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ABSTRACT 

        As a way to investigate the transport property of superconductor-insulator-

superconductor (SIS) junction with two-gap superconductors such as MgB2 and iron 

superconductors, we study the microscopic structure of the Josephson current in a tunnel 

junction with a very narrow quasi-classical barrier.  Also, the possibility of mid-gap 

states in two-gap superconductor is investigated, and their effects on the current-phase 

relation as well as the current density characteristics are studied.  In the SIS break 

junction, mid-gap states appear at the Superconductor-Insulator interfaces due to an 

abrupt change in the superconducting order parameter, indicating that the two-gap 

superconductor SIS junction can yield a rich bound state structure in the energy gap.  In 

this work, I study the mid-gap bound state energy of the two-gap superconductor-based 

short Josephson junctions.   Also, I study the tunneling currents through the mid-gap 

states theoretically to estimate the effects of these bound states on the current-phase 

characteristics and the critical Josephson current.   
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CHAPTER I 

INTRODUCTION 

       Superconductivity is a well-known macroscopic quantum phenomenon.  

Superconductivity was discovered by Kamerlingh Onnes in 1911 [1].  He found that 

mercury at a very low temperature becomes a superconductor.  The phenomenon of 

superconductivity is characterized by the two unique properties of superconductors: i) 

zero resistivity and ii) Meissner effect.  A superconductor provides zero resistance to the 

flow of electricity below a critical temperature (Tc).  This property was first observed by 

Onnes when he placed mercury in liquid helium.   He noticed that mercury has no 

electrical resistance below Tc at 4.15 K.  Above the critical temperature (i.e., T > Tc), a 

superconductor becomes a normal metal with finite electrical resistivity.  Later, Meissner 

and Ochsenfeld discovered that in the presence of an applied magnetic field, 

superconductors expel the external magnetic field.  This phenomenon is known as the 

Meissner effect [1].  They showed that all superconductors are diamagnets because they 

generate an internal supercurrent to oppose the external magnetic field completely.   

       Based on the Meissner effect, superconductors are divided into two types: type-I and 

type-II superconductors.  The type-I and type-II superconductors are known as the "soft" 

and "hard" superconductors, respectively.  The type-I superconductors are mostly 

elemental metals in the normal state and exhibit a complete 
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expulsion of magnetic fields from the superconductor (i.e., Meissner effect).  However, 

superconductivity is destroyed when the strength of external magnetic field rises above 

the critical magnetic field (Hc).  On the other hand, most type-II superconductors are 

compounds or metal alloys, such as magnesium diboride and niobium-titanium. For type-

II superconductors, the applied magnetic field creates a mixed state in which magnetic 

field lines inside the superconductor form magnetic vortices.  A magnetic vortex is a 

normal core where magnetic field penetrates through the material.  Further experiments 

carried out by a number of researchers revealed that superconductors revert to their 

normal state when either the applied current density J or the magnetic field H rises above 

critical current Jc (i.e., J > Jc) or critical field Hc (i.e., H > Hc) , respectively.   

      There has been much theoretical work to explain the phenomenon of 

superconductivity.   In 1934, Gorter and Casimir [2] proposed the two-fluid model. This 

model explained that superconductors have two carrier types: i) fluid of normal electrons 

ii) electron pairs.  This model suggests that, in a superconducting material, a finite 

fraction of the electrons are condensed into a superfluid.  Superfluid can flow through 

superconductors without resistance.  Later, London showed that flux quantization is 

possible in type-II superconductors [1].  In 1950, Ginzburg and Landau formulated a 

phenomenological theory to study the electromagnetic and thermodynamic properties of 

superconductors [1]. They represented the superconducting state by using a complex 

order parameter.  This complex order parameter is also called a quantum wave function 

for the superconducting state.  However, these proposed models did not describe how 

superconductivity occurs.  In 1957, Bardeen, Cooper and Schrieffer (BCS) proposed a 

theory [3] to explain the microscopic origin of superconductivity. 
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      The BCS theory was the first microscopic theory of superconductivity. This theory 

was a good microscopic description of how electrons are interacting with lattice 

vibrations to yield superconductivity.  However, there are many pitfalls in BCS theory, 

such as inability to describe the inverse isotope effect.   The BCS theory is based on the 

idea that there is an attractive force between electrons near the Fermi level which 

produces weakly bound pair of electrons called Cooper pairs in superconductor.  A 

Cooper pair has two electrons with opposite momenta and spins. At temperatures below 

the critical temperature Tc, this attractive force creates a new quantum state differing 

from the Fermi sea of a normal metal.  Note that, the binding energy of a Cooper pair 

depends on how many other pairs have condensed and, furthermore, the center of mass 

motion of the pairs is so strongly correlated that each pair resides in the same state with 

the same center of mass motion.  Due to the Fermi-Dirac statistics, the electron pairs 

could have less energy compared to Fermi energy.  The conceptual element in this theory 

is the pairing of electrons close to the Fermi level into Cooper pairs through interaction 

with the crystal lattice.   This pairing result from a slight attraction between the electrons 

related to lattice vibrations; the coupling to the lattice is called the electron-phonon 

interaction. The Cooper pairs can condense into the same level of energy like bosons. 

      When two or more superconductors are near each other, it may be possible for a 

Cooper pair to move from one superconductor to another.  This motion of Cooper pair is 

important for understanding Josephson tunneling in superconductor junctions.    In 1962, 

Josephson predicted the existence of tunneling current between two superconductor 

islands as a manifestation of macroscopic quantum phenomenon [8].  Josephson showed 

that the Cooper pair can tunnel from one superconductor to another through an insulator 

http://en.wikipedia.org/wiki/Microscopic_theory
http://en.wikipedia.org/wiki/Superconductivity
http://hyperphysics.phy-astr.gsu.edu/hbase/solids/fermi.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/solids/coop.html#c1
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barrier.  These superconductors that are weakly linked via a tunneling barrier are also 

known as superconductor tunnel junctions.  

 

1.1 Superconductor tunnel junction 

 

      Superconducting tunnel junctions are useful in microscopic device applications.  One 

advantage of superconductor devices, as compared to the semiconductor devices, is that 

superconductor junctions are sensitive to voltage, current, and magnetic fields.   

Fabrication of a Josephson junction, involves creating a weak link between 

superconductors where an insulating layer is the weak-link.  The insulator is a thin 

potential barrier which only allows electrons to tunnel through quantum mechanically.  

For example, a Josephson junction is made of a stack of two superconductors that are 

separated by a thin layer of insulator creating a superconductor-insulator-superconductor 

(SIS) junction. A schematic diagram of Josephson junction is shown in Fig. 1.  These 

superconductor junctions have a wide range of applications in many fields, including 

electronics, physics, astrophysics, and biology.  One of the most successful applications 

of SIS junctions is SIS heterodyne mixers.  The SIS mixers may be used to detect 

millimeter and sub-millimeter photons.  Also, the application of SIS junctions and mixers 

to astronomy has been very useful.   For example, Caltech Sub-millimeter Observatory is 

using SIS junctions to explore molecular lines in interstellar clouds [34].   

 

http://en.wikipedia.org/wiki/Josephson_Junction
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Figure 1:  A superconductor-Insulator Superconductor (SIS) junction is illustrated.   Cooper pair tunnel 

from one superconductor through the insulator to another superconductor in a single gap junction.  Here, Js 

denotes the tunneling current across the junction. 

 

       When the two superconductors are separated by a normal metal, instead of an 

insulator, we call this a superconductor-normal metal-superconductor (SNS) junction.  

This type of superconductor junction has a variety of applications in engineering.   The 

SNS junction may be used in single-photon detectors for photon frequencies ranging 

from X-rays to infrared electromagnetic waves.   In the detector, the junction is biased 

with a DC voltage which is less than the gap energy.   When a photon is absorbed by the 

superconductor, it breaks a Cooper pair into two quasi-particles.   The quasi-particles can 

tunnel across the junction in the direction of the applied voltage, indicating that the 

tunneling current is related to the energy of the photon.   

        Both SIS and SNS junctions may be classified as either long or short junctions, 

based on their lengths compared to a characteristic scale known as the Josephson length.  

