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I am also deeply indebted to Dr. Deniz Çakır for providing me opportunities to

collaborate with him and his group to do some interesting research works that has

led to fruitful results.

I would also like to thank the UND for supporting me with scholarships and

assistantships, especially endowing me with the Summer Doctoral Fellowship in 2016

and helping me receive NSF ND EPSCoR DDA grant in 2018.

Finally, I cannot forget to thank all the graduate students that have been good

friends to me during my stay at the UND. I would like to personally thank Dr. Rajesh

Dhakal, who as my senior guided me during my early years at the UND.

I am grateful to many people I have met at the UND, as they have been very

gracious and welcoming to me. I might not miss the winter too much, but I will

always cherish the time I have spent here.

xiii



Dedications

I dedicate this book to my parents Bishnu Raj Karki and Mira Shah Karki, and my

wife Sangeeta Shrestha. My journey to the United States to pursue education was

possible only because of my parents’ support. My wife has been very helpful and

encouraging throughout my time as a Ph.D. student, for which I am very thankful.



ABSTRACT

The first chapter of this book provides a brief history of the important devel-

opments in superconductivity. After a general introduction, the superconductor-

insulator transition is discussed in regards to open questions in the field and some of

the questions tackled in this dissertation. Also, a brief introduction to ferromagnetism

and phase transition in ferromagnetic systems is presented.

In the second chapter, results of simulations of three types of random inductor-

capacitor (LC) networks on square lattices are presented1,2. The dynamical conduc-

tivity was calculated using an equation-of-motion method. The critical exponent was

extracted at low frequencies. The results suggest that there are three different univer-

sality classes and that classical percolative 2D superconductor-insulator transitions

(SITs) generically have �(!) ! 1 as ! ! 0.

The third chapter presents results of simulations of a quantum rotor model de-

scribing a Josephson junction array (JJA) in a perpendicular magnetic field B on

a square lattice3. The SIT is tuned by the ratio of charging energy to Josephson

coupling, U/J . Abrupt drops in the magnetization values were observed in the bigger

lattices at certain values of B and U/J caused by the formation of vortices. Increas-

ing U/J at a fixed B field causes quantum vortex lattice melting. The magnetization

drops to zero around U/J ' 5 indicating SIT.

In the fourth chapter, results from simulations of anisotropic Ising models are

presented. These simulations were performed for a Hf2MnC2O2 monolayer under

uniaxial strain4. The Curie temperature increases with the increasing strain, which

means magnetic ordering survives up to higher temperatures under strain. In the fifth

and final chapter, important results accrued over the whole dissertation are presented.

xv



CHAPTER I

INTRODUCTION

In this chapter, some of the important developments in the history of superconductiv-

ity and phase transition in ferromagnetic systems are introduced. Chapters 2 and 3 of

this dissertation concern superconductor-insulator transitions and chapter 4 focuses

on phase transitions in a ferromagnetic system, so the theory of phase transitions and

critical phenomena plays a central role in this dissertation.

1.1 Important developments in the history of superconduc-

tivity

The discovery of superconductivity brought a revolution in the field of condensed

matter physics. Many theories that were developed to understand this new state

of matter found their application in other areas of physics like nuclear and high

energy physics. Following are the important developments in the understanding of

this phenomenon in chronological order:

• 1911 - Heike Kamerlingh Onnes discovered superconductivity in his laboratory

at Leiden University. When he was conducting experiments on the resistances

of gold and mercury on 8 April 1911, he discovered the resistance of the latter

to be “practically zero” at about 3 K.

• 1933 - Meissner and Ochsenfeld showed that superconductors actively expel

magnetic fields, meaning that a superconductor is not only a perfect conductor

1



but also a perfect diamagnet5.

• 1935 - Fritz and Heinz London explained the electromagnetic behavior of a pure

superconductor. They introduced the London equations6,

@js
@t

=
1

Λ
E and r⇥ js = � 1

Λ
B,

where Λ = m/nse
2. A more meaningful constant is the penetration depth

�L = (Λ/µ0)
1/2, which is the depth upto which the magnetic field penetrates

the superconductor.

• 1939 - Shoenberg experimentally measured the penetration depth �L at Cam-

bridge7.

• 1947 - Pippard developed more sensitive experiments based on microwave tech-

niques which allowed him to investigate the effect of electron mean free path on

the penetration depth8.

• 1950 - Maxwell and Reynolds et al. discovered the isotope effect in mercury

(increasing the number of neutrons causes the superconducting critical temper-

ature Tc to decrease)9,10.

• 1950 - Based on Maxwell and Reynolds’ experiments, Fröhlich made a conjecture

that the electron-phonon interaction plays a crucial role in superconductivity11.

• 1950 - Ginzburg and Landau developed a phenomenological theory of the phase

transition from normal to superconducting state12. Their key observation was

that the phase transition in superconducting systems is of second order. They

defined a complex-valued order parameter Ψ that is finite in the supercon-

ducting state and zero above the critical temperature, taking motivation from

other known second-order phase transitions. The squared modulus of this pa-

2



rameter gives the density of superconducting “electrons” |Ψ|2 = ns/2. In the

Ginzburg-Landau (GL) theory, free energy density depends only on the density

of superconducting electrons |Ψ|2 / ns and can be expanded in powers of |Ψ|2

as,

Fs = Fn + ↵|Ψ|2 +
1

2
�|Ψ|4 +

1

2m?

�
�
�
�

✓

�i~r� e?A

c

◆

Ψ

�
�
�
�

2

+
1

8⇡
(B(r)�Ha)

2.

The following expression was derived for the current density from the free energy

density,

js = � i~

2m?

(Ψ?
rΨ�ΨrΨ

?)� e2?
m?c

|Ψ|2A. (1.1)

• 1957 - Abrikosov derived the flux-lattice solution from the GL equations showing

how vortices (flux lines) emerge from the theory13.

• 1957 - Bardeen, Cooper, and Schrieffer published their paper explaining the mi-

croscopic theory of superconductivity which is today known as the BCS theory

after their names. They showed how electrons can form Cooper pairs below

the critical temperature due to the phonon-mediated net attractive interaction

as conjectured by Fröhlich. Cooper pairs are bosons that can occupy the same

ground state, which then facilitates the superconductivity. This is the most

important breakthrough in the history of superconductivity since its discovery

itself14.

• 1959 - Gorkov derived the GL equations from the BCS theory15.

• 1960 - Giaever and Nicol, Shapiro, and Smith discovered the nature of tunneling

at N-S and S-S interfaces (N=Normal, S=Superconductor)16,17.

• 1961 - Due to the quantum nature of the order parameter Ψ, in 1950 London

predicted the quantization of magnetic flux penetrating a superconductor. Since
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he did not know that the charge carriers are Cooper pairs his derived value of the

flux quantum was twice the true value. The following is the derivation of flux

quantization based on Bardeen’s 1961 paper18. With the choice of wavefunction

of Ψ = |Ψ|ei✓, where the phase ✓ is conjugate to the number (of Cooper pairs),

Eq. (1.1) can be written as

j =
~e

m
|Ψ|2



r✓ � 2e

~c
A

�

.

Integrating the above equation along the path enclosing the magnetic flux gives

I
j

|Ψ|2
dl =

~e

m

I

r✓ dl� 2e

~c

I

A dl

�

.

The first contour integral enclosing the vortex is zero because the current in the

bulk of a superconductor is zero j = ~0.
H
r✓ dl = 2⇡n because the phase must

be single-valued modulo 2⇡, which means its gradient around a closed loop must

be an integer multiple of 2⇡. The last contour integral is simply the magnetic

flux,
H
A dl =

R
B dS = Φ. Putting these terms together gives

Φ = nΦo where Φ0 =
⇡~c

e
⇡ 2.07⇥ 10�15Wb.

Φ0 is known as the magnetic flux quantum.

• 1962 - Josephson explained the nature of Cooper pair tunneling through oxide

layers separating superconductors as measured in the experiments of Giaever19.

Many more important developments have taken place in the field of superconduc-

tivity since 1962, most important being the discovery of high-Tc superconductivity

in cuprates and ceramic superconductors. These high-Tc superconductors cannot be

explained by the BCS theory and a lot of research today is focsued on understanding

the theory behind these new class of superconductors. However, in the context of this
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dissertation, the Josephson pair tunneling theory in 1962 is a good stopping point

in the history of superconductivity. Chapter 3 includes a detailed explanation about

this tunneling phenomenon, as the chapter itself is about Josephson junction arrays.

Today, superconductivity is a big field of study within the subject of condensed

matter physics. Even the study of phase transitions between superconducting, metal-

lic, and insulating states is a big area of research. Since the research work described

in chapter 2 and chapter 3 of this dissertation concerns the superconductor-insulator

transition (SIT), some background on SIT is provided in the following section.

1.2 Introduction to superconductor-insulator transition (SIT)

The superconductor-insulator transition (SIT) is an incredibly interesting example

of a quantum phase transition. It is called a quantum phase transition because it

occurs entirely at zero temperature due to quantum mechanical fluctuations. Such

a transition can be driven by different tuning parameters like disorder, magnetic

field20,21, thickness22, or gate voltage23,24. In the recent three decades, many systems

have been discovered where the superconducting state transitions into the insulating

state but there are still many unanswered questions about the nature of this transition.

What universality class or classes does this transition fall in? Is the nature of the

insulator bosonic or fermionic? Is it an Anderson insulator or a Mott insulator? How

does the dynamical conductivity behave near the SIT? How do vortices behave under

quantum mechanical fluctuations? Also, in the presence of a magnetic field B, the

SIT has been shown to be of first order or second order depending on the value of

the B field25, further demonstrating the complex nature of this phase transition.

We have answered some of these questions in our research. In chapter 2, the nature

of the dynamical conductivity near the critical point in a classical percolative SIT,

driven by quenched disorder is discussed. We also identify three universality classes

in the classical regime. In chapter 3 we study vortices in Josephson junction arrays
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and identify the SIT by the criterion where the Meissner screening current goes to

zero. Also, vortex delocalization is observed when increasing the tuning parameter

that controls the strength of quantum mechanical fluctuations.

The fourth chapter is on ferromagnetic transitions in a MXene monolayer. Follow-

ing section provides a brief background on the important developments in the theory

of ferromagnetism.

1.3 Historical background on ferromagnetism and phase tran-

sitions in ferromagnetic systems

In 1895, French physicist Pierre Curie discovered that ferromagnetic materials be-

come spontaneously magnetized below the critical temperature Tc, named the Curie

temperature in his honor. In 1907, Pierre Weiss proposed a theoretical model based

on a mean-field approach to explain such a phase transition, but his theory was un-

able to explain the detailed behavior of magnetization M(T ) near Tc as observed

in the experiments. In 1920, German physicist Wilhelm Lenz proposed a model of

the ferromagnetic system with spins Sz = ±1, that facilitated the parallel and anti-

parallel interactions between the nearest neighbor spins26. However, Lenz did not

study the properties of his model in detail. He later suggested further investigation

of this model as a dissertation subject for his Ph.D. student Ernst Ising.

Ising found an analytical solution to the problem in one dimension (which led

to the model being named after him), which did not exhibit any phase transition.

He then assumed that this model does not have any phase transitions in higher

dimensions either27. This was later found to be untrue. In 1936, Rudolf Ernst Peierls

provided a simple argument about the possibility of spontaneous magnetization in 2D

and 3D28. In 1941, Hendrik Kramers and Gregory Wannier derived a quantitative

result using a duality transformation that demonstrated a phase transition in 2D.
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Using this method they were able to calculate the Curie temperature of the Ising

model on a square lattice accurately29,30

The Ising model has analytical solutions in 1D and 2D in the absence of an external

magnetic field. However, the 2D Ising model with an external magnetic field and the

3D Ising model with and without an external magnetic field have not been solved

analytically yet. In chapter 4, we are concerned with the 2D anisotropic Ising model

in the absence of an external magnetic field, which we simulate using a computational

method.

The most important breakthrough in theory of ferromagnetism came in 1942 at the

February meeting of the New York Academy of Sciences. Lars Onsager announced

an exact solution of the Ising model on a rectangular lattice in the absence of an

external magnetic field. His 1944 paper on this topic is a landmark in the theory

of critical phenomena31. Onsager’s original solution via transfer matrix method is

very complicated. Easier analytical methods exist today, many of which are based

on the Pfaffian method developed independently by Kasteleyn32, Hurst-Green33, and

Fisher34. The basic approach of these methods is to map the Ising partition function

to that of a dimer model. Kasteleyn’s combinatorial approach to the dimer problem is

closely related to Kac and Ward’s35 combinatorial approach based on planar graphs,

which is reviewed briefly at the beginning of chapter 4.

