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ABSTRACT

Deployable and Foldable Arrays of Spatial Mechanisms

Thomas Andrew Evans

Department of Mechanical Engineering, BYU

Master of Science

This work evaluates a specific origami device known as the kaleidocycle and the broad class

of rigidly foldable origami. Both of these have potential for application in the design of deployable

and foldable arrays of spatial mechanisms.

Origami is considered a compliant mechanisms because it achieves its motion through the

deflection of paper creases. Compliant mechanisms generally do not allow for continuous rotation;

however, the compliant kaleidocycle represents an exception to this generality. Along with their

ability to rotate continuously, kaleidocycles may also be designed to exhibit multistable behavior

during this rotation. These two characteristics make the kaleidocycle an interesting device with

potential for applications in engineering. This work presents the multistable characteristics of

kaleidocycles, showing that devices can be made which exhibit one, two, three, or four distinct

stable equilibrium positions. Kaleiocycles may also be designed to exhibit a range over which the

device is neutrally stable.

The second type of origami presented in this work is rigidly foldable origami, a special class

of origami in which all deflection occurs at the creases, allowing the panels to remain rigid. This

type of origami is of particular interest because of its ability to be constructed from materials much

stiffer than paper while retaining its mobility. This property allows rigidly foldable origami to be

applied to fields such as architecture and deployable mechanisms. This work presents a method for

evaluating rigid foldability in origami tessellations. This method is used to define seven theorems

for the rigid foldability of origami twists and to develop new rigidly foldable origami “gadgets”

and tessellations.

Keywords: rigid foldability, tessellation, crease pattern, kaleidocycle, origami, multistable
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CHAPTER 1. INTRODUCTION

1.1 Problem Statement

Origami has recently been considered for applications in deployable structures and de-

vices [1–3]. Rigidly foldable origami, in which panels remain rigid during deployment, is espe-

cially applicable to deployable mechanisms. This research addresses two factors which limit the

application of origami designs to deployable mechanisms. The first factor is the difficult of an-

alyzing rigidly foldable tessellations. Several methods for evaluating rigid foldability in origami

tessellations exist [4–7]. However, the difficult of using these methods decreases their effective-

ness. The second factor is the inability of compliant mechanisms (including origami) to undergo

continuous rotation [8]. This research presents an analysis of the kaleidocycle, an origami device

which is capable of continuous revolution, and also presents a new method which simplifies the

analysis and design of rigidly foldable origami tessellations. This new method provides a use-

ful tool in the design of deployable and foldable arrays of spatial mechanisms based on origami

patterns.

1.2 Background

Origami can easily be seen for its value in art and entertainment, but it has also seen in-

creased application in the engineering community in recent years [9, 10]. Designs influenced

by origami patterns have been considered for application in deployable structures such as solar

panels [1] and recent developments have included self-deployable origami stent grafts [11], self-

folding membranes [12], and sandwich panel cores [13]. In these applications, the motion of

origami was used to deploy mechanisms from a compact state to a final expanded state.

Compliant mechanisms are mechanisms which use the flexibility of materials to achieve

at least some of their mobility. These mechanisms have advantages over traditional mechanisms
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Figure 1.1: Kaleidocycle

such as reduced part count, simplified manufacturing, and increased precision and reliability [8].

Because the motion is achieved through the deflection of the paper, origami is an example of a

compliant mechanism and methods derived for compliant mechanisms can be applied to origami.

Like other compliant mechanisms, origami devices are generally unable to undergo continuous

rotation; however, the kaleidocycle (see Figure 1.1) provides an exception and is able to contin-

uously rotate. Because of this property, kaleidocycles have potential to be used in applications

which previously have not been possible with compliant mechanisms. Kaleidocycles have been

considered for use in deployable structures [14] and a retractable structure based on the kaleidocy-

cle has been proposed for use in space [15]. In Chapter 2, another characteristic of kaleidocycles

is evaluated: multistability. It is shown that kaleidocycles may be designed to have up to four po-

sitions of stable equilibrium and that these positions may be tuned to be sharply stable (requiring

a large amount of force to perturb) or neutrally stable (requiring minimal force to perturb). This

chapter was produced in conjunction with Dr. Larry L. Howell, Dr. Spencer P. Magleby, and Brett

G. Rowberry.
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Also considered in this work is the specific class of rigidly foldable origami. With a rigidly

foldable origami pattern, creases may be represented as compliant members and the panels as

rigid links. This type of origami generally has one degree of freedom and is useful in the design

of deployable structures which incorporate materials much stiffer than paper. Rigidly foldable

origami has received much interest in recent years [5, 6]. Produced in conjunction with Dr. Larry

L. Howell, Dr. Spencer P. Magleby, and Dr. Robert J. Lang, Chapter 3 presents a new method,

fold-angle multipliers, to evaluate rigid foldability. This method uses equations derived from loop

closure equations to compare the dihedral angles in origami patterns. The result is a method for

determining if an origami pattern is rigid foldable without the requirement of solving systems of

nonlinear equations. This method simplifies the analysis of rigidly foldable origami and allows for

the construction of more complex arrays of spatial mechanisms.

Origami twists are mechanisms that appear often in origami patterns and can facilitate the

design of rigidly foldable tessellations. Chapter 3 evaluates origami twists using the fold-angle

multiplier method and shows under what conditions they are rigidly foldable. The fold-angle mul-

tiplier method is also used in Chapter 4 to characterize and compare existing rigidly foldable tes-

sellations and to create new origami “gadgets” which, like origami twists, can facilitate the design

of rigidly foldable tessellations. New tessellations are designed by modifying existing tessellations

and using gadgets as design tools. Both Chapters 3 and 4 were developed in conjunction with Drs.

Howell, Magleby, and Lang.

1.3 Research Objectives

The research objectives are to:

• Evaluate the multistability characteristics of compliant kaleidocycles and design kaleidocy-

cles which are sharply stable, sharply unstable, and neutrally stable;

• Characterize and compare existing rigidly foldable tessellations

• Characterize rigidly foldable origami twists which may be used as building blocks for de-

ployable arrays;
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• Use the fold-angle multiplier method to evaluate the rigid foldability of existing origami

tessellations with potential to be used in deployable arrays;

• Design rigidly foldable origami “gadgets” which may be used to facilitate the construction

of rigidly foldable tessellations;

• Design new rigidly foldable origami tessellations.

1.4 Research Approach

The multistable characteristics of n=6 compliant kaleidocycles are evaluated using the

strain energy in the compliant joints. It is assumed that these compliant joints act as idealized

torsional springs. Optimization techniques are used to design kaleidocycles which are sharply

stable, sharply unstable, and neutrally stable. Prototypes are constructed to verify the stability

characteristics of these kaleidocycles.

Origami twists are evaluated using the fold-angle multiplier method to determine under

what conditions they are rigid foldable. Existing origami tessellations are studied to find patterns

which would be useful for deployable structures. These arrays q43 evaluated using fold-angle

multipliers to determine if they are rigid foldable. Rigid foldable tessellations are verified using

graphical models.

New rigidly foldable origami patterns are constructed using origami twists and gadgets as

design tools. The rigid foldability of these patterns is verified using fold-angle multipliers and

graphical models. Optimization methods are used to aid the process of designing rigid foldable

patterns. Origami patterns are constructed using paper and other paper-like materials to ensure that

the motion is as expected and that no global self-intersection occurs.

4



CHAPTER 2. MULTISTABLE BEHAVIOR OF COMPLIANT KALEIDOCYCLES

2.1 Introduction

Compliant mechanisms are devices that achieve their motion from the bending of flexible

components rather than using hinges and bearings [8]. They are common in natural systems that

have motion (consider a pumping heart or the motion of a Venus fly trap), and are appreciated in

human-designed systems because of their high precision, low mass, low part count, and ability

to be made at many size scales. An obvious disadvantage of compliant mechanisms has been

their inability to undergo continuous rotation. However, a violation of this constraint is found in a

surprising place: folded paper art in the form of a kaleidocycle [15, 16].

Kaleidocycles are closed rings composed of at least 6 tetrahedra that have the ability to

rotate continuously. Every tetrahedron shares one edge with each of its two adjacent tetrahedra.

These joining edges correspond to revolute kinematic joints. The number of tetrahedra is desig-

nated as n. Figure 2.1 shows a paper kaleidocycle and its kinematic equivalent. The creases act

as revolute joints and the kaleidocycle can be modeled as a spatial mechanism. The kinematic

equivalence shown in Figure 2.1 can be exploited by combining with compliant mechanism theory

to create non-paper compliant mechanisms with continuous rotation. Figure 2.2 shows a compliant

mechanism laser cut from acrylic with motion obtained from surrogate folds [17].

The conversion of the kaleidocycle from paper to other materials reveals intriguing proper-

ties: 1) depending on the configuration of the compliance, it can have one, two, three, or four stable

equilibrium positions, 2) it is possible to construct them with distinctly sharp unstable equilibrium

positions (which can be critical in safety applications), 3) distinctly sharp stable equilibrium po-

sitions (important for high precision instruments), and 4) large range of neutral stable positions,

making in effect a frictionless bearing.

Kaleidocycles are single-loop spatial mechanisms and are overconstrained as defined by

the Grubler-Kutzbach criterion [18]
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Figure 2.1: Kinematic equivalence of the n = 6 kaleidocycle and the Bricard 6R. θ and φ joints

are labeled and links are numbered

m = 6(L−1)−5J1 −4J2 −3J3 −2J4 − J5 (2.1)

where m is the mobility of the mechanism, L is the number of links, and J1, J2, J3, J4, and J5

are the number of joints that remove 5, 4, 3, 2, and 1 degrees of freedom, respectively. When

m ≤ 0, a mechanism is a structure. However, some mechanisms are overconstrained and have

more degrees of freedom than predicted by Equation 2.1. For all kaleidocycles, L = J1 = n and

J2 = J3 = J4 = J5 = 0, thus m= L−6= n−6. This indicates that n= 6 kaleidocycles are structures

and should be immobile. However, these kaleidocycles are overconstrained and able to achieve

mobility through symmetry and have a single degree of freedom.

It is also possible to construct kaleidocycles from polyhedra other than tetrahedra; though

the range of motion may be limited [15] and continuous rotation may not be possible. Isosceles
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(a) Surrogate fold

(b) Complete kaleidocycle

Figure 2.2: Compliant kaleidocycle laser cut from acrylic

tetrahedra, like those present in closed isosceles kaleidocycles, represent the maximum volume

possible for links without interference.

As defined by Engel [19], kaleidocycles can be regular, normal, or special. This chapter

focuses on the stability of n = 6 normal and special, right-angled kaleidocycles where the two op-

posite edges which connect adjacent tetrahedra are pairwise orthogonal. To simplify analysis and

maintain generality, the tetrahedra may be reduced to straight-line links between joints, resulting

in a Bricard 6R with α = 90◦, which is kinematically equivalent to the n = 6 kaleidocycle [20].

