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ABSTRACT

The quantum walk is a method for conceptualizing and designing quantum computing

algorithms and it comes in two forms: the continuous-time and discrete-time quantum walk.

The thesis is organized into three parts, each of which looks to develop the concept and

uses of the quantum walk. The first part is the theory of the quantum walk. This includes

definitions and considerations for the various incarnations of the discrete-time quantum walk

and a discussion on the general method for connecting the continuous-time and discrete-time

versions. As a result, it is shown that most versions of the discrete-time quantum walk can be

put into a general form and this can be used to simulate any continuous-time quantum walk.

The second part uses these results for a hypothetical application. The application presented

is a search algorithm that appears to scale in the time for completion independent of the

size of the search space. This behavior is then elaborated upon and shown to have general

qualitative agreement with simulations to within the approximations that are made. The

third part introduces a method of implementation. Given a universal quantum computer,

the method is discussed and shown to simulate an arbitrary discrete-time quantum walk.

Some of the benefits of this method are that half the unitary evolution can be achieved

without the use of any gates and there may be some possibility for error detection. The

three parts combined suggest a possible experiment, given a quantum computing scheme of

sufficient robustness.
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CHAPTER I

INTRODUCTION

The quantum walk is a concept introduced as a method for designing quantum computing

algorithms. It is considered to be an analog of the classical random walk which behaves ac-

cording to the rules of quantum mechanics. Thus, one should be able to create algorithms for

quantum computing analogous to classical algorithms based on the random walk. Though

quantum mechanics has some similarities to the random walk, it is clear the concepts of time

evolution and probability of the walker’s position are dramatically different in the quantum

case. Furthermore, the classical random walk does not have any properties analogous to

superposition and entanglement. These differences are what motivate computer scientists,

mathematicians and physicists to explore the possibility that quantum systems might im-

prove on the current computational efficiency or create behavior that is not possible in the

classical case. This as it may, the focus of this thesis is on a different use of the theory and

understanding of quantum mechanics. Here, the goal is not to use quantum mechanics to

understand the properties or behavior of a preexisting physical system but rather to imag-

ine a hypothetical quantum system which exhibits a desired behavior. This adaptation of

quantum theory is termed quantum engineering [45]. Ever since it was discussed by Richard

Feynman [21, 22] as well as others, the topic has grown to include quantum computing as

a sub-discipline of quantum engineering.

Due to its nature, quantum mechanics is less intuitive than classical dynamic behavior, and

so it is important to have a robust theoretical apparatus available to find and understand
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CHAPTER I INTRODUCTION

the desired behavior. As a first step, I state the rules by which a quantum system must

behave [35, 45]:

1. The state of any quantum system at any given time is completely characterized by a

particular vector of a Hilbert space over the field of complex numbers.

2. For every measurable quantity that characterizes the system, there exists a Hermitian

operator such that the eigenvalues of the operator represent the possible outcomes

of the measurement. The associated orthonormal basis eigenvectors represent the

probability amplitude for measuring the corresponding eigenvalue. By this it is meant

that the probability to measure an eigenvalue is given by the expectation value of

the projection into the space spanned by eigenvectors associated with the particular

eigenvalue.

3. Due to the probability interpretation, the inner product of the state with itself must

always be 1, and thus it is normalized. Furthermore, time evolution of a closed

system between measurements is represented by a group of operators. Because the

total probability of measuring any eigenvalue must remain one, all members of the

group are unitary and every member translates time (discrete or continuous) by some

amount. For my purposes, the group is always generated by a single operator referred

to as the time-translation operator. A consequence of this is that time evolution of

the system between measurements is deterministic and reversible.

4. Upon measurement of any quantity that characterizes a closed system, the state un-

dergoes an irreversible “collapse” to the eigenvector associated with the measurement

outcome. By this it is meant that any subsequent measurement of the same opera-

tor yields the same eigenvalue with probability 1 unless the system interacts with an

outside system, is measured with respects to another operator or allowed to evolve

via the time-translation operator. In the case that the system is allowed to evolve,

2



CHAPTER I INTRODUCTION

the time evolution is given by the time-translation operator acting on the eigenvector

associated with the previously measured eigenvalue.

Though standard principles of quantum mechanics, it is import to reiterate these rules here,

since these are the constraints for the hypothetical engineered systems.

The most important aspect one might exploit is the property of superposition. The vehicle

for classical probability dynamics of the random walk is given by multiplication and addition

of positive, real numbers. For example, the probability of taking a certain path is the

multiplication of the probabilities for each individual step and the total probability is the

sum over all such paths. This behavior is monotonic. Quantum mechanics is dominated by

the superposition of paths weighted by complex amplitudes as shown in Feynman’s path

integral formalism [35]. Thus, paths constructively and destructively interfere, making

the behavior no longer monotonic. However, probability is still conserved, which tends to

make quantum dynamics ballistic rather than diffusive and results in faster redistribution of

probability amplitude. Furthermore, a classical walker must take one definite path for each

member of an ensemble, where as a quantum particle exists in a superposition of position

states and is only found in one particular position after measurement. A quantum algorithm

is designed to take advantage of these properties in order to increase its efficiency. This

is most often characterized in four ways. The first is the time needed for completion of

the algorithm and how this scales with the size of the problem. The size of the problem is

understood as the number of items that are sorted through or searched. Two more ways

of characterizing a quantum or random walk based algorithms are the hitting time and

mixing rate [44]. Roughly speaking, the hitting time is the time it takes for the walker to

go from one position in the graph to another with non-trivial probability. The mixing rate

is the speed at which the probability distribution approaches its limit distribution. Finally,

3



CHAPTER I INTRODUCTION

a metric of physical consequence is the number of hypothetical primitive gates necessary to

implement the algorithm. More on this in Ch. V.

One of the two most well-known and successful quantum algorithms is Shor’s factorization

algorithm. The algorithm purports to finding prime factors of an integer in polynomial

time, which classically take sub-exponential time [39]. The second is the Grover search

algorithm. This algorithm is an example of the use of a quantum oracle. A classical oracle

is any function which marks a given element of a finite set called the search space [44]:

Definition I.1. Let a search space of N objects be numbered so that they are related

bijectively to the set S = {0, 1, 2, . . . , N − 1}. Then the oracle is a function O : S → {0, 1}

such that O(n) = δnm, where m corresponds to the marked element.

Note that this says nothing about how the oracle works internally. A quantum oracle is a

linear operator Ô on a Hilbert space, HN ⊗ H2, where HN and H2 are Hilbert spaces of

dimension N and 2, respectively. Their bases represent the domain and co-domain of the

oracle function. The action of the quantum oracle on an arbitrary element of the basis,

|n〉 |b〉, where n ∈ S and b ∈ {0, 1}, is Ô |n〉 |b〉 = |n〉 |b⊕O(n)〉. The symbol ⊕ is the binary

XOR operation. So if n = m is the marked element, then the co-domain qubit is flipped.

Otherwise, it is left alone. Classically, the search problem can be thought of as repeated

queries to the oracle until the oracle indicates the marked element. Thus, the number

of queries needed to get the correct answer with high probability goes as the number of

elements in the domain, N . Using a quantum oracle, Grover’s search algorithm [23] manages

the analogous result of measuring the marked basis state with high probability and does so

with the number of queries to the quantum oracle going as
√
N . Here is a prime example

of the goal of theoretical quantum algorithm design: construct a Hilbert space and set of

unitary operations so as to achieve a desired measurement outcome with high probability.
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CHAPTER I INTRODUCTION

Since my experience lies in the understanding and manipulation of quantum systems, my

primary focus is on the construction of these hypothetical systems and understanding their

behavior. I am not as concerned with characterizing their use and evaluating their efficiency

as an algorithm for computation, except for when it becomes relevant to motivation. Fur-

thermore, I focus on algorithms which rely on the concepts and methods of the quantum

walk.

I.1 Overview of the Quantum Walk

This section is intended as a cursory overview of the quantum walk (QW). A more thorough

discussion is given in Ch. II. Each QW is associated with a graph, where the vertices

represent the position of a hypothetical walker and the edges represent paths of advancement

from one vertex to another. QWs comes in two broad categories. The first category is the

continuous-time quantum walk (CTQW), which was first introduced by Fahri and Gutmann

[19]. The walk takes place in a Hilbert space spanned by basis vectors associated with the

vertices of the graph, also known as the vertex space. Any CTQW is characterized by a

graph Hamiltonian operator for which the time-translation operator satisfies the Shrödinger

equation. This was inspired by the similarity between the Schrödinger equation and the

continuous-time limit for a Markov process. So the CTQW is essentially the same as

spatially discretized quantum mechanical models such as those given by the tight-binding

approximation.

The other version is the discrete-time quantum walk (DTQW), which is generally considered

to have been introduced first by Aharonov et al. [1]. However, Meyer essentially was using

the concept in his work on quantum cellular automata in Refs. [30, 31]. In these works,

Meyer showed that no homogeneous, local, unitary operator in the vertex space of an

5



CHAPTER I INTRODUCTION

arbitrary-dimensional Euclidean lattice could be constructed with non-trivial dynamics.

That is to say, any such operator satisfying these properties must be a discrete spatial-

translation operator up to global phase. Because a discrete-time version of the paradigm

model could not be realized in the vertex space, the Hilbert space of the DTQW was

expanded, which led to the idea of the coined quantum walk (CQW). In the CQW, the

Hilbert space is spanned by a basis representing both the position of the walker and the

direction of advancement. This extra degree of freedom is referred to as the coin, which

in the case of a regular graph is achieved by the product space of the vertex space with a

coin space of dimension equal to the degree of the graph. Otherwise, each vertex has its

own coin space and the entire space is the union over all coin spaces. The discrete time-

translation operator is the product of two operators: the first is a unitary operator called

the coin operator, which updates the states within each individual coin space, making it

block diagonal in those subspaces. The second operator is the shift operator, which transfers

the probability amplitude from one coin space to adjacent coin spaces in accordance with

the basis states of the coin. The total time evolution is given by integer powers of the

complete time-translation operator. As a concrete example, consider the one-dimensional

lattice or a cycle on N vertices, for which the space of the CQW can be formed as a

product of the vertex space and a two-dimensional space. The former is spanned by the

basis {|i〉 : i ∈ ZN} and the latter by the basis {|↑〉 , |↓〉}. The labeling of the second basis

is inspired by associating the coin with spin as in Refs. [1, 40, 41]. Note for a spatially-

homogeneous walk, a coin operator can be formed by the vertex space identity in direct

product with any two-dimensional unitary matrix. One often used example is the Hadamard

coin operator represented by

ĈH
.
=

1√
2







1 1

1 −1






. (I.1)
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CHAPTER I INTRODUCTION

Note that although this coin operator is common in the literature, it is only a particular

choice. The coin operator is as arbitrary to the CQW as the graph Hamiltonian is to the

CTQW. More on this in Ch. III. The typical shift operator interprets the spin-up state as

advancing forward and the spin-down state as advancing backward, so the shift operator,

S̃1D, can be written as

S̃1D =
∑

i∈Z

(

|i− 1〉〈i| ⊗ |↓〉〈↓|+ |i+ 1〉〈i| ⊗ |↑〉〈↑|
)

. (I.2)

Further exploration of this model will be demonstrated in Sec. III.5, as well as found in

Ref. [44].

Consider that every direction of advance is in one-to-one correspondence with the directed

edges of the graph. That being the case, a more general way to think of the expanded

space is to assert that the DTQW takes place in the edge space, which is spanned by a

basis associated with directed edges of the graph. This is the viewpoint of the scattering

quantum walk (SQW). For the SQW, the time-translation operator is a set of scattering

matrices, one for each vertex, and the time evolution is a series of scattering events between

vertices. For more on SQW, see Ref. [20].

To summarize, the CQW views the walker to be at a vertex advancing by way of the

edges, whereas the SQW views the walker to be at an edge and advancing by scattering

from the vertices. Though these seem to be dual in a sense, they are in fact essentially

equivalent. More specifically, their time-translation operators are equivalent up to a unitary

transformation as argued by Andrade and da Luz [3]. This is also addressed in Sec. II.4.

There are many examples of using QW in the design of a hypothetical algorithm. A large

category involves the search algorithm, which is meant to solve the same problem as the

Grover algorithm. An important example is provided by Shenvi et al. [37], who used a CQW

7



CHAPTER I INTRODUCTION

on the hypercube of N = 2d vertices. This algorithm as well as the hypercube is discussed

in Ch. IV. Other examples include Childs and Goldstone [10], who used a CTQW with a

local perturbation on the marked element, and Magniez et al. [28], who used a DTQW to

search based upon a Markov chain. There are many more examples, far too many to list

here. Another related but slightly different problem is to find two or more equal items in a

list of N items, termed the element distinctness problem. Ambainis [2] used a QW to find

k equal elements in O(N
k

k+1 ) queries. A final example is the triangle problem, which finds

a triangle in an undirected graph or outputs a null result if no triangle is found. Magniez

with Santha and Szegedy [29] used a QW to solve this problem. As a further demonstration

of the power of the QW, it was found that the QW can be used to form a set of quantum

computational primitives by Childs [7] for the CTQW case and Lovett et al. [27] for the

DTQW case.

Aside from their use in computational theory, there are also many examples of implementing

a quantum walk in both optical and material media. For example, Du et.al [18] presented a

method using a nuclear-magnetic-resonance (NMR) quantum computer, Karski et al. [26]

used neutral atoms in a one-dimensional spin-dependent optical lattice, and Penuzzo et

al. [34] managed to obtain the QW of two photons through an array of coupled waveguides

in a SiOxNy chip. There are many other examples, though none seem to be completely

general. However, they do show a proof of concept. For this thesis, I do not address the

physical implementation of a quantum walk. My perspective is to assume a universal gate

set realized hypothetically in some physical system and how that can be used to simulate a

general DTQW. More on this in Ch. V.

8



CHAPTER I INTRODUCTION

I.2 Attempts to Connect the Discrete-time and

Continuous-time Quantum Walk

Due to the enlargement of the state space, there is no obvious DTQW that in some limit

yields the dynamics of a CTQW. Strauch [40, 41] proposed a limit for the standard DTQW

on the one-dimensional lattice, which gave the Dirac equation or, for a different limit of

that parameter, two decoupled versions of the CTQW with a Laplacian graph Hamiltonian.

This was then generalized to any Euclidean lattice. A similar process was adapted by

D’Alessandro and collaborators [12, 13] to any regular graph with a general Hamiltonian.

However, D’Alessandro’s process is for a continuous-time operator in the expanded space–

sometimes called a “coined” continuous-time quantum walk–and it is not clear to me how

this is related to a CTQW in the vertex space. Furthermore, the method is somewhat

obscure in its practical use. In Ref. [15], Dheeraj and Brun proposed a limit process which

applied to a coined CTQW. This method is discussed in Sec. II.6. Childs [8] developed

another method which approximated a CTQW with a DTQW by using a specific type of

coin operator. This coin operator was generated by an isometry particular to the graph

Hamiltonian and was adapted from work done by Szegedy on quantum Markov processes

[42]. In a certain limit, the method reduced to the CTQW for the graph Hamiltonian,

but it did so by enlarging the state space even further and I am unable to see that the

process conserved probability for all times and all values of the limit parameter. Some

aspects of this process are discussed in Ch. III. Other attempts to find limits are presented

by Debbasch and Di Molfetta [14, 16] involving both temporal and spatial limits of the

one- and two-dimensional lattices. Also, it was shown by Chisaki et al. [11] that the limit

distributions for a one-dimensional lattice model similar to that used by Strauch showed

crossover from DTQW to CTQW by using intermediate position measurements for the set

time over which the walk occurred. For more on this, see Ref. [38].

9



CHAPTER I INTRODUCTION

In a paper by myself and Schwalm [36], we discussed a method for connecting any CTQW

to a DTQW which within certain limits had approximately the same probability dynamics.

Furthermore, the time-translation operator was unitary for all values of the limit parameters

and was simple to construct for a given graph Hamiltonian. All of those results are included

and elaborated on in Ch. III.

I.3 Thesis Organization

The organization of the thesis is as follows: Ch. II is a rigorous and detailed description of

both the CTQW and the DTQW as well as some general results for approximating unitary

operators in the edge space by a DTQW. This is followed in Ch. III by a discussion of the

general method for connecting a CTQW to a DTQW as well as the analytic solution to the

model, given the spectral decomposition and some restrictions on the graph Hamiltonian.

This also includes example simulations for the one- and two-dimensional lattices as well as

some comments on how this method relates to some of the previously mentioned results for

connecting the CTQW to the DTQW. In Ch. IV, these ideas are applied to the design of an

algorithm. Specifically, I consider a particular search algorithm for which completion time

does not appear to scale with the size of the search space. Implementation is covered in

Ch. V, where I discuss quantum gates and how a certain universal gate set can be used to

realize a strategy for implementing an arbitrary QW. Finally, Ch. VI makes some summary

conclusions and remarks.

10



CHAPTER II

DESCRIPTION OF THE QUANTUM

WALK

II.1 Structure and Spaces

Many of the conventions presented here are adapted from Refs. [3, 7, 12, 19, 20, 44]. Let a

graph be given by G = (V, E), where V is the vertex set and E is the edge set of the graph.

V is the set of all vertices and E is a subset of V × V such that every member represents a

directed edge going from the first vertex of the 2-tuple to the second. Vertices are denoted

by lowercase letters i, j, k and so on.

Definition II.1. @ is defined as the relation between members of V such that for all

i, j ∈ V, i@j if and only if (i, j) ∈ E . i@j is read “i is adjacent to j.”

The first vertex in the 2-tuple is the tail of the edge and the second vertex in the 2-tuple

is the head of the edge. As a convention, sums involving adjacency are written in the form

∑

j@i, which is understood as the sum over all j such that it is adjacent to the fixed i.

Consider two Hilbert spaces, HV and HE , called the vertex space and edge space, respec-

tively. The vertex space is spanned by an orthonormal basis {|i〉 : i ∈ V}. This basis is

interpreted as the eigenbasis of the operator associated with measurement of the walker’s

vertex position. The edge space is spanned by an orthonormal basis {|i, j〉 : (i, j) ∈ E}.
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This basis is interpreted as the eigenbasis of the operator associated with measurement of

the position and direction of advancement (or equivalently, the coin degree of freedom). For

example, I interpret the basis state |i, j〉 as the eigenstate related to the walker being at

j and coming from i. To distinguish between operators acting in the different spaces, any

operator acting in HV is subscripted with 0, and any operator acting in HE is subscripted

with 1. For operators acting between the spaces, no subscript is given to avoid excessive

decoration.