In chapter 4, we employ a computational approach based on a Markov chain

Monte Carlo method to simulate the 2D anisotropic Ising model and extract the

Curie temperatures for the MXene monolayer Hf2MnC2O2 under uniaxial strain.
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CHAPTER II

SUPERCONDUCTOR-INSULATOR

TRANSITION IN INDUCTOR CAPACITOR

(LC) NETWORK MODELS

2.1 Motivation

A superconductor-insulator transition (SIT) is a fascinating transition from a ground

state with zero electrical resistance to one with infinite resistance. Thin films can

undergo SITs driven by increasing disorder, applying magnetic field20,21, increasing

thickness22, or changing the gate voltage23,24. The temperature dependence of the

DC conductivity �(T ) across a SIT has been studied extensively20–22,36–40. Recent

experiments are beginning to study the frequency dependence of the dynamical (AC)

conductivity �(!), which gives complementary insight into the nature of the SIT.41–45.

There are various mechanisms that can give rise to a SIT:

1. Pairbreaking: the Cooper pairs may be destroyed by orbital magnetic fields,

Zeeman fields, or Coulomb interactions, leaving behind localized electrons.46

2. Pair localization: the Cooper pairs may remain intact but may be unable to

flow through the system due to Coulomb blockade effects.47

3. Percolation: if large (1µm-1mm) superconducting grains are randomly de-

posited on top of an insulating substrate, they will eventually form a connected
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path through the system, changing its overall behavior from insulating to su-

perconducting.

Previously, it was thought that the dynamical conductivity tends to a constant at

low frequencies, �(!) ! �⇤ as ! ! 0, for all two-dimensional (2D) SITs.47–61 How-

ever, recent numerical work suggests that at a 2D classical percolative SIT, governed

by mechanism (3) above, �(!) may diverge as a power law �(!) / !�a (a ⇡ 0.3)

as ! ! 0.62 In this chapter, we present evidence that a divergent σ(ω) is

indeed the norm for 2D classical percolation, rather than the exception.1,2

2.2 Lumped circuit element models for coarse granular su-

perconductors

At low temperature kBT ⌧ Tc, low frequencies ~! ⌧ ∆, and small current densities,

a superconducting wire of length l and cross-sectional area A behaves like an inductor

of inductance L = m⇤l
nq2⇤A

; it obeys the current-voltage relation V = Lİ. In the linear

response regime, a Josephson junction between two superconducting grains of critical

current Ic also behaves like an inductor with L = ~

2eIc
. Conversely, an insulating

barrier of permittivity ✏, thickness d, and cross-sectional area A between two super-

conducting grains behaves like a capacitor of capacitance C = ✏A
d
, with current-voltage

relation I = CV̇ . This suggests that a coarse-grained superconductor-insulator com-

posite can be modeled by a random inductor-capacitor (LC) network. There are many

plausible ways to arrange the inductors and capacitors. Some criteria are as follows:

• A superconducting wire, or a superconducting weak link (Josephson junction),

can be modeled by an inductance LSC.

• An insulating barrier might be crudely approximated by the absence of a circuit

element. However, even a vacuum barrier presents a finite capacitance of CINS.

Moreover, the electrons in a real insulating barrier possess inertia, which is
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represented by a finite kinetic inductance LINS. Thus a more realistic model

should include both LINS and CINS in series.

• In a lumped circuit model, Kirchhoff’s current law asserts that no charge is

allowed to build on any node. However, a real superconducting grain can store

excess charge for a finite energy cost. This can be modeled by including capac-

itances Cself from each grain to an imaginary ground, held at zero potential.

We studied the LijCi model, which includes LSC and Cself, the LijCij model, which

includes LSC, LINS, and CINS.
62, and the LijCiCij model, which includes all the circuit

elements discussed above (LSC, LINS, CINS, and Cself), and is thus “closest to reality.”

See illustrations in Fig. 2.1. All three models exhibit a SIT at the bond percolation

threshold (pc = 1/2 for a 2D square lattice). The DC superfluid stiffness Υ(p) is

identical for all three models because it only depends on how DC current flows through

the inductances (all the capacitors block DC current). However, the AC (dynamical)

conductivity �(!) shows remarkably different behavior for each model.

(a)

L0

C0

(b)

L0

C0

(c)

L0

C0

ΑC0

Figure 2.1: LC network models. A coarse granular superconductor film can
be approximated by a square lattice with a fraction p of superconducting links and
a fraction 1 � p of insulating links. In all three models, a superconducting link
is represented by an inductance L0. (a) In the LijCi model, an insulating link is
represented by an open circuit, and the self-capacitance of each grain is represented
by a capacitance to ground. (b) In the LijCij model, an insulating link is represented
by an inductance and capacitance in series. (c) The LijCiCij model combines features
of the other two models, making it the most physically meaningful model.
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2.3 The LC network models

2.4 Leapfrog algorithm

We simulated the LC network models using the Verlet leapfrog algorithm which al-

lows bigger timesteps than other methods for solving ordinary differential equations

(ODEs). The error due to time-discretization can be completely removed by fre-

quency re-mapping between the nominal frequency (frequency of the discrete-time

system) and the real frequency (frequency of the original continous-time system).

The following working will illustrate that in detail.

2.4.1 Simple LC system

We first consider a system with a single harmonic oscillator mode. For a simple LC

network with an inductor and a capacitor in series, the equations of motion are as

follows,

V =
1

L

dI

dt
and I = �C

dV

dt
. (2.1)

In the Verlet leapfrog algorithm, current and voltage evolve as described in Fig. 2.2

and the following equations,

Figure 2.2: Illustration of Verlet leapfrog algorithm for coupled differential ODEs.
Variables are initialized at the beginning after which they evolve leap-frogging over
each other at every other half step.
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In+1 = In +
⌧

L
Vn+ 1

2
(2.2)

Vn+ 1
2
= Vn� 1

2
� ⌧

C
In (2.3)

Vn =
1

2

⇣

Vn+ 1
2
+ Vn� 1

2

⌘

. (2.4)

This gives the discrete version of the second order differential equation as

In�1 +

✓
⌧ 2

LC
� 2

◆

In + In+1 = 0 (2.5)

with solution

In = Aei�n +Be�i�n. (2.6)

Then substituting the expressions for In, In+1 and In�1 according the Eq. (2.6) into

the Eq. (2.5) gives

In = 2A


2

⌧

⇣

sin�1
⇣!⌧

2

⌘⌘

t� ⇡

2

�

(2.7)

where, ! = 1/
p
LC is the true frequency of the circuit. The current oscillates at a

nominal frequency Ω as

Ω =
2

⌧
sin�1

⇣!⌧

2

⌘

. (2.8)

If ⌧ > 2/! then Ω is imaginary and the leapfrog algorithm is unstable. Thus, the

largest acceptable time-step ⌧max is dictated by the highest eigenmode frequency !max.

In a more complicated linear system, even if we do not know the eigenmodes ex-

plicitly, we know that the eigenmodes evolves inependently at its “nominal frequency”

(according to the leapfrog algorithm). This allows us to eliminate the errors due to

time discretization by mapping nominal frequencies back to the true frequencies (see

section 2.5.5)
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2.4.2 LijCiCij model

For the LijCiCij model [Fig. 2.1(c)], Kirchhoff’s junction rule gives the following

equations of motion:

V̇i =
1

Ci

X

j@i

Iij (2.9)

U̇ij =
1

Cij

Iij (2.10)

İij =
1

Lij

(Vi � Vj � Uij) , (2.11)

where Ci is the self-capacitance of grain i, j@i means that j runs over all neighbors

of i, Cij and Lij are the capacitance and inductance along bond ij, Vi is the potential

on grain i, Iij is the current along bond ij, and Uij is the voltage across the capaci-

tance Cij. All inductances are identical (Lij = L) and all capacitances-to-ground are

identical (Ci = C1). Bond capacitances are chosen randomly with values C2 and 1:

Cij =

8

>><

>>:

1 with probability p

C2 with probability 1� p.

(2.12)

We set L = 1 and C2 = 1, and we do calculations for many values of C1. We focus

on the case p = 0.5, exactly at the bond percolation threshold.

The dynamical conductivity is defined as �(!) = Jx(!)/Ex(!), where Jx is the cur-

rent density induced by an applied electric field Ex oscillating at frequency !. Details

of how the leapfrog algorithm is applied to this model are given in Appendix A1.1.

2.4.3 LijCi model

In the limit Cij ! 1, Eq. (2.10) gives Uij = 0, and Eq. (2.11) becomes İij =

1
Lij

(Vi � Vj). The leapfrog algorithm for this model is a special case of the general
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algorithm for the LijCiCij model62.

2.4.4 LijCij model

In the limit Ci ! 0, Eq. (2.9) reduces to Kirchhoff’s junction rule,
P

j@i Iij = 0. How-

ever, there are some challenges in adapting the leapfrog method to the LijCij model.

As Ci ! 0, the excitation spectrum splits into low-frequency modes whose current

patterns avoid the on-site capacitors, and high-frequency modes involving large cur-

rents through the on-site capacitors. Thus Eq. (2.9) becomes stiff and requires a small

time step ⌧ ⌧ 1 to simulate. (Details are provided in Appendix A1.2)

2.5 Methods

We calculated Re�(!) using an equation-of-motion method, in which the system

is stimulated with a uniform electric field pulse and the subsequent “free induction

decay” signal is Fourier-transformed to give Re�(!). We imagine that a transient

uniform electric field in the x direction is applied to the system. This produces a

transient emf in every inductor along the x direction, and hence an initial current.

Simulations were done for Lij = Cij = 1, and Ci = 1, 2, 3, 4, 5, 10, 100. For

Ci = 1 and Ci = 100 the maximum frequency and hence the maximum time-step

for simulation to be stable are !max = 3, ⌧max = 0.666667, and !max = 1.03923,

⌧max = 1.924501 respectively (details in Appendix A1.3). All the simulations were

performed with a time-step ⌧ = 0.5 to maintain consistency.

2.5.1 Impulse response

At each timestep we record the average current density in the x direction, Gn =

1
NxNy

P

xy I
X
xy

�
�
t=n⌧

. This time series represents the impulse response (Green function)

of the discrete-time system.
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2.5.2 Fourier transform

Performing a Fourier transform gives the nominal dynamical conductivity Re �̃(!̃)

as a function of nominal frequency !̃, �̃(!̃) =
P1

n=0 e
i!̃n⌧Gn. We actually use a

discrete cosine transform to calculate the dissipative part of the response, Re �̃(!̃) =
P1

n=0(cos !̃n⌧)Gn. If desired, we can reconstruct the reactive response Im �̃ from the

dissipative response, using the Kramers-Kronig relations.

2.5.3 Window function

Since the simulation is run for a finite number of timesteps N⌧ , we know Gn only

for 0  n < N⌧ . Truncating the time series and performing a partial sum would

lead to severe ringing (Gibbs oscillations) in the estimated spectrum. Therefore we

multiply the time series by a window function before transforming: Re �̃est(!̃) =
P1

n=0(cos !̃n⌧)WnGn. We choose a Kaiser window function involving the modified

Bessel function I0, Wn = WKaiser(xn), where WKaiser(x) = I0
�
�
p
1� x2

�
/I0(�) and

xn = n/(N⌧ � 1). The width parameter � = 24 is chosen conservatively so that the

spectral leakage function has a broad central lobe but falls off very quickly there-

after.62

2.5.4 Rebinning

The calculation is implemented as a fast type-III discrete cosine transform (DCT),

such that we obtain estimates of the spectrum at “half-integer” frequencies !̃ =

(m+ 1
2
)2⇡

⌧
(m = 0, 1, 2, . . . , N⌧ � 1). The output values of the DCT are interpreted as

weights in bins, where the mth bin is 2⇡m
⌧

< !̃ < 2⇡(m+1)
⌧

. The resulting raw spectrum

could be plotted as a histogram with N⌧ bins, but this misrepresents the frequency

resolution as being higher than it actually is. With the chosen window function,

the spectrum of a single LC oscillator leads to a peak spanning approximately 15

15



bins. Therefore, we regroup the spectral weight into bN⌧/15c bins, in a manner that

conserves the total weight. This is done by calculating the cumulative distribution

function (CDF) on the fine grid, interpolating, resampling onto the coarse grid, and

taking differences. A delta function in the true spectrum is spread across at most two

bins in the estimated spectrum.