Figure 2.1 shows this equivalence. Like its related kaleidocycles, the Bricard 6R rotates contin-
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uously while any particular joint experiences ±120◦ of rotation [14]. Because of this kinematic

equivalence, analysis conducted on the Bricard 6R, such as in [21], can be applied to n = 6 kalei-

docycles. Methods have been developed for kinematic analysis of closed loop structures [22] and

a reconfigurable robot has been recently developed using a closed loop mechanism [23].

The ball-on-the-hill analogy illustrates the different types of equilibrium positions. A ball

at the top of a hill can be in equilibrium if balanced at the peak, but a small disturbance will cause

a large output, thus it is an unstable equilibrium position. A ball resting at the bottom of a valley is

in a stable equilibrium position because it will return to that position after a small disturbance. A

ball on a flat surface is in a neutrally stable position. A hill with a particularly sharp peak makes it

difficult to balance the ball in an unstable equilibrium position, and a valley with sharp sides will

maintain the ball in a specific position.

Sharply stable mechanisms require a relatively large force to perturb the mechanism from

a stable equilibrium position. Sharp stability has potential applications in precision machinery

and safety devices. On the other hand, sharply unstable mechanisms ensure that it is difficult

for the mechanism to balance at an unstable equilibrium. This is important in applications such as

electrical switches where binary operation is required and sparking can occur when the mechanism

balances at an intermediate position. Neutrally stable mechanisms exhibit a region over which any

perturbation of the mechanism will result in the mechanism remaining in the new position [24].

Neutral stability can be advantageous because it allows for smooth motion over a certain range.

Of particular interest in this chapter are the stability characteristics of multistable kaleido-

cycles, including their sharply stable (ball in a sharp valley), sharply unstable (ball on a pointed

hill), and neutrally stable (ball of flat ground) positions. Previous analysis has been performed

on the compliant Sarrus mechanism, another overconstrained mechanism. The analysis showed

the possibility of constructing a multistable compliant Sarrus mechanism with up to four stable

positions [25].

Multistable mechanisms have more than one stable equilibrium position over their range

of motion. Multistability is of particular interest to the engineering community because it re-

duces system complexity, decreases actuation power required, and can improve the performance

of devices [26, 27]. Some traditional mechanisms use detents or latching mechanisms to achieve
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multistability, but compliant mechanisms achieve it through the strain energy in the compliant

members.

2.2 Method

Unlike planar mechanisms, which can be entirely described in two dimensions, the Bricard

6R and kaleidocycle are spatial mechanisms and must be described in three-dimensional space.

However, their motion can be completely described by the angles of rotation experienced at their

joints. The special geometry of the Bricard 6R results in two unique angles; θ is defined as

the input angle and φ as the output angle, as shown in Figure 2.1. Joints represented by θ and

joints represented by φ will be referred to as θ -type and φ -type joints, respectively. The angles θ

and φ are defined by their deviation from the collinearity of adjacent links; therefore, a 0◦ angle

corresponds to collinear links.

The relationship between θ and φ for the Bricard 6R is

secθ + secφ +1 = 0 (2.2)

or

φ =±arccos

(

−
cosθ

cosθ +1

)

(2.3)

Figure 2.3 shows a plot of θ and φ vs. the rotation of the kaleidocycle. This rotation will

be used in all subsequent plots. The kaleidocycle has a period of rotation of 480◦; therefore, 0◦

and 480◦ are equivalent.

The energy storage elements placed at the hinges of kaleidocycles can be modeled as ide-

alized torsional springs. The strain energy stored in a torsional spring at a θ -type joint (Eθ ) is

Eθ =
kθ

2
(θ −θ0)

2
(2.4)

where kθ represents the torsional spring constant, and θ0 represents the angle at which the torsional

spring is unstrained (the potential energy stored is zero). This angle is an important parameter in

the stability characteristics of the mechanism and is not necessarily equal to zero.
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Figure 2.3: θ and φ during one complete revolution

Because all θ -type joints see the same deflection, they can be modeled as springs in parallel.

Therefore, the combined spring constant for all θ -type joints (Kθ ) is equal to the individual spring

constants in each θ -type joint:

Kθ =
n/2

∑
i=1

kθi
(2.5)

where kθi
is the torsional spring constant on joint i. A similar equation for springs at φ -type joints

is

Kφ =
n/2

∑
i=1

kφi
(2.6)

Thus the total strain energy stored in the mechanism is given by

E =
Kθ

2
(θ −θ0)

2 +
Kφ

2
(φ −φ0)

2
(2.7)
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Figure 2.4: Strain energy diagram. θ0 = φ0 = 0, Kφ/Kθ = 1.15

This energy model includes the assumption of linear springs. It also includes the assump-

tion that all springs on θ -type joints are undeflected at the same θ0 and all springs on φ -type joints

are undeflected at the same φ0.

A critical point on the energy curve is defined where dE
dθ = 0. The stability characteristics

of the point depend on the second derivative test. If d2E
dθ 2 > 0, the position is at a stable equilibrium,

if d2E
dθ 2 < 0, the position is at an unstable equilibrium, and if d2E

dθ 2 = 0, the position is neutrally stable.

Recall that from Equation 2.3, φ is a function of θ and, therefore, these derivatives are non-trivial.

Figure 2.4 shows the strain energy diagram for one complete revolution of a kaleidocycle

with θ0 = φ0 = 0 and Kφ/Kθ = 1.15. This mechanism has stable equilibrium positions at 0◦(480◦),

120◦, 240◦, and 360◦. Unstable equilibrium positions exist at 42◦, 198◦, 282◦, and 438◦. This

particular mechanism does not contain any neutrally stable positions.

2.3 Behavior

Numerical methods were used to evaluate the stability characteristics for kaleidocycles. It

was found that kaleidocycles may exhibit one, two, three, or four stable positions, depending on
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the values of θ0 and φ0 and the ratio between Kθ and Kφ . Although the nominal values of the

spring constants affect the overall strain energy in the system, the shape of the energy curve is only

dependent on the ratio between Kθ and Kφ .

Several special cases of kaleidocycle parameters provide consistent stability characteristics.

These cases are presented in Table 2.1. Note that in Cases 5 and 6, switching all θ and φ conditions

results in the same stability characteristics.

Cases 1-4 may be visualized by viewing a contour plot representing the number of stable

positions for the special case where the spring constants are equal to each other (see Figure 2.5).

As can be seen from the plot, quadstability may be achieved when both θ0 and φ0 are near zero,

tristability and bistability may be achieved with a small range of values for θ0 and φ0, and monos-

tability is present with large values for either angle. For a set of parameters that are not included

in the special cases mentioned, a 3D contour plot (Figure 2.6) may be referenced to determine the

number of stable positions in the motion of the kaleidocycle.

For use in describing the sharpness of a stable or unstable position, we define a non-

dimensional stability index ξ is as

ξ =

∣

∣

dE
dθ

∣

∣sgn
(

d2E
dθ 2

)

Emax −Emin
(2.8)

where Emax and Emin are the maximum and minimum strain energy found over the entire cycle,

respectively. The signum function causes a positive stability index for stable equilibrium positions,

a negative index for unstable equilibrium positions, and a zero index for neutrally stable positions.

The greater the magnitude of the stability index, the sharper the instability or stability.

Table 2.1: Special Cases for Kaleidocycle Stability

Case Number Condition 1 Condition 2 Condition 3 Result

1 Kθ = Kφ Kθ ,Kφ = 0 Neutrally Stable

2 Kθ = Kφ |θ0|= |φ0| ≤ 11.56◦ Quadstable

3 Kθ = Kφ 11.57◦ ≤ |θ0|= |φ0| ≤ 32.70◦ Bistable

4 Kθ = Kφ |θ0|= |φ0| ≥ 32.71◦ Monostable

5 Kφ = 0 Kθ > 0 |θ0| ≥ 120◦ Monostable

6 Kφ = 0 Kθ > 0 |θ0|< 120◦ Bistable

12



Figure 2.5: Stability contour plot for special case where Kθ = Kφ

Along with the multistability characteristics of the kaleidocycle, another important discov-

ery was the distinct stable and unstable positions possible. For example, with θ0 =−50◦, φ0 = 0◦,

and Kθ/Kφ = 1/5, sharply stable positions are obtained at 0◦(480◦) and 240◦ (see Figure 2.7). The

stability index of this position ξ = 1.26. With θ0 = 0, φ0 = 0, and Kθ/Kφ = 5/1, sharply unstable

equilibrium positions are obtained at 0◦(480◦) and 240◦ with a ξ =−0.80 (see Figure 2.8).

It is also possible to design a mechanism which experiences a large range of neutral stabil-

ity, requiring small actuation force for motion over that range. For example, with θ0 = 0, φ0 = 60◦,

and Kθ/Kφ = 1/3, the energy diagram (Figure 2.9) shows a statically balanced mechanism where

over a range of 202◦ of θ (42% of the cycle) the potential energy has a variation of less than 1%

from the average potential energy over that range. The maximum stability index over this range is

0.03.
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2.4 Hardware

A prototype multistable kaleidocycle was constructed to validate the results. The prototype

was constructed with flexural joints made of 0.38 mm acetal resin (Delrin®), housing for the joints

3D printed using polylactic acid, and links constructed from 25.4 mm aluminum tubing (see Figure

2.10). The joint housing allowed for values for θ0 and φ0 of 0◦, ±25◦, and ±50◦. Two sizes of

joints were made, allowing a ratio between Kθ and Kφ of 2:5, 1:1, or 5:2. The prototype was

assembled using each possible combination of the three parameters and it behaved as predicted by
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Figure 2.7: Strain energy diagram for sharply stable kaleidocycle. θ0 =−50◦, φ0 = 0◦, Kθ/Kφ =
1/5

the contour plots and the special cases. Kaleidocycles were assembled exhibiting one, two, three,

and four stable positions, as predicted.

2.5 Conclusions

It has been shown that compliant kaleidocycles may be designed with one, two, three, or

four positions of stable equilibrium, depending on the stiffness and neutral position of the revolute

joints. The degree of stability of stable positions may be designed to vary from sharp to neutrally

stable.

Because kaleidocycles represent an exception to the general rule that compliant mecha-

nisms do not allow for continuous rotation, they provide the potential opportunity for compliant

mechanisms to be used in applications which previously were not considered. With the possibility

of continuous revolution and the varied stability characteristics, the kaleidocycle has the potential

to increase the scope for compliant mechanisms in engineering applications. Possible applications
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Figure 2.8: Strain energy diagram for sharply unstable kaleidocycle. θ0 = 0, φ0 = 0, Kθ/Kφ = 5/1

include mechanical detents, mechanical one-way valves, ratchets, and safety features involving

discrete stable positions.
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Figure 2.9: Strain energy diagram for neutrally stable kaleidocycle. θ0 = 0, φ0 = 60◦, Kθ/Kφ = 1/3
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(a) Joint housing

(b) Complete kaleidocycle

Figure 2.10: Kaleidocycle prototype. (a) shows adjustment mechanism for θ0 or φ0. Each half of

the joint may be adjusted by 0◦or ±25◦, resulting in 0◦, ±25◦, or ±50◦adjustment for the entire

joint. (b) shows the complete kaleidocycle
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CHAPTER 3. RIGIDLY FOLDABLE ORIGAMI TWISTS

3.1 Introduction

Rigid foldability is an important characteristic of origami structures that becomes signif-

icant with non-paper materials. A rigidly foldable origami tessellation is one where the sectors

remain rigid and all deflection occurs at the crease lines. Many rigidly foldable patterns have

only one degree of freedom, making them potentially useful for deployable structures. Methods

have been developed to construct rigidly foldable origami tessellations using materials with finite

thickness based on zero-thickness rigidly foldable patterns. [28].

