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ABSTRACT

QPOs (Quasi-Periodic Oscillations) are time oscillations that appear in the light curve of
observational data in x-ray bands. They are of mysterious origin although they are believed to be
a result of the intense gravity around neutron stars and black holes and emit x-rays from
accretion disks. Iinvestigate a derived ratio between two periods has been found in the QPO
data. The two periods, which appear as peaks in the power density spectrum have been found to
be in a 3:2 ratio and can possibly distinguish theoretical models. In the work presented here, two
physical approaches are developed that can explain the integer resonance ratio.

One is a cusp layer model, which is based on a boundary layer model that uses the physical
conditions at opposite sides of said layer to explore the magnitude of the vertical versus radial
epicyclic frequencies and confirm the anticipated scales of the observed frequencies. It also
happens to recreate a 3:2 resonance ratio for the Keplerian angular frequencies at the ISCO,
taken as the preferred radius for the boundary layer model.

A toy model was recreated and utilized to emulate the Alfven radius due to the accretion disk’s
innate magnetic field and explore how it serves as a disruption radius and impacts the accretion
of mass and the effective inner edge of the disk. The simulations show that there is no
significance deviation from the ISCO as an effective inner edge for the accretion disk due to the
magnetospheric influence of the disk alone.

I also invoke a parameter to handle the coupling between the vertical and radial epicyclical

frequencies and relate it to the pressure within the disk. I show the coupling is strongest at the

Xi



equatorial plane where pressure is at its maximum value.

A model I utilize is a relativistic resonance model, combined with a helioseismological approach
to explore the pulsation of the inner edge of the accretion disk that imparts the resonance of the
accreting matter moving along the Kerr space-time orbits. The helioseismological model gives a
characteristic frequency for small perturbations in the stellar matter within the atmosphere of a
star. The diskoseismological model extends that principle to material within an accretion disk. I
take it to the same extent that the QPO frequencies are due to small perturbations along the
marginally stable circular orbit, in the vertical and radial directions and use it as a probe into the
inner disk and what information it yields. The inner disk edge, per the model, is treated as a
vibrating surface that yields the radial and vertical epicyclic frequencies as characteristic features
of the vibration. The epicyclical frequencies found using the physical parameters of the model
within the cusp layer inside the disk could explain the physical context of the phenomenon
responsible for the creation of the QPOs. An approach within the diskoseismological model uses
the cylindrical reference frame of a disk in terms of the distribution of mass in combination with
the strong gravity of the central object and the Keplerian velocity and sonic speed to yield a
natural resonance ratio of 3/2 as well.

The model can be used as a diagnostic tool to explore the physical phenomena of the material
orbits and the disk itself. Most importantly, the model can be used to determine and constrain the
ratio of spin to mass of the compact object itself. It yields new information as previously
undetermined by any earlier model; the adiabatic index at a specific radius within the accretion
disk, which serves to lend insight into the innate phenomena of accretion disks at large. It
establishes what were previously unknown information, such as the mass density distribution at a

specific radius and outward, the radius of influence in terms of the sonic radius, the accretion

xii



rate, and the temperature distribution at the same radius for the accretion disk, as all are
dependent on the adiabatic index. In all previous literature, the adiabatic index is taken as an
assumptive estimate, and the models build on that assumed value of the adiabatic index. This
model allows us to obtain an actual value of the adiabatic index at the ISCO and use it as an

establishing feature to refine models on for more physically realistic observations.
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CHAPTER1

INTRODUCTION

X-ray observations of compact objects have been shown to have a quasi-periodic feature
in the detected signals. These features are called QPOs or Quasi-Periodic Oscillations. There is
no standard model to explain the nature of the oscillations. A QPO (Quasi-periodic Oscillation) is
a particular signal that appears in the emitted radiation from stellar objects (black holes, neutron
stars, and white dwarfs). It manifests itself as a repeated brightening in the x-ray radiation at
specific beats in time. The repetition in brightness is thought to occur when gas spirals inward
towards the compact object and heats up as it piles up near the stellar surface within an accretion
disk, in a localized region, to the point it emits x-rays. The analysis of the brightening in the x-
ray radiation do not come in exact time intervals and thus called quasi periodic and the frequency
in time is very high on the order of ten to a thousand cycles per second (10 Hz to 1 KHz). The
importance of QPOs is in their ability to diagnose both the region around strong gravity and to
test theories of General Relativity. They originate from regions of intense gravity and stand as
informative tests of general relativity. The fundamental source of QPOs must be located near the
compact objects, so it is necessary to explore the phenomena occurring in the vicinity of the
stellar objects and pinpoint the causes of the QPOs.

Different models have been proposed to explain the origin of the QPO signals. I will
outline the current models in the literature and in this dissertation I will present two models that I

have developed to describe these quasi-periodic oscillations.



Observations of the QPO signals started in 1996 with the Rossi X-ray Timing Explorer
and QPO frequencies up to 1000 Hz were detected. Twin-peak QPOs were also found,
consisting of two peaks of roughly same power at high amplitudes, at particular frequencies in an
energy range, although not exactly equal (Yi, 2007). A peculiar feature came into notice with
multiple observations from numerous sources: a persistent 3:2 ratio between double QPO
frequencies found in certain spectra measurements. This is particularly prominent for black hole
candidates although neutron stars do manifest the same 3:2 frequency ratio with the QPO peaks

wandering about a particular frequency.

There are three distinct types of QPOs: LFQPO (Low Frequency QPO, 1 to 100 Hz),
Hecto-hertz QPO (100 to 200 Hz), and HFQPO (High Frequency QPO, 200-1500 Hz). The
individual peaks are associated with a set of oscillators and the time evolution of the oscillator.
The HFQPO is thought to originate from orbital motion in the inner part of accretion disks
around compact objects, while LFQPOs are thought to originate from a point farther out in the
disk.

There have been a small number of HFQPOs detected for black holes and many detected
for neutron stars. A unique feature of the black hole HFQPOs is that they have a distinctive 3:2
ratio signature, based on persistent frequency values where the higher frequency will be 1.5
times the value of the lower frequency. Neutron star HFQPOs also show the 3:2 ratio-clustering
feature, albeit due to two correlating peaks for both frequencies which switch amplitudes when
passing the 3:2 ratio. This may be attributed to the neutron star’s strong magnetic field
interacting with the inner disk and affecting the phenomenon responsible for the QPO signals.

The most likely effect of the magnetic field would be to cause vertical and radial oscillations to



switch in magnitude.

A unifying approach to the model would be to establish a connection, between the
HFQPOs and the strong gravity of the compact object in question. This would then be used to
infer object properties using the QPO measurements. The constant 3:2 integer ratio frequencies'
stability implies a strong dependence primarily on the Kerr geometry and less so on the physics
of the accreted plasma (where the magnetic field controls the overall advection). The Kerr
geometry determines the strength of the gravity and determines the conditions in the accretion
disk.

There are a large variety of ideas and models to explain QPOs. Some cases are applied to
both neutron stars and black holes to explain common features between both, and some are
limited to one and not the other, to explain the differences in the signal features. Some models
also accommodate resonances and some do not.

There are two general classes for the QPO models: Hotspot models and Disk Oscillation

Models. They both relate the QPOs to a specific radius in the accretion disk, albeit with further

qualifying characteristics.

The Hotspot Models are: Relativistic Precession, proposed by Stella (1999), and
discussed (Morsink, Stella, 1999), (Stella and Vietri, 2012), and Tidal Disruption, proposed and

discussed by Cadez (2008), Kostic (2009), and Germana (2009).

The Disk Oscillation Models are: Warped Disk Resonance, proposed and discussed by
Kato (2000, 2001, 2004, 2005, 2008), both the Epicyclic and Keplerian Resonance Models by

Abramowicz and Kluzniak (2000, 2001, 2004, 2005), and two models focusing on resonances



between non-axisymmetric oscillating modes of a torus, by Bursa (2005), and Torok (2010).
These models are discussed later in this dissertation along with their strengths and weaknesses.
There is no universally accepted model that satisfactorily explains all the features of QPOs and
pinpoints a single mechanism.

The distinction between the two models comes down to dealing with the localization of
the region responsible for the QPO signal. A hotspot model focuses on an angular section at a
specific radius that co-rotates with the disk, whereas a disk oscillation model shifts the focus to a
boundary region that extends from a specific radius outward in a full annular region, with no
angular section preference. A crucial element that may determine the validity of one model over
the other is the hydrodynamical or magnetohydrodynamical shear that occurs in the vicinity of
the inner disk that aids or inhibits the coagulation of plasma into blobs or hotspots that

congregate in angular sections or disperses outward into annular sections.

A criterion for exploring variations in the QPO frequency is to explore candidates
responsible for the change in frequency. The frequency cannot be associated with the star or the
Kerr space-time alone, so it is necessary to focus on the gas within the accretion disk. Some
possibilities depend on the radius of the disk from where the signals are generated, so the search
for a frequency reverts to a search for a specific radius. The radius has to be sharp enough to

show dramatic changes over a small radial distance.

There are three particular locations that qualify for the sharp radius: the boundary layer
between the disk plasma and the star; the ISCO (Innermost Stable Circular Orbit); and the

transition region where the flow becomes the most affected by the star's magnetic field.



The first two candidates fit the criteria for the HFQPOs (High Frequency Quasi-Periodic
Oscillations) since the Kerr geometry is the dominant influence over the frequency
characteristics. The third is an intriguing option for the LFQPOs (Low Frequency Quasi-
Periodic Oscillations) since they are thought at a radius further out in the disk.

Miller, Lamb and Psaltis proposed a good candidate for a region where the flow goes from
subsonic to supersonic, known as the sonic point. The inward radial velocity increases sharply
with decreasing radius and this is thought to be a crucial criterion for the sharp radius where
drastic changes in the accretion properties occur such as plasma falling rapidly towards the

compact object (Miller M. L., 1998).

There are many kinds of matter waves in astronomy. They range from geological quakes
(solid shock waves), to stellar explosive waves (gas shock waves), to stellar pulsations and stellar
convection waves (gas shock waves), to space-time perturbations (gravity waves). In my
dissertation I will concentrate on waves created in accretion disks, which are thought to include
pressure waves (p-waves and s-waves) and gravity waves (g-waves). As of currently, varying
models have offered different mechanisms, which have possible explanations but require more

precise data. I use several models to investigate outcomes that can be tested.

In Chapter I, I will go over the calculation of the periodic nature of QPO in the x-ray data.

In the introduction I discuss the nature of oscillations in stars. 1 discuss how the x-ray data is

collected and processed and the QPO signal is detected.

In Chapter II I continue the discussion of QPO models and go through the anatomy of an



accretion disk for a deeper look at the parameters needed in analyzing the QPO models. Then I
go into detail about the varying models that discuss the possible origin and mechanisms behind
the generation of the QPO signal. I also then explore a cusp layer model that serves as an
informative source of the signal based on physical parameters. The physics of the accretion disk
and the geometry will be explored to determine the conditions for boundary layer dimensions
and any further implications for the radial distribution of matter to test out the peculiar
requirements for the production of the QPO signal, such as the scaling of the double QPO

frequencies.

In chapter III, I discuss the physical and mathematical vocabulary of the Kerr metric
terms and how it defines the geometry of space-time around a rotating compact object.

For chapter IV, I begin to look at the Alfven radius (where magnetic forces start to
influence the motion) and compare that to the ISCO (the inner most stable circular orbit). My
objective is to utilize the Blandford-Znajek mechanism as a model to explain, and determine the
Alfven radii as prospective determining radii for the generation of the LF (Low Frequency)
QPO. The radius at which the magnetic field of the compact object starts to affect the accreted
plasma is the Alfven radius. The Blandford-Znajek mechanism focuses on two contributing
magnetic influences, the disk and the compact object (black hole in particular). As the plasma
falls through the event horizon, the magnetic field lines carried in with the plasma becomes
frozen into the flow outside the event horizon and gets twisted along with the space-time, by the

rotation of the black hole, frame dragging, in Kerr geometry.

The disk is endowed with its own electric current and as it rotates, it generates a poloidal



magnetic field. Each source (the black hole’s ergospheric plasma, or the disk’s) would have a
corresponding Alfven radius, and since the disk tends to be the dominant influence in most cases,
its Alfven radius is the definitive radius for the system. This means that the effects of the
magnetic field become reduced as one moves out from the Alfven radius. However, in cases of
high spin, the black hole's magnetic field becomes comparable to that of the disk, and dominates

it.

Matter passing from the disk Alfven radius (due to the disk magnetic field) to the black
hole Alfven radius (due to the ergospheric plasma, projected from the event horizon) would
change magnetic field strength and cause a change in velocity in the plasma stream. This is
important because it would cause a magnetohydrodynamical feedback in the plasma stream,
which indicates physical information can travel back out into the disk. I determine the location
of the Alfven radius due to the accretion disk’s magnetic field and how it impacts the shape and

nature of the accretion disk.

Chapter V expands on the basics of accretion disks and the physics that govern them.
Chapter VI deals with the accretion rate and reveals the basics of the accumulation of matter by
compact objects and important parameters involved in accretion. This chapter bears information

which importance that will become apparent in Chapter VII.

Chapter VII explores the phenomenon of diskoseismology and the physical phenomena
that accompany it. [ now move to a description of the oscillations in the disk using a model that

is similar to that for a star. The disk is a massive body with its own self-gravity (that is neglected



in contrast to that of the central object in terms of the pulsations) that constrains its boundaries,
and is endowed with plasma, much like a star. The disk differs from a star in the geometrical
setting: the star is spherically symmetric and the disk is an axisymmetrical torus that is
preferably described with a cylindrical reference frame. The ISCO (Innermost Stable Circular
Orbit) or marginally stable radius is the last radius where infalling particles’ angular velocities
remain Keplerian inside a radius. The warped space-time starts to change the particles’
trajectories. This is done via a precession process inside that radius in closer proximity to the
compact object. For most models, the disk inner edge is set at the ISCO. In the disk’s reference
frame, it behaves as a gravitationally bound body of heated, charged mass that behaves like a
section of gas in a pulsating star. The disk has a pulsating surface, driven by convection and

radiation processes in its interior.

I also create a classical diskoseismological approach for the HF (High Frequency) QPOs
and show that the natural motion of infalling gas along Kerr space-time produces a unique
relativistic beat that determines the HF QPO frequency signature. The ISCO (Innermost Stable
Circular Orbit), also known as the marginally stable circular orbit, serves as a natural boundary
for the inner edge of the disk and the inner edge as a result of the moving plasma, the radius of
the inner edge oscillates to a beat imparted by the unique Kerr geometry in its proximity. The
diskoseismological approach also yields a previously unknown quantity, the adiabatic index,
which was taken as an assumed value in previous papers. The adiabatic index is the ratio of
specific heats of a gas and speaks to the nature of the advecting gas within the accretion disk.
Accretion disk models almost always invoke a polytropic equation of state to describe the gas.

Disk oscillations are incumbent on the speed of sound, in terms of the pressure, which relies on



the adiabatic index.

The diskoseismological model developed in this dissertation invokes two equations being
equivalent to each other, one derived via the hydrostatic equilibrium condition that yields an
acoustic-based equation pertaining to the pressure involved in the plasma, and the other from the

epicyclic frequency equations derived from Abramowicz’s paper (Abramowicz M. A., 2002).

Chapter VIII delves into the helioseismological expressions, and modifies it for the
accretion disk setting. It then uses the QPO frequency in that context as a probe into the inner
disk of the accretion disk and reveals the nature of the gas in that region. By connecting the
QPO frequency to the adiabatic index affirmatively, it yields more information about the
composition of the accretion disk than one would expect. This adiabatic index value also serves
as a parameter that serves to constrain the ratio of the angular momentum to the mass of the
compact object as to align with the radial and vertical epicyclic frequency expressions.

This is expected to happen because the frequencies are equal and when the Keplerian
frequencies are factored out, the remaining expressions are left equivalent to each other and the
three factors in the expressions (adiabatic index, mass, and angular momentum parameter, a) act
as a constraint so the net value is zero. Knowing two of these factors yields the third value to
satisfy the expression. At the marginally stable radius, the disk has its closest approach to the
compact object (black hole) and it is at that point the compact object has its strongest influence
in contrast to the rest of the disk where plasma motion reduces to the Newtonian values.
Material inside the ISCO radius, called the plunging region, will be moving at relativistic speeds

as it approaches the horizon. No stable orbits are supported inside the ISCO radius, and the



particles’ orbits start to precess and lead to increased collisions between each other. Their
angular momentum is dissipated and their paths become one of a free-fall towards the central
object. The plasma will have an adiabatic index of 4/3 at the event horizon, which is the value

for relativistic gas.

The value of the adiabatic index also gives us the radius of influence in terms of the sonic
radius, and the density, radial velocity, and temperature distributions as stated in Novikov and
Thorne’s classic paper (Novikov L. a., 1973), which took the adiabatic index as a presumed value,
y = 1.4. In the dissertation presented here I calculate the adiabatic index value. The listed
quantities are derived algebraically and are used to describe the general accretion traits of
general-relativistic disks. I will determine the value of the adiabatic index within the range of
ideal gas, 5/3, to relativistic gas, 4/3. Using the Abramowicz QPO frequency expression to yield
the value of the adiabatic index sets the location of the accreting gas at the ISCO and tells us
about the nature of the gas advecting across that radius. For a higher spin, the ISCO moves
inward to an orbit at a radius that becomes increasingly closer to the event horizon until at
maximal spin, the ISCO coincide at the same radius as the event horizon. For an inwardly

moving ISCO, the adiabatic index would shift towards a relativistic gas value.

The quantities discussed in Chapter VI is loosely dependent on the adiabatic index so by

confirming the value of the adiabatic index in Chapter VII and Chapter VIII, which was

previously taken as an estimated value in models, it can confirm a key feature observationally.

Chapter IX delves into the nature of the pulsations and what it reveals about the
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mechanisms of the inner disk, and focuses on particular features of the diskoseismological
equations. It also reveals trends about the frequency of the pulsations and the significance in
terms of the properties of the compact object.

In the Conclusions, I summarize the important implications of the equations and their

solutions and what it means in terms of the accretion disk and the QPO signal in general.

Detection Process of QPO Signals

The process of obtaining the stellar QPO observations begins with the following steps: a
x-ray telescope with a detector focuses on a point source and three regions in space are defined;
two source regions (the compact object under observation, and a star for reference) and one
background region, which will be used to create light curves. An extraction range (area of
capture, usually circular) is centered on the star of concern, with a position and radius selected to
focus on the capture region to extract the background region. The data is recorded over a time
range (from minutes to hours), with the option of excluding a particular block of time, giving the
option of refining the duration. The raw data is counts of x-ray particles and can be converted

into intensity and plotted against time, this is the x-ray light curve.

A separate background-subtracted light curve is created for contrasting with the source
light curves. The light curve is created using the count rate, which is the counts per bin per total
observational good time, or counts per time bin, merged with intersecting good time intervals,

depending on observational conditions and is expressed in terms of intensity (or number of
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photon strikes onto the detector chip) over an time interval.

Light Curve of GRZ 1215+105 on day 152 (May 31)
Swww htdocs Sdocs/xte /S0F/TOO/GR31915,/6GR51915_d152_1sec_lc.dat
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Figure 1. X-ray light curves of GRS 1915+105 on day 152 with finer time resolution. This light

curve covers from 14:56:15 to 15:13:18. (Corbet, 2004)

A filter can be used to limit an energy range, for example, 0.3-10 keV. Each channel for
the filter is set in one unit of 10 eV. A count bin is a snapshot in duration, or time period for
capture. A binsize is set in terms of seconds (binsize 10 = 10 seconds). The light curves are
created for the two source regions, including the background counts to check for data artifacts.

The light curve is corrected for bad columns (gaps in data) and the loss of counts due to the use
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of an annulus, and the background light curve data subtracted. If an instrumental feature appears
in both sources, it would appear in both curves. If the feature is present in both the background
subtracted and unsubtracted light curves, it is not a background feature. If the feature does not

appear in both sources, the dip in the count rate is taken as an indication of a variable star.

In the case of QPO’s, gamma ray burst light curves (which also emits in x-rays), or any
variable x-ray source, where the count rate changes dramatically over time, a light curve can be
produced with a fixed number of counts per bin, as opposed to a constant binsize. Power-laws,
broken power-laws models can be fit to the light curve to process the data and reveal its context.

Timing analysis can also be used to search for structure in the data (Meringa, 2013).

General methods in Asterseismology

Asterseismology is the study of the inner dynamics and characteristics of stars, including
their variability and periodicities. I will now make the connection between periods found in
oscillating stars to the possible variability found in the movement of gas in the accretion disks
around compact objects. The variability can be used to connect the QPO x-ray observations to
the inner dynamics and characteristics of accretion disks and treat it as a diagnostic probe into
their interior. I now discuss the basics of variable stars and then apply the theory to a disk
scenario.

Variable stars with periods have been known to exist since the 17™ century, when the

astronomer Jan Fokkens Holwarda discovered the magnitude of the star Mira had a period of
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eleven months (Hoffleit, 1977). The astronomer Harold Shapley didn’t establish the relation
between variability and stellar pulsations concretely until almost three centuries later in 1914
after Henrietta Leavitt discovered the relation between distance and luminosity in her Periodic-
Luminosity relation in 1908, which helped clarify the relationship between the two concepts
(Leavitt, 1908).

A solar oscillation reveals inner dynamics and characteristics of stars (such as the Sun, for
one), and is the basis of research in the field of helioseismology. Expanding such ideas to other

stars leads to the field of asterseismology.

Pulsation frequencies are sensitive to the internal structure characteristics of the star and
each frequency serves as a distinct probe into different regions of the inner structure.

Current knowledge of the stars is limited by assuming spherical symmetry. In general, rotation
and magnetic fields are excluded in interior stellar models. In this dissertation, I invoke
Keplerian rotation for my accretion disk models and model the magnetic field of the accretion
disk as well. Departures from sphericity have been found through the process of interferometry,
due to improved technology and tools (Domiciano de Souza, 2003).

A variable star can belong to different pulsating classes if detected modes of different
origin are excited. They are classified into types, according to their amplitudes, periods,
temperatures, light curve shapes, and other parameters. Stars exhibit a broad range of pulsations;
the largest pulsations are the radial pulsations in spherical symmetry.

In distant stars, only the large-scale structure can be resolved since the small-scale structure
details are averaged out in the observations. The sensitivity of brightness variations are limited

to modes with less than 3 to 4 node lines at the surface of the star.
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The general measure of stellar pulsation periods is the dynamical timescale, given as:

1
tayn = (g—;)z océ (1.1)
where R is the surface radius of the star, M being the mass of the star, G the gravitational
constant, and p the mean density of the star. It is also proportional to the inverse of the
Keplerian frequency. The pulsation period of the star can give an indication of the general
properties of the star itself.

Modes are either standing acoustic waves (known as pressure modes, or p-modes), or
internal gravity waves (known as g-modes), which involve departure from the spherical
symmetry and are non-radial by definition.

Waves or oscillations can be intrinsically stable, or intrinsically unstable. Intrinsically unstable
oscillations emanate from amplification of small disturbances through the heat-engine
mechanism (cooling plasma sinking and compressing and becoming more opaque to radiation,
then becoming heated again and rising against increased pressure underneath the pocket of
plasma, expanding in the process and becoming more transparent to radiation, releasing pent-up
radiation and energy in the process) in a particular region of the star. The perturbation grows in
amplitude until an amplitude-limiting mechanism kicks in (the limits set by the opacity
mechanism which serves as a valve in releasing or retaining radiation within a layer in the star),
locking in the final amplitude of the oscillation.

The pulsation mechanism, the process of producing a wave or oscillation, depends on the
details of the type of mode (g-mode, s-mode, or p-mode), so the amplitudes will vary over the
range of unstable modes. It depends on the location in the star that describes the physical
conditions of the gas (opacity) within the stellar structure. An example is the Cepheid instability

strip, which is indicated as dotted lines that cuts almost vertically across the diagram and serves

15



as dividing lines between pulsation classes. The type of radial pulsation found in Cepheids is
referred to as Classical pulsations. Observationally this can be plotted in certain specific regions
in the Hertzsprung-Russell diagram, called the instability strip, which displays an array of stars

with different pulsation classifications.

Intrinsically unstable oscillations or pulsations are stochastically excited, by external
forcing (such as near-surface convection). Amplitudes are determined by the balance between
the energy input by both forcing and damping. The forcing and the damping vary relatively
slowly with frequency, so the excitation of modes result in a substantial frequency range. These
kinds of pulsations are known as solar-like pulsations. The final amplitude is determined by the
gravity of the star, which we will later see is important in the oscillations of the material in an

accretion disk.

Optical Stellar Oscillation

The first step in understanding disk dynamics is to look at stellar pulsations. Photometry
and spectroscopy are used as asterseismology techniques. Information on stellar oscillations or

pulsations comes from optical photons. Oscillations affect the amount of light emitted or flux (in

Si‘sz) emanating from pulsating stars. The physics of why this occurs can be understood

units

because the material oscillating at the surface, under influence of gravity, will change the amount
of radiation emerging due to changes in temperature, pressure and density. In the case of QPOs

(quasi-periodic oscillations), this can apply to accretion disks, as I will show later. The flux of
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light is calculated by integrating over a source function (a term in the radiation transfer equation
that accounts for the emission of light from material, S,) along the line of sight from the star. The
flux is determined by the emission of light from the full surface of the star and can be related to
the luminosity. For the geometry in a disk the flux is still an integration over the material that is
producing photons. The furthest seen into a gas in any geometry is given by the optical depth and
the last scattering photon at an optical depth of z=2/3. The intensity variations due to intrinsic
pulsation of the star can be derived from photometry time series. It is from the variation of the
light from stars that are pulsating star that we know a mechanism exists inside the star that makes
it increase and decrease its radius. It is this mechanism that I will use to explain the movement of

gas in the accretion disks around compact objects.

To explore the pulsation mechanism and how it affects the flux of light, there needs to be
a discussion of the events that transpire during the pulsation cycle.
The physicist, Sir Arthur Eddington, proposed the concept that pulsating stars are
thermodynamic heat engines; the gases within the layers of the star do work as they expand and
contract during the pulsation cycle. If a layer does positive work on its surroundings, it
contributes to driving the oscillations. If a layer does negative work on its surroundings, it
dampens the oscillations. If the total work of the layers is positive, the oscillations will grow in
amplitude and if the total work is negative, the oscillations will decay as a result. So it continues

until equilibrium is attained and the total work is zero.

A driving process entails heat flowing into a layer during a high-temperature part of the

cycle and leaving during a low-temperature part of the cycle. The driving layers absorb heat at
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the time of their maximal compression, and maximal pressure will be attained after maximal
compression. The oscillations will be amplified at this point. At the center of the star, the matter
is compressed and the temperature rises as a consequence and thermonuclear energy is
generated. The energy mechanism (e-mechanism) operates in the core of the star although it is
not enough to drive the pulsations.