From HE , define a collection of subspaces:

Definition II.2. For each i ∈ V,

Ii = span{|j, i〉 : j ∈ V and (j, i) ∈ E}, and (II.1a)

Oi = span{|i, j〉 : j ∈ V and (i, j) ∈ E}, (II.1b)

where these subspaces are referred to as the incoming space and outgoing space of i, respec-

tively.

The incoming space of i is the collection of all possible vectors (inHE) coming into the vertex

i exclusively, and the outgoing space is the collection of all possible vectors going out of the

vertex i exclusively. These are similar to definitions given by Feldman and Hillary [20]. I

interpret the incoming spaces as the coin spaces as discussed in Ch. I. This interpretation

is made clear in Sec. II.3. Note the collection of all incoming spaces forms a partitioning

of HE . Likewise, the collection of all outgoing spaces forms a different partitioning of HE .

Another important relationship is for all i, j ∈ V, Oi and Ij have a non-empty intersection

if and only if i is adjacent to j. This is stated without proof as it is obvious. For the

purposes of this thesis, the formalism is general enough to include self-loops ((i, i) ∈ E , for

some i ∈ V), but I exclude the possibility of vertices connected by multiple edges. Also, the

12



CHAPTER II DESCRIPTION OF THE QW

Hermitian-ness of the graph Hamiltonian in the CTQW requires the graph be a bigraph,

which is to say the @ relation is symmetric. Because of this, I restrict to bigraphs in all

cases. As a consequence, dim(Ii) = dim(Oi), for all i ∈ V.

II.2 Description of the Continuous-time Quantum Walk

Any CTQW takes place in HV for some graph G. The time evolution of the state is

characterized by a normalized initial state, |φ, t = 0〉, and the time-translation operator,

Û0(t), which satisfies the Schrödinger equation:

i
∂Û0(t)

∂t
= Ĥ0 Û0(t); (II.2a)

U0(t = 0) = Î0, (II.2b)

where t is the continuous time parameter, Î0 is the HV identity, and Ĥ0 is the graph

Hamiltonian for the QW. From quantum mechanics, Ĥ0 is the operator associated with

energy measurement. For a time-independent graph Hamiltonian, the solution to Eq. (II.2a)

is given by

Û0(t) = exp
(

−it Ĥ0

)

. (II.3)

From this equation, one sees that Û0 is unitary if and only if Ĥ0 is Hermitian. Based upon

intuition from quantum mechanics, I also require that Ĥ0 be local :

Definition II.3. An operator Ô0 in HV has the property of being local if and only if for

all i, j ∈ V, i 6= j and (i, j) /∈ E implies 〈i|Ô0|j〉 = 0.

13
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The reason for this requirement in quantum mechanics is causality and the Hamiltonian’s

relation to the time derivative in the Schrödinger equation. In the case of the CTQW, this

requirement is artificial since a designer can always add edges to the graph to make a graph

Hamiltonian local. Still, I maintain this requirement to allow for the connectedness of the

graph to correlate to the dynamics of the system. Expanding the graph Hamiltonian in the

position basis,

Ĥ0 =
∑

i,j∈V
τij |i〉〈j| , (II.4)

where τij is an arbitrary weight related to the amount of probability amplitude transferred

from state |j〉 to state |i〉 in an infinitesimal amount of time. In accordance with the

vocabulary of tight binding, I refer to these coefficients as hopping amplitudes. From the

given constraints on the graph Hamiltonian, i 6= j and (i, j) /∈ E implies τij = 0 to insure

the local property, and τ∗ij = τji to insure Ĥ0 is Hermitian. Even though the hopping

amplitudes are arbitrary up to the above constraints, two of the most common choices

are the adjacency Hamiltonian and the Laplacian Hamiltonian (or just Laplacian). The

adjacency Hamiltonian is given by the hopping amplitudes τij = 1 for i@j and τij = 0

otherwise. Typically such a model does not include self-loops. The Laplacian has the

negative hopping amplitudes of the adjacency Hamiltonian for non-diagonal elements, and

diagonal elements given by τii = deg(i), where deg(i) is the degree or coordination number

of the vertex i. Note for a regular graph, the difference in the dynamics generated by these

two is trivial, since when used in Eq. (II.3), the Laplacian only contributes a global phase

over the adjacency Hamiltonian. This has no effect on the probability interpretation.

The state of the system at any time is given by

|φ, t〉 = Û0(t) |φ, 0〉 , (II.5)
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and according to my interpretation of the position basis, the probability to measure the

walker’s position as i at time t is given by

P 0
i (t) = 〈φ, t|i〉〈i|φ, t〉 = |〈i|φ, t〉|2. (II.6)

So as claimed, the CTQW is the same formalism as standard quantum mechanics for models

with discrete space and continuous time.

II.3 Description of the Discrete-time Quantum Walk

Unlike the CTQW, the conventions used here are not universal in the literature. Where

there is a large departure, I discuss how this formalism compares to other conventions but

this does not cover all of the possible definitions and extensions. The means to extend the

ideas presented here are obvious in some cases, but I do not include them. One example is

the possibility of time-dependent coin operators. After the discussion, it should be clear how

to extend the formalism to include this possibility. However, I consider the topic beyond

the intended scope of this thesis.

Any DTQW takes place in HE for some graph G. Discrete-time evolution is characterized

by a normalized initial state, |ψ, t = 0〉, and the time-translation operator. Like the graph

Hamiltonian in HV , the need for some intuition about the dynamic behavior generated

by the time-translation operator leads me to require it satisfy a locality property with an

analogous definition in HE :

Definition II.4. An operator Ô1 acting in HE is local if and only if for all (i, j), (k, l) ∈ E ,

i 6= k and i 6= l and j 6= k and j 6= l implies 〈i, j|Ô1|k, l〉 = 0.
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This definition of local requires the operator have matrix elements between basis states that

share at least one vertex. As a local operator in HV connects vertices through an edge, a

local operator in HE connects edges through a vertex. The four conditions in Def. II.4 can

be interpreted as saying a local operator only contains incoming-to-incoming, incoming-to-

outgoing, outgoing-to-incoming or outgoing-to-outgoing matrix elements.

To construct a local unitary operator, the DTQW time-translation operator is the product

of two operators. The first operator is the coin operator, Ĉ1, which has the form

Ĉ1 =
⊕

i∈V
Ĉ(i), (II.7)

where Ĉ(i) acts only in the incoming space of i, is unitary in that subspace, but is otherwise

arbitrary. As a result, Ĉ1 is also unitary. For this thesis, the shift operator as discussed

in Ch. I is always the swap operator, Ŝ1. It is defined as a linear operator which for every

basis vector, |i, j〉,

Ŝ1 |i, j〉 = |j, i〉 . (II.8)

Note that Ŝ1 is its own inverse, Hermitian, and thus unitary.

The time-translation operator is given by Û1 = Ŝ1Ĉ1 and the state of the system after t

integer steps is given by

|ψ, t〉 =
(

Û1

)t
|ψ, 0〉 =

(

Ŝ1 Ĉ1

)t
|ψ, 0〉 . (II.9)

To understand the behavior of the time-translation operator, consider Figs. II.1a-II.1c. At

any given time and for some vertex, probability amplitude comes in from adjacent vertices.

The coin operator mixes these incoming states in some prescribed, unitary way. The swap
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operator then takes these updated incoming states to outgoing state, which are incoming

on the adjacent vertices. When put together, one sees that this can be interpreted as a

scattering event as depicted in Fig. II.1d. Ĉ(i) is the scattering matrix for vertex i with the

diagonal elements being the reflection coefficients and the off-diagonal elements transmission

coefficients. Furthermore, it is clear that Û1 is local as it only has incoming-to-outgoing

and possibly outgoing-to-incoming matrix elements.

i

j3

j2 j1

(a) incoming states

i

j3

j2 j1

(b) action of the

coin operator

i

j3

j2 j1

(c) action of the

swap operator

i

j3

j2 j1

(d) scattering view-

point

Figure II.1: Intuitive interpretation for the action of the DTQW time-translation operator
on a single vertex.

Probability can be interpreted many ways in the edge space. The SQW interpretation places

the walker on the edges and so the probability to be on that edge is the sum of the two

probabilities associated with the edge. I take the perspective of the CQW which still puts

the walker on the vertices. Typically, this means one is not concerned with the direction

in which the walker enters the vertex and so one sums over the extra degree of freedom.

According to my interpretation of the basis states, this means the probability for the walker

to be at vertex i is the expectation value of the projection onto the incoming space of i,

P
(i)
1 , which is the same as summing the probabilities over all incoming basis states of i.
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Written out explicitly,

P
(in)
i = 〈ψ, t|P(i)

i |ψ, t〉 =
∑

j@i

|〈j, i|ψ, t〉|2. (II.10)

II.4 Alternative Considerations for the Discrete-time

Quantum Walk

There are other ways to define the time-homogeneous version of the DTQW, but I argue

that they are mostly if not entirely equivalent to some DTQW as described above. I assert

that any two time-translation operators in HE are equivalent if they satisfy the following

definition:

Definition II.5. For all unitary operators V̂1 and Ŵ1 acting inHE , V̂1 and Ŵ1 are equivalent

if and only if there exists a unitary operator T̂1 such that V̂1 = T̂ †
1 Ŵ1T̂1.

Two equivalent time-translation operators are essentially the same model. The leading

factor of T̂1 amounts to a different choice of initial state, |ψ, 0〉 → T̂ †
1 |ψ, 0〉. The factor of

T̂ †
1 amounts to a different probability interpretation given by the unitary transform of the

projection operators. For example, the probability interpretation above would be mapped

P̂
(i)
1 → T̂ †

1P̂
(i)
1 T̂1. Since this is invertible, the two models are isomorphic to each other.

One possible alternative form of the DTQW is to interpret the coin spaces as the outgoing

spaces. Then the coin operator must be block diagonal in the outgoing spaces. This can be

achieved by taking a coin operator as defined above and performing a similarity transform

with Ŝ1. Thus, this new time-translation operator–call it Ũ1–is given by

Ũ1 = Ŝ1(Ŝ1Ĉ1Ŝ1) = Ŝ1Û1Ŝ1. (II.11)
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Not surprisingly, the equivalence transformation is given by the swap operator. An interest-

ing note is that it is also equivalent to switching the order of the swap and coin operators.

The only reason for choosing the incoming space perspective is that aesthetically speaking,

the time-translation operator has an appearance that resembles forward-moving scattering

events.

The more common difference that one might find in the literature is a difference in the shift

operator or the second operation in the decomposition of the time-translation operator. As

an example, consider the one-dimensional lattice model mentioned in Ch. I. If I interpret

|i〉 |↑〉 = |i+ 1, i〉 and |i〉 |↓〉 = |i− 1, i〉, then the 1D swap operator, Ŝ1D, can be written as

Ŝ1D =
∑

i∈ZN

(

|i, i− 1〉〈i− 1, i|+ |i, i+ 1〉〈i+ 1, i|
)

=
∑

i∈ZN

(

|i− 1〉 |↑〉〈i| 〈↓|+ |i+ 1〉 |↓〉〈i| 〈↑|
)

=
∑

i∈ZN

(

|i− 1〉〈i| ⊗ |↑〉〈↓|+ |i+ 1〉〈i| ⊗ |↓〉〈↑|
)

= (Î0 ⊗ σ̂x)S̃1D, (II.12)

where σ̂x is the x-direction Pauli spin operator and S̃1D is the shift operator of Eq. (I.2).

So for a forward-moving spin-up state, the shift operator takes it to a spin-up state on the

forward adjacent vertex, whereas the swap operator takes that same state to a spin-down

state on the forward adjacent vertex. Thus, the σ̂x is needed to permute the spin-down to

a spin-up for the two operators to have the same action. The same is true of spin-down

states but in the opposite direction.

To generalize this and show equivalence, the result of Eq. (II.12) is used as insight. An

alternative shift operator must take any basis state in one incoming space to an incoming

basis state for an adjacent vertex, and it must do so in a bijective fashion. That is, it cannot
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take two different basis states into the same basis state, and every basis state must be

mapped onto by the shift operator. I assert that any shift operator, S̃1, can be decomposed

into a direct sum of permutation operators acting amongst incoming basis states, followed

by the swap operator, followed by another sum of permutation operators not necessarily

the same as the first. This is depicted in Fig. II.2. Note that in Fig. II.2, the shift operator

demonstrated there is not local as given by Def. II.4. To accommodate such a shift operator,

the definition of local would have to be extended to allow matrix elements between basis

states which share at least one adjacent vertex. I show there is no need for this according

to the following argument.

i

j

P̂
(1)
1

Ŝ1

P̂
(2)
1

S̃1

Figure II.2: Depiction of an arbitrary shift operator decomposed into a permutation
operator, the swap operator and another permutation operator. The bold arrows represent
basis states, the dashed arrows represent the action of each operator in the decomposition

of S̃1 and the dotted arrow represents the resultant action of S̃1.

Let the first and third operators in the decomposition of S̃1 be written as

P̂
(a)
1 =

⊕

i∈V
P̂ (a,i), (II.13)

where P̂ (a,i) only permutes the basis states within the incoming space on vertex i and a

can take on the values 1 or 2, 1 corresponding the first permutation in the subspace and

2 corresponding to the second. Thus S̃1 = P̂
(2)
1 Ŝ1P̂

(1)
1 . Now suppose one is given an
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alternative time-translation operator using S̃1, such that

Ũ1 = S̃1C̃1 = (P̂
(2)
1 Ŝ1P̂

(1)
1 )C̃1

= P̂
(2)
1

[

Ŝ1(P̂
(1)
1 C̃1P̂

(2)
1 )
]

(P̂
(2)
1 )−1. (II.14)

Note that P̂
(1)
1 and P̂

(2)
1 are both unitary and block diagonal in the incoming spaces. Thus

by Eq. (II.14), Ũ1 is equivalent to a DTQW as described in the last section with a coin

operator

Ĉ1 = P̂
(1)
1 C̃1P̂

(2)
1 , (II.15)

which satisfies all the required properties.

Interpreting the description given in Sec. II.3 for the DTQW as a SQW and any generalized

alternative of the form given in Eq. (II.14) as a CQW, the results say that for any CQW,

there exists an equivalent SQW with a coin operator (scattering matrices) given by Eq.

(II.15) and vice versa. Because of this, I henceforth drop any distinction between the CQW

and SQW, referring to any such model as simply a DTQW. This idea of unitary equivalence

between the two versions of the DTQW is similar to that given by Andrade and da Luz [3],

though the presentation of the results is a bit more obscure.

II.5 Continuous-time Dynamics in the Edge Space

In Ch. I, I referenced a model that comes up in the literature which is sometimes called a

coined continuous-time quantum walk. It is also a part of the strategy in Ch. III to relate

a CTQW in HV to continuous-time dynamics in HE and approximate that with a DTQW

model. However, the method of approximation is more general and so I discuss it here.
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Continuous-time dynamics in HE is analogous to continuous-time dynamics in HV , where

the time-translation operator satisfies the Schrödinger equation for some edge space Hamil-

tonian, Ĥ1. This operator is referred to as an edge Hamiltonian. Thus the time-translation

operator is

Û1(t) = exp
(

−it Ĥ1

)

. (II.16)

Like the CTQW, I require that the edge Hamiltonian be local as in Def. II.4. Defining

(Ĥ1)ij,kl = 〈i, j|Ĥ1|k, l〉 (1− 1
2δij)(1− 1

2δkl), locality is enforced with Kronecker deltas:

(Ĥ1)ij,kl = (Ĥ1)ij,kl(δik + δil + δjk + δjl − δjkδil − δikδil). (II.17)

Using this to expand the edge Hamiltonian,

Ĥ1 =
∑

i

∑

j@i

∑

k@i

(1− 1

2
δjk)

(

(Ĥ1)ji,ki |j, i〉〈k, i|+ (Ĥ1)ji,ik |j, i〉〈i, k|

+ (Ĥ1)ij,ki |i, j〉〈k, i|+ (Ĥ1)ij,ik |i, j〉〈i, k|
)

. (II.18)

The four terms inside the brackets represent the four conditions in the definition of local. I

can then break up the edge Hamiltonian into four pieces:

(Ĥ1)in,in =
∑

i

∑

j@i

∑

k@i

(1− 1

2
δjk)(Ĥ1)ji,ki |j, i〉〈k, i| ; (II.19a)

(Ĥ1)in,out =
∑

i

∑

j@i

∑

k@i

(1− 1

2
δjk)(Ĥ1)ji,ik |j, i〉〈i, k| ; (II.19b)

(Ĥ1)out,in =
∑

i

∑

j@i

∑

k@i

(1− 1

2
δjk)(Ĥ1)ij,ki |i, j〉〈k, i| ; (II.19c)

(Ĥ1)out,out =
∑

i

∑

j@i

∑

k@i

(1− 1

2
δjk)(Ĥ1)ij,ik |i, j〉〈i, k| , (II.19d)
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where (1 − 1
2δjk) splits the matrix element evenly in the case of ambiguous character (in-

out, out-in, and so on) for that term, and the definition of (Ĥ1)ij,kl keeps self-loop states

from being double counted. Note that (Ĥ1)in,in and (Ĥ1)out,out are both block diagonal,

though in different block forms. A Hermitian edge Hamiltonian means these two must them-

selves be Hermitian. Moreover, the Hermitian constraint requires (Ĥ1)in,out = (Ĥ1)
†
out,in.

Another assumption one can make is that the edge Hamiltonian and swap operator com-

mute. This is a reasonable symmetry since if they did not commute, that would imply

the edge Hamiltonian treats some of the edge basis states differently than their swapped

counterparts. In that case, Ŝ1Ĥ1Ŝ1 = Ĥ1, or by matching operator characters, I have that

(Ĥ1)in,in = Ŝ1(Ĥ1)out,outŜ1, and (Ĥ1)in,outŜ1 = Ŝ1(Ĥ1)out,in =
(

Ŝ1(Ĥ1)out,in

)†
, where the

last equality is given by the Hermitian condition. Note that both equalities are of the in-in

character, or operators that are block diagonal in the incoming spaces. Thus, I come to the

conclusion that for any edge Hamiltonian which respects swap symmetry, there exists two

operators, K̂1 and L̂1, which are both block diagonal in the incoming spaces and Hermitian.