Origami methods have been considered for application in deployable structures such as so-

lar panels [1] [2] and sterile shrouds [3]. Other recent developments have included self-deployable

origami stent grafts [11], self-folding membranes [12], and sandwich panel cores [13]. A better

understanding of how to create rigidly foldable tessellations can lead to previously unexplored

applications.

This chapter develops a method for evaluating the rigid foldability of origami tessellations

by examining relationships between the dihedral angles in the pattern. The method is then used to

determine what configurations allow origami twists, in particular, to be rigidly foldable. Rigidly

foldable twists may be arrayed in a tessellation, providing a foundation for deployable origami-

based structures to be constructed out of rigid materials.

3.2 Rigidly Foldable Origami

We will focus on patterns composed of degree-4 vertices, where a typical vertex is illus-

trated in Figure 3.1. Four creases meet at each vertex; the paper between adjacent creases is a

sector and the angle between adjacent creases is a sector angle, designated α . The angle of the

fold itself is the dihedral angle, denoted by γ , which is the angle between the surface normals
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Figure 3.1: A Degree-4 origami vertex is its (a) unfolded and (b) partially folded states.

of the two incident sectors. A crease may be a mountain fold (γ < 0), a valley fold (γ > 0), or

unfolded (γ = 0). We will indicate valley folds by dashed lines and mountain folds by solid lines.

We index the sector angles αi and dihedral angles γi so that sector αi lies between folds γi and γi+1,

as illustrated in the figure.

3.2.1 Flat Foldability in Degree-4 Vertices

A flat-foldable vertex can be folded so that all dihedral angles are equal to ±π . Likewise, an

origami pattern is considered flat foldable if there exists a configuration where all dihedral angles

in the pattern are equal to ±π . The conditions for flat-foldability are well known (see, e.g., [29]);

for degree-4 vertices, they can be summarized as:

• Opposite sector angles sum to π;

• There exist three folds of one parity and one fold of the other;

• The smallest-angled sector, if unique, is incident to folds of opposite parity (“anto”);

• The largest-angled sector, if unique, is incident to folds of the same parity (“iso”).
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If there exist two equal smallest angled sectors, at least one of these sectors must be anto

and its opposite sector must be iso. We call the two opposite creases with equal parity the major

creases and the other two the minor creases.

These conditions imply a relationship between the sector angles:

α1 +α3 = α2 +α4 = π. (3.1)

These are necessary conditions, not sufficient; an origami pattern composed entirely from

flat foldable vertices may still not be flat-foldable due to self-intersection. However, any origami

tessellation containing one or more non-flat-foldable vertices cannot be flat-foldable.

3.2.2 Fold-Angle Multipliers

We now introduce relationships between dihedral angles in a flat-foldable degree-4 vertex.

Huffman [4], Lang [29], and Tachi [7] derived several relationships (which were equivalent under

trigonometric transformation). We present equivalent, but new, and somewhat simpler expressions

here. A derivation for this relationship is presented in Appendix A.

For the degree-4 vertex of Figure 3.1 where γ2 and γ4 are the major creases and γ1 and γ3 are

the minor creases, in all configurations between the unfolded and fully folded states, the following

relationships apply:

γ3 =−γ1, γ2 = γ4 = 2arctan

(

sin
(

1
2
(α1 +α2)

)

sin
(

1
2
(α1 −α2)

) tan

(

1

2
γ1

)

)

(3.2)

or equivalently,

tan
(

1
2
γ2

)

tan
(

1
2
γ1

) =
tan
(

1
2
γ4

)

tan
(

1
2
γ1

) =
sin
(

1
2
(α1 +α2)

)

sin
(

1
2
(α1 −α2)

) (3.3)

The ratio between the half-angle tangents of any two dihedral angles in a flat-foldable

degree-4 vertex is a constant that depends solely on the (fixed) values of the sector angles. We call

this ratio the “fold-angle multiplier”, µ:

µ ≡
sin
(

1
2
(α1 +α2)

)

sin
(

1
2
(α1 −α2)

) =
tan
(

1
2
γ2

)

tan
(

1
2
γ1

) =
tan
(

1
2
γ4

)

tan
(

1
2
γ1

) (3.4)
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We further define µi to be the ratio between the half-angle tangents of the dihedral angles

adjacent to the ith sector, i.e., µi ≡ tan(1
2
γi+1)/tan(1

2
γi). Then

µ1 =−µ3 = µ, µ2 =−µ4 =−
1

µ
(3.5)

There is a special case to note: when the major crease fold lines are collinear (α2+α3 = π),

zero and infinite fold-angle multipliers are obtained. This occurs because the major crease lines

must be completely folded before the minor crease lines begin folding.

3.2.3 Rigidly Foldable Polygons

The fold angle multipliers {µi} capture the relationship between consecutive folds around

a vertex. They can therefore be used to evaluate the rigid foldability of arrays of vertices. For an

origami tessellation to be rigidly foldable, each vertex and each closed polygon in the tessellation

must be rigidly foldable. (Again, there are longer-range self-intersection issues that must be con-

sidered for global rigid foldability, which we are intentionally not addressing.) For an n-degree

polygon with interior angles 1 through n the fold angle multipliers (µi) associated with the crease

pairs at each vertex define a loop condition that enforces consistency around the polygon, namely

n

∏
i=1

µi = 1 (3.6)

Figure 3.2 shows the sector angles and fold-angle multipliers for a rigidly foldable triangle.

Each vertex is rigidly foldable in isolation; since the product of the fold angle multipliers around

the interior polygon is 1 (−0.246× 5.671×−0.718 = 1), the entire pattern is similarly rigidly

foldable.

3.3 Rigid Foldability of Origami Twists

The origami twist is a building block of many origami patterns that have application to

deployable structures. It consists of a central polygon plus parallel pairs of creases extended from

each side of the central polygon, as shown in Figure 3.3(a). The angle between each parallel pair
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Figure 3.2: Rigidly foldable triangle. (a) Sector angles shown. (b) Fold angle multipliers for each

consecutive pair of creases.
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Figure 3.3: (a) A rigidly foldable square twist with twist angle θ . Arrows point from the minor to

the major crease lines. (b) A Type-A vertex. (c) A Type-B vertex.

and its adjacent side is the twist angle; in a flat-foldable origami twist, all vertices have the same

twist angle.

We will classify twist vertices as one of two types. If conventional numbering is used and

the first sector lies counterclockwise from a minor crease, a vertex is of Type-A if the sector which

includes the central polygon is evenly numbered (see Figure 3.3(b)). Conversely, if this sector

is oddly numbered, the vertex is of Type-B (see Figure 3.3(c)). Another method of differentiating

vertex types is shown in Figure 3.3(a). If an arrow is drawn from minor crease lines to major crease

lines at each vertex, a Type-A vertex will have a clockwise arrow in the central polygon while a
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Type-B vertex will have a counterclockwise arrow. A twist polygon can be characterized by the

sequence of its vertices; the square twist of Figure 3.3(a) is AABB.

Note that zero and infinite multipliers can occur if the twist angle is equal to the interior

angle of a Type-B vertex or if the twist angle is equal to the complement of the interior angle of a

Type-A vertex.

For a Type-A vertex of a twist with interior angle α = α2 and twist angle θ = α1, we can

evaluate the fold-angle multiplier (µA) for that vertex:

µA =−
sin
(

1
2
(θ −α)

)

sin
(

1
2
(θ +α)

) =
sin
(

1
2
(α −θ)

)

sin
(

1
2
(α +θ)

) . (3.7)

For a Type-B vertex with interior angle α = α1 and twist angle θ = α4, we have

µB =
sin
(

1
2
(α +π −θ)

)

sin
(

1
2
(α −π +θ)

) =−
cos
(

1
2
(α −θ)

)

cos
(

1
2
(α +θ)

) . (3.8)

With the constraints 0 < α < 180◦ and 0 < θ < 180◦, it follows that

|µA|< 1 < |µB|. (3.9)

This gives us the following result.

Theorem 3.3.1 (No Rigidly Foldable Vertex-Uniform Twists) No origami twist with degree-4

vertices having all Type-A or all Type-B vertices is rigidly foldable.

The proof follows directly from Equations 3.9 and 3.6.

3.4 Triangle Twists

We now consider triangular twists. In this section we will prove the following:

Theorem 3.4.1 (No Rigidly Foldable Triangle Twist) No origami triangle twist is rigidly fold-

able.
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α β

θ

(a) AAB

α β

θ

(b) ABB

Figure 3.4: Two flat-foldable triangle twist configurations. The α and β vertices in (a) are both

Type-A while the third is Type-B. The α vertex in (b) is Type-A while the other two are Type-B.

To prove this theorem we will consider the two basic configurations with potential to be

rigidly foldable for a triangle twist. These two configurations are ABA and ABB (cyclic permuta-

tions are equivalent).

For the ABA configuration (see Figure 3.4(a)), substituting Equations (3.7) and (3.8) into

Equation (3.6) results in the condition

sin
(

α−θ
2

)

sin
(

β−θ
2

)

cos
(

α+β+θ
2

)

sin
(

α+θ
2

)

sin
(

β+θ
2

)

cos
(

α+β−θ
2

) = 1. (3.10)

This equation is satisfied only if θ = π or α+β = 2π . In the first case the angle opposite of

the twist angle becomes zero and in the second case the triangle violates geometric compatibility.

Therefore, there is no rigidly foldable ABA triangle twist.

For the ABB configuration (see Figure 3.4(b)), Equation (3.6) results in

sin
(

α−θ
2

)

cos
(

θ−β
2

)

cos
(

α+β+θ
2

)

sin
(

α+θ
2

)

cos
(

β+θ
2

)

cos
(

α+β−θ
2

) = 1 (3.11)

This equation is satisfied only if θ = 0 or α + β = π . In the first case the twist angle

becomes zero and in the second case the third interior angle becomes zero. Therefore, there is no

rigidly foldable ABB triangle twist. Because all other triangle twists with two Type-A and one

Type-B or two Type-B and one Type-A vertices may be obtained by rotating the AAB or ABB
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twists, we conclude that no triangle twist is rigidly foldable. Because our definition of an origami

twist requires parallel pleats, Theorem 3.4.1 does not eliminate the possibility of rigidly foldable

triangles with non-parallel pleats.