The Josephson magnetic length 
J  is given by 

                                     
dJ2 c0

o
J 


                                                 (1.1) 

A

B
Bi

Be


Ai

Ae


http://en.wikipedia.org/wiki/X-rays
http://en.wikipedia.org/wiki/Infrared
http://en.wikipedia.org/wiki/Photon
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where 
0  is the permeability of free space, o = h/2e is the flux quantum, Jc is the critical 

current density, and d  is the effective thickness of the insulator layer.   If the length of 

the junction size Lx is greater than the Josephson length
J  (i.e. Lx  >> λJ), then the 

junction is called a long Josephson junction (LJJ).  The spatial dependence of the phase 

difference between two adjacent superconductor layers is important for the properties of 

LJJs.   In Fig. 2, the spatial variation of the tunneling current between two superconductor 

layers is indicated by arrows in the insulator layer.  In the presence of a magnetic field, 

the phase difference depends on the vector potential which represents the magnetic flux 

density in the junction. It should be noted that the current variation is related to the 

variation in the phase difference and λJ is specified by the externally applied magnetic 

field.  This length scale describes the distance in which a spatial variation in the phase 

difference is induced.  An application of a magnetic field along the insulating layer of a 

single LJJ induces magnetic vortices, which are also called Josephson vortices.   

 

 

Figure 2: The effect of magnetic field on the tunneling current in a uniform Long Josephson junction is 

depicted.  Arrows illustrate the strength and the direction of the Josephson current. 
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     LJJs are good candidates for generating high-frequency electromagnetic radiation.  

Among many applications of the LJJ, terahertz (THz) radiation generator by using high-

Tc cuprates is one of the well-known examples.   In the THz radiation application, the 

frequency of emission is tunable by the voltage across the device.  THz radiation may be 

applied in many fields like  recognizing  protein structural states [4], visualizing and 

cataloging absorption and contrast mechanisms in tissue [5, 6], radiation effects on 

biological samples , biological processes, and diagnose the diseases [7].   

     On the other hand, if the size of the junction LX is much smaller than the Josephson 

length
J  (i.e., LX  <<  λJ), then the junction is called a short Josephson junction (SJJ).  

The SJJ has many different applications.  A superconducting quantum interference device 

(SQUID) is one of the most important applications.  This device, which was invented by 

Jaklevic, Lambe, and Mercereau [35], and Arnold Silver, may be used as a very sensitive 

magnetometer to measure a very weak magnetic field of order of 10
-15 

Tesla.  This range 

of sensitivity is useful in many fields including biology, physics, and medicine.  The 

SQUID, as shown schematically in Fig. 3, consists of two superconductors separated by 

thin insulator.    The central element of a SQUID is a loop of superconductor with one or 

more weak links.   In this system there is a superconducting ring where one or two small 

piece of insulator is inserted from the ring.   
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Figure 3:  A SQUID consists of two superconductors separated by thin layers of insulator, forming two 

parallel Josephson junctions.  Parallel Josephson junctions are used in SQUID devices for the detection of 

very weak magnetic fields. 

  

1.2  Josephson Effect 

      Josephson effect is an example of a macroscopic quantum phenomenon and is one of 

the important fundamental phenomena in condensed matter physics.  In 1962, Josephson 

made a remarkable prediction that two superconductors separated by a thin insulating 

barrier should give rise to a spontaneous current [8].   Josephson discovered the 

possibility of pair tunneling between two superconductors.  He found that Cooper pairs of 

electron can tunnel through the barrier and carry a current, at zero voltage bias.  There are 

two main effects predicted by Josephson: (1) DC Josephson effect and (2) AC Josephson 

effect [8]. 

     Josephson predicted that the Cooper pairs can tunnel across an insulating barrier, 

causing a current, without any externally applied potential difference (i.e., V = 0).   This 

phenomenon of appearance of tunneling current in the absence of a bias voltage is known 

http://hyperphysics.phy-astr.gsu.edu/hbase/solids/squid.html#c3
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as the DC Josephson effect.  The DC Josephson effect accounts for the relationship 

between the tunneling current and the phase difference between two superconductor 

islands.   A DC tunneling current flows through the insulator in the junction. The 

Josephson current density is given by 

    sinJJ c
                                                       (1.2) 

where 
cJ  is the Josephson critical current density and 12   is the phase difference 

between the order parameters of the two superconductor layers.  Note that   is the phase 

of the superconducting order parameter which can be defined as  

    ie)r(                                                     (1.3) 

where  is the amplitude which is related to the number of superelectrons.  This effect 

also indicates a nonlinear dependence on the phase difference of the current flow across 

the junction in the absence of bias voltage. 

     The AC Josephson effect explains the temporal variation of the phase difference with 

applied voltage.  While a voltage V is applied through the junction, the phase difference 

between superconductor changes since the electron pairs experiences a potential 

difference 2eV across the junction.  In this case, it is found that the electron pairs oscillate 

across the junction, with a frequency given by 

         


eV2

t





                                                        (1.4)                                                                                         

where e is the electronic charge and  2/h , and h is the Planck’s constant.  This 

relationship indicates that an electromagnetic wave with energy eV2  can be either 

emitted or absorbed as an electron pair oscillates across the barrier. Hence, the Josephson 

current oscillates with the frequency /V2 .  In Fig. 4, a typical current-voltage (I-
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V) characteristic of the Josephson junction is shown schematically.  When the voltage is 

applied, Cooper pairs oscillate back and forth across the junction.  However the Cooper 

pair does not break till the applied voltage is larger than a threshold value.  Since the 

binding energy of the Cooper pair is 2where  is the superconducting energy gap per 

electron, the minimum voltage needed to break up a Cooper pair into quasi-particles is 

2/e. 



 

Figure 4: A current-voltage (I-V) characteristic of a superconductor tunnel junction is shown 

schematically.  Here, 2/e represents the gap voltage of the junction.   Ic denotes the Josephson critical 

current. 

 

     In predicting the presence of tunneling current in a Josephson junction, Josephson 

applied quantum mechanics by using a macroscopic wave function to represent the 

superconducting state.  He used the time-independent Schrödinger equation to deal with 

coherent transmission of Cooper pairs through a tunnel barrier.  However, a microscopic 

understanding for the origin of tunneling was not complete.   In 1991, Furusaki and 

Tsukada [10] developed the microscopic approach by examining an SNS junction by 

treating it as a quantum mechanical scattering problem.  Furusaki and Tsukada 
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introduced the microscopic structure of the Josephson current in a SNS tunnel junction 

with a wide quasi-classical tunnel barrier and predicted that mid-gap states, which are 

localized near the edges or in the middle of gaps, carry the current through the junction.   

    The remainder of the thesis is organized as follows.  In Chapter II, I present the 

microscopic origin of the mid-gap states in one-gap superconductor tunnel junction by 

using Bogoliubov-de Gennes equations. In Chapter III, I describe the BCS model for a 

two-gap superconductor and discuss features that are important for Josephson junctions.  

In Chapter IV, I explain the origin of mid-gap states at a two-gap superconductor-normal 

metal interface by examining Andreev reflection.   In Chapter V, I calculate the energies 

of the mid-gap states for an SIS break junction involving two-gap superconductors.  

Finally, I summarize the result of the present thesis and conclude in Chapter VI. 
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CHAPTER II  

INTERFACE OF NORMAL METAL AND ONE-GAP 

SUPERCONDUCTOR 

      In this chapter, I discuss the physics of a normal metal-superconductor (NS) interface 

of one-gap superconductor by using the theory proposed by Blonder, Tinkham, and 

Klapwijk (BTK).  This is known as BTK theory.  I outline the physics of the process 

when an electron falls onto the NS interface based on the work by Tinkham and Blonder 

[9].  Within the context of the BTK theory, I discuss the current-voltage (I−V) 

characteristics of NS interface involving one-gap superconductor.  One important 

advantage of the BTK theory is its applicability to a wide range of NS interfaces.  The 

theory describes the junction by introducing a barrier potential of an arbitrary strength at 

the interface.   To determine the transmission and reflection of the quasi-particles at the 

interface, the BTK theory utilizes the Bogoliubov-de Gennes equations.  

 

2.1 Bogoliubov-de Gennes equation 

 

       In this section, I discuss the Bogoliubov-de Gennes (BdG) equations.  Using the 

solution of these equations, I construct the wave function for a superconducting system 

which is used in the BTK theory.  The BdG equations are the mean-field equations for 
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the superconducting system.   These equations are obtained as the equations of motion by 

making the mean-field approximation to the BCS Hamiltonian.   