Eddington proposed a valve mechanism; if a layer became more opaque during
compression, the energy flowing towards the surface gets stored up and dammed, pushing the
surface layers up. When the expanding layer becomes more transparent, the trapped heat escapes
and the layer collapses back to its original position. In the remainder of the star, the opacity
decreases with compression. The opacity k depends on density and the temperature of the stellar

gases:

K o< £ (1.2)
T2

In compressing the layers of a star, the density and temperature increases. Although the
opacity is more sensitive to temperature changes, the opacity decreases with compression as a
result. It requires special conditions for stellar pulsations. These special conditions were
identified by S.A. Zhevakin, and verified by Rudolph Kippenhahn, Norman Baker, and John

Cox.

They determined the regions within a star where the valve mechanism can operate
successfully are the partial ionization zones, layers of the star where gases are partially ionized.
Part of the work done on the gases while compressed gets directed into ionizing the matter rather
than heating the gas itself. With a smaller temperature rise, the opacity increases with the

increase in density. The ions recombine with electrons and release energy during expansion and
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the opacity decreases with the decrease in density.

This opacity mechanism is referred to as the k-mechanism. In the partial ionization zone,
the k-mechanism is supported by the tendency of heat flow, during compression, into the zone
(due to its temperature being lower than that of its surroundings). The heat flow effect is referred
to as the y-mechanism, due to the smaller ratio of specific heats, Cy and Cp, having larger values
each. The partial ionization zones serve as the pistons that drive the pulsations of the star.
Convection is the thermal process that determines the efficiency of the pulsation. The pulsations
will affect the variability in the emitted radiation during each pulsation cycle in terms of
modulating the released photons as the opacity varies in time and controls the release of the
radiation from the partial ionization zones. Spectroscopic time-series give direct measures of
change in the surface velocity. Observations in light curve and spectra give pulsation properties
such as luminosity, period, frequency, and velocity values and then through analytic and
computer models used to determine the amplitude of the pulsation at the surface of stars and the

physical processes occurring in the interior that power the pulsations.

It is at this point it becomes relevant to understand the physics behind pulsations that
occur in stellar interiors, such as that of the Sun. The physical equations described below show
how physical perturbations travel through the interior gas in stars, and I extend this to accretion
disks with some modifications in Chapter VIII. First, we start with the Sun, for example.

In the basic helioseismological setting, we start with the basic physical properties and work from
there.

Starting with Newton’s second law:

mdzR _ GMm
at? R2

+4mR2P (1.3)
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In the equilibrium model,

2
= 47R2P, m=3=0 (1.4)

GMm
R§

The quantities, R (radius) and P (pressure), can be linearized by writing them as:

R=R,+6R P=P, +6P (1.5a,b)

Inserting equations (8.3a,b) into equation (8.1) yields the following expression:

d?(Ro+6R) _ GMm

dt2  (Ro+6R)?

+ 4m(R, + 6R)?*(P, + 6P) (1.6)

Taking the first order approximation:

! ~i(1—25—R) (1.7)

(Ro+6R)2  RZ R
And focusing only on the terms up to the first power of the delta gives us:

d*(6R) _  GMm " 2GMm
atz2 R2 R3

6R + 47R2 P, + 8nR,P,6R + 4mRZ5P (1.8)

Since from the equilibrium model, the hydrostatic equilibrium condition requires that the

following equation is true:

TR = 4mRZP, (1.9)

o

With this condition, two of the terms cancel and gives us:

d?(SR) _ 2GMm
dat2 ~  R3

SR + 8mR,PySR + 4mR2SP (1.10)
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To reduce 6R and S§P to one, the oscillations are presumed to be adiabatic. The adiabatic
relation relates the pressure and the volume,

PVY = constant (1.11)
Where ¥ is the ratio of specific heats of the gases. The volume of the model is gnR?’,

(1.12)
so the adiabatic relation can be modified as:
PR3Y = constant (1.13)

The linearized version of this relation is stated as:
—= -3y— (1.14)

Inserting this into Newton’s second law expression (linearized version) gives us:

2
dd(ff) - ZGMmSR + 8mR2P,6R + 4mR2ZSP (1.15)

M

Recalling the hydrostatic equilibrium condition (equation 1.9), = 4mRZP,

O

and rewriting (1.15) in terms of (1.9) adjusts the following equation in a way:

—(4nR2P)6R 2 (GM’”) SR (1.16)
And the equation (1.15) becomes:
d?(6R) _ 2GMm 2GMm 2
2 = g OR + 2257 SR + 4mR? () 5P (1.17a)
4G’”””5R+4 R2P, ( ) (1.17b)

Inserting the adiabatic relation (eq. 1.14) into the last term of (1.17b) gives us:

SR+ (5 (37 iﬁ) (1.17¢)

0

4GMm
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d?(6R) _ GMm
mE = (4 - 3y)( - 6R) (1.17d)
This yields a harmonic oscillator expression:
d?(8R) GM .
P+ Gy —4) (R— 6R) =0 (1.18)

Let 6R = e?; and inserting it in eq. (8.17) gives the following:

(1.19) (22 + EEDE) ot = g

o

(1.20)
(A2 + w?)e® =0 (1.21)
Which means the roots of equation (1.21) are:
A=tiw (1.22)

So the radial relation becomes:

i(3y—4-)GMmt

SR=Ae®t=4Ae RS
(1.23)

The adiabatic index determines the dynamical stability of the stellar object. If the
adiabatic index y < g, the exponent becomes negative and the stellar object collapses. In this
context, matter would be succumbing to the force of gravity in a free-fall. If the adiabatic index
y > §> the exponent is positive and the equation expresses simple harmonic motion of the matter

within the stellar object and summarizes the harmonic behavior as pulsations in the matter.

The angular frequency is obtained thusly:

(B3y—4)GMm
w? ==

=3 and for an ideal gas, y = g

(1.24a,b)
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w?=(30E)-4)F =% (1.25)

= (%) (1.26)

The frequency of the pulsations is also same as the Keplerian frequency. The period, or the
dynamical timescale for the pulsations can be expressed by the following equation (Carroll B.

W., An Introduction to Modern Astrophysics, 1996):

2T 27T

IN=——==" (1.27)

4mtGp(3y—4) w
\] 3

The pulsations manifest a periodicity that is determined by the frequency of the simple harmonic
oscillator equation derived from the helioseismological model. In Chapter VIII these equations
will be adapted for an accretion disk in a cylindrical reference frame in order to assess the QPO
problem. I will show that (1) the QPO periodicity is a direct consequence of pulsations at a
specific radius in the accretion disk and (2) the diskoseismological equations in the cylindrical

reference frame can describe the oscillations.

Determining the Periodicity of X-Ray Light Curves

Oscillating matter will have a periodicity to its motion. To find the periodicity of an x-ray
emission that originated from a compact object, we have to find periodic emissions in the x-ray

light curve. In order to find a distinctive period it is common to take the Fourier Transform of
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the time series data (light curve) and produce a power spectrum. The plasma is heated to the
point that it emits x-rays. The observed radiation is recorded by satellite telescopes that detect
the time of arrival of each photon that hits the detector with an accuracy of microseconds. This
provides a count rate time series c(t), which is inserted in a Fourier transform and squared to
provide a power density. Timing analysis is used here.

A mathematical approach is utilized to single out the peaks of the signal from the noise.
A Fourier integral is applied to find the amplitude in the frequency domain for a known function

of time, f(t), the amplitude being represented by F(w):

Fw) = [ f(He ™tdt (1.28)

A Fast Fourier Transform (FFT) is generally the algorithm used to process the data and
find the discrete Fourier transform and its inverse. Fourier analysis converts time to frequency
and vice versa. The transform will take the data over a time domain and convert it to data over a
frequency domain, resulting in peaks at particular frequencies. If the signal was represented by a
single-frequency harmonic function,

f(t) = Acos(wgt+ &)
(1.29)
where 4 signifies the amplitude, w, the angular frequency, and 9, the phase shift, F(w) would

have delta-function peaks at w = wy and w = —wy,.
A Leahy normalization is used where N is the total of counts and T is the duration of the

observation (van der Klis, Quasi-periodic oscillations and noise in low mass x-ray binaries,

1989). The pure Poisson noise has a chi-squared distribution with the probability of a power
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greater than P in a given bin being e =%t

It makes it possible to determine the chance probability of a peak in a greater density spectrum.

P(w) = 2[[|c(t) e[ at] (130)

1
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Figure 2. A detailed view of the kilohertz QPO in Sco X-1. (RXTE Guest Observer Facility,
2001)

The black holes’ power density spectra have features comparable to an energy spectrum.
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Power laws describe long stretches (akin to a continuum spectrum) with gradual changes in the
slope and sharper features (spectral lines). In the power density spectra, the frequencies are the
time between flux increases in the x-ray energy bands, set by the filter. The fast Fourier
Transform converts the time domain into a frequency domain and gives us the characteristic
frequency associated with a significant periodicity. A periodic variation in luminosity would
manifest itself as a delta function for a long observation. There are a number of broad-peaked
features that emerge in the power density spectra with a Gaussian distribution in the peaks, and
those are identified as the quasi-periodic oscillations (QPOs). A pronounced peak would signify
a definite period, but a wider peak indicates an overlap of periods that reinforce each other at a

particular frequency, hence the ‘quasi-periodic’ quality of the QPO.

Photometry and spectroscopic time series obtained during observations can give
frequency spectra. If the signal-to-noise ratio is high enough, the oscillations will produce peaks
in the power spectra above the ambient noise at particular corresponding oscillation frequencies.
In an ideal case, a perfect time series would show all frequencies of global oscillations of a star,
given that the signal is dominant above the noise. Such is rarely the case.

The collection of data occurs over a finite time of integration in which a detector is
triggered by incoming radiation and then no data is collected in an interval in which the data is
read out and stored digitally. The integration time is brief and the time series is not continuous,
but rather, discrete. The detection process occurs at a rate such that the time series are sampled
at the same time intervals, and at a high enough rate to resolve the time scales of variation. As
the data is discretely sampled at a constant rate, a discrete Fourier transform is used to single out

the signal as a function of frequency within a band. The highest frequency, the Nyquist
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frequency (wyy4), limits the highest frequency resolved.
With evenly spaced data, and a sampling interval At,

Wnyq = i (1.31)
For unevenly spaced data, the Nyquist frequency differs, especially with large gaps and
undersampling in the data. Since the data has a finite length T, there also corresponds a finite
frequency resolution A, in the Fourier domain:

A, (1.32)

Sl

If two or more signals manifest in a time series, more closely spaced than the frequency
resolution, the signals will not be apparent as a pair of separate peaks in the Fourier domain but
rather be discerned as single or deformed peaks instead. A limiting feature for the data would be
such that any signals with a frequency below this resolution would not be detected affirmatively.
Missing or incomplete data can complicate things further in that the gaps can lead to additional
peaks in the Fourier domain, which skews the interpretation of the data, particularly in the case
of multi-periodic pulsating sources. Regular gaps occur, due to the inability of observers to
maintain a constant direct line of sight with the star due to the rotation of the earth during times
such as the daytime and the period in the year when the star in question drops below the
observable horizon.

These blank features, or gaps, in the data are known as the window function, (for example
the durations that the Earth is not in direct line of sight with the compact object in question, such
as the daytime) in the time domain and the spectral window is the equivalent for the Fourier
domain. The spectral window exhibits multiple peaks even in the case of a monochromatic
signal. A time series containing multiple signals obtained in the same sample yields a complex

Fourier spectrum. Despite any data sampling problems, the Fourier transform was determined to
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be the optimal approach in deducing the frequencies from any star and providing necessary

frequency information (Schwarzenberg-Czerny, 1997).

Quality Factor Q

A way to determine the quasi-periodicity of any distinct features, in the frequency
spectrum of x-ray luminosities from the background noise, is the quality factor. The quality
factor is used to detect the presence of a QPO signal in the frequency spectrum. The variability
quality factor Q is defined by observers with a constructed Fourier variability power spectra,
I(v). Itis derived by the detection of a peak at a frequency v, in I(v) which is the square of the
observed amplitude, and the full width of the peak at half maximum, Av. The relation for Qy is
given:

Q=73 (1.33)
QPOs with quasi-periodic variability in the kHz frequency range are observed from low mass
black holes and neutron stars. And for a strong QPO signal, the quality factor is high (Q ~ 200 in
case of one source, 4U 1608-52 as measured by Barret (Barret, 2005)). The quality factor Q
increases with decreasing accretion rate, and the lowest values of the accretion rate m has a rapid
drop in the quality due to a change in the nature of the gas as it enters the plunging region (the
gas crosses the sonic point where the speed becomes transonic). As the frequency is larger in
magnitude than the peak width, the peak contrast approximates a Dirac delta function.

If the peak width increases but the frequency is still significantly constant, the peak

broadens, approximating a Gaussian function. It also indicates a quasi-periodic behavior in the
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luminosity. If the peak width widens further and approaches the frequency in magnitude, the
periodicity or quasi-periodicity vanishes and the overall periodicity is zero. Abramowicz (M.A.
Abramowicz, 2010) inferred that since the QPO quality factor was high, kinematic effects of
orbiting hotspots or clumps were disqualified as the cause of the QPO phenomenon due to the
differential rotation of the disk creating a severe shear in the gas and disrupting the local
coherence of any aggregate clumps. The significance of this quality factor points towards a disk
oscillation model as an appropriate descriptive model for QPOs, especially in the case of black

holes.
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CHAPTER 11

QPO MODELS

Criteria for QPO Models

I am going to discuss a range of models that attempt to explain the mechanism behind the
production of the QPO feature in x-ray emissions from compact objects. There are three classes
of models; the Relativistic Resonance models, Relativistic Precession models, and Beat
Frequency models. Each class of models has their own strengths and weaknesses. The models

do have commonalities that can be described in detail.

I will now discuss general characteristics of any model what would attempt to describe a
QPO. As I have mentioned before, a QPO signal is theorized to come from the gas in the
accretion disk orbiting at a particular radius where the gas undergoes a change where it forms a
shock wave where it goes from subsonic to sonic. QPO models explore possible types of
processes, such as hotspot-forming or oscillations, thought to produce frequencies in an observed
range from 0.001 to 10 kHz frequencies. Due to the fundamental time scales (in range of

milliseconds), QPOs are speculated to be very close to compact objects with intense gravity.
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Relativistic Precession Models

Relativistic precession models are a class of models that match identified frequencies
(orbital, radial, vertical, precession) to predicted frequencies. Further physics is required to
single out one or more radii in the disk that correlate to the observed frequencies. Stella and
Vietri (Stella L. V., Lense-Thirring Precession and Quasi-Periodic Oscillations in Low-Mass X-
Ray Binaries, 1998) (Stella L. V., kHz Quasiperiodic Oscillations in Low-Mass X-Ray Binaries
as Probes of General Relativity in the Strong Field Regime, 1999) identified the upper kHz QPO
frequency with the orbital frequency v, at the inner edge and related v; and v, with the periastron

and nodal precession of the orbit.

The frequency vy, is predicted to be proportional to v,°, which matches observation and
the QPO peak separation Av = v,.. The oblateness of the compact object skews the precession
rates and requires further correction (Morsink, 1999) (Stella L. V., kHz Quasiperiodic
Oscillations in Low-Mass X-Ray Binaries as Probes of General Relativity in the Strong Field
Regime, 1999).

Their strengths are predictive and rely only on the compact object characteristics as parameters

and General Relativity.

Their weaknesses are their unmodified form; they do not conform exactly to observations
(Homan, 2002) (van Straaten, 2005). The observed quadratic dependences between v, and vy
imply Lense-Thirring precession. Blobs orbiting in the disk in epicyclic motions in sideband

patterns can be used as a testing feature in these models (Karas, 1999) (Schnittman, 2004). Disk
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oscillation models predict frequencies close to the actual frequencies and may require
hydrodynamical effects to modify the frequencies to produce combinations between them to

match the observed frequencies better.

Relativistic Resonance Models

Relativistic resonance models focus on the fact that specific radii are responsible for
specific epicyclic frequencies and the frequencies have simple integer ratios with each other or
the spin frequency. General Relativity singles out the frequencies from the disk and imparts
resonances onto the disk as it moves along space-time (Abramowicz M. K., 2001). A particular
kind of resonance may occur in these models in which an eigenfrequency vy is perturbed at v,

commensurate with vy, and resonances occur when

Y0 =%, n=1,23.. (2.1)

vl

this type of resonance is the parametric resonance. Radii have been singled out where vg/v, is %2
or v,/vp = 2/3. Resonances with n = 3 which would be the lowest value allowable for v, < vy and
where vy =2 or vy = 3, can be explanations for the observed ratios for the HF QPOs of black
holes (Abramowicz M. K., 2004).

As for the ISCO frequencies, the resonance frequencies also scale with the inverse mass
of the compact object, and the resonance can be used to constrain the mass and angular
momentum of the compact object.

Resonances can emerge in the interaction between the spin of the compact object and the

disk (Psaltis, 2001) (van der Klis, 2002). Different models approach how different frequencies
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emerge and interact, such as Wijnands (Wijnands, 2003), who suggested vy - v, = Vipin, OF Vpin/2,
or Kluzniak, who suggested a number of ways that the epicyclic frequencies could resonate with

Vepin OF Vepin /2, and the disk g-modes resonate in a frequency ratio of \/f, which would match the

twin kHz QPO observation of SAZJ1808.4-3658.

Another model invokes the relation vy — v, = vy,in/2 (Lee, 2004); where the spin-orbit beat
frequency equals the vertical epicyclic frequency. The radius at which the frequency emerges is
far enough out such that vy = vy, vy = vy, and would account for the fact that sometimes the
frequency separation is sometimes Vgp;,, and sometimes v,;,/2.

The radii required for a resonance are fixed so the frequencies are constant, which suit HF QPO

models for black holes.

Beat-frequency models

When orbital frequencies beat with the spin frequency of a compact object, more
frequencies can be produced as a result (Alpar, 1985) (Lamb F. S., 1985) (Miller M. L., 1998).
This requires a non-aligned magnetic field reaching out to a relevant orbital radius, which may
disqualify black holes since they do not have an intrinsic magnetic field of their own. Unless the
Blandford-Znajek mechanism comes in play and uses the twisting of magnetic field lines of the
plasma outside the black hole horizon to create a secondary magnetic field influence due to the
black hole spinning in space-time.

Spin-orbit interaction occurs at the difference frequency between the orbital and spin
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frequencies. This is the interaction frequency for the disk/star system; the frequency in which an
orbiting particle surpasses a specific point on the spinning compact object. A blob moving at v,
overtakes the magnetic field lines moving at vy,;,. This occurs at a rate of vy, times per unit

time where vy, 1s the beat frequency.

If the beat interaction happens at the magnetospheric radius of an accreting compact
object, for a close radius, v,in < Vo, and for a farther radius, vy, > vom. If there exists an n-
fold symmetric azimuthal pattern associated with the spin, then frequency multiples would
emerge: (for two pulsar beams)

Vpeat = Z(Vorb - Vspin) (2.23)

Other azimuthal motions such as periastron or nodal precession would beat with the spin.
In the magnetospheric beat-frequency model, blobs orbiting near the magnetospheric radius
interact with the spin (Alpar, 1985). The sonic point beat-frequency model for kHz QPOs has v,
and v; correlating to v4 and v, at the sonic radius (Miller M. L., 1998). The beat happens when
a pulse hits blobs orbiting at 7,,,;. once per beat period, modulating the accretion rate. The model
predicts a constant frequency separation of v, despite observations.

If an azimuthal influence at the spin-resonance radius is in play, a frequency interaction
occurs between the orbital motions at 7., and the azimuthal influence. It would explain v; and

set v, = V4 (Fsonic). The beat would be occurring between two radii within the disk.
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Beat Frequency Interaction

A particular feature for QPOs (in the neutron star case but not in the black hole case) is
the frequency separation between a pair of QPOs for a source is approximately Vspin OF Vspin/2,
with the spin frequency inferred from persistent pulsations or brightness oscillations during x-ray
bursts.

To understand the connection between the frequency separation and the accretion disk
kinematics causing it, we turn to an analogy of a clock. In this analogy, a clock has a minute
hand and an hour hand. Each time the two hands line up, a bell rings out. The frequency of the
minute hand iS Viinute, and the frequency of the hour hand is vp,,. The frequency of the bell, or

signal 1S Vpell = Viinute — Vhour- (2.2)

The negative sign is due to both hands rotating in the same direction. The opposite of the
situation would have the hands' frequencies added. Within an accretion disk, the torque applied
by accretion would align the rotation axes of the star and disk, so all spins should be in the same
direction. A notable feature of beat frequency models is the fact that they generate only one
sideband frequency as opposed to two.

Consider a model consisting of two frequencies, v, and v,, producing an amplitude:
A = cos(2mv,) cos(2mv,) = %cos[Zn(Vl +v,)] + %cos[Zn(vl —v,)] (2.3)

The modulation mechanism creates two oscillations at v; + v, and v; — v,.

Since both oscillations in a pair of QPOs are not equivalent, it is surmised that one

frequency is a fundamental frequency and the second frequency is a modulation of that
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fundamental frequency (van der Klis, Millisecond oscillations in X-ray Binaries, 2000). As far
as the clock analogy goes, it would be as if the bell rings out every time the hands line up and

when the minute hand passes 12.

Stella and Vietra proposed that QPOs were direct reflections of epicyclical frequencies of
particles on geodesic paths (Stella L. a., 1998). D. Psaltis and C. Norman contend that the QPOs
are due to oscillation modes of a thin annulus in a disk, and that the radius of the annulus could
be the sonic point radius.

Miller shows that the observed frequency of a localized hotspot is the orbital frequency at
the sonic point and not the stellar rotational frequency (Miller M. L., 1998). Miller surmised that
the orbital frequency at the sonic point is converted into the upper QPO due to fluctuations in
density.

The lower QPO frequency's existence entails interaction with a second frequency in beat
frequency models. If the separation is Av = vy, several possibilities exist. (2.4)
Miller contended that the stellar magnetic field would be the causative factor for the second
frequency. When the gas passes the magnetic maximum, it loses angular momentum at an
increased rate and cause a fluctuation in its density, causing a modulation in the accretion rate
and the flux. The modulation occurs at the frequency v ~ Vgonic — Vspin (Lamb F. a., 2001). But

further observations indicate this is not the case. (2.5)

Returning to the clock analogy to understand the half spin frequency, the clock has two

hour hands set at 180 degrees from each other, moving at an angular frequency vy, and the

observed frequency is 2(Viuin + Vhowr)- A resonance would be responsible for the half-spin
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frequency. Gas is orbiting in a circle at frequency, v,,. It is subjected to a vertical forcing term
with frequency, Vorcerest» (as measured in the rest frame of an observer). For most forcing
frequencies, with many orbits, the phases will add incoherently and the vertical motion will not
be large. If the vertical motion has a natural frequency, forcing of that frequency will result in a

resonance and drive substantial motion. This frequency is the vertical epicyclical frequency.

If the forcing frequency measured in the orbital frame is equal to the vertical epicyclical
frequency, a resonance results: Vyert = Vforcerest - (2.6)
The forcing frequency Veorce rest » measured in a non-rotating frame, becomes a new
frequency in the orbital frame: Vrorcerest = Vforce — Vorb - 2.7)
Taking both equations (2.6) and (2.7) as such:
Vrorcerest = Vforce — Vorbr  Vwert T Vorb = Vrorce (2.8a,b)
Since the vertical epicyclical frequency is very close to the spin frequency for all radii, the two
frequencies can be set equal to each other: Viorce = Vspin - (2.9)
and the forcing frequency in the non-rotating frame is the stellar spin frequency:
2Vorp = Vspin, (2.10)

Vspin
Vorp ~ 222 @.11)

The vertical movement of gas in the accretion disk happens the most strongly at the

radius where v, = vszﬂ; it is not always the case that the frequency separation Av is equal to

the half spin frequency. There have been observations that v, & Vspp. The spin resonance

scenario can also explain the spin frequency separation. (2.12a,b)
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Assume there are very few blobs of gas at the spin resonance radius, for a comparatively

Vspin
2

smooth flow. A single blob of gas orbits at . Assume the driving force is magnetic in origin.

When the magnetic maximum is aligned with the orbital phase of the blob, there is a downward
push. When a periodic force drives a system, the system aligns into phase with the driving force.
The blob of gas will be at a vertical maximum when the orbital phase lines up with the magnetic

maximum. Due to the isolated blob of gas, the main modulation in play for the beat frequency
model is the orbital motion, which leads to the frequency difference VS%M. All of the blobs are in

phase with the driving force and reaches a vertical maximum at the moment the orbital phase
lines up with the magnetic maximum. The largest vertical extent at the radius is at the location
of the magnetic maximum. The vertical maximum follows the magnetic maximum as a result
and has a frequency equal to V.

The group speed moves at vg,;, despite the individual speeds of the blobs around Yspin,

The pattern speed becomes the prominent feature in the beat frequency mechanism. This

Vspin
2

analogy reconciles the observation of frequency separations of and Vgpp.

Radii of Interest

I now comment on the specific locations in the accretion disk so we can pinpoint the
location of the production of the QPO signal. The QPO signal is speculated to come from a
particular radius and we will search for it. Relativistic Resonance and Precession models focus

on the orbital and epicyclic frequencies that depend strongly on preferred radii to create them.
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Constant frequencies emanate from constant radii. Variable radii depend on accretion mass rate
m in disk physics. Constant radii rely only on the compact object's parameters only, particularly
the strong-field gravitational effects such as in the case of the ISCO radius or resonant radii. The
inner disk edge sits at the inner radius r;,, where the flow starts to veer from the Keplerian speeds
and the radial velocity becomes comparable to that of the azimuthal velocity and serves as a
natural radius. It also serves as a demarcation line between the Newtonian case and the

Schwarzschild or Kerr case, depending on the spin of the compact object.

Due to the gravitational effect of the difference in orbital angular momentum between
radii, the density contrast at 7, is sharp and the change in radial velocity is abrupt (Paczynski,
1987). Without magnetic stresses, 7,,; establishes a lower limit for the flow, and the scenario for
magnetic stress inclusion remains unknown (Abramowicz M. J., 1978) (Liang, 1980) (Lai, 1998)
(Krolik, 2002) (Watarai, 2003).

A possible effect on the flow would be the radiation drag by photons emitted within 7;,,
which removes angular momentum from the flow via the Poynting-Robertson effect and limit the
flow at r,,¢ (Miller M. L., 1998). The accretion flow carrying the radiation that generates the

drag that hinders the flow sets the radius at a fixed point but the flow details and geometries can

15G
c2

) ) ) M
make the flow variable. As stated in Miller, 7., cannot exceed r~ and decreases for

increasing M. With a powerful magnetic field, electromagnetic stresses truncate the disk outside
the ISCO and the 7,44, at the magnetospheric radius 7,,,,, Which decreases in length as M
increases.

Orbital motion may still occur as far up as 7,,¢ within 7,,,, (Miller M. L., 1998). These

disk truncation mechanisms may not apply for black holes if no magnetic field is present
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(especially if the black hole has zero to minimal spin and the Blandford-Znajek mechanism
cannot activate). Some pick the radius of maximum flux from the disk (Gruzinov, 1999) or the
radius of maximal pressure in toroidal flow (Kluzniak W. A., 2004) as a preferred radius. In such
cases, the function which such extremum would be located would be localized to such an extent

and narrow enough to create the QPO signal.