3.5 Quadrilateral Twists

For simplification, quadrilateral twists have been divided into several standard types of

quadrilaterals. These are discussed below.

3.5.1 Rectangle and Square Twists

Since side length does not factor into the fold-angle multipliers, square and rectangular

twists have the same conditions for rigid foldability.

Theorem 3.5.1 (Rectangle and Square Twists) A square or rectangular twist is rigidly foldable

if and only if it contains two Type-A and two Type-B vertices, with a twist angle not equal to 90◦.

The proof is as follows. For a rectangular twist, α = 90◦. Therefore, Equations (3.7) and

(3.8) simplify to give the following result:

µA = cot

(

π

4
+

θ

2

)

(3.12)

µB =− tan

(

π

4
+

θ

2

)

(3.13)

As can be seen from Equations (3.12) and (3.13), the fold angle multipliers for Type-A and

Type-B vertices in such a twist are negative reciprocals of one another. Therefore, any rectangular

twist with two Type-A and two Type-B vertices will satisfy Equation (3.6) and is rigidly foldable.

The only exception is when θ = 90◦, where multipliers become infinite. Conversely, those with

unequal numbers of Type-A and Type-B vertices cannot satisfy Equation (3.6) and are not rigidly

foldable. Figure 3.5 shows all of the possibilities (to within cyclic permutation and/or global parity

reversal).
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(a) BABA

θ

(b) BBAA

θ

(c) BBBB

θ

(d) AAAA

Figure 3.5: Flat foldable rectangular twists. (a) and (b) are rigidly foldable while (c) and (d) are

not. The vertex label for each twist starts at the lower left vertex and runs counterclockwise.

3.5.2 Parallelogram, Rhombus, and Isosceles Trapezoid Twists

All three of these types of polygons contain two sets of supplementary interior angles,

although the order in which these angles are arranged differs. Since this order does not affect rigid

foldability, rhombus, parallelogram, and isosceles trapezoid twists have the same conditions for

rigid foldability.

Theorem 3.5.2 (Parallelogram, Rhombus, and Isosceles Trapezoid Twists) A parallelogram, rhom-

bus, or isosceles trapezoid twist is rigidly foldable if and only if it contains two Type-A and two

Type-B vertices, with a twist angle not equal to the interior angle of a Type-A vertex.

To prove this we will define α as the value of one of the interior angles of the polygon.

Of necessity, there are two interior angles with a value of α and two with a value of π −α . The

multipliers for the α-vertices may be calculated using Equations (3.7) and/or (3.8). The multipliers

for the other two vertices are found by substituting into Equations (3.7) and (3.8), resulting in

µA =
cos
(

1
2
(α +θ)

)

cos
(

1
2
(α −θ)

) (3.14)

µB =−
sin
(

1
2
(α +θ)

)

sin
(

1
2
(α −θ)

) (3.15)

The product of any two of these Type-A multipliers and two of these Type-B vertices is

equal to one, satisfying Equation (3.6). Therefore, a parallelogram, rhombus, or isosceles trapezoid

twist is rigidly foldable if it contains two Type-A and two Type-B vertices. The exception is where

the twist angle is equal to the interior angle of a Type-A vertex, where infinite multipliers are
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Figure 3.6: Rigidly foldable parallelogram twist configurations for θ < αmin.
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θ
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θ
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θ

(d) ABAB

Figure 3.7: Rigidly foldable parallelogram twist configurations for αmin < θ < 90◦.

obtained. Conversely, twists with unequal numbers of Type-A and Type-B vertices cannot satisfy

Equation (3.6) and are not rigidly foldable.

Figure 3.6 shows the four rigidly foldable configurations for a parallelogram twist where

the twist angle (θ ) is smaller than any of the interior angles (again allowing for cyclic permutation

and/or global parity reversal). Figure 3.7 shows the four rigidly foldable configurations for the case

where one of the sets of interior angles is less than θ . Figure 3.8 shows the six rigidly foldable

configurations for an isosceles trapezoid for the case where the twist angle is less than any of the

interior angles. Figure 3.9 shows the six rigidly foldable configurations for the case where the twist

angle is greater than one pair of interior angles.

3.5.3 Scalene Trapezoid Twists

Theorem 3.5.3 (Scalene Trapezoid Twists) A scalene trapezoid twist is rigidly foldable if and

only if the pairs of supplementary interior angles each include a Type-A and a Type-B vertex and

the twist angle is not equal to the interior angle of a Type-A vertex.
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Figure 3.8: Rigidly foldable isosceles trapezoidal twist configurations for θ < αmin.

θ

(a) BABA

θ

(b) BBAA

θ

(c) BAAB

θ

(d) ABAB

θ

(e) AABB

θ

(f) ABBA

Figure 3.9: Rigidly foldable isosceles trapezoidal twist configurations for αmin < θ < 90◦.

The proof is as follows. If α1 and α2 are two non-supplementary interior angles, then of

necessity the other two interior angles must be the supplements to α1 and α2. As can be seen from

Equations (3.7), (3.8), (3.14), and (3.15), the product of the multipliers for two supplementary-

angled vertices of opposite type is -1. Therefore, the product of two such sets is equal to 1,

satisfying Equation (3.6). Therefore, a scalene trapezoidal twist is rigidly foldable if the two

sets of supplementary interior angles each have a Type-A and a Type-B vertex. Table 3.1 shows

the possible vertex configurations for a rigidly foldable scalene trapezoid twist where Vertex 1 and

Vertex 2 contain supplementary interior angles, as do Vertex 3 and Vertex 4. The exception is if

the twist angle is equal to the interior angle of a Type-A vertex, in which case infinite multipliers

are obtained.

Theorem 3.3.1 rules out the possibility of a twist with all vertices of the same type. Any

scalene trapezoid twist with 3 vertices of one type must include a set of supplementary vertices

of opposite type. Since the product of the multipliers for such vertices is equal to -1, the product

of the multipliers of the other two vertices must also be -1 for it to be rigidly foldable. This

dismisses the possibility of a scalene trapezoid twist with three vertices of the same type. The

only remaining possibility is that one set of supplementary vertices of one type, and the other set
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is of the opposite type. However, this configuration is only rigidly foldable if α1 = α2, resulting in

an isosceles trapezoid or a parallelogram. Therefore, no conditions other than those stated in the

previous paragraph result in a rigidly foldable scalene trapezoid twist.

3.5.4 Kite Twists

The previous discussions apply for kites that are squares, rectangles, parallelograms, rhom-

buses, or trapezoids and the rigidly foldable configurations having two Type-A and two Type-B

vertices. However, unlike the parallelogram, rectangle, or trapezoid twists, a kite twist can be

rigidly foldable with three vertices of one type and one vertex of the other type.

We will call α and β the two unique interior angles of a kite and θ the twist angle. For

any combination of α and β where α 6= β and α +β 6= π there exists a unique θ which results in

a rigidly foldable kite twist for each of the six configurations with 3 vertices of one type and 1 of

the other. The type labeling in this section labels the α vertex first and the β vertex third, with the

other two vertices second and fourth.

For the configuration with Type-A α and β vertices and one other vertex of each type

(AAAB/ABAA), a kite twist is rigidly foldable if

cos(θ) =
sin(α +β )

sin(α)+ sin(β )
(3.16)

For the configuration with Type-B α and β vertices and one other vertex of each type

(BABB/BBBA), a kite twist is rigidly foldable if

cos(θ) =−
sin(α +β )

sin(α)+ sin(β )
(3.17)

Table 3.1: Rigidly Foldable Scalene Trapezoid Twist Vertex Types

Case Vertex 1 Vertex 2 Vertex 3 Vertex 4

1 B A B A

2 B A A B

3 A B B A

4 A B A B
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For the configuration with Type-A α vertex, Type-B β vertex, and two other Type-A ver-

tices (AABA), a kite twist is rigidly foldable if

cos2

(

θ

2

)

=
4cos

(

α
2

)

sin
(

β
2

)

sin2
(

α+β
4

)

sin(α)− sin(β )+2sin
(

α+β
2

) (3.18)

For the configuration with Type-A α vertex, Type-B β vertex, and two other Type-B ver-

tices (ABBB), a kite twist is rigidly foldable if

cos2

(

θ

2

)

=
4cos

(

α
2

)

sin
(

β
2

)

cos2
(

α+β
4

)

sin(β )− sin(α)+2sin
(

α+β
2

) (3.19)

For the configuration with Type-B α vertex, Type-A β vertex, and two other Type-A ver-

tices (BAAA), a kite twist is rigidly foldable if

cos2

(

θ

2

)

=
4sin

(

α
2

)

cos
(

β
2

)

sin2
(

α+β
4

)

sin(β )− sin(α)+2sin
(

α+β
2

) (3.20)

For the configuration with Type-B α vertex, Type-A β vertex, and two other Type-B ver-

tices (BBAB), a kite twist is rigidly foldable if

cos2

(

θ

2

)

=
4sin

(

α
2

)

cos
(

β
2

)

cos2
(

α+β
4

)

sin(α)− sin(β )+2sin
(

α+β
2

) (3.21)

Figure 3.10 shows the twists which result from the integer angle solutions to Equations

(3.16) to (3.21).

3.6 Regular Polygon Twists

For an n-sided regular polygon, we define the interior angle at each vertex as α , where

α = π −
2π

n
(3.22)
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(d) BABB
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(e) AABA/BBAB

165°

105°

(f) ABBB/BAAA

Figure 3.10: Rigidly Foldable Kite Twists with Integer Angles. The α vertex is shown on the

bottom in these figures (α = 15◦ in (a)) and the β vertex is shown on top (β = 105◦ in (a)). The

alphabetical labeling lists the α vertex first and then moves clockwise around the central polygon.

Note that cases (e) and (f) may be rotated and/or mirrored to obtain any of the four configurations

listed.

If an n-degree regular polygon twist has a Type-A vertices and b Type-B vertices, then from

Equation (3.6)

µa
A ×µb

B = 1 (3.23)

where of necessity

a+b = n (3.24)

Substituting Equations (3.7) and (3.8) into Equation (3.23) and simplifying gives
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(

sin
(

1
2
(α −θ)

)

sin
(

1
2
(α +θ)

)

)a(

−cos
(

1
2
(α −θ)

)

cos
(

1
2
(α +θ)

)

)b

= 1 (3.25)

Substituting Equation (3.22) into Equation (3.25) yields

(

cos
(

π
n
+ θ

2

)

cos
(

π
n
− θ

2

)

)a(

−
sin
(

π
n
+ θ

2

)

sin
(

π
n
− θ

2

)

)b

= 1 (3.26)

This results in the following theorem:

Theorem 3.6.1 (Rigidly Foldable Regular Polygon Twists) A regular, n-degree polygon twist with

a Type-A vertices, b Type-B vertices, and twist angle θ is rigidly foldable if and only if Equation

(3.26) is satisfied.

