were used to verify the implementation

of two MHD numerical schemes, a flux-vector splitting, finite-difference method us-

ing fifth-order WENO-Z reconstruction, and a flux-difference splitting, finite-volume

method using the PPM for MHD, which in some regards is a standard approach in

the astrophysical community.

In the following subsections, a few simple, but physically important problems

are discussed, which have a direct significance to the objectives of this work. The

purpose is two-fold. To address some of the numerical issues and to demonstrate, if

only qualitatively, that the MHD schemes have been implemented correctly and are

producing physically meaningful results.

4.1 Decaying Isotropic Turbulence in an External Magnetic

Field

In this problem, a decaying isotropic turbulence problem is considered on a uniformly

discretized by N grid points or cells in each direction of a Cartesian computational

domain defined by x ∈ [0, L], y ∈ [0, L], and z ∈ [0, L] where the length scale L left

as a free parameter in defined the Reynolds number of the numerical simulation. The

simulations are considered to be DNS and are conducted for a low magnetic Reynolds

number. Previous work has investigated high magnetic Reynolds number isotropic

turbulence using both DNS and LES methods [139, 140]. The initial turbulent modes

of random phase and amplitude are defined by a Kraichnan energy spectrum [180],

E(k) = Ak4 exp

(
−2k2

k2
0

)
= 16

√
2πurms

(
k4

k5
0

)
exp

(
−2k2

k2
0

)
(271)
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Table 3: Summary of the initial conditions and parameters for the numerical simu-
lations of the decaying isotropic compressible turbulence.

Case Resolution Reλ Mt kmaxη urms (m/s) λ (m) σ (S/m) N

H1 2563 175 0.488 2.3514 98.1 0.799 0.0 0
H2 2563 243 0.712 1.8974 145 0.768 0.0 0
M2 2563 243 0.712 1.8974 145 0.768 10 1
M3 2563 243 0.712 1.8974 145 0.768 10 5
M4 2563 243 0.712 1.8974 145 0.768 10 20

where the orientation of the modes k are chosen based on a set of random orthogonal

basis vectors (ek := k/k, e1, e2 := ek× e1) such that the linear combination of vector

field is initially divergent free [169]. The coefficient A sets the initial value of the

turbulent kinetic energy.

Decaying isotropic compressible turbulence is limited by the startup-process since

the turbulent state often rapidly decays before the initial turbulent field can be-

come correlated. There are multiple approaches to address this problem [180]. For

this qualitative demonstration, the simplest option is the best. The initial zero di-

vergence random vector field (u or B) is used with constant pressure, density, and

temperature fields. The properties of the initial turbulent state are defined by case

H1 in Table 3. For this initial state, a large-eddy turnover time τ = 3.46 ms. Fig. 28

shows the decay of Reλ and the skewness of the velocity field. Once a homogenous,

isotropic turbulent state is achieved, the velocities are scaled up in case H2 to be

used with the magnetohydrodynamic simulations, cases M1-4. For these cases, only

the low magnetic Reynolds number limit is considered. The non-dimensional number

describing the dynamics of such flows is the Stuart number N , which was defined

in the previous chapter as the ratio of the magnetic force to the inertial force. The

electrical conductivity σ = 10 is assumed to be constant. The value is typical of

plasmas produced by high-energy explosives. Figure 29 shows the decay of Reλ and
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Figure 28: Time history of the Reλ and skewness for a decaying isotropic turbulence
simulation.

the velocity derivative skewness Si
3 for N = 1, 5, and 20, where

Si
3 =

〈(∂ui/∂xi)
3〉

〈(∂ui/∂xi)
2〉3/2

. (272)

4.2 The Richtmyer-Meshkov Instability

4.2.1 Computational Domain and Description

Numerical simulations of the RMI are conducted in a horizontal shock-tube configu-

ration analogous to many experimental and numerical studies [210, 7]. While some

experiments are conducted in vertical or inclined shock-tubes, there is no benefit to

do so in numerical simulations. Experimentally, however, such configurations allow

for the use of gravity to stabilize and control the immiscible interface between the

two fluids [100] and the shock-tube inclination to control the impulsive force of the

shock normal to the fluid interface. Unlike the Rayleigh-Taylor instability, the affect

of gravitational acceleration on the fluid is typically much less the flow acceleration

from the shock impulse in the RMI. Thus, for the horizontal configuration used in
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Figure 29: Time history of the Reλ and skewness for a decaying isotropic turbulence
simulation for three difference values of the Stuart number. At large N , the skewness
shows the preferential decay of the velocity fluctuations perpendicular to the magnetic
field.

this study, gravity is neglected. Figure 31 is a two-dimensional representation of the

computational domain. For all the studies in this work, periodic boundary conditions

are used in the directions transverse to the motion of the shock wave. This is math-

ematically consistent when comparing numerical simulations to theoretical models

of the single-mode RMI, but some work is necessary to prove they can be used in

the numerical simulation of more realistic configurations, such as multi-mode RMI or

re-shock RMI. These issues are discussed in more detail in the later sections, but in

summary, the periodic boundary condition is adequate with some qualification [199].

As apparent in Fig. 31, two configurations are considered depending on the type of

boundary condition used at the right end of the computational domain. These config-

urations correspond to a “single-shocked” RMI simulation where the right boundary

is treated as an open boundary and a re-shocked RMI simulation where the right

boundary is treated as closed. Since the initial shock wave undergoes refraction as it
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(a) N = 0 (b) N = 20

Figure 30: Vorticity contours for a decaying isotropic turbulence simulations at
t/τ = 6 for (a) N = 0 (b) N = 2−

propagates through the material interface, a reflected and transmitted wave are pro-

duced. The reflected wave travels back towards the inflow plane, and the transmitted

wave continues propagating through the mixture. The type of boundary conditions

determines the behavior of these waves when exiting the computational domain at

the left and right.

For single-shocked RMI simulations, the flow is supersonic at the inflow and out-

flow plane, thus simple extrapolated boundary conditions are used. In this condition,

however, the inflow boundary is at least partially reflective. As a result, the reflected

wave, produced during the initial shock refraction and traveling in the direction op-

posite of the mean flow, is partially reflected when it passes through the inflow plane.

While a more complex non-reflective boundary condition could be used here, the sim-

plest solution is to stop the simulation before this interaction can corrupt the solution.

The validation and verification studies below show that this is indeed sufficient.

For re-shock RMI simulations, the right boundary is defined as a slip-wall. Once

133



z	



State 1	



“light” fluid	



State 3	



shocked “light” fluid	



x	



y	



Ls	



Periodic boundaries	



Reflecting wall	



or	



Outflow 	



State 2	



“heavy” fluid	



Ms	


 Ly	



ηI (y,z)

Figure 31: Schematic of the simulation domain where Ms is the Mach number of
the shock, Lx is the distance from the end wall to the contact, and Ls is the distance
from the contact to the initial shock position.

the transmitted shock reaches the wall, it is reflected and travels back through the

shock-accelerated mixing layer. As this wall-reflected shock refracts through the mix-

ing layer, the RMI is once again excited. The re-shock event is typically marked by a

rapid increase in the mixing-rate and a subsequent quick transition to fully-developed

turbulence [90]. The time at which this occurs is controlled by the strength of the

shock and the initial distance from the contact discontinuity and the end wall.

The geometry of the configuration can be succinctly summarized as follows. The

computational domain is Cartesian and has a square cross-section in the transverse

directions defined by the y− and z−axis with the x−coordinate defining the longitu-

dinal direction. The origin of the domain is located at the contact discontinuity, such

that the horizontal coordinate position is defined by −LxL
≤ x ≤ LxR

and the trans-

verse coordinates defined by −L/2 ≤ y ≤ L/2 and −L/2 ≤ z ≤ L/2. The total length

of the shock-tube Lx = LxL
+LxR

, and the shock wave is initially defined at x = −Ls.

The computational domain is uniformly discretized by Nx points in the x-direction,

Ny points in the y-direction, and Nz points in the z−direction. For two-dimensional

simulations, the computational domain is a subset of the three-dimensional domain

taken as the xy-plane at z = 0.
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4.2.2 Initial Conditions

In the current numerical simulations, only a single material interface is considered.

Recent experimental work has drawn attention to the benefits of studying the gas-

curtain RMI, since in such a configuration experiments are highly repeatable and do

not require a membrane to separate the two materials. While the gas-curtain RMI

configuration is interesting, this work focuses on RMI simulations with only a single

material interface, which physically corresponds to an interfacial boundary between

two fluids of different molecular weights, but at the same temperature and pressure.

This results in contact discontinuity defined by a jump in density. Numerically, it is

possible to create a contact discontinuity in a single fluid with a corresponding jump

in temperature as well as density. All previous studies of the RMI in a magnetized

plasma have adopted this approach. In the current work, however, since the focus is

on mixing, the contact discontinuity is defined as a interface between two different

fluids.

Mathematically, the contact discontinuity can be defined by specifying the mass

fraction of the heavy fluid, Yh, with an initial hyperbolic tangent profile [125] centered

at x = 0.0 m and a characteristic thickness of Lδ given by

Yh(x, y, z; 0) =
1

2
− 1

2
tanh

(
x− ηI(y, z)

Lδ

)
, (273)

where ηI(y, z) defines the interface perturbation. Since the flow is composed of only

two fluids, a light and heavy, the mass fraction of the light fluid is by definition Yl =

1− Yh. For the single-mode RMI, ηI(y, z) is defined by a cosine or sine function with

a single wavenumber k0 = 2π/L where L is the width of the channel. For the multi-

mode RMI, ηI(y, z) is a more complicated expression, but qualitatively, it is defined as

the superposition of several cosine or sine functions of different wavenumber, typically

centered about some dominant wavenumber, k0. More exact definitions of ηI(y, z) are

given later.
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Once the mass fractions of the light and heavy gases are defined, the density can

be determined from the ambient pressure and temperature, p0 and T0, respectively.

From the ideal gas law, the light and heavy gas densities can be defined as

ρl = ρYl =

(
p0
RT0

)
Yl =

Wl

R
p0
T0

(274)

ρh = ρYh =

(
p0
RT0

)
Yh

Wh

R
p0
T0

(275)

where Wl is the molecular weight of the light gas, and Wh is the molecular weight of

the heavy gas. The Atwood number is often used as a non-dimensional representation

of the density jump across the contact discontinuity. It is defined as

A =
ρh − ρl
ρh + ρl

, (276)

With p0, T0 and the Mach number, Ms, of the initial shock wave defined, the

Rankine-Hugionot jump conditions are used to compute the jump conditions in the

light fluid that are required for existence of a Ms shock wave. In the current simu-

lations, the flow is assumed to be a calorically perfect gas, thus the adiabatic index,

γ, is constant, and the post-shock pressure, p1, and temperature, ρ1 in the light fluid

are computed from

p1
p0

= 1 + 2
γ

γ + 1
(M2

s − 1) (277)

ρ1
ρ0

=
(γ + 1)M2

s

2 + (γ − 1)M2
s

(278)

M1 =

[
(1 + 1

2
(γ + 1)M2

s

γM2
s − 1

2
(γ − 1)

]1/2
(279)

If us = Msc0, where c0 is the speed of sound at the ambient conditions, then u1 =

M1

√
γp1/ρ1. The post-shock velocity is defined u = u1 − us. With this definition,

the fluid to the right of the initial shock location, including the contact discontinuity,

has zero initial velocity.

For simulations of the RMI in a magnetized plasma, a uniform magnetic field is

initialized in the x−direction where the magnitude of the magnetic field is set by the
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β = B2/2µ0p of the plasma. Note that for this simple initial magnetic vector field,

the condition ∇ ·B = 0 is trivially met. Conveniently, the shock jump conditions are

not modified in MHD for a magnetic field normal to the shock propagation. Thus,

the dynamics of the magnetic field are initially “turned off” and only triggered once

the fluid develops motions perpendicular to the magnetic field lines.