      To describe the superconducting state by using the BCS theory, I start with the BCS 

Hamiltonian which is written as  








   ''

'

'
kkkk

kk
kkkk

k

kBCS ccccVccH 


                                    (2.1) 

where '
kk

V the pairing matrix which accounts for the effective interaction between 

electrons.  The matrix element '
kk

V , in general, depends on the nature of interaction 

yielding effective attraction between the electrons, but I simplify it by making the mean-

field approximation.  Here, k = (ћ2
k

2
/2m) -  denotes the kinetic energy and  is the 

chemical potential.  The fermion operators 

kc and kc represent creation and annihilation 

of an electron, respectively.  I note that k and  represent the momentum and spin 

variable, respectively.   These fermion annihilation and creation operators obey the anti-

commutation rules  

    ''
kk kkkkkk cccc}c,c{









 


                                    (2.2) 

and  

                                          0}c,c{}c,c{ ''kkkk  






                                           (2.3) 

I can obtain the energy spectrum from the BCS model of Eq. (2.1) by making the mean-

field approximation.  By employing the Wick’s theorem to reduce the two-body 

interaction term into effective one-body terms, I approximate the second term of the Eq. 

(2.1) as           

 






 ''

'

' kkkk

kk
kk

ccccV  









   kk'k'k'k'kkk

kk
kk

ccccccccV
'

'         (2.4) 
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Here, I define the pairing parameter as 

 
'

'

k

'k'kkkk ccV                                           (2.5) 

This order parameter is zero ( = 0) in the normal state and non-zero (≠ 0) in the 

superconducting state.   In this mean-field theory, I rewrite the model Hamiltonian of Eq. 

(2.1) as  

 






   kk'k'k

*

kk
kkkk

k

kBCS ccccVccH
'

'                 (2.6) 

The mean-field Hamiltonian HBCS may be diagonalized by using a rotational 

transformation known as the Bogoliubov transformation [9].  The Bogoliubov 

transformation is specified as  

*

kkk

*

kk
vuc                                                    (2.7) 

*

kkk

*

kk
uvc                                                 (2.8) 

where the coefficients uk and vk represent the coherence factor for the particles and holes, 

respectively.  These coefficients satisfy the condition  

 1vu
2

k

2

k                                                     (2.9) 

Note that the fermion operator k  is the rotational transformation, participates in 

destroying an electron with k and creating with  k .  Therefore, the momentum of the 

system will decrease by 2/ .  The parameter *

k has the same property.   

      The excitation spectrum of quasi-particles in the superconducting state can be 

described by the BdG equations.  The BdG equations are written as  

                   EHBdG                                                           (2.10) 

where the Hamiltonian  HBdG is given by  
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












)r,r()r,r(

)r,r()r,r(
H

**BdG                                               (2.11) 

The wave function has two components which is given by 











)r(v

)r(u
)r(

k

k

k                                                         (2.12) 

 

where uk and vk describe the electron and hole excitation, respectively.   The BdG 

Hamiltonian has the ‘particle-hole’ symmetry.  The BdG equation has both positive and 

negative energy solutions 

2

k

2E                                                    (2.13) 

I note that, in the ground state, the negative energy levels are below the Fermi energy and 

are filled, while the positive energy levels are above the Fermi energy and are empty.  

Excitation of a particle represents destruction of a particle in a state with negative energy 

and creation of a particle in a state with positive energy.  The two-component solutions 

are 

    








 


E

E
1

2

1
u

22
2

k                                         (2.14) 

and  










 


E

E
1

2

1
v

22
2

k                                        (2.15) 

These solutions represent the wave function for electrons and holes in the 

superconductor. 
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2.3 Andreev reflection and Andreev bound state  

 

      Now, I consider the Andreev reflection at the NS interface.  The Andreev reflection is 

a type of particle scattering which occurs at the interfaces between a superconductor (S) 

and normal metal (N) as shown in Fig. 5.  The process involves an electron incident on 

the interface from the normal metal side being reflected as a hole on the same side. 

 

Figure 5: The NS junction is illustrated.  The Andreev retro-reflection at the NS interface has been shown 

schematically.  
 

 

 

        The Andreev reflection is a process in which the incoming electron gets reflected as 

a hole on the normal metal side, a Cooper pair gets transmitted to the superconductor side 

as shown Fig. 6.  This reflection arises as part of particle-hole creation: a hole is returned 

by the Andreev reflection while a particle forms a Cooper pair with the incident electron 

in the superconductor, as shown in Fig. 6.  Note that, the Andreev reflection is an elastic 

collision; therefore, the energy is conserved in the process.  

http://en.wikipedia.org/wiki/Scattering
http://en.wikipedia.org/wiki/Superconductor
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Figure 6: A schematic diagram illustrating Andreev reflection at a NS interface. Here, N and S indicate 

normal, superconductor region respectively.  The blue circles are shown the electron in both sides while the 

other one present the hole.  An electron comes from N side and while leaves an hole in the same side it will 

construct a Cooper pair with another electron in the S side. 

 

      As shown in Fig. 6, the Andreev reflection appears as a conversion of a particle into a 

hole.  I note that energy of the incident particle is less than the gap energy (i.e., E <   )  at 

zero temperature.  An incoming electron has momentum k+ , and a Cooper pair is formed 

with another electron with opposite momentum k_.   Hence, these two electrons form a 

Cooper pair.  The pairing electron comes from the N side and leaves a hole with 

momentum k_.   So, I define the energy of these electron and hole branches as  

                                             22E
m2

k


                                                        (2.16) 

In this charge-transfer process, the normal current in N is converted to supercurrent in S.  

Each Andreev reflection transfers a charge 2e across the interface, avoiding the forbidden 

single-particle transmission within the superconducting energy gap.  In this process, 

instead of a charge e, a charge of 2e is transported across the interface, and consequently 

the resistance has decreased by a factor of 2.  The energy is conserved in the process 

http://en.wikipedia.org/wiki/Supercurrent
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since the Cooper pair has 2EF.   The incoming electron with energy EF + E and the 

reflected hole with energy EF – E yield the total energy of 2EF.  Theoretical description of 

the conductance of electrons and holes is provided by the BTK theory. 

 

2.4   NS interface: BTK model 

 

    The BTK theory explains the tunneling process between a normal metal and a 

conventional s-wave superconductor [9] by consider it as a potential scattering problem.  

The solution to the BdG equations for superconductor in Sec 2.1 is the starting base for 

the BTK theory.  The BdG equations describe the BCS theory for superconductors with 

spatially dependent pairing strength )(x . A SN interface may be described by the time-

independent Schrödinger equations which is given by  










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
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
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22
*

2

22





             (2.17)                       

where )(x  is the chemical potential.   Here, I assume that ),x(),x(   and V(x) are 

constant.  Also, I use a delta-function potential )x(V   to describe the potential at the 

boundary, related to the resistance of the interface. The wave function has two 

components which are given by 











)t,x(v

)t,x(u
)x(

k

k

k                                                           (2.18) 

Then, I solve the BdG equations for the superconductor and normal metal side, 

separately.   I note that 0)(  x  for the normal side.  An incident electron from the 

normal metal side, it can be reflected as a hole.  The incident electron is transmitted as a 
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Cooper pair.  The solutions to the BdG equations suggest that the wave function for the 

normal metal side has two contributions due to propagation of hole and electron waves.   

The wave function on the normal side is 

                                   xikxikxik

N e
0

1
be

1

0
ae

0

1
)x(  





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
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












                           (2.19) 

Similarly, by using the solutions of BdG equations for ≠ 0, I construct the wave 

function for the superconductor side as  

                                            
xik

k

kxik

k

kt

S e
u

v
de

v

u
c)x(

F

F

F

F  

















                                  (2.20) 

where kF  is the  Fermi vector.   The coefficients a, b, c, and d in Eqs. (2.18) and (2.19) 

can be determined by apply the boundary conditions.  I apply the usual two boundary 

conditions:  the wave functions are i) continuous and ii) smooth.  The continuity of wave 

function at the interface is given by 

  )0()0()0( SN                                            (2.21) 

The smoothness of the wave functions, represented as the derivative of the wave 

functions, satisfies the condition 

)0(
dx

)0(d

m2dx

)0(d

m2

N

2

S

2





 

                            (2.22) 

The probability current density Jp can be calculated at the NS interface.  In general, the 

current density Jp is expressed as 

)]x(v)x(v)x(u)x(uIm[
m

J **

p 


                             (2.23) 

Here, “Im” means the imaginary part.  The current density JN in the normal metal side 

can be written as 
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)ba1(vJ 22

fN                                                   (2.24) 

Similarly, the current density JS in the superconductor side can be written as 

                                                    222

0

2

0fS dcvuvJ                                    (2.25) 

All the incident particles convert into the reflected and transmitted particles and holes. 