With these operators, the edge Hamiltonian is written as

Ĥ1 = L̂1 + Ŝ1L̂1Ŝ1 + Ŝ1K̂1 + K̂1Ŝ1. (II.20)

Note the exponentiation of either K̂1 or L̂1 could be a choice of coin operator. To relate

this to a DTQW, one realizes a local edge Hamiltonian only yields an approximate local

unitary operator if the edge Hamiltonian is modified by a small parameter ǫ. Before doing

this for the arbitrary edge Hamiltonian (with appropriate constraints), I need the concept

of a lazy discrete-time quantum walk.
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II.6 The Lazy Discrete-time Quantum Walk

For a Markov process or classical random walk, the walker must transition on each time

step, and this is analogous to the fact that the second step of the DTQW always swaps. In

the classical case, this can be modified to allow some probability for the walker to loiter on

the vertex. This is called the lazy (classical) random walk. The limit which approaches near

perfect laziness and a small time step leads to the continuous-time Markov process which

solves an equation similar to the Schrödinger equation [19]. Just as the classical random

walk can be lazied, so too can the DTQW by extending the definition of the time-translation

operator. Consider the unitary operator

Û1(ǫ) = exp
(

−iαǫ Ŝ1
)

exp
(

−iǫ K̂1

)

, (II.21)

where ǫ and α are positive definite parameters. ǫ is used to approach a continuous-time

limit, and α is used to control the laziness of the DTQW independent of a finite ǫ. K̂1 is a

Hermitian, block diagonal operator as discussed in Sec II.5. To see that this is analogous

to the lazy random walk, note that the exponentiation of Ŝ1 can be expanded, and since

the swap operator is its own inverse, the terms separate into even and odd powers. From

this, one can see

exp
(

−iαǫ Ŝ1
)

= cos (αǫ)Î1 − i sin (αǫ) Ŝ1. (II.22)

When αǫ = π
2 , Eq. (II.21) gives the standard DTQW with the coin operator

Ĉ1 = −i exp
(

−iǫ K̂1

)

. This is referred to as the QW choice. When 0 < αǫ < π
2 , there is

some amount of the state vector that is not swapped on each time step, and this has an

effect analogous to the walker loitering on the vertex. This is referred to as the lazy QW
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choice. So Eq. (II.21) is the natural extension to the DTQW time-translation operator and

is similar to the limit presented by Dheeraj and Brun [15].

II.7 Approximating the Edge Space Hamiltonian Dynamics

If one wants to approximate Eq. (II.16) with an edge Hamiltonian in the form of Eq. (II.20), I

propose that it can be done with a generalized DTQW method. Let continuous time t→ ǫt,

where t is now an integer and ǫ is the time step. Eq. (II.16) is given by integer powers of

the operator

Û1(ǫ) = exp
(

−iǫ Ĥ1

)

= exp
(

−iǫ(Ŝ1L̂1Ŝ1 + L̂1)
)

exp
(

−iǫ(Ŝ1K̂1 + K̂1Ŝ1)
)

+O(ǫ2). (II.23)

Considering the first factor, one can split the sum in the exponent again into factors as an

approximation:

exp
(

−iǫ(Ŝ1L̂1Ŝ1 + L̂1)
)

=exp
(

−iǫŜ1L̂1Ŝ1

)

exp
(

−iǫL̂1

)

+O(ǫ2)

=Ŝ1 exp
(

−iǫL̂1

)

Ŝ1 exp
(

−iǫL̂1

)

+O(ǫ2), (II.24)

where the fact that first factor is the similarity transform of the second is used. This is

two steps of a DTQW with coin operator Ĉ1 = exp
(

−iǫL̂1

)

. As for the second factor in

Eq. (II.23), consider the lazy DTQW time-translation operator in Eq. (II.21),

exp
(

−iαǫ Ŝ1
)

exp
(

−iǫ K̂1

)

= exp
(

−iǫ(αŜ1 + K̂1)
)

+O(ǫ2). (II.25)
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If I make the walk lazy such that ǫ ≪ αǫ ≪ 1, α is relatively large. Consider when α is

much larger than ‖K̂‖2, where ‖ · ‖2 is the operator norm induced by the ℓ2 norm or the

Hilbert space vector norm of HE . In this case, the lazy DTQW approximates the unitary

operator generated by the edge Hamiltonian αŜ1 + K̂1. Using the properties of the swap

operator, this edge Hamiltonian can be factored and rewritten as

αŜ1 + K̂1 =
(

α+ K̂1Ŝ1

)

Ŝ1 = Ŝ1

(

α+ Ŝ1K̂1

)

=
[(

α+ K̂1Ŝ1

)(

α+ Ŝ1K̂1

)] 1
2

=α



Î1 +

(

1

α

)

(

Ŝ1K̂1 + K̂1Ŝ1

)

+

(

K̂1

α

)2




1
2

. (II.26)

Approximating the root to first order in 1
α , one sees that the edge Hamiltonian dynamics

approximated by Eq. (II.25) is αÎ1+
1
2(Ŝ1K̂1+ K̂1Ŝ1), which is the other half of the general

edge Hamiltonian up to the constant α. This amounts to a global phase.

Putting all these results together, I can approximate the general edge Hamiltonian dynamics

as

exp
(

−iǫ Ĥ1

)

≈ e(i2ǫα)
(

Ŝ1 exp
(

−iǫL̂1

))2 (

exp
(

−iαǫ Ŝ1
)

exp
(

−iǫ K̂1

))2
, (II.27)

which fits into a slightly more general form of the DTQW. As a final consideration, one

could choose π
2 < αǫ < π, which would also have the effect of lazying the DTQW. In most

cases, this might create problems with the terms of order (αǫ)2 becoming relatively large.

However, if I define the independent parameter,

a = π − αǫ, (II.28)
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then the small a limit competes with the ǫ limit. For Eq. (II.27), this is a problem, but

for L̂1 = 0, this limit is useful as shown in Ch. III. There, the edge Hamiltonian is more

specific and so a condition is found for a such that this becomes relevant.
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CHAPTER III

CONNECTING THE

CONTINUOUS-TIME TO THE

DISCRETE-TIME QUANTUM WALK

CTQW dynamics are characterized by the graph Hamiltonian, while the DTQW dynamics

are characterized by the coin operator. To connect the two, I present a coin operator which

generates approximately the same probability dynamics as those generated by a given graph

Hamiltonian. The method is to obtain an appropriate edge Hamiltonian and use the results

of Sec II.7 to approximate it. Linking the two models in this way is possible, but going

from a general DTQW to some CTQW might not be. That is, given a coin operator, there

is not always a related graph Hamiltonian. More on this later in the chapter.
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III.1 Relating the Graph Hamiltonian to Operators in the

Edge Space

Connecting the CTQW to the DTQW requires operators that act between HV and HE .

Consider two such operators,

Â =
∑

(i,j)

Tij |i〉〈j, i| ; (III.1)

B̂ =
∑

(i,j)

Tij |i〉〈i, j| , (III.2)

where Tij is some arbitrary complex weight. Â and B̂ act much like projection maps, and

so I refer to them as projectors. The A-projector maps an edge basis state onto the head

of the edge and the B-projector maps that same state onto the tail, both with the weights

Tij . The adjoints of these operators promote a vertex basis state to a superposition of the

incoming and outgoing basis states, respectively, with the same weights. Clearly the two

are related by Â = B̂Ŝ1, but also,

ÂB̂† = ÂŜ1Ŝ1B̂
† = B̂Â†

=
∑

(i,j)

∑

(k,l)

TijT
∗
kl |i〉〈j, i|k, l〉〈k|

=
∑

(i,j)

TijT
∗
ji |i〉〈j| = Ĥ0, (III.3)

if I chose the weights such that

TijT
∗
ji = τij . (III.4)

Thus, it is sufficient (but not necessary) to have Tij =
√
τij . Â and B̂ are then closely

related to the procedure proposed by Szegedy [42] and extended by Childs, where B̂† is
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similar to the isometry in Ref. [8]. Another useful relation is

Ω̂0 = ÂÂ† = ÂŜ1Ŝ1Â
† = B̂B̂†

=
∑

(i,j)

∑

(k,l)

√
τij
√

τ∗kl |i〉〈j, i|l, k〉〈k|

=
∑

(i,j)

|τij | |i〉〈i| =
∑

i

ωi |i〉〈i| , (III.5)

where ωi =
∑

j@i |τij |, which is the sum over the modulus of the entries in the ith column

of the matrix representing the graph Hamiltonian. A special case is defined as such:

Definition III.1. A graph Hamiltonian has the property of being regular if and only if

ωi = ω, for all i ∈ V and some positive, real ω.

The term regular comes from the fact that a regular adjacency Hamiltonian implies the

graph is regular with degree ω. Furthermore, such an operator could be interpreted as

representing a Markov process with a transition rate of ω [19, 42]. Thus the condition

represents a large number of useful models.

With the projectors, one can promote a normalized initial state in the vertex space to a

normalized state in the edge space:

|ψ, 0〉 =Â† Ω̂
− 1

2
0 |φ, 0〉 , (III.6a)

or,

|ψ, 0〉 =B̂† Ω̂
− 1

2
0 |φ, 0〉 , (III.6b)
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both of which are normalized according to Eq. (III.5). Also using Eqs. (III.3) and (III.5),

Û0(t) can be rewritten in terms of dynamics in HE as

Û0(t) =Â exp
(

−it B̂†Â
)

Â†Ω̂−1
0

=Ω̂−1
0 Â exp

(

−it Â†B̂
)

Â†. (III.7)

Naively, one might be tempted to use either B̂†Â or Â†B̂ as an edge Hamiltonian for

analogous continuous-time dynamics in HE , but neither are Hermitian, even though they

are local. This is not surprising, however, since different spaces have different meanings for

the conservation of probability. To understand this, assume a regular adjacency Hamiltonian

for simplicity and consider the inner product related to position measurement,

〈i|φ, t〉 = 〈i| exp (−itĤ0)|φ, 0〉 =
1

ω
〈i|Â exp

(

−it B̂†Â
)

Â†|φ, 0〉 . (III.8)

For the sake of argument, consider the state of the system in the edge space to be |ψ, t〉 =

exp
(

−it B̂†Â
)

1√
ω
Â† |φ, 0〉, so that the inner product becomes

〈i|φ, t〉 = 1√
ω
〈i|Â|ψ, t〉 =

√

1

ω

∑

j@i

〈j, i|ψ, t〉 . (III.9)

Aside from the factor of
√

1
ω , the probability given by taking the modulus squared of this

inner product has cross terms not present in the incoming probability given by Eq. (II.10).

This is not to say Eq. (III.9) represents a state for which probability is not conserved.

Probability must be conserved since I started with a unitary operator. What it does say is

that probability-conserving dynamics which projects up, evolves the state and then projects

back down requires non-unitary evolution in HE . This is what was meant in Ch. I when I

claimed that the method described in Ref. [8] does not appear to conserve probability for

all values of the parameters.

31



CHAPTER III CONNECTING THE CTQW TO THE DTQW

Still, the expansion in Eq.(III.7) does suggest a possible edge Hamiltonian since both can-

didates have the same Hermitian part, namely,

Ĥ1 =
1

2

(

B̂†Â + Â†B̂
)

. (III.10)

This operator respects Ŝ1 symmetry.

III.2 The Dynamic Space Generated by the Projectors

Before looking at the dynamics generated by Ĥ1, I must prove a more general and useful

result. First define a specific subspace:

Definition III.2. For a given graph Hamiltonian, let the dynamic space, Hdyn ⊆ HE , be

defined as Hdyn = span{Â† |i〉 , B̂† |i〉 : i ∈ V}.

The dynamic space is the collect of all states promoted by the projectors. It is important

to recognize the set {Â† |i〉 , B̂† |i〉 : i ∈ V} is not necessarily a basis for the dynamic space,

and by virtue of Eq. (III.3), it is not orthogonal. As a counter example to prove the first

claim, consider any regular adjacency Hamiltonian. For each vertex i, Â† |i〉 = ∑

j@i |j, i〉

which is an equal superposition over all incoming basis states of i. Now summing over

all such i,
∑

i Â
† |i〉 =

∑

(i,j) |j, i〉 =
∑

(i,j) |i, j〉 =
∑

i B̂
† |i〉 , where I use the fact that

both the union of incoming basis states and the union of outgoing basis states form the

entire edge basis and adjacency is symmetric. Therefore in this case, there is at least

some linear dependence in that set and so it cannot form a basis. However, I can form an

orthonormal basis by first noting that the identity and swap operators form the reflection

group, Z2, which is represented by symmetric and anti-symmetric combinations. So, define
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the symmetric projector (S-projector) as 1√
2
(Î1 + Ŝ1)Â

† = 1√
2
(Â† + B̂†) and the anti-

symmetric projector(AS-projector) as 1√
2
(Î1 − Ŝ1)Â

† = 1√
2
(Â† − B̂†). These projectors

effectively split the dynamic space into two orthogonal subspaces. Furthermore, consider a

vector in HV , |φ±k 〉, which is an eigenvector of the operator Ω̂0 ± Ĥ0 with eigenvalue λ±k .

Then one has inner products of the form

(

〈φ±l |
1√
2
(Â± B̂)

)(

1√
2
(Â† ± B̂†) |φ±k 〉

)

=
1

2
〈φ±l | (2Ω̂0 ± 2Ĥ0) |φ±k 〉 = λ±k δkl. (III.11)

So a good orthonormal basis for the dynamic space might be all vectors of the form

|ψ±
k 〉 =



















1
√

2λ±

k

(Â† ± B̂†) |φ±k 〉 , if λ±k 6= 0

0 , otherwise

. (III.12)

Applying Ĥ1 to |ψ±
k 〉, one sees that it is an eigenvector of Ĥ1 with eigenvalue ±λ±

k

2 .

It may seem that such a basis would have the same number of elements as {Â† |i〉 , B̂† |i〉 :

i ∈ V}, but that assumes neither the S-projector nor the AS-projector annihilates the

eigenvectors, and λ±k 6= 0. For the regular adjacency Hamiltonian, the coincidence of these

two conditions is why the dynamic space loses a basis vector, since any regular graph has an

eigenvector, |φ−0 〉, composed of an equal superposition over all basis states with eigenvalue

equal to the degree of the graph. This coincides with λ−0 = 0. The connection between the

two conditions can be generalized.

Proposition III.3. (Â† ± B̂†) |φ±k 〉 = 0 if and only |φ±k 〉 is an eigenvector of Ω̂0 ± Ĥ0 with

eigenvalue λ±k = 0.
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Proof. Start by assuming that (Â† ± B̂†) |φ±k 〉 = 0. Then 0 = Â0 = Â(Â† ± B̂†) |φ±k 〉 =

(Ω̂0 ± Ĥ0) |φ±k 〉, which implies |φ±k 〉 is an eigenvector of Ω̂0 ± Ĥ0 with eigenvalue λ±k = 0.

Now assume that |φ±k 〉 is an eigenvector of Ω̂0 ± Ĥ0 with eigenvalue λ±k = 0. Using Eq.

(III.11), one has that

〈φ±k |
(

Â± B̂
)(

Â† ± B̂†
)

|φ±k 〉 = 2λ±k = 0.

This is true if and only if (Â† ± B̂†) |φ±k 〉 = 0.

A corollary to Prop. III.3 is that the only linear dependence in the set {Â† |i〉 , B̂† |i〉 : i ∈ V}

is characterized by eigenvectors |φ±k 〉 for which λ±k = 0. This is important for two reasons.

First, it allows me to safely write the dynamic space projection operator since the |ψ±
k 〉’s

are properly defined and span the dynamic space. Furthermore, it gives me a method for

finding the dimension of the dynamic space.

What I ultimately want to prove is that edge space operators made up of the identity, the

swap operator and the projectors maintain support of any dynamic space vector in that

space. Any appropriate combinations of these operators “collapse” into operators that can

be described as projecting down into the vertex space, performing some operation and then

projecting back up to the edge space. In that case, I state the proposition this way:

Proposition III.4. Let P̂dyn be the projection operator onto the dynamic space. For any

edge space operator, Ŵ1, if their exists vertex space operators, V̂0
(1)
, V̂0

(2)
, V̂0

(3)
, and V̂0

(4)

such that Ŵ1 = Â†V̂0
(1)
Â+ Â†V̂0

(2)
B̂ + B̂†V̂0

(3)
Â+ B̂†V̂0

(4)
B̂, then Ŵ1 = P̂dynŴ1P̂dyn.

Proof. Note that {|φ+k 〉}k∈V and {|φ−k 〉}k∈V both form orthonormal bases for HV and can

be used to expand the identity in HV . Furthermore, if I use {|ψ±
k 〉}k∈V;± to write P̂dyn,
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then consider the combination

ÂP̂dyn =Â
∑

k,±

′ 1

2λ±k
(Â† ± B̂†) |φ±k 〉〈φ±k | (Â± B̂)

=
∑

k,±

′ 1

2λ±k
(Ω̂0 ± Ĥ0) |φ±k 〉〈φ±k | (Â± B̂)

=
1

2

∑

k,±
|φ±k 〉〈φ±k | (Â± B̂) =

1

2
(Â+ B̂ + Â− B̂)

=Â,

where the prime sum omits the cases when λ±k = 0 and the last sum adds in the appropriate

zero terms to complete the identity in HV . This also implies B̂P̂dyn = B̂. Therefore,

P̂dynŴ1P̂dyn =P̂dyn

(

Â†V̂0
(1)
Â+ Â†V̂0

(2)
B̂ + B̂†V̂0

(3)
Â+ B̂†V̂0

(4)
B̂
)

P̂dyn

=Â†V̂0
(1)
Â+ Â†V̂0

(2)
B̂ + B̂†V̂0

(3)
Â+ B̂†V̂0

(4)
B̂ = Ŵ1.

This becomes useful because a corollary to Prop. III.4 is that if Ŵ1 has the form as given

above and α and β are any complex numbers, then there exists a f̂0 and ĝ0 such that

Ŵ1(αÂ
†+βB̂†) = Â†f̂0+ B̂†ĝ0. Unfortunately, f̂0 and ĝ0 are only unique up to an operator

in the union of the null spaces of Ω̂0+ Ĥ0 and Ω̂0− Ĥ0. When using this corollary, I assume

such operators can be taken as zero. Note, the identity does not satisfy the condition of the

proposition. However, P̂dyn does.