2.5.5 Eliminating time discretization error

The above calculation gives the nominal dynamical conductivity Re �̃(!̃) as a function

of nominal frequency !̃. The frequency error is a consequence of the time discretiza-

tion in the leapfrog algorithm. This error can be removed completely by remapping

the spectrum to Re �(!) = d!̃
d!

Re �̃(!̃). (It is convenient to perform the remapping

and rebinning together in one step.)

To summarize, if a system has the spectrum G(!), then simulating it with the

leapfrog algorithm with timestep ⌧ produces the time series

Gn = 2

Z 2/⌧

0

d! cos
�
2n arcsin !⌧

2

�
G(!), n = 0, 1, 2, 3, . . . .

The entire spectral estimation procedure serves to estimateG(!) based on a truncated

time series Gn (n = 0, 1, 2, . . . , N⌧ ).

2.5.6 Error estimation

Typically, Re�(!) has a power-law peak at small !. Even with the aforementioned

conservative choices for windowing and rebinning, one may still be concerned that

the windowing procedure may broaden the peak and modify the power law. To rule

this out, we have chosen several test spectra, generated corresponding time series, fed

these through the algorithm, and compared with the original spectra. As explained in

a previous study,62 the frequency resolution (“horizontal error bar”) is∆! ⇡ 10�3 and
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Figure 2.3: Exponent error estimation. This is a log–log plot of the dissipative con-
ductivity Re (�) versus angular frequency ! of a ficitious system. The blue curve is the
exact form of the trial spectrum, which contains a power law divergence !�0.31 at small
! and two top hat functions. The red crosses are the extracted spectrum. The green
lines are the best-fit power law. The estimate of the exponent is aest = �0.3104(1),
as compared to the exact exponent used in the trial, a = �0.31. Thus, with these
choices of spectral estimation and power law fitting parameters, the systematic er-
ror in a is about 0.0004. These errors are smaller than the difference between our
estimates of the exponents the LijCi and LijCiCij models, which is about 0.01.

17



the spectral leakage (“vertical error bar”) is ∆�
�

⇡ 10�8. In order to estimate the error

in the exponent of a power law fit, we generate exact time series data for a spectrum

with a known power law, feed this into the spectral estimation code, and compare

the results with the true spectrum, as illustrated in Fig. 2.3. The trial spectrum (and

the corresponding time series) is a combination of the ingredients below:

Gpow(!) = Θ(!0 � !)(arcsin !⌧
2
)�a

Gpow
n =

2a

⌧

Im ia[Γ(1� a, 0)� Γ(1� a, i
�
�n+ 1

2

�
�x]

�
�n+ 1

2

�
�
1�a

� 2a

⌧

Im ia[Γ(1� a, 0)� Γ(1� a, i
�
�n� 1

2

�
�x]

�
�n� 1

2

�
�
1�a

Gbox(!) = Θ(!0 � !)

Gbox
n = Ω0[sinc(n+ 1

2
)Ω0 + sinc(n� 1

2
)Ω0].

The results suggest that the systematic error in the exponent due to the spectral

estimation procedure is ∆a . 0.0004.

2.5.7 Simulation parameters

Simulations of the LijCiCij model were performed at the bond percolation threshold

pc = 1/2, on 6000 ⇥ 6000 square lattices, for N⌧ = 60000 timesteps, with timestep

⌧ = 0.5, for 20 different disorder realizations. Simulations were written in C++ and

run on a Dell T7500 workstation with 4 cores, using OpenMP for parallelization.

Each run took around 5.5 hours of wall time.

2.6 Results

Figure 2.4 shows how the conductivity spectrum Re�(!) of the LijCiCij model “in-

terpolates” between the spectra of the LijCi and LijCij models as the grain self-
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Figure 2.4: Real dynamical conductivity Re �(!) versus angular frequency for vari-
ous LC network models at the percolation threshold, representing a superconductor-
insulator transition. (Top) LijCi model with random Lij 2 {1,1} and uniform
Ci = 1, averaged over twenty 6000 ⇥ 6000 lattices. (Center panels) LijCiCij model
with random Cij 2 {1,1}, uniform Lij = 1, and uniform Ci = 1, 10, 100, averaged
over twenty 6000 ⇥ 6000 lattices. (Bottom) LijCij model with random Cij 2 {1,1}
and uniform Lij = 1, on a 4000 ⇥ 4000 lattice. This is equivalent to the LijCiCij

model in the limit Ci ! 0.
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Figure 2.5: Log–log plots of Re �(!). Straight lines are power-law fits �(!) / !�a,
with a = 0.30408(76) for the LijCiCij model and a = 0.31436(35) for the LijCi model.
The LijCij model has a = 0.

capacitance Ci varies.

In the limit Ci ! 0 the on-site capacitors become open circuits. Then the LijCiCij

model [Fig. 1(c)] reduces to the LijCij model [Fig. 1(b)]. The spectrum is constant

at low frequencies and diverges at ! ! 1, as shown in the bottom panel of Fig. 2.4.

For small on-site capacitances (Ci = 1), the overall spectrum remains smooth,

but there are some changes near ! = 1, and a power law divergence appears at low

frequency. As Ci increases, this power law is more pronounced and persists over a

larger frequency range. The spectrum also develops a spiky nature, and a gap opens

for Ci & 4. As Ci ! 1, the on-site capacitors can carry large amounts of current,

and one might expect that they dominate the physics, so that the system behaves

more like the LijCi model [Fig. 1(a)]. However, the LijCiCij model (with random

Cij) may not reduce exactly to the LijCi model (with random Lij).

Figure 2.5 combines all the data on a log-log plot. At large values of Ci, or at

low frequencies, the spectra obey power laws of the form Re�(!) = b!�a, shown as
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straight lines. The dynamical conductivity critical exponent a is the slope of the lines.

It is extracted by fitting over appropriate ranges. We obtain a = 0.30408(76) for the

LijCiCij model and a = 0.31436(35) for the LijCi model. As explained in the previous

section, this estimate is subject to systematic error and random error. Nevertheless,

it suggests that the two models may lie in two distinct universality classes.

2.7 Conclusion

For the three models illustrated in Fig. 2.1, the real dynamical conductivity goes as

Re � ⇠ !�a as ! ! 0, but the critical exponent a appears to be different. We find

a = 0 for the LijCij model, a = 0.304(1) for the LijCiCij model, and a = 0.314(4)

for the LijCi model. These represent three universality classes for the SIT, at least

as far as dynamical conductivity is concerned. In the language of renormalization

group flows, we conjecture that the a = 0 class is associated with a fixed point with

Ci = 0, which is unstable with respect to the relevant parameter Cij. Conversely, the

a = 0.314 class is associated with a fixed point with Cij = 0, which is unstable with

respect to the relevant parameter Ci, and flows towards the a = 0.304 fixed point.

In any real experiment both Ci and Cij are guaranteed to be present, so we expect

a = 0.304.

There is also the possibility of the two critical exponents which are close to each

other being the same, even though the diference between them is bigger than random

error and systematic error combined. The discrepancy could be due to corrections to

scaling. In order to address this more definitely, one could simulate larger systems

with more disorder realizations, study the different models in higher dimensions to

see if the difference in exponents is more pronounced, or calculate other quantities like

magnetic and electric susceptibilites as a fucntion of p and use the critical exponent

relations to extract a indirectly.

However it is more important to realize the dominance of Ci over Cij. Roughly
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speaking, under a reblocking transformation that groups four sites into one, we would

expect that Ci grows by 4 (since the new superconducting islands are four times as

large) whereas Cij stays the same (for the same reason that the sheet resistance does

not change under scaling). This may serve as a crude explanation of why Ci plays a

much more important role than Cij in controlling the critical behavior.

As remarked in the introduction, most theories of superconductor-insulator transi-

tions47–61 predict a finite conductivity, Re�(!) ! �⇤ as ! ! 0. Our work shows that

2D classical percolative SITs generically have a divergent conductivity, Re �(!) ! 1

as ! ! 0.
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CHAPTER III

2D JOSEPHSON JUNCTION ARRAY

3.1 Motivations

Diffusion Monte Carlo (DMC) is a projector Monte Carlo (PMC) method that has

been applied to many continuum quantum systems: solid state physics63–71, chem-

istry72–76, and nuclear physics77,78. Green function Monte Carlo (GFMC), which is a

PMC method similar to DMC, has been used to simulate the 2D S = 1/2 Heisenberg

antiferromagnet79,80. Surprisingly, DMC itself has not been applied to any quantum

lattice models so far, path-integral Monte Carlo (PIMC) being the primary choice of

method81–85. In this chapter, DMC is applied to a lattice model for the first time

and also a comparison is made between calculations performed with and without

importance sampling3.

The model in concern is the 2D Josephson junction array (JJA) Hamiltonian with

on-site Coulomb interactions and nearest-neighbor Josephson couplings in the pres-

ence of a perpendicular magnetic field. There is a vast amount of literature on JJAs

and related Bose-Hubbard models, including theoretical studies using mean-field the-

ory86,87, diagram methods88, and worldline quantum Monte Carlo methods such as

PIMC89,90. Many experiments have been performed on lithographically fabricated

JJAs91,92. A 2D JJA exhibits a finite-temperature superconducting-to-normal tran-

sition in the Berezinskii-Kosterlitz-Thouless (BKT) universality class due to vortex-

antivortex unbinding. It also exhibits a zero-temperature superconductor-insulator

transition (SIT) tuned by the competition between Josephson energy and Coulomb
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energy86. In this study, we are concerned with the SIT at zero temperature in the

presence of a perpendicular magnetic field. A SIT is a fascinating transition from a

ground state with zero electrical resistance to one with infinite resistance. SITs have

been extensively investigated, not only in JJAs, but also in amorphous thin films,

where the SIT may be tuned by increasing disorder93, applying magnetic field20,21,

increasing thickness22, or changing the gate voltage23,24. The magnetic-field-tuned

SIT may involve transitions between various types of vortex matter, such as vortex

glasses, vortex lattices, and vortex liquids. The exact reasons and conditions for a

transition to these different types of states are still not completely understood. A

strong motivation for our study is to introduce DMC as a tool for future studies to

investigate larger systems to shed more light on the nature of the field-tuned SIT.

3.2 Josephson junction

Figure 3.1: Josephson junction with an insu-
lator (INS) as the junction. A cartoon repre-
sentation of Cooper pairs are shown tunneling
through the INS barrier.  i is the wavefunction
of superconducting states and ni is the density
of Cooper pairs in the respective superconduct-
ing blocks.

A Josephson Junction is a junc-

tion or a weak link between two su-

perconducting materials (or grains)

through which Cooper pairs can

tunnel. The weak link could be an

insulator94, normal conductor95, or

superconductor with weak electri-

cal contacts or narrow channels be-

tween superconducting grains96. A

Josephson junction with an insulat-

ing weak link (Fig 3.1) is discussed

in this section. The tunneling of Cooper pairs is called the Josephson effect and is the

basis of superconducting quantum interference devices (SQUIDs)97,98 that are used

for measuring ultrasensitive electric and magnetic fields.
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3.2.1 Josephson effect

The Josephson effect is the phenomenon of Cooper pair tunneling through a junc-

tion between superconductors. The tunneling current I between superconductors is

dependent on the density of Cooper pairs ni given by the eigenvalue of the number

operator n̂ . The voltage across the junction is related to the phase variable. The

number and the phase operators satisfy the commutation relation

[✓̂, n̂] = i~.

In the phase representation, n̂ = �i~@/@✓ (analogous to x̂ and p̂). The Equations

describing the Josephson effect are as follows,

d✓

dt
=

e⇤
~
V (t) and I = Ic sin ✓, (3.1)

where e⇤ = 2e is the charge of a Cooper pair, V = V1 � V2 is the potential differ-

ence between the superconductors, ✓ = ✓1 � ✓2 is the phase difference between the

superconductors, and Ic is the critical current. The critical current is the maximum

current above which the superconductivity is destroyed.