Boundary Layer of the Inner Disk

Difterent models focus on a localized region within the accretion disk that is responsible
for the emergence of the QPO signal in the x-ray emissions. So I will focus on the inner disk and
determine the criteria for the conditions that could create the QPO in a bounded region, which is
an undefined section of the disk. I will modify a model for a boundary layer for neutron stars to
determine the scale of the luminosity layer (Ryden). The boundary layer is where the accretion
disk meets the neutron star, and is the dominant source of high-energy radiation in low mass x-
ray binaries. I derive an algebraic expression that constrains the radial portion of the boundary
layer to a radius R+ and the boundary layer width, 5. The radius R+ can be chosen anywhere
within the accretion disk, and in this particular case, will be set at the ISCO and used to find the
ratio of Keplerian frequencies at both that radius and the other boundary layer end radius, to
detect a resonance between the two frequencies. A boundary layer near the compact object emits
a significant amount of the luminosity, even more than the remainder of the accretion disk; of
which the boundary layer consists of a very thin region. This region would be set at the inner

edge of the accretion disk for the disk luminosity. Since the boundary layer would contribute to
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the overall x-ray luminosity, and the QPO signal cannot come from a radius below the ISCO, the
boundary layer will be set at that radius and I will use it to explore how the boundary layer

modulates the QPO signal.

Consider the boundary layer of a non-magnetic compact object, of mass M and radius
Rsur. The boundary layer consists of the region R+ < R < R«+b, with R+ denoting the inner
radius of the boundary layer, R a radial distance along the equatorial plane, and b as the width of
the boundary layer. In this case, the star surface is selected as the generic radius for the boundary
layer in this case, (Rsyrf = R.), where the angular velocity decreases from the Keplerian value

(Ryden):

GM, 2
Q(Rsyrs +b) = (ﬁ) (2.13)

To the angular velocity at the neutron star’s surface:

1
GM, \2
Qoyry = ( ) (2.14)

R3yrf
The radial extent of the boundary layer is less than the disk thickness H just outside the boundary
layer, which is also less than the selected radius R+. To show how the scaling b < H < Rx1s
determined, we start with the equation of conservation of radial momentum:

dur u3  19P  GM, _
Ur—, ~ % p6R+ = 0, (2.15)

which contains the centrifugal term and the gravity terms. For a Keplerian disk, the centrifugal
and gravity terms balance each other out. In the boundary layer, the gravitational term is

balanced by the pressure gradient term. The magnitude of the pressure gradient is:
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10P v,z(_(vK)zcsz_ V2
pdR b \vg b_M¢b (2.16)

Where c; is the speed of sound at the outer edge of the boundary layer and b is the thickness of

the same layer. From the balance of the forces,

c? GM,

b (R+b)? (2.17)
R.+Db
So b~y (2.18)

with Mg as the rotational Mach number at the outer edge of the boundary layer (Ryden). R+« can
be any radius of interest, whether it be the radius of the compact object, or a preferred radius at a
distance from the compact object. A cusp layer can be characterized as a boundary layer set at a

further radius out in the accretion disk.

In a thin disk, Mgy >> 1, and H ~ Mi, SO
(3]

b~ e M (2.19)

My~ 2.20

(7] H'’ ( . )

Mgy > 1 - R, >H>Db (2.21)
The blackbody temperature of the boundary layer is (Ryden):
1

Ty, = M2 T, = (R;)“ T, (2.22)

In the disk at a radius r from the center of the star at a distance z from the mid-plane, the pressure

of the gas, due to the vertical balance against gravity, is given by:

2
A ST (2.23)

P c?

Where c; is the speed sound, and (2 is the Keplerian angular velocity. The scale height of the
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disk is given as stated in Kenyon and Hartmann 1987:
3
i1 )~ () == 224
Since R is greater than H for a thin disk (R >> H), it follows that the Keplerian velocity is
greater than the sound of speed, or, in other words, is supersonic at radii of all values for R > H
in the inner disk (vx > c¢;).
If the internal temperature of the disk, 7;,.(7), which scales to the square of the sound speed

(Tine(r) o ¢°), falls off more slowly than //r, then the relative thickness of the disk will increase

outwards and the surface of the disk will be concave.

Going back to the expression (2.17) and expanding on it:

2 §~ GM,
Mz~ D) (2.25)
R. |R.
Mo~~~ |+ (2.26)
Inserting the equation (2.26) into the centrifugal force expression (2.25):
RN\?cZ _ (R\cZ _ GM,
(7) b (b) b (RAb)? (2.27)

b

2
2
R.C§

We multiply both sides of the equation (2.27) by ( ) (R. + b)? to get the equation in the form

of a quadratic equation in terms of R« and b:

(R. +b)* = G,y _ GM. (RO o
’ " R.c2  R.c2\R2
GM, R? (R.02K)? V2
=5 h2 = bez = ébz (2.28)
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The Keplerian angular velocity is inserted into the equation and multiplied with the radius to

give the Keplerian velocity. We get a simple quadratic equation in terms of R+ and b now:

2 2 UIZ{ 2
R? + 2R,b + b? = (C—z) b (2.29)
2
R2 + 2R,b + (1 - ’;—’;) b2 =0 (2.30)

S

Using the quadratic formula to find the roots of & from (2.41):

2 Cs

jm)z_w@_l)
R, = = =bi\/b2 (1—(@— )) 2.31)

In the case where the radius R+ is set at the ISCO (R+ = r,;), and the Keplerian velocity is equal
to the sonic velocity,
vk =Vs; R,=b=xb=0,0r2b. (2.32)
The variable b is the radial width of the cusp layer, and ¢, is the speed of sound at the outer edge
of the boundary layer, and H is the disk thickness or height, and R+ is the generic radius, and M+
is the mass of same compact object. The scaling of the boundary or cusp layer goes as:
b < H < R+ for a thin disk. (2.33a)

The Keplerian frequency at the far end of the boundary layer is given as:

1

GM, 2
Q(R. +b) = ((R*i”b)3)2 (2.34)

We compare the Keplerian frequencies at both ends of the boundary layer:
Vg, = R.(g, Vg,+p = (R + D)g 4p (2.35a,b)
The ratio of angular frequencies at either side of the boundary layer can be found given as:

0
R BB Ryl _oq42 (2.36)
QR.+b R, R. R, R.

Given that R+ is either 0 or 25 for the ISCO for the cusp layer, we take the latter result as it is the
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only physically realistic value in Kerr space-time (only existing for massive, rotating bodies), so

the ratio of the frequencies is:

R, _ b _ 1_3
g4 lo14lsd (2.37)

That is how I obtain the unique ratio of 3:2 as recovered via the cusp layer model, which matches
the QPO frequency resonance.

The fact that the scaling of the dimensions of the boundary layer (or cusp layer) would
jibe with the epicyclic resonance model - recall that wg > wg > wg. The cusp layer would
contribute a significant amount of the disk luminosity and contain the QPO signal within the

overall x-ray light curve.

Anatomy of an Accretion Disk

R*isa projectable radius that extends 1500
anywhere within the accretion disk-

In this instance, R* is placed and set at
the ISCO. 'b'is some thickness extended |

from there. . |

| )
/\ R¥ | DlSk
T : i
T ::::)\:’///
| Plungin jion
Black Hole Plunging Reg CLOSE UP OF BOUNDARY LAYER

I Bourjdary Layer ﬂ—'__h‘h_‘h
R*+b / :
I'ms
dP/dz=-g p cos 0 e :
r [ | H
g iz |
) < ‘“EI_/,/
R b "b<H<R*

Cylindrical Reference Frame

Figure 3. Anatomy of the Boundary/Cusp Layer model in an Accretion Disk.
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The Coupling between the Vertical and Radial Oscillations

We now discuss the relativistic epicyclic resonance model as dictated in Abramowicz 2005,
which is defined by the following equations:

St +w?ér=0 82+ w?6z=0 where w, > wg > o, (2.38)
At the ISCO, w,(rpys) =0, w2 <0 for r < 1.
For a nearly Keplerian fluid (Shakura-Sunyaev disk) with a sound speed ¢,/(wi’1?) = B << 1,
the frequencies of the fluid’s epicyclic oscillations, @,., @,, are modified by the pressure:

@y = W — Xr B W, =Wz — Xz P (2.39a,b)

A modification is introduced that is very small but crucial in that it provides a weak pressure

coupling between the epicyclical modes of the fluid oscillations that lead to a 3/2 resonance.

In Mathieu’s form:

8%+ w?[1+ ycos(w, t)]6z =0 St +w?6r=0 (2.40a,b)

A parametric resonance occurs when:

_ sz_

@ =% n=123. (2.41)

In strong gravity, w, < w,, so n =3 is the lowest possible integer value, corresponding to the

strongest resonance. The ratio of <Z = -*PP€T — 3)) is the most often observed.
g

Wr  Viower

The epicyclical resonance model mirrors the expected properties of the boundary layer:
b<H<R, - w;<w, (orwg) (2.42b)

Where w,- is the radial epicyclic frequency and w, 1s the vertical epicyclic frequency.
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I can relate the coupling factor to the pressure, and in turn, locate the strongest value of the

coupling factor to find where the epicyclic frequencies would be the most tightly coupled.

Going back to the resonance model equations:

Recall that:

. H ¢
Since — = =
R VK

87 + w?[1+ ycos(w, t)]6z=0

ap
_!2;(22
P=Pye 2%
-0%R?
2152 cos? 6 p
P=Pye 2¢ - In =)=
0

1

V2

(

e
2
s

8= [Fin(@) = fin(

Let x be defined in the following way:

Cs
VK

(2.48)

Which leads to:

Py

P

)

St +w?6r=0

zdz

Letz = Rcos 0

0%R?

2
2cg

where ¥ is a scalar multiple value of vk

(&) =2="
X=% x<l1
7@ ={n)=5={")
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1%
K= c0s?0 = ——~X cos? 0
2¢;

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

(2.49)

(2.50)

(2.51)

(2.52)



That is how the coefficient would depend on the pressure in the accretion disk in the
coupling relation, as we would determine through the calculations. From equation (2.62), the
pressure maximum is at Py, and the coupling factor decreases in value as the pressure drops at
increasing vertical distance from the equatorial plane and the value of the denominator increases.
For a thin disk, H << R, which means ¢; << vk, and y << 1, which implies a weak coupling
between the vertical and radial modes where pressure is concerned, and the pressure would be
strongest near the equatorial plane and where the disk would be the thinnest, so the ideal radius
for the strongest coupling between the vertical and radial oscillations would be at the very edge

of the inner disk, namely, the ISCO.
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CHAPTER 1III

KERR GEOMETRY

Dimensionality of the General Relativity metric terms

I will now start explaining the physical and mathematical vocabulary of the Kerr and
Schwarzschild metrics and how it determines the curvature of space-time in the proximity of a
non-rotating or rotating compact object. For black holes and accretion disks, black holes
generally are uncharged and the dominant source of gravity (the Kerr-Newman metric is a
further-modified metric that takes electric charge in account) and by comparison, the accretion
disk self-gravity is negligible. The black hole or neutron star’s gravitational influence is the
dominating factor and determines the local curvature of the space-time fabric around it and the
trajectories of the falling particles moving through the space-time, towards the central massive
object. For a rotating black hole, this is defined by the Kerr metric, which takes on two
parameters: the mass of the central body (black hole or neutron star) and its angular momentum
(signified by J). The terms include the gravitational constant, G, and the speed of light, ¢, which

are set to one for simplification purposes (Press, 1972):

_GM _ GMa

(3.1a,b)
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_ Jc -1 i — =

a=_ a=- with (G =c=1) (3.1¢c,d)
Exploring the dimensionality of the Kerr metric terms to understand them in a physical

context, we focus on them: M as the mass of the compact object, whether it be a neutron star or

black hole, and a as the angular momentum parameter.

How M gives us the physical parameter of length is simple-for example, the Schwarzschild

radius is:
m3
2<';:g>M
26M G m
TS=C—2=2(C—2)M= (ﬂ)z =2(@)M=2M (32)

So in this equation (3.2), the units meters and kilograms are convertible by multiplying the mass
in terms of (kg) with the geometricized constant (G/c’) in terms of (m/kg) to yield a measure of
distance (m).

The Schwarzschild solution for the General relativity metric is obtained this way:

GMm 26M .
> v?= =——,andsincev = c (3.3)

1
—mv? =
2 r

The radius r 1s rearranged and we get the Schwarzschild solution: r =15 = 22;_21\/1
(3.4)
G and c is usually geometricized (set to one) since they are constants so the radius of the neutron

star or black hole is written in terms of the mass due to its being the only changing quantity:

rg=1=2M (3.52)
The geometricized term (G/c”) is equivalent to the physical terms of meter/kilogram (m/kg).

The gravitational constant is so small and the speed of light so large, that the geometricized terms

reduce to a very small quantity. It requires a large amount of mass (usually expressed in solar
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masses) to turn it into a discernible quantity as the Schwarzschild radius can show in physical
terms:

2GM

re =2 _ 295 km( @) (3.5b)

The Kerr metric terms are more complicated than the Schwarzschild metric in that it figures in
the angular momentum of the compact object, J, and deals with the angular momentum
parameter, a.

The relation between J and a is as follows:
J=Ma=(%)Ma (3.6)

The classical expression for the angular momentum for a star is;

GM?
c

L= (3.7)

We can draw an analogous relationship between the Kerr and the classical expressions (equations

3.6 and 3.7):

- o) - (2) -1 3) o

The dimensionless parameter (a/M) acts as a coefficient of the classical angular
momentum of the compact object. When a = 0, the compact object resides in a metric that
reverts to the Schwarzschild metric, and when a = M, the angular momentum is at its maximum
value and tweaks the metric significantly. The dimensionless parameter (a/M) is also denoted in
scientific literature as the parameter a,, or the lower case j. The dimensionality of the angular

momentum parameter can be inferred through the relation:

cJ (T)g )

= -
J=-Ma-a=_—= w =kg (3.9)
5 (kg)

51



The physical parameter a is in terms of the mass equivalent of the angular momentum of
the compact object, that when multipled with G/c”, yields a measure in terms of radial distance.

The event horizon relation is written as:

=M+ VMZ—aZ = (5)[M £ VMZ = 7] = (%) Ili /1—(%)21 (3.10)

When J reaches a maximum for a = M, the black hole event horizon is: 4y = (GC—IZI) = %rs

(3.11)

And when J = 0 for a = 0, the event horizon is: ry = (i—lg) 1+1)= ZCG—M

- or the

Schwarzschild radius.

The Kerr metric

We can get the terms for the Kerr metric, which would describe the space-time around a rotating
black hole. I will be using it to determine the location of the event horizon (given by the solution
to the Kerr metric with the angular momentum parameter a included). Starting with Boyer-

Lindquist coordinates from the Kerr metric for a rotating Black Hole:

2M 4Ma 1 a?  2Ma?
dr? = (1-2)ar? + M e dp — — mdr’ - (1+5+25) r2de? (3.12)

The specific angular momentum, a:

a=J/Mwhere 0 <M<I;
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For some physical context, the physical value of J for a star like the sun is
J=163x10%gcem’ /s —a=0.185 M,

If a = 0, then the metric for the Black hole reverts to that of a non-rotating black hole (Schwarz-

schild).

Focusing on the radial component of the metric,

— L dr? (3.13)

1-—+==0 (3.14)
Multiplying equation (3.14) by P, yields equation (3.15):
r2(1-2 4+ 2) =0 (3.15)
Assuming G and ¢” has been set to equal to one:
r2—2Mr+a?=0 (3.16)
Using the quadratic formula to find the roots for this equation:

r= (MiT) (3.17)

which simplifies as:
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r=M+VM? —q?

(3.18)

If the equation is reevaluated with G and ¢? included, the context of the roots become clearer in

terms of distance:

2GM | a? R a?
+==0=1-=+=

rc? r2 T r2

Where R, is the Schwarzschild radius (R, = @ )

2GM . a? 2GMr
r’(l-="—4+=)=r2—-"—4+4a?2=0
c2r r2 c?

The roots comes out as such sincea=1,b = 2GM/? and c = d’ ;

2GM | [4G2M?2
) i" = —4a® gy G2M? 2
r= =—* [—/—a
2 c? c*
Expressing it in terms of the Schwarzschild radius (Ry),

1 1
r=-R,+ |-R% — a?
2 4

1 1 C . .
Asa—0,r= ERS + ERS; which gives us two possible answers: 0, or R;.

(3.19)

(3.20)

(3.21)

(3.22a)

(3.22b)

The unit a can only exists between values of zero and M, because if it exceeds either val-

ue, it goes outside the domain contained within the square root and a takes on an imaginary val-

2 2
ue. Thus, a” <M".

Resetting G and ¢’ to one, r reverts to:
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r=M+VM? — q?
The unit 'a' can also be expressed into terms of R;.

The Kerr Metric's two horizons:

R, =M —+vM? —a? (inner horizon)

Ry =M ++VM? —a? (outer horizon)

In the static case:

Rstatic = M +VM? — a? cos? 6

T
For0=5,a - 0;

Rytaric =M +VMZ = 2M = 22 = R,

c2

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

The volume between R, and Ry 1s defined as the black hole's ergosphere. When the

black hole is rotating, three radii come into play: Rax, Rumin, and Rsic.

At Ry1ic, no force can keep anything static. Spacetime rotates around the black hole at

the speed of light; this is frame-dragging, or the Lense-Thirring Effect. Within the ergosphere,

frame-dragging dominates. At R,,;,, matter flows out and at R,,,, matter flows in. As the black

hole rotates faster, R, and R4y, OF Ripner and Ryzer, respectively, moves in towards each other
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where they meet for the value of a = M. The event horizons would effectively be destroyed and

a naked singularity would become exposed.

To find the angular velocity Q.

2Ma?

Joo =1 + a® += A =1 -2Mr +a’ (3.28a,b)
H
— A2 cin?
gie = 0 = Aag# C=r+d cos’0 (3.28c,d)
gt + 8o =0 (3.28¢)
do _Gto  _ 2Mar
at Joe  (r2+a?)-aZsin? @ (3.29)
Multiply equation (3.28¢) by 2¢
2gio 1§ = —2gow ¢? (3.30)
Gt 2 + 2 gro td + goo $> = 0 (3.31)
Divide equation (3.31) by £2:
Jtt t2+29t(.D2td)+g<P(D d)'Z — 0 (3.32)
¢
I get:
. .2
¢ ¢
i + 2900 (3) + 900 (5) =0 (3.33)
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S
Notice that (E) =4 =
dt

ao

dt

And inserting the equation (3.34) into equation (3.33) yields:

ao

oo (E)Z + 29:0 (Z_f) + g =0

Using the quadratic formula again for equation (3.35):

ap  ~29ret [49%5—49tt9 ¢

dt

aé _

dt

For a non-rotating black hole,

For a rotating black hole,

a _ _

29¢¢
g 2
_9 (ﬁ) + (Lﬁ) _ (ﬁ)
9o 9o Ioo
8tp = 0
2M
ge = =(1-%)
sin?0 = r? 0 = 1/2)
— et 1 1_ﬂ
g¢¢ T T
g;q, _ 2Mar

dat

d¢

dt

dé¢ ((r2+a?)2-a25sin? 9)

= _ 9 4 9 _ gy I

9o  Goo 9o
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(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)



For a maximally rotating black hole, # = 7/2 and a = M,

So the angular velocity becomes:

do 2M?
dt  r3+rM2+2M3

At the horizon, 4 = 0 and Fyd = 2Mry, which gives us:

g __a’sin?0
tt CZ

__ —2Margsin? 6
Jto = — 5

CZ

_ (2Mry)?sin? 0

oo 2

"
[(ggi)z B (;ﬁ)z] - [(21\/?;)2 T

do Jdio a

—_— = QH = = =
dt 9o 2Mry

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

The space-time metric g,,, is given by the Kerr metric n the form of spherical Boyer-Lindquist

coordinates (Press, 1972):

Jer = (1 — zzﬂ) gt = —(r? +a?? — a?Asin?0
4Mar sin® 0
Gt = —— gt¢ =

in2
oo = (rz +a%+ 2Ma2r¥) sin?0 g% =
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(3.52a,b)

(3.52¢,d)

(3.52¢,)



x
Grr =7 Joo =2 (3.52g,h)

g =2 g% = (3.52i)

1
z

A=1r?—-2Mr + a? Y =7r%+a%cos*0 (3.53a,b)

The Kerr metric is time-independent and azimuthal angle (¢) independent, around the symmetry
axis. The two symmetries are expressed in a coordinate independent way, by Killing vectors
(Press, 1972):

nt = skt EF = §Hg (3.54a,b)
and the covariant derivative, V,, ;
V(igm) =0 V(&) =0 (3.55a,b)

n# V/.L & = ¢&H vunv (3.55¢)

In Boyer-Lindquist coordinates, the metric now becomes:

— et — 8§  _ _2¢
Gee = (M) g =D e (3.56a,b)

= t¢ — _L — 2¢
Jtp = M§) g Hamen = Twe (3.56¢,d)

— pp — _ M _p2,2¢
9pp = (58 9 wor-amee | € (3.56¢.1)

The quantities are:

@

O

the frame dragging angular velocity, (3.57)
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¢ = %ln((ﬂﬂ) + w(n8)) the gravitational potential (3.58)

2 - _§

-7 = - the square of the gyration radius (3.59)
In classical Newtonian gravity, the angular momentum £ is equal to r20. (3.60)
In Kerr geometry, the modified angular momentum is £ = r2(2 — w), (3.61)

containing two terms: the angular velocity, (2, and the angular velocity of the frame dragging
(known as the Lenses-Thirring effect), w. This creates two different physical frames of
reference; the stationary frame with respect to other stars apart from the rotating object in
question ({2 = 0), and the zero angular momentum observer (ZAMO) frame of reference that
doesn’t rotate locally (£ = 0).
Two sets of observers are considered:
Stationary observer at infinity: N' =’ (3.62)
ZAMO: n' =e®(n' + w &) (3.63)
where N’ and 7' are projected onto the space normal to the plane of the observer’s perspective

(Press, 1972). The two frames co-rotate with each other at the frame-dragging velocity,
w= -2 (3.64)
o9
Circular geodesic motion generally occurs along the equatorial plane where 8 = % in the

Kerr geometry and the accretion disk is set along the equatorial plane in the black hole’s
reference frame. The equation that defines the circular motion is:
ui=Am' + N &Y, i Vi up=10 (3.65a,b)

0 is the angular velocity as observed by a stationary observer, and 4 is the red-shift factor (4=-
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A7 =gu 20 grgp + 2% g (3.66)
n=2-1 (3.67)
Ut dt

Due to the Killing symmetries, the energy € and specific angular momentum £ are constant

along the particle trajectory (Press, 1972):

€= —p, =-u L=-X% =-_X (3.68a,b)

Hn Ut

the other quantities are cast in these terms accordingly;

_ L get+9te L= 2 gre+Iee (3.69a,b)
LGtpt9dee 29tp+9pe R
€= —A(gu + 2 grp) (3.69¢)

The effective potential also is expressed as:

Uy =51n(gt =2 L g'¢ + L2 g#) (3.70)

As determined in terms of the effective potential and the rescaled energy € *= In ¢, a slightly
perturbed non-circular motion under the condition,
V' =ty tty g << Ugp Upp Gppr (3.71a,b)
= Ug Ug oo K Up Up Jpg (3.71c,d)
is expressed by the following equation:

BV =egx — Uy (3.72)
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This is the same equation that applies in the Newtonian case. As well as for Newtonian theory as
for the general relativistic case, unperturbed circular orbits are given by the condition of the

extrema of the effective potential:

(ZL) =0 (3.73)

The unperturbed orbits follow simple harmonic oscillator equations (for ¥ being either in the
radial or vertical direction: (67, and 80, respectively).

St+w2ér=0 df +wj 66 =0 (3.74a,b)
This is where the radial and vertical epicyclic frequencies come from: perturbed orbits of
infalling matter and their motion along the Kerr metric. The epicyclic frequencies are defined as

the second derivatives of the effective potential,

o () e o751

where dx+’ = -Cx dx’.

The formulae in the Kerr metric (with x = /M) are as follows:

GM M 2\t
¢ = (5) (1 +a(5) ) (3.76)
(i)’ =l (1-6x"+8ax"-3d°x7) (3.77)
(wp )Y =0 (1-4ax?+3d°x7) (3.78)
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Orbital radii

Circular orbits in the Kerr metric exist in the region r > rpp, rp, being the photon orbit.
Bound orbits are found in the region r > 1y, Iy being the marginally bound orbit, and stable
orbits belong to the region r > rs, 1ys being the marginally stable orbit, and also known as the
Innermost Stable Circular Orbit (ISCO). Out of the listed radii, the last one is usually at the

radius the inner disk edge is set at, for most accretion disk models.

The radii are determined by the formulae:

Photon orbit: 7,y = rg [1 + cos[2/3 cos (@)]] (3.79)
Bound orbit: = rg [1-a/2+[1-a’] 7] (3.80)
Stable orbit: 1w =rg [3+ Zo- [(3- Z)(3 + Z- 2Z5)]"7] (3.81)

with Z; = 1+(1-)"°[(1+a)"*+(1-0)""], Z,= (34°+Z,})"". (3.82a,b)

The Keplerian angular momentum is expressed as:

1
e = £(r,a) = 2z (3.83)

r2-2r2+a
The black hole event horizon is defined by the following equation:
ru=re/2 (1+[1-a’])"? =M+ M - a’)'"?; (3.84)
and the ergosphere:
re=M+ (M - d’cos’ )" (3.85)

The ergosphere is thickest at the equator where 6 = g and thinnest at the poles where 8 =

0 or m. The ergosphere bulges at the equator and as the spin increases, it flattens until at the
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maximal rate of spin, the ergosphere is flat and the singularity is exposed.
In the non-rotating case the metric terms g;¢ = g%® = 0 vanish and the Kerr metric becomes the
Schwarzschild metric instead.

Going back to the Kerr metric expressed in Boyer-Lindquist coordinates:

sin? 0
2

dr?
A

ds? = —2(dt — asin? 0 d$)? + 2 (5 + d6?) + =2 (adt — (2 + a2)dg?)?  (3.86)
A= r? — 2Mr + a? X =r%+a%cos?*0 (3.87a,b)
where M is mass, a is the angular momentum per unit mass (a = J/M). This equation yields roots

that are the solutions for the black hole's event horizons.

The Kerr space-time metric is also a separable partial differential equation that enables
separation of variables in a Hamilton-Jacobi equation for geodesics. The equation contains
symmetries (time-translational and rotational) that render it integrateble.

The equatorial plane is the setting for the orbiting particles within the accretion disk so the angle
Oissetatd = g The motions are purely circular and the circular motions as well as ensuing
perturbations in the circular motion can be expressed by approximations in the geodesic

equation:

d?xH p dx® dxP
ds? aBf ds ds

=0 (3.88)
with s being the proper time along geodesic paths, and I as the Christoffel symbols of the space-

time metric.

With the circular motion in the equatorial plane, » = ry, 8 = E, a position vector z#(s) =
q p 2 ap

t(s),1,=, g * t(s)}, is introduced, with Q) being the orbital frequency.
2
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The Christoffel symbols for the Kerr metric show for the circular motion, u =0, 2, 3 components

of the geodesic equation are trivial and the ¢ =1 component gives us:

Q
QO = i >
1+aQg

(3.89)
with £, being the Keplerian frequency, and the plus sign denoting a direct orbit and the minus
sign denoting a retrograde orbit. Using the angular velocity solution to the geodesic equation in
the normalization condition for the 4-velocity, g,,u#u” = —1, an expression for the particle's

energy per unit mass can be found:

E _  r?-2MrtaVyMr

(3.90)

T
r(r2-3Mr+2aVMr)?

where E = muy. The denominator gives the photon orbit r,, if set to zero and its roots are found.