I can also use this result to understand the probability dynamics. If Ŵ1 is unitary and I

use it to evolve the initial state (III.6a), then by the corollary, the probability of measuring
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the walker at position i as given by Eq. (II.10) is

P
(in)
i =

∑

j@i

|〈j, i|Ŵ1Â
†Ω̂

− 1
2

0 |φ, 0〉|2

=
∑

j@i

|〈j, i|Â†f̂0Ω̂
− 1

2
0 |φ, 0〉+ 〈j, i|B̂†ĝ0Ω̂

− 1
2

0 |φ, 0〉|2

=
∑

j@i

|√τji 〈i|f̂0Ω̂
− 1

2
0 |φ, 0〉+√

τij 〈j|ĝ0Ω̂
− 1

2
0 |φ, 0〉|2

=ωi|〈i|f̂0Ω̂
− 1

2
0 |φ, 0〉|2 +

∑

j@i

|τij | |〈j|ĝ0Ω̂
− 1

2
0 |φ, 0〉|2

+ 2Re
∑

j@i

τij 〈φ, 0|Ω̂− 1
2

0 f̂ †0 |i〉〈j|ĝ0Ω̂
− 1

2
0 |φ, 0〉 . (III.13)

Specifically, if the Hamiltonian is regular,

P
(in)
i =|〈i|f̂0|φ, 0〉|2 +

1

ω

∑

j@i

|τij | |〈j|ĝ0|φ, 0〉|2

+
2

ω
Re
∑

j@i

τij 〈φ, 0|f̂ †0 |i〉〈j|ĝ0|φ, 0〉 . (III.14)

In the last equation, I interpret the first term as probability propagated directly to i through

f̂0. The second term is the weighted average of the probabilities propagated to the neighbors

through ĝ0 and attributed to i. The last term is an unavoidable cross term, but in important

cases later in this thesis, it is zero or negligible. Also note that when ĝ0 = 0, the probability

becomes exactly the probability given by the action of a vertex operator, f̂0.

III.3 Continuous-time Dynamics in the Dynamic Space

I can apply the results of the last section to the exponentiation of Ĥ1, and since I am going

to initialize the state in Hdyn, I am concerned with exp (−itĤ1)Â
† and exp (−itĤ1)B̂

†. The
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difficult part of expanding these operators is the various powers of Ĥ1, but each power

satisfies the conditions of Prop. III.4, so I can use the corollary to write for each positive

integer n,

(

Ĥ1

)n
Â† = Â† f̂ (n)0 + B̂† ĝ(n)0 . (III.15)

Multiplying by Ĥ1 on the left,

(

Ĥ1

)n+1
Â† =

1

2

(

B̂†Â+ Â†B̂
)(

Â† f̂ (n)0 + B̂† ĝ(n)0

)

=
1

2

(

Â†
(

Ĥ0f̂
(n)
0 + Ω̂0ĝ

(n)
0

)

+ B̂†
(

Ĥ0ĝ
(n)
0 + Ω̂0f̂

(n)
0

))

=Â† f̂ (n+1)
0 + B̂† ĝ(n+1)

0 . (III.16)

Equating like operators on both sides, the resulting recursions can be interpreted as a matrix

equation and written along with the initial condition as







f̂
(n+1)
0

ĝ
(n+1)
0






=

1

2







Ĥ0 Ω̂0

Ω̂0 Ĥ0













f̂
(n)
0

ĝ
(n)
0






; (III.17a)







f̂
(0)
0

ĝ
(0)
0






=







1

0






, (III.17b)

where scalar values are understood as being multiplied by the identity. The solution is

the nth power of the matrix which can be expanded in spectral representation. This is a

simple matrix and by inspection, one finds the eigenvalue operators are 1
2

(

Ĥ0 ± Ω̂0

)

with

eigenvector operators x̂± ŷ, where x̂ and ŷ are the two-dimensional unit vectors. Thus the
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solution is given by







f̂
(n)
0

ĝ
(n)
0






=

(

1

2

)n







Ĥ0 Ω̂0

Ω̂0 Ĥ0







n





1

0







=

(

1

2

)n+1







1 1

1 −1













(

Ĥ0 + Ω̂0

)n
0

0
(

Ĥ0 − Ω̂0

)n













1 1

1 −1













1

0







=

(

1

2

)n+1







(

Ĥ0 + Ω̂0

)n
+
(

Ĥ0 − Ω̂0

)n

(

Ĥ0 + Ω̂0

)n
−
(

Ĥ0 − Ω̂0

)n






. (III.18)

Using this to expand the exponentiation of Ĥ1,

exp
(

−itĤ1

)

Â† =

(

Â† B̂†
) ∞
∑

n

(−it)n
n!







f̂
(n)
0

ĝ
(n)
0







=

(

Â† B̂†
)

1

2







exp
(

− it
2

(

Ĥ0 + Ω̂0

))

+ exp
(

− it
2

(

Ĥ0 − Ω̂0

))

exp
(

− it
2

(

Ĥ0 + Ω̂0

))

− exp
(

− it
2

(

Ĥ0 − Ω̂0

))






. (III.19)

A similar expression is found for exp (−itĤ1)B̂
† by noting that Ŝ1 and Ĥ1 commute and so

multiplication by Ŝ1 on both sides of Eq. (III.19) gives the result. Although this is exact

and general, it is a bit cumbersome, but consider when the graph Hamiltonian is regular.

In that case, Ω̂0 = ωÎ0, which allows exp
(

− it
2 Ĥ0

)

to be factored out, and the remainder

can be written in terms of trigonometric functions. The final result is

exp
(

−it Ĥ1

)

(

Â† B̂†
)

(III.20)

=

(

Â† B̂†
)







cos
(

ω
2 t
)

−i sin
(

ω
2 t
)

−i sin
(

ω
2 t
)

cos
(

ω
2 t
)






exp

(

− it
2
Ĥ0

)

.
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What this says is that continuous time evolution given by Ĥ1 in the dynamic space is equiv-

alent to evolving a state with the dynamics generated by Ĥ0, projecting up and “rotating”

between the A-projector and B-projector. This shows that the dynamics generated by

Ĥ1 are inherited from dynamics generated by Ĥ0. To understand the result more clearly,

consider measuring the probability given by Eq. (III.14) for the time evolution given by

Ĥ1. This makes f̂0 = cos (ωt2 ) exp
(

−it
2 Ĥ0

)

and ĝ0 = −i sin
(

ω
2 t
)

exp
(

−it
2 Ĥ0

)

. When the

continuous-time t satisfies ωt
2 = nπ for any interger n, then P 0

i (t) = P
(in)
i ( t2). So Ĥ1 is the

edge Hamiltonian that approximates the CTQW. This suggests the DTQW described in

Eq. (II.27) with K̂1 = Â†Â and L̂1 = 0, written here as

Û1(ǫ) = exp
(

−iαǫ Ŝ1
)

exp
(

−iǫ Â†Â
)

. (III.21)

As a final point in this section, it is worth considering L̂1 = Â†Â and K̂1 = 0, which gives

an edge Hamiltonian of

Ĵ1 =
1

2

(

Â†Â+ B̂†B̂
)

. (III.22)

Since Ĵ1 commutes with Ĥ1, they share eigenvectors, but for |ψ±
k 〉, the eigenvalue is

λ±

k

2 . By

Prop. III.4, the rest of the eigenvectors form the null space of this operator, HE\Hdyn. For

the same reasons as above, one can expand exp (−itĴ1)Â† using the same method as used

for the dynamics generated by Ĥ1. It is easy to see that the only difference is Ĥ0 and Ω̂0

switch places in the calculation, from which I can immediately infer

exp
(

−itĴ1
)

Â†

=

(

Â† B̂†
)

1

2







exp
(

− it
2

(

Ω̂0 + Ĥ0

))

+ exp
(

− it
2

(

Ω̂0 − Ĥ0

))

exp
(

− it
2

(

Ω̂0 + Ĥ0

))

− exp
(

− it
2

(

Ω̂0 − Ĥ0

))






, (III.23)
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and in the case of a regular Hamiltonian,

exp
(

−it Ĵ1
)

(

Â† B̂†
)

(III.24)

=

(

Â† B̂†
)







cos
(

Ĥ0
2 t
)

−i sin
(

Ĥ0
2 t
)

−i sin
(

Ĥ0
2 t
)

cos
(

Ĥ0
2 t
)






exp

(

− iωt
2

)

.

The QW that would approximate the edge space dynamics generated by Ĵ1 is given by

Û1(ǫ) = Ŝ1 exp
(

−iǫ Â†Â
)

, (III.25)

for even time steps. This amounts to the QW choice up to a phase. By Eq. (III.24),

the probability dynamics of this QW should result in f̂0 ≈ exp
(

− iωǫt
2

)

cos
(

Ĥ0
2 ǫt
)

, and

ĝ0 ≈ −i exp
(

− iωǫt
2

)

sin
(

Ĥ0
2 ǫt
)

. Consider how this compares to the CTQW dynamics. Note

f̂0 has all the even powers of the Hamiltonian in Û0(t) and ĝ0 has all the odd powers. No

matter the hopping amplitudes, the nth power of the graph Hamiltonian has only matrix

elements which connect vertices n classical steps away in the graph. Then consider when

t is even, the initial state is |i〉 and one wants to measure whether or not the walker is at

vertex j. f̂0 is responsible for the probability amplitude propagated directly to j as given

by Eq. (III.14). So its contribution to the probability is non-zero if j is an even number

of steps away from i. ĝ0 is responsible for the probability amplitude contributing to j but

propagated to its neighbors, again, as understood by Eq. (III.14). Since the neighbors of j

are always one additional step from i, ĝ0’s contribution to the probability is non-zero under

the same conditions. The cross term in Eq. (III.14) is zero for real hopping amplitudes due

to the factor of i in ĝ0. So for any j that is an odd number of steps from i, the probability

amplitude that would have been assigned to its basis vector in the CTQW is distributed

to its neighbors in accordance with the weighted average given in Eq. (III.14).Thus for a
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bipartite graph, probability amplitude initialize on one sub-lattice will stay on that sub-

lattice. This is analogous to behavior for the classical random walk if only even steps are

considered and comes from the fact that at each time step, the state of the system must

swap with no amplitude allowed to loiter. This behavior is also observed later in the chapter

where odd time steps are considered.

III.4 The Coin Operator Generated by Â†Â

Much of what follows parallels and expands on the properties of the isometry used in Ref. [8].

Â†Â has some important properties. Expanded in the edge basis,

Â†Â =
∑

i

Â† |i〉〈i| Â =
∑

i

∑

j@i

∑

k@i

√
τji

√
τik |j, i〉〈k, i| . (III.26)

The matrix elements of this operator can be found using diagrams of the graph. For a

given vertex, i, imagine the vertices in the immediate neighborhood of i with the attached

directed edges, each weighted by its hopping amplitude. Then the matrix element, say

〈j, i|Â†Â|k, i〉, is the square root of the two hopping amplitudes picked up by going from

k to j through i, as can be seen from Eq. (III.26). This process is depicted in Fig. III.1.

However, some care should be taken with the square roots. In general, the square roots are

split and handled in accordance with the choice of branch cut. It seems the natural choice

is along the negative real axis. In that case, negative real values of τij are modified with

an infinitesimal phase factor which is taken to be zero once the matrix element is found. If

this convention is followed, Â†Â is Hermitian and has the correct signs.
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i

j

k

l

τji

τij
τik

τki

τil
τli

Figure III.1: Depiction of the process of determining matrix elements of Â†Â from the
graph. Here specifically, the bold arrows show 〈j, i|Â†Â|k, i〉 = √

τji
√
τik.

Note
(

Â†Â
)2

= Â†Ω̂0Â = Ω̂1Â
†Â, where Ω̂1 is a diagonal edge space operator with diagonal

elements 〈j, i|Ω̂1|j, i〉 = ωi for all j@i. Also, Ω̂1 commutes with Â†Â. By inspection, this

near idempotence is due to the first equality in Eq. (III.26), which shows Â†Â is almost a

projection operator onto a subspace of the dynamic space, except any basis vectors in that

space such as Â† |i〉 is not normalized. This property can be used to expand the coin part

of Eq. (III.21) and (III.25):

exp
(

−iǫÂ†Â
)

=

∞
∑

n=0

(−iǫ)n
n!

(

Â†Â
)n

=Î1 +

∞
∑

n=1

(−iǫ)n
n!

Ω̂n−1
1 Â†Â

=Î1 − iÊ1Â
†Â, (III.27)

where

Ê1 = iΩ̂−1
1

(

exp
(

−iǫΩ̂1

)

− Î1

)

= Î1ǫ+O(ǫ2). (III.28)

Note that Ê1 is diagonal with matrix elements 〈j, i|Ê1|j, i〉 = i
ωi
(exp (−iωiǫ)−1) for all j@i.

Thus Eq. (III.27) along with the discussion of obtaining the elements of Â†Â is a simple
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j j + 1j − 1

· · ·· · ·
e−iθ

eiθ

e−iθ

eiθ

Figure III.2: Graphical depiction of a spatially symmetric one-dimensional lattice with
arbitrary phase angle, θ, associated with each edge. Note the splitting of the directed edges

with opposite phase is necessary for the Hamiltonian to be Hermitian.

way to find the matrix elements of the coin operator. A special case is for a regular graph

Hamiltonian when ωǫ = π:

exp
(

−iπ
ω
Â†Â

)

= Î1 −
2

ω
Â†Â. (III.29)

The fact that 1
ω Â

†Â is exactly a projection operator makes Eq. (III.29) a reflection operator

up to a sign, which is a common way to construct coin operators. For example, ω = 1

corresponds to the coin operator suggested by Szegedy in the context of a quantum Markov

processes [8, 42], and for the adjacency Hamiltonian, this is the Grover coin [37].

In the case of the one-dimensional lattice, the most general CTQW which maintains trans-

lation symmetry has an arbitrary phase associated with all edges. This graph is depicted

in Fig. III.2. From this, I can write

[

Â†Â
]

j

.
=







1 e−iθ

eiθ 1






= Î2 + e−iθσ̂+ + eiθσ̂−, (III.30)

where [ · ]j denotes the block part for the incoming space of j, Î2 is the 2× 2 identity, and

σ̂+, σ̂− are the spin raising and lowering operators. Using Eq. (III.27), I can write the coin
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operator generated by this as

[

exp
(

−iǫÂ†Â
)]

j

.
=Î2 +

1

2
(exp (−i2ǫ)− 1)(Î2 + e−iθσ̂+ + e+iθσ̂−)

=
1

2
(exp (−i2ǫ) + 1)Î2 +

1

2
(exp (−i2ǫ)− 1)(e−iθσ̂+ + eiθσ̂−)

.
=e−iǫ







cos (ǫ) −ie−iθ sin (ǫ)

−ieiθ sin (ǫ) cos (ǫ)






. (III.31)

This is similar to the types of coins used by Strauch in Refs. [40, 41] and Debbasch and

Di Molfetta in Refs. [14, 16] with one caveat. Those papers used the shift operator given

by Eq. (I.2), which means the coin must be modified by σ̂x. Still, a similar limit is obtained

with a shift in ǫ. In particular, consider when θ = −π
2 and ǫ = π

4 :

[

exp
(

−iπ
4
Â†Â

)]

j

.
=

exp
(

−iπ4
)

√
2







1 1

−1 1







.
= exp

(

−iπ
4

)

ĈH σ̂x. (III.32)

Thus the Hadamard walk can be linked directly to a graph Hamiltonian with pure imaginary

hopping amplitudes, which might be described as the one-dimensional lattice in the presence

of a constant magnetic vector potential of a specific strength [33], i.e. a cycle encircling the

outside of a solenoid.

Finally, I can put a constraint on the size of ǫ. In Ch. II, I assumed that ‖K̂1‖2 was much

less than α. The induced ℓ2-norm is the largest eigenvalue in absolute value [25], and it is

clear from the first equality of Eq. (III.26) that ‖Â†Â‖2 = maxi ωi, which is actually the

induced ℓ1-norm of Ĥ0. So for the lazy QW choice (and likewise for the QW choice), one
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needs to fix α such that αǫ≪ 1 < π
2 , which gives the constraint

max
i
ωi ǫ≪

π

2
. (III.33)

III.5 Examples of the Correspondence: Motivating the

Very-lazy Quantum Walk

The simplest possible model is the one depicted in Fig. III.2 with θ = 0. By standard

methods, the CTQW propagator can found to be

〈n| exp
(

−itĤ(1D)
0

)

|0〉 = (i)nJn(2t), (III.34)

where Jn(x) is the nth Bessel function. The details of this derivation are provided in

Appendix A. This is compared against the DTQW method described above in Figs. III.3.

As suspected, the QW choice in Fig. III.3a results in a checkerboard pattern. The pattern is

shown more clearly in Fig. III.4. As mentioned at the end of Ch. II, one can lazy the swap

half of the time-translation operator for π
2 < αǫ < π. In that case, the internal patterns

change until at a relatively lazy condition (a = ǫ, for a defined in Eq. (II.28)) the pattern

become smooth in Fig III.3d. The surprising result is Fig. III.3e. When a = ǫ
10 ≪ ǫω

2 ,

the pattern is virtually the same as the CTQW solution in Fig. III.3f, but at the cost

of ten times the number of steps. The lazy QW choice is only supposed to give the exact

probability of the CTQW at periodic times, but not for all times. As mentioned in Sec. II.7,

one expects as a becomes very small compared to ǫ, the smallness of a overtakes that of

ǫ. I conjecture the condition is a ≪ ǫω
2 , which I refer to as the very-lazy QW choice. It is

argued in the next three sections that all these observations hold for any DTQW connected

to a regular CTQW.
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(a) αǫ = π
2

(b) αǫ = 11π
20

(c) αǫ = 3π
4

(d) αǫ = 39π
40

(e) αǫ = 39.9π
40

(f) CTQW

Figure III.3: Simulations on a cycle of 100 vertices with hopping amplitudes of 1 and
the center vertex basis state as the initial state. (a)-(e) are DTQW with ǫ = π

40
and αǫ as

labeled. Note the increase in time steps for (e). (f) is a CTQW based upon the modulus
squared of Eq. (III.34).
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Figure III.4: The same simulation as Fig. III.3a but with fewer time steps to show the
checkerboard pattern given by the QW choice.

The one-dimensional lattice naturally extends to the two-dimensional lattice with the ad-

jacency Hamiltonian. For the CTQW, the graph Hamiltonian is separable, and so the

propagator is given by the product of two one-dimensional propagators:

〈(n,m)| exp
(

−itĤ(2D)
0

)

|(0, 0)〉 = (i)n+mJn(2t)Jm(2t). (III.35)

The result is also derived in Appendix A. This model is compared against the DTQW

simulation for the QW choice and the very-lazy QW choice in Figs. III.5. Both choices

show the same relationship to the CTQW as found in the one-dimensional model. However,

the very-lazy QW choice still does not render some of the detail of the CTQW, especially

where the probability is nearly zero. The error is shown in Fig. III.5d.
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(a) CTQW (b) QW choice

(c) very-lazy QW (d) Error in (c)

Figure III.5: Simulations on an 80 by 80 square lattice with periodic boundary conditions
and hopping amplitudes of 1. The center vertex basis state is the initial state and ǫ = π

80
.