From Equations (3.9) and (3.23) it can be seen that there exist no rigidly foldable regular polygon

twists where all vertices are of the same type. However, for each unique a, b and n, with 0 < a < n

and n > 4, there exists one unique twist angle which satisfies Equation (3.26). This gives us the

following result for regular polygon twists:

Theorem 3.6.2 (Rigidly Foldable Regular Polygon Twist Angles) For an n-degree regular poly-

gon twist with n > 4, there exist n−1 unique twist angles which result in a rigidly foldable twist.

Table 3.2 shows the twist angles which result in a rigidly foldable twist for regular pen-

tagon, hexagon, heptagon, and octagon twists. For any even polygon twist, a 90◦ twist angle is

rigidly foldable with a = n/2 and b = n/2. It can be seen that the twist angles larger than 90◦

are complementary to the twist angles for the opposite configuration. For n > 4 rigidly foldable

regular polygon twists, all interior folds must have the same parity because the interior angle is the

largest angle at each vertex. For a square twist with a = b = 2, Equation (3.26) is true for any value

of θ other than 90◦, where it becomes undefined.

3.7 Conclusions

We described a method for evaluating the rigid foldability of origami tessellations. We

then applied this method to origami twists to discover what parameters allow an origami twist
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to be rigidly foldable. It was shown that there is no possible configuration for a rigidly foldable

triangle twist. It was also shown that many possible rigidly foldable quadrilateral twists exist.

Finally, a method for determining twist angles for a rigidly foldable regular polygon twist was

presented. This method was used to calculate all possible twist angles for rigidly foldable regular

polygons of degree eight or less.
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Table 3.2: Twist Angles for Rigidly Foldable Regular Polygon Twists

Degree Type-A Type-B Twist Angle Inner Angle

n a b θ (◦) β (◦)

4 2 2 6= 90.0 90.0

5 1 4 107.1 108.0

5 2 3 96.8 108.0

5 3 2 83.2 108.0

5 4 1 72.9 108.0

6 1 5 117.4 120.0

6 2 4 104.5 120.0

6 3 3 90.0 120.0

6 4 2 75.5 120.0

6 5 1 62.6 120.0

7 1 6 124.1 128.6

7 2 5 110.7 128.6

7 3 4 96.8 128.6

7 4 3 83.2 128.6

7 5 2 69.3 128.6

7 6 1 55.9 128.6

8 1 7 129.6 135.0

8 2 6 115.9 135.0

8 3 5 102.7 135.0

8 4 4 90.0 135.0

8 5 3 77.3 135.0

8 6 2 64.1 135.0

8 7 1 50.4 135.0
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CHAPTER 4. RIGIDLY FOLDABLE ORIGAMI GADGETS AND TESSELLATIONS

4.1 Introduction

Rigid foldability is an important characteristic of origami structures. An origami tessel-

lation is rigidly foldable if all sectors remain rigid and deflection only occurs at the crease lines.

Because many materials used in engineering are much stiffer than paper, non-rigidly foldable tes-

sellations (those that require deflection of the paper sectors) may have restricted movement when

constructed out of these rigid materials. However, rigidly foldable tessellations may be constructed

using stiff materials, leading to potential applications such as architecture and deployable arrays.

The study of origami has inspired engineering applications in recent years, including de-

ployable structures such as solar panels [1] [2] and sterile shrouds [3], as well as sandwich panel

cores [13], self-folding membranes [12], a self-deployable origami stent graft [11], and tunable

metamaterials [30]. Origami techniques have also been used in packaging [31] and an origami-

folding robot has been developed [32]. Origami is also of interest to the architectural community

and has been used as inspiration in the design of a timber constructed chapel in Switzerland [33].

Origami research has focused on several related areas. Hull developed theorems which gov-

ern flat-foldable origami patterns [34] and evaluated the possible crease assignments which result

in flat-foldable origami [29]. Schenk and Guest described the kinematics of two folded metama-

terials based on the Miura-ori fold pattern [35]. Wei et al. characterised the elastic response of a

simple periodically folded Miura-ori structure [36]. Demaine et al. showed that adding additional

creases to an origami model can allow the model to be mathematically folded [37].

Research on rigidly foldable origami has addressed the issue in several different ways.

Huffman derived basic relationships between the various dihedral angles in a rigidly foldable

degree-4 polyhedral vertex using spherical trigonometry [4]. Wu used quaternions and dual quater-

nions to model rigid origami [5], resulting in a system of six nonlinear equations where constrained

nonlinear optimisation was used to converge to a solution. Tachi developed conditions for partially
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folded quadrilateral surfaces [6]. These methods resulted in systems of nonlinear equations, re-

quiring optimisation techniques to converge to solutions. Tachi also developed equations which

compare the dihedral angles of quadrilateral mesh origami [7].

A method for analysing the rigid foldability of origami patterns composed entirely from

flat-foldable, degree-4 vertices has been developed previously by the authors [38]. While math-

ematically equivalent to Tachi’s matrix formalism [6, 7], it has a simple geometric interpretation

that facilitates evaluation of rigid foldability, in many cases, by inspection alone. In this chapter,

we use this method to evaluate previously existing tessellations for rigid foldability. These tessel-

lations are characterised and a comparison of these tessellations is presented. We develop several

new origami gadgets, which are tools in the modification and creation of rigidly foldable tessel-

lations. These gadgets are used in two different ways. First, they are used to replace portions of

existing rigidly foldable tessellations to create slightly modified tessellations. Second, the gadgets

are tessellated to make new rigidly foldable patterns.

4.2 Rigidly Foldable Origami

An origami pattern is said to be rigidly foldable if all panels remain rigid while all deflection

occurs at the crease lines during deployment. We previously presented a method for determining if

an origami pattern composed of degree-4 vertices is rigidly foldable [38]. Because of its relevance

to this work, the method is briefly reviewed here.

In this chapter, we focus on patterns composed of degree-4 vertices. As is illustrated in

Figure 4.1, a degree-4 vertex is formed by the junction of four creases. The paper between adjacent

creases is called a sector and the angle between adjacent creases is called a sector angle, designated

α . The angle of the fold itself is the dihedral angle or fold angle, denoted by γ , which is the angle

between the surface normals of the two incident sectors. A crease may be a valley fold (γ > 0),

a mountain fold (γ < 0), or unfolded (γ = 0). We will indicate mountain folds by solid lines and

valley folds by dashed lines. We index the sector angles αi and dihedral angles γi so that sector αi

lies between folds γi and γi+1, as illustrated in Figure 4.1.
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Figure 4.1: A Degree-4 origami vertex in its (a) unfolded and (b) partially folded states.

4.2.1 Flat-Foldability in Degree-4 Vertices

A flat-foldable vertex begins in an initial flat position and can be folded to achieve a sec-

ondary flat position. All dihedral angles are equal to ±π in the secondary flat position of a degree-4

vertex. Likewise, an origami pattern composed entirely of degree-4 vertices is considered flat fold-

able if there exists a configuration where all dihedral angles in the pattern are equal to ±π . The

conditions for flat-foldability are well known (see, e.g., [29]); for degree-4 vertices, they are as

follows:

• There exist three folds of one parity and one fold of the other;

• The smallest-angled sector, if unique, is incident to folds of opposite parity (“anto”);

• The largest-angled sector, if unique, is incident to folds of the same parity (“iso”).

• Opposite sector angles sum to π;

If there exist two equally valued smallest angled sectors, at least one of these sectors must

be anto and its opposite sector must be iso. We call the two opposite creases with opposite parity

the minor creases and the two opposite creases with equal parity the major creases.
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These conditions give us the following relationship between sector angles in a degree-4

vertex [34]:

α1 +α3 = α2 +α4 = π. (4.1)

These are necessary conditions, not sufficient; an origami pattern composed entirely from

flat-foldable vertices may self-intersect before the final flat state. Such a pattern is considered

non-flat-foldable. Also, any origami tessellation containing one or more non-flat-foldable vertices

cannot be flat-foldable.

4.2.2 Fold-Angle Multipliers

We will use fold-angle multipliers to evaluate tessellations. Fold-angle multipliers, as de-

fined in [38], define the ratio between the half-angle tangents of adjacent dihedral angles in an

origami vertex. This ratio is constant in any flat-foldable degree-4 origami vertex throughout the

entire motion of the vertex [6]. The fold-angle multiplier, µi, for the ith sector is defined as follows:

µi ≡
tan
(

1
2
γi+1

)

tan
(

1
2
γi

) (4.2)

The multipliers for each sector in a vertex may be evaluated as follows:

µ1 ≡
tan
(

1
2
γ2

)

tan
(

1
2
γ1

) =
sin
(

1
2
(α1 +α2)

)

sin
(

1
2
(α1 −α2)

) (4.3)

µ2 ≡
tan
(

1
2
γ3

)

tan
(

1
2
γ2

) =−
1

µ1
=−

cos
(

1
2
(α2 +α3)

)

cos
(

1
2
(α2 −α3)

) (4.4)

µ3 ≡
tan
(

1
2
γ4

)

tan
(

1
2
γ3

) =−µ1 =
sin
(

1
2
(α3 +α4)

)

sin
(

1
2
(α3 −α4)

) (4.5)

µ4 ≡
tan
(

1
2
γ1

)

tan
(

1
2
γ4

) =
1

µ1
=−

cos
(

1
2
(α4 +α1)

)

cos
(

1
2
(α4 −α1)

) (4.6)

There is a special case to note: when the major crease fold lines are collinear (α2+α3 = π),

zero and infinite fold-angle multipliers are obtained. This occurs because the major crease lines

must be completely folded before the minor crease lines begin folding. Because such vertices have

more than one degree of freedom, they are not considered in this chapter.
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4.2.3 Rigidly Foldable Polygons

A polygon in an origami tessellation is rigidly foldable only if the product of all fold-angle

multipliers in the polygon is equal to one [38]. Therefore, an n-degree polygon with interior angles

1 through n is rigidly foldable if the following equation is satisfied:

n

∏
i=1

µi = 1 (4.7)

This provides a method for determining if a polygon is rigidly foldable. First, fold-angle

multipliers must be evaluated for each vertex. Then all fold-angle multipliers associated with a

polygon must be multiplied to determine if Equation (4.7) is satisfied.

4.2.4 Rigidly Foldable Origami Tessellations

An origami tessellation may contain many polygons. A tessellation can be rigidly foldable

only if each of these polygons is rigidly foldable. However, an origami tessellation containing only

rigidly foldable polygons may only be rigidly foldable over a restricted range because of global

self-intersection (tessellations with inner portions cut out may not be rigidly foldable at all). In this

chapter we first evaluate existing tessellation to identify those that are rigidly foldable. We then

present gadgets that facilitate the creation of rigidly foldable tessellations and show some resulting

tessellations.

4.3 Known Rigidly Foldable Tessellations

There are several origami tessellations which have been known to be rigidly foldable. Fig-

ure 4.2 shows an organisation of rigidly foldable periodic tessellations. This chart does not repre-

sent a chronology of the development of these tessellations but rather a way to see how they are

related. These tessellations are described in the following sections.