The circular motion is only possible for regions beyond the value r > r,,. A deviation vector is
introduced to determine the epicyclic motion: Eh(s) = xH(s) — z*(s)
The geodesic equation is expanded in powers of about the circular orbits. A linear

approximation gives two decoupled oscillations in the radial and vertical directions.

The frequencies of the oscillations are:

2
02 =2 (1—%—%1—8&(25) (3.91)
2
03 = 03 (1+35- ¥ 4a0,) (3.92)

The condition for stability of circular motions against oscillations require that 22,02 >

0. The radii for the innermost stable circular orbit (ISCO) can be determined from this
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condition.

The vertical oscillation is always non-negative in the region of existence and radial stability of
the circular motion. The motion is stable with respect to the oscillations in the vertical direction.
The perturbations in the circular motion, as well as the circular motion itself, yields three
frequencies: £, 2,, 2.

In Newtonian gravity, all three frequencies would be the same and equal to the Keplerian
frequency, k. In an Schwarzschild field, the vertical epicyclic frequency and the orbital
frequency would be equal to the Keplerian frequency while the radial epicyclic frequency would
not be. The Kerr field with strong rotational dynamics skews the frequencies from the standard
Newtonian and Schwarzschild expressions. The scale at which the Kerr metric affects the
frequencies is important for understanding the astrophysical significance of the phenomena in

question.

The characteristic frequency scale is:

c3 1 [ c? 1c
o= =x (ZGM) C=In (3.93)
A\l
~32 %10 (—) Hz (3.94)
Mg

Using the orbital angular velocity expression, the orbital frequency around a maximally rotating

black hole is:
1 M\t
Vo=-v; 216X 10* (—) Hz, atthedirectISCO (3.95)
2 Mg
1 M\t
Vo=V 1.2 x 103 (M—) Hz, atthe retrograde ISCO (3.96)
©)
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As the value of a (angular momentum parameter per unit mass) increases, the ISCO
radius moves towards the black hole horizon and the corresponding orbital frequency increases
an approaches a maximum value. The vertical epicyclic frequency reaches its maximum then

declines in value where vg = 0 at » = M, for a = M.

Both frequencies decreases with increasing values of a for the retrograde ISCO radius
and their ratio lingers about unity. For particular orbits near the black hole horizon, the predicted
values of the epicyclic frequencies are closed to the detected frequencies for the twin peak QPOs,
in a 3:2 ratio for some black hole binaries (J1550-564, H1743-322, and GRS1915+105, for
example, with corresponding frequency pairs of 184, 276 Hz, 165, 241 Hz, and 113, 168 Hz,
respectively). The highest epicyclic frequencies of small oscillations are found about circular
orbits in the Kerr field. The highest epicyclic frequencies can be found for specific values of the

direct and the retrograde ISCO radii.

Taking the first derivative of the expression with respect to r, we get:

r3(8M — 1) + a?(5r — 4Mr) £ 2aVMr (a®> + r(M — 61)) = 0 (3.97)

This gives the radii for the highest epicyclic frequencies.

-1
M
Ata =0, 1 =8M,and v, . = 707.1 (%> Hz (3.98)

For non-zero values of a, the equation has to be solved numerically to find the radii.

At a = M, for the direct orbit, 7. = 2.4 M,

-1
~ 2453 (i) Hz (3.99)

Vrmax Mg
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At a = M for the retrograde orbit, 7. = 11.8 M,

VTMAX

-1
~ 422.6 (l) Hz (3.100)

Mg

At the characteristic ISCO radii, when the radial epicyclic frequency reaches its highest

. . v . .
value, the ratio of the frequencies V—g = 2:1 remains the same even as a approaches the maximal
T

value of M. This matches observed twin QPO frequencies in the X-ray spectrum of black hole
binaries. For example, GRS1915+105 exhibited a pair of QPOs that fall in the expected range of

epicyclic frequencies (164, 328 Hz) for a black hole of spin a ~ 0.8-0.9 M.

Vo Vo

The frequencies show consistent ratios of =2:1, =2:1,and :—0 =1:1.

Vrmax Vrmax 6

Going back to the vertical epicyclic frequency, the expression also gives the highest
values for high a. The maxima of the following equation give the characteristic orbital radii that
yield the highest vertical epicyclic frequency:

r(r® + a?(5r — 2M)) + 2aVMr (a®> —=3r%) =0 (3.101)
This also is to be solved numerically as well.

For a=M, rm. = 1.86 M and the highest vertical epicyclic frequency is:

-1
M
Voyaux ~ 4875 <%) Hz (3.102)
M -1
Vryax = 2236 (%) Hz atthe same radius (3.103)

The ratio of the two frequencies is 2 : 1 as well.
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Frequencies and Radii Relevant to the QPO Models

I return to the QPO models and now start referring to the specific radii associated with the
disk in terms of the Kerr metric, so they will have a physical context. The plasma in the disk at
specific radii will have Keplerian frequencies associated with their motion or orbits. The QPO
frequencies can be taken as being associated with an interaction at a radius. For example, a
particle moving in circular motion, under the influence of gravity in the equatorial plane of a
spinning object, is perturbed from its original path. It will then have an orbital frequency, a
radial epicyclical frequency (frequency to go through a full cycle in radial motion), and a vertical
epicyclical frequency (frequency to go through a full cycle in latitudinal motion).

To use an analogy, the radial motion of a particle would be akin to a snake weaving side to side
on the equatorial plane, and the vertical motion would be comparable to a dolphin weaving up

and down through the equatorial plane.

In the case of Newtonian gravity, these frequencies are degenerate but due to the
deviation from the 1//” power law and frame dragging, the frequencies separate in close
proximity to the rotating compact object. For a black hole, the general relativistic modification
requires invoking Kerr space-time geometry. The Keplerian frequency is the largest of the three

frequencies in play and at the ISCO in general-relativistic geometry,
v = 2200 Hz (AL—©) forj <« 1 (3.104)

Where the dimensionless angular momentum parameter is j = (a/M)” 2. These formulae are exact
for black holes in Schwarzschild geometry but at order j* veers towards Kerr geometry for a

rotating black hole (Hartle J. a., 1968). The radial epicyclical frequency vanishes at the ISCO so
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it is surmised that there must be no restoring acceleration at that radius if the particle moves past
that radius. It should be noted that the quality factor also drops off sharply at that point,

indicating the QPO can only occur at the ISCO as a minimally possible radius.

There is no established exact source of the QPO phenomenon, but the source most
focused on in accretion disk phenomena is the disk due to its size and established anatomy,
particularly the event horizon and the ISCO and orbital radii beyond, where the Keplerian orbital
motion at any and all radii and oscillation modes produce a range of variable frequencies.
Structures such as the corona, magnetosphere, compact object/disk boundary, or jets can serve to
contribute to frequency variables as well. It is orbital motion, particularly general-relativistic
epicyclic motions and disk oscillations that are invoked in most cases for QPO phenomenon

studies.

Free-particle orbits around a spherically symmetric massive object are closed in

Newtonian space-time and have a Keplerian frequency in Kerr metric and physical terms:

3 1
vi= |2 L~ 1184Hz (1) m2, (3.105a)
31
r 2 5
~ 184 Hz (——) * mi, (3.105b)

) ) : M
where m; 4 and mjo are the compact object's mass in solar mass units of 1.4 and 10 (M—),
0)

respectively and r is the orbital radius in km.

In General Relativity, the orbits are not closed and a precession effect emerges that leads

to overlapping open orbits of the falling particles. The azimuthal, radial, and vertical motion
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veers from the Newtonian motion (Merloni, 1999). As a result, eccentric orbits veer about the
periastron precession frequency, Vp.r;, and the orbits tilted relative to the equatorial plane of the

spinning compact object wobble at the nodal precession frequency, Ve, = Vg — V.

General Relativity predicts for a region beyond a particular radius, no stable orbital
motion is possible so Newtonian expressions are only viable beyond that radius towards infinity.
This radius is the ISCO (Bardeen, 1972). Inside this radius is the plunging region. An
precession effect occurs with particles’ orbits that lead to increased collisions and further

dissipation of their angular momentum that result in a free-fall towards the compact object.

N|W
[N

The equation that determines the ISCO radius comes from the condition, 7% — 6 Ty +8r 12—

3 rgz > 0 (Bardeen, 1972), for stable orbits and can be solved analytically for the values of a = 0,
and a = M.
(3.106)

For the values in between, the marginally stable circular radius has to be determined

numerically. For Schwarzschild geometry (a = 0), 1,5 (ISCO) is:

Tms = 615 = 6?—ZM ~ 125 km*my, = 8.9 my, km, (3.107)

and the (highest stable) orbital frequency is:

3
c 1156 219
Vs = —5— = Hz ~— Hz (3.108)
2me2GM 4 M1o

For prograde orbital motion in the equatorial plane due to the Kerr geometry, the ISCO is:

c3 1611

=~

4TtGM mio

GM

forj—1, ny -1y =— and v, =

Hz (3.109)

The corresponding frequency also increases with the value of j, and the orbital frequency

can be used to infer the compact object's spin (Sunyaev, 1973).
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To first order in j (Kluzniak W. M., 1990) (Miller M. L., 1998) (Miller M. L., 1998),

s = (“57) (1 = 0.54 ) (3.110)
Vs = ( < )(1 +0.75 ) 3.111)
2m62GM

Disk flows can penetrate further than the ISCO, provided they do not surpass the marginally

v 2, which is inside the ISCO, before the plasma

bound orbit radius 7, = rg(2 —j) + 2 1, (1 —))
plunges through the event horizon (Abramowicz M. K., 2004).

(3.112)

A Schwarzschild metric describes the space-time outside a spherically symmetric
stationary star. The Kerr metric describes the space-time outside a spinning star to first order in
J» and the precise frequencies, depending on the distribution of mass (Hartle J. T., 1968) (Miller
M. L., 1998) (Shibata, 1998) (Morsink, 1999) (Markovic) (Sibgatullin, 2002) (Abramowicz M.
A., 2002).

Periastron and nodal precession are prograde since v; and vy <vy. Periastron precession
is due to the non-1/ nature of gravity as defined by General Relativity.

Nodal precession is due to the frame dragging or Lense-Thirring precession (Lense,
1918) caused by the compact object's spin. In the case of a neutron star, a frequency v, for stable
orbital motion constrains its mass and its radius (Miller M. L., 1998), in which R must be smaller
than the orbital radius 7 and the ISCO has to be less than 7 for Keplerian orbits. This (R < r)
condition leads to the frequency v, putting a mass-dependent upper limit on R and the ISCO

condition puts a upper limit on the neutron star's mass,

72



1

= 3
() oM< —5 (3.113)

2 24,2 2
¢ amtv 2m62GV

Confirmation through detection of the ISCO would serve as proof of strong-field general-
relativistic effects and prove the compact object is smaller than the ISCO (Kluzniak W. W,
1985) (Paczynski, 1987) (Biehle, 1993). When the accretion disk inner edge reaches the ISCO,
the QPO frequency would reach an upper limit while the accretion rate M increases (Miller M.

L., 1998).

The Gravitational Potential of a Kerr Black Hole

The Paczynski-Witta pseudo-Newtonian potential for a black hole is written as:

GM o 26M
r—rg G 2

b =

(3.114a,b)

This pseudo-Newtonian potential is usually invoked in a number of astrophysical models for
simplification purposes and approximates the gravity of a compact object in simulations.
But a more appropriate expression for a pseudo-Newtonian potential for a Kerr black hole or

neutron star would be:

L ry = M 4 — (3-1152.5)
—I'H
. oM GM
D= = - e
r(1-T) T (15 () i) (—( 1-(%>2>>

When a = 0, it reverts to the same expression for the Pazcynski-Witta potential.
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»=—a - (3.117)

) D

This would be an appropriate expression for cases of significant compact object spin for
astrophysical settings.

The Paczynski-Witta potential can be derived in steps. First, beginning in Newtonian
theory, with the parameters E for energy and L for angular momentum, @(r) for the gravitational
potential, and V for the radial velocity. The orbital motion is described in terms of the effective

potential:
2
U(r,L) = o(r) + (3.118)

~V2=E—U(r,L) (3.119)

Circular orbits’ locations are determined by the extrema of the potential as stated by equation

(3.110):

(‘;—”)L =0 (3.120)

or to restate it in terms of the effective potential;

(-2 3)- o1z

The particles are moving in circular orbits confined to the equatorial plane (9 = g) in

Schwarzschild space-time, and I can construct a positive small quantity from the radial
component of the four-velocity u',

V2 = (W)?g" « 1 (3.122)
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Since ug and u; are constants of the motion, the angular momentum of the particle, L, becomes:
L=-22 (3.123)

)
Ut

Which is also a constant of the motion. The condition 1 = u; u, g%* = (u,)?gt + (u¢)2 g% +
(u;)2g™ can be restated as: (3.124)

“In[1+V?] = Inut +2In[g* + 12g#?] (3.125)

The left hand side of the equation can be expanded to give the result of %VZ, and setting the
definition of E = In u,, the effective potential becomes:

U(r,L) = —2In[g* + [2g#*]; (3.126)

The condition is restated in a form that mirrors that of the Newtonian formula. The
Newtonian condition for the vanishing derivative of the effective potential can be applied to the

relativistic effective potential:

(%) +12(%2=) =0 (3.127)
On the equatorial plane, g% = — iz, gt = ——, or gt = ——, for a rotating black hole.
r r—rg r—ry
(3.128a,b,¢)
The equation becomes:
d( GMY\ _ (1) _ d(_ GMY\ (1) _
dr( r—rc;) L (r3) =0 dr( r—rH) L (r3) =0 (3.129a,b)
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Comparing Newton’s and Einstein’s equations, the gravitational potential should have the

same Paczynski-Witta form.

To derive the previous equation, the following relation is invoked:

gt =——="4+1=20(r)+1 (3.130a)

r—rg r—rg

git=——="2 4 1=200)+1 (3.130b)

r—ry r—ry

The Keplerian angular momentum in Schwarzschild space-time, or Kerr space-time, can be

derived, along with the Paczynski-Witta potential with the same formula:

2 GMr3 : 2 GMr3
Ly = ooz OF for a rotating black hole, L% = — (3.131a,b)
The Newtonian angular momentum is expressed as: L = 7202 (3.132)
2
But the Schwarzschild angular momentum is expressed as: L = I_—Ti (3.133)
2
And the Kerr analog of the angular momentum would be: L = f_—ri (3.134)

T

The Keplerian angular velocity as calculated in Schwarzschild geometry and in the Paczynski-

Witta potential are not equal:

1

t= (@ o =(2)

r3

%( ) (3.135a,b)

(r-7rg)

The Keplerian angular velocity for Kerr space-time would be:
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ﬂmm=@%% —) (3.136)

r3 (r-rg)

The distinction between a Schwarzschild event horizon and a Kerr event horizon is that
the angular momentum of the black hole acts as a disguising factor that obscures the contribution
of the mass to the size of the event horizon. A black hole with a high spin would cause the event
horizon to shrink inward as well as the ISCO, causing those dimensions to be commensurate to

that of a smaller stationary black hole.

To use an analogy, if I was a black hole and I started spinning, I would appear to become
smaller, due to the bending of light around me caused by the warping of space-time around me.
As T hit the maximal rate of spin, I would appear to be approximately twice as thin as I was be-
fore, or appear to have just half of the mass I had when I was not spinning (in the Schwarzschild

case).

In nature, most if not all black holes will have some degree of spin so the Schwarzschild
metric will have a limited degree of accuracy in describing the geometry and scale of the space-
time metric in its proximity.

There could be a way to constrain the ratio of spin over mass, and together with a high
resolution observation of the event horizon with a large telescope and using the equation (3.317):

ry =M +VM? = a?; (3.137)

The dimensionless ratio of a to M can be determined by comparing the measurement of
the event horizon to the ISCO, which can be determined by finding where the drop-off in the
quality factor is in radial terms from the center of the accretion disk. For example, the ratio of

the ISCO radius to the event horizon (Figure 3) for zero spinis 6 rsto 2 s or 3to 1. For

77



maximal spin, the ratio of 7, (or ISCO), toryis 1 rsto 1 rs, or 1 to 1.

Lengths of Event Horizon versus ISCO

Figure 4. The Length of the Event Horizon versus the ISCO in terms of geometricized mass

versus angular momentum parameter a.

As depicted in Figure 4, in the Schwarzschild metric, the ISCO is approximately 3 times
the length of the event horizon, projected out from the center of the black hole. In the Kerr
metric, spin modifies the metric such that the radius of the event horizon and the marginally
stable circular orbit simultaneously shrinks in length until they both reach the same radius at
maximal spin.

Establishing the location of the ISCO and then measuring the width of the event horizon
observationally can give the precise ratio of the angular momentum parameter, a, to M. This
method would be the best way to determine the dimensionless ratio a« (or j) of the angular
momentum parameter a to the mass M. Determining the drop-off in the quality factor gives the

location of the ISCO, and then locating the event horizon with a telescope with a large enough

78



resolution, would accomplish this.

One such telescope project, EHT, would take on such an approach using a collection of
telescopes to take observations of a galaxy with a black hole event horizon large enough to be
measured at a distance (EventHorizonTelescope, 2014). It uses a VLBI (Very Long Baseline
Interferometry) approach to effectively create an Earth-sized telescope to obtain a high enough
resolution to resolve the size of a galaxy’s black hole. That, combined with finding the ISCO,
would give the ratio of the angular momentum and the mass of the black hole at the center of the

galaxy being observed.
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CHAPTER 1V

Alfven Radii of Accretion Disks

I now start discussing the Alfven radius as determined by modelling an accretion disk’s
magnetic field. This can show how the magnetic field can affect the advection of gas within the
inner disk. I will use it to explore how the magnetic field of the disk will have such an effect on
the advection in the disk itself. The determination of the Alfven radius starts with finding the
strength of a magnetic field due to a source. For example, a star will possess its own magnetic
field, and depending on the nature of the star, the magnetic field will be sufficiently magnetic to
deflect the infalling material. The strength of the magnetic field is proportional to 1/r°, so the
field will increase rapidly for incoming plasma. When the magnetic energy density is

comparable to the kinetic energy density:

1
Ug = Epv2 4.1
BZ
Uy = o (4.2)

The magnetic field will start channeling the matter towards the poles of the star. The

location where this begins to happen is the Alfven radius, ra, where this condition is satisfied:

1,2 = B
PV = — 4.3)
For gases falling in from a large distance, the free-fall velocity is: = ’g 4.4)
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The relation between density, velocity, and the mass accretion rate is:

M = 4nripv = A * pv 4.5)

The equation analogous to Kerr geometry for the mass conservation rate is (Sadowski, 2009):

. 1
M = —2rYAz Jlf_v (4.6)

where V is the gas radial infall velocity measured by an observer co-rotating with the fluid at
Y =r%+a%cos?*0 (4.7a,b)

fixed r, and A=1?—2Mr + a? and

The radial dependence of the magnetic dipole field strength is:
R\ 3
B(r) = B (%) (4.8)

where By is the surface value of the magnetic field. Inserting equations (4.5 and 4.8) into the

energy density equation (4.3), I can derive:

1
B4R12\7 .
= (o)’ (for the disk) (4.9)

Putting in the Kerr geometry terms from equations (4.6, and 4.7a,b) gives us:

4p12
B R (4.10)

Ty =

1y 2
2GM| —2mzAz
< ~/1—V2>

a a

And taking, at the compact object radius, V' = Rpy Qpy = Rgy * ————
2MRgy 2M

1
7

7
B4R12 B4R12
T, = e - RE 4.11)
26M<4n222A 2)
a-v=)

2
=V
2GM| —2mXA2
( \/1—V2>
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/ il \| (4.12)
o J

()
2GM 4n2):2(R2+2MR+a2)

(4.13)

BSR12 1——
T‘A -
2GM 4n2):2(R2+2MR+a2)
B4R12 1——
(4.14)
2GM 471'222R2 1+ﬂ ﬁ
4M2

Ty = i o) (3.15)
2GM 4n2):2 1+ﬂ ﬁ)(i)>

4M?2

N
I

N R

This gives the Alfven radius generated by the Blandford-Znajek mechanism. There are
two effective Alfven radii in the accretion disk system; that of the disk, and that due to the
spiraling magnetic field lines frozen into the flow within the black hole ergosphere, with an

additional angular velocity imparted onto the plasma by the precession in Kerr space-time.

There are two competing magnetic fields within the accretion disk system as defined by
the Blandford-Znajek mechanism. In most cases, the disk magnetic field is the overwhelming
factor. In the case of extremely high black hole spin (¢ — M), the black hole magnetic field
overwhelms that of the disk and its Alfven radius extends farther out into the accretion disk
system, exceeding even that of the Alfven radius of the disk, and serves as the disruptive

influence.
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Blandford-Znajek Mechanism

[ utilize a toy model developed by Li-Xin Li to determine how the magnetic field of the
accretion disk affects its own anatomy, particularly the advection of the infalling charged matter
(Li, 2000). The toy model uses a Kerr black hole with a toroidal electric current set in a
geometrically thin disk staged around the black hole. The toroidal electric current generates a
poloidal magnetic field with its motion, with the field lines threading through the black hole and
the disk.

The magnetic field interacts with the plasma and the rotation of the black hole and disk
induces an electromotive force on the black hole's event horizon and disk. The EMF can be the
source of power imparted onto astrophysical loads at a distance.

The rotation of the charged matter within the accretion disk and rotation of the black hole
induces an electromotive force, which can be used to power an astrophysical load at a distance
(Li, 2000).

The toy model explores a range of parameters relating to the rotation of the black hole and the
distribution of electric current within the disk and determines the amount of power generated by
the black hole and the disk and the ratio of the power to determine the dominant influence on the
charged matter. It also determines the torque created by both sources.

Inside the disk, matter loses its angular momentum, and it drifts towards the compact
object where it eventually will be gravitationally captured. The power is derived from the
gravitational binding energy between the black hole and the disk as opposed to the rotational
energy of the black hole itself.

The implications are that the Blandford-Znajek mechanism is not efficient in deriving
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energy from the rotating black hole versus its disk. The Blandford-Znajek mechanism is a
process of energy generation derived from a rotating black hole and was thought to be the source
powering radio jets and researched as a source for GRBs (Gamma-ray bursts).

Blandford and Znajek developed the Blandford-Znajek mechanism in 1977. In their
description, the black hole is neutral although it has a rotating accretion disk (Blandford, 1977).
The distribution of mass rises in density near the event horizon and the mass will have become
magnetized over time and be carrying magnetic field lines inward with it. As the black hole
consumes the accretion disk, the field lines of the magnetic field will persist and linger,
becoming threaded out through the horizon, essentially becoming frozen into the fluid. The
frame of the magnetic field lines is dragged along with the rotating black hole. The rotating field
lines will induce an electromotive force that serves to accelerate plasma towards relativistic
speeds along the axis of rotation. The matter gets swept up in the magnetic field and spirals
upwards towards the poles (Perepelitsa).

The rotation of the plasma caught inside the ergosphere (the ellipsoidal region between
the outer event horizon and the static limit radius) forces the magnetic lines to rotate as well, and
the magnetic twist propagates away from the black hole, culminating in a Poynting flux. A
feedback action results, when the magnetic field forces plasma in orbits with negative
mechanical energy at infinity before capture by the black hole. There is an outflux of mechanical
energy yet the overall energy flux is conserved. The energy is converted from mechanical to
purely electromagnetic at a distance. In this context, the ergospheric plasma and magnetic field
take on roles of negative and positive energy particles in the Penrose process (Komissarov,

2009).
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This process is favored as an explanation and studied for exploration of black hole
phenomena, since relativistic Lorentz factors are required for jet emissions in AGNs and GRBs
and provides a clean way of energy extraction.

Not much is known about the distribution or generation of the magnetic field inside the disk, the
energy extracted from the black hole versus the disk or what comparable factor the black hole
contributes to the overall system's extracted energy.

For a wide variety of parameters, the disk's power dominates that of the black hole’s
power. Only in cases of high black hole spin does the black hole's power start to dominate over
that of the disk’s power.

The model uses a physical coordinate system that utilizes the Kerr metric. The Kerr
black hole has an accompanying thin disk in the equatorial plane endowed with a distribution of
electric current. The Kerr black hole has mass M, angular momentum J = M*a (geometric units

G, c set to one), and Boyer-Lindquist coordinates (t, r, 8, ¢) for the black hole (Li, 2000).

The radius of the black hole's outer horizon is:

ry =M +VM? — a? (4.16)
Angular velocity:
a
Qy = T (4.17)

Keplerian angular velocity:

(4.18)
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The outer edge of the disk is set at 7 = 7, and the inner edge of the disk is at the ISCO

(Innermost Stable Circular Orbit, or “marginally stable” orbit) on the equatorial plane.

s = M [3 +2z,-(B-2)B+z + 222))%] (4.19)
z=1+(1- ;-Z)i l(1 + %f +(1- %);l (4.20a)
z = (3% + 212)% (4.20b)

The toroidal electric current within the disk has a surface density; distributed between 7,
and r,. The magnetic field generated by the current at a fixed radius is determined by the

following equations.

The toroidal component of the electromagnetic vector potential is signified by 4¢. The
magnetic flux through the surface of a bounded circular area with constant radius and constant

angle 0 is represented by the following equation:

Y(r,0) = 2w Ay (r,0) = 2m fr:’; J(r') (dA®/dr') dr' (4.21)
In which the circular area is multiplied by 2r and rotated through all angles to give the volume.
The limits of the radial component of the volume extend from r,,, the innermost stable orbit in
the equatorial plane, and the inner edge of the disk, to 7, a particular selected radius
encapsulating the magnetic field of the region of concern.

dAg
d

The magnetic flux potential inside the integral, is given as an equation with a mix of sums

r’’

of coefficients multiplied with coordinates and Legendre functions (Li, 2000):
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dA, l A 1 ,
T = 2 Z[ar (r xasin®0 (E) —— 5 P/(w)P,(cos 6)
r = (M2 - a?)2

2 + a?
— asin®0 cos 6 — P,(uw)P/'(cos 6)]

A 1 2 + a?
+2 Z[af (—a?sin?0 (f) — P/(u)P,(cos 8) — rsin* 0 cos 6 —
=1 (MZ - az)z

. 2
* P,(u)P;'(cosB) + A < sin” 6 ) ! T P/ (wW)P,""(cos 0) )]

! . (A 1 , - % + a?
+2 z[ﬁr (r+asin®@ (f) — Q;(w)P,(cos 6) — asin“ 6 cos O —
I=1 (M2 - a?)2

* Q (WP (cos 6)]

+2 Y4B (—a?sin?6 (é);l Q;(w)P,(cos 6) —

z (M2 _ az)i
2 2 in2
rsin?6 cos § T « Q:(w)P/(cosB) + A (sm 9) ! 1 Q (WP, (cos 6))]
1(1+1) (M2 - a?)2
(4.22)
The special variables in the equation above are signified as such:
A=r 2Mr+d’ Y= r+a’cos b (4.23a,b)
A= +d) - Adsin’0 u=(r-M)/(M - a*)"”? (4.23¢,d)
and Py(z) and Q,(z) are Legendre functions, and P;'(z) = d%iz) and Q/(z) = d%z(z), and the
coefficients ', o, B, B are given as:
1
[ I L N CA T ooy
o =i ) 4 aPOQ/ @) (4.24)
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2—:I

(21+1) z! ' ' ey ar
A L LB (7) [-(r"? + a?)P(0)Q,' (W) + <r’l€l+1)> *

~

a; =
L (1+1)(M2 - a2)2

<;1> P/(0)Q,' ()] (4.25)
(M2 - a?)?
B =i () 4 e PO (420
Bll = —(2l+1)TL' T (Z—:) [—(TJZ + alz )Pl(O)Pll(u,) +< 'lA_l, ) *
L(1+1)(M2 - a2)2 A D
(%) P/ (0)P,/(u)] (4.27)
(M2 _ a2)2

The inset variables in the coefficients are specified as such:

A'=Ar=r") 2'=2X(r=r, 0=m/2) A'=Ar=r, 0=m/2) (4.28a,b,c)

The Legendre polynomial expressions are composed of two components: one radial and
one angular. The radial component is dependent on distance because it comprises of a broken

power law function.