(a) is the CTQW solution given by the modulus squared of Eq. (III.35) at time 100ǫ. (b)
is the QW choice after 200 steps. (c) is the very-lazy QW choice after 8000 steps with

a = ǫ
10
. (d) is the absolute difference between (a) and (c).

III.6 Exact Expansion of the Discrete-time Quantum Walk

To understand the behavior exhibited in the last section and to show that it is general for a

large number of graph Hamiltonians, I expand the general DTQW time-translation operator

given in Eq. (III.21) using a method similar to that used to expand Ĥ1 and Ĵ1 earlier in

this chapter. I assume again that the initial state is contained in Hdyn and for simplicity,

I also assume the graph Hamiltonian is regular. Since Û1(ǫ) satisfies the properties of the
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conditional in Prop. III.4, I can use the corollary to assume that for any integer power t,

(

Û1(ǫ)
)t
Â† = Â†f̂ (t)0 + B̂†ĝ(t)0 . (III.36)

To simplify the notation, let /c = cos (αǫ) and /s = sin (αǫ) and let multiplication by the

identity be understood for scalar terms. Also note Ê1 = E Î1, where E = 1
ω (exp (−iǫω)− 1).

Multiplying on the left of Eq. (III.36) by Û1(ǫ), I have

(

Û1(ǫ)
)t+1

Â† =
(

/c − i/sŜ1

)(

1− iE Â†Â
)(

Â†f̂ (t)0 + B̂†ĝ(t)0

)

=Â†
(

/cf̂
(t)
0 (1− iEω)− iĝ

(t)
0

(

/cE Ĥ0 + /s
))

(III.37)

+ B̂†
(

ĝ
(t)
0

(

/c − /sE Ĥ0

)

− i/sf̂
(t)
0 (1− iEω)

)

=Â†f̂ (t+1)
0 + B̂†ĝ(t+1)

0 . (III.38)

I can use the exact relation, 1 − iEω = exp (−iǫω) to simplify the expression, and by

equating like operators on both sides, I get the matrix recursion







f̂
(t+1)
0

ĝ
(t+1)
0






=







/c −is/

−i/s c/













exp (−iǫω) −iE Ĥ0

0 1













f̂
(t)
0

ĝ
(t)
0






, (III.39a)

with the un-normalized initial condition







f̂
(0)
0

ĝ
(0)
0






=







1

0






. (III.39b)
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If I denote the multiplication of the two matrices in Eq. (III.39a) by U, then the solution

to Eq. (III.39) is







f̂
(t)
0

ĝ
(t)
0






= Ut







1

0






. (III.40)

To simplify this, I need to find the eigenvalue operators and eigenvector operators of U. The

determinant of U is equal to the product of the determinants of its constituents, implying

det (U) = exp (−iǫω). Also by performing the multiplication, one finds the trace to be

Tr (U) = /c exp (−iǫω) − /sE Ĥ0 + /c. For a 2 × 2 matrix, this immediately leads to the

eigenvalue operators

λ̂±0 =
1

2

(

Tr (U)±
√

Tr (U)2 − 4 exp (−iǫω)
)

=exp (− iǫω
2

)

(

γ̂0 ± i
√

1− γ̂20

)

= exp

(

− iǫω
2

)

exp (±i arccos (γ̂0)), (III.41a)

where

γ̂0 =
exp ( iǫω2 )

2
Tr (U)

=
exp ( iǫω2 )

2

(

/c(exp (−iǫω) + 1)− i/s(exp (−iǫω)− 1)
Ĥ0

ω

)

=cos (αǫ) cos
(ǫω

2

)

− sin (αǫ) sin
(ǫω

2

)Ĥ0

ω
. (III.41b)

From here, it is a tedious exercise to find the eigenvector operators and expand the powers

of U, but the result is







f̂
(t)
0

ĝ
(t)
0






= exp

(

− iωǫ(t+ 1)

2

)







/c pt−1(γ̂0)− exp
(

i ǫω2
)

pt−2(γ̂0)

−i/s pt−1(γ̂0)






, (III.42)
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where pn is the nth Chebyshev polynomial of the second kind. For the properties of the

Chebyshev polynomials, see Refs. [17, 32]. A rigorous proof that Eq. (III.42) is equivalent to

Eq. (III.40) is given in Appendix B. As claimed, if the spectral decomposition of the graph

Hamiltonian is known, Eq. (III.42) can be expanded and probability given by Eq. (III.13).

As a final point, it is important to show that γ0(E) ∈ [−1, 1], where E is an eigenvalue of

Ĥ0. This is the traditional domain of the Chebyshev polynomials. By inspection, it should

be sufficient to show that

Proposition III.5. For any eigenvalue of Ĥ0, E,
|E|
ω ≤ 1.

Proof. From matrix analysis, the spectrum of any matrix is bounded by any norm [25].

Since ω = ‖Ĥ0‖1, this implies |E| ≤ ω.

III.7 Understanding the Various Choices for the

Discrete-time Quantum Walk

I can show that Eq. (III.42) agrees with the result that the QW choice approximates

the exponentiation of exp (−itĴ1) given in Eq. (III.24) for even time steps. In this case,

cos (αǫ) = 0 and sin (αǫ) = 1, leaving







f̂
(t)
0

ĝ
(t)
0






=exp

(

− iωǫt
2

)







−pt−2(γ̂0)

−i exp
(

−iωǫ2
)

pt−1(γ̂0)






; (III.43)

γ̂0 =− sin
(ǫω

2

)Ĥ0

ω
= cos

(π

2
− ǫ

2
Ĥ0

)

+O(ǫ3), (III.44)
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where a shift in the sine function was used in the last equality. Using this expression for γ̂0

and the properties of the Chebyshev polynomials,

pn−1(γ̂0) =
sin
(

nπ
2 − nǫ

2 Ĥ0

)

cos
(

ǫ
2Ĥ0

) +O(ǫ3). (III.45)

Thus, f̂
(t)
0 and ĝ

(t)
0 are given to first order in ǫ (ǫt treated as non-negligible)







f̂
(t)
0

ĝ
(t)
0






≈ exp

(

− iωǫt
2

)



























































(−1)
t
2











cos
(

ǫ(t−1)
2 Ĥ0

)

i exp
(

− iωǫ
2

)

sin
(

ǫt
2 Ĥ0

)











, t even

(−1)
(t−1)

2











sin
(

ǫ(t−1)
2 Ĥ0

)

−i exp
(

− iωǫ
2

)

cos
(

ǫt
2 Ĥ0

)











, t odd

. (III.46)

Note that as expected, this compares to a CTQW time interval of ∆t = ǫ
2 . Also, the even

time steps agree with Eq. (III.24), but one can also see that for an initial state on one

sub-lattice of a bipartite graph, odd time steps only have support on the other sub-lattice.

The behavior is similar to the classical random walk, where the walker is only found on even

vertices for even time steps and odd vertices for odd time steps. So the state initialized

on one sub-lattice of a bipartite graph flip-flops between the two sub-lattices according to

the even-oddness of the time steps. In fact, this even-odd dependence is true for the QW

choice regardless of the size of ǫ, since γ̂0 ∝ Ĥ0 and pn(γ̂0) only has n − 2k powers of γ̂0

for integer k such that 0 ≤ k ≤ ⌊n2 ⌋. Such behavior is broken to some extent by all other

choice of αǫmodulo π.
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Due to the competing limits, understanding the very-lazy QW choice is more complicated.

To start, I assume that both a and ǫ are small compared to 1 and note that

γ̂0 = /c′ − γ̂′0, (III.47)

where γ̂′0 = sin (αǫ) sin
(

ǫω
2

)

(

I0 +
Ĥ0
ω

)

and /c′ = cos
(

αǫ− ǫω
2

)

. Since γ̂′0 is small under the

assumptions, one can expand the inverse cosine about /c′ as

arccos (γ̂0) = αǫ− ǫω

2
+

sin (αǫ) sin
(

ǫω
2

)

| sin
(

αǫ− ǫω
2

)

|

(

I0 +
Ĥ0

ω

)

+O
(

(γ̂′0)
2
)

. (III.48)

Care has to be taken since the derivatives of the inverse cosine are singular at π. Thus

the powers of sine in the denominator of such derivatives are the most important, i.e.
(

d
dx

)n
arccos (x)|x=/c′ ∼

(

cos
(

αǫ− ǫω
2

))n−1 ∣
∣sin

(

αǫ− ǫω
2

)∣

∣

1−2n
. The factors of cosine are

not so important since they are nearly 1, and so the nth term in the expansion including

the relevant facts from γ̂′0 go as

(

sin (a) sin
(ǫω

2

))n ∣
∣

∣sin
(

a+
ǫω

2

)∣

∣

∣

1−2n
, (III.49)

where αǫ = π − a is used. Thus it is clear that the higher order terms in Eq. (III.48) are

negligible. Using only the first order terms in ǫ and a, Eq. (III.48) can be written as

arccos (γ̂0) = π − a− ǫω

2
+

aǫω

|2a− ǫω|

(

I0 +
Ĥ0

ω

)

+O(ǫ2, a2). (III.50)

This is where one must know the relative sizes of the parameters so that the denominator

of the fourth term in Eq. (III.50) can be expanded. If 2a
ǫω < 1, then

arccos (γ̂0) = π − ǫω

2
+
a

ω
Ĥ0 +O

(

ǫ2, a2,

(

2a

ǫω

))

. (III.51)
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Note the assumption here is the same as the hypothesis for the very-lazy QW choice as

mentioned in Sec. III.5. In that case, f̂
(t)
0 and ĝ

(t)
0 are given by







f̂
(t)
0

ĝ
(t)
0






=
exp

(

−iωǫ(t+1)
2

)

√

1− γ̂20







/c sin (t arccos (γ̂0))− exp
(

i ǫω2
)

sin ((t− 1)(arccos (γ̂0))

−i/s sin (t arccos (γ̂0))







≈(−1)t
exp

(

−iωǫ(t+1)
2

)

√

1− γ̂20







sin (t( aω Ĥ0 − ǫω
2 ))− exp

(

i ǫω2
)

sin ((t− 1)( aω Ĥ0 − ǫω
2 )

−ia sin (t( aω Ĥ0 − ǫω
2 ))







(III.52)

Already one sees that ĝ
(t)
0 goes as a. Considering f̂

(t)
0 , the sine functions can be expanded

as exponentials and after a lot of tedious work, one finds







f̂
(t)
0

ĝ
(t)
0






= (−1)t−1 exp

(

−iωǫ(t+ 1

2
)

)







exp
(

i aω tĤ0

)

0






+O

(

ǫ, a,
2a

ǫω

)

(III.53)

As mentioned earlier in the chapter, Eq. (III.13) says as ĝ
(t)
0 approaches zero, f̂

(t)
0 becomes

the only contribution to the probability, here exp
(

i aω tĤ0

)

up to the global phase. This is

actually the adjoint of the CTQW time-translation operator, but such a distinction should

not affect the probability. Also the interval goes from ǫ
2 for the QW choice to a

ω in the

very-lazy QW choice as observed in Sec. III.5.

III.8 Consequences of Connecting the Continuous-time to

the Discrete-time Quantum Walk

As a consequence of the connection, I claim that for a quantum system capable of performing

any arbitrary DTQW of the form discussed here, that system could simulate any CTQW.
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Furthermore, such a system could be used to simulate spatially discretized quantum models,

ideally ones that are more complicated such as models that lack spatial and temporal

symmetry. Furthermore, not every DTQW has a corresponding CTQW, which is to say the

DTQW has more freedom over the CTQW. This is by virtue of the fact that Hdyn ⊆ HE ,

where the subset is strict in all cases except for the one-dimensional cycle and perhaps a few

other trivial graphs. This is not surprising given the enlarged space, but it is an argument

for using the DTQW over the CTQW, if that freedom can be exploited. With that in mind,

it is worth making a distinction between DTQWs that do and do not satisfy the following:

Definition III.6. A DTQW is connected to a CTQW if and only if

1. i ln(Ĉ1) can be written as βÂ†Â + φ, for some β, φ ∈ R and Â in the form of Eq.

(III.1) for an arbitrary set of complex numbers {Tij : (i, j) ∈ E}, and

2. the initial state is a member of Hdyn.

The CTQW connected to such a DTQW is characterized by a graph Hamiltonian with

hopping amplitudes given by Eq. (III.4) and initial state dependent on the initial state in

the edge space.
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APPLICATION: SEARCH ON THE

HYPERCUBE

Search algorithms are one of the quintessential categories of quantum algorithms and there

are several examples, some of which were mentioned in Ch. I. The setup is as follows: a

quantum system is prepared in such a way that one measurement outcome representing the

marked element is preferred but the exact outcome and structure of the system is unknown

to the user. The user has control over a limited set of inputs such as the initial state, time of

measurement and so on, and the goal is that the user measures the preferred outcome with

a high probability, typically 50% or better. It is important for a quantum search algorithm

that the exact time to measure is known since the measurement de-coheres the state, and

if the measurement is performed too late, the state of the system evolves past the intended

state. Typically, this reduces the probability of measuring the mark element by a significant

margin. This is a considerable difference from the classical oracle search. The probability

in the classical case monotonically increases with queries to the oracle.

A noteworthy DTQW search algorithm example is discussed by Shenvi et al. [37], and a

CTQW version is described by Childs and Goldstone [10]. These quantum search algo-

rithms represent the search space as vertices and must somehow distinguish the marked

element in the time-translation operator. The CTQW method involves using the adjacency

Hamiltonian modified with the oracle Hamiltonian. If m is the marked element, the oracle

Hamiltonian is given as − |m〉〈m|. For the DTQW, Shenvi uses the hypercube graph (to be
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discussed in the next section). The coin operator is a modified version of the Grover coin

operator as described in Sec. III.4, where the block part for the marked element is replaced

by negative one times the identity in that subspace. A quantum oracle (discussed in Ch. I)

is used to “choose” the appropriate block part of the coin operator for the marked element.

It has been proven that any search algorithm based on a quantum oracle can achieve the

desired result in no fewer than O(
√
N) queries to the oracle [5, 6, 46]. If I equate the

number of queries to the oracle with the number of time steps in the DTQW, then the

search algorithm I propose on the hypercube appears to reach a probability greater than

50% for measuring the marked element in a number of steps that does not scale with N .

Because of the proofs presented in Refs.[5, 6, 46], this is a controversial claim, and at this

time, there is only numerical results to support it. Thus, it is not clear that the behavior

persists for any dimension of the hypercube. Furthermore, there is a free parameter which

must be determined to optimize the probability. Still, I present the algorithm, the numerical

results and the current understanding of the anomalous behavior.

IV.1 Basics of the Hypercube

The graph of the hypercube is defined as follows:

Definition IV.1. The d-dimensional hypercube is the graph such that

V = {n : n ∈ Z ∩ [0, 2d)} and (n,m) ∈ E if and only if the binary expansion of n is

different from that of m by a single digit (bit).

Fig. IV.1 is a visual representation of the hypercube for d = 3. I am going to suppress

any notation on operators, states and spaces which signifies the dimension of the hypercube

since it is understood that I am working in an arbitrary dimension d. In general, the size
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(000) (100)

(101)(001)

(110)

(111)(011)

(010)

Figure IV.1: Visual representation of the d = 3 hypercube. The vertices are labeled
based upon their binary expansion.

of the search space is N = 2d and the degree or coordination number of every vertex is d.

Some useful concepts for the hypercube are the Hamming weight, Hamming distance and

the binary dot product.

Definition IV.2. For any positive integer n, let ni ∈ {0, 1} be the ith digit in the binary

expansion of n. Then one can define the following:

1. the Hamming weight of a positive integer n, denoted ‖n‖, is given by ‖n‖ =
∑

i ni,

2. the Hamming distance between two positive integers n and m is given by ‖n ⊕m‖,

where ⊕ is the bitwise XOR operation, and

3. the binary dot product between two positive integers n and m, denoted by n ◦m, is

given by n ◦m =
∑

i nimi.

The Hamming weight is the number of ones in the binary expansion, the Hamming distance

is the number of binary digits which are unequal between the two values, and the binary

dot product is the number of digits in which the two values have an overlapping 1. The

Hamming distance also gives the graph distance. This means I can restate the connectivity

condition of the hypercube by saying that n@m if and only ‖n ⊕ m‖ = 1, which implies
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there exists an integer p, such that 0 ≤ p < d and n = m ⊕ 2p. Also for dimension d, the

number of vertices with Hamming weight p is given by the binomial coefficient
(

d
p

)

.

Eigenvectors and values of the adjacency Hamiltonian for the hypercube can be found using

representation theory. The details of the method are given by Tinkham [43]. There are

a number of symmetry groups of the hypercube, but the simplest is given by { ˆ⊕
n : n ∈

Z∩ [0, N)}, where for any basis state, |n〉, ˆ⊕
m |n〉 = |m⊕ n〉. Because XOR is associative,

commutative and its own inverse, this group preserves the connectedness of the hypercube,

is Abelian and every element is its own inverse. Thus all the representations consist of 1’s

and −1’s from which the eigenvectors can be formed. A convenient way to represent this is

given in the following proposition:

Proposition IV.3. Let Ĥ0 =
∑N−1

n=0

∑d−1
p=0 |n〉〈n⊕ 2p| be the graph Hamiltonian for the

hypercube. Then for all k ∈ Z ∩ [0, N), |φk〉 = 1√
N

∑N−1
n=0 (−1)n◦k |n〉 is an eigenvector of

Ĥ0 with eigenvalue Ek = d− 2‖k‖.

Proof. Consider

Ĥ0 |φk〉 =
1√
N

N−1
∑

m=0

N−1
∑

n=0

d−1
∑

p=0

(−1)m◦k |n〉〈n⊕ 2p|m〉

=
1√
N

N−1
∑

n=0

(−1)n◦k





d−1
∑

p=0

(−1)n◦k(−1)(n⊕2p)◦k



 |n〉 . (IV.1)

Looking at the exponent of any term in the bracketed sum, one has

n ◦ k + (n⊕ 2p) ◦ k =
∑

i 6=p

2niki + (np + np ⊕ 1)kp = 2
∑

i 6=p

niki + kp. (IV.2)

The first term in Eq. (IV.2) is even and results in a factor of 1 for the pth term in the

bracketed sum of Eq. (IV.1). The remaining term in Eq. (IV.2) is independent of n which
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implies the bracketed sum can be factored out of the sum on n. Therefore, I have

Ĥ0 |φk〉 = Ek |φk〉 ; (IV.3)

Ek =

d−1
∑

p=0

(−1)kp = d− 2‖k‖. (IV.4)

The spectrum of the hypercube takes on integer values, is bounded as |Ek| ≤ d, skips every

other integer and has the degeneracy
(

d
‖k‖
)

. Since Ĥ0 is Hermitian, a corollary to this is

that for any k, l ∈ Z ∩ [0, N),

N−1
∑

n=0

(−1)k◦n(−1)l◦n = Nδkl, (IV.5)

but really this is a consequence of the orthogonality theorem of representation theory [43].