This condition requires that JN = JS and yields the relation 

                                          222

0

2

0

22 dcvu)ba1(                                (2.26) 

     The above expressions for the probability current densities enabled BTK to derive the 

current-voltage relation [9].  Consequently, when a bias voltage is applied, the total 

current flowing from normal electrode to the superconductor is given by 

                                         )]E(f)eVE(f[)E(TdE
e2

I
2


                               (2.27) 

where T(E) = 1 – B(E) + A(E)  denotes the transmission coefficient, and f(E) is the 

Fermi-Dirac distribution function.   In Eq. (2.12), for E , the coefficients Andreev 

reflection A(E) and normal reflection B(E) are given by 

                                                   
2

2
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k2 FF
vu

a)E(A


                                                    (2.28) 

and 
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b)E(B FFFF




                                 (2.29) 

where the dimensionless parameter z = m/ћ2
kF accounts for the strength of the barrier at 

the interface, and the dimensionless parameter   is given by 
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However, for E , these parameter may defined differently such as 

                                          
)z21)(E(E

a)E(A
2222

2
2




                                  (2.31) 

and 

                                          A1b)E(B 2                                                  (2.32)          

        In any tunneling experiment, it is common to work with conductance derived from 

the differential conductance at zero temperature.  This conductance is given by 

)E(T
dV

dI
 .                                                   (2.33) 

The differential conductance depends on the voltage V and on the height of potential 

barrier z.   

 

 
 
Figure 7: The result from reference [9] illustrates the curves for the differential tunneling conductance 

versus bias voltage for four different values of z (z = 0, 0.5, 1.5, and 5). 

 

 

      Finally, I note that the BTK theory is a mean field theory which describes the 

tunneling process between the normal metal and an s-wave superconductor. The 

conductance versus bias voltage V plot for four different potential barrier heights at zero 
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temperature is shown in Fig 7.  In zero-barrier height (z = 0), the conductance within the 

superconducting gap is nearly doubled because most of the incident electrons are 

Andreev-reflected and the transmitted electron pairs across the interface carries double 

the amount of charge of the incident electrons.  On the other hand, in the high-barrier 

limit, the result given by the BTK formalism is the same as the conductance plotted for z 

= 5.  There is peak for higher value of the potential barrier height z which can exist 

because of existence of Andreev bound states near the edges [9]. 

 

 

2.4   Mid-gap bound states and super-current  

 

     The effect of Andreev bound state is to transport Cooper pairs and yields supercurrent.  

For a short Josephson junction, the DC Josephson Effect can be explained based on the 

current carried by the Andreev bound states.   In a superconductor-normal metal-

superconductor (SNS) junction with one-gap superconductors, there are two NS contacts.  

A more important description of Josephson tunneling current, based on the BdG model 

was introduced by  Furusaki and Tsukada [10].  Here, the solutions of BdG equation are 

localized to the N side of the interface. These points are called Andreev bound states or 

mid-gap states.  Their energy is in the middle of the superconducting gap and manifests 

themselves as a zero-bias peak in tunneling conductance into the corresponding edge. 

The existence of mid-gap states is related to the sign change of the pairing potential 

around the Fermi surface. 
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CHAPTER III 

TWO-GAP SUPERCONDUCTORS 

      Two-band superconductivity has been a focus of much attention of superconductivity 

research community over the past many years.  Most conventional superconductors have 

one-order parameter, reflecting one type of superconducting condensate and one energy 

gap.  However some superconductors such as MgB2 and iron-pnictides are known to have 

two superconducting gap structure.   In 2001, superconductivity in MgB2 transition 

temperature of about 40 Kelvin was discovered.  Recently, in 2008, iron-based 

superconductors were discovered. 

      The Josephson junction with two-gap superconductors, including MgB2 and iron 

pnictides, is a focus of much research in recent years due to its intriguing properties.  

Compared to one-gap superconductors such as mercury and niobium, the multi-gap 

superconductors such as MgB2 and iron-pnictides have higher transition temperature 

(critical temperature) Tc and multiple channels for tunneling.  One big interest about two-

gap superconductivity is the presence of inter-band Josephson tunneling between the two 

superconducting electronic bands.  This depends on the degree of sensitivity on scattering 

inside and between two superconducting condensates.  The two-gap superconductors 

exist because of two electronic bands participate in superconductivity.  

      In this chapter, first, I discuss the experimental evidence for two-gap 

superconductivity in MgB2 and iron pnictides.  Then, I discuss the BCS theory for two-
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gap superconductivity.  Then, I explain two types of symmetry for the conventional 

superconducting order parameter.  

   

3.1 MgB2 and iron-based superconductors 

 

         Two most recently discovered two-gap superconductors are MgB2 and iron 

compounds superconductors.  In general, experimental data from specific heat, Andreev 

reflection spectroscopy, and microwave response measurement indicate the evidence of 

superconducting gap structures.    Evidence of two-gap structures was found in MgB2 and 

iron-based superconductors [11 - 18].    

        Fig. 8, the structure of MgB2 is schematically illustrated.   The crystal structure of 

MgB2 is a honeycomb of boron layers and magnesium atoms are located between these 

layers. This material possesses a number of properties, which makes it promising for 

superconducting applications: it can be produced much easier than the high-Tc cuprates, it 

is cheap, and it can be used as cheap substrates in high quality. 

      MgB2 shows clear evidence of two-gap superconducting gaps of different size reside 

on different disconnected parts of its Fermi surface [30].     
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Figure 8: Crystal structure of MgB2 [20] is illustrated schematically.  Boron atoms from stacks of 

honeycomb layers and magnesium atoms are in between the boron layers at the center of the hexagons.  

 

       A theoretical investigation of the multi-band model for tunneling in MgB2 junction 

shows that there is a possibility of observing either one or two gaps in the tunneling 

spectra of MgB2, depending on the tunneling direction, barrier type and impurity 

concentration.  Mazin and coworkers have suggested that the inter-band scattering 

between the σ and   band is exceptionally small because of the different symmetries of 

charge density of bands [21].  

      The experimental evidence on the order parameter is the key issue for understanding 

superconductivity in MgB2.  The experiments yielded observation of distinct gap features 

in tunneling spectra [22] by scanning tunneling microscopy and by point-contact 

techniques.  However, the values reported by different experimental groups were at odds 

with each other, ranging from 1.5 meV to 7.5 meV.   It was natural to assume that the 

low-gap data arose from the surface layer of the samples, which could have degraded the 

value of Tc.   Tunneling spectroscopy is one of the powerful tools to measure the 

superconducting energy gap.  A number of such measurements have been performed on 

http://www.google.com/url?sa=i&rct=j&q=Crystal+structure+of+MgB2&source=images&cd=&cad=rja&docid=sVU5pbhY5YDUKM&tbnid=NvF4a-l9trwQWM:&ved=0CAUQjRw&url=http://www.intechopen.com/books/applications-of-high-tc-superconductivity/superconducting-properties-of-graphene-doped-magnesium-diboride&ei=oGKpUbGtCsT7qAGb8YC4CA&bvm=bv.47244034,d.aWM&psig=AFQjCNGFZsGYRh7hQdqCfO2VAZkmdJBgaA&ust=1370141725156111
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MgB2 [22].     The Raman spectra of polycrystalline MgB2 was measured from 25 to 

1200 cm
-1

, and found that two pair-breaking peaks appear in the spectra. These two peaks 

suggest the presence of two superconducting gaps[22]. 

      The iron-pnictides are also well-known two-gap superconductors.  These 

superconductors were first discovered in 2008 and exhibit superconducting transition 

temperatures as high as about 55 K [23].   The family of iron-based superconductors are 

ReFeAsO, where Re is a Rare Earth metal, and AFe2As2, where A is an Alkaline Earth 

metal.  The structures of two different iron-pnictide compounds are shown in Fig. 9.  

 

Figure 9:    The crystal structure of iron-based superconductor from reference [24] with the 1111, 122 of 

Arsenic is schematically illustrated.  