Py = At +(25) (4.29)

Y

If the radius extends to infinity, the positive exponent variable will blow up towards
infinity so A; has to be set at zero to neutralize it. If the radius goes back to zero, the negative
exponent variable will tend towards zero, which in its form, its value will tend towards infinity as

well so B; has to be set to zero. Either conditional case is dependent on where the radius is, so
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the radius has to be defined so either case or coefficient can be preset as zero so the other part of
the function can do its work.
Which is why if 7 > r’ (' being the critical distance), o, o' =0 for all /, and B ,Bil will

retain their values.

Ifr<#, [, fr=0forall land o, owill retain their values as well.

The normal component of the magnetic field in the disk is given in the equation:

T

By = =S (ﬂ)E M (4.30)

_r dr
9_2

The poloidal component of the magnetic field in the disk is given in the equation:

_ 1 dy(ry ,0)
" 2n(rf +a?)sing  de

By

(4.31)

As the disk rotates with the black hole, the magnetic field within interacts with charged particles

and induces electromagnetic fields. The net EMF on the black hole is given by the equation:

en =5 Oy Y(ry) (4.32)

The symbol y(ry ) signifies the magnetic flux through the northern hemisphere of the black

hole's horizon, (w(ry) = y(ru m/2)).

I find that the magnetic field of the disk dominates over that of the black hole for the
majority of values of the angular momentum parameter, a, until the magnetic field of the black
hole due to the Blandford-Znajek mechanism dominates for sufficiently high enough spin. The

magnetic field contributions would have a corresponding Alfven radius for each, where the

&9



magnetic energy density becomes comparable to the kinetic energy density of the advecting

plasma and begin to divert the plasma towards the poles. The Alfven radius would be the

magnetospheric radius and serve as a boundary for a transition layer where a major disruption in

the advection would occur.
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5. Comparison of the Magnetic Fields of the Black Hole and Disk.
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Figure 8. Alfven Radius for n =4 versus ISCO for 6 M BH.
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Figure 9. Alfven Radius for n =2 versus ISCO for 8 M BH.
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Figure 10. Alfven Radius for n = 3 versus ISCO for § M BH.

92



ISCO versus Alfven Radius for a 8 M BH
Radius

Figure 11. Alfven Radius for n =4 versus ISCO for 8 M BH.
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Figure 12. Alfven Radius for n =2 versus ISCO for 10 M BH.
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Figure 13. Alfven Radius for n = 3 versus ISCO for 10 M BH.
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Figure 14. Alfven Radius for n =4 versus ISCO for 10 M BH.
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Using the toy model to determine the magnetic field strength and using it to determine the

Alfven radius, the plotted radius is projected from the inner edge into the disk. The ISCO is
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plotted along with the Alfven radius for a set of n values for the current distribution in the inner
disk, with n = 2 for a dipole configuration (Figures 6, 9, and 12), n = 3 for a quadrupole
configuration (Figures 7, 10, and 11), and n = 4 for a multipole configuration (Figures 8, 11, and
14). A range of masses are plotted for each set of n, to see how the Alfven radius varies as it
follows from the parameters of the Li-Zin model. It coincides with the ISCO in every case

including for each current distribution configuration.

The boundary layer radius is also plotted in each graph and shown in dashed lines. I
determined the magnetic field by integrating the magnetic potential over a radial range, from the
marginally stable circular orbit radius out to a pre-determined radius. I then determined the
Alfven radius using the value of the magnetic field, and projected outward from the ISCO, which
is the inner disk edge. It is plotted as a thin line while the ISCO is plotted as a dashed line for
each graph. In each graph, the dotted line and straight line overlap since they sit almost right on
top of the other and the graphing function in Mathematica will show the dotted line where it
overlaps the straight line by default as not to lose visual track of the data. I found that the
magnetospheric radius does not extend very far out from the ISCO and influence the advection to
a degree where the overall anatomy or rate of the accretion would be modified significantly.

The marginally stable circular orbit is effectively the inner disk edge even when the strength of
the disk magnetic field is taken in consideration in terms of a disruptive influence in the

advection of the plasma.
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CHAPTER V

GENERAL PRINCIPLES OF ACCRETION DISKS

I delve into the basic principles that govern accretion disks in this chapter. By
understanding these basic principles, we can predict the intrinsic behavior of the gas in accretion
disks and how they form and persist in nature. All accretion disk models can be described by
these physical principles.

Accretion disks play a large role in the evolution of large-scale structures of stars, proto-
planetary systems, and galaxies. Galaxies are the most extreme examples of accretion in which
they have all kinds of stellar bodies orbiting around a supermassive black hole.

An accretion disk is an accumulation of matter captured by gravitational attraction and
composed of gas and dust particles moving in an orbit around a central massive body. The
central body is the origin of the gravitational field that captures the material and generally can be
a star or degenerate object. The orbits of the material can be determined by the angular
momentum of the material orbiting around the central object. The orbits can vary from the
circular, to the elliptical, and in extremely rare cases, parabolic and hyperbolic. The force of
gravity of the central object, which causes the infalling material with an angular (lateral)
momentum sufficiently high enough to escape and overshoot the central body, and end up
spiraling around the attractive central body as a consequence. When the material’s angular

momentum decrease due to dissipative processes, it will no longer be able to continually orbit the

96



central object and will spiral down into its gravitational well. In general relativistic terms, the
central body curves space time to the point that all moving matter, in its inertial frame, is moving
in a straight line, but due to the curvature induced by the massive body, the straight line is
curved, to an outside observer, by the presence of gravity and the matter follows the modified
path accordingly.

Gravity acts upon the accreting matter and causes it to collect into a quasi-stable disk and
the accreting particles start to collide, which leads to collisional heating. In most cases the disk
is opaque (optically thick) and thus emits blackbody radiation as a result. The blackbody
spectrum is integrated over all radii for the accretion disk. In general, in a blackbody matter with
a particular temperature will emit light corresponding to the Planck function, and in the case of
accretion disks with massive central objects, the temperature will be approximately around
100,000 - 1,000,000 K. The blackbody spectrum peaks at a specific wavelength, 4,4, which
through Wien’s law shortens with increased temperature of the matter (Carroll B. W., An
Introduction to Modern Astrophysics, 1996). This is important here comes in the temperature of
accretion disks can be related to the amount of material collected by the central object. With a
high mass central object, the material accretion rate in the accretion disk will be higher and
moving at higher speeds as well. The particle and gas collisions in the disk give rise to the state
of the temperature of the disk, in this case the peak wavelength will fall in the x-ray spectrum.

The weaker the gravity within the accretion disk, the fewer collisions, the lower the
temperature, and the redder the blackbody peak will be for the radiation emanating from the disk.
Stars with lower masses attract less matter which result in smaller accretion disks. Those
accretion disks will emit radiation in the infrared band of the electromagnetic spectrum. More

massive stars with accompanying accretion disks will show disk emission at higher energies,
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extending through visual and ultraviolet, and cumulating in the x-ray spectrum for the most
powerful objects, namely neutron stars and black holes. For such a large accretion disk with a
supermassive central body, the peak of the blackbody Planck function for electromagnetic
radiation would fall in the x-ray spectrum.

For large accretion disks, the influx of falling and spiraling material means a large
quantity of moving ionized particles, which in turn generates a moving magnetic field that
migrates inward towards the black hole. The generated magnetic fields are, for the most extreme
cases, extremely powerful and cause material to be swept up towards the magnetic poles along a
line perpendicular to the accretion disk.

The jets, which I do not investigate in this dissertation, serve as a mechanism that serves
to dissipate some angular momentum with a minimal loss of mass in the process. As the mass
falls towards the black hole, the sharper gravitational gradient causes the material to collide in a
Brownian manner, causing intense frictional heating as a result. The accretion disk closest to the
event horizon of a black hole is heated enough to the point where x-rays are emitted from that
region.

The high luminosity of galactial accretion disks is due to the influx of an extremely large
quantity of gas accreted by their central bodies, the supermassive black holes.

The process of energy production is capable of converting approximately 10 percent of the
infalling mass into energy. It also stands as one of the most efficient methods of energy
production. Black hole accretion, in the case of quasars, is the most powerful and most efficient
sustained energy source known in the universe. The black holes in the centers of galaxies are

classified as “supermassive,” or, falling in the range of about ~10° to ~10° solar masses.
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In closed binary systems, the primary star will be the more massive partner and start
capturing mass from the secondary star, which would lead to the primary star evolving at an
accelerated rate in contrast to the secondary star, and will become either a white dwarf, a neutron
star (minimal mass of 1.44 solar masses or above), or a black hole (minimal mass of 3 solar
masses or above), depending on its final mass (Carroll B. W., An Introduction to Modern
Astrophysics, 1996). The secondary star will likely evolve into a red giant and expand beyond its
original size and overfill its Roche lobe. At which point, the primary star will start
gravitationally capturing the secondary star’s mass and accumulate and absorb it as its own. The
captured gas flows through the Roche lobe and angular momentum prevents it from falling
directly towards the primary star and instead serves to form an accretion disk.

Binary systems that have characteristic x-ray emissions typically have a black hole, or a neutron
star, serving as the engine powering the emission and can be considered as a scaled-down

version of quasars.

The physics behind accretion disks rest on two main schools of scientific thought: the
established Kerr metric fields derived from General Relativity for a rotating massive body and
the strong gravity associated with close proximity to the black hole’s or neutron star’s
gravitational field, particularly the event horizon of a black hole, and a developing description of
matter’s inherent properties that serve as a counter to the strong gravity of the black hole or
neutron star (McClintock, 2006).

The stress energy tensor 7, and other material equations serve to summarize the behavior
of the material within the accretion disk, such as radiation transport, convection, turbulence,

viscosity, and magnetic fields that serve as a means of transporting angular momentum.
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Angular Momentum Transport

The angular momentum transport deals with how spiraling plasma can linger in an
accretion disk and how angular momentum can be dissipated resulting in accreting the advected
plasma. Starting with the assumption that total angular momentum of the disk is conserved, the
angular momentum loss of the mass towards the center has to have been compensated by the
difference (gain) in the angular momentum farther from the center. Thus, there has to be a
method of angular momentum transfer from inward to outward for which an accretion disk can

exist (Weizsacker, 1948).

As the Rayleigh stability criterion states, there must be a laminar flow per unit mass where

a(Rr?0)

2> 0, (5.1)

with Q representing the angular velocity of a fluid element, and R, the radial distance from the
center for an accretion disk. The laminar flow indicates a smooth, disparate parallel flow of
multiple elements that do not interact with each other. This de-emphasizes a possible role and
existence of a hydrodynamic mechanism for the angular mechanism transport.

In the description by Sunyaev-Shakura (1973), viscous stresses were assumed to dissipate
part of the gravitational energy by way of heating the matter closer to the center of the accretion
disk and radiating it away in another form of energy. Viscosity by itself doesn’t account as a
mechanism for angular momentum transport due to being a phenomenon that occurs on close
contact and does not extend to longer distances such as those nearer the exterior of the accretion

disk.

100



Turbulence-driven viscosity accounts for the angular momentum transfer but was not
attributed to a specific, well-defined driving phenomenon (Lynden-Bell, 1974).

The standard physics approach to viscosity includes an adjustable parameter, a, which describes
the increased viscosity due to arising turbulent eddies inside the disk.

Balbus and Hawley introduced an origin of a means of angular momentum transport
within accretion disks in a paper in 1991, which introduced the phenomenon of
magnetorotational instability (MRI). In this model the rotating accretion disk would have
moving electrically charged particles, which in turn, induces a magnetic field within the
accretion disk. A weakly magnetized disk moving around a massive central body would be
unstable and provide a possible mechanism for angular momentum redistribution to higher orbits
within the accretion disks (Balbus S. a., 1991).

In Shakura and Sunyaev’s 1973 paper, the authors provided a model for the turbulence in
the gas as a source of the viscosity (Shakura, 1973). The disk viscosity can be estimated by this
equation:

v =acsH (5.2)
With ¢, being the sound speed, H the disk height, and a being the free parameter, falling between
zero (meaning no accretion) and one (full accretion).
Typical values of a used for magnetohydrodynamical simulations are close to 0.01 but
observations indicate a value closer to 0.1.

In all models that depend on stationary and axisymmetric location of the accreted matter,
all physical quantities depend only on two coordinates: the radial distance r, and the vertical
distance form the equatorial symmetry plane z. Most models rely on the assumption that the disk

is not vertically thick. For example, in thin disks, z/» << 1 everywhere within the matter
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distribution, and in “slim” disks, z/» < 1.

Three types of analytic solutions of the black hole accretion flows have been obtained for

accretion disks with three ranges of accretion rates m and optical depth t, with the mass

M

accretion rate, m = T being scaled to the Eddington rate: (5.3)
Edd

The thin Shakura-Sunyaev disks: m <<1, t>>1 (5.4)

The slim disks: m~1, t>>1 (5.5)

The ADAF (Advection Dominated Accretion Flow) type disks: m <<1,7<<1 (5.6)

For turbulent motion,

V = Vurp * lturb (57)
Where vy,,5 1s the velocity of turbulent cells relative to the mean gas motion and /5 is the size of

the largest turbulent cells, estimated by

lturb ~H= Cs/-Q Viurb ~ Cs, (58a,b)
1
Q = (i—l\:)z ; () = orbital angular velocity (5.9

r =radial distance from central massive object

M = mass of central object
The equations of disk structure include that of hydrostatic equilibrium, and conservation

of angular momentum, and operating on the assumption that the disk is thin, the equations can be

written in terms of the free parameter «.
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The disk height, mid-plane temperature, and mid-plane density can be determined:

H=17% 108 a -1/10 M 3/20 Ml -3/8 RIO 9/8f3/5 cm; (5.10)
T.=1.4%10" a” Mys™"" m; * Ry " f7° K; (5.11)
p= 3 7%10°% o 710 M s 11720 m; 5/8 Ry -15/8f11/5 g/cm3; (5.12)

T, is the mid-plane temperature, rho the mid-plane density, M ;4 is the accretion rate in terms of
10'° g/s, m; is the mass of the central body in solar mass units, R is the radius of a point in the
disk in units of 10" cm, and

f=[-®RR) ] (5.13)

where R* is the radius where angular momentum stops being transported inwardly.

The Shakura-Sunyaev a-disk model is thermally and viscously unstable (Shakura, 1973).
Another model, the f-disk, in contrast to the a-disk model, is stable in both senses by taking
viscosity to be proportional to the gas pressure:

V= a*Pgy (5.14)

In the Shakura-Sunyaev model, viscosity is proportional to the total pressure (Shakura, 1973):

Ptotal :Prad +Pgas =p *Cs2 (515)
2

v= o oy H= % = o Ptotal (5.16)
0 p*0

A key assumption is that the disk is in thermal equilibrium and can radiate the heat
efficiently. The viscous heat is radiated away in the vertical direction, cooling the disk in the
process and the disk becomes geometrically thin. The ability of the accreting matter to retain the
radiation (higher opacity) affects whether the matter expands in response and the disk changes its
shape and swells accordingly. The geometrically thin shape of the disk assumption may not

apply for the radiatively inefficient case. The disk puffs up into a torus (veering from a thin disk
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to a slim disk) or another three-dimensional solution such as an ADAF (advection dominated
accretion flow) that describes the accretion. The ADAF solutions require an accretion rate that is
smaller than a few percent of the Eddington limit. Another analytical model for accretion disks
is referred to as “Polish doughnuts,” referring to the disk’s physical appearance, which would

resemble a fat donut with a narrow hole.

All the models operate on the reasonable assumption that the accreted matter is able to
maintain a temporary and tentative equilibrium against the gravity in an axisymmetric reference
frame, moving in approximately circular orbits. The high angular momentum provides a
counterbalance against the compact object’s gravity while viscous stresses dissipate and
redistribute the angular momentum, removing the balance against the gravitational pull. The
most likely mechanism for angular momentum transport is the Balbus-Hawley magnetorotational
instability (MRI) —induced turbulence that appears in weakly magnetized non-rigid rotating

fluids (Balbus S. a., 1991).

The induced turbulence produced by the MRI instability dissipates the energy and
redirects the angular momentum, which causes the matter to slip through the gravitational
potential barrier and culminate in a fatal fall in towards the black hole’s event horizon or the
neutron star’s physical surface. The dissipated energy can heat up the accretion disk and it can

be cooled via a number of processes, including radiation, convection, and advection.
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Hydrodynamics

This section explains how the plasma moves in the accretion disk. Hydrodynamics is the
study of fluids in motion, and pertains to gas and plasmas moving through space under certain
conditions. With a mass flow, a set of hydrodynamic equations is solved to describe the flow.

Using the following equation:

d’r _dv _dvdr _ _dv

ﬁ_dt_drdt_vdr (.17
and using equation (5.17) in Newton’s 2™ law, equation (1.3):
pv % = — Z—i — GA:;p where v is velocity of the flow; (5.18)

This requires that another equation be included to solve for the 3 unknowns, r, v and p: that of
the conservation of mass;
4mr?pv = constant = M, (5.19)

This implies that = (pvr?) = 0. (5.20)
The gases and plasmas in a convection zone will adhere to behavior as dictated by
hydrodynamical laws and hydrodynamics is invoked to understand how the gases behave during
convection where energy transfers occur in the form of heat through direct contact between gas
particles.

The rising hot plasma and sinking cooler plasma at the top of a convection zone creates
longitudinal waves (p-waves) that travel radially outward through the photosphere into the

chromosphere (next layer). The outward energy flux is defined as:
Fg = = pv2vs (5.21)

Where vy is the local sound speed and v,, is the velocity amplitude of the oscillation wave motion
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for particles driven about their equilibrium positions by ‘piston’ mechanism of the convection

zone (Carroll B. W., An Introduction to Modern Astrophysics, 1996).

pKT
_ v _ /V(m) _|ykr :
Vg = \/; = = « /T for fixed yu and y (5.22)

At the top of the convection zone, when the wave starts moving, the sound of speed is

less than the velocity amplitude speed: v,, < v,. The density of the plasma drops with altitude so
the wave speeds up as it passes through the ionized medium, becoming supersonic (v,, > v,) and
forms a shock wave. The shock front at the forefront of the shockwave heats the gas via
collisions and ramping up the ionization of gas behind the shock. The mechanical energy of the
wave is converted to thermal energy and the shock wave subsides. The motions of the
convection zone translate to heating of the gas in the chromosphere, or the next outer layer of the
atmosphere within the star or disk (Carroll B. W., An Introduction to Modern Astrophysics,
1996). This process neglects the influence of magnetic fields. The understanding of the shock
wave dynamics is significant when it comes to focusing on the source of heating that leads to the
generation and release of energy in the form of radiation, particularly x-ray radiation in the inner

disk.

Magnetohydrodynamics

To fully understand the pulsations of stellar surfaces, magnetohydrodynamics is

necessary to be brought into play. Magnetohydrodynamics is the study of the interactions

between plasmas and magnetic fields. The magnetic field's presence introduces the potential

106



presence of a second wave motion, akin to transverse waves moving along magnetic field lines

and serving as a restoring force due to the tension of the field lines. It is for this reason why it is
important to find where the magnetic field becomes significant and the Alfven radius would start
to disrupt the advection of the plasma. A magnetic field contains stored energy and the space of

the magnetic field has a magnetic energy density:

B2

u =
m 81

(5.23)
One way to increase the magnetic energy density is to compress a plasma of volume V
containing a number of magnetic field lines, perpendicularly to these lines, and the field lines

increase in density as a response. Mechanical work is done during compression, which implies

the existence of magnetic pressure.

The magnetic pressure is equal to the magnetic energy density:
B2
B = (5.24)

Waves are an important way to import energy; waves can propagate in magnetic
fields. .As a magnetic field line is displaced perpendicular to the direction of the line's original
position by an amount, a magnetic pressure gradient is created and the pressure in direction of
the displacement increases due to the increase in number density in field lines, while the
magnetic pressure in the opposite direction causes a tendency for the field lines to revert back to
their original positions and density. The magnetic pressure gradient is the tension that restores
the position of the magnetic field (Carroll B. W., An Introduction to Modern Astrophysics, 1996).

A disturbance in the magnetic field line can propagate along the line in the form of an

wave, called an Alfven wave. The speed of an Alfven wave can be determined:
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yP P B
vs = /Tg - vm~J; =l (5.25)

It turns out that v,,, = \/:%p. (5.26)

Thus, Alfven waves carry energy along magnetic field lines. A magnetic field varying in
time induces an electric field that creates currents in plasma and Joule heating will occur as a
result. Magnetohydrodynamics also contributes to the heating and overall temperature scheme
of the stellar atmosphere.

Motions of gas also contribute to MHD, and a rotating star with a magnetic field will drag
along its magnetic field lines and create a torque that serves to slow the star's own rotation. Its
solar wind, a large motion of gas away from the surface, serves to transfer angular momentum
outward. This can be applied for accretion disks as well, which I will show in Chapter VII

(Carroll B. W., An Introduction to Modern Astrophysics, 1996).

Magnetorotational Instability

A description for the MRI instability can reveal the physical reason in the Balbus-Hawley
model (Balbus S. a., 1991). Two fluid elements within a weakly magnetized disk are connected
by magnetic tension, which can be compared to a spring connecting the two mass elements
together. The innermost mass element moves faster due to a higher angular velocity than the
outermost element. The spring stretches and in response, the innermost element slows down
while the outermost element speeds up (Balbus S. A., 2003). The angular momentum is

transported by that method and energy is released.
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Given the magnetic field B, projected in the z direction, and Alfven speed va,

B2
Uy =z
41 p

(5.27)
The dispersion relation for perturbations in the magnetic field quantities are expressed in the
following equatioin:

dX ~ ellkx-wt) (5.28)
Where X is a preferred displacement in a direction, k and ® are wave number and frequency,
respectively, which serves as a solution to the following extended dispersion relation equation

that summarizes the contributed angular frequencies by different processes (Alfven, rotational):

d(Q)?

wt- kv, +w)?* + kvy(kvy, + 71 —

) =0 (5.29)
Q is the angular velocity of the fluid, and w; is the radial epicyclic frequency of the emitted

radiation. The equation yields an unstable result for w? < 0, on the condition that

d(n)?

kv, + 1 < 0. (5.30)

This gives the condition for occurrence of the MRI (Magneto-Rotational Instability) in weakly

magnetized disks:

an)
dar

< 0. (5.31)

This is fulfilled as the angular velocity decreases with radius in accretion disks.
It also can be shown that for the spring-like tension within the disk, that the Rayleigh

stability criterion can be replaced with a new condition:

dQ?
dinr

(5.32)

Most astrophysical disks do not satisfy this condition; hence they are prone to the
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magnetorotational instability (Balbus S. a., 1991).

The question remains whether MRI simulations validate the Shakura-Sunyaev viscosity
prescription. Recent simulations show that variations in the Maxwell stress 7.4y due to
turbulence by MRI instability are strongly correlated to a variation of ~ a *P.

The Shakura-Sunyaev prescription may be accurate when averaged over a long duration.
For accretion disks the role that angular momentum plays is critically important. There exists a
zone within the accretion disk where the specific angular momentum L of the accreted mass is
not smaller than the Keplerian angular momentum in the same area (Shakura, 1973):

L(x;) = Lk(x;). (5.33)
Lk refers to the angular momentum of a free particle on a circular geodesic orbit around the
central objects, as opposed to Bondi accretion, where the specific angular momentum
everywhere is smaller than the Keplerian angular momentum except in the innermost region of
the accretion disk. In the thick Shakura-Sunyaev disk case, the specific angular momentum is

equal to the Keplerian angular momentum everywhere within the disk.

In their paper, Shakura and Sunyaev made a set of assumptions that reduced the system of
thin disk equations to a set of algebraic equations (Shakura, 1973). The vertical and continuity
equations are algebraic, and the radial momentum equation becomes a trivial identity with the
assumptions that the radial pressure and velocity gradients vanish and the rotation is Keplerian,
asin 2 = 0 x". The algebraic angular momentum equation is set with the assumption that L;, =

Lyx(ISCO). The assumption fixes the eigenvalue of the system.
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Since the rotation is Keplerian, {2 is a function of ». The right hand side of equation
(5.29) represents the advective cooling, and is assumed negligible in the Shakura-Sunyaev
model. The first term on the left-hand side of the equation (5.29), which represents viscous
heating, is algebraic. The second term represents radiative cooling, and is also algebraic. All
these algebraic equations are linear in three radial ranges: outer, middle, and inner, in the
accretion disk.

The Shakura-Sunyaev model can be set in terms of polynomial formulae. The Shakura-
Sunyaev model yielding these equations is a basis of accretion disk theory and remains a
foundation in the subject. The Shakura-Sunyaev disk is comprised of cold gas that moves in
tight spirals that form Keplerian orbits. The Shakura-Sunyaev thin disk is relatively luminous
and has a thermal electromagnetic spectrum, which approximates a blackbody spectrum.

Novikov and Thorne worked out the general relativistic version of the Shakura-Sunyaev
disk model, which gave the formulae for the disk characteristic quantities in terms of the mass

accretion rate M, and viscosity parameter alpha (Novikov I. a., 1973).