IV.2 Proposed Algorithm and Numerical Results

The algorithm I propose takes place on a modified hypercube in dimension d, where one

element is considered marked. Let that element be m. Also, let any object associated with

this modified hypercube be denoted with a prime. In H′
V = HV , the hypercube is modified

with self-loops on each vertex, and the graph Hamiltonian is the adjacency Hamiltonian

without self-loops plus a diagonal perturbation such that Ĥ ′
0 = Ĥ0+ Ŵ0, which is given by

Ŵ0 =

N−1
∑

n=0

wn |n〉〈n| , (IV.6a)

60



CHAPTER IV APPLICATION: SEARCH ON THE HYPERCUBE

and

wn = (1− x)‖n⊕m‖(1 + x)d−‖n⊕m‖. (IV.6b)

x ∈ [0, 1] is an optimization parameter. The new graph is depicted in Fig. IV.2. The

self-loop weights, {wn : n ∈ Z∩ [0, N)}, may seem arbitrary, but they have some interesting

properties. First, they satisfy a sum rule independent of x:

N−1
∑

n=0

wn =

d
∑

p=0

(

d

p

)

(1− x)p(1 + x)d−p = (1− x+ 1 + x)p = N. (IV.7)

They also preserve some of the symmetry of the hypercube. The perturbation fixes the

marked corner and the vertex furthest away, but any transformation which preserves both

the connectivity and Hamming distance from m is a symmetry of the graph Hamiltonian.

Also for all values of x except 0 and 1, the marked element has the largest weight and

the furthest corner from the marked element has the smallest. Furthermore, Ŵ0 expanded

in the eigenbasis of the unperturbed hypercube is particularly useful. All of this is more

thoroughly discussed later in this chapter.

(000) (100)

(101)(001)

(110)

(111)(011)

(010)

w0 w4

w1 w5

w2 w6

w3 w7

Figure IV.2: Visual representation of the modification made to the d = 3 hypercube for
the proposed search algorithm.
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Given the perturbed graph Hamiltonian, the algorithm uses a DTQW in the form of

Eq. (III.25) (which is the QW choice). To keep H′
E = HE , it is understood that for the

unperturbed system, there are basis states, |n, n〉 ∈ HE , but they are connected to the

rest of the hypercube only by the perturbation. Since the marked element is unknown, the

initial state must reflect this:

|ψ, 0〉 = 1√
dN

N−1
∑

n=0

d−1
∑

p=0

|n⊕ 2p, n〉 = 1

2
√
dN

(

Â† + B̂†
)

|φ0〉 , (IV.8)

which is an equal superposition over all edges internal to the hypercube but with no support

on the self-loop basis states. Note that although the coin operator is connected to the

perturbed CTQW as per Def. III.6, the initial state is not connected to the perturbed

CTQW but rather to the unperturbed CTQW. I claim that for a specific value of x and

at a certain number of time steps, the probability to measure m as given by Eq. (II.10) is

greater than 50%. The extreme possibilities for the self-loop weights occurs when x = 0,

which gives wn = 1 for all n and x = 1, which gives wn = Nδnm. Based upon the typical

CTQW search, one would suspect that the optimal case is when x = 1, but that turns out

to be not true. Furthermore the numerical simulations presented in Figs. IV.3 show that

the apparent best case found by trial and error is dependent on d. There is a condition I can

use to get close to this result which is for m = 0, w0 −w1 ≈ 3
2 . This was found empirically

and seems to get worse as the dimension increases. Also Figs. IV.3 support my claim that

the number of steps needed to achieve the desired result does not appear to scale with N .
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(a) d = 7, t = 58, x = 0.222 (b) d = 8, t = 55, x = 0.210

(c) d = 9, t = 58, x = 0.196 (d) d = 10, t = 55, x = 0.188

Figure IV.3: Simulations of the probability for the proposed search algorithm at partic-
ular values of x and t and for various dimensions. The values shown here are found to have

the greatest probability on the marked element. In all cases, m = 0 and ǫ = π
60
.

Some observations from the simulations give hints to the reasons for this behavior. One

observation is that ǫt ≈ π. This suggests eigenvalues of the perturbed time-translation

operator are still nearly integers. Furthermore, when the number of time steps is doubled,

the probability on vertex 0 is nearly zero, and at three times the number of steps, that

probability goes back to a similar value as shown in Figs. IV.3. This suggests there is

constructive interference when ǫt is nearly an odd integer and destructive interference when

ǫt is nearly an even integer. This is further supported by the observation that changing

x away from optimum changes not only the height of the maximum probability but also

when it occurs. Another observation is that the probability on vertex 0 is correlated to

probability on vertices within Hamming distance 1. This is because the states move as
(

(

Â′
)†

±
(

B̂′
)†
)

|n〉, and for reasons shown later in the chapter, this is always the plus

sign. Another subtle observation is that the exact time of maximum might be slightly
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dependent on the even-oddness of the dimension. However, in discrete-time, this small

difference may be an artifact.

The method of analysis is to find the eigenvectors and values of the edge Hamiltonian,

Ĵ ′
1 = 1

2

(

(

Â†Â
)′

+
(

B̂†B̂
)′
)

= Ĵ1 + Ŵ1, where Ĵ1 is given by Eq. (III.22) for the unper-

turbed hypercube and Ŵ1 can be written as

Ŵ1 =
1

2





N−1
∑

n=0

d−1
∑

p=0

√
wn

(

|n⊕ 2p, n〉〈n, n|+ |n, n〉〈n⊕ 2p, n|
)

+

N−1
∑

n=0

wn |n, n〉〈n, n|





+
(

unitary transform by Ŝ1

)

. (IV.9)

Since the DTQW is approximated by the exponentiation of this operator, the edge space

dynamics generated by Ĵ ′
1 with initial state (IV.8) should give the same behavior.

IV.3 Characterizing Edge Space Dynamics for the

Unperturbed Hypercube

Based upon the results of Sec. IV.1 and Eq. (III.12), I already know all the eigenvectors in

the dynamic space of the unperturbed hypercube. Since Ω̂0 = dÎ1, the eigenvectors of Ĵ1

are

|ψ±
k 〉 =

1

2
√

λ±k

(

Â† ± B̂†
)

|φk〉 , (IV.10)

with eigenvalues

λ±k =















d− ‖k‖ ,+

‖k‖ ,−
, (IV.11)
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except for |ψ+
N−1〉 = |ψ−

0 〉 = 0. Note |ψ+
0 〉 = |ψ, 0〉, which shows that the initial state is a

stationary state of the unperturbed hypercube. So the dynamic space has dimension 2N−2,

which leaves a (d−2)N +2 dimensional null space for Ĵ1 plus the N self-loop vectors which

are also null. It is worth characterizing what kind of vectors are in the null space since it

is possible they are not null for Ĵ ′
1. To do this, it is best to expand in a symmetrized basis,

{|spk〉 : k ∈ Z ∩ [0, N) and p ∈ Z ∩ [0, d)}, where the basis vectors are given by

|spk〉 =
1√
N

N−1
∑

n=0

(−1)k◦n |n⊕ 2p, n〉 . (IV.12)

By Eq. (IV.5), these vectors are mutually orthogonal, normalized and there are exactly

enough to span the space of internal edges of the hypercube. Thus, these symmetrized

states in union with the self-loop states form an orthonormal basis. By inspection, one can

see that

Â |spk〉 = |φk〉 , (IV.13)

which implies

Â† |φk〉 =
N−1
∑

l=0

d−1
∑

p=0

|spl 〉〈s
p
l | Â† |φk〉 =

d−1
∑

p=0

|spk〉 . (IV.14)

Also,

Ŝ1 |spk〉 =
1√
N

N−1
∑

n=0

(−1)k◦n |n, n⊕ 2p〉 = 1√
N

N−1
∑

n=0

(−1)k◦(n⊕2p) |n⊕ 2p, n〉

=
1√
N

N−1
∑

n=0

(−1)k◦n(−1)kp |n⊕ 2p, n〉 = (−1)kp |spk〉 . (IV.15)
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So define |ψ(ij)
k 〉 = 1√

2
(|sik〉 − |sjk〉). Â†Â |ψ(ij)

k 〉 = 0 since the two terms give the same

superposition over the k symmetrized states by Eqs. (IV.13) and (IV.14) and if I restrict

to the cases where ki = kj , then Ŝ1 |ψ(ij)
k 〉 = 0 by Eq. (IV.15). Therefore,

Ĵ1 |ψ(ij)
k 〉 = 1

2

(

Â†Â+ Ŝ1Â
†ÂŜ1

)

|ψ(ij)
k 〉 = 0. (IV.16)

For k = 0, and N − 1, there are d− 1 distinct cases of ki = kj , and for all other values of k,

0 < k < N − 1, there are d− 2 distinct cases where ki = kj , making (d− 2)N + 2 linearly

independent states of the form |ψ(ij)
k 〉. Thus I have a complete characterization of the null

space of Ĵ1.

Finally, I can write the eigenvectors in the symmetrized basis:

|ψ±
k 〉 =

1

2
√

λ±k

N−1
∑

l=0

d−1
∑

p=0

|spl 〉〈s
p
l |
(

Â† ± B̂†
)

|φk〉

=
1

2
√

λ±k

d−1
∑

p=0

(

1± (−1)kp
)

|spk〉

=
1

√

λ±k















∑d−1
p=0(kp ⊕ 1) |spk〉 ,+

∑d−1
p=0 kp |s

p
k〉 ,−

. (IV.17)

IV.4 Characterizing Edge Space Dynamics for the

Perturbed Hypercube

For the perturbed hypercube, Ω̂′
0 = dÎ0 + Ŵ0. Note this means

Ω̂′
0 − Ĥ ′

0 = dÎ0 + Ŵ0 − Ĥ0 − Ŵ0 = Ω̂0 − Ĥ0. By Eq. (III.12), |ψ−
k 〉 is an eigenvector

of Ĵ ′
1 as well as Ĵ1. Since the initial state, |ψ, 0〉, is an eigenvector of Ĵ1, it is orthogonal to

|ψ−
k 〉, which reduces the number of relevant eigenvectors for the algorithm by N − 1. Also,
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I can characterize the null space of Ĵ ′
1 to see how the addition of Ŵ1 changes the null space

from that found for Ĵ1. Consider that Ŵ1 connects self-loop states to self-loop states and

self-loop states to hypercube states, but it does not connect hypercube states to hypercube

states, so it is always the case that 〈spk|Ŵ1|sql 〉 = 0. The only relevant matrix elements of

Ŵ1 in the symmetrized basis are of the form

〈n, n|Ŵ1|spk〉 =
1

2

d−1
∑

q=0

√
wn 〈n⊕ 2q, n|

(

Î1 + Ŝ1

)

|spk〉 =
√
wn(−1)k◦n(kp ⊕ 1)√

N
. (IV.18)

Since ki = kj for |ψ(i,j)
k 〉, one sees that Ŵ1 |ψ(i,j)

k 〉 = 0, which means that part of the null

space stays in the null space. However, it must be that the self-loop states which were

null in the unperturbed system are a part of the perturbed dynamic space. Assuming that

no eigenvalues of Ω̂′
0 + Ĥ ′

0 are zero, the perturbed dynamic space must be of dimension

2N − 1, and N − 1 are already accounted for. So the remaining space of interest is given

by span{|ψ+
k 〉 , |n, n〉 : k, n ∈ Z ∩ [0, N), except k = N − 1}, which intersects the dynamic

space with dimension N and the null space with dimension N − 1. I already know what

the dynamic space eigenvectors are. If |φ′k〉 is an eigenvector of Ω̂′
0 + Ĥ ′

0 = dÎ0 + Ĥ0 + 2Ŵ0

with eigenvalue λ′k, then the dynamic space eigenvectors of Ĵ ′
1 are

|ψ′
k〉 =

1
√

2λ′k

(

(

Â′
)†

+
(

B̂′
)†
)

|φ′k〉 , (IV.19)

with eigenvalues
λ′
k

2 . As for the null space eigenvectors, I need to expand Ŵ1 in this subspace.

Clearly,

〈n, n|Ŵ1|m,m〉 = wnδnm. (IV.20)
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For the only other non-zero matrix elements, I use the symmetrized basis to find

Wk,n = 〈ψ+
k |Ŵ1|n, n〉 =

1
√

d− ‖k‖

d−1
∑

p=0

(kp ⊕ 1) 〈spk|Ŵ1|n, n〉

=

√
wn(−1)k◦n

√

N(d− ‖k‖)

d−1
∑

p=0

(kp ⊕ 1)2 =

√

wn(d− ‖k‖)(−1)k◦n√
N

=

√

wnλ
+
k (−1)k◦n
√
N

. (IV.21)

If I write a null vector as |ψnull〉 =
∑N−2

k=0 βk |ψ+
k 〉 +

∑N−1
n=0 αn |n, n〉, then my eigenvector

equation is

Ĵ ′
1 |ψnull〉 =

N−2
∑

k=0

βk

(

Ĵ1 + Ŵ1

)

|ψ+
k 〉+

N−1
∑

n=0

αn

(

Ĵ1 + Ŵ1

)

|n, n〉

=

N−2
∑

k=0

(

λ+k βk +

N−1
∑

n=0

αnWk,n

)

|ψ+
k 〉

+

N−1
∑

n=0

(

wnαn +

N−2
∑

k=0

βkWk,n

)

|n, n〉 = 0. (IV.22)

This implies that the terms in the brackets are zero for all n and k. Assuming no wn 6= 0,

I solve for αn in the second condition and plug it into the sum of the first:

N−1
∑

n=0

αnWk,n =−
N−1
∑

n=0

N−2
∑

l=0

βl
wn

Wl,nWk,n

=−
N−2
∑

l=0

βl

√

λ+k λ
+
l

N−1
∑

n=0

(−1)k◦n(−1)l◦n

N
= −βkλ+k , (IV.23)

where Eq. (IV.5) is used. Thus any set of βk’s satisfy the null eigenvector condition so long

as αn = 1
wn

∑N−2
k=0 Wn,kβk. The projection of |ψ+

0 〉 into the null space of Ĵ ′
1 must align with
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the null vector for which βk = δk0. This implies

P̂
null
1 |ψ+

0 〉 = C2

(

|ψ+
0 〉 −

N−1
∑

n=0

√

d

Nwn
|n, n〉

)

, (IV.24)

where C is the normalization constant found to be

C =

(

1 +
d

N

N−1
∑

n=0

1

wn

)− 1
2

=



1 +
d

N

d
∑

p=0

(

d

p

)(

1

(1− x)

)p( 1

(1 + x)

)d−p




− 1
2

=

(

1 +
d

(1− x2)d

)− 1
2

. (IV.25)

Aside from the last equation, the analysis has made no assumptions about the wn’s (other

than wn 6= 0). Thus how the choice of self-loop weights results in the behavior of Figs. IV.3

comes down to finding the eigenvectors and values of dÎ0 + Ĥ0 + 2Ŵ0.

IV.5 Eigenvectors and Values of the Perturbed Hypercube

For simplicity and without loss of generality, I only analyze the case when the marked

element m = 0. Then the Hamming distances become Hamming weights in Eq. (IV.6b). It

is not effective to use perturbation theory in this case to find the eigenvector and values. The

purpose of the self-loops is to perturb the system strongly enough so that a once stationary

state now changes in time. As mentioned before, the perturbation does not completely

remove the symmetry of the hypercube and so one might consider symmetry reduction

using the VanVleck projection operators [43]. Since the self-loop hopping amplitudes are

only dependent on Hamming weight, one finds that for any permutation on the binary

digits of the vertices, g, wn = wg(n). Furthermore, performing g on all vertices preserves the

connectedness of the graph, which is to say n@q if and only if g(n)@g(q). Therefore, the

69



CHAPTER IV APPLICATION: SEARCH ON THE HYPERCUBE

remaining symmetry group is isomorphic to the group of permutations on d items, Sd. Still,

this is a rather cumbersome group to work with for arbitrary dimension and at best it would

block diagonalize the problem. However, this does suggest that not all eigenvectors are of

importance in this case. I claim the symmetry requires only some of the eigenvectors have

support on |0〉. The argument is as follows: consider finding the irreducible representations

of the group and thus the VanVleck projection operators. For the exact form of these

projection operators, see Tinkham [43]. The group of operators on HV which represent Sd

must connect basis states to basis states with the same Hamming weight. So each term

in the sum of the VanVleck projection operator must take |0〉 into |0〉. If the irreducible

representation is not the identity, then any vector given after the projection has support

on |0〉 as the sum over the group elements of the matrix entries for that row, column

and representation used to form the projection operator. Since it is not the identity by

hypothesis, the sum must be zero by the orthogonality theorem of representation theory.

Thus the only projection operator that maintains support on |0〉 is the one corresponding to

the identity representation. Numerical calculations on relatively small matrices representing

dÎ0 + Ĥ0 + 2Ŵ0 suggest there are only d + 1 such eigenvectors and this is supported by

the calculation later in this chapter. If this holds, then only d + 1 of the N eigenvectors

are of importance to this problem. Furthermore, this suggests that these eigenvectors have

a useful property. The identity representation is the representation of 1 for every member

of the group, which means the VanVleck projection operator responsible for these states

treats any basis state with the same Hamming weight equally. Thus I conjecture that any

eigenvector, |φ′〉, with support on the marked element has the property, ‖n‖ = ‖q‖ implies

〈n|φ′〉 = 〈q|φ′〉. Again, this is supported by numerical work and the calculation to follow.