  

      Experimental studies show that the point-contact Andreev-reflection experiments 

performed on LaFeAsO1-xFx (La-1111) polycrystalline samples with Tc ~ 27 K and 

SmFeAsO0.8F0.2 (Sm-1111) polycrystalline sample with Tc ~ 53 K gave differential 

conductance curves exhibiting two peaks at low bias and two additional structures 

(peaks) at higher bias voltages [23].  These results showed the clear evidence of two gaps 

in the superconducting state of ReFeAsO1-xFx  (Re = La, Sm): a small gap 1 is smaller 

than the BCS value (21/kBTc ~ 2.2 – 3.2) and a much larger than 2 which gives a ratio 
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22/kBTc ~ 6.5 – 9.  In Sm-1111, both gaps close at the same temperature.  The 

temperature dependence of gap functions 1 and 2 show remarkable deviations from the 

BCS behavior at temperatures close to Tc.    The results of the point-contact spectroscopy 

measurements in polycrystalline samples of two compounds LaFeAsO1-xFx (La-1111) 

and SmFeAsO1-xFx (Sm-1111) indicated the presence of two distinct sets of features, such 

as low-energy conductance peaks and higher energy peak.  Surprisingly, the spectra look 

very similar to those measured in MgB2.  In any case both these energy scales are related 

to superconductivity and do not exist in the normal state.    Scanning tunneling 

spectroscopic studies of Ba(Fe1−xCox)2As2 (x = 0.06, 0.12) single crystals reveal direct 

evidence for predominantly two-gap superconductivity.  These gaps decrease with 

increasing temperature and vanish above the superconducting transition temperature Tc.  

The two-gap nature and the slightly doping- and energy-dependent quasi-particle 

scattering interferences near the wave vectors (± ,0) and (0,± ) are consistent with 

sign-changing s-wave superconductivity [24]. 

 

3.2   BCS theory for two-gap superconductors 

 

      In this section, I present the BCS theory for two-gap superconductivity.  The BCS 

theory is a Hartree-Fock approach [25] for describing superconductivity.   In this theory, 

superconductivity arises as a result of electron pair formations when the effective 

attractive interaction between electrons dominates the repulsive Coulomb forces.  The 

BCS model described the properties of simple superconductors.   An interesting issue is 

to understand two-band superconductivity within the BCS theory.  The two-gap 

superconductivity may lead to new interesting physics.   In MgB2, the existence of two 
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condensates leads to two pseudo-order parameters which I denote as s and d.  The 

coexistence of two distinctive order parameters is useful for understanding the phase 

coherent effects in superconductors.   

       The BCS theory is useful in multi-component system.   I now proceed by writing 

down the Hamiltonian for two-gap superconductor as  
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                                    (3.1) 

where the Hamiltonian Hpair accounts for the pair interaction contribution  
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In Eqs. (3.1) and (3.2), the fermion operators c (c
+
) and d (d

+
) describe the annihilation 

(creation) of s-band and d-band electrons, respectively.    The pairing Hamiltonian Hpair 

contains two-body interaction terms such as 




 kkkk

cccc .   In the mean-field theory, 

this two-body interaction term is approximated and is reduced to the effective one-body 

terms.  This can be accomplished by using Wick’s theorem.   By using the Wick’s 

theorem, I rewrite the first term in Eq. (3.2) as the sum of two contributions: kinetic 

energy term and pairing term.  The kinetic energy term may be written as 
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while the pairing term may be expressed as 
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                               (3.4) 

The kinetic energy term of Eq. (3.4) may be easily absorbed in k
s
, so I will ignore this 

term. By carrying out the similar calculation for the remaining three interaction terms in 

Eq. (3.2), I rewrite the pair Hamiltonian as  
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kkkk'k'kkkkkkk'k'kkksd ccddddccccddddccV   

Here, I define the gap parameter   for s and d-band condensate as  

     
'k'ksss ccV ,          





kkss

*

s ccV                                      (3.6) 

and 

                     
'k'kddd ddV ,           







kkdd

*

d ddV                                      (3.7) 

 

respectively.   Similar to the BCS theory for one-gap superconductivity, the Bogoluibov 

transformation may be used to diagonalize the two-gap Hamiltonian.  By following Suhl, 

Maththias, and Walker [25], I introduce the following transformation:   

                                      
*

kkkkk
e)2/sin(e)2/cos(c                                      (3.8) 

*

kkkkk
f)2/sin(f)2/cos(d                                        (3.9) 

*

kkkkk
e)2/sin(e)2/cos(c                                       (3.10) 

*

kkkkk
f)2/sin(f)2/cos(d                                        (3.11) 

Here, the parameters   and  can be obtained by substituting the fermion operators c, 

and d in the original Hamiltonian HTB.  The off-diagonal elements of the transformed 

matrix should be zero.   I impose this condition by setting the coefficients to the term





kkee , eke-k, 





kk ff  and fkf-k to zero.  By imposing these conditions, I obtain 

  0cos]VV[sin ksssdsdkks                                  (3.12) 

and 
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0cos]VV[sin kssddddkkd                                 (3.13) 

From Eqs. (3.13) and (3.14), I obtain the two-coupled gap equations for the s- and d-band 

condensate as  

 
k kddkd )]E(f21[sin                                         (3.14) 

and 

 
k kssks )]E(f21[sin

2

1
                                       (3.15) 

Here, these gap parameters are complex numbers.   Also, fs(Eks) and fd(Ekd) are the 

Fermi-Dirac distribution function for s- and d-band electrons.  The number of quasi-

particles in the s- and d-bands that are excited to energies Eks and Ekd may be computed 

by using these distribution functions.   These complex gap parameters may be written as 

si

ss e
  and di

dd e
  to account for the gap structure of two-gap 

superconductors.   For simplicity, I will use the symbols 1 and 2  to represent s and d , 

respectively. 

 

3.3 Pairing symmetry: S++ versus S+- 

 

     Two-gap superconductor has two types of pairing symmetry.  The relative phase of 

the two condensates reflects the pairing symmetry.  The dynamics of the phase difference 

may be described by phase-lock of two condensates.  If the two s-wave pseudo-order 

parameters have the same phase in the -band and -band, then there will be 0-phase 

locking [26] between hole and electron band for condensates.  The 0-phase-locked state 

represents the S++ pairing symmetry.  Tanaka and coworkers indicated that the inter-band 
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interaction J is positive ( 0J ) [27] for this pairing symmetry.  If two bands have - 

phase difference, the phase-locked state represents the S+- pairing symmetry or known as 

the  -phase locked state.  In this case, the inter-band interaction parameter J  is negative 

( 0J ).  

     The multi-band superconductors such as MgB2 and iron-pnictides have different a 

different phase-locked state as the ground state.  The electronic pairing in MgB2 is known 

as S++ symmetry.   In MgB2, there are two tunneling channels with the same phase.   The 

contribution from each channel may add in a constructive way.  Hence, the current-phase 

relation is similar to a single-band superconductor.   

      However, some experimental studies showed that iron-pnictide superconductors may 

have S+- pairing symmetry.  This conclusion for the iron-pnictides is still controversial 

since the result of some experimental measurements does not support the conclusion.  In 

this type of symmetry, there are two tunneling channel. Note that, the contribution from 

each channel may be summed to yield the destructive as well as constructive interference 

effects in the tunneling currents.  Hence, the existence of two gaps in the superconductors 

like MgB2 or iron-pnictides may affect the properties of the interfaces. 

 

3.4   Phase fluctuations of condensates   

       There are some fluctuation effects around the phase-lock state of two condensates.  If 

the fluctuations are small, then there may be collective excitations in the junction 

reflecting small phase oscillations.  In the multi-gap superconductors, these fluctuations 

are classified into two types.   The out-of-phase fluctuations are known as the Josephson-

Leggett (JL) mode, while the in-phase fluctuations are known as the Josephson-plasma 
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mode.  The JL mode had been observed by Bloomberg and his coworkers [26].  These 

phase fluctuations are important in long Josephson junctions (LJJ).  Since the total energy 

of the two-gap superconductors depends on the relative phase of the condensates and the 

relative density of electrons, the phase dynamics of LJJ are affected by JL mode.  The 

fluctuations about the phase-locked state may not necessarily remain small.   They may 

become large.   If the amplitude of fluctuations in the relative phase of the two 

condensates becomes large and the non-linear phase oscillations become stabilized, a 2-

phase texture known as i-soliton may appear.   Excitation of i-soliton as shown in Fig. 11 

can change the amplitude of the critical current density [27].  