The characteristic equations are broken up by region:

Outer region:

D = Dgas K =Ky (free-free electron opacity) (5.34a,b)
F = (7.0%10°° erg/em’)(M? M) r° B¢ "7 @ 5.34c
g
1 4 1 1 1 3
I =(4.0%10° glem’)(a m*"" m”"’) r* AT BT5 C2 D 20 £ 720 Q2o (5.34d)
H = (4.0510° em)(@" 55 m""? i ¥) 1% Az B30 €7D 40 £ 40 Qo (5.34¢)
p = (40107 glem’)(a 10 m "0 i) 115 4735 Bio €2 D w6 £ 0 Qo (5.34f)
3 e VR Y) /N Y i S S S
T = 2.0¥10° K)(as m™"” m*"") r?* A" B D20 E20 Qo (5.34g)
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-7

-1 -11 7 1
B(l _ ﬁ) — (3)(055 m-I/IO m_7/10) r*3/8 C/ZW B9/10 DE EZ Q% (534h)

1 1 2 1 1 1
== 10 (@ s ) 1 Az Bs Di€iQT (5.340)
Middle region:
D = Paas K =K (electron scattering opacity) (5.35a,b)
F = (7.0%10%° erg/em’/s)(m™ ) r«° B¢ 1?7 g (5.35¢)
4 4 1 4 3
I =(9.0%10° g/em’)(a”s m"> m*°) 17 B5Cz DT Qs (5.35d)
X 90 . 1/5) . 21/20 N T P
H = (1.0*10° cm)(a 1o m”"" m"?) r?"?" A B75C2D 75 £72Q5 (5.35¢)
7 3 1 1 2
p = (4.0%10" g/em’) (@ 10 m 7" m??) 1 A1 Bs DTS E2 Q5 (5.35f)
X5 25 L 910 e N e
T =2.0%10° K)(as m™"” m?’) """ B5D7s Q5 (5.35g)
-1 9 2 1 4
B —B) = (7*107)(ato m™" m-*°) r?"?" A~ Bs D5 €2 Q5 (5.35h)
1 1
% =2*10%m ") *? A~ B2 Dz 2971 (5.35i)
Inner region:
P = Prad K =K (electron scattering opacity) (5.36a,b)
F = (7.0%10°° erg/em’/s)(m™ ) s B¢ 7?7 @ (5.36¢)
1
I =(glem’)@ tm) 7 A2 B3C: £Q (5.36d)
g
1
H = (1.0%10° cm)(h) A> B3 CzD 1 E71Q (5.36¢)
= (2.0%10° g/em’) (@~ m m?) rP? At BS D E2 Q2 (5.361)
p
7 S VI Y, e i
T =(5.0410" K)(a sm™) r¥® A2 B2 &4 (5.36g)
-1 9 5
B —P) =4*10°) @+ m"* m?) ri® A~5/2 B2 DEIQ2 (5.36h)
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41 1 1

1 17 25 5
(teff * tes)z = (1*107)(a e m™""’ m?) r*7? A™% Be C2D2 1 Q2

The radial functions in the above equations are defined as such:

A=1+ a*zy'4 +2a*2y’6 B=1+ a*y'3
C=13y"+2a+y’ D=1-2y7 +aiy*
-3
E=1+4 a*Zy_4 —4 a*zy_‘s +3 a*4y_8 9, = 1ray

1
y(1-3y~2+2ay~3)2

Q=0,[y—yo— (S) aln (l) 3i-a)” In(X2y] -

y1(y1-y2)(y1-y3)  “y0-y1

yo
3(y2—a)? y-y2\ 3(y3—a)? y-y3
2 [yl(yz—yl)(yz—y3) In (yO—yZ) y1(y3-y1)(y3-y2) ln(y0—3/3)]

1 1
S

Where y = (%)E ax= %, Vo = (%)E, and y;, y», y; are roots of the equation:
y3 =3y +2a, =0
cos™1 a*—n']

Vi = ZCOS[

cos la+m
y, = 2cos |———

cos™?

Y3 = —2 cos[ . a*]

(5.36i)

(5.37a,b)

(5.37¢,d)

(5.37e,1)

(5.37g,h)

(5.38a,b,c)
(5.39a)

(5.39b)

(5.39¢)

(5.39d)

The Shakura-Sunyaev solutions are local solutions, which operate on the assumption that

the viscous torque goes to zero at the ISCO. The locations of the pressure maxima are situated at

the cusp of the disk (7c.y), the sonic radius, the point where the falling material goes supersonic

(7souna), and the center of the disk (7ccusr), for both the Shakura-Sunyaev and Novikov-Thorne
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models. The cusp is located at the ISCO and the angular momentum is Keplerian outside the
ISCO and constant beyond the ISCO. However, for real flows, the cusp, center of the disk, and
sonic radius are not one and same with the position of the ISCO and the angular momentum is

super-Keplerian between the cusp and the center of the disk.

The Shakura-Sunyaev and Novikov-Thorne models assume that accretion is efficient at
generation of heat via viscous processes at a specific radius, which are radiating the heat away
(Shakura, 1973) (Novikov L. a., 1973). The viscous heating is balanced by another factor:
radiative cooling, and no other cooling mechanism is necessitated up until a certain luminosity (L

~ 0.3 Lgqq), and the accretion rate is small.

At a high enough luminosity (0.3 Lg4,), and with the disk being sufficiently thick enough,
another cooling mechanism comes into play: advection.
Advection is the horizontal flow of thermal energy and gravitationally captured and falling
matter in towards a central object. The viscosity-generated heat doesn’t transfer energy into
photons and escape the disk fast enough so it gets carried inward by the motion of the gas. As
the luminosity increases, the advective cooling increases and for the significantly high luminous
cases, is comparable with the radiative cooling process. In these cases, the thin disk models are
inapplicable.

In the slim disk case, an additional problem emerges where the equations (5.34-5.36)
aren’t applicable and instead requires a system of two-dimensional ordinary differential
equations with a critical point; one where the gas velocity surpasses the local speed of sound at a

particular radius. In the limit of low accretion rates, they converge towards the solutions of the
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thin disk cases. Slim disks conform more to the physical world in contrast with thin disks in that
they extend all the way to the black hole event horizon as opposed to the ISCO in the thin disk
case. I will be using the thin disk model because the accretion rate is approximate enough for the

presence of QPO frequencies at the ISCO radius.

Slim disks deviate from the thin disk cases, in that they have different angular momentum
profiles where the slim disks rotate with super-Keplerian velocities and for higher accretion
rates, the difference increases significantly. The disk thickness also increases with the accretion
rate and as the rate approaches the Eddington limit, the height/radius ratio reaches a maximal
value of 0.3. The flux becomes modified by the advection and an increasing fraction of the

viscous heat is advected inward and released nearer to the event horizon of the black hole.

As advection increases, the conversion of gravitational potential energy into radiative flux
due to collision of particles decreases with increased accretion rates. The disk luminosity only
becomes slightly super-Eddington to an extent and does so due to the geometry of the flow being
constrained to the equatorial plane and not being spherical. The accretion moves inward along
the equatorial plane while the radiation can escape vertically.

Advection can fully determine the dynamics as seen in the ADAF, or Advection-
Dominated Accretion Flow, case (Narayan R. a., Advection-dominated accretion: A self-similar
solution, 1994) (Narayan R. a., Advection-dominated accretion: Self-similarity and bipolar
outflows, 1995) (Narayan R. a., Advection-dominated accretion: Underfed Black Holes and
Neutron Stars, 1995).

Almost all of the viscous energy is advected into the black hole rather than radiated. In contrast
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to the slim disk scenario, which is invoked for high luminosities, ADAF is used when the

luminosity and mass accretion rates are low.

Due to the lower radiative energy losses, ADAF objects are significantly less luminous
than thin disks or slim disks. They are close to the virial temperature, tend to be optically thin,
and quasi-spherical. Their spectra obey a power law and are non-thermal, with a strong
Compton component. They usually are used for studies in the Hard (high energy) x-ray case
seen in x-ray binaries.

The ADAF solutions were derived similarly to the slim and thin disk cases.

They are:
-1
v = (3.0 1010 ﬂ) aclrz (5.40a)
S
5 3
0 =(2.03+ %) 2m-1r: (5.40b)
20 3
e’ =(9.0x =) 3172 (5.40¢)
-5 1 3
p= (1.07 * 13739) atc17c3zm imr 2 (5.40d)
o154y 1 s
P = (9.67* S;’”) a “cl ™ c3z2m mr 2 (5.40¢)

1 1 5

1 1 1 1
B=(493x108G)az(1 —fm)zcl z2c3sm zmmzr s+ (5.40f)

21 1

g+ = (294 =20) e'c3am 2 (5.40g)
1

Tes = (L.75) a el tmr™2 (5.40h)

The variable, v, is the radial infall velocity, g+ is the viscous dissipation of energy per unit

volume. The constants ¢/, ¢2, ¢3 are as follows:
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cl = 5+2€ g(a,e’)

3a?

1
2

[ 2€'(5+2¢€") ,
c2 = (T g(a, e ))
_ 2(5+2¢))
~ 9a2

c3 gla,€)

€' =(1/faaw (5/3—v9)/(vg — 1)

1
18ar? ]2
(5+2€')2

g(la, €)= [1 +

(5.41a)

(5.41b)

(5.41¢)

(5.41d)

(5.41¢)

faav 1S @ parameter, which is the fraction of viscously dissipated energy that is advected. 7 —

faav 1s the fraction that is radiated locally energy.

Vertical Pressure Balance

This is important because a balance between the vertical pressure force and the tidal gravitational

force (difference in gravitational strength at opposite ends of a region) of the compact object

determines the thickness of the disk, from the condition of hydrostatic equilibrium as defined by

equation (2.23).

dp _ __ —poGMz
a4z~ Pod =

r3

This yields a general solution:

=S
K0J

Q
2%
N—
N
IR
o

(5.42)

(5.43)

1

where 4 is the half thickness of the disk, ¢y 1s the sound speed of the gas, and () = (%)E, the
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angular velocity of the gas.
Notice that there’s a scale between both the height and the radial extent of the disk and the sound

speed and the angular velocity, respectfully:

1
Cs h Cs [ r

h=2 5 =52 So () (5.44)

r rQ v GM

The ratio of the sound speed to velocity also scales to the ratio of height over radius of the disk.

For a geometrically thin disk, 2 << 7.

Viscous Processes

The sources of viscosity as well as turbulence within the plasma flow are thought to be
due to chaotic magnetic fields. A typical star will have a magnetic field of By ~ 100 gauss.
Plasma flowing off a secondary star into the disk will ferry field lines across to it. The deposited
magnetic field will be chaotic due to the facet of no preferred direction in the plasma advected to
the disk. Disk turbulence will contribute to the overall chaoticity of the magnetic field.

The shear of the gas flow will amplify the magnetic field at a rate:

dB¢
dt

= 0;;B, ~ 0B, =0 (5.45a,b)

corresponding to an increase of B by amount B, for every electrical current circuit around the
compact object. The growing magnetic field will be offset by reconnection of field lines at the
interfaces between chaotic cells, pinch-off of field lines, and escape of “magnetic bubbles”.

The field can be described by pressure and viscosity:

2
td < pmag = = (5.46)

81
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This becomes important when it comes to examining the magnetic field of the inner disk. The
shear stress tg, will generally be smaller than magnetic pressure and the shearing of the field
will be projected into the ¢-direction. The magnetic pressure cannot surpass the thermal
pressure:

p™ag < ptherm = poc2 (5.47)
The field lines would extend out of the disk, reconnect and escape. The magnetic viscous stress
will satisfy the following equation:

tyr? S P = poct (5.48)
where ¢ is the sound speed, and p is the pressure.

The coefficient of dynamical viscosity associated with the turbulent gas is:

N = PoVturb?turp (5.49)
where v, 1s the speed of turbulent motions relative to the mean rest frame of gas, and €
being the characteristic size of the largest turbulent cells. The size of the turbulent cells define
how far a wave can propagate before it is dissipated.

If the turbulent speed exceeds the sound speed, shocks develop and convert the turbulent energy
into heat. Thus it is necessary that v, < c;. The turbulent scale is limited by the disk
thickness (height) : €4y < h.

The shear stress due to turbulence is limited by:

turb ~

tor = N0 < (PoCs M) = pocé = p (5.50)
The shear stress is important because it can play a significant part in the suppression of any
hotspots forming in the inner disk and lend further credence to a relativistic resonance model in

terms of describing the inner disk of accretion disks.
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Radiative Transport

Viscosity-generated heat has to be transported to the surfaces of the disk before being

radiated. The disk is optically thick, so the energy transport can be calculated by using the

diffusion approximation reduced to Newtonian form:

£ frar] = oo

The equation of transport's solution is:

aT* = KYF

(5.51)

(5.52)

where K is the average opacity, Y is the surface density, and F is the flux. The dominant opacity

source for the outer disk will be free-free transitions and by a comparable magnitude, bound-free

transitions. For the outer regions,

2
— — T\ 3 2
K ~ Ky ~ 0.64 x 1023 <%> (3) *=

cm3

For the inner regions, for electron-scattering opacity:
= = cm?
K =~ K,s =~ 0.40—
g
For the majority of the disk, gas pressure dominates over the radiation pressure:

In the innermost regions of the disk with an escalated temperature, radiation pressure is

dominant:

(5.53)

(5.54)

(5.55)

(5.56)

The laws of conservation (rest-mass, angular momentum, radiative transport, energy,

120



vertical pressure balance, magnitude of viscosity, and magnitude of opacity) govern the steady-
state disk structure and are described in the next section. They yield the characteristics and
predictive behavior of accretion inside the disk and depict the overall picture of the accretion

disk. They serve as the foundation of accretion disk theory.

Conservation Equations

The conservation of mass and conservation of energy-momentum equations can used to describe
the accretion disk structure:

(put);, =0 Ty =0 (5.57a,b)
Where p is the rest mass density, u* is the 4-velocity of the matter, and T}}' is the stress energy
tensor. They lead to further definitive equations, for state, prescription of viscosity, opacity,

conductivity, etc.

(TV#)GEN - (TV#)FLU + (TV#)RAD + (TVM)VIS + (TVM)MAX (5.582)
(TV“)FLU = (pu")(Wu,) + 8h'p (5.58b)

(TV#)RAD = utF, + u, F# (usually set to 0 in models) (5.58¢)

(T )ws =v,0!  (usually set to 0 for thick accretion disk models) (5.58d)
(T8),,0 = b? (1 +38L) = bb, (5.58¢)

Where W is the enthalpy, p is the pressure, F* is the radiation flux, v« is the kinematic viscosity,
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and aff is the shear, and b* is the magnetic field, measured in the rest frame.

The fluid part is expressed by:

(T8),y = (U Wt,) + 64p (5.59)
where p is the conserved mass density, ¥ the enthalpy, and p the perfect fluid isotropic pressure.
They are linked with other equations by the first law of thermodynamics:

dU =TdS — PdV (5.60)
which becomes: de = Wdp + pTdS (5.61)
where T is the temperature, S the entropy per unit mass, and € = pc? + I, being the total energy
density and /7 the internal energy density;

u==2 w =2 (5.62a,b,c)

1
V= -
p P

p

Thick disks and Tori

I also discuss thick disks and tori since the conditions for advection will be modified and
this would have an effect on the occurrence of quasi-periodic oscillations. Some collaborating
physicists, utilizing a set of equations, created a method of recreating perfect fluid equilibriums,
for infalling matter revolving around a Kerr black hole in circular orbits. For the stress energy
tensor and 4-velocity:

T, = (pu")(Wuw,) = p &, (6.81)

ut = A"+ Q&Y (6.82)
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and deriving from the condition VuT\fl =0, (6.83)

Lv,Q 1
V,InA— T ;\Z,p; (6.84)
For the perfect fluid case where S = 0 and Su* = 0, (6.85a,b)

the equilibrium condition takes the case that:

Vyp v, Q0
—=V,InA+
p+e v 1+1Q

(6.86)

For a baryotropic fluid p = p(€), the left-hand side of the equation is a gradient of a scalar
function, so the right-hand side must also be a gradient of a scalar, which it only is true if the
time scale depends on the angular frequency:

[=1(Q) (6.87)

This condition leads to a set of integrability conditions, known as the von Zeipel theorems,
derived by Boyer, Bardeen, Abramowicz, Komissarov among others.
Within real flows, viscous dissipative processes with timescales longer than the dynamical
timescale define /.

Paczynski assumed a result / = /(Q), as noted above, which bypassed the dilemma of
basing it on unsure assumptions about viscosity using a free function. Models based on a
selected [ behaves more physically realistic than those based on a free function a(r,0) =

constant.

Solving for Q:

— Qg¢¢(r19)+gt¢(r19))
: (Q N Qgep(T,0)+ge(r,6) (68821)

Q=Q(r,0) A(.0) = (gre + 2Q0:p + Qg ) 1=1(r,0) (6.89b,c,d)
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In Boyer-Lindquist coordinates, the equipressure surface equations can be recast in terms of
p = p(r.0) = constant, » = r(8), and r(8) given by:

dr dgp _ (1-10)0g In A+10gQ

Ao~ 9,p  (1-10)d, InA+13,Q

(6.90)

With Q(1,0), A = A(1,0) , and I(r,0) given, the right-hand side of the equation takes the form of a

known function, (r,0):

f(r,0)=— (6.91)

dar
e
This function can be integrated to obtain the equipressure surfaces p = p(#,6) in the radial form r
= r(0). Surfaces of constant pressure within a thick disk can be found from the relativistic

version of the effective potential ¢:

¢~ in =y (6.92)

where ¢;, is the potential at the boundary of the thick disk. With constant angular momentum,

the potential reduces to:

¢ = In(—u;) (6.93)

and given that / >/,, the potential ¢»(r, 8) will contain a saddle point ¢,y at 7 = .y, on the
equatorial plane (6 = g). A parameter can be defined as the potential barrier at the inner edge of
the disk:

Ap = din — ¢cusp (6.94)

If Ag < 0, the disk resides within its Roche lobe. The disk is marginally stable against local

axisymmetric perturbations and unstable against low-order non-axisymmetrical perturbations.
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This would be significant in descriptions of undulations in the matter flow across the Roche lobe

in the inner disk.

Papaloizou-Pringle modes

If Ag > 0, the disk overflows its Roche lobe and accretion accords across the cusp via pressure-
gradient forces. The accretion is not reliant on dissipation of angular momentum, thus viscosity

isn't important here. The accretion neutralizes the growth of the Papaloizou-Pringle instablility.

Equation of State

The equation of state is that of an ideal gas plus that of radiation:

p=2K 4 g1t (5.63)

umy
where K is the Boltzmann constant, 7 the temperature, p the density, u the average particle mass,
and my the atomic mass constant.
There are two different temperatures that are important in a plasma; temperature 7; and

molecular y; of ions, and 7, and p, of electrons. The pressure for the plasma is:

pP=pitpe=tt4 Ll (5.64)

Wimy  UeMmpy

The perfect fluid case is described by the fluid part of the stress energy tensor and is the only

essential description for the fluid part and all other parts vanish. Since V), (Tv” n“) =0=
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7 (1€ ); (5.65)
The following equations are derived which describe the Bernoulli function and angular
momentum of the plasma:

B =—-W(un) = -wWut I =W(Wué) =u® (5.66a,b)
where B is the Bernoulli function, and 7 is the angular momentum. Their ratio is a constant of

motion:

L==-12 (5.67)

J
B Ue
This is analogous to the specific angular momentum, which is also a constant of geodesic

motion.

The radiation part is expressed by the equation:

(TV”)RAD = utE, + u,F# (5.68)
with F* being the radiation flux.
With vertically thin disks (height 4 << r), radiation is presumed to be emitted from the

equatorial plane (6 = g), and the vertical component of flux expressed as F. The total radiation

flux Fiy (in ergs) is emitted from both the upper and lower surfaces of the disk and expressed as:

Fior = 2Hf f being the radiation emissivity (5.69)
The emissivity is expressed by: (5.70a,b)
; F for + fsynen + fsynenc + Forc; Optically thin case
= —_— = 4
2H 830131; ; Optically thick case

The first case describes the plunging region since it is optically thin while the second case

describes the disk since it is optically thick.
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In the intermediate case the solution used is (Hubeny, 1990): (5.71)

46T [37 46T )
f= He 7+\/§+Te(fbr+ﬁs‘ynch+fbr,C+fsynch,C) l
The Planck mean opacity and radiation pressure is expressed as: (5.72a,b)
H fH 2
Tabs = W (fbr + f:s‘ynch + fbr,C + fsynch,C) br = 2_C (T + ﬁ)

The Bremsstrahlung emissivity is caused by ion-electron and electron-electron collisions:

for = fei + fee (5.73)
The ion-electron part is expressed as (Svenson, 1982): (5.74a,b)
(

N[ =

0
foi = noflopcarmyc? X J 4(71_;) (1+1.78165°%); 6, <1
ei — lte TtUfllte

'2—;[ln(1.12396 +048)+15 6,>1
With 7, the electron number density, 77 ion number density averaged over all species, oy the

KT,

—» the dimensionless

Thomson cross section, ay = 1/137, the fine structure constant, and 6, =

electron temperature.

The electron-electron part is expressed by (Stepney, 1997): (5.75a,b)

20 3 3
foo = n2cr2mociay x WE(M —31%)6? (1 +1.16, + 62 — 1.2593); 6, <1
ee — e e e

240,[In(2n6,) + 1.28]; 6, >1

2
Withr, = # being the classical radius of the electron, and n = e7YE = 0.5616.
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The synchrotron emission of relativistic Maxwellian distribution of electrons is given by

(Narayan R. a., Advection-dominated Accretion. Underfed black holes and neutron stars, 1995):

_ 2 d [3eBOZxmy,
fsynch 302 tley,

]; only valid for 8, > 1; (5.76)

4TTMeC

which works for most cases.

B is the equipartion magnetic field strength, and x,, is the solution of the transcendental equation

(5.77):

7 17 5
1 2.49x10~10)(222e")( x 610.40x, 12+0.5316%,,3
1.8899x3 5 " " i
e1:8899xy, — (5.77)
931(2(%)

with K, the modified Bessel function of the 2™ kind.

Comptonization of bremsstrahlung and synchrotron radiation is expressed by (Esin, 1996):

. 3Mm 3—(n3+1)_398—(?73+1)
forc = for lnl - [ — ] (5.78)
n3
fsynch,C = fsynch [Tll — 12 (z_e) ] (5.79)
. X UK
Withn=1+n; +1n, (9—) ;  Compton energy enhancement factor;
(5.80)
h hve (x1-1)
X = m:;z X = m:cz N = x—lz—);llxz (5.81a,b,c)
x; =1+ 46, + 1662 N, = ;%3 (5.81d,e)
=1 — g Tes = -1 — lnﬁ
x,=1—e€ N3 =-—1 nxs (5.811,g)
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The stress part is described by the equation: (Tv“ ) =v,0) (5.82)

vis
The shear tensor is defined as: Opy = (V(uuv) —0g,)1 (5.83)
Where (X*), = X*(65 + utu,) for objects projected into (5.84)

instantaneous 3-space perpendicular to u*.

The vorticity is: wyy = (V[u]) 1 (5.85)
. . . v,ut

The expansion variable 0 is: 0 = . (5.86)

In the case of purely circular motion, ut = A(ni + Q¢ i) (5.87)

The quantities become: 0=0 oy = %AW}ZGHQ Wy = %Azlpzauf

(5.88a,b,c)

U? = gfp — 8uBoe; X*) 1u, = 0; (5.88d,e)
So in the case of purely circular motion, o0,,n* = —Q0,,¢"  w,NY = —Qw,,, ¢ (5.89ab)
The viscous stress tensor is proportional to the shear (Landau, 1959): S5 = vpal' (5.90)

The rate of heat generation by viscous stress in volume V is expressed as:
Q* [Shalav; (5.91)
The rate of viscous angular momentum and energy transport across surface S with unit normal
vector N¥ is expressed as: Js = [ SHEYVN,dS B, = [ SInVNHdS (5.92a,b)
In the case of purely circular motion,
B, = — Q0 J, (5.93)

Where ()5 = Q averaged on the surface S.

The Maxwell part is expressed by the stress energy tensor for the electromagnetic field:

(18,4 = b2 (u# +385) = b¥b, (5.94a)
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b* =u¥ * EV magnetic field in fluid rest frame (5.94b)

and * F! is the dual of Faraday tensor. Due to the fact b*u, =0, (5.94¢)
the dual of Faraday tensor becomes: * E' = b*u, — b,ut (5.95)
The Faraday tensor satisfies the homogenous Maxwell equation * E!';, = 0. (5.96)

The spatial component yields the induction equation and the time component yields the

divergence-free constraint.

With these physical equations, one can recreate the conditions of an accretion disk and
obtain relevant physical information about the events that occur in the gas and dust, and the
central objects. The accretion disks can also provide information about the conditions of the
massive compact objects that harbor the disks, including the strong gravity from the compact
objects. The effects of General relativity can be confirmed through signs revealed by the gas
within the reach of the zone of influence. In the context of the Relativistic Resonance model, the
epicyclic frequencies that are a result of General Relativity and would not exist in a strictly
Newtonian framework. The double QPO signal would serve as a great test of unique effects due

to the warping of space-time.
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CHAPTER VI

ACCRETION RATE

I delve into the accretion rate since it is an important physical parameter that dictates the
flow of material in accretion disks. It is also loosely dependent on the value of the adiabatic
index whose significance will become apparent when I discuss the diskoseismological approach
to link the QPO frequency to the adiabatic index. In this way I can determine the value of the
adiabatic index at a specific radius, in Chapter IX. The accretion disk system comprises of a
compact object such as a black hole or neutron star and at least one companion star in a binary
system. Accretion occurs when the companion star overfills its Roche equipotential lobe and
loses mass to its dominant partner through the inner Lagrangian (L1) point. Since the gas has a
higher angular momentum, it will not accrete directly to the compact object but fall in narrow
streams of gas, forming an accretion disk. The gas moves in Keplerian orbits and slowly loses

angular momentum through viscous processes that cause the gas to spiral in at a faster rate.

As the gas nears the compact object, it heats up and the matter becomes ionized. The
disk terminates at the ISCO (Innermost Stable Circular Orbit) because the particles can't travel in
stable circular orbits behind that point. The orbits of the falling particles become ellipses that
precess around the compact object’s center and these orbits overlap with each other and result in

collisions and dissipating the lateral momentum, causing the particles to fall inward at a faster
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rate. The matter also heats up as a result of the collisions. At this point, there is nothing to stall

the particles' fatal fall through the event horizon.

For a Schwarzschild black hole, all particles with angular momentum per unit mass less

than L < 2 1; c will eventually be captured by the black hole (Novikov I. a., 1973):

_2GM

o= < 2(2)c = o

c2

(6.1a,b)

c? c
Inside the accretion disk, angular momentum has to be transferred away outwardly or
otherwise dissipated to maintain the continuous infall flow of matter. The condition for capture

can be expressed as such:

L c 4GM
b= - < beapture = 275 (Z) = Vo (6.2)
The “capture cross section” of the black hole is:
2 2 ( ¢ \? 26M\? [ ¢ \? _ 161G2M?
o= T[bcapture = 4-7'[7'6 (Z) = 47'[( o2 ) (Z) = W (63)

In case of the Kerr black hole, the capture cross section is of the same order of magnitude. The
rate at which the black hole gains rest mass per unit time crossing through a sphere of r >> beapture
1s:

4mrZpooc?

M, = (p‘:’&) A2 AQ = P Voo 0 = (6.4)

3 Voo

Recast in typical astrophysical units (Novikov I. a., 1973):

d(II\:I/I_O) _ 0 M z Vo -
ey (w5E) 6 () 03

1010yrs
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Gas accreting into a black hole, containing magnetic fields, electrons, and ions, interact
strongly which causes it to obey fluid-dynamic laws as opposed to laws of non-interacting
particles.

We use a hydrodynamic description to discuss the accretion. The black hole is at rest
with respect to the gas, and in this case, is a Schwarzschild black hole, thus it is spherically
symmetric. The gravitational field at distances greater than the black hole’s radius governs the

basic characteristics of the flow, including the accretion rate.