In summary, along with the geometrical definitions of L, Lx, and Ls, by spec-

ifying the perturbation ηI(y, z), the reference pressure (p0) and temperature (T0),

the Mach number, Ms, and the Atwood number, A, the RMI problem is completely

defined. The minimum grid resolution, which is uniform is all directions, is defined

as ∆0. Additionally, for single-mode simulations, the amplitude and wavelength of

the perturbation of the contact discontinuity, η0 and λ respectively, are used to non-

dimensional the simulation parameters. For instance, the groupings k0η0, Lx/λ, and

Ly/λ are used. For multi-mode simulations, such non-dimensionalized parameters are

not as characteristic of the simulation.

4.2.3 Contact Discontinuity for Single-mode and Multi-mode RMI

The RMI can be categorized based on the modal content of material interface per-

turbations. For single-mode perturbations of wavenumber k0 = 2π/λ0 = 2π/L, the

RMI behaviors as a single “bubble” of lighter fluid raising into the heavier fluid and

a “spike” of heavier fluid falling in the lighter fluid. The bubble and spike velocities

are well-defined and can be predicted using analytical models. For a multi-mode per-

turbation, the material interface consists of a superposition of wavenumbers
∑

k over

a range of length scales λmin < λ < λmax limited physically only by the Kolmorogov

and inertial length scale of the flow. Thus, it is useful to define the multi-mode in-

terface in wavenumber space with a power spectrum Eη(k) associated with the mean

r.m.s of the interface fluctuations. As a result of the wider range of scales associated

with the initial contact discontinuity, the multi-mode RMI is highly sensitive to the
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initial structure of the interface. In various contexts, this sensitivity has been studied

parametrically [182] and more recently using statistical sampling methods[203].

Recalling that the contact discontinuity can be defined by specifying the mass

fraction of the heavy fluid, Yh, with an initial hyperbolic tangent profile centered at

x = 0.0 m and with a characteristic thickness of Lδ given by

Yh(x, y, z; 0) =
1

2
− 1

2
tanh

(
x− ηI(y, z)

Lδ

)
, (280)

a definition of the contact discontinuity ηI(y, z) defines the initial density field. Com-

pleting this definition then, one can define ηI(y, z) as one of the following:

1. Single-mode

For the single-mode RMI in two- and three-dimensional simulations, the initial per-

turbation of the contact discontinuity is defined by

ηI(y) = η0 sin(k0y), (281)

ηI(y, z) =
a0
2

(
sin(k0y) + sin(k0z)

)
. (282)

where η0 and k0 are the amplitude and wavenumber of the initial perturbation. Table

7 summarizes the initial conditions for the single-mode RMI simulations conducted in

this study. As discussed previously, the non-dimensional parameters, k0η0, Ms, and

A effectively define the mixing characteristics of the single-mode RMI.

2. Multi-mode Type 1

For the multi-mode RMI simulations, there are several ways to define the interface

perturbations. In the current study, ηI(y, z) is computed from an annular Gaussian

energy spectrum with the spectral energy

Eη(k) =
1√

2π3k0σ
exp

(
−(k − k0)

2

2σ2

)
. (283)
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where k is the radial wavenumber in spectral space and is computed as k =
√

k2
y + k2

z

with ky = 2π/Ly and kz = 2π/Lz. The power spectrum Eη(k) peaks at k0, and the

value of σ is equal to k0/5.0. The perturbation function ηI(y, z) is computed by taking

the inverse Fourier transform, and the magnitude of the spectral energy is normalized

such that the resulting contact perturbation has with a perturbation amplitude with

a standard deviation of η0. Here, however, λmin and λmax are important.

3. Multi-mode Type 2

For RMI simulations corresponding the experiments using a cellulose membrane

to initially separate the light and heavy fluids, the multi-mode interface has a very

specific definition. This type of initialization is required if the growth-rate data from

simulations is to match the experimental date. Following previous numerical simula-

tions [40, 90, 182], an “egg-carton” sinusoidal perturbation for ηI(y, z) is used to model

the wire-meshed membrane separating gases in the experiments and is described by

the expression

ηI(y, z) =a0| sin(k0y) sin(k0z)|+ a1 cos(k1y) cos(k1z) + a2Ψ(y, z), (284)

where the first term represents the small-scale perturbations resulting from the wire-

mesh, and the second term represents the scales associated with the transverse di-

mensions of the shock tube. The last term includes random perturbations, which are

used to account for small-scale irregularities and to break the symmetry of the initial

conditions and accelerate the transition of the RMI to non-linear growth. An von

Karman power spectrum is used to compute Ψ(y, z) [182],

EΨ(k) = k−2

[
kL√

(kL)2 +B

]4
, (285)

where L = 0.95 cm, B = 5
√
2 and k =

√
k2
y + k2

z where ky = 2π/Ly and kz = 2π/Lz.

The random fluctuations, Ψ(y, z), are again normalized such that the r.m.s. amplitude
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(a) FD-FVS (b) Hybrid, s = 10 (c) Hybrid, s = 50

Figure 32: Location within computational domain where the numerical scheme
switches between a central finite-difference method and an upwind flux-vector split-
ting (FVS) method using 5th order WENO-Z reconstruction for the fluxes. (a) Den-
sity contours for the pure 5th order WENO-Z finite-difference FVS scheme, (b) hybrid
switch for a buffer width s=10 points, (c) hybrid switch for a buffer width s=50 points.
The color legend is as follows, central scheme (Teal), FVS in i−direction (blue), FVS
in j−direction (red), FVS in both i− and j−directions (yellow).

is set by a2. These initial conditions are used for the multi-mode RMI simulations

corresponding to the Vetter and Strutevant experiments [210]. For more details about

the verification and validation of this case see Schulz et al. [185].

However simplistic the RMI may seem, the problem poses a difficult set of criteria

that the numerical method must meet in order for the scheme to obtain accurate

solutions. Not only must the scheme be required to correctly capture shocks and large

gradients in the scalar terms such as density and the species mass fraction, but it also

must resolve a large enough range of length scales in the flow without introducing too

much dissipation if the simulation is to be classified as a direct numerical simulation

and not rely on some sort of turbulent closure modeling. There is a large compendium

of discussion in the research literature on this topic. To met these requirements, the

hybrid central/upwind finite-difference methods discussed previously are an attractive

candidate for simulating the RMI. For the current set of simulations, a hybrid finite-

difference flux reconstruction method using a 6th order accurate compact central

finite-difference scheme and 5th order flux-vector splitting scheme using WENO-Z
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(a) λ/∆x = 64 (b) λ/∆x = 128 (c) λ/∆x = 256 (d) λ/∆x = 256

Figure 33: Contours of the normalized density for the single-mode RMI correspond-
ing to the initial conditions k0η0 = 0.1, Ms = 1.5, and A = 0.5 for three different
resolutions (a) λ/∆x = 64, (b)λ/∆x = 128, and (c) λ/∆x = 256 using the inviscid
Euler equations and (d) λ/∆x = 256 using the Navier-Stokes equations. The color
contours are scaled from 1.5 (blue) to 6.0 (red).

reconstruction method is used for the initial studies. Time integration is achieved

using a low storage 5th order, 4-stage Runge-Kutta time integration method.

Unfortunately, while it is ideal to use the central finite-difference scheme in smooth

regions of the flow and a flux-vector splitting method only in regions where dis-

continuities exist, how the actual blending between two fluxes computed from the

different schemes occurs in the computational domain is not straightforward. Expe-

rience indicates that some central schemes couple better to a corresponding upwind

scheme. For instance in the RMI, using a hybrid finite-volume scheme based on cen-

tral predictor-corrector MacCormack scheme and a flux-difference splitting upwind

scheme, numerical fluctuations are easily introduced to the contact discontinuity as a

result of the switching between the central to upwind schemes. In practice, the hybrid

finite-difference scheme used here performs better, but upon close investigation the

numerical oscillations are still visible. This is best controlled by properly selecting the
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Figure 34: Time history of (a) the normalized mixing length and (b) the mixing
fraction in single-mode RMI at the different grid resolutions (∆x1, ∆x2) and for
inviscid and viscous simulations.

switch parameters, which are dependent on the problem and the initial conditions,

such that the switching of the individual schemes are used in large contiguous regions

if possible. Figure 32 shows the regions where the hybrid switch is selecting either

the upwind or central scheme. Since the fluxes are computed on a directional basis,

the colors indicate the number of directions upon which the upwind scheme was used.

It is notoriously difficult to prove that numerical simulations of the RMI are

convergent with increasing grid resolution. This is a result of scale generation process

occurring during the growth of the RMI, which is often described as fractal-like. Thus,

with an ever increasing grid resolution, ever smaller scales or vortical structures are

produced. In particular, this occurs in numerical simulations where the Reynolds

number is ill-defined either because the simulation is inviscid, in which the scale

generation is only limited by the numerical dissipation of the scheme, or because the

flow is transitioning from a laminar to a partially turbulent state where the physical

dissipation is not yet limiting the scale generation process. Yet, scale generation at

some point must be limited at the smallest levels by the molecular diffusion processes,

but given the range of Reynolds numbers, which are often large for shock-accelerated,
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(a) vx = ∆V (b) vx = 0

Figure 35: Contours of the normalized magnetic field B2/B0 for the RMI in a
β = 1000 plasma for simulations using two different frames of references. (a) The
RMI at t/t∗ = 7 with a background velocity vx = ∆V . (b) The RMI at t/t∗ = 7 with
a background velocity vx = 0.

it may be computationally impossible to sufficiently numerically resolve the simulation

at these scales. Figure 33 shows contours of the RMI for three different grid resolutions

at the same physical time for case SM1.

In all of the single-mode and multi-mode RMI simulations, the constrained trans-

port method is used to control the magnetic divergence errors produced during the

shock refraction process. While using the projection scheme allows one to achieve

high order of accuracy in both the magnetic and velocity fields since the second-order

averaging of the magnetic filed is not required as it is in the constrained transport

method, it is computationally very expensive since in practice it is necessary to clean

the magnetic field frequently to avoid a numerical instability. A compromise is possi-

ble, however, since for low-β plasmas dominated by the magnetic field, the generation

of small-scale structures is limited by the magnetic field. Thus, grid-converged solu-

tions are easily obtained making second-order accuracy tolerable. In high-β plasmas,

the velocity field dominates the dynamics of the RMI and thus it could be argued

that some sacrifice in the numerical accuracy of the magnetic field is beneficial if the

computational efficiency is greatly increased. Though this discussion centers around

the formal order of accuracy of the scheme, the finite-difference hybrid method used
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Table 4: A list of coefficients for semi-empirical models of the single-mode RMI
following the Sadot [175]

Model Dim. Db/s Eb/s

Sadot et al. [175] 2D 1±A 3(1±A)/2(1±A)
Neiderhaus and Jacobs [144] 2D 1±A 1±A
Goncharov et al. [76] 2D 1±A 3(1±A)/(3±A)
Sohn et al. [226] 2D 1±A (2±A)/2
Chapman and Jacobs [34] 3D 1± (0.01221A3 + 0.69844A) (1±A)/2

here provides solutions with significantly less error magnitude compared to similar

finite-volume methods.

As seen in the magnetic field loop test case summarized in Fig. 22, the constrained

transport method suffers a limitation in a high-β plasma propagating in a grid-aligned

direction. While the oscillations in the magnetic field loop test are controlled, they

are still present. There have been several proposed methods to reduce these oscil-

lations by altering the constrained transport method, however, none seem to work

well for the RMI problem. One viable solution is to use the projection scheme, but

a simpler solution exists for the single-mode and multi-mode RMI simulations with

open boundaries. The velocity of the heavy fluid can be set such that once shock

refraction occurs, the impulse in the x−direction halts the movement of the contact

discontinuity. Thus, the RMI develops in a quasi-steady fluid with vx ≈ 0. Figure 35

shows the magnetic field lines for the RMI in a moving frame of reference and steady

frame of reference. Note that this translation in the frame of reference does not affect

the growth-rate of the RMI nor the mixing processes.