     

 

Figure 10:  Relative phase difference  of two order parameter is plotted as a function of position  x in 

order to illustrate the  single-kink solution.  There is a phase change at  . 
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      There is experimental evidence for i-soliton in two-gap superconductors.  The 

magnetic response of a superconducting ring experiment with two pseudo-order 

parameters indicates that a stable i-soliton shaped phase difference   between the two 

condensates is attainable [28].  This result indicates that the phase fluctuations can 

produce a 2-phase texture [29].  The effects of phase fluctuations can appear as either 

additional resonance in the AC Josephson effect or a static 2-kink in the phase 

difference.  If the 2-phase exists in each S layer, then this i-soliton may change the 

phase dynamics.  In recent work of Kim, Ghimire, and Tsai [33], they showed that the 

formation of the 2-phase kink in LJJ involving two-gap superconductors can affect the 

Josephson critical current density.  
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CHAPTER IV 

ANDREEV BOUND STATES IN TWO-GAP SUPERCONDUCTOR 

JUNCTIONS 

 

      For two-gap superconductors, the presence of two condensates is important for 

determining the superconducting property.  In this chapter, the Andreev reflection at the 

NS interface involving a two-gap superconductor is discussed.   I follow the work of 

Golubov and coworkers and apply the approach used in the BTK theory to the 

superconductor junction with the S++ and S+- pairing symmetry [32].  Then I will explain 

the appearance of mid-gap bound states at the surface of the normal metal-

superconductor interface by using the Bloch waves. 

 

4.1   Evidence of surface states  

 

      Existence of mid-gap states at the surface of two-gap superconductor junction had 

been an intriguing subject in recent years.   There are many theoretical papers discussing 

the role of the mid-gap surface states in an SNS junction.   Recent studies on a tunnel 

junction involving iron-pnictide superconductors showed that the mid-gap states may 

exist in the normal metal-superconductor 1-superconductor 2 (N-S1-S2) junction [31].   

Feng and Ng showed that the quasi-particle can tunnel through the junction involving a 
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multi-band superconductor with S+- pairing symmetry.   In their calculation, Feng and Ng 

used plane waves as wave functions.   

 

4.2 Bloch waves 

    All of the earlier studies used the plane waves to construct a wave function for both 

normal metal and superconductor for calculation of the bound state energy.   As noted by 

Golubov and coworkers, the main pitfall of using the plane wave approach is that two 

different plane waves cannot propagate in the same direction with the same energy.  To 

overcome this difficulty, Golubov and coworkers used Bloch waves to determine bound 

states in multiband superconductors [32].   According to Bloch's theorem, the eigen 

function of a system can be written as the product of a plane wave envelope function and 

a periodic Bloch function )r(unk .   The Bloch wave function is given by 

                                                  
G

r)Gk(i

nknk e)r(u)r(                                              (4.1) 

      By using Bloch waves, I construct the wave function for both sides of the normal 

metal junction involving one-band metal on the left side and two-band metal on the right 

side.   The wave function in the one-band normal metal side (i.e., left side or for x < 0) of 

the junction is given by  

                                                  )x(b)x()x( kkN                                              (4.2) 

Here, the first term of Eq. (4.2) is the incident Bloch wave and the second term is the 

reflected one.   For the two-band normal metal side (i.e., right side or for x > 0), the wave 

function is 

http://en.wikipedia.org/wiki/Energy_eigenfunction
http://en.wikipedia.org/wiki/Energy_eigenfunction
http://en.wikipedia.org/wiki/Plane_wave
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                                                   )]x()x([c)x( q0pN                                         (4.3) 

where p and q denotes the Fermi vector for the s-band and d-band, respectively.  Here, ф  

 

 

denotes the Bloch wave function similar to Eq. (4.1), and α0 is the mixing coefficient 

which represents the ratio of probability for an electron flowing from left side to the right 

side.  In the following sections, I will explain the details of the calculation of bound state 

energy for the NS junction involving a two-gap superconductor, similar to that done by 

Golubov and coworkers for a ballistic Andreev contact.   

 

 

4.3 Bound states in SN interface 

 

        Following the work of Golubov and coworkers, I examine the NS junction.   Here, 

all scattering is characterized by the phenomenological parameter z.  The scattering 

potential is given by 

)x(
m

pz
V

e

F

2

Barrier 


                                               (4.4) 

Figure 11: The Normal metal-Superconductor (NS) contact junction is schematically illustrated.  The 

interface is located at x=0. 
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where Fp is the Fermi momentum in the superconductor.  This potential barrier located at 

x = 0, as shown Fig. 11. Note that, that the two-gap superconductor has unequal s-wave 

symmetry gaps.  The total wave function is given by 

                                          
)x()x()x()x()x( SN                                       (4.5) 

where (x) is the step-function.  The wave function (x) for the one-band normal metal 

is given by    

                                  

























 

0

1
)x(b

1

0
)x(a

0

1
)x()x( kkkN                            (4.6) 

The wave function S(x) for the two-band superconductor is given by 
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c)x(   (4.7)  

The wave functions for the NS junction have two components.  The first component 

indicates the wave function for the electron, and the second component represents the 

wave function for the hole.  Here, the parameter    accounts for wave function mixing, 

similar to that in Eq. (4.3).    The coherence factor for a particle u1,2 and for a hole v1,2 are 

given, respectively, as                               













 


E

E
1

2

1
u

2

2,1

2

2

2,1
                                                  (4.9) 

and 













 


E

E
1

2

1
v

2

2,1

2

2

2,1                                                    (4.10) 

where ∆1,2 represents the magnitude of the superconductor order parameter.  In the case 

of the S+- pairing symmetry, a superconductor with unequal gaps of opposite sign has the 

phase difference of .21    However, for the standard S++ pairing symmetry, a 
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superconductor with unequal gaps of the same sign has 21  .  The amplitudes a and b 

in the wave function (4.6) describe Andreev and normal reflection, respectively.  The 

amplitudes c and d describe transmission without branch crossing and with branch 

crossing, respectively.  To solve this one-dimensional quantum mechanical scattering 

problem and obtain bound state energy, I impose two boundary conditions: the wave 

function must be i) continuous and ii) smooth.  The continuity of wave functions at the 

interface (i.e., x=0) yields 

    )0()0()0( SN                                               (4.10) 

By applying the boundary condition of Eq. (4.10), the wave function can be divided into 

two equations corresponding to electrons and holes. These two equations may be written 

as  
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            (4.12)                        

Now, I impose the second boundary condition of smoothness which is given by 

                               )0(
dx

)x(d

m2dx
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m2 0x
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                                (4.13) 

By applying the condition of Eq. (4.13), I obtain two equations, again, corresponding to 

electrons and holes.   These two equations are written as 
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                (4.14) 

and 
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where the complex parameter Z = 1 + i z to simplify the problem.  Here, the parameter z 

indicates the height of potential barrier.   The parameter z can be written as 

                                                        
Fv

z



                                                                (4.16) 

where  is the strength of the potential barrier and vF is the Fermi velocity.  I note that 

the interface velocity kv , which is defined as 
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has the same property as Fermi velocity vF.   This velocity is real and has the same 

property as the group velocity.  For simplicity, I introduce the parameter  which is 

defined as 
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                                                       (4.18) 

 

at the interface (x = 0).  Now, I need to solve the four coupled equations (4.11), (4.12), 

(4.14), and (4.15) to find the coefficients a, b, c and d.  These coefficients can be obtained 

solving  

                                                          0YM SNSN   

where the matrix MSN is given by 
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and the column matrix YSN  is given by   
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To find the bound state energy, I need to solve the secular equation.  So, I set the 

determinant of matrix MSN to zero 

                                                       0Mdet SN                                                            (4.21) 

It is straightforward to see that Eq. (4.21) may be written as  
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where U= )uu( 201  and V= )vv( 201  .  I note that Eq. (4.22) will serve as the central 

equation for computing the bound state energies. 

      Now, I find the solution of Eq. (4.22) for the two special cases: i) the transparent (z = 

0) case and ii) the insulating (large Z) case.   First, for the z=0 case which corresponds to 

the transparent interface, Eq. (4.22) simplifies to  
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                                          (4.23) 

I simplify Eq. (4.23) further by considering the S++ pairing symmetry by setting the phase 

of the condensates as 021   (i.e., 0ds  ).  For this case, the bound state 

energy may be found by solving   
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However, there is no solution to Eq. (4.24), suggesting that there is no bound state energy 

solution.  Next, I look for the bound state energy for the S+- pairing symmetry by setting 
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the phase of the condensates as 1  and 02  .  For this case, Eq. (4.23) may simplify 

to   
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I solve Eq. (4.25) for the bound state energy and obtain 
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The bound state energy of Eq. (4.27) indicates that, when the phase differences of s and d 

band condensate is   (i.e.,  ds
), the zero energy mid-gap state appears for s 

= 2
 d.   Now, I compute the bound state energy for weakly transparent interface (i.e., z 

>> 1).   In this case, the secular equation of (4.22) simplifies to 

     0)]vv(v)uu(u[e)]vv(v)uu(u[e 212212
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211211

i 11         (4.28) 

I consider the S  pairing symmetry case by setting the phase as 0ds  .  For this 

case, Eq. (4.28) can be written as  
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21                                    (4.29) 

Equation (4.29) can be expanded and rewritten as 
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Using the expression for the coherence factor 2,1u  and 2,1v  for particles and holes, 

respectively, I simplify Eq. (4.30) further and write   
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222 2)1(E                               (4.32) 

From Eq. (4.32), it is straightforward to see that the bound state energy for the S++-

symmetry superconductor is given by 
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For S pairing symmetry, I set the phases to  ds
and look for the bound state 

energy for the low transparency case (i.e., z >> 1).  In this case, the secular equation 

(4.28) simplifies to 
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Once again, I substitute the expression for the coherence factors u1,2 and  v1,2 into Eq. 