3.2.2 Derivation of Josephson equations

The Josephson equations can be derived starting from the following coupled Schrödinger’s

equations (setting ~ = 1),

i
@ 1

@t
= U1 1 + ↵ 2

i
@ 2

@t
= U2 2 + ↵ 1, (3.2)
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where Ui = e⇤Vi is the potential energy of each superconductor, and ↵ is the coupling

constant across the insulating barrier. Then the following substitution can be made

for the wavefuction  i,

 i =
p
nie

i✓i . (3.3)

This expression for the wavefunction was introduced by Ginzburg and Landau in their

phenomenological theory of phase transition in superconducting systems. Substitut-

ing Eq. (3.3) into Eq. (3.2) yields the Josephson equations in Eq. (3.1) (details in

Appendix A2), with the critical current and the potential difference given by:

Ic = 2e⇤↵
p
n1n2 and V =

U1 � U2

e⇤
. (3.4)

3.2.3 Josephson coupling energy and charging energy in a

Josephson junction

There are two competing effects in a Josephson junction: (1) the Josephson coupling

between phases that tends to delocalize Cooper pairs, and (2) the Coulomb blockade

that tends to localize Cooper pairs on each grain.

The coupling energy EJos can be derived by noting that the power delivered be-

tween the grains is

dEJos

dt
= IV = (Ic sin ✓)

~

e⇤

d✓

dt
. (3.5)

Integrating Eq. (3.5) yields the expression

EJos = �J cos ✓, (3.6)

where J = ~Ic/e⇤ is called the Josephson energy. The Coulomb energy ECoul of the
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superconducting grain is given by

ECoul =
1

2
CV 2 =

Q2

2C
=

(2en)2

C
=

U

2
n2, (3.7)

where, U = (2e)2/C is called the charging energy in the literature25,85.

3.3 Josephson Junction Array (JJA)

The Hamiltonian of a Josephson junction array can be written by combining the

Coulomb blockade effect and the Josephson effect,

Ĥ =
C

2

X

i

V̂ 2
i � J

X

hiji
cos

⇣

✓̂i � ✓̂j

⌘

, (3.8)

where V̂i = �i(e⇤/C)(@/@✓i) is the voltage on the ith grain, and hiji are nearest-

neighbor grains in the array. The following is a more common way of writing the

Hamiltonian,

Ĥ =
U

2

X

i

n̂2
i � J

X

hiji
cos

⇣

✓̂i � ✓̂j

⌘

(3.9)

where U = 4e2/C is the charging energy for a superconducting grain with capacitance

C, and the n̂i = �i(@/@✓i) is the number operator which is conjugate to the phase

operator.

In this chapter, we are concerned with a JJA on a square lattice as shown in

Fig. 3.2, which shows how the state of the system is dependent on the charging

energy U and the Josephson energy J . This figure also illustrates a few important

points about the relation between the phase and number operators. When phases

are ordered as in Fig. 3.2(a) the system is in a superconducting state and charges

are tunneling and moving throughout the lattice. When phases are random as in

Fig. 3.2(b), charges are localized on the grain and the system is in an insulating state.
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(a) Superconducting state, U
J
= 0.001 (b) Insulating state, U

J
= 7

Figure 3.2: Josephson junction array on a square lattice. The black dots represent
superconducting grains and the arrows represent phases. (a) When U ⌧ J the system
is in superconducting state, and (b) when U � J the system is in insulating state.

This demonstrates that the phase and the charge form a Heisenberg uncertainty pair

and the more precisely one knows about one of those variables, the more uncertainty

is incurred in the other.

3.3.1 JJA in a perpendicular magnetic field

We now consider a JJA on a square lattice in a perpendicular magnetic field. The

Hamiltonian of this “quantum XY model” is

Ĥ =
U

2

X

i

n̂2
i � J

X

hiji
cos

⇣

✓̂i � ✓̂j � Aij

⌘

. (3.10)

A perpendicular magnetic field B = Bez is included via a vector potential in the

symmetric gauge A(r) = 1
2
B⇥r where r is the position vector. The integrated vector

potential Aij from grain i to grain j is

Aij =
2e

~c

Z rj

ri

A(r) · dr.
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Figure 3.3: Josephson junction array in a perpendicular magnetic field. The direction
of the magnetic vector potential A with respect to the magetic field B is given by
the right hand rule. The magnetization M is opposite to the applied B field since a
superconductor is diamagnetic in nature, which means that the Meissner screening
current j is opposite to A.

Parametrizing the path from ith grain to jth grain as r = ri + �(rj � ri), where

0  �  1, gives the following result (derivation in Appendix A3.2),

Aij =
2e

~c

Z rj

ri

A(r) · dr =
2e

~c

B0

2
(xiyj � xjyi).

In this chapter we will measure B in the units of ~/2ea2. So a magnetic field of

strength B = 2⇡ corresponds to one flux quantum per plaquette.

3.4 Methods

In the following sections we provide a brief introduction to the Monte Carlo meth-

ods used in this study. For a detailed discussion of these methods, a few excellent

reviews99–101 are suggested.
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3.4.1 Variational Monte Carlo (VMC)

Consider a quantum mechanical Hamiltonian

Ĥ = V (r̂) +
p̂2

2m
(3.11)

where r̂ and p̂ are N -component operators satisfying [r̂i, p̂j] = i (working in units

where ~ = 1). Define a trial wavefunction ΨT (r), and let the trial energy be

ET =
hΨT | Ĥ |ΨT i
hΨT |ΨT i

=

R
dr|ΨT (r)|

2EL(r)
R
dr|ΨT (r)|

2 (3.12)

where the local energy function EL(r) is

EL = V � 1

2m

r2ΨT

ΨT

(3.13)

where r denotes the gradient with respect to r. Integrating by parts shows that

Eq. (3.12) is also valid with EL replaced by a modified local energy function, which

often turns out to be simpler:

Emod
L = V +

1

2m

�
�
�
�

rΨT

ΨT

�
�
�
�

2

. (3.14)

The variational theorem states that ET is an upper bound to the actual ground state

energy Egs. In VMC, one samples configurations from the distribution |ΨT (r)|
2, and

the variational ground state energy is then estimated by averaging the local energy,

ET = hELi.

Generally, ΨT (r) is a function of one or more parameters K, so that ET (K) is

also a function of K. Minimizing ET with respect to K gives a least upper bound

to Egs. The accuracy of this method depends on how closely the trial wavefunction

ΨT (r) approximates the true wavefunction Ψgs(r).
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In our studies, VMC is not used to estimate observables, but rather, to optimize

the trial wavefunction to be used as a guiding wavefunction for diffusion Monte Carlo

(DMC).

3.4.2 Diffusion Monte Carlo (DMC)

The wavefunction of the system Ψ(r, t) obeys the time-dependent Schrödinger equa-

tion

i
@Ψ

@t
= � 1

2m
r2

Ψ+ VΨ (3.15)

(with ~ = 1). Doing a Wick rotation into imaginary time (t ! �i⌧) transforms this

into a master equation describing diffusion and decay,

@Ψ

@⌧
= Dr2

Ψ
| {z }

diffusion

� VΨ
|{z}

decay

, (3.16)

with a diffusion constantD = 1
2m

. By expanding Ψ(r, ⌧) in eigenfunctions Ψi(r) of the

Hamiltonian and taking the spectral decomposition of the time evolution operator,

one sees that as ⌧ ! 1, Ψ(r, ⌧) evolves toward a multiple of Ψgs(r) (the initial

wavefunction becomes “projected” onto the ground state wavefunction).

|Ψ(⌧)i = e�Ĥ⌧ |Ψi , (3.17)

|Ψ(⌧)i =
X

i

e�Ei⌧ |Ψii hΨi|Ψi . (3.18)

In the long time limit,

lim
⌧!1

|Ψ(⌧)i = e�Egs⌧ hΨgs|Ψi |Ψgsi / |Ψgsi .

Instead of computingΨ(r, ⌧) explicitly, one can simulate a set of walkers stochastically

such that their probability distribution evolves according to Eq. (3.16). This is the
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basis of DMC and other projector Monte Carlo methods.

Practical DMC simulations employ importance sampling by introducing a mixed

distribution f(r, ⌧) = ΨG(r)Ψ(r, ⌧), where ΨG(r) is a guiding wavefunction. With

Ψ = f/ΨG, Eq. (3.16) becomes

� @

@⌧

✓
f(r, ⌧)

ΨG(r)

◆

= �Dr2

✓
f(r, ⌧)

ΨG(r)

◆

+ V (r)

✓
f(r, ⌧)

ΨG(r)

◆

. (3.19)

Since the guiding wavefunction is time independent, the above equation can be rewrit-

ten as,

�@f(r, ⌧)
@⌧

= �DΨG(r)r2

✓
f(r, ⌧)

ΨG(r)

◆

+ V (r)f(r, ⌧). (3.20)

Next, following equality can be shown for the first term in the RHS of Eq. (3.20)

shown in appendix A3.1,

ΨGr2

✓
f

ΨG

◆

= r2f � 2r·

✓rΨG

ΨG

f

◆

+

✓r2ΨG

ΨG

◆

f. (3.21)

Here the arguments have been dropped for brevity. Plugging the equation (3.21)

into (3.20) yields the following equation,

@f

@⌧
= Dr2f �r·

✓

2D
rΨG

ΨG

f

◆

�D

✓r2ΨG

ΨG

◆

f � V f. (3.22)

Using the definition of the local energy,

EL =
ĤΨG

ΨG

= �Dr2ΨG

ΨG

+ V

gives V = EL+
Dr2ΨG

ΨG
which upon replacing into Eq. (3.22) finally gives the following

master equation,

@f

@⌧
= Dr2f

| {z }

diffusion

� r · (vf)
| {z }

drift

� ELf
|{z}

decay

, (3.23)
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where v(r) = 2DrΨG

ΨG
plays the role of a drift velocity (also known as quantum force)

and EL(r) = V � Dr2ΨG

ΨG
is a local energy of the same form as Eq. (3.13). Unlike in

VMC, in DMC it is not acceptable to replace EL by Emod
L from Eq. (3.14). According

to Eq. (3.23), as ⌧ ! 1, f(r, ⌧) evolves toward a multiple of the “ground state mixed

distribution” fgs(r) = ΨG(r)Ψgs(r).

From Trotter’s formula, f(r, ⌧) evolves according to

f(r0, ⌧) =

Z

dr G(r0, r, ⌧) f(r, 0) (3.24)

where the Green function is approximately

G(r0, r, ⌧) ⇡ e
� 1

2

✓

r
0�r�v(r)τp

2Dτ

◆2

p
2D⌧

e�
EL(r)+EL(r0)

2
⌧ +O(⌧ 2). (3.25)

This is a normal distribution for r0 with mean r+v⌧ and variance
p
2D⌧ , multiplied

by a weight function. In the DMC algorithm this corresponds to drift and diffusion

of random walkers during a timestep �⌧ ,

r0 = r+ v �⌧
|{z}

drift

+X
p
2D�⌧

| {z }

diffusion

, (3.26)

where X is a vector of normally distributed independent random numbers, together

with a growth/decay process whereby each walker’s weight is multiplied by

exp
h

�EL(r)+EL(r
0)

2
⌧
i

.

3.4.3 Population control

After many timesteps, due to the growth/decay factors, the weights wn of some

walkers will grow to dominate over all others, making the simulation inefficient and

inaccurate. To avoid this, one must clone walkers with large weights and delete

walkers with small weights (representing birth/death processes), together with some
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means of population control to maintain the number of walkers in an acceptable range.

For this purpose we adopt the comb method. This is a stochastic method for selecting

walkers to be discarded or multiplied based on their weights accumulated after the

branching process102, such that the walker population is kept constant. The outline

of the method is as follows:

• Find the cumulative weights Cl =
Pl

n=1 wn for l = 0, 1, 2, ..., N , where N is the

number of walkers.

• Generate a uniform random variate ⇠ 2 (0, 1).

• For each k = 1, 2, ...,M , whereM is the target population, compute (k�1+⇠)CN

M

(the locations of the comb’s teeth). (We take M = N .)

• Find l such that Cl�1 < (k � 1 + ⇠)CN

M
 Cl.