4.2.4 Comparisons to Theory

For the single-mode RMI, the growth-rate of interface perturbation is predicted to

be linear. By analogy to the Rayleigh-Taylor instability, Richtmyer provided an im-

pulsive model to predict the linear growth-rate of the RMI [165] states η̇ = v0 =
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Figure 36: Time history of the normalized mixing length in single-mode RMI at
the same grid resolutions (∆x1, ∆x2) with a comparison to the non-linear theory of
Sadot et al. [175].

k0η
+
0 A

+∆V , where η+0 is the post-shock perturbation amplitude, A+ is Atwood num-

ber computed using the post-shock densities, and ∆V is the change in velocity sup-

plied to the contact discontinuity once the shock has refracted through the material

interface. Meshkov later estimated the post-shock amplitude to be

η+0 = η0

(
1− ∆V

Msc0

)
(286)

where c0 is the speed of sound in the light fluid and Ms is the Mach number of

the incident shock. The sign of the initial growth-rate is dependent on the Atwood

number, which is positive when the shock wave moves from a light gas toward a heavy

gas, and negative when shock wave propagates from a heavy gas into a light gas. In

the later case, a phase inversion occurs at the interface, and the initial growth-rate is

negative. This model, referred to as the impulsive model, is only valid for in the linear

regime, corresponding to approximately η/λ << 0.1, after which the RMI transitions

to non-linear growth-rate and then saturates as it reaches asymptotic growth.

More detailed theoretical models are required to capture this behavior for which

there are a large number of reliable theoretical and empirical models. Two popular
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models are discussed. The semi-analytical model of Sadot et al. [175] is able to

predict the RMI growth-rate as it transitions to non-linear growth and was correlated

with the experiments of Jones et al. [100]. Many researchers have followed this model

and made various improvements. In the general form, the bubble and spike velocities

are computed using the following relationship

η̇b/s(t) = vb/s(t) = v0
1 + v0kt

1 +Db/sv0kt+ Eb/s(v0kt)2
(287)

where the constants are Db/s and Eb/s are given in Table 4. Since the Sadot et al.

model is an empirical fit to the initial linear growth-rate and the asymptotic growth,

the model is expected to only correctly represent the early and late growth of the

RMI. The model is also limited to A ≤ 0.9 and is based on experimental date for

Ms ≤ 2.

A time-dependent, analytic expression for the evolution of the two-dimensional

RMI in both the linear and non-linear regimes was developed by Mikaelian [138] It is

a simple model based on the work of Layzer [136], and is one of the few models that do

not require solving an ordinary or partial differential equation to arrive at an explicit

expression for η(t). Mikaelian proposes a piece-wise function for the amplitude of the

perturbation in time. In the linear regime, Richtmyer’s impulsive model states η(t) =

η+0 (1 + ∆V kA+t) and in the nonlinear regime, the amplitude of the perturbation is

given as

η(t) = η+0 +
3 + A+

3(1 + A+)k
ln

(
1 + 3η̇0kt

1 + A+

3 + A+

)
, (288)

where η̇0 is the initial growth rate. The threshold for changing between the linear

and non-linear growth equations occurs when η(t) = 1/3k

Figure 36 shows a comparison of the two models with the results from the nu-

merical simulations. Obviously, the model of Sadot et al. [175] is not expected to

correctly capture the growth-rate of SM4 since Ms = 5 in the late stages.
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CHAPTER V

IONIZING DETONATION WAVES

5.1 Introduction

In some scenarios, it is possible for a detonation wave to increase the temperature of

the product gases high enough so that ionization occurs in the post-detonation flow.

Experiments show that condensed-phase explosions are capable of producing a ionized

gas of a relatively large electrical conductivity, 100-2000 S/m. The kinetic mechanisms

for such pathways to ionization, however, are not well understand. Thus, the focus of

this study is on the interaction of a freely-propagating, potassium carbonate seeded,

H2-air gaseous detonation with a magnetic field. While the ionized gas produced

in gaseous detonation waves have a much lower electrical conductivity as compared

to a high-energy explosion, owing to the smaller about of chemical energy released,

detailed kinetic mechanisms for the ionization and combustion of the gaseous species

are more easily determined and thus more reliably used to study the interaction

between a magnetic field and a propagating detonation wave. Furthermore, this

study attempts to avoid any arbitrary assumptions, such as assuming a constant

electrical conductivity in the post-detonation flow. If the results can be shown to be

scale invariant, then it is possible they are applicable to the study of condensed-phase

explosions.

This study is divided into three parts. The first part addresses the numerical as-

pects of modeling gaseous detonations using finite-rate, detailed kinetic mechanisms.

The sensitivity to the numerical scheme, grid resolution, and boundary conditions

is discussed as well as the steps involved in the initialization of multi-dimensional

detonations. The second part discusses a numerical investigation into the parameters
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Figure 37: The equilibrium electrical conductivity is shown as a function of pressure
and temperature for a stoichiometric H2-air mixture. Seeding by potassium drastically
increases the electrical conductivity.

affecting ionization in gaseous H2-air detonations with and without seeding [184]. Cal-

culations of the electrical conductivity are compared to experimental measurements,

and particular emphasis is made on the impact that adding seeding particles has on

the stability of the detonation wave. The third part details the effects a magnetic

field has on the propagation of a gaseous detonation. Since the magnetic Reynolds

number is always much less than one for such detonations, the quasi-static MHD

equations are used in this study. While the magnetic field and the velocity field may

be explicitly decoupled, the dynamics of the flow are still coupled through the current

density and the electrical conductivity.

5.2 Ionizing Gaseous Detonations

5.2.1 One-dimensional detonation waves

A freely-propagating detonation wave forms when a strong shock-wave dynamically

couples to a reaction-wave in such a way that a balance occurs between the release

of chemical energy and the energy expended by expansion. Once formed, such a
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Table 5: Summary of parameter set for the numerical simulations used to study the
ionization of gaseous detonation waves. The baseline simulations are used in the next
section to study the effect of a magnetic field on the detonation propagation. Pa is
the ambient pressure, and the percent (%) concentration given in the table for N2

and K is in per weight.

Case Dimension Pa (bar) N2 (%) K (%)

Baseline Simulations

1 1d, 2d 0.2 74.52 0.0
2 1d, 2d 0.2 74.52 0.05
3 1d, 2d 0.2 74.52 0.10
4 1d, 2d 0.2 74.52 0.25

Pressure/Stoichiometic Sensitivity Studies

5 1d 0.1 0.667 0.0
6 1d 0.2 0.667 0.0
7 1d 0.4 0.667 0.0
8 1d 0.2 10.00 0.0
9 1d 0.2 30.00 0.0
10 1d 0.2 50.00 0.0

Potassium Seeding Sensitivity Studies

11 1d 0.2 74.52 0.01
12 1d 0.2 74.52 0.03
13 1d 0.2 30 0.05
14 1d 0.2 50 0.05
15 1d, 2d 0.2 74.52 0.05
16 1d, 2d 0.2 74.52 0.10
17 2d 0.2 74.52 0.75
18 2d 0.2 74.52 1.00
19 2d 0.2 74.52 1.25
20 2d 0.2 74.52 2.00

detonation wave propagates at a velocity fluctuating around the Chapman-Jouget

(CJ) velocity, Dj. This scenario, however, is dependent on the boundary conditions.

If the density at the (rear) boundary, ρb, is greater than the CJ density, ρj, which

is defined by the point of tangency between the Rayleigh and Hugoniot curves, then

instead of a rarefaction wave decreasing ρj to ρb in the post-detonation flow, a constant

shocked state exists, and the detonation is said to be supported. This means that
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Figure 38: The detonation velocity is computed for detonation in a H2-O2/N2

mixture with an ambient pressure and temperature of 0.2 bar and 298 K, respectively.
The values are compared to the theoretical detonation velocity (DCJ) obtained from
NASA’s CEA code.

the rear boundary condition determines how the detonation propagates through the

mixture, not the intrinsic properties of the gas mixture. The propagation velocity of a

supported or overdriven detonation is defined by the overdrive factor, f = D/Dj, where

D is the measured detonation velocity. In the absence of a continually supported

pressure from the read boundary, f reduces to unity. Thus, the strong detonation

solution is not a focus of this study. Only the CJ or weak detonation solution is of

interest.

As a result, in numerical simulations using detailed kinetic mechanisms, specific

attention must be given to obtaining detonation waves that are not overdriven or

dependent on the boundary conditions. For simplified, one-step chemistry, an direct

solution can be obtained directly using ZND theory. Lacking this, the shock-to-

detonation transition in a stoichiometric mixture of H2 and air seeded with potassium

carbonate particles is simulated in a one-dimensional domain with the rear boundary

defined by a stationary purely-reflecting wall. The choice of ρb and the back pressure,

Pb, determine the distance required for transition and set detonation velocity, or f ,
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once the shock transitions to a detonation wave. In a one-dimensional domain, it is

not possible to simulate a freely-propagating steady detonation. The solution lacks

transverse waves, and as a result a one-dimensional detonation wave decays slowly;

D decreases below Dj until the detonation is no longer supported by the shock-

induced release of chemical energy. This does not necessarily preclude the use of

one-dimensional simulations in studying detonation behavior. As discussed below,

one-dimensional simulations are used to study the stability of a detonation wave

propagating in a gas mixture seeded by potassium carbonate. The time scales of

interest in this study are much shorter than the time scales for the numerical decay

of the detonation solution.

Figure 39 shows profiles of temperature and mass fractions of a few species just

downstream of the detonation front. The initial sharp rise in the temperature is a

result of the propagating shock wave (Ms = 4.76). The temperature ratio across

the shock is 5.17 and compares reasonably well to the theoretical value of 5.32. The

difference is attributed to the instability of the detonation, which is illustrated in

Fig. 40. The average peak pressure is only slightly over-predicted. Following the

shock wave, radicals are formed in the induction zone as the reactants, H2 and O2,

begin to break-down. The sharp increase in the radicals H2O2 and HO2 marks the

beginning of heat release. As the temperature increases downstream (with N2/O2

and ionization chemistry), N2 begins to break down, and the presence of N atoms

prompts the Zel’dovich reactions and the beginning of NO formation.

Since NO has a low ionization potential, the electrical conductivity is directly

dependent on the formation of NO ions [59]. Since the ionized mixture is assumed

to be quasi-neutral, the electron number density, ne, must be equal to the positive

ion number density. Here ne=3.052×1017 m−3 and nNO+=2.956×1017 m−3. From

Eq. 152, the electrical conductivity is seen to be directly proportional to ne. Thus

the formation of NO ions is critical to increasing the electrical conductivity of the
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Figure 39: (a) One-dimensional profiles of temperature and species mass fraction
directly behind the detonation-sustained shock wave. The results are shown for a
stoichiometric H2-air detonation in an ambient pressure and temperature of 0.2 bar
and 298 K, respectively.

mixture. Even though both OH and NO are easily ionizable, the production of NO

ions dominates. This is because the concentration of OH is depleted downstream due

to formation of H2O resulting in a negligible contribution to the ne by OH ion pro-

duction (nOH+ = 21.33 m−3). Non-stoichiometric H2/O2 detonations could possibly

reveal OH ionization to be of more significance.

As the ambient pressure increases, the formation of NO occurs earlier and its equi-

librium value increases slightly. This in turn increases the electrical conductivity. The

trend is easily observable in the profiles of the electrical conductivity shown in Fig.