(4.34) and obtain  
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The bound state energy obtained from Eq. (4.35) is  
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                                             (4.36) 

This bound state energy at the interface yields the peaks in the differential conductance 

for SN junction.   Here, if  21 , Eq. (4.33) yields the trivial solution of BE , 

indicating that there is no mid gap states.   For the 0 case, the similar solution of 

1BE  is obtained.   For 21 /0  , however, the BE = 0 bound state exists if 

21 / .  
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CHAPTER V 

MID-GAP STATES IN SIS JUNCTION 

       In recent years, there has been a growing interest in superconducting-normal metal-

superconducting (SNS) tunnel junctions.  In this chapter, I investigate the mid-gap states 

in the superconductor-insulator-superconductor (SIS) break junction as shown in Fig. 12.   

In this type of the junction, the insulator layer is very thin.   I examine the S++ and S  

pairing symmetry with unequal s-wave gaps in two bands.   Also, I discuss the effects of 

interference between the electron wave functions from the two electronic bands.   The 

two-gap superconductors in the junction are represented by two pseudo-order parameters

1i

11 e
 and 2i

22 e
 .  In the two-gap superconductors, there are two tunneling 

channels. Theses tunneling channels indicate two different kinds of phase differences, 

suggesting that there are two types of Josephson effects.   These are the usual Josephson 

effects between two adjacent superconductor layers as well as the inter-band Josephson 

effects between two condensates.  The inter-band Josephson effects is needed to account 

for tunneling of quasi-particles between the two electronic bands in the same S layer.  

The inter-band Josephson effects drive the dynamics of the phase difference between the 

two condensates.   



 

44 

 

 

Figure 12: A schematic diagram of two-gap Josephson break junction (SIS) is illustrated.  Insulator is a 

thin layer which is the yz surface located at x=0 between the two superconductors. 

 

5.1 Wave function for the superconducting state 

 

      I investigate the in-gap state of the break junction involving a two-gap 

superconductor.  I start the calculation by writing the wave function for each side of the 

junction.   Assuming that the junction barrier is located at x = 0, the wave function for the 

two superconductor side of the junction may be written as 

                      )()()( xxx SRSL                                            (5.1)                                                            

where x is the step function.  Here, L and R refer to left and right side superconductor, 

respectively.  In particular, the wave functions for the superconductor on the left side of 

the barrier potential is given by 
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    Note that p and q denote the momentum of particle in s-band and d-band, respectively. 

Here, ±p (x) and ±q (x) are Bloch wave functions.  Also, the wave function for the 

superconductor on the right side of the potential barrier is given by 
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    Here, 0 is the mixing parameter.   The coefficients a and b in Eq. (5.2) describe 

Andreev and normal reflection at the interface, respectively.  The coefficients c and d 

indicate transmission with no branch crossing and with branch crossing, respectively 

[32].  I note that uiand vi are the usual Bogoliubov coefficients for the particle and hole 

representing the coherence factors, respectively.   

     Since I am treating this problem as a quantum mechanical potential scattering 

problem, the wave function must satisfy the boundary conditions at the interface.  As 

discussed in Chapter 4, there are two boundary conditions: the wave function must be i) 

continuous and ii) smooth.  The first condition requires that the superconductor wave 

function on the both sides of the potential barrier is equal to each other at the interface 

(i.e., continuity condition).  So, the first boundary condition at the interface (x = 0) is 

given by  

)0()0()0( SRSL                                               (5.4) 

Since the wave function for each superconductor has the particle and hole components, 

the boundary condition of Eq. (5.4) yields the following two equations: 
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Now by applying the second boundary condition, the wave function on each side of the 

barrier must satisfy  
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I note that Eq. (5.7) may be derived easily from the Schrödinger equation for the wave 

function (x). Inserting the wave functions into Eq. (5.7), the following two equations 

are obtained 
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As shown above, after applying the boundary conditions at the interface, four equations 

are obtained.  These four coupled equations from the boundary conditions may be 

expressed in a simpler form by writing them as a matrix equation MSISYSIS = 0, the 

secular equation, where the 4x4 matrix MSIS is given by 
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and the column matrix YSIS is given by 
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 Here, zi1Z   and the factors in the elements of MSIS are defined as                
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Here,  is defined in Eq. (4.18) as 
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      The phase differences between the two condensates in the left and right 

superconductor, respectively, are defined as 
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Next, I will solve the secular equation by  
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Equation (5.19) may be written as a fourth order polynomial equation in  
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where the coefficients ia may be defined as the following: 
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Here, ss
 = 1

L
 – 1

R
 is the phase difference between the s-band condensates in two 

adjacent superconductor islands.  In order to find the mid-gap states, I need to solve Eq. 

(5.20) by using the phase difference between the two condensates within each 

superconductor that minimizes the free energy.   Recent work of Kim indicates that the 

Ginzburg-Landau free energy for the two-gap superconductor Josephson junction is 

minimized when L
 = 0 and R

 = - 0.   This substitution for both L
 and R

 simplifies 

Eq. (5.20) to  
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where the coefficients of bi are defined as  
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Now, I will substitute the expression for the coherence factors for the particle (ui) and the 

hole (vi) into Eq. (5.26).  A simpler form of the polynomial equation of Eq. (5.26) may be 

written as 
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where the coefficients of  ci are defined as  
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Here, 2/E  and    

                                  E1E1E ,                                                                   (5.38) 

At this stage, I solve Eq. (5.31) numerically to obtain the in-gap bound state energy.   The 

dimensionless parameter z indicates the value of transparency in the junction.  For 

example for z = 0, the junction has a high transparency, and the properties of the interface 
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in the junction is like normal metal. However, increasing z causes the barrier of the 

junction behaves like an insulator.   For large z, the junction has a low transparency.    

 

5.2 In-gap bound states 

 

     As pointed out by Furusaki and Tsukada [10], the mid-gap states in the SIS junction 

are essential for carrying tunneling currents. The bound states near the energy gap are 

responsible for the current in the absence of bias voltage (i.e., DC Josephson effect). 

However, the zero energy bound states are responsible for the current when the bias 

voltage is applied.   

     The bound state energy is solved as a function of the band mixing parameter, .  

When  = 0, the two electronic bands are not mixed, indicating that two bands behave as 

independent of each other.  Hence, no interference effect is expected, and the junction 

behaves as a single-band superconductor Josephson junction.  In a single-band case, the 

result is consistent with the previous result as shown in Fig. 13.  In this figure, the bound 

state energy is shown as a function of ss
.   I note that ss

 is defined as the phase 

difference between the s-band condensates in the left and right superconductor island.  It 

seems that, despite the fact that both the left and right superconductor islands in the 

junction are two-gap superconductors, the junction behaves similar to a junction of two 

one-gap superconductors.  Next, I will numerically solve the secular equation for three 

different values of z.   For high transparency, the barrier (i.e., z < 0.01) seems to behave 

as a normal metal rather than as an insulator at the interface.   However, when the value 

of z is increased, the interface behaves more as an insulating barrier.    
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Figure 13:  The enegry of bound staes versus phase differnce ss
 to illustrate the energy dispersion.  The 

computed result has been plotted for z = 0.01, 1.0,  and 2.0.  Here,=0, indicating that the junction acts 

such a two independent one-gap superconductors. 