The flow at small distances is supersonic and is causally detached from the flow
conditions at large distances. The mass flow and other quantities at large distances can be treated
using the Newtonian treatment. The motion of the gas is assumed to be adiabatic. Deviations
from adiabatic flow (due to radiative losses and transport) can be compensated by modifying the

adiabatic index. The flow is governed by two equations: conservation of rest mass and the Euler

equation.
M, = 4nr?pu (6.6)
du_ _1dp_GM
ar pdr 12 (6.7)

where M, is the total rate of accretion of rest mass, u is the radial velocity, and M is the mass of

the black hole. Pressure and density is assumed to follow adiabatic law: P = Kp¥
(6.8)

and speed of sound:

a, = |2 (6.9)

133



In order to find the accretion M, and the distributions of density and velocity (p(r), u(r)) in the

flow, we use the Bernoulli equation in this form:

1 1 GM 1
~u? + — a? — — = constant = —a} (6.10)
2 v—1 r v—1

(where a; is the speed of sound, not ¢, and a, is the speed of sound at infinity).

The enthalpy is written as:

W = (6.11)

The law of mass conservation is recast with density written in terms of the sound speed:

2

Mo (B (6.12)

T 4mper? \ a

The accretion rate M, is unknown at this point but once determined, the radial
distributions of density, sound speed, and velocity can be determined as well.
The mass flux is determined by invoking the two equations together. The Bernoulli equation for

fixed r defines an ellipse, and the conservation of mass equation for each value of r defines a

2
hyperbola of power, uar-1 = constant. Invoking both equations for every value of r, with two

unknowns, u and a, gives us two overlapping functions for u and a, for each particular radius.
Solving the two equations finds the intersection point between the ellipse and hyperbola for each

radial value.

In the (4, a) plane, the curve u(a) is found parametrically for the intersections of ellipses

and hyperbolae. Each pair either has two intersection points, one point of tangency, or no
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intersection. If there is no intersection for either curve, there is no possible value of u(a) at that
radial value and thus there is no possible flow. There are only two possible solutions: both
curves intersect twice for all values of r, corresponding to two families of intersection points, or
both curves intersect twice for all values of r, except for one: at » = r,, one point of tangency; the
sonic point where the flow goes from subsonic to supersonic.

To understand how the mass accretion rate is arrived at, we need to explore the physical
context of the equations. There exists a spherical inflow under the influence of gravity. The
flow starts off at rest at infinity and starts falling inward at a subsonic speed. At some point
during the free-fall, there will be a sonic transition where the flow breaks the sound speed (goes

from subsonic to supersonic speeds).

The conservation of mass and steady momentum equations leads us to the sonic point or
the sonic radius. The accretion rate M, can be calculated by calculating the flow velocity at the

sonic radius (transition radius, or sonic point) ;. The Euler equation is recast in the form:

i _atdp M (6.13)

The conservation of mass equation is differentiated with respect to » and taking 3—1: from Euler's
equation:
M = 4nr?pu, u being the sound speed (6.14)
V * (pu) = 0 - (4nr?)(pu) = M = constant (6.15)
The steady momentum equation gives us:

(u*V)uz—% Vp — Vi (6.16)
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du 10p GM

Which leads to: u— =
dr p or T2

And the pressure gradient gives the following relation:

1dp _10pdp _ ,10p
par_papar_ S por

Returning to the conservation of mass equation,

9 (2 _ 2,0P , 2 Ou _
ar(rpu)—0—>2rpu+ruar+rpar—0

10p _ 2 10u

p or r  uodr

This leads to:

u 1dp GM _ CZ (2 1 6u) GM where c. = a
or par r2 S\r " uor r2 s s
dp (uz—az) _ GM n 2u?
dr p - r2 r
The sonic point exists where a = u, so,
2u? _ GM 2 2 GM GM
- =2 T U =as=_- s =22
27 2a2

(6.17)

(6.18)

(6.19)

(6.20)

6.21)

(6.22)

(6.23a,b,c)

Taking this result with Bernoulli's equation, we get the speed of sound at 7, in terms of speed of

sound at infinity:
1

_ _ 2 \2
as = Ug = A E

The sonic radius is found by using the last two equations (6.23c and 6.24) together:

__5-3yGaM
ST 4 a3

The accretion rate can be calculated now (Novikov I. a., 1973):

M, = 4mu,r? (:ll—s)y_1 Poo

2
mpcC )2
KTwo

3

_ 4Y2aG’M?pe 2

= = ar; CPo
0
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With a a constant of order unity depending on y;

=) 1.5fory =1
T 2\ y-1 =
ayz T3 5
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Figure 15. Alpha coefficient versus adiabatic index.
The alpha coefficient is plotted versus value of adiabatic index y. It decreases with increasing
value of y.

Around a temperature of 10* K, the gas will be ionized partially so in compression,

energy will be diverted into ionization rather than heating the gas itself. The adiabatic index
outside and near the sonic point will be below that of ionized gas (y < g) and y = 1.4 would be

more realistic (by Thorne’s suggestion, (Novikov I. a., 1973)) for use in future equations.
In the isothermal case, the sound speed c; is constant, so the temperature determines rs. The

density at the sonic point is:

ps = (6.29)

- 2
ATTr“Cg
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The Bernoulli equation gives us:

(6.30a,b)

GM
— = 2c?
Ts

2wt ctinp - =2c24+ctinp, -
2 r 2
(6.31)

For a given density at infinity, we can find the sonic density p,; and with a given black

hole mass M and temperature 7, we can determine the accretion rate. As r approaches zero, the

flow velocity approaches a particular value: u? — ZGTM, which is the free-fall velocity for an unit

3

that p,, = pse 2.
The radius of influence is where the black hole's influence diminishes and the density and

velocity values approach their values at infinity:
L)Z — (1)
T2 GM \5-3y

_2GM_r(
=15 (o

i ago
= (—)n =14, 1,=10
=) fory=14, n=107

Radius of Influence per adiabatic index
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Figure 16. Radius of Influence versus adiabatic index.
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mass element, and as » approaches infinity, the flow velocity will approach zero, which means
(6.32)

(6.332)

(6.33b)



The radius of influence is plotted as a function of the adiabatic index, y, in terms of the sonic
radius. The higher the value of y, the farther out the radius of influence extends out from the
central object.

At the radius of influence, the gas falls with a velocity approximately equal to a., and the
density and sound speed increases from that point inward. When it passes the sonic point, the

gas is in a near free fall;

1 1

u= (ZGM)E = Qg (%)E forr <rg (6.34)

r

So the conservation of mass equation can be written as;

3 3 3

_ Mo _ a2 LAY r\2
P = dreu = am P (r) = 0200 (r) (6.35)
3
fory = 1.4, Density coefficient = i—): (6.36)

Density coefficient per adiabatic index ¥

& ~
020 ~
G5 ~.
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Figure 17. Density coefficient versus adiabatic index.
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The value of the density coefficient is plotted as a function of adiabatic index y. Aty = 1.4, the
density coefficient is approximately equal to 0.2. The value of the density coefficient drops with
increasing adiabatic index value. The adiabatic index value can give us the distribution of the

density in the disk when using the conservation of mass equation (equation 6.6).

With adiabatic compression, the temperature rises as a result (Bondi H. , 1952):

S\ -1 -
= (92 Ti)2 ~ i)z
atr<r, T= < ) T, (%) =057, () (6.37)

4m r

Knowing the adiabatic index at the sonic point gives the temperature distribution at that radial

location. The accretion rate is:
. 2 C 3
My = r2¢pe, (Z) (6.38)

3

2 _3
~ 119) (M Peo Qoo Too \ 2
- (1 x 10 s) (M©) (10—24—CT~;’13> (10—24—Ci3> (104 K) (6.39)

—d(Ml> = - M ? Po Qo -
or d(i) = (10 5) (%) <10—24L> <10k7m> (6.40)

3
101075 cm

If in the case of the double QPO signal, the ISCO and the sonic point are coinciding at the same
radius, the QPO signal, when using the diskoseismological model discussed in Chapter VIII,
yields a value of the adiabatic index value, which also can provide the mass accretion rate at the

ISCO as well.
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Magnetic Influence on the Disk

In this section, I discuss the magnetic influence on the disk which is relevant in
discussing the rate of accretion in the inner disk. In the disk, for temperatures above 10* K, the
magnetic field lines will be frozen into the gas as it accretes towards the compact object (black

hole or neutron star). The strength of the typical intergalactic field is generally about 10° G, and

2
its energy density generally about ~ IZ;: ~4x 10714 %. At large radii, the field may be of

small magnitude that its influence would be negligible.

The magnetic energy in a given fluid element will scale as

BZ 5

Emag X o *172 (6.41)

as the gas crosses the sonic point, the magnetic energy will increase as to become competitive

with the thermal energy in the fluid element:

3
Eihermal = 2 * (;) 7’;—2 * (mass of element) « r(_f)(y_l) (6.42)

At this point, the magnetic pressure must affect the flow and it will deviate from the usual

hydrodynamic laws (Novikov L. a., 1973).

The scale of interest for determining the accretion rate is the sonic radius:

5-3y GM M T \1
s = Tyg = (1013cm) (@) (104 K) (6.43)
At the sonic radius,
-1 -1
Ap(rs) M Poo Teo \°
07 (@) (10—24—Ci3> (7o) 644
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The gas with no other external influences will not behave as a fluid near and beyond that point.
The interstellar magnetic field can preserve the hydrodynamic approximation in that it deflects

protons away from a direct path in a distance of the order of the Larmor radius:

A, =" = (1 x 10%m) (== )_1( ! )% (6.45)

eB 1076G 104 K

This remains true even as the thermal pressure of the plasma overwhelms the magnetic
pressure and the field gets dragged along with the spiraling gas. The Larmor radius is small in
comparison to the sonic radius so the hydrodynamic approximation is a sufficient description for

the gas.

As the gas nears the black hole, relativistic effects will modify the Newtonian scheme of

accretion. Starting with the equation for free-fall from near rest for » >> r,;

(ﬂ)2 =2 =M (6.46)

dt r

and using the conservation of rest mass equation,

d o
am =g p (d—:) = M, (6.47)
The density of rest mass varies as:
. 1 _3
_ M r 2 -12 9 T 2
p = (zam) = (6x 1077 5) () (6482)
6.0x10'9% r —; i (M r —;
= o (£) = @3x 1075 (55) (5) (6.48b)
The temperature approaches its Newtonian form as such:
T = (1012 K) (ri) (6.49)
G
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A rotating black hole will cause a dragging of the inertial frames that will pull the gas
falling towards it in orbital rotation around the black hole. Its angular velocity to an observer at

infinity will approach the angular velocity at the horizon (Novikov L. a., 1973):

-1
N-0y=—5—= c _ (1—05) (l> fora =M (6.50)

rh+a?  2GM T \s Mg

with a = J/M, where J is the angular momentum per unit mass.

The angular velocity scales as 1/M, so frequencies of particles near the event horizon will
be moving at the angular velocity near or approximately that of the black hole at its horizon,
which would be scaled to the inverse mass of the black hole as well. The brightness of the

accretion disk will be modulated with a period as this equation indicates:
_ Am -4 (M
P="T>(107s) (M©) 6.51)

due to the addition of the orbital period and the light travel time between the radius location of
one spot at the start of a period to the new radius at the end of the period. 1. D. Novikov and K.
S. Thorne anticipated the existence of quasi-periodic oscillations in their 1973 publication

(Novikov . a., 1973).

Accretion onto a Kerr Black Hole

2GM
c2

At aradius r larger than » = , the kinetic energy is larger than the potential energy g

so the gravity of the black hole does not affect the flow of the gas. At the radius r = ZuGZM, the

o0

gravitational effect becomes significant. Due to the flow being supersonic, the gas will react to
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the gravity like non-interacting particles--its pressure will have a negligible effect. Its enthalpy is
negligible in comparison to its kinetic energy. The flow lines will be hyperbolae.

After passing around the black hole, the particles' trajectories will intersect, culminating in
collisions. In the gas-dynamic case, increasing pressure will interfere with the collisions, which
cause flow lines to stop intersecting. A shock front develops around the black hole where outside
the shock front, the trajectories will be hyperbolae.

The shock front is located where the kinetic energy is equal to the potential energy (Novikov I.

a., 1973):

t = ¥ with £ being the characteristic size of shock front (6.52)

ub
Within the shock, the gas will have most of its sideways momentum dissipated and its
forward momentum unaffected. Beyond the radius of the shock front, the gas will fall directly
into the black hole. The dividing line between escape and capture is defined as the impact

parameter, begpure-

The shock is confined to the line of the impact parameter and the value of beapre Will correspond

to an orbit where the following condition is met (Hoyle, 1939):

2GM

1 GM
EU,? = 7 at y = 0 bcapture = g (653a,b)
The mass flux at large radii is po, U, SO the accretion rate is:
. 4mG*M?p
M, = (nbgapture)poouoo = Tw (6.54)

According to Bondi and Hoyle, the accretion rate varies by a factor of 0.5 to 1.0 through

careful calculations (Bondi H. H., 1944). With the rotating black hole, it differs from the
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stationary black hole with the speed of flow u,, and a numerical coefficient of order unity.

Where sound speed a., is approximately equal to speed of flow u, a hybrid formula is invoked

(Bondi H. , 1952):

2
(a0 ) (oo
M, = M Pe S S (6.55)

2 232 2
(uoo+aoo)2 oo 2 oo 2]2
+

. M o
Isolated black holes have low accretion rates (~ 1071° y—? ), and low luminosities

(~ 1031 %) from their accretion disks. Black holes in binary systems have a more steady mass

. e r _cM
accretion rate per unit time from a secondary star, ejecting mass at rates of 10 5 y—?, and as a

consequence, have definitely higher luminosities (10°7 ergs/s). An extreme example is a
supermassive black hole that are found in the centers of galaxies, and due to its high mass and

gas density in its proximity, will accrete at a much higher rate. Its accretion rate will be
about 1073 y—?, and its gas emitting a luminosity of 10* ergs/s. Accreted mass will have higher

angular momentum in binary systems and therefore depend on viscous processes to dissipate the
angular momentum to veer away from Keplerian orbits. In those systems, the higher density of
gas helps provide these viscous processes, which also causes the gas to heat up and emit
radiation. Novikov and Zel'dovich and Shklovsky were among the first ones to propose that
accretion onto black holes and neutron stars would produce x-rays (Novikov 1. Z., 1966)

(Shklovsky, 1967).
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Luminosity of an Accretion Disk

The luminosity also depends on the accretion rate. The Euler equation presents a
qualitative picture of the deposition of gas into the disk and redistribution of angular momentum
within the disk. The majority of the gravitational energy is released and the majority of the
luminosity is emitted from the inner disk in contrast to the outer disk where angular momentum
is dissipated. An understanding of the disk structure helps to clarify the events associated with
the phenomenon.

Viscous stresses dissipate angular momentum from each gas element, enabling its path to
turn into an inward spiral towards the compact object. The angular momentum is redistributed
from the inner parts to the outer parts of the disk, its redistribution being mediated by the viscous
stresses.

The shearing orbital motion of the inner disk gas, moving against the viscous stresses,
heats up due to frictional heating. The heat reaches the point where the gas cannot contain it so
the heat is radiated away through the broad sides of the disk.

The total energy emitted by an unit mass of a gas element moving through the disk must equal
the gravitational binding energy of the unit mass at the point it reaches the inner edge of the disk,

or the ISCO;

Eping = % (r—;’) ~ 10~* for a white dwarf (6.56)

=~ 0.05 for a neutron star

With a black hole, the inner edge is the ISCO where the orbits remain Keplerian up until that

point;
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Eping = 0.057 for a Schwarzschild black hole

~ 0.42 for a maximally rotating Kerr black hole

The total luminosity of the disk is:

L ~10~* My~ (1034 ersﬁ) (10_1\21‘1)%) for a white dwarf (6.57)
yr
L~0.1My~ (1038 ersﬁ) <10_1‘Z‘1’W©> for a neutron star or black hole (6.58)
yr

where M, is the accretion rate. For a star containing a magnetic field, the plasma hits the star's
magnetic field with a kinetic energy equal to the gravitational binding energy Ep;nq.
The black hole absorbs all of the ensuing radiation so the disk is the only source of emission.

If the total luminosity approaches the Eddington limit,

M
Lgaa = (1038 2%) <%> (6.59)
The radiation pressure will distort the disk and disrupt the overall accretion. For L << Lggy =

L., there exists an accretion rate of

. _ 10~° Z—f for a white dwarf
MO << MO o )
crit 1078 1\;—? for a black hole or neutron star

In the compact object's inertial frame and neglecting tidal gravitational forces of a secondary star,

an accretion rate M, is given. The specific angular momentum of gas at radius 7 is:
1

~ = 1
L= (ﬂ)z *r2 = (Mr)z with M being the mass of the compact object (6.60)

r3
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A gas element must lose its angular momentum at the outer edge of the disk to reach the compact
object so the rate at which its angular momentum is shed to passing gases within the disk is:

J = M, x L (at the outer edge of the disk r;) (6.61a)

— My(Mry)z (6.61b)

The accretion rate and the outer edge of the disk will correct itself until this relation is
satisfied, by any further dissipation by passing gas from the outer regions.
In the inner regions of the disk, the velocities of the gas are to be determined. p, is the mass
density, and 24 is the disk thickness (height) and ) = 2 h p,, (6.62)
where Y is the surface density (p/cm?) at radius . V" is the radial velocity of the gas and

negative in this case (v < 0). The orbital velocity v® and angular velocity Q is:

1

vt =r0 = (%) (6.63)

r

Due to viscous processes, the radial velocity will never surpass the orbital velocity (v <

v). The viscous stress (orthonormal to radius r) is:

1
3 3 (M\2
opr = —20=-3(%) (6.65)

where 7 is the coefficient of dynamic viscosity. The stress is related to the shear of the circular
Keplerian orbits. Four conservation laws define the steady-state accretion disk structure, and,

all depend on the accretion rate, which will be discussed now.
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Conservation of rest-mass

Mass flows through a cylinder of radius r at a rate equal to the accretion rate:

My = —2mrSv" (6.66)

Angular momentum conservation

Angular momentum is carried inward across radius r by infalling gas at a rate equal to the
rate viscous stresses transfer angular momentum out through same radius 7, plus the rate J,,

being the amount of angular momentum deposited into the compact object:

. 1 .
Mo(Mr)z = 2mr * 2h * tg, + J. (6.67)

The angular momentum L. deposited into the compact object cannot exceed the Keplerian
angular momentum at the inner edge of the disk, 7, so:

J.= ﬁMO(Mr,)% for some |B| K 1 (6.68)

Solving for stress and disk thickness (height):

My 1 1
2hty, =2 [(Mr)z - ,B(Mr,)z] (6.69)
M)
My(Mr)2
= W forr > n

The viscous stress product is determined by the accretion rate and mass of the compact object. If
the viscous stress product is smaller than the equation above, the viscous stresses will not

redistribute the mass flow fast enough, and the mass will accumulate in the region and inflate the
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disk height and increase the viscous stresses in the region (Thorne, 1973).

Energy conservation

Energy conservation is also dependent on the accretion rate. Heat is produced via viscosity at a

rate per unit volume:

2
€ =2n0%=4n(0pr) = —2t4, 04, (6.70)

The heat generated per unit area as a result is:

2he = (2hty,)(~204,) = =2 [1 —B (ﬁ)gl (6.71)

4mtre r

and the heat generated between the radii »; and 7,:
1 1
& 3w M1 —2g(my) M1 _2p (m)?
[ 2he 2mr dr =2 M, l (1 25 (%) ) - (1 25 (%) )l (6.72)

3. /M M
EMO (Z —E> ) > 11 > 18

IR

Half of the gravitational potential energy goes into heating and the remainder due to the virial
theorem, goes into the orbital kinetic energy. The rate of conversion of gravitational energy into

heat is:

E=2M, (ﬂ - M) (6.73)

The viscous stresses transfer the angular momentum and energy outward at radius r. The energy

transfer rate through radius r is:
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E=0f = 0(2mr « 2h * tg,r) = My [% <1 ~2p (%f)l (6.74)

Energy through viscosity between 7; and 7, injected is:

e (120 (2))-2(1- 20 ) 679

The energy injection rate plus the gravitational potential deposition energy is equal to the total
heating rate. As » >> r; (inner edge radius), gravity accounts for one-third of the heating. The
remainder is redistributed via viscous stresses.

If all the heat were retained within the disk, the thermal energy would be 3/2 times the
gravitational potential energy, which is unrealistically high. Thermal bremsstrahlung and
radiative processes would radiate away the heat before it reached such heights and remove it
altogether.

The total flux from the top and bottom sides of the disk must equal the heating rate per unit area:

1
__ 3MoM _ T1\2
F= 8mr2r ll 3 (r) I (6.76)
The total power radiated is:
L=[72F «2mr dr = (% - p) Morﬂl (6.77)

Gravity provides %MO rﬂ and rotational energy provides (1 — B)M, rﬂ of the total energy.
1 1

In terms of the blackbody radiation spectrum, the surface temperature of the disk at radius r is:

1
1 3

T, = (%)_ = (3 x 107K) (10”1%_@> () “ (&) [1 y (ﬂ)zl (6.78)

Since most of the radiation is emitted from the radius » ~ 10 M for a black hole or neutron star,
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and the blackbody spectrum peaks at hvy 4y ~ (2.44 X 107* eV) (%) (6.79)

The spectrum of the disk should peak at:

. 4 -1
M, M 2
hvyax = (1 keV) (10_;}\4@) <%> (6.80)
yr

which indicates a disk can emit x-rays (1 — 10 keV) for reasonable accretion rates although the x-
ray spectrum should fall rapidly for increasing energy. The electron-scattering opacity interferes
with the blackbody radiation emission, and as a result, the spectrum peaks at energies above the

expected values.

Thin Disks, Slim Disks and ADAFs

For thin and slim disk models, physical quantities are vertically integrated. Surface density can

be defined as:

2(r) = f_Hfgz)p(r, z)dz (6.95)

where z = H(r) is the surface of the accretion disk.

A set of general relativistic equations govern the physics of thin disks, slim disks and

ADAFs. They are the following equations:

For mass conservation (Sadowski, 2009):
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r (6.96)

1
(1-v2)z

. 1
M = -2nXAz
where V' is the gas radial velocity measured by an observer at fixed r, co-rotating with the fluid
and
(6.97)

A=1r%—2Mr —a?

For radial momentum conservation:

V. o dav _ A 1dP
i T e (6.98)
where
_ Ma  (Q-0f)(a-9f)
A= r3n0f0y R (6.99)

¢ ~
and Q= ut, being the angular velocity with respect to the stationary observer, (1 = () — w, is

the angular velocity with respect to the inertial observer, (y is the Kelperian velocity,

(6.100a,b)
1
M 1
0f =+ () — (6.101)
14(z3)°
and R = il, is the radius of gyration. (6.102)
r2A2
For angular momentum conservation:
11
(6.103)

where L = uy, is the specific angular momentum, y the Lorentz factor, P = 2Hp, is the vertically

integrated pressure, a the standard alpha viscosity, L;,, the angular momentum at horizon.
(6.104a,b)
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For vertical equilibrium:

P 1*-a?(e?-1)

S -t (6.105)
with € = ut, being the conserved energy associated with time symmetry.
For Energy conservation:
_epde_sott M1 (dp_ppdp)
r3 dr 3 kX 2mrpr3-1\dr 1,ar (6.106)
where T is the temperature in the equatorial plane.
Through algebraic rearrangement, the thin disk equations can be reduced to two ordinary
differential equations in terms of two dependent variables:
Mach number: M = — Clz = - V?E angular momentum: L = ugy (6.107a,b)
S
dinM _ N{(rML)dInL _ Np(r.M,L) (6 108)

dinr  D(rML)dInr  D(rML)

The numerators must vanish at the same radius as the denominator, which it does at the sonic
radius 7, Where the Mach number is equal to unity. The equation,

D(r,M,L) =0 (6.109)
determines the location of the sonic radius. The conditions at the sonic radius are satisfied only
for one value of the angular momentum at the horizon (L;,), which is the eigenvalue of the

system.

For given a, the sonic point relies on the mass accretion rate. With low accretion rates,
the transonic transition happens near the ISCO and this has been determined for rates less than

0.4 Mgq4s. Around this point a change occurs reflecting a phase transition from that of the
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Shakura-Sunyaev behavior to different slim disk behavior. For this accretion rate a double QPO
frequency is made possible due to the vertical epicyclic frequency being coupled to the radial
epicyclic frequency at the same time. If the accretion rate rises above this rate, the sonic point
shifts into the plunging region and the vertical epicyclic frequency will be decoupled from the
radial epicyclic frequency and suppressed due to the turmoil that occurs in that region.
As the accretion rate increases, the sonic point shifts away from the ISCO. For low m, the sonic
point moves closer to the horizon. For higher a (a > 0.2), the sonic point moves further out for
increasing accretion rates.

Four important quantities (temperature and mass density distribution, radius of influence,
and the accretion rate) are loosely dependent on the adiabatic index of the gas and determining
the value of the index can determine these quantities immediately. That would give us a larger

picture of the accretion disk system in one single move.
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CHAPTER VII

DISKOSEISMOLOGY

I delve into this topic to provide more information and context in the kinds of waves and
perturbations that occur in the gas of accretion disks. The perturbations can persist and form in
specific patterns on the surface of any stellar body, including an accretion disk. It also focuses
on the sources that can power the perturbations, including pressure and gravity.

Focusing on how gravity induces perturbations in the gas of accretion disks and how they
travel over distances and pulsate in the body of the disk reveals information about the interior of
the accretion disk. Pressure also becomes important in terms of how any radially directed
motion can be translated into a lateral (or vertical) motion through coupled oscillations.

We start with focusing on the timescales of the dynamic processes.
Three timescales are necessary when it comes to non-stationary processes within accretion disks,
which correspond to an instability for each:

tayn: dynamical timescale for dynamical instabilities

t;: thermal timescale for thermal instabilities

tis: viscous timescale for viscous instabilities

In the case of thin accretion disks, the timescales are estimated to have the following

relationships:
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1 t t
tom ~ 5 fy ~ 22 b —2 (7.1a,b,c)

al’ld tdyn << tth << tvis-
The Eulerian perturbations can be used to express any and all physical quantities using a

function:
ép

Due to the stationary and axisymmetrical nature of the accretion disk, the angular and time
dependence are factored out for

SW = W(r, z)elmo—aoD) (7.3)
with the eigenfrequency o (r, z) = w — m(), and m being the azimuthal wave number. (7.4)
A general assumption that the oscillation modes in the radial direction are greater than in the

vertical direction, z = r cos(8), is usually used for most, if not all, cases. (7.5)

This creates two separable ordinary differential equations for the function's amplitude (Perez,
Relativistic Diskoseismology. I. Analytical Results for Gravity Modes,'1997),
W(sz) = W) Wi(): (7.6)

a’wy
drz ~ w2

1 i ;r(“’z 2)] aw;, (u)cgrr( )( WE)WT =0 (7.7)

S

1
with y = (z/H)[I'(I' — 1)]z being the rescaled vertical coordinate, I the adiabatic index, W () the
ratio of epicyclical frequencies, g a function of 7, and ¥ the eigenvalue of the WKB separation

function.