41a. Similarly, as the dilution of the N2 is reduced, the electrical conductivity also

increases as shown in Fig. 41b. Both affects are largely a result of the change in the

post-detonation temperature. As the ambient pressure is increased from 0.1 bar to 0.4

bar, the detonation velocity increases roughly 2.75 percent with a corresponding 6.7

percent rise in temperature. This increases the reaction rates in the post-detonation

mixture and thus increases NO formation. Also as the temperature is increased, N2
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respectively.

is more easily dissociated. Similar logic applies to why the electrical conductivity

increases at lower N2 concentrations. The reduction of N2 reduces the heat capacity

of the mixture and thus increases the detonation velocity and post-detonation tem-

perature. However, as observed in Fig. 41b, the trend reverses at low concentrations

regardless of the higher post-detonation temperatures since the reduction of N2 limits

NO production because of the lack of available nitrogen.

As mentioned previously, detonations in H2-air mixtures produce ionized mixtures

with low electrical conductivities of order 10−3 S·m−1. In order to increase these

values potassium can be used to seed the gas with easily ionizable particles. In

experiments, potassium is typically injected into the flow as atomized salt particles

such as potassium carbonate. These particles quickly decompose and undergo phase

change [190]. However to simplify the current study the phase change process is not
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Figure 41: (a) One-dimensional profiles of the electrical conductivity computed for
a stoichiometric H2/O2 mixture with 0.667% N2 dilution at three different ambient
pressures. (b) A comparison of the electrical conductivity at different N2 dilutions.
The peak post-detonation temperature for 0.667%, 30%, 50%, and 79% N2 dilution
is 3408, 3265, 3180, 2751 K respectively.

modeled and gaseous KOH is injected uniformly at the inflow plane instead. The

injected KOH then convects until it reacts at the detonation front due to the elevated

temperatures and pressures as well as the presence of H and OH radicals. Gaseous

potassium quickly forms which ionizes and increases the electron number density of

the mixture. Figure 42a shows the electrical conductivity for potassium seedings of

0.01, 0.03 and 0.05 percent by weight. The electrical conductivity not only increases

at a faster rate but is 4 orders of magnitude larger than the electrical conductivity of

the unseeded detonation.

In the one-dimensional studies conducted, a potassium seeding of larger than

0.06% was observed to kill the detonation as demonstrated in Fig. 42b. This is

a result of the potassium chemistry competing for the O and H radicals necessary

for combustion. This disruption increases the induction time for combustion which

subsequently causes the heat release zone to decouple from the shock wave triggering
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Figure 42: (a) A comparison of the electrical conductivity at different potassium
seeding percentages. The reference case for detonation of a stoichiometric H2-air
mixture at ambient pressure and temperature of 0.2 bar and 298 K is shown for
comparison. (b) At seeding percentages higher than 0.06%K the detonation wave
decays into a propagating shock wave.

a reduction in the the heat release such that the propagating shock can no longer be

sustained. This process is observable in the pressure profiles shown in Fig. 42b. The

detonation profiles following the addition of the seed are shown approximately every

20 µs. The peak pressures as well as the CJ peak pressure are shown prior to the

seeding as reference.

This result is in some contradiction to experiments which use higher seeding per-

centages [14, 129]. Yet this is expected since in one-dimension the detonation lacks

the structure necessary for self-propagation and therefore is more sensitive to the dis-

ruptions caused by seeding. This does not, however, invalidate the conclusions drawn

from these simulations. While in two and three dimensions the detonation may be

more impervious to potassium seeding, a critical point most likely exists where too

much seeding results in a failure of the detonation. This is investigated in the next

section.
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Figure 43: Contours of the ln(| ▽ ρ| + 1) for different schemes and resolutions (a)
5µm FV, (b) 5µm FD and (c) 10µm FD.

5.2.2 Two-dimensional detonation waves

A two-dimensional stoichiometric hydrogen-air detonation is simulated by initializing

the domain with a one-dimensional solution. As in the one-dimensional simulations,

the detonation is simulated in the frame of reference moving with the detonation

wave. The boundaries in the y-direction are taken as periodic, and a simulation

domain of 18 mm × 3 mm is used. From a grid-resolution study, a 10 µm resolution

is determined to be sufficient to resolve the Mach stem, incident shock and transverse

wave interactions at the detonation front. This interaction, shown in Fig. 43 for

three different grid resolutions, is critical in sustaining the detonation as it creates

local zones of high pressure and temperature causing the detonation front to pulsate

in the direction of propagation. This introduces fluid mixing time-scales which impact

the electrical conductivity in the post-detonation mixture.

A grid-resolution study is performed to determine the required resolution, which is

determined by the ability to resolve the interaction between the Mach stem, incident

shock and transverse waves. The interaction is critical in sustaining the detonation

as it creates a zone of high pressure and temperature that causes the gas to expand

as chemical energy is released. Figure 43 shows the shock structures formed behind
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Figure 44: Stoichiometric H2-air detonation at an ambient temperature and pressure
of 298 K and 0.2 atm seeded with 0.25 % K by weight. (a) Contours of temperature,
and (b) the electrical conductivity.

the detonation front for half of the channel at two different resolutions: 5, 10 µm. At

the highest resolution, the incident shock, Mach stem and the transverse shock are

clearly defined as well as are the slip-lines. A uniform resolution of 10 µm is used in

the remainder of the studies.

Since the location of the transverse wave, incident shock and Mach stem interac-

tion oscillates perpendicularly to the detonation front a series of vortical structures

separated by slip lines are propagated downstream creating a non-uniform distribu-

tion of temperature and species mass fraction as illustrated in Fig. 44. Only in the

regions of high temperature does significant dissociation of N2 and NO formation

occur. As the vortices interact and merge, the high temperature regions become less

distinct and the ion density becomes more uniform. As a result, the distance between

the weakly-ionized plasma and the detonation front is both a result of the mixing rate

of the vortices and the chemical non-equilibrium of the explosion products. This cre-

ates a non-uniform distribution of the electrical conductivity with peak values of order

10−3 S·m−1, which are similar to those observed in the one-dimensional simulations.
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Figure 45: Planar averaged mass fractions of the species involved in potassium
ionization behind the detonation front with 1% K seeding.

When KOH is injected into the inflow, the ionization mechanism becomes dom-

inated by the potassium chemistry. The ionization is now prompt, occurring at the

detonation front, and is no longer rate-limited by the slow formation of NO. This

could have important consequences in applications where an external magnetic field

is present since a combination of a high electrical conductivity at the detonation front

and a strong magnetic field could alter the way the transverse waves interact at the

detonation front.

The main difference from the one-dimensional and two-dimensional simulations

is that the strong interaction between the Mach stem, incident shock and transverse

waves at the detonation front creates local regions of high temperature and pressure.

These regions of heat release allow for the two-dimensional detonation to sustain

higher mass fractions of potassium seeding. Yet above a seeding of 1.25 percent by

weight of K, the detonation becomes unstable and decays into a propagating shock

wave. This indicates that the ionization fraction of the gas mixture that can be
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Figure 46: Planar averaged profiles of the electrical conductivity for various potas-
sium seeding percentages.

achieved through detonation is limited. This constraint is imposed along with the

additional problems of uniform mixing and burning of the seed particles. Future work

will investigate these issues in more detail.

5.3 Effects of Applied Magnetic Fields

A distinctive feature of MHD flows is the generation of induced currents resulting from

the relative motion of a conductive fluid in an external magnetic field not aligned with

the flow velocity. These currents introduce an additional mechanism for the dissipa-

tion of energy within the flow, which is characterized by the magnetic diffusivity,

η = 1/µσ, where µ is the permeability of free space, and σ is the electrical conduc-

tivity. Most importantly, however, is the ratio of the time scale of magnetic diffusion

(τη = η2/L) to the flow time scale (τu = u/L), where u and L are the characteristic

velocity and length scales. This ratio is defined as the magnetic Reynolds number,

Rem = τη/τu = u/L = µσuL. For a typical ionizing hydrogen-air detonation, Rem is

estimated to be of the order of 10−3. For MHD flows, when Rem << 1, the induced
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Figure 47: Planar averaged profiles of the electrical conductivity for 0.25% potas-
sium seeding by weight for finite difference and finite volume schemes at two grid
resolutions.

magnetic fields diffuse quickly and can be neglected relative to the imposed magnetic

field, B0. The induced currents, however, play a dominant role in the conversion

of the Lorentz force into heat via the process of ohmic dissipation, which occurs at

a time-scale of τη. This process is highly anisotropic. Fluids motions misaligned

with the magnetic field are preferentially dissipated at a rate which is proportional to

cos θ2 where θ is the angle between B0 and the wavenumber vector k. As a result, an

elongation of vortical structures along the direction of B0 is observed. These effects

are counteracted, however, by the natural development of the non-linear flow. The

magnetic interaction parameter or Stuart number, N , is a measure of the balance

of the inertial and Lorentz forces and is given by N = σB2
0L/ρu, where ρ is the

density of the gas. For example, in the simplistic scenario of a decaying isotropic

turbulent flow, vortex flux tubes, aligned in direction of the magnetic field, begin to

form with the complete transition to a two-dimensional turbulent state independent

of B0 at very large N [139]. For detonations, the dynamics of the flow are complicated
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Table 6: A summary of parameter set for the simulations used in this study. To
compute the non-dimensional parameters the following reference values were used:
L=6 mm, u = 1900 m/s, ρ0=0.17 kg/m3 where L is the transverse channel dimension,
u ≈ D, and ρ is the ambient density.

Case Pa (bar) N2 (%) K (%) σ (S/m) Bx, By (T) Rem N

1 0.2 74.52 0.0 0.0 0.0 0.0 0.0

2-a 0.2 74.52 0.05 0.0 1000.0 0.0 0.0
2-b 0.2 74.52 0.05 0.0 2000.0 0.0 0.0
2-c 0.2 74.52 0.05 0.0 3000.0 0.0 0.0
2-d 0.2 74.52 0.05 0.0 6000.0 0.0 0.0

3-a 0.2 74.52 0.10 0.0 1000.0 0.0 0.0
3-b 0.2 74.52 0.10 0.0 2000.0 0.0 0.0
3-c 0.2 74.52 0.10 0.0 3000.0 0.0 0.0

4-a 0.2 74.52 0.25 0.0 1000.0 0.0 0.0
4-b 0.2 74.52 0.25 0.0 2000.0 0.0 0.0

by the persistent energy release and generation of large-scale fluid structures at the

detonation front. The effect of the magnetic field on these structures is investigated

here.

To investigate the effect of a magnetic field on the propagation of a detonation,

numerical simulations are conducted for various magnetic Reynolds numbers and

interaction parameters under the assumption of Rem << 1. The external field is

applied in either perpendicular or parallel to the direction of the propagation to

a gaseous detonation seeded with potassium of 0.05, 0.1, and 0.25 percent. The

numerical setup and configuration of these simulations were discussed in the last

section and are the same here expect for the inclusion of the magnetic terms in the

momentum and energy equations, and the fact that the y−direction dimension was

doubled so that two detonation cells are captured in the domain. This makes the

visualization of the magnetic field affects more apparent. Flow parameters, along

with the reaction zone widths, are analyzed to quantify the effect of the applied field
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Figure 48: The averaged temperature profiles for case with a By field at different
times: t−1 = 0.104 ms, t0 = 0.113 ms, t1 = 0.127 ms, t2 = 0.149 ms and t3 = 0.157
ms.

on the detonation.

Numerical simulations are conducted for different Rem, N , and magnetic field

orientations i.e., parallel (B0,x) and transverse (B0,y) to the detonation propagation.