Walker l is selected as many times as the number of teeth that falls between Cl�1 and

Cl, and is discarded if no tooth falls within this range. This is implemented during

a resampling step, in which data from walkers to be cloned is used to overwrite data

from walkers to be discarded. A similar fixed-population method has yielded accurate

results in the simulation of the S = 1/2 Heisenberg antiferromagnet using GFMC79.

3.4.4 VMC method for Josephson junction array

The JJA Hamiltonian Eq. (3.10) is of the form of Eq. (3.11), with r̂i ! ✓̂i, p̂i ! ni,

and m ! 1
U
. Therefore VMC and DMC methods are applicable.

We only perform VMC calculations at B = 0. We use a trial wavefunction of the

form

ΨT (θ) = exp
hX

hiji
K cos(✓i � ✓j)

i

(3.27)

where K is a dimensionless parameter and θ = (✓1, ✓2, ..., ✓N) is the phase configura-

tion. The distribution |ΨT (θ)|
2 is simply the Boltzmann distribution for a classical
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Figure 3.4: Variational Monte Carlo (VMC) results for lattice size L = 10 at zero
field B = 0. The trial energy ET (K) is minimized with respect to the variational
parameter K. The green curve shows the optimal value of K. The blue curve shows
EVMC as a function of U/J , which is essentially a least upper bound to the true
ground state energy. The red curve shows the DMC ground state energy calculated
using the mixed estimator. As expected, EDMC  EVMC. Error bars on energies are
too small to display.

XY model at temperature T = J/2K, so it can be sampled efficiently using the Wolff

algorithm103. From Eq. (3.14), the modified local energy function Emod
L (θ) is

Emod
L = UK2

2

X

i

hX

j@i

sin(✓j � ✓i)
i2

| {z }

fs(K)

�J
X

hiji
cos(✓j � ✓i)

| {z }

fc(K)

,

where j in j@i are all the nearest neighbors of site i. We perform Wolff Monte Carlo

simulations at various values of K and tabulate hfs(K)i and hfc(K)i. Then, for

each value of U/J , we find the optimal variational parameter KVMC that minimizes

UK2

2
hfs(K)i � J hfc(K)i. See Fig. 3.4.
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3.4.5 DMC method for Josephson junction array in perpen-

dicular B field

For DMC we use the guiding wavefunction

ΨG(θ) = exp
hX

hiji
K cos(✓i � ✓j � Aij)

i

(3.28)

with K = KVMC. (We find this to be useful even though the VMC simulations are at

B = 0 whereas the DMC simulations are mostly at B > 0.) The diffusion constant is

D = U/2. The drift velocity v(θ) is (derivation in Appendix A3.3)

vi = U
@✓iΨ

Ψ
= U

X

j@i

K sin(✓j � ✓i � Aji).

The local energy EL(θ) =
HΨG

ΨG
via similar calculation is,

EL = (UK � J)
X

hiji
cos(✓i � ✓j � Aij)�

UK2

2

X

j

hX

i@j

sin(✓i � ✓j � Aij)
i2

.

Drift, diffusion, growth/decay, and population control are implemented as described in

the previous section. The ground state energy is calculated using the mixed estimator.

Other observables (magnetization and vorticity) are calculated using forward walking

estimators.
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3.5 Calculating observables

3.5.1 Energy

The ground state energy Egs = hĤi is the easiest observable to calculate in DMC.

From the eigenrelation hΨgs| Ĥ = hΨgs|Egs we find that

hΨgs| Ĥ |ΨGi
hΨgs|ΨGi

= Egs =

R
dr fgs(r)EL(r)

R
dr fgs(r)

. (3.29)

Therefore one can obtain an unbiased estimate of the ground state energy using the

mixed estimator Emixed = 1
N

PN
i=1 EL(ri), which is simply the average local energy of

all walkers. A similar result holds for any observable for which the ground state is an

eigenstate.

For a general operator diagonal in the configuration basis, Â ⌘ A(r̂),

hÂi = hΨgs| Â |Ψgsi
hΨgs|Ψgsi

=

R
dr fgs(r)

Ψgs(r)

ΨG(r)
A(r)

R
dr fgs(r)

Ψgs(r)

ΨG(r)

. (3.30)

In general, one cannot simply averageA(ri) over walkers. The extrapolation method104

is one way to get around this obstacle, but the accuracy of that method depends

on the quality of the guiding wavefunction ΨG. Instead we use the forward-walking

method 105–108, also known as the future walking method. During the simulation, we use

cyclic buffers to store ancestry information and configurations for all walkers for the

most recentNfw timesteps. After performing stepNpresent, we countDi(Npast, Npresent),

the number of descendants at step Npresent that originated from walker i at step

Npast = Npresent � Nfw, and we compute or retrieve A(ri(Npast)), the value of the

observable computed from the configuration of walker i at step Npast. This allows us
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to construct the forward walking estimator

AFW =

PN
i=1 Di(Npast, Npresent)A(Npast, ri)

PN
i=1 Di(Npast, Npresent)

.
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Figure 3.5: Magnetization versus the number of time-steps in the forward walking
window Nfw. U = 2, B = 0.2 was used for DMC calculations shown in this plot.

If one uses a large value of Nfw, corresponding to a long imaginary time interval

⌧fw = Nfw �⌧ , then it can be shown thatDi(Npast, Npresent) converges toΨgs(ri)/ΨG(ri).

Thus AFW should converge to the true expectation hÂi. However, due to the finite

population size in DMC, taking Nfw too large makes the effective ancestor pool very

small, which is also a source of bias. In the results section we investigate the effect of

Nfw in order to optimize the trade-off between distribution convergence and ancestor

pool size.
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3.5.2 Magnetization

We define the total magnetization in the lattice as

M =
X

hiji

1
2
(xiyj � xjyi)Iij (3.31)

where Iij is the current flowing from grain i to grain j given by the gauge-invariant

expression

Iij =
2e

~c
Jij sin(✓j � ✓i + Aij). (3.32)

We set 2e/~c = 1 in the simulations.

3.5.3 Vorticity

The vorticity on square ijkl is defined as the gauge-invariant integer Ωijkl where

Ωijkl = fij + fjk + fkl + fli, (3.33)

fij =

�
✓j � ✓i + Aij + ⇡

2⇡

⌫

, (3.34)

where b·c represents the floor function. Vorticity obeys a local conservation law: a

change of one phase variable, ✓i, changes Ωijkl values only in the vicinity of grain i,

in a way that preserves the total vorticity in the system. We can see this as follows.

Every bond ij is associated with an integer fij. A small change in ✓i or ✓j may cause

fij to change by ±1, in which case the vorticities on the adjoining squares change by

equal and opposite amounts: if Ωijkl ! Ωijkl ± 1, then Ωjimn ! Ωjimn ⌥ 1.

Equation (3.33) is similar, but not quite the same, as the definition of vorticity in

Ref. 109. For a particular phase configuration, Ωijkl is an integer on every plaquette;

however, the quantum mechanical average vorticity hΩijkli is generally not an integer.
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3.6 Results

VMC calculations were done on L = 10 lattices with periodic boundary conditions,

for 72 values of K and at zero field B = 0. Each simulation was run for 400000

steps (Wolff updates). Figure 3.4 shows the ground state energy upper bound EVMC

and optimal trial wavefunction parameter KVMC as functions of U/J . As described

earlier, the optimized VMC trial wavefunction is used as the guiding wavefunction in

DMC.

DMC simulations were done on lattices with L = 6, 8, 10, 12 with Neumann bound-

ary conditions (BCs), at four different magnetic field values B = 0.1, 0.2, 0.3, 0.4.

Neumann BCs are physically more realistic than periodic BCs and allows us to apply

arbritary B fields unrestricted by lattice sizes. The first 1000–5000 time steps were

used for “equilibration” allowing the estimators to converge to their actual values, and

the data was collected for 9000–12000 time steps. Bigger lattices in higher magnetic

fields required more time steps for equilibration and data collection. All simulations

were performed with 1000 walkers. (We verified that increasing the population size

beyond 1000 did not significantly alter the results.) Since the typical distance diffused

in one step is
p
U⌧ , for increasing values of U/J the timestep was gradually decreased

from ⌧ = 0.2 to ⌧ = 0.005.

We chose the number of time-steps in the forward walking window in the range

Nfw = 200–300. Figure 3.5 shows that the estimator values are reasonably converged

when Nfw > 200 for all three lattice sizes.

Errors in the estimators were calculated using the on-the-fly binary reblocking

method110.

Figures 3.6, 3.7, 3.8, and 3.9 show the energy and magnetization graphs for B =

0.1, 0.2, 0.3, 0.4 respectively. Both quantities were calculated both with and without

a guiding wavefunction. The magnetization is affected more severely by the absence
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Figure 3.6: Energy (top) and magnetization (bottom) versus U/J for lattices
L = 6, 8, 10, 12 for magnetic field B = 0.1, from DMC calculations with (bottom)
and without (top) a guiding wavefunction. The magnetization has large errror bars
without a guiding wavefunction indicating that it is necessary to obtain accurate re-
sults for quantities other than energy. The inset shows the M ⇠ L4 scaling of the
magnetization in absence of an intermediate vortex state.
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Figure 3.7: Energy (top) and magnetization (bottom) versus U/J for lattices
L = 6, 8, 10, 12 for magnetic field B = 0.2. The inset shows a kink in the energy
corresponding to a big drop in the magnetization caused by vortex entry as can be
seen in Fig. 3.10.
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Figure 3.8: Energy (top) and magnetization (bottom) versus U/J for lattices L =
6, 8, 10, 12 for magnetic field B = 0.3. Magnetization drop can be seen for L = 10 and
L = 12 lattice around U/J ⇡ 0.4 and U/J ⇡ 1. The inset shows a kink in the energy
only for L = 10 due to lack of space, but every magnetization drop is accompanied
by a kink in the energy. Again, the drops in magnetization can be traced to a vortex
entry shown in Fig. 3.10.
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Figure 3.9: Energy (top) and magnetization (bottom) versus U/J for lattices L =
6, 8, 10, 12 for magnetic field B = 0.4. Magnetization drop can be seen for L = 8,
L = 10 and L = 12 lattice around U/J ⇡ 0.1, U/J ⇡ 0.4 and U/J ⇡ 1. Vortex entry
for these values is shown in Fig. 3.10. The magnetization scales as M ⇠ L2 during
the vortex melting.
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Figure 3.10: Vorticity plots for lattice sizes L and magnetic fieldsB. Vortex formation
is seen to occur mostly around U/J ⇡ 0.4 and U/J ⇡ 1 which causes abrupt drop
in the magnetization and a kink in the energy. Further increasing U/J causes vortex
melting. Following are U/J values going from left to right ordered in rows from top
to bottom:
1st row: U/J = 0.2, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 2, 4.5.
2nd row: U/J = 0.3, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.7, 2.5, 5.
3rd row: U/J = 0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 1, 1.5, 2, 5.
4th row: U/J = 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.5, 3, 8.5.
5th row: U/J = 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3.

of guiding wavefunction as seen in figures 3.6-3.9. The magnetization Mz is in the

opposite direction of the applied B field because the system is diamagnetic in the

superconducting state. In the insulating state the magnetization is zero as expected.

Abrupt drops in the magnetization curves for L = 8, 10, 12 lattices are due to vortices

entering the system from the edges. Corresponding to such a drop is a kink in the

energy graph, albeit a small one which can be seen in insets within the energy graphs.

Figure 3.9 shows the magnetization drops for B = 0.4 in L = 12 lattice occurring

at U/J ⇡ 0.01, for L = 10 occurring at U/J ⇡ 0.1, and for L = 8 occurring at

U/J ⇡ 0.4. Figure 3.8 shows the magnetization drops for B = 0.3 in L = 12 lattice

occurring at U/J ⇡ 0.4 and U/J ⇡ 1, and for L = 10 occurring at U/J ⇡ 0.4.
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Figure 3.7 shows the magnetization drop for B = 0.2 in L = 12 lattice occurring

at U/J ⇡ 1. Figure 3.10 shows the spatial dependence of vorticity for L = 8, 10, 12

where vortices can be seen for U/J values corresponding to the abrupt drops in the

magnetization and kink in the energy.