4.3.1 Huffman Grid

The first tessellation we consider was presented by David Huffman [4], which we call the

Huffman grid. This basic tessellation involves only a single degree-4 vertex that is rotated and
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Figure 4.2: Rigidly foldable tessellations. New tessellations are shown with a bold outline.

repeated continuously through the tessellation as shown in Figure 4.3(a). Two of the sector angles

are equal to π/2 and the other two are equal α and π−α . The tessellation is locally rigidly foldable

for any α 6= π/2. However, as seen in Figure 4.3(c), this tessellations folds into a cylindrical form

and global self-intersection occurs before it reaches the final flat state.

Equations (4.3 - 4.6) show that opposite dihedral angles in a degree-4 vertex are equal

in magnitude. This characteristic is useful in determining how many unique dihedral angles a

tessellation contains. In this chapter we define all fold angles with equal magnitude to share one

unique dihedral angle. At any position during deployment, this pattern contains fold angles of

only two magnitudes; all fold lines with a positive slope in Figure 4.3(a) have equal fold angle

magnitude, as do all crease lines with a negative slope. As a result, this tessellation contains two

unique dihedral angles.

We will use this tessellation to provide an example for the calculation of fold-angle mul-

tipliers and the evaluation of rigidly foldable polygons. Figure 4.4 shows a single vertex in the

Huffman grid. Figure 4.4(a) shows the sector angles of this vertex and labels the dihedral an-

gles γ1 through γ4. The fold-angle multipliers associated with this vertex may be calculated using
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(a) Fold pattern

(b) Partially folded position (c) Pre-interference position

Figure 4.3: Huffman grid

Equations (4.3 - 4.6). For example, using Equation (4.3)

µ1 =
sin
(

1
2

(

π
3
+ π

2

))

sin
(

1
2

(

π
3
− π

2

)) =−3.73 (4.8)
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Figure 4.4: Single vertex of the Huffman grid. (a) labels the sector angles and (b) gives the fold-

angle multipliers associated with the sectors

The other fold-angle multipliers are then calculated using Equations (4.4 - 4.6). The results

are shown in Figure 4.4(b). For any polygon, this procedure is repeated for all vertices of the

polygon. Because the Huffman grid includes only one unique vertex, further calculations are not

necessary.

Figure 4.5 shows a single polygon of the tessellation with its associated fold-angle mul-

tipliers. This polygon is rigidly foldable because the product of all multipliers in the polygon is

equal to 1. For any tessellation, this process is repeated for all unique enclosed polygons. Because

the Huffman grid contains only one unique polygon, further calculations are not necessary and we

conclude that it is locally rigidly foldable. Note that global rigid foldability is not ensured because

of possible self-intersection.

4.3.2 Chicken Wire Tessellation

The chicken wire tessellation (also known as the hexagonal pattern [39]) is constructed

using a single vertex with mirror symmetry, as shown in Figure 4.6. This tessellation is rigidly

foldable for α < π/2 although it folds into a cylindrical form and global self-intersection occurs

before a second flat position is obtained, as is seen in Figure 4.6(c). This tessellation contains two

unique dihedral angles; all valley creases have the same fold angle, as do all mountain creases.
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Figure 4.5: Single polygon of the Huffman grid. (a) labels the sector angles and (b) gives the

fold-angle multipliers associated with the sectors. This polygon is rigidly foldable because 3.73∗
−0.27∗−3.73∗0.27 = 1.

4.3.3 Barreto’s “Mars”

Paulo Barreto presented a tessellation, “Mars”, which included a single degree-4 vertex

and its inversion [40] as shown in Figure 4.7. The vertex and its inversion are mirrored, rotated,

and repeated continuously through the tessellation. This tessellation includes square twists and

parallelogram twists with configurations proved in [38] to be rigidly foldable. It is rigidly foldable

for α < π/2. The pattern stays in a planar form, as shown in Figures 4.7(b) and 4.7(c), and is able

to reach its final flat state without self-intersection. This tessellation contains two unique dihedral

angles; all vertical moving chains are equal in fold angle magnitude, as are all horizontal chains.

4.3.4 Miura-ori

The Miura-ori is an origami tessellation developed by Koryo Miura [1] that is comprised

entirely from parallelograms. The tessellation is created by patterning a single degree-4 vertex

and its inversion with a constraint of mirror symmetry of the vertex. As such, it is the result of a

combination of the constraints on the chicken wire tessellation and Barreto’s “Mars” tessellation.

This tessellation is rigidly foldable for any α < π/2. Figure 4.8(a) shows the fold pattern for the

Miura-ori. The pattern stays in a planar form as shown in Figures 4.8(b) and 4.8(c) and thus is able
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(a) Fold pattern

(b) Partially folded position (c) Pre-interference position

Figure 4.6: Chicken wire tessellation

to reach its final flat state without self-intersection. The Miura-ori has two unique dihedral angles;

all vertical creases are equal in angle, as are all other creases.

4.3.5 Yoshimura Pattern

Yoshimura developed an origami pattern [41] based on the observed behaviour of thin

cylinders under an axial buckling load. This pattern (also referred to as the diamond pattern [42])
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(a) Fold pattern

(b) Partially folded position (c) Mostly folded position

Figure 4.7: Barreto’s “Mars”

is constructed by repeating a single degree-6 vertex with mirror symmetry. Unlike previously

considered tessellations, this pattern has more than one degree of freedom due to the three degrees

of freedom in the degree-6 vertices. Figure 4.9(a) shows the fold lines for the Yoshimura pattern.

Figures 4.9(b) and 4.9(c) show one of the possible fold paths for this tessellation. Although the

pattern is locally rigidly foldable for α < π/2, except under specific circumstances, global self-

intersection occurs before the second flat state can be reached with this fold path.

As is noted in Figure 4.2, the Yoshimura pattern may be obtained by collapsing the chicken

wire tessellation into degree-6 vertices. Because this tessellation has more than one degree of
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(a) Fold pattern

(b) Partially folded position (c) Mostly folded position

Figure 4.8: Miura-ori

freedom, the number of unique dihedral angles is not constant. However, in the positions shown in

Figure 4.9, there are two unique fold angles; all valley creases have the same fold angle, as do all

mountain creases.

4.3.6 Generalised Quadrilateral Mesh Origami

Tachi analysed quadrilateral mesh origami and presented conditions for rigid foldability

[6]. As the name implies, this origami consists entirely of quadrilateral panels joined by creases

meeting in degree-4 vertices. Quadrilateral mesh origami can also be evaluated using the method

presented in [38], and may be rigidly foldable under the condition that Equations (4.1) and (4.7) are
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Figure 4.9: Yoshimura pattern

satisfied for all vertices and polygons, respectively. Unlike the previously mentioned tessellations,

this mesh does not need to include the repetition of a single, flat-foldable vertex, but may contain

multiple vertices. Figure 4.10 shows one of the many possible rigidly foldable quadrilateral mesh

patterns. Generalised quadrilateral mesh patterns may have any number of unique dihedral angles.

4.3.7 Generalised Miura-ori

By requiring a quadrilateral mesh origami to contain vertices with mirror symmetry, the

generalised Miura-ori is obtained (see Figure 4.11). The generalised Miura-ori differs from the

Miura-ori in that it allows for multiple vertices. It can therefore be thought of as stemming from

both the Miura-ori and the generalised quadrilateral mesh origami, as shown in Figure 4.2. The
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(a) Fold pattern

(b) Partially folded position (c) Mostly folded position

Figure 4.10: Quadrilateral meshed pattern

generalised Miura-ori is globally rigidly foldable for all αi < π/2. The generalised Miura-ori may

have many unique dihedral angles. All vertical creases have the same fold angle while all chains

of intersecting creases have another unique fold angle. (Chains with equal values of α have equal

fold angles.)

4.4 Gadgets

Author Lang defined an origami gadget as a localised section of crease pattern that can

replace an existing patch to add functionality or otherwise modify the pattern [43]. As a gadget

replaces a single vertex or multiple vertices it does not necessarily preserve the rest of the pattern,

but may make manageable changes to surrounding creases. However, any rigidly foldable gadget

49



α
2

α
3

α
1

(a) Fold pattern

(b) Partially folded position (c) Mostly folded position

Figure 4.11: Generalised Miura-ori pattern

which exactly replaces an existing rigidly foldable patch (all boundaries are equivalent) will not

modify the motion of the pattern.

The average polygon degree in a repeatable tessellation containing only degree-4 vertices

must be equal to 4 (see Appendix B). As a result, any tessellation constructed using only degree-4

vertices and featuring polygons of more than fourth degree must also contain triangles. Because

of this, of particular interest are gadgets which include triangles and allow for the use of n > 4

polygons in rigidly foldable tessellations.
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4.4.1 Corner Gadget

A flat-foldable degree-4 vertex may be modified to create a rigidly foldable network of

four degree-4 vertices with four outwardly extending creases in the same location as the original

creases as shown in Figure 4.12. The fold-angle multipliers between these four creases remain the

same as in the original vertex, therefore, the overall motion remains the same. As such, this gadget

follows the conventional definition of a gadget. This gadget is the result if a vertex is depressed

into a second rigidly foldable form. The depression can be repeated as many times as is desired as

shown in Figure 4.13. The value of β changes the size and shape of the depression, but does not

change the fold-angle multipliers between any of the exterior creases. It is required that β > α1.

Replacing a vertex with a corner gadget adds one unique dihedral angle to the tessellation. (The

folds along the boundaries of the quadrilateral in the corner gadget are all of equal fold angle.)

Symmetric Corner Gadget

A special case of the corner gadget is one where the minor crease lines of the original vertex

are collinear. As a result, the gadget created is symmetric about this crease line as seen in Figure

4.14. As with the general corner gadget, the fold-angle multipliers between the exterior creases

remain the same as in the original vertex, regardless of the value of β . As with the original, it is

also required that β > α .

4.4.2 Triple Parallel Gadget

Any flat-foldable degree-4 origami vertex which does not contain two collinear crease lines

and does not contain 90◦ sector angles may be modified to become a network of four vertices

enclosing two isosceles triangles. This network contains six outwardly extending creases, three of

which are parallel to one of the original minor creases and the other three are each coincident to

each of the other three original creases (see Figure 4.15). The fold-angle multipliers between the

three non-parallel creases remain the same as in the original vertex. The two non-adjacent parallel

creases have dihedral angles equal in magnitude but opposite in sign. Replacing a vertex with a

triple parallel gadget adds one unique dihedral angle. The middle parallel crease has a dihedral
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Figure 4.12: Corner gadget. This gadget is rigidly foldable for π
2
< α1 < β < π . The value of β

does not have any effect on the fold-angle multipliers between exterior creases.

angle equal to the original crease while the outer parallel creases are equal in magnitude to each

other.