Table 6 summarizes the parameters studied in this work. Since Rem << 1, the non-

dimensional parameter Rem, however, is of less importance, and N and the magnetic

field orientation govern the dynamics of the detonation. The value of Rem is recorded

to ensure the validity of the quasi-static assumption. The detonation is first simu-

lation without a magnetic field for each case. At a physical time of t0 = 0.113 ms,

the magnetic field is switched on. The magnitude of the field is slowly increased

numerically throughout the simulation in order to limit the any unphysical changes a

rapid increase may introduce. In practice, however, there are no observed differences

in the results if this is done or not. The magnetic field is always taken as positive,

since in two dimensions, the components of the Lorentz force do not change (only the

orientation of the current density changes), and thus the detonation dynamics are

unchanged.
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corresponding to the center of Mach stem for a By field at different times: t0 = 0.113
ms, t1 = 0.127 ms, t2 = 0.149 ms and t3 = 0.157 ms.

5.3.1 Effect of By,0

When the magnetic field is applied, the electromagnetic energy generated by action of

the Lorentz force in the post-detonation flow is quickly converted into heat via Joule

dissipation. In particular, since the induced currents are largest at the detonation

front, a significant amount of electromagnetic energy is deposited directly in the

induction zone of the detonation. For case Y4, the post-detonation temperature

increases by nearly 450 K after the magnetic field is turned on. Moreover, the Joule

dissipation does not decrease in time as in decaying problems due to the continual

formation of new scales from combustion at the detonation front. As the temperature

gradually increases, see Fig. 48, the reaction zone length reduces, and the distance to

the peak HO2 mass fraction reduces to 0.2 mm from 0.7 mm as in the case without

a magnetic field (see Fig. 49). A characteristic of propagating detonations is the

formation of cellular structures whose cell widths in transverse direction are dependent

on L1/2 [186]. These structures create characteristic large-scale structures in the post-

detonation flow. In case with a y−direction magnetic field, smaller cellular structures
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are formed in comparison to simulations without a magnetic field. Interestingly, the

cell width is reduced to nearly 3 mm at t = 0.15 ms. At lower N , this does not

occur. Although Joule dissipation continues to occur, the detonation front adjusts

to a steady value as the kinetics become rate-limited by radical production. Thus,

at t = 0.16 ms the cell width remains at approximately 3 mm. Since the magnetic

field modifies the observed detonation cell-width, and this change is related through

N , estimation of the electrical conductivity of the gaseous mixture is possible from

observations of the cellular structure in a give magnetic field.

The heat addition by the magnetic field also affects the detonation velocity. Since

the Joule dissipation is proportional to B2
0 , and thus N , the effect of heating on

detonation is more profound in cases with higher N . Thus, the deviation in the

detonation velocity (see Fig. 50) increases with N . Even in case Y1, the detonation

velocity is marginally augmented in comparison to case without afield. Note that

the Lorentz force is in the direction opposite of the detonation propagation. The

momentum deficit, however, is negligible in comparison to the subsequent expansion

occurring from heat addition. This is due to the application of the field in the direction

perpendicular to the direction of the dominant velocity component (in x-direction).

5.3.2 Effect of Bx,0

When the magnetic field is applied in the x-direction, the detonation velocity increases

slightly, but this increase is independent of N as shown in Fig. 50. The current

density, and likewise the electromotive force, is proportional to the component of

the velocity perpendicular to the magnetic field, in this case, the transverse velocity.

Similar to cases with a By field, Joule dissipation results in reduction of L1/2 at lower

N as shown in Fig. 51. For simulations with an applied Bx,0, however, the Lorentz

force counters the movement of transverse waves in the post-detonation flow since

their motion is perpendicular to Bx,0. This introduces new dynamics. At higher
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Figure 50: The average location of the detonation front as a function of time for
the cases given in Table 6

values of N , the transverse waves are actively suppressed. This suppression reduces

the strength of the transverse wave interaction with the Mach stem and incident shock

at the detonation front, and over time the front becomes relatively flat. The formation

of the characteristic cellular structures are thus eliminated. This results in a reduction

in the L1/2. The combined effect of heat addition via Joule dissipation and transverse

wave suppression, which disables the high temperature triple point formation [77],

results in only a marginal increase in the detonation velocity for any given N . For

the times simulated here, and for the values of N investigated, the reaction front

does not decouple from the shock wave. This was determined by switching off the

magnetic field after some time. For any given N , the typical cellular structures are

regenerated by turning off the applied field.

To summarize, the magnetic field applied in the direction of detonation propaga-

tion affects the detonation through a combined effect of Joule heating and Lorentz

force. While the Lorentz force acts to eliminate transverse waves and cellular struc-

ture, the heating effect resulted in temperature increase and sustained coupling of
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Figure 51: Profiles of the HO2 mass fraction and temperature for with an increasing
magnetic field corresponding to the center of the Mach stem for each detonation front
at approximately 0.175 ms.

reaction zone with the shock propagation. Thus, for any given N , the change in

detonation velocity is marginal. Due to the difference in the magnitude of velocity

components in x- and y -directions, B0,x affected the detonation both by momentum

and energy coupling where as the dominant effect of B0,y is Joule dissipation.

5.4 Conclusions

The electrical conductivity of a plasma produced by a hydrogen-air detonation is

computed. The proposed detailed chemistry is able to model both hydrogen-oxygen

combustion and ionization in hydrogen-air mixtures. Basic detonation properties,

such as DCJ , are reproducible at various pressures and N2 dilutions indicating that

the numerical approach is both robust and accurate. For unseeded detonations, ion-

ization is slower as a result of the relatively slow formation of NO. At higher ambient

pressures, the post-detonation temperature is increased resulting in an increase in the

electrical conductivity. Reducing the N2 dilution also increases the post-detonation
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Figure 52: A numerical sootfoil for a gaseous detonation seeded with 0.25 percent
by mass of potassium. The maximum magnetic field is Bx = 2000 T . The cellular
structures clearly indicate an altercation in the detonation dynamics.

temperature and the electrical conductivity until the reduction of nitrogen in the

mixture begins to limit NO production. Since the observed electrical conductivities

in unseeded detonations are too low for MHD devices to be efficient, seeding the

mixture with low ionization potential alkali salts is necessary. While seeding does

increase the electrical conductivity, simulations in both one and two dimensions show

that the detonation is sensitive to the amount of seeding material injected into the

flow. Too high of a seeding percentage can adversely affect the detonation propaga-

tion, however, even at lower seeding percentages (less than 1.25%) a four to five order

of magnitude increase in the electrical conductivity is observed.
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CHAPTER VI

RICHTMYER-MESHKOV INSTABILITY

6.1 Introduction

In the following chapter, the Richtmyer-Meshkov instability (RMI) is numerically

investigated in a magnetized plasma. In Sec. 4.2.1, the parameters, initial conditions,

and boundary conditions required for the numerical simulation of the RMI are defined.

The same conditions are used here with the exception of magnetic field in the direction

normal to shock propagation. In a magnetized plasma, fluid instabilities are much

more complex since the presence of Alfvèn wave can cause a coupling between the

velocity and magnetic fields to alter the dynamics of the fluid. As a result of the

influence of the magnetic field, a different classification is added defined based on the

ratio of the magnetic to thermodynamic pressure or β = B2/2p and grouped into

low-β or high-β plasmas. In the following, some definitions are first introduced and

the RMI is discussed for low and high β plasma.

6.2 Definitions and Simulation Parameters

Given the definitions of the computational configuration and the initial flow conditions

introduced in the last two sections, it is useful to next define some important variables

governing the evolution of the RMI and used to analyze the shock-accelerated mixing

layer. As discussed in the Introduction, as the shock refracts through the material

interface, a misalignment in the density and pressure gradients occurs. This results in

a deposition of vorticity through the production of baroclinic torque along the contact

discontinuity causing the perturbations to grow in amplitude. This process can be

investigated using the compressible vorticity transport equation, given by Eq. 289,
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which is derived by taking the curl of the momentum conservation equation. Ignoring

the viscous and resistive terms, the tensor form of this equation is given as

Dωi

Dt
= ωj

∂ui

∂xj

− ωi
∂uj

∂xj

+
1

ρ2
ǫijk

∂ρ

∂xj

∂p

∂xk

+ ǫijk
∂

∂xj

(
ǫklmJlBm

ρ

)
(289)

= Ωs
i + Ωd

i + βv
i +Πi.

The first two terms in this equation, Ωs
i and Ωd

i , represent the transport of vorticity

through vortex stretching and dilatation. The third term, βv
i , represents the pro-

duction/destruction of vorticity by baroclinic torque. In addition to these terms, an

additional vorticity production occurs in magnetized plasmas, which is represented

by the term, Πi. The viscous contribution to vorticity dissipation is ignored here.

At the contact discontinuity, βv
i is orders of magnitude larger than the viscous term

[185].

Once the circulation is deposited on the material interface, the amplitude of the

perturbations grow linearly for a short period of time. As the two fluids become

entrained and start to mix, the rate at which the mixing layer grows begins to saturate

and the RMI becomes non-linear. In practice, there are many ways to define the width

of the mixing layer in order to deduce the growth-rate of the instability. In this study,

an integral definition is adopted where the mixing length is given by

η(t) = 4

∫ Lx

−0.2

〈Yh〉 (1.0− 〈Yh〉) dx. (290)

The quantity 〈·〉 represents a volumetric average in the transverse directions over the

distances Ly and Lz, and is a function of only the time, t, and x, the longitudinal

direction. Other methods, such as defining the boundary of the mixing layer as the

maximum and minimum values of Yh and taking the difference between these two

points are less precise and somewhat arbitrary.

The mixing length η is representative of the entrainment mixing processes and

does not lend any information on how well mixed the two fluids are on a molecular
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level. For this, other quantities are needed. The molecular mixing fraction, Θ, is

defined as

Θ(t) =

∫
〈YhYl〉dx∫
〈Yh〉〈Yl〉dx

. (291)

It is a more useful description of how well-mixed the two species are in the mixing

zone since the span-wise averaged mass fraction carries no distinction between regions

that are completely mixed and those regions that are unmixed, but contain equal

portions of species. Thus, Θ quantifies the relative amount of molecularly mixed

fluid within the mixing layer, a Θ = 1.0 would mean that the entrained fluids were

completely mixed within each transverse plane. In experiments, η is the easiest to

measure. More recent experiments using simultaneous PIV an PLIF imaging are able

to deduce more detailed information about the mixing processes in the RMI. This is

a boon for numerical simulations, since the averaged quantities like η and Θ are to

some extent still measurements of the large-scale mixing process and do not provide

information about the turbulent mixing processes that may exist in the mixing layer

at very late times or after re-shock.

In a magnetized plasma, the dynamics of the RMI is altered significantly. As a

result of the electromotive force, the stretching and compression of magnetic field

lines by the velocity field results in a small-scale dynamo process that amplifies the

magnetic field. The dynamics of this process are determined by three parameters, the

helicity, the cross helicity, and the electrical conductivity. Thinking of the RMI as a

departure from equilibrium, it is useful to define these parameters by equating them

to the possible equilibrium states of a plasma in MHD. There are two equilibrium

states, the force-free state and the Alfvenic state.

Depending on the initial β of the plasma, a emf resulting from the mixing layer

amplifies the magnetic field until the induction process is saturated and the magnetic

field becomes “frozen” into the fluid. Depending on the strength of this saturated

magnetic field, the mixing process could be drastically altered since fluid mixing by
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Table 7: Summary of the initial conditions and parameters for the numerical simula-
tions of the single-mode RMI where u∗ =

√
p0/ρ∗ is the reference velocity, t∗ = λ/u∗

is the reference time, and ρ∗ = ρ+l is the reference density.