As mentioned earlier, Ŵ0 in the eigenbasis of the unperturbed hypercube has a form more

appealing for approximation. However, I need to ensure that the eigenvectors of interest
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have the same property in that basis. To show this, the following identity is useful:

‖k‖=const.
∑

k

(−1)k◦n =

d
∑

m=0

(‖n‖
m

)(

d− ‖n‖
‖k‖ −m

)

(−1)m = P
‖n‖
‖k‖ . (IV.26)

If one expands wn(x) as a polynomial in x, it can be shown that wn(x) is the generating

function for the P
‖n‖
‖k‖ coefficients on ‖k‖. This as well as the proof of Eq. (IV.26) is given

in Appendix C. If I assume |φ′〉 has the above property in the position basis and define

φ′‖n‖ = 〈n|φ′〉 , then the inner product of the new eigenvector with a member of the old

eigenbasis gives

〈φk|φ′〉 =
1√
N

N−1
∑

n=0

(−1)k◦n 〈n|φ′〉 = 1√
N

d
∑

p=0

φ′p

‖n‖=p
∑

n

(−1)k◦n

=
1√
N

d
∑

p=0

P ‖k‖
p φ′p. (IV.27)

Since P
‖k‖
p depends only on the Hamming weight of k, I have shown that ‖k‖ = ‖l‖ implies

〈φk|φ′〉 = 〈φl|φ′〉.

So to expand, the matrix elements of Ŵ0 in the eigenbasis of the unperturbed hypercube

are

〈φk|Ŵ0|φl〉 =
1

N

N−1
∑

n=0

N−1
∑

q=0

(−1)k◦n(−1)l◦qwnδnq =
1

N

N−1
∑

n=0

(−1)k◦n+l◦nwn. (IV.28)

Consider the exponent k ◦ n + l ◦ n =
∑

i(ki + li)ni. Breaking the terms down by cases,

one can see that if ki = li, then (−1)(ki+li)ni = 1, and if ki 6= li then (−1)(ki+li)ni = (−1)ni .

This implies that (−1)k◦n+l◦n = (−1)n◦(k⊕l). Also let wn = w̃‖n‖ so that I can factor the
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self-loop weights out of the ‖n‖ = const. sum. Using this for the matrix element, I have

〈φk|Ŵ0|φl〉 =
1

N

N−1
∑

n=0

(−1)n◦(k⊕l)wn =
1

N

d
∑

p=0

w̃p

‖n‖=p
∑

n

(−1)n◦(k⊕l)

=
1

N

d
∑

p=0

w̃pP
‖k⊕l‖
p . (IV.29)

Now I use the fact that w̃p = (1 + x)d
(

1−x
1+x

)p
and w̃‖k⊕l‖(x) is the generating function for

P
‖k⊕l‖
p . This implies that

〈φk|Ŵ0|φl〉 =
(1 + x)d

N
w̃‖k⊕l‖

(

1− x

1 + x

)

=
(1 + x)d

N

(

1− 1− x

1 + x

)‖k⊕l‖(

1 +
1− x

1 + x

)d−‖k⊕l‖

=
1

N
(1 + x− 1 + x)‖k⊕l‖ (1 + x+ 1− x)d−‖k⊕l‖

=x‖k⊕l‖. (IV.30)

Just as real-space has the dual k-space in condensed matter, here I have the k-cube for which

Ŵ0 connects vertices of the k-cube (eigenstates of the original hypercube) based upon the

Hamming distance between them. So to expand Ŵ0 in powers of x, define D̂
(p)
0 to be the

matrix which connects all states of the k-cube with Hamming distance p, so that

Ŵ0 = Î0 + xD̂
(1)
0 + x2D̂

(2)
0 + · · ·+ xdD̂

(d)
0 . (IV.31)

Note D̂
(1)
0 is the adjacency operator for the k-cube and that all D̂

(p)
0 are Hermitian. For

the sake of this thesis, I only take the first order approximation in x since x2 < 0.04 for

the values of interest based upon the simulations of higher dimension. This may appear

sufficient but there is a tendency for powers of x to be multiplied by the dimension in the

calculations, and this may not be negligible since the optimal x depends on d. More work
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must be done to obtain a better approximation.

For any eigenvector of interest, I can write |φ′〉 = ∑N−1
k=0 φ

′
‖k‖ |φk〉. The action of D̂

(1)
0 on

such a vector is

D̂
(1)
0 |φ′〉 =

N−1
∑

k=0





‖l‖=‖k‖+1
∑

l

φ′‖l‖−1 |φl〉+
‖l‖=‖k‖−1
∑

l

φ′‖l‖+1 |φl〉



 . (IV.32)

The first sum in the brackets is over the states that move forward by one Hamming weight

and the second is over the states that move backward by one under the action of D̂
(1)
0 . If I

reorder the sum, a single state |φk〉 has ‖k‖ terms coming from states with φ′‖k‖−1 amplitude

and d− ‖k‖ terms coming from states with φ′‖k‖+1 amplitude. Using this and the fact that

Ĥ0 is diagonal in this basis, the action of dÎ0 + Ĥ0 +2
(

Î0 + xD̂
(1)
0

)

on |φ′〉 with eigenvalue

λ′ can be written as a recursion equation:

dφ′k + (d− 2k)φ′k + 2φ′k + 2x
(

kφ′k−1 + (d− k)φ′k+1

)

= λ′φ′k, (IV.33)

where the index ‖k‖ → k. Defining µ = 1
2λ

′ − d− 1, the recursion becomes

x
(

kφ′k−1 + (d− k)φ′k+1

)

− kφ′k = µφ′k. (IV.34)

Solving Eq. (IV.34) requires a generating function, but notice that the equation itself does

not enforce the fact that 0 ≤ k ≤ d. So I define the generating function f as

f(y;x) =

N−1
∑

k=0

(

d

k

)

φ′ky
k, (IV.35)

where the binomial coefficients enforce the domain of k. Note that
(

d
k

)

= d−(k−1)
k

(

d
k−1

)

=

k+1
d−k

(

d
k+1

)

. Multiplying Eq. (IV.34) by
(

d
k

)

yk and summing over all k, one finds the recursion
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equations become

x
(

dyf − y2f ′ + f ′
)

− yf ′ = µf, (IV.36a)

or

(

y2 +
y

x
− 1
)

f ′ =
(

dy − µ

x

)

f, (IV.36b)

where prime in this case denotes the derivative with respects to y. This is a separable,

first-order differential equation which can be integrated by partial fractions. With that in

mind, I factor the polynomial y2 + y
x − 1 = (y − y+)(y − y−), where

y± =
1

2x
(−1±

√

1 + 4x2). (IV.37)

If the partial fraction equation is given as

dy − µ
x

(y − y+)(y − y−)
=

p

(y − y+)
+

q

(y − y−)
, (IV.38)

then the solution to Eq. (IV.36) is

f(y;x) = (y − y+)
p(y − y−)

q, (IV.39)

where the free constant is taken to be 1 since this is fixed eventually by normalization.

The first requirement given by Eq. (IV.38) is p + q = d, but to make sure the expansion

of f is a finite-order polynomial of order d, I also require that p be an integer such that

0 ≤ p ≤ d. This quantization gives µp = µ(p) from the second condition of Eq. (IV.38),
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µp

x = py+ + (d− p)y−, which yields

µp = −d
2
+ (p− 1

2
)
√

1 + 4x2. (IV.40)

It is interesting but perhaps not surprising this is reminiscent of the energy spectrum of a

harmonic oscillator. As anticipated, this part of the spectrum is evenly spaced and nearly

integer up to O(x2). Finally, I can extract the coefficients of the eigenvector by expanding

Eq. (IV.39). Using y+y− = −1, the expansion is

f(y;x) =(y − y+)
p(y +

1

y+
)d−p =

d
∑

n=0

d
∑

l=0

(

p

l

)(

d− p

n

)

(−1)p−l(y+)
2p+n−l−dyn+l

=

d
∑

k=0

(

(−1)p(y+)
2p+k−d

d
∑

l=0

(

p

l

)(

d− p

k − l

)

(−y2+)−l

)

yk. (IV.41)

The part in the bracket is almost φ′k(p) except that any factors that do not depend on k

can be absorbed into a normalization constant, so that

φ′k(p) = Cp
1
(

d
k

)

d
∑

l=0

(

p

l

)(

d− p

k − l

)

(y−)
l(y+)

k−l, (IV.42)

where Cp is the normalization constant and y− is reintroduced.

IV.6 Maximizing Probability on the Marked Element

At this point, describing the behavior of the algorithm is a matter of putting the pieces

together. Instead of trying to find the probability directly, which to some extent is not

possible since all the eigenvectors are not known, I obtain the time-dependent factor multi-

plying

(

(

Â′
)†

+
(

B̂′
)†
)

|0〉 to within the approximation. This is the primary contribution

to the probability on vertex 0 and should be fully accounted for based upon the symmetry
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argument. Other parts contributing to the probability of measuring vertex 0 come from the

projection of the initial state into the null space–which is static–and contributions from the

B-projector acting on the neighbor basis states (in the real hypercube) which would require

the remaining eigenvectors to be fully accounted for.

Consider the approximate dynamics of the algorithm given by Ĵ ′
1:

exp
(

−itĴ ′
1

)

|ψ+
0 〉 =P̂

null
1 |ψ+

0 〉+
d
∑

p=0

exp

(−itλ′p
2

)

|ψ′
p〉〈ψ′

p|ψ+
0 〉

+ other eigenvector terms . (IV.43)

The inner product in each term of the sum is found to be

〈ψ′
p|ψ+

0 〉 =
1

2
√

2λ′pd
〈φ′p|

(

Â′ + B̂′
)(

Â† + B̂†
)

|φ0〉

=
1

√

2λ′pd
〈φ′p|

(

dÎ + Ĥ0

)

|φ0〉 =
√

2d

λ′p
〈φ′p|φ0〉

=

√

2d

λ′p
Cp, (IV.44)

where Eq. (IV.19) is used for |ψ′
p〉. Also |φ′p〉 can be expanded in the position basis:

〈n|φ′p〉 =
N−1
∑

k=0

φ′‖k‖(p) 〈n|φk〉 =
1√
N

d
∑

k=0

P
‖n‖
k φ′k(p). (IV.45)

This gives the state of the algorithm as

exp
(

−itĴ ′
1

)

|ψ+
0 〉 =P̂

null
1 |ψ+

0 〉

+

√

d

N

N−1
∑

n=0

d
∑

k,p=0

exp

(−itλ′p
2

)

Cp

λ′p
P

‖n‖
k φ′k(p)

(

(

Â′
)†

+
(

B̂′
)†
)

|n〉

+ other eigenvector terms . (IV.46)
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In particular, I want the n = 0 term, for which P 0
k =

(

d
k

)

. Using this, the k sum is evaluated

as

d
∑

k=0

P 0
kφ

′
k(p) =Cp

d
∑

k,l=0

(

p

l

)(

d− p

k − l

)

(y+)
k−l(y−)

l

=Cp(1 + y−)
p(1 + y+)

d−p. (IV.47)

For the exponentials,
λ′
p

2 = 1 + d
2 −

√
1+4x2

2 + p
√
1 + 4x2. All but the p

√
1 + 4x2 term

amounts to a common phase. So if I take the value of time t = π√
1+4x2

= tmax, then

exp
(−itλ′

p

2

)

∝ (−1)p. This means the function I wish to maximize is

g0(x) =

√

d

N

d
∑

p=0

(−1)p
C2
p

λ′p
(1 + y−)

p(1 + y+)
d−p. (IV.48)

By inspection, one can see that 1 + y− < 0 < 1 + y+ for all values of x, which shows that

the condition on the time is as I conjectured. This is the case for constructive superposition

of all the marked element components of the eigenvectors. Furthermore, for x = .210 as in

Fig. IV.3b, tmax ≈ .93π which is in good agreement with the numerical value of 55
60π for

maximum probability. However, this agreement is contrasted with the lack of agreement

for the maximizing value of x found in Figs. IV.4. There, x ≈ .485 is the maximizing value

in all cases. Still, the fact that there is a maximum suggests that similar results exist for a

better approximation of Ŵ0. Actually if I replace Ŵ0 with Î0 + xD̂
(1)
0 , this result is exact,

and the maximum suggests that the behavior would be similar to what is presented in Figs.

IV.3. Such a model might even have a distinct advantage in that the maximizing x value

appears to not depend on d and furthermore, the diagonal weights in the position basis are

simpler.
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(a) d = 7 (b) d = 8 (c) d = 9

(d) d = 10 (e) d = 11 (f) d = 12

(g) d = 13 (h) d = 14 (i) d = 15

Figure IV.4: Plot of g0(x) versus x for various dimensions. The maximum appears to be
x ≈ 0.485 in all cases.

The error from using Î0+xD̂
(1)
0 rather than Ŵ0 can be quantified. Note that every “column”

of D̂
(p)
0 has

(

d
p

)

non-zero entries, which means that ‖D̂(p)
0 ‖2 =

(

d
p

)

. Thus, distance between

the two operators can be bounded as

‖Ŵ0 − (Î0 + xD̂
(1)
0 )‖2 = ‖

d
∑

p=2

xdD̂
(p)
0 ‖2 ≤ (1 + x)p − (1 + xp). (IV.49)

I suspect this limit is tight, so it is not surprising that the agreement in Figs. IV.4 is poor.
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IV.7 Unfinished Analysis

There are many unanswered questions. I still do not have a formula for the maximizing

x value as a function of d. However, this would be unnecessary with the suggestion of a

different perturbation, namely Ŵ0 → Î0 + xD̂
(1)
0 . I also do not have a full characterization

of the performance at the maximum probability. This can be approximated, but it is not

worth doing for this model until a better set of eigenvectors are found. Finally, gate-level

implementation is needed to characterize the algorithm in terms of the number of gates

required.

IV.8 Final Comments on the Search Algorithm

As mentioned earlier in this chapter, if the results I have presented are to be believed, then it

appears there exists a unitary evolution which meets the criteria of the search algorithm and

does so without the time scaling with the size of the search space. This is in contradiction

with the proof that the best that can be done is O(
√
N). I am not entirely sure why this

is the case, but I conjecture what is presented here does not contain an oracle. That is, at

no point is there one subroutine which is singularly charged with knowing which element

is marked. The existence of a quantum oracle is the crux of the arguments given in Refs.

[5, 6, 46]. In my case, the non-marked coin operators are not ignorant of the marked element

as is the case with Shenvi et al. [37]. In a sense, the oracle is dispersed amongst all the block

parts of coin operator, and so for a single step, the smallest sequential block of gates that

could be designated as the oracle is the coin operator itself. I concede that for a computer

scientist, this may be a problem, but even if it is, it suggests there are perhaps more creative

ways to beat the Grover limit in a way which is useful for implementation.

79



CHAPTER V

IMPLEMENTATION: STRATEGY FOR

A GENERAL QUANTUM WALK

In this chapter, I do not consider a physical system capable of performing a QW. Just

as classical logic and logic gates are realized in different systems, quantum computing has

the possibility of being realized in different systems. Also similar to classical logic, there

exists a finite, relatively small set of unitary operators–quantum gates–such that any unitary

operator on a finite but arbitrary-sized quantum system can be realized as some combination

of the members of the small set. Such a collection is call a universal gate set and its

member primitive gates. There are a few different universal gate sets, some of which obtain

an arbitrary gate exactly and some approximately. What I assume is there exists some

physical system containing an arbitrary (finite) number of well-characterized qubits which

can be initialized to a single fiducial state, manipulated to apply any member of the universal

gate set an arbitrary number of times before decoherence (which implies the qubits can be

entangled), and each qubit can be reliably measured [45]. I also assume any arbitrary initial

state can be obtained by applying some number of gates to the fiducial state. Of course,

this is an idealization which omits many of the challenges of a real quantum computer

such as finite decoherence time, gate error, error correction, and so on. An example of a

practical system which may be able to reliably achieve these conditions is cold ions trapped

in an optical lattice. For more on this possibility, see Häffner et al. [24]. Here I present a

strategy for implementing an arbitrary DTQW in a system which meets these requirements.
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By virtue of Ch. III, this extends to an arbitrary CTQW. To avoid some difficulty, I only

consider the QW choice.

V.1 Qubits and the Universal Gate Set

For completeness, I define a qubit here:

Definition V.1. A qubit is any system with a two-dimensional Hilbert space, H2.

One of the benefits of quantum systems is that if d qubits can be entangled, then the

resulting system is of dimension 2d, which gives an exponentially larger space than the

actual size of the system [4]. As for the universal gate set, I consider the collection of all

unitary operators in H2 and the CNOT gate, ˆ⊕, which acts on a 2-qubit system. The

CNOT calculates the XOR operation on the second bit, i.e. ˆ⊕ |i〉 |j〉 = |i〉 |i⊕ j〉 and can

be represented in lexicographical order (|00〉, |01〉, |10〉, |11〉) by the matrix

⊕̂2
.
=



















1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



















. (V.1)

That is, if the first qubit is |0〉, then it acts as the identity on the second, and if the first

qubit is |1〉 then it acts as σ̂x on the second. The diagram for CNOT is shown in Fig. V.1a.

Each horizontal line represents a qubit and features on that line represent the sequence of

operations on that qubit going from left to right. The vertical line between the qubits is

an operation which entangles the qubits. The solid dot represents a control and the circle-

cross represents σ̂x. It is shown by Barenco et al. [4] that this set is universal. Barenco

81



CHAPTER V IMPLEMENTATION: STRATEGY FOR A GENERAL QW

et al. also provide an important result and method for generalizing the CNOT to any H2

unitary operator controlled by any number of qubits. Using their notation, if Û2 is the

arbitrary unitary operator in H2, then
∧

n

(

Û2

)

is an operator in n + 1 qubits which uses

the first n qubits as a control for Û2 as depicted in Fig. V.1b. So, Û2 is activated on the

last qubit for the basis state of all ones for the control qubits. For more details on this, see

Ref. [4], but it is possible and the method is clearly outline in the reference. Furthermore,

this can be generalized to a unitary acting on any number of qubits and controlled by any

other number of qubits. One takes the sequence of primitive operations used to generate

the desired operation, each under the control of the control qubits. Thus in terms of the

diagrams, Û2 in Fig. V.1b is replaced by the arbitrary unitary operator in any number of

qubits.

0

1

(a) CNOT

.

.

.

Û2

0

1

2

n− 1

n

(b)
∧

n

(

Û2

)

Figure V.1: Graphical depiction of quantum gates.

V.2 Method for Simulating the General Discrete-time

Quantum Walk

Instead of limiting the DTQW to a Hilbert space, HE , it is more general to use the space

HV ×HV . That is, this method uses two times the number of qubits required to represent
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every member of the graph. For example, the d-dimensional hypercube requires 2d qubits.

Let d generally represent the number of qubits need to represent every member of V. This

allows edge basis state to be split, i.e. |j, i〉 = |j〉 |i〉. Thus the qubits are organized into

two quantum registers each of size d, and because of this, I refer to the method as the

parallel-register method. Registers are represented in diagrams by multiple horizontal lines.

For this setup, note that the coin operator only changes states on the first register under

the control of the second. So, the last section gives the tools to create the coin operator.