Labeling the opposite crease as crease number one and numbering counter-clockwise (see

Figure 4.15), the multipliers are as follows:

µ1 ≡
tan
(

1
2
γ2

)

tan
(

1
2
γ1

) =−
cos(1

2
(α −β ))

cos(1
2
(α +β ))

(4.9)

µ2 ≡
tan
(

1
2
γ3

)

tan
(

1
2
γ2

) =−
sin(1

2
(α −β ))

sin(1
2
(α +β ))

(4.10)

52



(a) Fold Pattern (b) Partially-folded state

Figure 4.13: Recursive corner gadget. Note that each successive interior vertex is a rotation of the

previous interior vertex by 180◦

µ3 ≡
tan
(

1
2
γ4

)

tan
(

1
2
γ3

) =−
sin(α +β )

sin(α −β )
(4.11)

µ4 ≡
tan
(

1
2
γ5

)

tan
(

1
2
γ4

) =
sin(α −β )

sin(α +β )
(4.12)

µ5 ≡
tan
(

1
2
γ6

)

tan
(

1
2
γ5

) =
sin(1

2
(α +β ))

sin(1
2
(α −β ))

(4.13)

µ6 ≡
tan
(

1
2
γ1

)

tan
(

1
2
γ6

) =−
cos(1

2
(α +β ))

cos(1
2
(α −β ))

(4.14)

Of particular interest is an arrangement where two of these gadgets are combined in such

a way that the three parallel crease lines from one gadget meet the three parallel crease lines from
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Figure 4.14: Symmetric corner gadget. This gadget is rigidly foldable for π
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< α < β < π . The

value of β does not have any effect on the fold-angle multipliers between exterior creases.
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Figure 4.15: Triple parallel gadget. This gadget is rigidly foldable for 0 < α,β < π/2 and α 6= β .

The original vertex is superimposed with light weight on the gadget in (b).

another. We call this a set of triple parallel gadgets, shown in Figure 4.16(b). To form a set, the

two gadgets must have equal values for α and β . A set of triple parallel gadgets may replace a

combination of two vertices which are mirror-symmetric, as shown in Figure 4.16. A set of these
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Figure 4.16: A set of triple parallel gadgets

gadgets adds a third dihedral angle to the set of vertices (Figure 4.16(a)) where this third angle is

entirely contained in the set of gadgets.

4.4.3 Level Shifters

A level shifter is an origami gadget that has found use in formal origami design, and shows

up often in origami in the form of a “spread sink” [43]. As its name suggests it is used to bring

together two sections of an origami pattern which are at different levels. Level shifters allow for

selective widening of origami patterns [43]. A level shifter in its most basic form is rigidly foldable.

Figure 4.17 shows an asymmetric level shifter. Two independent input angles (α1,α2) fully define

the gadget. The gadget is flat foldable, therefore, all other angles may be calculated by recalling

that opposite sector angles in a vertex sum to π . A chain of level shifters has three unique fold

angles. Two angles intertwine along the direction of the chain and a third angle passes through the

horizontal creases.

Symmetric Level Shifter

A special case of the level shifter gadget occurs when α1 = α2. This creates a symmetric

level shifter and we use α to designate the input angle. The dihedral angles for each of the hor-
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Figure 4.17: Asymmetric level shifter. This gadget is rigidly foldable for 0 < α1,α2 < π
2

and

α1 +α2 6= π
2

. (a) and (b) show the two possible crease assignments. The gadget may also be

mirrored across itself and remain rigidly foldable. All vertices in this gadget are flat foldable

(opposite sector angles sum to π).

izontal crease lines in Figure 4.18(b) are equal. Therefore, this gadget may be useful in creating

large tessellations which do not self-intersect.

4.5 Directly Modified Rigidly Foldable Patterns

In this section we explore modifications that can be made to existing rigidly foldable tes-

sellations. These modification use the gadgets presented previously to directly replace existing

portions of the tessellations.

4.5.1 Miura-ori with Corner Gadget

By replacing the vertices of a Miura-ori tessellation with corner gadgets, the tessellation

shown in Figure 4.19 is created. This tessellation has the same overall motion as the Miura-ori,

however, the dimensions of the tessellation in its final, folded state are changed, as can be seen by

comparing Figures 4.8(c) and 4.19(c). Also, when constructed using hinges with finite stiffness,

this configuration is stiffer than the original Miura-ori.
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Figure 4.18: Symmetric level shifter. This gadget is rigidly foldable for 0 < α < π
2

and α 6= π
4

.

This gadget may be repeated by mirroring itself and repeating as seen in (b).

4.5.2 Baretto’s “Mars” with Corner Gadget

As with the Miura-ori, the “Mars” tessellation may be modified by replacing vertices with

corner gadgets. Such a resulting tessellation is shown in Figure 4.20. This tessellation has the

same motion as the “Mars”, however, like with the modified Miura-ori, the footprint of the final

flat position is changed.

4.6 New Rigidly Foldable Patterns

We present several new rigidly foldable patterns in this section. Many of these patterns

were constructed using the previously mentioned gadgets.

4.6.1 Dual Square Twist Tessellation

A special case of a generalised quadrilateral mesh origami occurs when only two different

vertices are used. These vertices, along with their inversions are used to create the tessellation
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(a) Fold pattern

(b) Partially folded position (c) Mostly folded position

Figure 4.19: Miura-ori pattern with corner gadgets

shown in see Figure 4.21. This tessellation contains many repetitions of square twists with two

twist angles. It is rigidly foldable for 0 < α ≤ β < 90◦. Note that the case where α = β results in

the “Mars” tessellation. This tessellation contains four unique dihedral angles. Every other set of

mostly vertical chains have equal fold angle magnitudes, as do every other set of mostly horizontal

chains.

4.6.2 Alternating Level Shifter Tessellation

This tessellation is created by attaching chains of level shifters in opposite directions. The

chains are arranged so that adjacent chains are in alternate directions and are connected using

hexagons (see Figure 4.22). This tessellation is rigidly foldable for any rigidly foldable level
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(a) Fold pattern

(b) Partially folded position (c) Mostly folded position

Figure 4.20: Barreto’s “Mars” with corner gadgets

shifter. Figure 4.22 shows the simplest form of this tessellation, however, chains of different level

shifters may also be joined together. As is shown in Figure 4.23, these chains will not be parallel.

This tessellation contains two unique fold angles for each uniquely angled level shifter chain and

another unique fold angle for all of the creases between chains.
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Figure 4.21: Dual square twist tessellation

4.6.3 Level Shifter Tessellation

This tessellation is created by attaching chains of level shifters in the same direction. These

chains are attached using pentagons (see Figure 4.24). This tessellation is rigidly foldable for any

rigidly foldable level shifter. As with the previously mentioned tessellation, this tessellation may

also include chains of level shifters with different angles and still be rigidly foldable. However, in

this case, each chain remains parallel while the crease lines separating the chains are no longer par-

allel (see Figure 4.25).This tessellation contains two unique fold angles for each uniquely angled

level shifter chain, another and another unique fold angle for all of the creases between chains.
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(a) Fold pattern

(b) Partially folded position (c) Mostly folded position

Figure 4.22: Alternating level shifter tessellation

Also, each set of collinear folds may have its own unique dihedral angle or it may be equal to

another set, depending on the orientation.

4.6.4 Miura-ori and Level Shifter Combination

Level shifter chains may be combined with Miura-ori patterns to construct new tessellations

such as that shown in Figure 4.26. When this occurs, level shifter chains with mountain folds

separating the triangles act as valley-like folds during the intermediate folding positions as shown

in the centre in Figure 4.26(b). Likewise, level shifter chains with valley folds separating the

triangles act as mountain-like folds during the intermediate positions as shown on the right and left

in Figure 4.26(b). As the pattern approaches the final position, these level shifter chains become
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(a) Fold pattern (b) Partially folded position

Figure 4.23: Non-parallel alternating level shifter tessellation

(a) Fold pattern

(b) Partially folded position (c) Mostly folded position

Figure 4.24: Level shifter tessellation

flat again as shown in Figure 4.26(c). The tessellation shows has four unique fold angles (two that

intertwine on each level shifter chain, one for each collinear chain and a third for all connecting

creases).
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(a) Fold pattern (b) Partially folded position

Figure 4.25: Non-parallel level shifter tessellation

(a) Fold pattern

(b) Partially folded position (c) Mostly folded position

Figure 4.26: Combination of Miura-ori and level shifter patterns

4.6.5 Triple Parallel Tessellation

As with the level shifter gadget, the triple parallel gadget may also be used in many different

combinations with the Miura-ori pattern. Figure 4.27(a) provides one example where alternating

chains of the Miura-ori are replaced with chains of back-to-back level shifters. The gadgets are

arranged so that the three parallel folds from each gadget meet the three parallel folds from another

gadget. This tessellation is rigidly foldable under the same conditions that the gadgets are rigidly

foldable. However, as is shown in Figure 4.27(c), global self-intersection occurs before the final
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α

β

(a) Fold pattern

(b) Partially folded position (c) Mostly folded position

Figure 4.27: Triple parallel tessellation

flat state. This tessellation includes three unique fold angles; the vertical crease chains are of

equal angle, all folds stemming from these chains are of equal angle, and each set of triple parallel

gadgets forms a third fold angle. (This third angle follows the rectangles formed by the set of triple

parallel gadgets.)

4.7 Conclusion

This chapter has identified and categorized existing rigidly foldable origami tessellations.

Using the method of fold-angle multipliers, several origami gadgets have been designed which

may facilitate the modification of creation of rigidly foldable origami tessellations. New rigidly

foldable origami tessellations involving these gadgets have been presented. These tessellations

have final geometries that are more compact in one dimension than their counterparts. Because

rigid foldability can be a critical feature for origami applications in materials other than paper,
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the identification of rigidly foldable tessellations, introduction of rigidly foldable gadgets, and

examples of how to create new tessellations by combining these concepts lays the foundation for

future application.
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CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary

This research focused on two types of origami with potential for applications in the design

of deployable and foldable arrays of spatial mechanisms: the kaleidocycle and rigidly foldable

origami. Chapter 2 analyzed the multistable behavior of compliant kaleidocycles. It was shown

that kaleidocycles may be designed to have up to four positions of stable equilibrium and that these

positions may be tuned to be sharply or neutrally stable.

Chapter 3 presented a new method, fold-angle multipliers, to evaluate rigid foldability.

This method provides a way for determining if an origami pattern is rigid foldable without the

requirement of solving systems of nonlinear equations. This method was used to evaluate origami

twists and define seven theorems which govern the conditions for rigid foldability of these twists.

Chapter 4 used the fold-angle multiplier method to characterize and compare existing

rigidly foldable tessellations and to create new origami “gadgets”. New tessellations were de-

signed by modifying existing tessellations and using gadgets.

5.2 Conclusions

It has been shown that compliant kaleidocycles may be designed with one, two, three, or

four positions of stable equilibrium, depending on the stiffness and orientation of the flexures. The

degree of stability of stable positions may be designed to vary from sharp to neutrally stable. With

the possibility of continuous revolution and multistable behavior, the kaleidocycle has the potential

to increase the scope for compliant mechanisms in engineering applications.