Case k0η Ms ρh/ρl A A+ ∆V/u∗ τf/t
∗ λ/∆0 Lx/λ

SM1 0.1 1.2 3.0 0.5 0.499 0.313 1.019 512 20
SM2 0.1 1.5 3.0 0.5 0.516 0.849 0.375 512 20
SM3 0.1 2.0 3.0 0.5 0.546 1.726 0.184 512 20
SM4 0.1 5.0 3.0 0.5 0.517 6.642 0.048 512 20

either small-scale or large-scale vortical motions could be completely inhibited. In

order to analyze this, the following scalar equation for the time-rate of growth of the

magnitude of the magnetic field can be derived

1

2

∂B2
k

∂t
= −Bivi

∂Bj

∂xi

Bi +BiBi
∂vj
∂xi

− B2
k

∂ui

∂xi

(292)

where the last two terms represent stretching and compression.

In summary, given a defined initial condition, the growth-rate of the RMI is first

analyzed through the large-scale measurements of η(t) and Θ(t). In some sense, these

are categorical measurements, A more detailed analysis relies on computing the terms

in the vorticity transport equation and the scalar equation for the amplification of the

magnetic field. Lastly, the mixing processes occurring by the small-scale turbulent

motions (occurring only once transition from a laminar flow has occurred) can be

analyzed through the kinetic and magnetic energy spectrum in wavenumber space.

The analysis is carried out for single-mode RMI. The multi-mode RMI and the re-

shocked, multi-mode RMI will be investigated in the future.

6.3 Suppression of the RMI

In the previous sections, the RMI has been discussed in the context of hydrodynamics

for non-magnetized mediums. The single-mode RMI is now analyzed for the scenario

when an incident shock impulsively accelerates a contact discontinuity under the
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Figure 53: Time evolution of the mixing layer width for the single-mode RMI in
a magnetized plasma with β = 10 and initial conditions of Ms = 1.5, k0η0 = 0.1,
A = 0.5. The results for two- and three-dimensional numerical simulations using
both the ideal (Re∗ = ∞)and resistive MHD equations are compared to the linear
theory, where Re∗ = Re∗m are both computed from the reference parameters.

assumption that both the light and the heavy fluids are magnetized and have the

same electrically conductivity. In MHD, the dynamics of the incident shock as it

refracts through the medium is significantly different since the jump conditions for the

shock and contact discontinuities are different. For example, and most critical to this

applications, contact discontinuities do not support a jump in the transverse velocity.

Instead, Alfven waves carry this jump condition. As a result, the vorticity generated

by the baroclinic torque term in the vorticity transport equation is swept away by

the Alfvén waves, which propagate to the left and right of the contact discontinuity.

Depending on the speed of the vorticity propagation along the magnetic field lines

via the Alfvén waves, the interface can be potentially stabilized.

A similar incompressible linear analysis used to study the growth-rate of the RMI

in non-magnetized flow can be done for MHD. Instead of the result being a single
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ordinary differential equation for the interface displacement, however, there is ad-

ditional differential equation for the magnetic field fluctuation. This coupled set of

equations can still be solved analytically. Wheatley et al. [215, 216] have derived the

full analytical expressions for the growth-rate of the RMI in the presence of a normal

magnetic field. Interestingly, the initial growth rate of the interface is not affected

by the presence of the RMI, specifically Richtmyer’s impulsive model is recovered

˙η(t = 0+) = η0k∆V A. The time evolution of the mixing layer width is [215, 216],

η(t) = η∞ − (η∞ − η0)e
σt cos(τt) (293)

where α and τ are parameters defined as

σ = −Bk
(√

ρl +
√
ρh
)

ρl + ρh
, (294)

τ =

(
B2k2

(
ρl + ρh − 2

√
ρlρh

) )1/2

ρl + ρh
, (295)

and η∞ is the asymptotic mixing layer width,

η∞ = η0

[
1 + ∆V

(
1

va,h
− 1

va,l

)]
, (296)

where va,h = B/
√
ρh is the Alfvén velocity in the heavy fluid and va,l = B/

√
ρl is

the Alfvén velocity in the light fluid. Figure 53 shows a comparison of two- and

three-dimensional numerical simulations of the single-mode RMI to the linear theory

for a β = 10 plasma. The under prediction of η∞ and the low frequency oscillations

are consistent with the non-linear simulations presented by Wheatley et al. [215,

216] when assessing the validity of the model. Additionally, the results show here

that the predictions are consistent in the generalization to three-dimensions. With

the inclusion of the viscous diffusion, species mass diffusion, heat conduction, and

magnetic resistivity terms, there is a noticeable increase in η∞ for a Re∗ = Re∗m =

1470. To explain this, some explanation of the ideal MHD case is necessary.

The linearized model of Wheatley et al. [215, 216], however, always predicts that

the RMI is stabilized no matter the initial β of the plasma. This is not precisely
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(a) t/t∗ = 1.1

(b) t/t∗ = 3.5

(c) t/t∗ = 5.2

Figure 54: Contours of the normalize magnitude of the magnetic field B2/B0 at
three different times for the single-mode RMI in a β = 10 plasma. The white contour
line represents the material interface defined by Yh = Yl = 0.5.

correct. The stability of the contact discontinuity is dependent on the transport of

the vorticity by the Alfvén waves supported by the Bx magnetic field lines. Thus,

stability requires that the speed of the Alfvén wave to be larger than the linear

growth-rate of the RMI resulting in the criteria [181]

v∗a ≥ η̇ ≈ k0η
+
0 A

+∆V. (297)

where the initial linear growth-rate of the Richtmyer’s impulsive model is used to

approximate the initial growth velocity of the RMI. Since v∗a = B/
√
ρ∗, it is possible

to define a critical β for which stability of the RMI is guaranteed. This criteria has

been parametrically studied by Sano et al. [181], who show that the stability of the

RMI is not only dependent on β, but also on Ms and A. The numerical simulations

in this study of the low-β plasma verify that relations holds for both the single-mode

and multi-mode RMI in two- and three-dimensions.

The reason is that in all cases the initial linear growth rate of the RMI is adequately

described by Richtmyer’s impulsive model [165] and once the vorticity is transported
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Figure 55: Time evolution of the mixing length η(t) and the mixing fraction Θ(t)
for the single-mode RMI in a resistive plasma of β = 10 and a non-magnetized gas of
β =∞ is shown for reference.

away from the contact discontinuity, any acceleration of the growth through can not

occur. Stability, in the case of low-β plasma, depends only on the transport process

of vorticity by the Alfvén waves away from the contact discontinuity. Increasing

the magnetic resistivity of the plasma alters the transport of vorticity by the Alfvén

waves. Figure 55 shows the mixing length η(t) and the mixing fraction Θ(t) for

the single-mode RMI in a resistive plasma. The more appropriate non-dimensional

number is the Lundquist number S, which is like a Reynolds number, but with the

Alfvén velocity, v∗a used as the velocity scale instead. This value represents the rate

of diffusion of perturbations along the magnetic field lines to the propagation velocity

of the Alfvén wave. For smaller values of S∗, the RMI is no longer stabilized by the

magnetic field.

Figure 54 shows contours of the normalized magnetic field with a contour line

marking the species interface, Yh = Yl = 0.5. The perturbations in the magnetic field

mirror the vorticity generated initially at the material interface. This is more clearly

demonstrated by Fig. 56, which shows the spanwise averaged normalized vorticity

〈ω〉/ku∗ for three cases, β = 10, β = 1000, and β = ∞. At the higher values of β,
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profiles for different values of β demonstrating the stabilization of the RMI at high β
values.

smaller initial values of Bx, the magnetic field no longer stabilizes the RMI. In Fig.

56, the spanwise averaged normalized density ρ/ρ∗ illustrates this.

6.4 Magnetic Field Amplification by the RMI

Low-β plasmas are more characteristic of the confined laboratory plasmas in terres-

trial applications such as fusion, however, even in such cases, the pressure of the gas

is often large enough to require very strong magnetic fields for the RMI to be sup-

pressed. Thus, in many magnetized plasmas, such as those common in astrophysics,

the values of β are very large. Moreover, as Ms increases, the value of βc increases as

well. As a result, suppression of the RMI is a less common scenario. If β > βc, then

to a varying degree the growth-rate of the RMI is non-zero.

Figure 57 shows the time evolution of the mixing length in a magnetized plasma

with β = 103 and β = 104 for the single-mode RMI with Ms = 1.5. In all cases, the

growth-rate of the RMI is not suppressed. The mixing fraction, Θ, however, shows

that for these two cases, the flow is not as well mixed as it is in non-magnetized
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Figure 57: Time evolution of the mixing length η(t) and the mixing fraction Θ(t)
for the single-mode RMI in a magnetized plasma of β = 103 and β = 104 as well as
for a non-magnetized mixture (β =∞).

plasma. This is because the secondary instabilities have been almost completely

suppressed in the β = 103 and partially suppressed in the β = 104 cases. Figure

58b shows a contour line of the material interface defined by Yh = 0.5. The Kelvin-

Helmholtz instability typically results in the generation of a pair of vortices on either

side of the spike. These vortices further the mixing process increasing the surface

area over which molecular diffusion can occur. In the case of β = 104, the generation

of these vortices is slightly suppressed, which is observed by the noticeable decrease

in Θ compared to a non-magnetized single-mode RMI of the same initial conditions.

As the initial growth of the RMI generates vorticity causing the heavy and light

fluids begin to mix, this also results in the entrainment of the the magnetic field lines

by the vortical motions. By compressing and stretching the magnetic field lines, the

magnetic field is greatly amplified in magnitude over its background initial value.

Figure 59a shows the time evolution of the peak magnetic field. The magnetic field

increases initially as a result of compression, but as the RMI develops the magnetic
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(a) B2/B0 (b) 〈B(B · ∇)v〉/(B0ku
∗) (c) j/kB0

Figure 58: Contours of (a) the normalized magnetic field magnitude, (b) the mag-
netic field stretching term, and (c) the current density for the single-mode RMI in a
β = 104 plasma at t/t∗ = 7.

field lines begin to be stretched by the fluid. This results in a significant increase

in the amplification of the magnetic field. Figure 59b shows the spanwise averaged

values of the term 〈B(B · ∇)v〉, which is responsible for the time-rate of increase in

the magnetic field due to stretching. There is an obvious increase in the magnitude

of this term for t/t∗ > 2.

As the the magnitude of the magnetic field increases, sheets of current density

become entangled in the region of mixing. As the magnitude of the current den-

sity increases, the sheets become thinner and more prone to magnetic reconnection,

which results a tearing instability and a conversion of magnetic energy into kinetic

and thermal energy. For the numerical simulations shown here, however, magnetic

reconnection does not seem to occur. This is likely because the tearing instability

is stabilized by shearing motion. The current density contours at t/t∗ are shown in

Figure 58c.

6.5 Conclusion

During an explosion, a primary blast wave propagates into the surrounding medium

followed by a secondary shock and a contact discontinuity separating the burnt gas
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Figure 59: (a) Time evolution of the peak magnetic field magnitude in the domain
normalized by initial magnetic field B0, and (b) the spatial variation of the spanwise
averaged magnetic field stretching,〈B(B · ∇)u〉/(B0ku

∗) and magnetic field at three
times t/t∗ = 0.11, t/t∗ = 0.36, and t/t∗ = 2.15. The marked lines refer to the
magnetic field values which normalized have a value of 1 in the regions of the domain
other than shown here.

products from the shocked gases. Since the contact discontinuity is Rayleigh-Taylor

unstable, mixing slowly occurs during the primary phase. In a spherical explosion, a

reflected shock resulting from implosion re-shocks the mixing layer between the burnt

gases and the surrounding medium triggering the RMI and accelerating the mixing

process. The RMI quickly results in the development of a turbulent inertial range

that drives the mixing layer to a state of fully developed turbulence. The accelerated

mixing between the burnt and unburnt products with the surroundings results in an

afterburn phase that continuously provides the a release of energy to support the

expansion of the gas products.