3.7 Discussion and conclusions

Abrupt drops in magnetization and kinks in energy curves are caused by vortex

formation. Increasing U/J causes “melting” in analogy to thermal melting of vortex

lattices in the experiments of Ling et al111. The vorticity field is a natural indicator

of quantum melting in the simulations. For B = 0.1, the magnetization scales as

M ⇠ L4 all the way to the SIT, as expected for a superconducting film exhibiting

the Meissner effect. For B = 0.4 the magnetization drops due to vortex formation,

changing the scaling to M ⇠ L2 during the vortex melting. Between B = 0.1 and

B = 0.4 scaling is not clear, and to shed more light into the nature of this intermediate

vortex state we plan to simulate larger systems by parallelizing the DMC algorithm.

We have applied DMC to a lattice model for the first time and our results show

that DMC is a viable method for simulating lattice models. Below, we outline a

comparison between DMC and PIMC (one of the most commonly used Monte Carlo

methods for simulating JJAs).

• DMC is inherently a zero-temperature method whereas PIMC is a

finite-temperature method. PIMC results must be extrapolated to zero

temperature, but this may require making unjustified assumptions about

critical exponents112.

• The ground state energy Egs = hĤi can be calculated simply and accurately in

DMC. In PIMC, because Ĥ contains both the position operator r̂ and

momentum operator p̂, näıve energy estimators fail and one has to resort to
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complicated techniques such as virial estimators113.

• In DMC, calculating quantities whose operators do not commute with Ĥ

requires the forward walking algorithm, whereas calculating any quantity that

contains only r̂ is straightforward in PIMC.

• DMC only gives equal-time correlations, which prevents us from using Kubo

formulas to calculate static response functions such as superfluid stiffness and

diamagnetic susceptibility. These quantities can be calculated in PIMC.

• Computer memory storage requirement in DMC is Lx ⇥Ly ⇥Nw where Lx and

Ly are lattice dimensions and Nw is the number of walkers (1000 in this work);

In PIMC it is Lx⇥Ly ⇥N⌧ , where N⌧ is the number of time slices in imaginary

time. Many authors like to use N⌧ = Lx = Ly
82,114. However, careful PIMC

studies by ourselves (unpublished) suggest that imaginary time discretization

error (�⌧ error) in PIMC can be very large for the values that are currently

being used for N⌧ , leading to the critical value of U/J being off by a factor of

3. It is necessary to go to N⌧ > 2000 in order get accurate critical values.

• Both DMC and PIMC are subject to Monte Carlo statistical errors, which

scale as 1/
p

Nsteps where Nsteps is the number of Monte Carlo steps. In

addition, systematic bias in DMC is due to population control bias115 and

time-step error incurred due to Trotter decomposition, whereas systematic

bias in PIMC is due to �⌧ error.

• DMC is more favorable to parallel computing116. Parallelization can be done

on a supercomputing cluster or a CUDA programming language enabled

graphics processing unit. We plan to pursue the latter route in order to

simulate larger lattices.

The DMC method is a useful check against the PIMC method due to the com-
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plementary behavior of errors and scaling. Within the DMC itself, the guiding wave-

function is crucial for accurately estimating quantities whose operators do not com-

mute with the Hamiltonian. Using the guiding wavefunction also helps to achieve a

lower ground state energy in the region where the on-site Coulomb interactions and

the nearest-neighbor Josephson couplings are competitive. The forward walking algo-

rithm produced excellent results in this study as expected from the past studies106,108.

After all the considerations, we conclude that the DMC with an importance sampling

is a natural and appropriate choice, complementary to PIMC, for simulating lattice

models at zero temperature.

In the future, we plan to parallelize the DMC algorithm to simulate a JJA in a

larger lattice or a multi-condensate JJA in search for more interesting physics.
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CHAPTER IV

2D ANISOTROPIC ISING MODEL IN

UNIAXIALLY STRAINED HF2MNC2O2

This chapter describes Monte Carlo simulations of Ising models applied to the pre-

diction of ferromagnetic critical temperature in the 2D material of Hf2MnC2O2.

4.1 Ising model

The Hamiltonian of an Ising model can be written as,

H = �J
X

hiji
�i�j � h

X

i

�i, (4.1)

where �i = ±1 are Ising spins, hiji indicates that the sum is over nearest neighbors, h

is the external magnetic field, and J is the strength of interaction between the spins.

Exact solutions of this model exists only in 1D (for zero and non-zero h) and in 2D

in the absence of an external magnetic field (when h = 0). Following is the summary

of the two important analytical approaches.

49



4.2 Historically important analytical solutions of 2D Ising

model

4.2.1 Onsager’s solution

In Onsager’s 1944 paper31 he solved the anisotropic Ising model on a squre lattice in

the thermodynamic limit (N ! 1) for the case h = 0. The anisotropic Ising model

has different interaction strengths, J1 and J2, in x and y directions, which modifies

Eq. (4.1) to

H = �J1
X

hijix

�i�j � J2
X

hijiy

�i�j. (4.2)

For the above model, he obtained the following expression for the free energy F ,

�F = � ln 2

� 1

8⇡2

Z 2⇡

0

d✓1

Z 2⇡

0

d✓2 ln[cosh 2�J1 cosh 2�J2 � sinh 2�J1 cos ✓1 � sinh 2�J2 cos ✓2].

(4.3)

He used the transfer matrix method in which the operators in this problem were

expanded “as linear combinations of the generating basis elements of an algebra which

can be decomposed into direct products of quaternion algebras”31. He also claimed

the following expression for the spontaneous magnetization without a detailed proof:

M = (1� Ω
�2)

1
8 where Ω = sinh

✓
2J1
kBT

◆

sinh

✓
2J2
kBT

◆

. (4.4)

In 1952, Chen Ning Yang was able to derive the expression for the spontaneous

magnetization117, not without much difficulty as he recalled years later that this

derivation was the longest calculation of his career.
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4.2.2 Kac and Ward’s approach

In 195235, Kac and Ward re-derived Onsager’s result using a simpler approach based

on a combinatorial technique, which became the basis for many other methods. The

idea behind this approach was to expand sums in the exponential into products of

exponentials in the partition function,

Z =
X

{si}

e�J
P

hiji �i�j =
X

{si}

Y

hiji
e�J�i�j . (4.5)

Since the product �i�j = ±1, the exponential term simplifies to:

e�J�i�j = cosh �J
�
1 + tanh(�J)�i�j

�
. (4.6)

The partition function can then be written as,

Z = (cosh �J)N
X

{si}

Y

hiji

�
1 + tanh(�J)�i�j

�
. (4.7)

Kac and Ward calculated
Q

hiji
�
1 + tanh(�J)�i�j

�
using a combinatorial approach

of summing over all polygons that can be drawn on the square lattice. After deriving

the partition function, other quantities of interest can then be calculated using it.

Kasteleyn found yet another combinatorial solution to the Ising model by mapping

it into a “dimer problem” which makes use of Pfaffian, which is related to finding

the determinant of a skew-symmetric matrix32. These combinatorial methods are

considered to be easier to understand.

4.3 Computational method

Another approach to solving the Ising model is a computational method based on the

Monte Carlo method. We used a Monte Carlo method with the Wolff single-cluster
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algorithm118 because it can be easily generalized to multilayers or 3D if necessary for

future work.

4.3.1 Wolff single-cluster algorithm

The first effective algorithm used in a Monte Carlo method was the Metropolis algo-

rithm119,120 in which spins are flipped one at a time. However, this algorithm suffers

from critical slowing, meaning that near the critical temperature Tc the simulation

takes a very long time to explore the typical set of configurations. Cluster algorithms

were developed to circumvent the critical slowing down by flipping cluster of spins

rather individual spins. Swendsen-Wang121 and Wolff single-cluster algorithms103 are

the commonly used cluster algorithms. In this study, we used the Wolff single-cluster

algorithm because it is faster of the two. Monte Carlo simulations must satisfy two

important conditions; detailed balance, and ergodicity.

4.3.2 Detailed balance

(a) Configuration X (before flip) (b) Configuration Y (after flip)

Figure 4.1: Configurations before and after a flip of a cluster (marked by the dotted
lines). Red arrows represent spin up and blue arrows represent spin down. Spins
immediately outside the cluster with similar orientation as the spins inside the cluster
are marked with a green circle at the base and head of the arrows.
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Figure 4.1 shows two different configurations, X and Y . Suppose we started with

configuration X and picked any one random site. Then the four neighboring spins

from the spin in that site are added with some probability Padd. If a spin is accepted

then it is added to the cluster. The same procedure is then applied to the neighbors

of this new spin. This process is carried out throughout the lattice iteratively. In

the case of configuration X, the cluster has grown to include 7 spins. This cluster

can then be flipped to achieve configuration Y . Now imagine, going in the reverse

direction, i.e. from configuration Y to X. The probability of choosing the seed site

is the same, and the probability of adding spins to the cluster is the same as well.

The only difference is the energy cost for breaking the bonds of like spins that were

not added to the cluster. For example, in configuration X there are 3 red (up) spins

sharing a bond with the red spins inside the cluster whereas in configuration Y there

are 8 such blue (down) spins. The probability of not adding any single spin is 1�Padd,

which is proportional to the selection probability P (X ! Y ). The probability for

not adding 3 spins is (1� Padd)
3 (in case of configuration X), and that for 8 spins is

(1�Padd)
8 (in the case of configuration Y ). Generalizing to m and n number of such

spins that are not added to the cluster for configurations X and Y respectively, the

condition for detailed balance is given by,

P (X ! Y )

P (Y ! X)

A(X ! Y )

A(Y ! X)
= (1� Padd)

m�nA(X ! Y )

A(Y ! X)
= e��(EX�EY ). (4.8)

In equation Eq. (4.8), A(X ! Y ) and A(Y ! X) represent the acceptance ratios for

going from one configuration to another. Since there are m broken bonds for going

from configuration X ! Y , the change in energy of the system is +2Jm, where J is

the interaction energy between the neighboring bond. For the n bonds created in the

configuration Y the energy changes by �2Jn. Therefore the total energy difference
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is,

EX � EY = 2J(m� n). (4.9)

Then, equation Eq. (4.8) can be rewritten as,

A(X ! Y )

A(Y ! X)
=

�
e2�J(1� Padd)

�n�m
, (4.10)

which leads to a very convenient option. If the probability Padd of adding a spin into

the cluster is chosen to be,

Padd = 1� e2�J , (4.11)

the right hand side term of Eq. (4.10) becomes 1, making A(X ! Y ) = A(Y ! X).

This means that the acceptance ratios for going forward or backward is always equal

1, due to which flipping of the cluster is never rejected. In this way, not only does

the Wolff single-cluster algorithm satisfy the detailed balance condition, but every

proposed move is accepted. The above analysis applies to the Ising model with two

interaction energies J1 and J2 as well.

4.3.3 Ergodicity

Ergodicity is the ability of an algorithm to effectively explore all of the configuration

space of the system. For an algorithm to be ergodic the algorithm must be able to

go from any one configuration to any other configuration in a finite number of time-

steps. In the case of the Wolff cluster algorithm, ergodicity is satisfied because single

spin flips are possible as well, so the simulation can explore all configurations.

4.3.4 Summary of Wolff algorithm

Together, detailed balance and ergodicity are necessary and sufficient conditions for

the system to evolve to equilibrium. The time it takes for a system to approximately
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reach the equilibrium is called the equilibration time, and the data collection process

is started only after this period.

In short, the Wolff algorithm can be summarized as follows:

• Select a spin from a random site.

• Add the nearest neighbors of this spin to the cluster with a probability P =

1� e�2�J .

• If a new spin is added to the cluster, consider adding the nearest neighbors of

this spin to the cluster in the same way as in step 2.

• Repeat steps 2 and 3 until the same process is iterated throughout the lattice.

• Flip the final cluster.