However, the control activates the unitary operation for the basis state of all 1’s in the

register. To be more selective of the basis state, each qubit for which the control number

has a component of 0 is modified by the σ̂x gate before the controlled gate. This effectively

makes the input control on that bit 0 instead of 1. After the controlled gate is complete,

the qubit is flipped back by a second σ̂x gate. This is depicted in Fig. V.2 for the number

2 = (010)2. There, I also suggest a diagrammatic shorthand for this selective control.

σ̂x σ̂x

σ̂x σ̂x

0

1

2

= (010)

Figure V.2: Method for converting control on a register to control targeted to a specific
number, here 2 = (010)2.

The coin operator is implemented by systematically controlling the first register, what I refer

to as the slave register, under the control of the second register, the control. This can be

done for each vertex index with the appropriate coin operation as depicted in Fig. V.3. Once

all the individual coin operations have been performed, the same diagram is implemented

but with an exchange in the registers’ roles. That is, the swap operator is not implemented

by a set of gates, but is achieved simply by making the former slave register the control

and vice versa. This is also depicted in Fig. V.3, where the point at which the swap
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occurs is denoted by the dashed vertical line. This line does not represent any gate action.

The process then repeats for the appropriate number of steps according to the algorithm

design. Once complete if one wants to measure the incoming state of the system, the sum

in Eq. (II.10) is done all at once by measuring the state of the last slave register.

|i〉

|j〉

0 1 2 3

Ĉ(0) Ĉ(1) Ĉ(2) Ĉ(3)

· · ·
N Ĉ(0) Ĉ(1) Ĉ(2)

Ĉ(N) 0 1 2

· · ·

Swap

Figure V.3: Basic structure of the parallel register method for implementing the general
DTQW.

As a trivial but insightful example, consider the simplest possible system of two qubits.

Such a system would imitate a DTQW on a graph of two vertices. The coin opera-

tor on vertex 1 is given by
∧

1

(

Ĉ(1)
)

. For vertex 0, the implementation is given by
(

σ̂x ⊗ Î2

)(

∧

1

(

Ĉ(0)
))(

σ̂x ⊗ Î2

)

, which is represented in block form as







0 Î2

Î2 0













Î2 0

0 Ĉ(0)













0 Î2

Î2 0






=







Ĉ(0) 0

0 Î2






. (V.2)

This multiplied by
∧

1

(

Ĉ(1)
)

gives the block-diagonal form required for the coin operator.

Just before the swap in register roles, one might as well look at the matrix representation
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the way it is acted upon in the next step:

Ĉ
.
=







Ĉ(0) 0

0 Ĉ(1)






→



















c
(0)
00 0 c

(0)
01 0

0 c
(1)
00 0 c

(1)
01

c
(0)
10 0 c

(0)
11 0

0 c
(1)
10 0 c

(1)
11



















, (V.3)

where the new representation order is |00〉, |10〉, |01〉, |11〉. This could be consider the

representation in the outgoing space block diagonal form, for which the subsequent coin

operations act just as they did in the incoming space block diagonal form.

V.3 Benefits and Issues with the Parallel-Register Method

There are many appealing factors to consider for the parallel-register method. First, it

general enough to implement any DTQW, but the most interesting is the fact that half the

unitary time-evolution requires no gates to implement. This avoids gate error that otherwise

can compound when gates are not performing exactly as designed. This also increases the

efficiency of the computation since any gate will take a finite amount of time to complete.

Furthermore, the complexity of the coin operations are directly related to the connectivity

of the graph. If the graph has relatively low connectivity, then the coin operators are sparse

and thus easier to design in terms of gate structure.

The greatest downside to this method is for a spatial-homogeneous walk, each individual

coin operator must still be applied in turn. The more common way to implement a DTQW

for a regular graph is to have a coin register and a position register. In that case, a

homogeneous coin is performed once for all, and the shift entangles the resulting state with

the position. The single implementation of the coin operator likely wipes out any gains from
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the gate-less implementation of the shift/swap operator. Furthermore, the parallel-register

method almost always requires more qubits. More has to be done to make this comparison

quantitative.

It is worth mentioning a method of implementation discussed by Childs et al. in Ref. [9].

The reference presents a method to simulate a CTQW that uses two registers of equal size

and an operator very similar the swap operator which is implemented via gates (Ref. [9]

refers to it as T̂ ). So, perhaps this enlarging of the space is not such a hindrance. It would

be worthwhile in future work to compare the efficiency of this method for implementing

the CTQW and the parallel-register method using the connected DTQW as discussed in

Ch. III.

One last possible issue is that the parallel-register method almost always contains basis

states intended to be empty or null, but for which probability amplitude can leak into if

gates are not performed perfectly. However, the additional states could provide the benefit

of error detection. For the incoming probability, only the last slave register is measured. If

the last control register is also measured, the result could be checked to see that the two

measured register values are adjacent in the graph. If they are not, the result would be

considered inconclusive.

Ultimately, the parallel register method appears to be an efficient method for implemen-

tation, especially when the number of qubits is not an issue and the coin operator is not

homogeneous. More work has to be done to quantify the efficiency in terms of the number

of gates and compare that to other methods.
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CONCLUSIONS AND FINAL

DISCUSSION

This thesis started by introducing the QW and some of the relevant background literature

in Ch. I. This was followed in Ch. II by a more formal definition and explanation of both

the CTQW and the DTQW. I addressed some of the possible variations on the DTQW,

how they are equivalent to the formalism I present, and how to use a DTQW to simulate

continuous-time dynamics in the edge space. In Ch. III, I discussed a method for connecting

any CTQW to some DTQW through the use of the projectors. These projectors were

expanded upon in terms of the dynamic subspace and edge space operators they create.

This led to continuous-time edge space dynamics related to the CTQW. A few example

simulations on the one- and two-dimensional lattices were shown and discussed. Most

importantly, they were used to motivate the very-lazy QW choice which showed striking

agreement with the exact CTQW. This led to an expansion of the DTQW generated by the

projectors from which an analytic expression could be found if the spectral decomposition

of the regular graph Hamiltonian was known. This expansion was also used to understand

the particular behavior of the QW choice and the very-lazy QW choice. Ch. IV presented

a possible application of the ideas in Ch. III which took the form of a search algorithm on

the hypercube. According to the presented simulations, this algorithm appeared to have no

scaling for the time of completion with the size of the search space. The behavior of this

algorithm was reduced to d+1 eigenvectors and a rough approximation to those eigenvectors
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was found. Though the approximation did not yield good quantitative agreement, it did

show reasonable qualitative agreement. Finally, Ch. V discussed a gate implementation

scheme for a general DTQW referred to as the parallel-register method. In theory, this

method could be realized in an experimental quantum computer of sufficient quality and

capable of performing the universal gate set described.

From what was presented, one could see that most if not all time-homogeneous QWs fit into

the general formalism presented here. Furthermore, given any time-homogeneous CTQW,

a connected DTQW can be formed and used to simulate the CTQW probability dynamics.

Although most of the results dealt with the case of a regular graph Hamiltonian, it seems

reasonable that the non-regular connected DTQW would maintain many of the features

of the CTQW and other variations could be used such as initial conditions composed of

various combinations of the A- and B-projectors. Combining these result with the idea of

the parallel-register method of implementation, one sees that experiments could be designed

to implement any QW for a quantum computing scheme that is sufficiently robust. That

includes the algorithm presented in Ch.IV as well as others such as the algorithm presented

in Ref. [37].

The formalism can be extended to time-inhomogeneous evolution by performing a new

coin operator on each time step. It seems reasonable that one could extend the connected

DTQW formalism presented here to include time-dependent graph Hamiltonians. Thus, the

task would be to find a series of time-dependent coin operators which would approximate

the dynamics generated by the time-dependent graph Hamiltonian. As for the algorithm

presented in Ch. IV, analysis must be completed to fully understand the behavior. Fur-

thermore, it would be worth considering other applications and variations for the DTQW

presented there. For example, consider that as a search algorithm, it was the ignorance of

the marked element that led to the specific choice of initial state. As shown in Sec. IV.5,

this caused some of the initial probability amplitude to be projected into the null space of
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Ĵ ′
1 and it did so to the detriment of maximizing probability on the marked element since

〈n, n|P̂null
1 |ψ+

0 〉 ∼ 1√
wn

. There may be other applications where ignorance of the marked

element is not necessary. In that case, the initial state could start in the dynamic space of

the perturbed hypercube, which does require knowledge of the marked element. Then, one

might find a larger maximum probability for the marked element. One such application

might be a state-initialization algorithm, in which case, the time for initialization would

not scale in the number of steps of the DTQW with the size of the register (although the

number of gates would almost certainly scale with the size of the register). Furthermore,

if initialization of only one register is required, the parallel-register method gives a test for

the success of the initialization by measuring the last control register. Finally, I would like

to design a simple DTQW implementation of the algorithm presented in Ch. IV with all

the details of the gate structure using the parallel-register method. This would facilitate an

experimental realization of all the ideas presented in this thesis.
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APPENDIX A

Solution for the Continuous-time

Quantum Walk in One and Two

Dimensions

The one-dimensional quantum walk is best understood as a cycle of N vertices. This is also

thought of as a finite chain with periodic boundary conditions. The adjacency Hamiltonian

is given as

Ĥ
(1D)
0 =

∑

n∈ZN

(

|n〉〈n+ 1|+ |n〉〈n− 1|
)

, (A.1)

where the sum, n± 1, is understood as modulo N . By Bloch’s theorem, which is a special

case of the VanVleck symmetrization process [43], the eigenvectors of this graph Hamiltonian

are

|φ(1D)
k 〉 = 1√

N

∑

n∈ZN

exp (ikn) |n〉 , (A.2)

and the eigenvalues are

E
(1D)
k = 2 cos (k), (A.3)

where k takes of the values k = m2π
N for some m ∈ ZN . This condition is to insure

the periodic boundary conditions. Using the spectral decomposition of the CTQW time-

translation operator, the propagator is expanded as

〈n| exp
(

−itĤ(1D)
0

)

|0〉 =
∑

k

exp (−itE(1D)
k ) 〈n|φ(1D)

k 〉〈φ(1D)
k |0〉

=
1

N

∑

k

exp (−i2t cos k + ikn). (A.4)
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If the cycle is long enough, the sum can be approximated by an integral where k becomes

a continuous parameter and ∆k = 2π
N → dk. Thus the factor of N cancels and one has

〈n| exp
(

−itĤ(1D)
0

)

|0〉 = 1

2π

∫ π

−π
dk exp (−i2t cos (k)− ikn)

=inJn(2t), (A.5)

where the last equality comes from the definition of the Bessel functions [17, 32].

The graph Hamiltonian for the two dimensional lattice with N × N vertices and periodic

boundary conditions can be written as

Ĥ
(2D)
0 = Ĥ

(1D)
0 ⊗ Î0 + Î0 ⊗ Ĥ

(1D)
0 . (A.6)

Thus the 2D eigenvectors are

|φ(2D)
~k

〉 = |φ(1D)
kx

〉 |φ(1D)
ky

〉 , (A.7)

and eigenvalues are

E
(2D)
~k

= 2(cos (kx) + cos (ky)), (A.8)

where kx = m2π
N and ky = n2π

N for some m,n ∈ ZN . From this, it is obvious that the 2D

propagator is the product of two 1D propagators:

〈(m,n)| exp
(

−itĤ(1D)
0

)

|(0, 0)〉 = in+mJn(2t)Jm(2t), (A.9)

where each vertex is labeled by two indices (m,n) ∈ (ZN )2.
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Proof of the Expansion of the Quantum

Walk in the Dynamic Space

In this appendix, I prove Eq. (III.42), which I restate here:

Proposition B.1. For the definitions given in the main body of the thesis,







f̂
(t)
0

ĝ
(t)
0






= exp

(

−iωǫ(t+ 1)

2

)







/c pt−1(γ̂0)− exp
(

i ǫω2
)

pt−2(γ̂0)

−i/s pt−1(γ̂0)






. (B.1)

Proof. The method of this proof is induction. Note the recursion equations for the Cheby-

shev polynomials are [17, 32]

p0(x) =1; (B.2a)

p1(x) =2x; (B.2b)

pn+1(x) =2xpn(x)− pn−1(x). (B.2c)

Even though the polynomials are not defined for n < 0, I can use the recursion to infer the

cases n = −1,−2. This implies p−1(x) = 0 and p−2(x) = −1. For the sake of brevity, I will

suppress the argument of the Chebyshev polynomials, where it is understood that for the

remainder of the proof the argument is γ̂0.

Consider when t=0,

exp

(

−iωǫ(0 + 1)

2

)







/c p0−1 − exp
(

i ǫω2
)

p0−2

−i/s p0−1






=







1

0






=







f̂
(0)
0

ĝ
(0)
0






. (B.3)
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Now assume for all integer t′ ≤ t, Eq. (B.1) is true and multiply Eq. (B.1) for t on the left

by U:

exp

(

−iωǫ(t+ 1)

2

)







/c exp (−iǫω) −i(/cE Ĥ0 + /s)

−i/s exp (−iǫω) −/sE Ĥ0 + /c













/c pt−1 − exp
(

i ǫω2
)

pt−2

−i/s pt−1







= exp

(

−iωǫ(t+ 2)

2

)







exp ( iǫω2 )(/c2 exp (−iǫω) + /c2 − /c2 − /s2 − /s/cE Ĥ0)pt−1 − /cpt−2

−i/s
(

exp ( iǫω2 )(/c exp (−iǫω) + /c − /sE Ĥ0)pt−1 − pt−2

)






,

(B.4)

where exp ( iǫω2 )/c2pt−1 was added and subtracted to the top component. Recall that 2γ̂0 =

exp ( iǫω2 ) Tr(U) = exp ( iǫω2 )(/c exp (−iǫω) + /c − /sE Ĥ0). Thus I can rearrange Eq. (B.4) and

use the recursion equation for the Chebyshev polynomials to get

U







f̂
(t)
0

ĝ
(t)
0






= exp

(

−iωǫ(t+ 2)

2

)







/c(2γ̂0pt−1 − pt−2)− exp ( iǫω2 )pt−1

−i/s(2γ̂0pt−1 − pt−2)







=exp

(

−iωǫ(t+ 2)

2

)







/cpt − exp ( iǫω2 )pt−1

−i/spt






=







f̂
(t+1)
0

ĝ
(t+1)
0






. (B.5)

Therefore by induction, Eq. (B.1) is true for all integer t ≥ 0.
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Combinatorial Proof of Sums over

Constant Hamming Weight and their

Generating Functions

In this appendix, I prove Eq. (IV.26), which I restate here:

Proposition C.1.

‖k‖=const.
∑

k

(−1)k◦n =

d
∑

m=0

(‖n‖
m

)(

d− ‖n‖
‖k‖ −m

)

(−1)m. (C.1)

First I prove a lemma:

Lemma C.2. The sum
∑‖k‖=const.

k (−1)k◦n is only dependent on the Hamming weight of

n.

Proof. Consider the group Sd which permutes the components of the binary expansion of

any integer number 0 ≤ n < 2d. Note that Sd is generated by the set of all two-cycles

on d binary components. Since such a two-cycle does not alter the Hamming weight, this

implies the Hamming weight is an invariant quantity under the action of all members of Sd.

Consider any such two-cycle, gpq ∈ Sd, which exchanges the pth and qth digit in the binary

expansion. So, gpq(mi) = mi for any i 6= p, q and gpq(mp) = mq, gpq(mq) = mp for any

appropriate m. This implies

k ◦ gpq(n) =
∑

i

kigpq(ni) =
∑

i 6=p,q

kini + kpnq + kqnp =

=
∑

i 6=p,q

g−1
pq (ki)ni + g−1

pq (kq)nq + g(kp)
−1np =

∑

i

g−1
pq (ki)ni

=g−1
pq (k) ◦ n. (C.2)
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So for any g ∈ Sd, k ◦ g(n) = g−1(k) ◦ n. Thus one has

‖k‖=const.
∑

k

(−1)k◦g(n) =
‖k‖=const.
∑

k

(−1)g
−1(k)◦n =

(

d
‖k‖
)

d!

∑

g∈Sd

(−1)g
−1(k)◦n, (C.3)

where the last sum is for some fixed representative of the ‖k‖ = const. equivalence class.

Thus by the rearrangement theorem of group theory [43],

‖k‖=const.
∑

k

(−1)k◦g(n) =
‖k‖=const.
∑

k

(−1)k◦n. (C.4)

Therefore, the sum is invariant under the action of any member of Sd on n and must only

be dependent on the Hamming weight of n.

Intuitively, this comes from the idea that for fixed Hamming weight on n, no matter how

one rearranges the digits, every binary dot product with a k of fixed Hamming weight is

eventually a term in the sum. With the lemma, I can proceed with a combinatorial proof

of Eq. (C.1):

Proof. By the Lemma C.2, I can consider without loss of generality the member of the

‖n‖ = const. equivalence class which has all ‖n‖ one binary digits stacked to the left and

all d−‖n‖ zero digits to the right. For any member k of the ‖k‖ = const. equivalence class,

let m be the number of ones in its binary expansion which are to the left of the ‖n‖th digit,

inclusively, as depicted in Fig. C.1. So (−1)k◦n = (−1)m. By combinatorics, the number

of cases of ‖k‖ = const. for which m ones are to the left of the ‖n‖th digit, inclusively,

is the number of ways to put m things in ‖n‖ spots which is
(‖n‖

m

)

. However, this makes

no reference to the number of combinations for rearranging the remaining ‖k‖ − m ones

amongst the digits to the right of the ‖n‖ digit. This is given by
( d−‖n‖
‖k‖−m

)

. So the total
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number of cases of ‖k‖ = const. such that k ◦ n = m is
(‖n‖

m

)( d−‖n‖
‖k‖−m

)

. Therefore, Eq. (C.1)

is true for all integer n such that 0 ≤ n < 2d.

n : 111 · · · 1000 · · · 0
‖n‖ d− ‖n‖

k : 111 · · · 0111 · · · 0
m ‖k‖ −m

Figure C.1: Combinatorics of terms in the sum
∑‖k‖=const.

k (−1)k◦n.

Finally, I show that w̃p(x) is the generating function for P p
q =

∑d
m=0

(

p
m

)(

d−p
q−m

)

(−1)m on q.

To do this, one expands w̃p(x):

w̃p(x) =(1− x)p(1 + x)d−p =

d
∑

l=0

d
∑

m=0

(

p

m

)(

d− p

l

)

(−1)mxl+m

=

d
∑

q=0

(

d
∑

m=0

(

p

m

)(

d− p

q −m

)

(−1)m

)

xq =

d
∑

q=0

P p
q x

q. (C.5)
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