The RMI also occurs when the initial blast wave or the secondary shock impacts

a gas mixture of variable density or temperature. In an astrophysical setting this

occurs when the supernovae remnants interact with the interstellar medium, which is

composed of warm molecular clouds and denser, colder regions of gas. The accelera-

tion of these gases in the interstellar medium initiates the RMI. Interestingly, in both
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scenarios the gases are plasmas, which are also slightly magnetized by an ambient

magnetic field in interstellar space. Moreover, during supernovae of the core-collapse

type, the presence of a magnetic field is the likely reason for the asymmetric nature

of the explosion. As a result, the dynamics of the magnetic field become important

during the mixing processes, which are in part initiated as a result of the RMI.

Shock-accelerated mixing of plasmas does not only just have implications to as-

trophysical flows. For instance in Chapter 4, the seeded gaseous detonations and

particularly the condensed-phase explosions generate plasmas of sufficient electrically

conductivity. Such explosions occurring in a confined space, could easily result in the

product gases becoming magnetized by the presence of an external magnetic field.

Another example is during the inertial confinement fusion process. In this scenario,

it is ideal to avoid the onset of instabilities since they increase mixing and thus re-

duce the burn temperature. It is possible that a strong magnetic field could aid in

the stability of these devices. In all such cases, further understanding how mixing is

altered in a magnetized medium if only in a fundamental configuration could offer

important insights into the dynamics of these aforementioned problems.

Several numerical simulations of the RMI were discussed in this chapter and used

to illustrate shock-accelerated mixing in both magnetized plasma and non-magnetized

flows. Three different configurations were introduced, single-mode RMI, multi-mode

RMI, and re-shock RMI. A hybrid, high-order finite difference scheme is used in all

simulations. The shock-capturing scheme employs a the flux vector splitting scheme

using 5th order WENO-Z flux reconstruction. This is coupled with a central scheme

using a compact 4th order stencil order. For MHD simulations, the constrained

transport method is used for the single-mode and multi-mode RMI. For re-shock

simulations, the projection scheme is used. This is because standard constrained

transport schemes develop oscillations when a weak magnetic field propagates in a

computational domain. The easiest solution is modify the frame of reference of the
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RMI.

The numerical results are compared to the linear theory of plasmas for which β <

βc. For such plasmas, numerical simulations demonstrate that both the single-mode

and the multi-mode RMI are unequivocally suppressed in two- and three-dimensions

if the magnetic resistivity is small. Increasing the magnetic resistivity or decreasing

the Lundquist number results in destabilizing the RMI. For β > βc plasmas, the

vorticity generated by the baroclinic torque term during shock refraction results in

the initiation of a small-scale dynamo. The magnetic field lines are compressed and

stretched by the fluid and become entangled resulting in an increase in the magnitude

of the magnetic field and a thinning or compression of current sheets. In a fully-

turbulent state, magnetic reconnection events would likely to further drive the mixing

processes.
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CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

Explosions are a common phenomena in the Universe. Beginning with the Big Bang,

one could say the history of the Universe is narrated by a series of explosions. This

is nowhere more apparent than in the life cycle of a star. The large clouds of gases

expelled from a supernova propagate through the Universe populating it with the

heavy matter necessary for the creation of new stars and galaxies. Explosions, how-

ever, come in a wide variety of types and can be classified in a broad manner by the

type of energy injected into the system, e.g., magnetic, nuclear, chemical, etc. For the

system to exhibit explosive behavior, the rate of injection of energy must occur at rates

faster than which the system can equilibrate to the change. Since all types of explo-

sions occur in a series of interactions incorporating many different physical processes

beginning with their initiation to their dynamical interaction with the environment,

a piecemeal approach is adopted in this thesis for study the explosion phenomena

occurring in a magnetized medium or in the presence of background magnetic field.

Two disparate ranges of time scales occurring during explosion are identified in order

to simplify the analysis of the problem into two parts. The first involves the study

of a freely propagating detonation wave in a background magnetic field. Detonation

waves are typical in condensed-phase, high-energy chemical explosives, but the prob-

lem in this thesis has been further simplified to only consider detonation in a single

gaseous phase. The second problem involves the mixing processes of the explosive

products gases with the surrounding environment. This occurs at time scales many

orders of magnitude larger than the time scales at which the initiation processes of
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the explosion take place. Thus, this problem addresses a much broader question of

how mixing occurs in a shock-accelerated, magnetized flow. To address this question,

numerical simulations of the Richtmyer-Meshkov instability are used.

An additional benefit of using such canonical simulations is that they can also be

used to assess and understand how different numerical methods alter the solution. A

primary objective of this thesis has been to develop a general methodology within

the framework of a multi-physics code that can be used to simulate a wide variety

of MHD flows. In the narrower scope of this thesis, three criteria are delineated

as being important to the successful implementation of numerical methods for high-

speed, MHD turbulent flows. The first requirement is that the numerical methods

necessary to resolve shocks and large gradients in a flow are diametrically inconsistent

with the criteria for the numerical simulation of turbulence. High-order central dif-

ference methods are generally preferred in such cases since they contain a minimum

amount of numerical dissipation, but suffer instability near discontinuities. Upwind,

shock-capturing methods resolve discontinuities extremely well, but do so only by

introducing numerical dissipation. A solution is to adopt a hybrid methodology that

attempts to blend the benefits of both schemes. These schemes have been used in the

past for the study of shock-turbulence interaction in hydrodynamic flows with much

success. Extending this numerical modeling capability to MHD allows for the study

of wide variety of compressible plasma flows. Hindering a direct extension of these

numerical methods used for the Euler or Navier-Stokes equations in hydrodynamics

to the governing equations of MHD is the requirement that the magnetic field remains

divergence free throughout the simulation. As a result of this involution requirement,

several algorithms have been proposed in the literature to maintain the divergence

of the magnetic field to values near the order of the grid resolution. The difficulty

is that these methods are not necessary consistent or easy to extend to a hybrid

methodology, which may be needed in flows relevant to detonation and explosion. In
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Chapters 3 and 4, this issue is discussed in detail. The unfortunate conclusion is that

there is not straight-forward answer. The application of these methods are inherently

problem dependent. For simulations of the RMI, the hybrid approach can be used,

but based on the switching criteria used in this thesis, the shock-capturing scheme is

needed in the regions where mixing occurs as a result of the high gradients in density

and temperature. While the hybrid approach did not affect the solution, the benefits

of the low-dissipation central scheme in the mixing region are lost. It is possible

that this approach is better utilized in other applications, such as shock-turbulence

interaction.

Two classes of numerical models are implemented and validated for a large number

of test conditions. The classical unsplit, finite-volume, Piece-Wise Parabolic Method

is compared to a hybrid, high-order finite-difference method employing a compact

central difference scheme and a flux vector splitting scheme based on flux reconstruc-

tion using a fifth order WENO-Z method. The later is used to study the gaseous

detonation of hydrogen and air mixtures seeded by potassium carbonate and the

single-mode, multi-mode, and re-shock Richtmyer-Meshkov instability in a magne-

tized plasma. Each has their drawbacks and advantages. A constrained transport

method is used for the majority numerical simulations conducted in this thesis since

numerically is the most consistent, however, the use of such methods does limit the

formal order of accuracy of the numerical method since these methods involves trans-

lating variables from the cell-centers to the face-centers.

Numerical simulations of the ionizing detonation are validated against experimen-

tal measurements and then used to study the stability of the propagating detonation

wave in particle seeded flows. Since gaseous detonations do not produce plasma of a

large electrical conductivity, this seeding is necessary, but it is limited since adding

a significant amount of seeding reduces the amount of energy available to maintain
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the expansion of the products. The propagation of stable, ionizing detonation occur-

ring in the presence of a magnetic field is altered. For such conditions, the electrical

conductivity is small enough for the governing equations to be approximated in the

low magnetic Reynolds number limit or in other words by the quasi-static form of

the MHD equations. Thus, the Stuart number, or magnetic interaction parameter,

governs the dynamics of the flow. For magnetic fields orientated in the direction

of propagation, the transverse waves are altered. This causes the interaction of the

shock wav, transverse wave, and Mach stem occurring at the detonation front to

become altered. Ultimately, this transitions the propagating detonation wave to a

higher mode as indicated by the numerical soot foils.

Next, the variable density mixing in the magnetized plasma is discussed. Such

flows are are known to be unstable to impulsive acceleration. This instability, re-

ferred to as the Richtmyer-Meshkov instability or RMI, is the primary mechanism for

triggering a rapid increase in the mixing of the explosively generated gases. In a mag-

netized medium, the vortical motions driving mixing also induce a emf resulting in

the amplification of a background magnetic field. Numerical simulations of the RMI

in a magnetized medium are used to study this process and investigate how it affects

scalar mixing. Using these simulations, a background magnetic field is observed to

be amplified up to a 100 times its original magnitude, a result that corroborates the

observed measurements of synchrotron radiation in supernovae remnants.

7.2 Recommendations for Future Work

Given that the numerical methods developed in this work are applicable to any com-

pressible, reacting MHD flow, many types of problems can be considered in the future

without any necessity to add further physics-based models. First and foremost, let us

consider the problem of magnetic field amplification by explosive events such as super-

novae remnant propagating through the interstellar medium. There are two processes
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that result in an amplification of the magnetic field, the first is the Richtmyer-Meshkov

instability, which was studied here, and the second is the interaction of a shock wave

with a turbulent magnetized medium. In the shock-turbulence problem, the induced

magnetic field is initiated by the anisotropies generated as the shock amplifies the

velocity and magnetic vector field fluctuations. Direct numerical simulations can first

be used to study this problem following the well-established methodology of hydro-

dynamic shock-turbulence interaction. The numerical methods implemented in this

thesis are extremely suited for this problem.

In a related problem to the variable-density mixing studied in this thesis using

the Richtmyer-Meshkov instability is to more clearly identify how the turbulent scalar

mixing processes are altered in either an incompressible or compressible environment.

The scalar mixing problem in hydrodynamic turbulence is rich with many unanswered

questions, but is much more well understand in comparison to magnetohydrodynamic

turbulence. This knowledge could easily be extended using the numerical methods

discussed in this thesis using simulations of forced isotropic turbulence containing a

passive scalar. The knowledge is directly applicable to the multi-species mixtures in

astrophysical plasmas.

In all of the problems discussed in this thesis, direct numerical simulations were

used. This is a severe limitation since once these simulations are extended to more re-

alistic systems, the computational requirements become prohibitively expensive. As a

result, it becomes required to use a turbulence closure modeling approach to provide

a physical mechanism for the dissipation. In previous work, a large-eddy simula-

tion (LES) turbulence model has been developed for MHD. Both shock-turbulence

interaction and scalar mixing problem could also be investigated using the MHD-

LES approach. Once again analogs to the study of these topics in hydrodynamics

exist. The simulations conducted in this thesis, hint that the implemented numerical

methods can easily be applied to these problems. With LES, a large-scale, realistic
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simulation of spherical explosion could be studied. Such studies would provide be

able to leverage the results discussed in the context of very simplified problems by

offering a more direct analogy between the problems.