4.4 Hf2MnC2O2 MXene

In this chapter, the 2D anisotropic Ising model is used to calculate the Curie temper-

ature Tc for a monolayer Hf2MnC2O2 MXene under uniaxial strain. MXenes are 2D

materials that are transition metal carbides or nitrides. Fig. 4.2 shows the MXene of

interest from top and side view. The strain is applied in either the armchair direction

(y) or the zig-zag direction (x). In the Hf2MnC2O2 monolayer, only the Mn atoms

contribute to magnetic properties of the system according to the density functional

theory (DFT) simulations. The DFT simulations were performed by another group

from our department, so the details of those calculations are not within the scope of

this chapter. Beyond certain strain values (9% in the armchair and 7% in zig-zag)

this MXene monolayer becomes a half-metal, where only electrons whose spins are

oriented in a particular direction crosses the Fermi level making them available for

spintronic applications. This system shows increasing Tc for increasing strain.
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The Mn atoms are arranged in a triangular lattice. We approximated the magnetic

behavior of Hf2MnC2O2 by a classical spin-half Ising model on a triangular lattice,

with strain-induced anisotropy. The Hamiltonian is122

H = E0 � J1
X

hijix

�i�j � J2
X

hijidiag

�i�j, (4.12)

where �i = ±1 are Ising spins, hijix indicates that the sum is over nearest neighbors

in the horizontal (x) direction, hijidiag indicates nearest neighbors in other directions,

J1 and J2 are couplings along horizontal and diagonal directions as shown in Fig. 4.3,

and E0 represents the non-magnetic part of the energy.

Figure 4.2: (a) Top and (b) side views of the
Hf2MnC2O2 monolayer with the height in z di-
rection, and remaining two directions (x and y)
in which strain is applied uniaxially.

In order to find the mag-

netic ground state of the mono-

layer at each value of applied

strain, the total energies for various

ferromagnetic (FM), antiferromag-

netic (AFM), and non-magnetic

(NM) configurations as illustrated

in Fig. 4.3 were calculated us-

ing DFT. In the AFM1 configu-

ration [Fig. 4.3(b)], spin-down Mn

atoms form straight lines, whereas

in AFM2 [Fig. 4.3(c)] they form zig-

zag lines. AFM3 [Fig. 4.3(d)] has

spin-down stripes that are two sites

thick. AFM4 [Fig. 4.3(e)] is the same as AFM1 rotated by 120°. EFM has the lowest

energy compared to any of the other configurations. Thus the ground state is ferro-

magnetic under uniaxial strain within the range �4% to 10%. ENM � EFM is higher
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Figure 4.3: (a) FM, (b) AFM1, (c) AFM2, (d) AFM3 and (e) AFM4 spin config-
urations with coupling J1 and J2 in two different directions. Only Mn atoms are
considered, since contribution for magnetic moment from other atoms are negligible.

than 2.3 eV whereas EAFM � EFM is always very low (less than 0.2 eV).

According to Eq. 4.12, the energies of the spin configurations in Fig. 4.3(a,b,e) are

EFM = E0 � J1 � 2J2 (4.13)

EAFM1 = E0 � J1 + 2J2 (4.14)

EAFM4 = E0 + J1. (4.15)

Solving for the couplings yields J1 =
1
4
(2EAFM4�EAFM1�EFM) and J2 =

1
4
(EAFM1�

EFM), which allows us to infer J1 and J2 from the results of DFT energy calculations.

Thus, we obtain J1 and J2 as a function of uniaxial strain "x or "y.

4.5 Calculated quantities

Graphs for the calculated quantities are similar for strain in both the zig-zag and

arm-chair direction. So only graphs for strain in the zig-zag direction are shown.

4.5.1 Energy

Calculating energy is straightforward in the Ising model simulation. It follows simply

from the Hamiltonian. The Monte Carlo estimator for the energy is obtained using,
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Figure 4.4: Energy vs. temperature for different strain values in the x direction.
There is an inflection point around the Curie temperature which would correspond
to a divergence in the specific heat curve in the thermodynamic limit.
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where N is the total number of Monte Carlo steps after equilibration. In our imple-

mentation, the energy is calculated for individual spins interacting with their nearest

neighbors in both x and diag directions at each time-step. Since this process is done

iteratively for all surrounding spins every interaction is double counted, so the sum

must be divided by two to obtin the correct value for the total energy. Results are

shown in Figure 4.4, for different strain values in the zig-zag direction. The inflection

point occurs at the critical point Tc (corresponding to this inflection point is an abrupt

jump in the specific heat cV (T ) graph), which is also called the Curie temperature in

ferromagnetic systems.

4.5.2 Heat capacity

Heat capacity can be calculated by taking the derivative of energy with respect to

the temperature. Numerical differentiation is prone to error. Thus, the fluctuation-

dissipation theorem becomes useful in this case. The following derivation gives a

direct estimator for the heat capacity:

CV =
@hEi
@T

(4.17)
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and finally,

CV =
�

T

⇥
hE2i � hEi2

⇤
. (4.20)

The following identities and definition were used in the derivation,

hEi = � 1

Z

@Z

@�
, hE2i = � 1

Z

@2Z

@�2
, � ⌘ 1

kBT
. (4.21)
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Figure 4.5: Specific heat vs. temperature for different strain values in the x direction.
Critical behavior around the Curie temperature is absent because the simulations
were done on finite-sized lattices.

The identities can be proven starting with the definition of the partition function,

Z =
P

e��Eα and the probability P↵ = e�βEα

Z
of the system being in the state with
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energy E↵. Then,

@Z

@�
= �

X

↵

E↵e
��Eα = �Z

X

↵

P↵E↵ = �ZhEi (4.22)

which gives the first identity from Eq. 4.21. The second identity follows similarly.

Specific heat graphs are shown in figure 4.5. The system should be exhibiting diver-

gence or critical behavior at the phase transition in the thermodynamic limit, but

since simulations were done for finite size system these graphs only show a spike

around the critical temperature.

4.5.3 Magnetization

Magnetization is the easiest quantity to estimate in the Ising model simulations. It

is the sum of all the spins in the system,

M↵ =
X

i

�i and hMi = 1

N

NX

↵=1

M↵. (4.23)

M↵ is the Magnetization of a particular configuration given by the sum of spins in the

configuration. Then the Monte Carlo average is simply the average of magnetizations

of all the different configurations at each time-step (with N total time-steps) after

the system has reached the stationary state.

Magnetization is the most interesting quantity in Ising model simulation because

it is the order parameter that drops to zero at the critical temperature as seen in

Figure 4.6. At the critical temperature, the system transitions from a ferromagnetic

state to a paramagnetic state.

In a zero magnetic field h = 0, the average magnetization should be zero by

symmetry, as shown in fig 4.7. In order to get the upper branch (M/N > 0) of the

of M(T ) graph, we calculated the Monte Carlo average of the absolute value of the

magnetization, h|M |i. Results for the average absolute magnetization are shown in
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Figure 4.6: absolute Magnetization vs. temperature for different strain values in the
x direction. Magnetization drops (drop becomes steeper for bigger lattice sizes and
abrupt for infinitely sized lattice) to zero at the Curie temperature.

Figure 4.6.
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Figure 4.7: In a zero magnetic field, h = 0 the magnetization below the critical
temperature can be either in a positive or negative direction as this is a spontaneous
process.

4.5.4 Susceptibility

The magnetic susceptibility is given by differentiating the average magnetization with

respect to the magnetic field. The magnetic field is set to zero after taking the

derivative.

� =
@hMi
@h

�
�
�
�
h=0

. (4.24)

The fluctuation dissipation theorem for the susceptibility can be derived in the same

manner as that for the specific heat which yields,

� = �
⇥
hM2i � hMi2

⇤
. (4.25)

The results for the magnetic susceptibility from simulations shown in fig 4.8 are actu-

ally � = � [hM2i � h|M |i2], because hMi = 0 as discussed in the section 4.5.3. That is

why the critical behavior (divergence at the critical temperature) that is expected for
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Figure 4.8: Magnetic susceptibility vs. temperature for different strain values in the x
direction. Susceptibility spikes at the Curie temperature denoting a phase transition
between the ferromagnetic and paramagnetic state.

the susceptibility at the phase transition is absent in the Fig. 4.8. The susceptibility

is small at low temperatures because the system is in a ferromagnetic state where the

spins are aligned in the same direction which makes it difficult to flip the spins with
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a small external magnetic field. At high temperatures, the susceptibility is small as

well, because the system is in a paramagnetic state where spins are randomized and

require a high magnetic field to align them in a particular direction. Right around

the Curie temperature Tc is where the susceptibility is highest because the spins are

very susceptible to be influenced by the external magnetic field.

4.5.5 Binder cumulant

The Binder cumulant was calculated in order to locate Tc accurately. It is given by

the following equation123,124,

U = 1� hM4i
3hM2i2 . (4.26)

This quantity is the fourth-order cumulant of the magnetization and is well known

to have a crossing point for different lattice size simulations at the critical point Tc.

The Tc obtained from the intersection point from the Binder cumulant is much more

accurate than that obtained from the magnetization graph. To obtain accurate Tc

from magnetization graphs the simulations must be done for much bigger lattices

which have a steeper drop at the transition point. This is inefficient in terms of both

simulation time and computer memory. Hence, Binder cumulant is the preferred

quantity for locating Tc. The Binder cumulant graphs in fig 4.9 shows the crossing

point for the different lattice sizes.

4.6 Results and conclusions

Figures 4.4, 4.5, 4.6, 4.8, and 4.9, shows results of Ising model simulations of L⇥ L

sized lattices for L = 16, 32, 64, 128. The energy changes concavity at the Curie

temperature Tc and the specific heat spikes around that region since it related to the

first derivative of the energy. The magnetization M drops to zero near the Tc, and the

magnetic susceptibility is high around this region because the nature of the magnetic
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Figure 4.9: Binder cumulant vs. temperature for different strain values in the x
direction. The crossing point at the critical point allows for an accurate extraction
of the Curie temperature Tc. All the Tc values reported in this chapter are based on
these Binder plots.

state changes around this region. The Binder cumulant has a crossing-point123–125

at Tc, which allows for its accurate estimation, Fig. 4.9. This quantity is the fourth
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Figure 4.10: Magnetization vs. temperature for strain in both the x (a) and y (b)
direction for 128 ⇥ 128 triangular lattices. The Curie temperature Tc is increasing
with increasing strain, which can be seen in all three graphs (a), (b), and (c). (c)
There is no significant difference between how Tc increases with strain in x versus y
directions.

order cumulant of the magnetization.

The most interesting result is that the Tc increases with increasing strain, as shown

in Fig. 4.10(c). As illustrated by Fig. 4.10, which shows the magnetization versus

temperature graph for 128 ⇥ 128 lattices, Tc becomes greater than 1200 K while it

converts into a half-metal under uniaxial tension at higher than 7% strain in zig-zag

direction and 9% strain in the armchair direction. Thus, Hf2MnC2O2 monolayer can

be transformed into an immensely useful material for spintronic applications. The

computational method used for the Ising model simulation in this chapter can be
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generalized to include multiple layers interacting with each other.

In the future, we are planning to find more candidate MXene monolayers that

exhibit interesting electronic, magnetic, and transport properties upon application

of strain or multilayering of MXene monolayers. Some of these systems might not

necessarily have an easy axis that allows magnetic spins to be aligned in either parallel

or anti-parallel as in an Ising model. If the spins have a three-dimensional degree of

freedom then the Heisenberg model of ferromagnetism must be employed. Currently,

we are working with our collaborators and actively pursuing the best course of action

for the future.
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CHAPTER V

SUMMARY AND DISCUSSIONS

In chapter 1, three types of random inductor-capacitor (LC) networks on 6000⇥6000

square lattices were simulated. The dynamical conductivity was calculated using an

equation-of-motion method in which timestep error is eliminated and windowing error

is minimized. The critical exponent a such that �(!) / !�a was extracted at low

frequencies. The results suggest that there are three different universality classes. The

LijCi model, with capacitances from each site to ground, has a = 0.314(4). The LijCij

model, with capacitances along bonds, has a = 0. The LijCiCij model, with both

types of capacitances, has a = 0.304(1). This implies that classical percolative 2D

superconductor-insulator transitions (SITs) generically have �(!) ! 1 as ! ! 0.

Therefore, any experiments that give a constant conductivity as ! ! 0 must be

explained in terms of quantum effects.