Additionally, a method was described for evaluating the rigid foldability of origami tessel-

lations. This method was applied to origami twists to discover what parameters allow an origami

twist to be rigidly foldable. It was shown that there is no possible configuration for a rigidly fold-
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able triangle twist. It was also shown that many possible rigidly foldable quadrilateral twists exist.

A method for determining twist angles for a rigidly foldable regular polygon twist was presented

and this method was used to calculate all possible twist angles for rigidly foldable regular polygons

of degree eight or less.

Existing rigidly foldable origami tessellations were categorized and compared. Using the

method of fold-angle multipliers, several origami gadgets were designed which may facilitate the

modification of creation of rigidly foldable origami tessellations. Using the newly presented gad-

gets as tools, new rigidly foldable origami tessellations were designed. These tessellations have

final geometries that are more compact in one dimension than their counterparts.

Because rigid foldability can be a critical feature for origami applications in materials other

than paper, the evaluation of origami twists, identification of rigidly foldable tessellations, intro-

duction of rigidly foldable gadgets, and examples of how to create new tessellations by combining

these concepts lays the foundation for future application.

5.3 Recommendations

Although the relative motion of kaleidocycle links can be easily described by two angles,

the 3D motion is much more complex. This complexity makes actuation and application difficult.

For kaleidocycles to have new applications, a better understanding of the 3D motion of the links

would be required.

This work presented an analysis of flat-foldable origami patterns composed of degree-4

vertices. However, non-flat-foldable patterns and vertices of higher degree were not considered.

Because non-flat-foldable origami can achieve motion not possible with flat-foldable origami, anal-

ysis of these types of origami would increase the possibilities of origami-inspired designs.

Real material used in construction are not completely rigid. Although this work only con-

siders rigidly foldable tessellations, it is possible that almost rigidly foldable tessellations may be

used in the design of structures and mechanisms incorporating compliance in the members. A re-

lationship between the product of fold-angle multipliers in a polygon and the strength-to-stiffness

ratio required for the material could be explored.
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APPENDIX A. DERIVATION OF THE RELATIONSHIP BETWEEN DIHEDRAL AN-

GLES IN A DEGREE-4 FLAT-FOLDABLE ORIGAMI VERTEX

We will consider a flat-foldable degree-4 vertex where the first panel (associated with α1)

is grounded in the x-y plane as shown in Figure A.1. The unit vector pointing from the vertex

along the first crease (~a1) is along the x-axis:

~a1 =











1

0

0











(A.1)

The unit vector (~n1) which is normal to the first panel is along the z-axis:

~n1 =











0

0

1











(A.2)

Analysis of this vertex will use the 3D rotation matrix. A rotation matrix R giving a rotation

by θ radians about the axis ~u and using the shorthand notation of cθ ≡ cosθ and sθ ≡ sinθ is

given [44] as

R(θ ,~u)≡











cθ +u2
x(1− cθ) uxuy(1− cθ)−uzsθ uxuz(1− cθ)+uysθ

uxuy(1− cθ)+uzsθ cθ +u2
y(1− cθ) uyuz(1− cθ)−uxsθ

uxuz(1− cθ)−uysθ uyuz(1− cθ)+uxsθ cθ +u2
z (1− cθ)











(A.3)

where ux, uy, and uz are the x-, y-, and z-components of~u, respectively.

This derivation will involve solving a loop closure equation for the vertex by evaluating the

unit vectors for each of the crease lines (~ai) and the unit vectors normal to each sector (~ni).
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Figure A.1: Degree-4 flat-foldable origami vertex with sector angles (αi), dihedral angles (γi) and

unit vectors along each crease (ai)

Using Equation (A.3), the unit vector along the second crease (~a2) may be found by rotating

~a1 about ~n1 by the sector angle α1. Therefore,

~a2 = R(α1, ~n1)~a1 (A.4)

Similarly, the unit vector normal to the second panel (~n2) may be found by rotating ~n1 about

~a2 by the dihedral angle γ2. Therefore,

~n2 = R(γ2, ~a2)~n1 (A.5)

This same method can be used to find ~a3,

~a3 = R(α2, ~n2)~a2 (A.6)

Because of the complexity of these equations, it is simpler to work clockwise around the

vertex from the original position than to continue closing the loop in the counterclockwise direc-
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tion. The unit vector normal to the fourth panel may be found by rotation ~n1 about ~a1 by the

negative of the dihedral angle γ1. Therefore,

~n4 = R(−γ1, ~a1)~n1 (A.7)

Continuing evaluation around the vertex in the clockwise direction, while recalling from

Equation (3.1) that α3 = π = α1 and α4 = π −α2 and from Equation (3.2) that γ3 = −γ1 and

γ2 = γ4,

~a4 = R(−α4, ~n4)~a1 = R(α2 −π, ~n4)~a1 (A.8)

~n3 = R(−γ4, ~a4)~n4 = R(−γ2, ~a4)~n4 (A.9)

~a3 = R(−α3, ~n3)~a4 = R(α1 −π, ~n3)~a4 (A.10)

The loop is then closed be equating Equations (A.6 and A.10). Evaluating Equations (A.4

- A.10) and equating these equations results in the following equality (once again using shorthand

notation):











cα1cα2 − cγ2sα1sα2

cα2sα1 + cα1cγ2sα2

sα2sγ2











=











cα1cα2 − cγ2sα1sα2

cα2cγ1cγ2sα2 + cα1cγ1sα2 + sα1sγ1sγ2

−(cα2cγ2sα1 + cα1sα2)sγ1 + cα2sα1sγ2











(A.11)

Using the symbolic mathematical software Mathematica, the solution to Equation (A.11)

was found to be

sin
(

1
2
(α1 +α2)

)

sin
(

1
2
(α1 −α2)

) =
tan
(

1
2
γ2

)

tan
(

1
2
γ1

) (A.12)
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APPENDIX B. PROOF OF AVERAGE POLYGON SIZE

We will consider a mesh of k polygons with ni as the number of vertices of the ith polygon.

(Such a mesh is shown in black in Figure B.1.) Now we divide each polygon into ni triangles

which have a common vertex at the center of the polygon (shown in green). Let V , E, and F be

the number of vertices, edges, and polygons of the original graph (black). Let d be the degree of

all interior vertices.

Figure B.1: Arbitrary polygon mesh with subdividing triangles

If we sum over all polygons, we can calculate the number of triangles N as follows:

N =
k

∑
i=1

ni (B.1)

Second, we sum over the edges. Each interior edge contributes two triangles while each

boundary edge contributes only one. If there are Eb edges on the boundary, then

N = 2E −Eb (B.2)
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Solving for E yields

E =
1

2
(N +Eb) (B.3)

Third, we sum over vertices. Assume that all interior vertices have degree d and boundary

vertices have degree d j (where j is the index of a boundary vertex). If m is the number of boundary

vertices, then

N = dV −
m

∑
j=1

(

d −d j

)

(B.4)

Solving for V results in

V =
1

d

(

N +
m

∑
j=1

(

d −d j

)

)

(B.5)

According to the Euler characteristic [45],

V −E +F = 2 (B.6)

Solving for F yields

F = 2+E −V (B.7)

Substituting in Equations (B.3) and (B.5) results in

F = 2+
1

2
(N +Eb)−

1

d

(

N +
m

∑
j=1

(

d −d j

)

)

(B.8)

Rearranging,

F = N

(

1

2
−

1

d

)

+
1

2
Eb −

1

d

m

∑
j=1

(

d −d j

)

+2 (B.9)

Now the average polygon degree (navg) may be found:

navg =

F

∑
i=1

ni

F

∑
i=1

1

=
N

F
(B.10)
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Substituting in Equation (B.8) yields

navg =
N

N
(

1
2
− 1

d

)

+ 1
2
Eb −

1
d

m

∑
j=1

(

d −d j

)

+2

(B.11)

Dividing both numerator and denominator by N results in

navg =
1

(

d−2
2d

)

+ 1
N

(

1
2
Eb −

1
d

m

∑
j=1

(

d −d j

)

+2

) (B.12)

As the number of triangles (N) approaches infinity we reach the following:

lim
N→∞

navg =
2d

d −2
(B.13)

Thus for d = 4, navg → 4. Note also that for d = 3, navg → 6 and for d = 6, navg → 3 as

is found in the Diamond Tessellation. This equation is similar to the equation for the value of the

interior angles of a regular polygon. As a result, navg is equal to the degree of the regular polygon

that has interior angles equal to 2π/d. For example, an array of regular hexagons of equal size

contains only degree-3 vertices. Note that these conditions only hold as the number of polygons

approach infinity. Therefore, degree-4 tessellations can be created which do not have an average

polygon size of four if these tessellations do not repeat continuously.
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APPENDIX C. CREASE PATTERNS FOR RIGIDLY FOLDABLE ORIGAMI TESSEL-

LATIONS

Figure C.1: Triple parallel tessellation. This tessellation is constructed using sets of triple parallel

gadgets. Self-intersection generally occurs before the secondary flat position is reached.
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Figure C.2: Barreto’s “Mars” with corner gadgets. This tessellation modifies Barreto’s “Mars” by

replacing vertices with corner gadgets. This replacement does not change the overall motion of the

tessellation and the secondary flat position is obtainable without self-intersection.
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Figure C.3: Miura-ori pattern with corner gadgets. This tessellation modifies the Miura-ori by

replacing vertices with corner gadgets. This replacement does not change the overall motion of the

tessellation and the secondary flat position is obtainable without self-intersection.

79



Figure C.4: Collapsed Miura-ori pattern with corner gadgets. This tessellation is created by elim-

inating creases between corner gadgets in the previous tessellation. As such, pairs of degree-4

vertices are combined to form degree-6 vertices. Even with the presence of degree-6 vertices, this

tessellation has only one degree of freedom and the secondary flat position is obtainable without

self-intersection.
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Figure C.5: Kite twist tessellation. This tessellation is constructed using two types of kite twists.

Self-intersection generally occurs before the secondary flat position is reached.
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Figure C.6: Alternating level shifter tessellation. This tessellation contains parallel chains of

level shifters which alternate in direction. The secondary flat position is obtainable without self-

intersection.
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Figure C.7: Level shifter tessellation. This tessellation contains parallel chains of level shifters sep-

arated by vertical creases. Crease assignments of adjacent chains mirror each other. The secondary

flat position is obtainable without self-intersection.

83



Figure C.8: Trapezoidal tessellation. This tessellation is constructed entirely of trapezoids and the

secondary flat position is obtainable without self-intersection.
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Figure C.9: Modified Yoshimura pattern. This tessellation is constructed by replacing creases on

the Yoshimura pattern with pairs of creases with opposite parity and by replacing vertices with a

rectangle and two isosceles trapezoids. The motion is similar to the Yoshimura pattern and self-

intersection generally occurs before the secondary flat position is reached.
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Figure C.10: Dual square twist tessellation. This tessellation contains square twists of two twist

angles. The secondary flat position is obtainable without self-intersection.
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