 

     As we note above, when   = 0 there is no mixing between the wave functions from 

the two electronic bands, and the junction acts like two separate one-gap superconductor 

junction (i.e., two independent tunneling channels).  On the contrary, when  is non-zero, 

the band mixing is allowed during the scattering process.  The wave function mixing 

allows for the interference effects.  These interference effects may either increase or 

decrease the supercurrent.  So, when the interference effect is destructive, the value of 

supercurrent will be decrease.  The result of numerical calculation for  = 0.2 shown in 

Fig. 14 indicates that the bound state energy solution at certain nonzero values of the 

phase difference ss
.  The bound state energy curves in the figure appear to be shifted 

compared to those in Fig. 13. 
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Figure 14: The energy of bound states versus phase difference has been illustrated.  The energy-phase 

difference is plotted for η=0.2 when z=0.01, z=1.0, and z=2.0. The wave function mixing η allows for the 

interference effects. 

 

     Now, I will focus on the mid-gap bound state energy below the Fermi energy.  In Fig. 

15, I plot the numerically computed bound state energy EB as a function of the phase 

difference ss
 for z = 0.01 and z = 1.0.   For each value of z, I plot three curves 

corresponding to  = 0.0, 0.1, and 0.2 to illustrate the effects of wave function mixing on 

the bound state energy.  Here, the destructive interference effect due to inter-band 

interaction appears in the curves for the bound state energy.  For both small and large 

values of the phase difference ss
, as indicated by the red circles, the interference effects 

are present.  From the results, the destructive interference phenomenon between two 

wave functions suppresses the bound state energy.  When   is small, there is only a small 
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amount of mixing between two Bloch waves in the two-gap superconductor junction.   

However, when  increases, the mixing between two Bloch waves leads to increasing 

either the destructive or constructive interference effect.  I note that for a non-zero value 

of  the bound state energy solution only appears for c
ss ≤ ss

 ≤ 2- c
ss

.   Also, I note 

that the value of c
ss

 increases with increasing z and .    For a large value of z (i.e., z >> 

1), the barrier of the junction behaves more like an insulator, rather than a normal metal.  

The curves show that the bound state energy decreases with increasing z and .   

 

 
 

Figure 15: Two sets of curves (i.e., z = 0.01, and 1.0) for the bound state energy versus phase difference 

are plotted for η = 0.0, 0.1, and 0.2.   The destructive interference effect is illustrated with red circles. There 

is no bound state energy solution in these regions.   
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5.3   Current-phase relation 

 

      In this section, I present the numerically computed supercurrent in the junction as a 

function of the phase difference ss
.   The current density is given by 

 

                 )E(f
Ee2

J n

2

1n
ss
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bound 
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
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                                           (5.39)    
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

                                             (5.40) 

is the Fermi-Dirac distribution function.  I note that TkB  in Eq. (5.39) so that the 

thermal excitations are negligible.  According Eq. (5.39), I need to take the derivative of 

the bound state energy shown in Figs. 14 and 15 numerically with respect to phase 

difference ss
.   

     In Fig. 16, I plot the numerically computed current density from the bound state 

energy by using Eq. (5.39) as a function of ss
 for z = 0.01 and z = 1.0 to illustrate the 

effects of interference.   For a small value of potential barrier (i.e., z ≈ 0), the bound 

current density, Jbound , exhibits both constructive and destructive interference effects.  

The value of ss
 ≈  as indicated by the red circle, shows that Jbound for  ≠ 0 (i.e., for  

= 0.1 and 0.2) is larger compared to the result of  = 0 (solid line), suggesting that the 

interference effect is constructive.   However, the curves with small ss
, as indicated by 

the blue circle, show that Jbound for  ≠ 0 is less than that for  = 0, suggesting that the 

interference is destructive.   As the barrier potential height z increases, the constructive 

interference effect for ss
 near  becomes suppressed.  However, the curves for small ss
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indicate that the destructive interference effect becomes enhanced.  I note that for a non-

zero value of , the destructive interference effect may completely suppress the bound 

state current when the barrier potential becomes large. 

 

 

Figure 16: The current density versus phase difference plot for two values for z (z = 0.01, and1.0) 

illustrates the dependence on the barrier transparency.  Three curves for a fixed z correspond to η = 0, 0.1 

and 0.2.   Constructive interference effect on Jbound is indicated by the red circle, but the destructive 

interference effect on Jbound in shown by the blue circle. 

 

 

       In examining Fig. 17, for z = 0.01 and 1.0, the results are not consistent with the 

well-known current-phase relation of the DC Josephson effect of Eq. (1.2).  In the 

absence of the mixing between two Bloch waves (i.e.,  = 0), the usual Josephson 

current-phase relation is recovered for a large value of z.  To illustrate this point, in Fig. 

17, I plot d/dE  with respect to the phase difference ss
 for z= 0.5, 1.0, 3.0, and 5.0.  
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The solid red lines represent the numerically computed Jbound from the bound state 

energy; while the open diamonds represent the Josephson current-phase relation.  For a 

large value of the parameter z, z= 5.0 for example, the two curves become almost 

identical.  This indicates that the Josephson current-phase relation may be derived from 

the bound state energy solution of Eq. (5.31), as expected.  

 

  

 
 

 

 

 
Figure 17: The current density versus phase difference plot for z = 0.5, 1.0, 3.0, and 5.0 illustrate that, 

when the wave function mixing η = 0, the current-phase relation becomes more consistent with the usual 

Josephson relation for one-gap supercurrent with increasing parameter z.  

 

 

 

     According to curves in Fig. 16, the constructive interference effect for ss
 near  

becomes suppressed with increasing z.  Now, I plot the maximum value of the bound 

current density 
max

boundJ  as a function of z in Fig. 19 to illustrate the crossover behavior.  
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The curves for  = 0, 0.1, and 0.2 suggest that the crossover behavior occurs at z ≈ 0.8.  

For z < 0.8, max

boundJ  becomes stronger with increasing .  This enhancement is due to the 

constructive interference effect which becomes pronounced for z ≈ 0 as indicated by the 

red circle.   However, for z > 0.8, max

boundJ  becomes suppressed with increasing .  This 

suppression is due to the destructive interference effect.  For  = 0.2, the destructive 

interference effect appear to suppress bound state current completely for z ≈ 3 as shown 

by the blue circle.   

 

 

 
Figure 18: The maximum of current density is plotted as a function of the barrier height z for η = 0.0, 0.1 

and 0.2.  The constructive interference effect on the bound states is indicated by the red circle, while the 

destructive interference effect on the bound states is indicated by the blue circle. At z ≈ 0.8, the 

constructive interference effect crosses over to the destructive interference effect. The destructive 

interference effect suppresses the bound state current completely for z > 3. 
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CHAPTER VI 

CONCLUSION 

      In this thesis work, I have investigated the mid-gap states in two-gap superconductor-

insulator-superconductor (SIS) tunnel junction.   I studied Andreev bound states in SIS 

junction by examining a break junction.   Here, I used two Bloch waves to construct 

superconductor wave functions and to investigate the interference effect between the two 

scattered waves by the barrier potential with an arbitrary barrier transparency.   In this 

thesis work, I obtained the current-phase relation by numerically computing the current 

density from the mid-gap bound state energy.   

      In the thesis work, I studied the two-gap superconductor tunnel junction for both 

when the mixing parameter  is zero and when it is non-zero.  When 0 , the Bloch 

waves of two-gap superconductors do not interfere.  Therefore, the two-gap 

superconductor junction behaves as a one-gap superconductor junction with two 

independent tunneling channels.  On the other hand, when the band mixing is allowed 

(i.e.,  ≠ 0) during the tunneling process, destructive inter-band interference would 

prevent a formation of mid-gap bound states for certain ranges of the phase difference 

ss
.  I found that when the mixing between two Bloch waves is increased, the interference 

effect becomes stronger.   In short, either the destructive or constructive interference 

becomes stronger.   
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      My thesis work shows that when the barrier of the junction behaves an insulator for 

large z, the usual current-phase relation is recovered.   The result of current density 

calculation shows that for small value of transparency (i.e., z ≈ 0), the maximum value of 

the bound state current density max

boundJ  increases with increasing .   The bound current 

density Jbound exhibits both the constructive and destructive interference effect.   The 

numerical result for this case shows that the bound state energy decreases with increasing 

both z and .   

     As shown in the present thesis work, the current-phase relation for  a SIS break 

junction may use as a way to measure the amount of band mixing in a tunneling process.   

Consequently, the unusual dependence of the tunneling current on ss
 may arise, 

indicating the presence of bound states only in the limited range of the phase difference.   

This work may be taken as a starting point for further research work on the role of the 

wave function interference in the property of tunnel junctions involving multi-component 

superconductors. 
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