In chapter 3, simulations of a quantum rotor model describing a Josephson junc-

tion array (JJA) in the phase representation at zero temperature in a perpendicular

magnetic field B = 0.1, 0.2, 0.3, 0.4 (in units of ~/2ea2) on a L⇥L square lattice with

spacing a for L = 6, 8, 10, 12 was presented. The superconductor-insulator transition

(SIT) is tuned by the ratio of charging energy to Josephson coupling, U/J . Abrupt

drops in the magnetization values were observed in the bigger lattices at certain values

of B and U/J caused by the formation of vortices. Increasing U/J at a fixed B field

causes quantum vortex melting. The magnetization drops to zero around U/J ' 5

indicating SIT. For B = 0.1 the SIT occurs without an intermediate vortex state and

the magnetization scales as M ⇠ L4, whereas for B = 0.4 the scaling is M ⇠ L2 dur-

69



ing the vortex melting. For B between 0.1 and 0.4 the scaling is not clear. We used

the diffusion Monte Carlo (DMC) method with a guiding wavefunction optimized us-

ing the variational Monte Carlo (VMC) method. We developed the DMC and VMC

algorithms for JJAs and implemented them in C++ . The ground state energy is

calculated easily in DMC and its error estimates were generally smaller than 1%,

both with and without the guiding wavefunction. Quantities like magnetization and

vorticity that do not commute with the Hamiltonian were calculated using an efficient

forward walking algorithm. Their estimates are affected severely in absence of the

guiding wavefunction. With the guiding wavefunction, errors for the magnetization

were generally less than 1% and going up to 15% percent around the phase transition

from the Meissner to the vortex state, and without the guiding wavefunction errors

were generally higher than 5% and going up to 40% around the critical point.

In chapter 3, Curie temperatures for a MXene monolayer Hf2MnC2O2 under dif-

ferent strain values were calculated using an anisotropic Ising model. This material

exhibits a semiconductor to a half-metal transition at 7% strain applied in the zigzag

direction and at 9% strain applied in the armchair direction. Also, a semiconductor-

to-metal transition is predicted for this monolayer at 4% compressive strain in either

direction. Calculations from Ising model simulations show that the Curie temper-

ature of the material can be enhanced significantly by applying tensile strain. For

example, at 8% strain, the Curie temperature becomes greater than 1200 K.
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APPENDICES

A1 Details of algorithms for LC network models

A1.1 Algorithm for the LijCiCij Model

For implementation purposes we let IXxy be the current flowing from site (x, y) to

(x + 1, y), IYxy be the current flowing from site (x, y) to (x, y + 1), and similarly for

the U variables. The initial currents (at time t = 0) and voltages (at t = ⌧/2) are

IXxy :=
1

LX
xy

IYxy := 0

UX
xy :=

⌧

2CX
xy

IXxy

UY
xy :=

⌧

2CY
xy

IYxy

Vxy :=
⌧

2Cxy

(IXx�1,y � IXxy + IYx,y�1 � IYxy).
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The currents and voltages at later times are then computed using the leapfrog algo-

rithm,

IXxy +=
⌧

LX
xy

(Vxy � Vx+1,y � UX
xy)

IYxy +=
⌧

LY
xy

(Vxy � Vx,y+1 � UY
xy)

UX
xy +=

⌧

CX
xy

IXxy

UY
xy +=

⌧

CY
xy

IYxy

Vxy +=
⌧

Cxy

(IXx�1,y � IXxy + IYx,y�1 � IYxy) (A.1)

where += is the increment operator as in the C language.

The LijCi model can be simulated using similar approach.

A1.2 Algorithm for the LijCij Model

For Ci = 0, Eq. (2.9) becomes pathological because Kirchhoff’s current law applies

as a hard constraint at every site:1

X

j@i

Iij = 0. (A.2)

1The situation is analogous to incompressible fluid dynamics described by the Navier-Stokes

equation, where the incompressibility constraint must be incorporated at every timestep by solving

Poisson’s equation.
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Differentiating by t and using Eq. (2.9) gives

X

j@i

Vi � Vj

Lij

=
X

j@i

Uij

Lij

. (A.3)

On a square lattice with periodic boundary conditions with identical inductances

LX
xy = LY

xy = 1 for all (x, y), this leads to the lattice Poisson equation,

4Vxy � (Vx+1,y + Vx�1,y + Vx,y+1 + Vx,y�1)

= UX
xy � UX

x�1,y + UY
xy � UY

x,y�1 ⌘ Jxy, (A.4)

which can be solved efficiently using fast Fourier transform methods. We summarize

the algorithm below.

The momentum-space Green function is precalculated as G̃pq =
�
4 sin2 ⇡p

Nx
+

4 sin2 ⇡q
Ny

��1
for p = 0, 1, 2, . . . , Nx � 1 and q = 0, 1, 2, . . . , Ny � 1 and regularized

such that G̃00 = 0. The initial currents and voltages are

IXxy := 1

IYxy := 0

UX
xy :=

⌧

2CX
xy

IXxy

UY
xy :=

⌧

2CY
xy

IYxy. (A.5)
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The system is evolved using

Jxy := UX
xy � UX

x�1,y + UY
xy � UY

x,y�1 (A.6)

J̃pq :=
1

p
NxNy

X

xy

e�2⇡i(px/Nx+qy/Ny)Jxy (A.7)

Ṽpq := G̃pqJ̃pq (A.8)

Vpq :=
1

p
NxNy

X

xy

e2⇡i(px/Nx+qy/Ny)Ṽpq (A.9)

IXxy +=
⌧

LX
xy

(Vxy � Vx+1,y � UX
xy) (A.10)

IYxy +=
⌧

LY
xy

(Vxy � Vx,y+1 � UY
xy) (A.11)

UX
xy +=

⌧

CX
xy

IXxy (A.12)

UY
xy +=

⌧

CY
xy

IYxy (A.13)

where Eqs. (A.7) and (A.9) are implemented as two-dimensional fast Fourier trans-

forms.

A1.3 Maximum frequency in the LijCiCij model

The maximum timesteps in the LC network models are limited by the maximum

frequency of the current in the lattice, ⌧max < 2/!max. The maximum frequency !max

is given by the biggest frequency eigenmode. Rewritting the Eq. (A.1) after Fourier
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transform,

�iω

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

L 0 0 0 0

0 L 0 0 0

0 0 C2 0 0

0 0 0 C2 0

0 0 0 0 C1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

| {z }

M

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

Iqx

Iqy

Iqx

Iqy

Vq

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

=

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

0 0 �1 0 1� eiqx

0 0 0 �1 1� eiqy

1 0 0 0 0

0 1 0 0 0

e�iqx � 1 e�iqy � 1 0 0 0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

| {z }

H

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

Iqx

Iqy

Iqx

Iqy

Vq

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

,

where (LX
xy, L

Y
xy) = L, (CX

xy, C
Y
xy) = C2, and Cxy = C1. Eigenvalues of matrix

�i
p
M�1H

p
M�1 are

0,±
1p
LC2

,±

s

C1 + 4C2(sin
2
�
qx
2

�
+ sin2

�
qx
2

�
)

LC1C2
| {z }

ω0

.

The relevant frequency eigenmode is !0 and the maximum frequency !max is given

by !0 when the sine terms in it are equal to one,

!max =

r

C1 + 8C2

LC1C2

. (A.14)

The maximum allowed timestep for the simulation to be stable is ⌧max = 2/!max,

which can be calculated for different values of L, C1, and C2 using Eq. (A.14).
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A2 Derivation of Josephson equations

With  i =
p
nie

i✓i , its time derivative is

@ 

@t
=  ̇i =

1

2
p
ni

ṅie
i✓i + i

p
ni✓̇ie

i✓i . (A.15)

Substituting  and  ̇ into the coupled Schrödinger’s equations in Eq. (3.2) gives,

i
ṅ1

2
p
n1

�p
n1✓̇1 = U1

p
n1 + ↵

p
n2e

i(✓2�✓1)

i
ṅ2

2
p
n2

�p
n2✓̇2 = U2

p
n2 + ↵

p
n1e

i(✓1�✓2). (A.16)

Using the fact that ṅ1 = �ṅ2, since a charge lost by one superconductor is gained by

another. Also, taking the real part of the Eq. (A.16) gives,

�ṅ1 = 2↵
p
n1n2 sin(✓1 � ✓2), (A.17)

which is the rate of charges moving from one superconductor to another. Therefore,

the current is given by I12 = �e⇤ṅ1 = 2e⇤↵
p
n1n2 sin(✓1 � ✓2) = Ic sin(✓1 � ✓2).

Taking the imaginary part of the Eq. (A.16) gives,

�p
n1✓̇1 = E1

p
n1 + ↵

p
n2 cos(✓2 � ✓1) (A.18)

�p
n2✓̇2 = E2

p
n2 + ↵

p
n1 cos(✓1 � ✓2). (A.19)
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Since n1 ' n2 (good approximation for identical coupled superconductors), subtract-

ing Eq. (A.19) from Eq. (A.18) yields,

✓̇ = ✓̇1 � ✓̇2 = U1 � U2 = ecV, (A.20)

which is Josephson’s second equation.

A3 Detailed derivations of some quantities in DMC method

A3.1 Expanding a term from equation (3.20)

The first term in the RHS of equation (3.20) can be expanded as follows,

ΨGr2

✓
f

ΨG

◆

= ΨGr·

✓
ΨGrf � frΨG

Ψ2
G

◆

= ΨGr·

✓rf

ΨG

◆

�ΨGr·

✓
frΨG

Ψ2
G

◆

= r2f +ΨGr
✓

1

ΨG

◆

·rf � 1

ΨG

r· (frΨG)� fΨGr
✓

1

Ψ2
G

◆

·rΨG

= r2f � 1

ΨG

rf ·rΨG � 1

ΨG

rf ·rΨG � r2ΨG

ΨG

f +
2f

Ψ2
G

rΨG·rΨG

= r2f � 2

ΨG

rf ·rΨG � 2
r2ΨG

ΨG

f +
r2ΨG

ΨG

f +
2f

Ψ2
G

|rΨG|
2

= r2f +

✓r2ΨG

ΨG

◆

f � 2

ΨG

rf ·rΨG � 2
r2ΨG

ΨG

� 2fr
✓

1

ΨG

◆

·rΨG

= r2f +

✓r2ΨG

ΨG

◆

f � 2

✓

fr ·
rΨG

ΨG

+rf ·
rΨG

ΨG

◆

= r2f � 2r·

✓rΨG

ΨG

f

◆

+

✓r2ΨG

ΨG

◆

f.
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Figure A.1: Magnetic vector potential in a constant perpendicular magnetic field in
a symmetric gauge.

These three terms eventually lead the Schrdönger’s equation for the DMC algorithm

to an equation resembling a Fickian diffusion equation with an extra term (growth

or decay term).

A3.2 The magnetic vector potential A in a constant perpen-

dicular B field

Geometrically the magnetic vector potential represents the area of a triangle with

vertices (0, 0), (xi, yi), and (xj, yj), which is the reason its value increases away from

the center of the lattice as shown in fig A.1. Parametrizing the path as r = ri +
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�(rj � ri) continously from grain i to grain j, with 0  �  1:

Aij =
2e

~c

Z rj

ri

A(r) · dr

=
2e

~c

Z 1

0

✓
1

2
B⇥ [ri + �(rj � ri)]

◆

· d�(rj � ri)

=
2e

~c

✓
1

2
B⇥



ri + (rj � ri)

Z 1

0

�d�

�◆

· (rj � ri)

=
2e

~c

✓
1

2
B⇥ 1

2
(rj + ri)

◆

· (rj � ri)

=
2e

~c

B0

4

⇥
� (yi + yj )̂i+ (xi + xj)ĵ

⇤
·
⇥
(xj � xi)̂i+ (yj � yi)ĵ

⇤

) Aij =
2e

~c

B0

2
(xiyj � xjyi).

79



A3.3 Derivation of the drift velocity

Starting with the definition of the drift velocity v(r) = U rΨG

ΨG
and the chosen guiding

wavefunction of ΨG(θ) = exp
h
P

hiji K cos(✓i � ✓j � Aij)
i

gives,

vi = U
@✓iΨ

Ψ

= U
@

@✓i

X

hiji
K cos(✓j � ✓k � Ajk)

= U
X

hiji
K sin(✓k � ✓j � Akj)(�ij � �ik)

=
U

2

"
X

j

X

k

Kjk sin(✓k � ✓j � Akj)�ij �
X

j

X

k

Kjk sin(✓k � ✓j � Akj)�ik

#

=
U

2

"
X

k

Kik sin(✓k � ✓i � Aki) +
X

j

Kij sin(✓j � ✓i � Aji)

#

=
U

2

"
X

j

Kij sin(✓j � ✓i � Aji) +
X

j

Kij sin(✓j � ✓i � Aji)

#

= U
X

j@i

K sin(✓j � ✓i � Aji).
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