Lastly, while the hybrid finite-difference numerical method implemented in this

thesis is capable of being applied to a large range of problems, some significant im-

provements could be made. First, the question of the best way to extend the numer-

ical method consistently to a high order should be addressed. Constrained transport

methods using a staggered grid approach become extremely complex and impractical

in their extension between third-order. A promising method is the Hamilton-Jacobi

method. Some initial efforts have been made to implement this method, but they were

ultimately unsuccessful. Since this class of numerical scheme for MHD integrates the

magnetic vector potential directly these schemes naturally preserve the divergence

free condition on the magnetic field and can be extended to higher-orders using the

same finite differencing methods used developed in this thesis.
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APPENDIX A

CHEMICAL KINETIC MODELS

The combined model for both hydrogen-air detonation and the subsequent ionization

consists of 26 species and 65 reactions and is described by Tables 8 and 9. From

experimental analysis [59], the ionization of NO is the primary pathway for ionization

in hydrogen-air mixtures. Thus, modeling of the N2/O2 chemistry is most important

in non-seeded mixtures, however, for completeness ionization reactions involving all

of the hydrogenous species are included whenever reliable data could be found. The

N2/O2 chemistry relies heavily on the reaction mechanism developed by Park [151,

152], which is widely used with slight modifications in a variety of applications. The

electron impact dissociation and ionization reactions are taken from the data collected

by Teulet et al. [198] and Riahi et al. [164]. All reactions are taken as reversible.

This kinetic model is verified by comparison to theoretical values of the detona-

tion velocity and to equilibrium values of the electrical conductivity. The theoretical

value of the detonation velocity, DCJ , is computed using NASA’s Chemical Equilib-

rium with Applications (CEA) code [132]. The percent of N2 in the H2/O2 mixture is

varied and for each mixture the detonation velocity is calculated using the proposed

kinetic mechanisms. The addition of ionization chemistry should not change the over-

all detonation parameters. For one, N2/O2 and ionization chemistry occurs mostly

downstream so it doesn’t affect the chemical thermicity at the detonation front, and

two, the inclusion of the N2/O2 and ionization chemistry is actually more accurate

with the 18-step and 21-reaction H2/O2 model being merely a subset. Regardless, the

values from the one-dimensional simulations are within 3-5% of the theoretical values

for the range of N2 dilution considered. As shown in Fig. 38, both mechanisms are

188



Table 8: Summary of the hydrogen-air combustion mechanism used in the present
detonation simulations. For the three-body reactions, M includes H2, O2, H, O, OH,
HO2, H2O2, H2O and N2 where the collision efficiency is unity with the exceptions:
Ma does not include O2, H2O, or N2, and the collision efficiencies for H2 and H2O in
Mb are 2.4 and 6.0, in Mc are 1.7 and 7.0, in Md are 2.4 and 15.4, and in Me are 0.73
and 3.65, respectively. For reactions r11 and r14, k = ka + kb, and for reaction r12,
k = kinf [Pr/(1 + Pr)]F with Pr = k0[M]/kinf and F as defined in [154].

Number Reaction
Rate Coefficients

A n E

1 O + H2 → H + OH 5.0× 104 2.70 6290
2 H + O2 → O + OH 8.3× 1013 0.00 14413
3 H + O2 + Ma → HO2 + Ma 2.8× 1018 −0.90 0
4 H + O2 + O2 → HO2 + O2 3.0× 1020 −1.70 0
5 H + O2 + H2O → HO2 + H2O 9.38× 1018 −0.80 0
6 H + O2 + N2 → HO2 + N2 2.60× 1019 −1.20 0
7 H + HO2 → OH + OH 1.34× 1014 0.00 635
8 OH + H2 → H2O + H 2.16× 108 1.50 3430
9 H + H2O2 → HO2 + H2 1.21× 107 2.00 5200
10 H + HO2 → O2 + H2 2.80× 1013 0.00 1068
11 HO2 + HO2 → O2 + H2O2 1.30× 1011 0.00 −1630 ka

4.20× 1014 0.00 12000 kb
12 OH + OH + Mb → H2O2 + Mb 7.40× 1013 −0.40 0 kinf

2.30× 1018 −0.90 −1700 k0
13 OH + HO2 → O2 + H2O 2.90× 1013 0.00 −500
14 OH + H2O2 → HO2 + H2O 1.75× 1012 0.00 320 ka

5.80× 1014 0.00 9560 kb
15 H + H + Mc → H2 + Mc 1.00× 1018 −1.00 0
16 O + O + Md → O2 + Md 1.20× 1017 −1.00 0
17 H + OH + Me → H2O + Me 2.20× 1022 −2.00 0
18 O + H + Mb → OH + Mb 5.00× 1017 −1.00 0

good at predicting the proper detonation parameters.

The electrical conductivity of a stoichiometric mixture of hydrogen and air is

computed for various temperatures and pressures using Eq. 152. The species mass

fractions at equilibrium are determined by integrating in time the conservation of

mass, species and energy equations under the assumption of constant pressure. Once

the equilibrium species mass fractions are determined, the electrical conductivity is

computed. A similar calculation is done with the addition of 1% potassium by weight.

The results are shown in Fig. 37. The values are similar to those reported elsewhere

in the literature [129].
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Table 9: Arrhenius rate coefficients for the dissociation reactions. All collision
efficiencies are unity. Mf includes N2, O2, H2, NO, OH, H2O2, HO2, H2O and all
ions, and Mg includes N, O, H. In order not to repeat reactions included in the
combustion chemistry, Mh only includes NO and all ions, and Mi includes NO, N and
all ions.

Number Reaction
Rate Coefficients

Ref.

A n E

Dissociation
19 N2 + Mf → N + N + Mg 7.0× 1021 −1.60 113200 [152]
20 N2 + Mg → N + N + Mg 3.0× 1022 −1.60 113200 [152]
21 O2 + Mh → O + O + Mh 2.0× 1021 −1.50 59360 [152]
22 O2 + N → O + O + N 1.0× 1022 −1.50 59360 [152]
23 H2 + Mi → H + H + Mi 2.2× 1014 0.00 48300 [152]
24 NO + Mf → N + O + Mf 5.0× 1015 0.00 75500 [151]
25 NO + Mg → N + O + Mg 1.1× 1017 0.00 75500 [151]

Electron Impact Dissociation
26 N2 + e → N + N + e 2.48× 10−9 6.16 113263 [198]
27 O2 + e → O + O + e 3.47× 102 3.52 59370 [198]
28 H2 + e → H + H + e 2.69× 1020 −0.80 126565 [164]
29 H2O + e→ H + OH + e 3.20× 1015 0.50 92832 [108]
30 NO + e → N + O + e 1.05× 10−2 4.52 75390 [198]
31 OH + e → O + H + e 1.54× 1020 −0.76 80107 [164]

Electron Impact Ionization

32 N2 + e → N+
2 + e + e 5.17× 1012 0.72 184300 [198]

33 O2 + e → O+
2 + e + e 2.20× 1010 1.16 130102 [198]

34 H2 + e → H+
2 + e + e 1.78× 109 1.61 207369 [164]

35 H2O + e→ H2O+ + e + e 8.40× 1015 0.50 174060 [108]
36 H2O + e→ H + OH+ + e + e 2.80× 1015 0.50 209376 [108]
37 NO + e → NO+ + e + e 2.70× 1010 1.13 95092 [198]
38 OH + e → OH+ + e + e 6.99× 106 1.78 160267 [164]
39 N + e → N+ + e + e 2.50× 1034 −3.82 168600 [151]
40 O + e → O+ + e + e 3.90× 1033 −3.78 158500 [151]
41 H + e → H+ + e + e 2.20× 1030 −2.80 157800 [152]

Zel’dovich Reactions
42 O2 + N → NO + O 2.49× 109 1.18 4006 [24]
43 N2 + O → NO + N 5.69× 1012 0.42 42938 [23]

Dissociative Recombination

44 N + N → N+
2 + e 4.40× 107 1.50 67500 [151]

45 O + O → O+
2 + e 7.10× 102 2.70 80600 [151]

46 N + O → NO+ + e 8.80× 108 1.00 31900 [151]
47 OH+ + e → O + H 3.91× 1017 −0.50 0 [141]
48 H2O+ + e → OH + H 3.29× 1018 −0.50 0 [141]

Charge Exchange
49 O + NO+ → O2 + N+ 1.00× 1012 0.50 77200 [151]
50 N2 + N+ → N + N+

2 1.00× 1012 0.50 12200 [151]
51 N + O+

2 → O2 + N+ 8.70× 1013 0.14 28600 [151]
52 NO + O+ → O2 + N+ 1.40× 105 1.90 15300 [151]
53 N2 + O+

2 → O2 + N+
2 9.90× 1012 0.00 40700 [151]

54 O + O+
2 → O2 + O+ 4.00× 1012 −0.09 18000 [151]

55 N + NO+ → N2 + O+ 3.40× 1013 −1.08 12800 [151]
56 O2 + NO+ → NO + O+

2 2.40× 1013 0.41 32600 [151]
57 O + NO+ → N + O+

2 7.20× 1012 0.29 48600 [151]
58 N2 + O+ → O + N+

2 9.10× 1011 0.36 22800 [151]
59 N + NO+ → O + N+

2 7.20× 1013 0.00 35500 [151]

Potassium Reactions
60 K + O2 + M → KO2 + M 1.138× 102 −2.68 596 [190]
61 K + OH + M → KOH +M 1.144× 10−1 −2.00 0 [190]
62 KOH + H → K+ H2O 2.21× 1012 0.50 0 [190]
63 KO2 + H → KO + OH 2.21× 1012 0.50 0 [190]
64 KO + H2O → KOH + OH 5.95× 1011 0.50 0 [190]
65 K + M → K+ + e + M 5.962× 1015 0.50 101055 [5]
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APPENDIX B

COLLISION INTEGRALS

Collision integrals are often used to accurately compute the coefficients of viscosity,

thermal conductivity, diffusivity, and electrical conductivity in high-temperature non-

equilibrium flows. The collision integral Ω(l,s) is defined by averaging the appropriate

collision cross-section over the relative energy ǫ of the impacting species. The integers

l and s specify the collision integral type, i.e. diffusion or viscosity type.

Ω(l,s)(T ) =
4(l + 1)

π(s+ 1)! [2l + 1− (−1)l]
1

2kT

∫ ∞

0

( ǫ

kT

)s+1

Q(l)(ǫ)e(−ǫ/kT ) dǫ (298)

If the cross section Q(l) is not known experimentally, calculating Ω(l,s) can be done

analytically if the interaction potential Φ(r) is known. Determination of Φ(r) is often

difficult or impossible because of a lack of information, however, for electron-electron,

ion-ion, or electron-ion collisions, theoretical computations of the collision integrals

are quite accurate. Regardless, the theoretical approach serves first order estimate

for the collision integral in situations where no experimental data exists. With Φ(r)

being the unknown, Q(l) is computed as:

Q(l)(ǫ) = 2π

[
1− 1 + (−1)l

2(l + 1)

]−l ∫ ∞

0

b
[
1− coslΘ(b, ǫ)

]
db (299)

where Θ(b, ǫ) is defined as the classical deflection angle Θ(b, ǫ) where b is the impact

parameter and ǫ is the relative collision energy. If rc is the distance of closest approach

(the outermost root of F (r, b, ǫ)), then the deflection angle can be written as

Θ(b, ǫ) = π −
∫ ∞

rc

2br2

[F (r, b, ǫ)]1/2
dr = π −

∫ ∞

rc

2br2

[1− b2/r2 − Φ(r)/ǫ]1/2
dr (300)

191



From Chapman-Enskog theory, the transport properties of a gas mixture can be

determined by solving the Boltzmann equation. Using a Sonine polynomial expan-

sion and only retaining the first term, approximations for the coefficients of viscosity,

thermal conductivity and mass diffusion can be computed in terms of three inter-

action parameters. These collision integrals are identified as the diffusion collision

integral Ω(1,1), the viscosity collision integral Ω(2,2) and the collision integral ratio

B = (5Ω(1,2) − 4Ω(1,3))/Ω(1,1). These parameters can be computed as previously

discussed. For many gas mixtures, however, data or curve-fits for these collision in-

tegrals can be found directly. In the following sections, the sources and procedures

for determining Ω(1,1), Ω(2,2) and B are given. Interactions between charged particles

(electron-electron, ion-ion, electron-ion) are computed as curve-fits.
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