(1-37) (52) - 29y 52 + 2g[97y* + P - y2)|W, = 0 (7.8)

The eigenfunction w, varies rapidly with 7, while the eigenfunction w, varies slowly. The
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boundary conditions depend on the capture zone and type of mode involved.

Oscillations within the thin accretion disks are expressed in terms of ¥(760), including the
angular, vertical, and radial mode numbers, involving the numbers of nodes in each mode, these
being m, j, and n, respectively.

A radial mode oscillates in the range » > r;, (outside the inner radius), where this condition is

satisfied:
v
(@ —wd)(1-=)>0 (7.9)
Two points where r = r.(m, a, o) are the locations of the “Lindblad resonances”. They

signify boundaries where different modes can exist, as we will see in the next section.

Vibration Modes

Three modes exist within the accretion disks:

P-modes, which are inertial acoustic modes where ¥ < i%* and are trapped in two regions
where w” > w,” within the inner and outer radii of the disk. The inner p-modes exist in the region
between the inner disk edge and the radial epicyclical frequency at r; <r <r where the gas
accretes at a rapid rate. The outer p-modes exist in the region ry < r <r,,. These modes are
responsible for stronger luminosity fluctuations, and appear at frequencies higher than the radial
epicyclical frequency. Pressure is the driving force behind these modes.

G-modes are inertial gravity modes where ¥ > w,” and are trapped in the region r <r<r

where w* < w,>. G-modes are trapped by gravity within the cavity of the radial epicyclical
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frequency and tend to be the most prominent modes. This region also contains the maximum
temperature of the disk. In a co-rotating frame, the modes correlate to low frequencies. Gravity
is the driving force behind these modes.

C-modes are known as corrugation modes that occur in the region near the inner disk
edge where ¥ = {#*. They are non-radial and precess at a slow rate around the rotation axis. The
c-modes are moderated by a radial dependence of the vertical epicyclical frequency.

In the co-rotating frame, the c-mode manifests in the highest frequencies.
All the modes have frequencies that are inversely related to the mass of the central object. With
a small viscosity (v < a <<1), the modes grow on a dynamical timescale, which means the disk

will eventually become unstable as a result and disperse.

Geometrically thick accretion disks in all cases permit axisymmetric modes that
correspond to oscillations of the disk at radial and vertical epicyclical frequencies. Solving the
relativistic Papaloizou-Pringle equation yields modes, where m = 0, including p-, g-, and c-
modes (Abramowicz M. B., 2006).

(7.10)

1 1
o lai [(_g)ig”fnafW” — (m?g?? — 2mwg'® + w?g')f"w
g2

t\2 _ QZ
oy (M;sz m?

Which is incumbent on the boundary condition where the Lagrangian perturbations in pressure at
the unperturbed incident surface (f = 0) disappears:

Ap=6p+&V,p=0 (7.11)
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the subscript zero relates to the pressure maximum r;, g is the determinant of the metric, £ is

the Lagrangian displacement vector.

There are two equations in this eigenvalue problem that contains three frequencies: radial
epicyclical frequency, w,., vertical epicyclical frequency, wg, and the characteristic frequency of
modes, k. A thick disk contains a zero co-rotating frequency mode and incompressible modes
correlating to oscillations of the disk at the radial and vertical epicyclical frequencies as well as

the inertial pressure and gravity waves.

An eigenfunction gives two modes with eigenfrequencies:
W =axy (xandy both odd) (7.12)

and the eigenfrequencies:
1 E
a5 = [wz + w§ * [(w? + w§) + 4x§w§]2] (7.13)

— (o)
Where o, = 2.
Qo

The positive square root correlates to a surface gravity mode. The negative square root
correlates to an incompressible c-mode, with a poloidal velocity field signifying a circulation
about the pressure maximum.

Another eigenfunction containing three arbitrary constants yields two modes with
eigenfrequencies:

W=a+bx’+c¢f (x and y both even) (7.14)
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and the eigenfrequencies:
57 == || @n+ D@} +wd) — (n+ DK +[(@n+ D(wF - wP)? + (n+ 1id)” +

1

4w} - kD)w| (7.15)
The positive sign refers to an acoustic mode with the velocity field of an undulating mode. The

negative sign refers to a gravity wave, with a velocity field that appears like a plus-mode.

Basic oscillation properties

The oscillations are treated as small perturbations from a static equilibrium position and
rotations as well as other perturbation from the spherical symmetry structure can be treated using
a perturbation analysis.

Linearized perturbation equations describe the oscillations around a spherical equilibrium
structure. Modes rely on co-latitude and longitude within the reference system invoked, namely
6 and ¢, in spherical coordinates (7 6, ¢) as using a spherical harmonic function Y,,(6, ¢).

The numbers /, signify the degree (which indicates the number of nodal surface lines and the
complexity of the mode), and the azimuthal order m, (number of nodes around the equator),
respectively. The modes are further characterized by the radial order number, », which indicates

the number of nodes along the radial direction (Scuflaire, 1974) (Osaki, 1975) (Takata, 2005).
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Properties of the nodes

The perturbations dp and dp (pressure and density, respectively) are related by:

d_p_ d_p __(dlnp
p I p’ I = (dlnp) (7.16)

which is the derivative corresponding to an adiabatic change. The frequencies of oscillation can
be determined in the adiabatic approximation, following the motion (Lagrangian perturbations).
Using the equation, it is possible to derive precise frequencies. Gough has derived an
approximation equation to find the frequency (Deubner, 1984) (Gough, EBK quantization of

stellar waves., 1986) (Gough, Course 7. Linear adiabatic stellar pulsation., 1993):

d%x
Where
2 % 52 NZ
(=l L a1
1
X =c2pzdivdr (7.19)

and c¢; is the adiabatic sound speed, and dr is the displacement vector.

The behavior of the mode is determined by three characteristic frequencies:

Acoustic (Lamb) frequency S;:

2
sz = e (7.20)

r2
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Buoyancy (Brunt-Vaisala) frequency N:

2 _ idlnp_dlnp
N _g(l"l dr dr) (7.21)

Acoustical cut-off frequency w,:

w2 =<2 (1-2%4) H=—(4n2) (7.22)

where H is the density scale height.

With radiation pressure and degeneracy neglected, the adiabatic index for most stars is given as:

c? I LN y =§ (7.23)

- 3 umy
with &z being Boltzmann’s constant, 7"the temperature, 4 the mean molecular weight, and m,, the
atomic mass unit.

The buoyancy frequency is further modified:

N?=g*% [Vog = V + 1] (7.24)
_aintT __(adalnT _dlnp
V= dnp Vaa = (a lnp)ad "= Tmp (7.25a,b,¢)

with g being the local gravitational acceleration.
In areas of ongoing nuclear fusion, 4 increases with depth and therefore pressure so V,, leads to a

positive contribution to N.

A mode oscillates as a function of » for K(7) > 0 and varies on an exponential scale for
K(r) <0. For positive K(r), the mode is a propagative mode, and for negative K(7), the mode is
an evanescent one.

Where the values of K(7) equals zero, those data points are described as turning points of

the mode (Schmitz, 1998) (Gough, Course 7. Linear adiabatic stellar pulsation., 1993). The
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mode, situated in a single region, has a large amplitude that its frequency is determined by the
region is defined as a trapped mode.

Near the surface, S; << w and w, is the dominant factor in the mode behavior. Modes
with frequencies below that of w, decay exponentially in the atmosphere and are trapped inside
the star itself.

In the remainder of the star, w,’s role diminishes and S; and N takes a re-dominating role in the
mode behavior. For main sequence stars, /N is low throughout the star so the default controlling

influence reverts to S.

The eigenfunction oscillates as a function of » near the surface where w = w, and a lower turning

point at » = r,, where:

c(rp)? _ w?

w = Sl(rt); or 7 = l(lTl)

(7.26)

This is indicative of a typical p-mode. For lower temperatures, 7, is small and the mode
extends through most of the star, including the core. The radial p-mode extends to the center of
the star. At the surface, where the radius is at the lower turning point, r;, a total internal
reflection occurs.

G-modes are characterized by the feature of w < N, and the mode being oscillatory in that
region, especially for low frequency modes with w << §; in most of the star.

N may reach high value around the core of AGB stars. K can be positive at high frequencies in
the outer regions where w overwhelms S; and N, and the mode behaves as a p mode, and in the
core where w is dominated by S; and N, and the mode behaves as a g mode.

A particular property of the oscillation modes is the inertia:
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_ fV |6712 p dV _ Mmode
M |5r|§,h M

(7.27)

which defines the mode mass M,,.4., and M being the mass of the star, and |dr|,, being the norm
of photospheric displacement.

Modes, trapped within the star with a large evanescent region between the trapping region and
the surface, will have a large value of E (energy). The kinetic energy of the oscillation is

indicated as:
1 1
Eyin = ;Mmode Vr%ns = ;M E Vr%ns (7.28)

with Vs being the photospheric rms velocity.

Variations from Spherical Symmetry

With an spherically symmetric star, the properties of modes are independent of the integer m.
Departing from spherical symmetry causes m to come into play, especially with rotation. This
would be important in a cylindrical reference frame. A rotating star has an angular velocity Q(7),
and while depending on r, also relates to m via this equation:

Wnim = Wnio + M By < 02 >y (7.29)
where <Q>,, is the average of Q that rely on properties of the eigenfunction in the non-rotating
reference system (Ledoux, 1951) (Hansen, 1977) (Gough, A new measure of the solar rotation,

1981). The constant f,; tends towards one for high order acoustic modes. For higher order g-

modes (Wolff, 1974),

Pu =1-175 (7.30)
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In the scenario where the axis of rotation points towards the viewer, only m = 0 modes
are seen and no rotational splitting is observed. The opposite has the viewer looking upon the
star on the equatorial plane and seeing only modes with |/-m| being even and the rotational

splitting the largest for m = +/.

A particular dilemma exists with observing a rotating star: the difficulty of determining
both the rotation rate and the inclination of the rotation axis from the splitting and the amplitudes
of the split modes (Gizon, 2003). With a rotation rate twice that of the sun, it’s possible to
determine both inclination and rotation rate but with a rotation rate equal to that of the sun, it’s

significantly harder to determine inclination but not the rotation rate.

For increasing speeds, it becomes increasingly easier to determine latitudinal variation of
rotation. The angular velocity equation holds for low rotational rates such those terms of € and
higher can be neglected. In most cases, the star rotates too fast for the equation to hold true.
Higher-order effects veer from the uniform splitting and tend towards yet more complex
frequency spectra. Due to higher-order effects, the surface behavior of modes diverges from a

pure spherical harmonic.

Rotation is not the only factor that affects the oscillations in a non-spherical symmetrical
way. Other factors such as magnetic fields and structural variations associated with stellar spots
can affect the frequency of oscillations and geometry of the pulsations on the surface.

The Lorentz force produced by an axisymmetric magnetic field and the Corolis force both affect
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the oscillations although only the latter is aligned with the axis of symmetry. In contrast to
rotation, an axisymmetric magnetic field interacts and affects modes of the star with the same
value of m. Stellar magnetic fields influence oscillations in a way not summarized easily by a

perturbation analysis.

In the case that the magnetic field is force-free, the oscillations will be affected directly
through the Lorentz force. The Lorentz force has its greatest effect in the outer regions of the
star, being comparable to, or greater than, the pressure forces. A magnetic field of any
magnitude will be able to affect the modes and their greatest amplitudes will be in those regions,

such as high-frequency pressure waves.

The magnetic field influence has three consequences: the frequencies are offset from their
non-magnetic values, and the oscillations on the surface are no longer summarily described by
the spherical harmonic function Y, but instead a sum of spherical harmonics with varying
degrees of /. The coupling of the oscillations with the magnetic field in the outer layers incur
shifting waves that drain away part of the pulsation energy, which manifest in the forms of slow-
moving Alfven waves that dissipate as they penetrate inward into the star and acoustic waves
travelling outward along magnetic field lines (Saio H. , 2005) (Saio H. G., 2004) (Cunha M. ,

2006) (Cunha M. G., 2000) (Bigot, 2000) (Dziembowski W. G., 1996)
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Oscillations and Instabilities in rotating fields

The Kelvin-Helmholtz instability comes in play when there are two different fluids of different

densities. A fluid exists with the following characteristics:

_p1; z>0
Po = Dy 2 <0 (7.31a)
Vv, ={U1 éy; 2>0, U,8,,2z<0} (7.31b)

Where downward gravity exists, then for v; = v,, at the z = 0 interface, a Rayleigh-Taylor
instability exists if p; > p,. A shear (v; # v,) also produces instability. Neglecting gravity,
Assume that §x o« e*¥=Wt §pY =0 =&y,

(7.32)

Focusing on incompressible perturbations (no sound waves) in play here:

V(dv) = ikév* + 3,6v* =0 (7.33)
The momentum equation is:
0,60 + voVév = — % (7.34a)
—iw §VF + v¥ ikSv* = —iki—P (7.34b)
0
—iw 8v7 + vE ikSv? = —az‘;—" (7.34c)
0

Based on the previous equations (7.34a,b,c), we obtain:

6P = pybv* (koo —w)

, (7.35)
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Due to incompressibility, dv* = i d,6v%.
Solving for §v? gives us: 026v? = k?5v? » §v? = Svietk?,
Since v should revert to zero as z approaches infinity,

Sv? = {6vie ¥,z > 0; Svie*? z < 0}
The boundary conditions at z = 0 are such:

§ = 6vi = & = 5v5 2= v

0:€ + (vo * V)E = 67 + (£ * V)T,
—iwéZ + vfiké* = 6v*
Let & = &5 = Q, then
dv? = i(—w + kvy)l, dv? = i(—w + kv,)l
Pressure continuity at the interface would be: OP|.=o+ =06P|.=0.;
(7.41)

Which leads to the following equation:

((1) —k P1U1+P2U2>2 — _ (P1P2(U1—V2)2k2)
p1+p2 (p1+p2)?

(7.36)

(7.37)

(7.38)

(7.39a,b)

(7.39¢)

(7.39d)

(7.40a,b)

(7.42)

The right-hand side is negative so the modes are unstable. So the shear layers are unstable: this

is the case of the Kelvin-Helmholtz instability. Vortices form and break up the shears. The

shears can be stabilized by stratification, surface tension, or magnetic tension.
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Rayleigh Criterion for Differential Rotation

There exists an axisymmetric fluid in a disk rotating about its axis with an angular speed

Q(r) where r is the cylindrical radius.

At equilibrium, the radial force is zero:

0 = gravity + pressure + centrifugal forces;

1dP
O_Q_EE_TQ (743)
2
The specific angular momentum per unit massis: | =720,  Fooneri Fugal = i—3 (7.44a,b)
So the combined forces can be expressed as:
1dP
=0=g-— o + (7.45)

A ring expands from » = r; to r = r,, and viscosity is negligible. Angular momentum is
conserved, which means [ = [(ry). Atr = r,, aradial force is experienced: the equilibrium

condition for r;:

1dpP l( )2
F=g() -2+ =

(7.46a)

= 5 1160)” = 10)°] (7.46b)

If |I(ry)] < |L(ry)], the ring orbits more slowly than at equilibrium, and falls back (inward) as a

result. The ring’s equation of motion is:

d2%sr
dt?

=F~ —igdi(zz)& = —K26r (7.47)
where K is the epicyclical frequency, which is defined as the frequency of oscillations of

perturbations from a circular orbit.
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If |L(ry)| > |L(r,)], the ring orbits more faster than at equilibrium, and moves out as a result.

Therefore, an instability exists- the instability condition is defined by the following equation:
2 12] = 2 [(20)?] = 2 [r*Q?] = 4r3Q2 (7.48a)

dr dr dr ’
=r3K?2<0 (7.48b)

This is the definition of the Rayleigh criterion.

Most astrophysical flows have % [12] > 0 so they would be assumed to be stable. Although it

turns out that that may not be the case every time. Other factors come into play, such as the disk

fluid being ionized, or magnetized by an innate magnetic field affects the instability criterion.

Magnetorotational (Balbus-Hawley) Instability

We become concerned with the existence of a magnetorotational instability that gives rise to

turbulence in the plasma. The following equations describe the physical action that occurs.

A stationary axisymmetric circular flow with vy = v, €5, = Q(1)r &g, exists. (7.49)
A magnetic field projected in the z direction, B = Bye,, is present. (7.50)
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The momentum equation in cylindrical coordinates is:

¢)? 1d B2 1
dtvr+(v*l7)vr——(v ) _ ———(P+—)+E(B*V)BT

r pdr 81
¢ ¢ _vPv'_ _1d LAY ¢
dv® + (Vv - pd¢(P+8n)+4np(B*l7)B
z Z — _li B_2 L 4
d.vr+ (v V)v% = de(P+8n)+4np(B*l7)B

(7.51a)

(7.51b)

(7.51¢)

Axisymmetrical incompressible perturbations (no acoustic waves) exist (p = §P = 0) with

€2 = dv? = 0;
d.sv" — 2Q8v® = Byd,6B"
d.6v® +6v'd, (rQ) + 5v'Q = Byd,6B?
An induction equation is:
d;6B = —V x (80 x By + By x 6B)
d:6B" = Byd,0v"

d,6B® = Byd,6v® + [d,(rQ) + Q]6B”

Recasting in terms of Lagrangian perturbations &:

Ap =2
Dt

2 =d+ @D, AB = 57 + (£ + V)T,
8% = di§ + (vo * V)E = (€ * V);
vy = dp&" vy = dE® —rETd, 0

This means that B = (By * \7)5 = Bodzg.
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(7.52)
(7.53a)

(7.53b)

(7.54a)
(7.54b)

(7.54¢)

(7.552)

(7.56b,c)

(7.56d)

(7.55¢,1)

(7.56)



This is the expression that shows that the field lines are frozen into the perturbed fluid, which is

particularly relevant for the Blandford-Znajek mechanism commented on in Chapter II.

Assuming &! o e!WE+k2), (7.57)
. da(o? (kBy)?

_WZET T ZQLWE(P - [d((lnr)) 47rop ]ET (7.58a)

—w2EP 4+ 2Qiwé" = [(Ziop) ]Ed’ (7.58b)

The dispersion relation is as follows:

2
w* —w?[k? + 2(k xv4)?] + (k x v,)? [(k *1,)?% + a@)] _ (7.59)
d(lnr)
An instability exists when the following condition is met:
2 _ (kBo)® _ _ d(9?)
(kxvy)° = po—= < ey (7.60)
LIC) dlal

Which will be satisfied for some k, when <0, - < 0, which is the case for any

d(lnr)
astrophysical fluid disk. The fastest growing mode has a wavelength Ayp; ~ %A and growth rate

1

Thri ~ (7.61a,b) (7.62ab)

The evolution equations are similar to the equation of motion for the separation of point
masses, orbiting a gravitational mass, connected by a spring. That spring-like tension is
provided by the magnetic tension. The compression of the string exerts a torque on both
connected particles and transfers angular momentum from the inner element to the outer element.

The inner element falls further in and the outer element moves out. & grows and the instability
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comes into effect. For a a-disk, numerical simulations show that oo ~ 0.1 can be achieved from

MRI-induced turbulences, provided a non-negligible magnetic flux is present in the disk.

For a rotating disk with self-gravity, it would have to be a thin disk in equilibrium:

p=2(r)5(2) (7.62)

The vertically integrated pressure is as follows:

P(r) = [ cZpdz (7.63)
The velocity is ¥ = rQ &g, and the gravitational field is: (7.64)
Vi = 4nGp = 4nG[Z6(r) + MS(1)] (7.65)

With M being a central point mass and gravity from the disk is non-negligible.

A perturbation is provoked into existence, and the perturbed quantity 6X is inputted into an

amplitude and phase:

65X = Ae'® = A(cos(0) + isin(0)); (7.66)

Assume 6 = wt — m¢ + 6(r); a small perturbation manifests as: (7.67)
1

Apert ~ |dj Lr (7.68)
ar

And invoking a WKB approximation:

. . dae
The amplitude 4 approximately constant over the range of A,¢;¢, |E| = k = constant over

Apert-
The maximum of §X occurs at peak phases where

wt —m¢ + 6(r) = 2nn  (n an integer) (7.69)
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Each 7 is a spiral arm pattern signified by ¢ = %ﬂ, and the next (n+1) spiral arm is the same, but

rotated by % radians. There are then m equidistant spiral arms in the perturbation. The spiral

arms rotate at a speed:
= (¥ )
Q, = (dt)e’r =2 (7.70)

Q, is a constant even though the speed at which the material flows, €2, is variable and decreases
as a function of r.

Q, <Q (forlowr) Q, > Q (for highr)

At a point, Q, will equal € and this location is defined as the co-rotation radius (rcr).

Q, = Qrer) (7.71)

To find how tightly the spiral arms curve, we need to compute ;—; on the perturbation peak, with
a¢
fixed t: mdgp = o dr = k dr; (7.72)

(%)peak == (7.73)

The WKB approximation has £*r >> 1 so

d(nr) _m
( " )peak =2«1 (7.74)

The WKB approximation is a tight winding approximation as well. Finding the
gravitational potential perturbation, §¢, caused by the density perturbation, §p:
The Poisson equation is:
Vip = 4nG Sp (7.75)

The perturbations are approximate to e**” and m/(kr) << 1, so the azimuthal derivatives can be
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neglected.

Vi6p = —k?8¢p + 526¢ = AnGSY 5(2) (7.76)
Away from the equator:
Ae ¥z 7z >0
op = { ’ 7.77
¢ Aelklz 7 <0 (7.77)
Integrating over the limitz =0 - e toz = 0 + €,
O+e
(‘15—“’) = AnGSE = A(=2|k|) (7.78)
dz Jo-¢
Solving for 4, 6¢ = — 2n|£|5): on the equator. (7.79)

This can be inserted into the perturbation wave equations and give us a dispersion relation:

(w —mQ)? = K? + k?c? — 2nG|k|X = w2 (7.80)
K is the shear term, and being positive, serves as a stabilizing influence, and dominates at low £.
i ¢, is the pressure (or acoustic) term and also acts as a stabilizer. Pressure dominates at high &
(or small scales).
The term —27mG | k|2 is the self-gravity term and is negative and serves to destabilize the overall
action. The length scale at which shear and gravity are comparable is the Toomre wave number

scale:

K2

Kp =— (7.81)
For axisymmetrical perturbations (m = 0), there are unstable local modes if Q = :GC)S: <1 (7.82)
Q 1s the Toomre stability parameter. With non-axisymmetrical waves, v = (w_:m. (7.83)

176



The dispersion relation is now:

K| _ 2 L

e =s(1x+ 02 -vAk) (7.84)

With the plus solution, the short waves are pressure dominated. With the minus solution, the
long waves are shear-dominated. The wave number k for long waves go to zero at the Lindblad

resonances:
1
VZ = 1 d Qp = .Q(TLR) i %K(rLR) (785)
Long waves can only propagate in the spaces between the two Lindblad resonances. At the

resonances, the long waves are able to couple to the large-scale perturbations.

Global Instabilities

Solving the dispersion relation, two modes come into play:

0,y = % =0+ w Q, = % =0 — w, (7.86a,b)

where % sets the pattern speed. Two waves coexist with each other, with one moving with the

flow (co-rotating), and one moving against it (counter-rotating). There is a co-rotation point ()
at which Q(r.) = Q,. For a given m, there are two modes, (co-rotating and counter-rotating) with

a distant co-rotation radius for each.
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Non-radial Stellar Pulsation

There is a non-radial motion in which some areas of the surface expand while others
contract. They manifest in angular patterns for different non-radial modes. Scalar quantities like
&p (pressure) follow the same pattern, varying from positive to negative from area to area. These
patterns are described by two integers: / and m.

There are / local circles (where r = 0) with |m| of these circles passing through the poles of the

star and the rest parallel to the equator of the body. If / = m = 0, the pulsation is purely radial.

The patterns for non-zero m correspond to travelling waves that move across the star
parallel to its equator (latitude-wise). The time of the waves completing a full trip around the
star is m times the star’s pulsation period (t = 21 /w).

Radial oscillations are attributed to standing waves in the stellar interior. For non-radial
oscillations, the sound waves can move horizontally as well as radially to create waves that travel
around the star.

Since pressure provides the impelling force, the non-radial oscillations are called p-
modes. A p-mode description requires a specified radial and angular node.

The f-mode is the non-radial analog of the fundamental radial mode (f refers to fundamental).

The horizontal wavelength is given by the expression

2nr
Ay = NG (7.87)

Where r is the distance from the center of the star.

For non-adiabatic oscillations, the time-dependence of the pulsation is usually the real part of
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et where o is the complex frequency,
oc=w+IK (7.88)

Where w is the usual pulsation frequency and K is a stability coefficient.

The pulsation amplitude is proportional to eXt and 1/K is the characteristic time of
growth or decay for the oscillations.
The patterns correspond to the real parts of the spherical harmonic functions Y} (8, ¢) where [ is

a non-negative integer and m is any integer between —/ and /.

The acoustic frequency can be written as:

2T Vg
SU= Gmetoraverny, ~ 2T [—12(711)] (7.89a)
- % * l(lrﬂ) (7.89b)

where vy is the adiabatic speed of sound.

For no rotation, the pulsation period depends only on the number of radial modes and the
value of / (independent of m).
For rotation, the amount by which the pulsation frequencies are split depends on the angular
rotation frequency of the star with the rotationally produced shift in frequency proportional to the

product m *Q.

The pulsation frequencies for modes of varying values of m become separated or split as

the waves move with or against the rotation. As pressure provides the impelling force for the
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compression and expansion of the p-mode sound waves, gravity is the source of the restoring
force for the non-radial oscillations called g-modes. (The prefixes preceding the modes indicate

the force in play: g- for gravity and p- for pressure.)

Oscillation motion for g-modes

A small bubble of stellar material is displaced from its equilibrium position by a distance
6r. The motion is slow enough such that the pressure within the bubble, P®_is equal to the
pressure of the surrounding matter, P*. And the motion also has to be fast enough that no heat is

exchanged between the bubble and its surroundings.

The expansion and compression of the gas bubble is adiabatic. If the density of the
bubble is greater than that of its surroundings, the bubble will revert back to its equilibrium
position. The restoring force per unit volume on the bubble is the difference between the upward

buoyant force and the downward gravitational force:

GM
fret = (0F — p})9 9== (7.90a,b)
Applying a Taylor expansion:
dps dpP
fuee = (05 + = dr) = (p? +°Ldr)| + g (7.91a)
dp® dp? .
= (d—pr - d—pr) gdr  (since pf = p?) (7.91b)
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Since motion of the bubble is adiabatic,

et = (2—’;5 — %dd—lf) gdr (now b - s) (7.92a)
fre = (G- L) pgar (7.92b)
free =Axpgdr A=-L -2 (7.92¢,d)
a=—-N?dr=Agdr - —-N?’=Ag (7.92¢,1)
The buoyancy frequency is:
N [GE-1E), 09

Accounting for the gravitational acceleration in the disk’s reference frame:

GM z GMz

GM
g="zcos(0) ="3+7 ~7

(when z K R) (7.94)
The gas within the disk is supported against gravity by a pressure gradient, and the pressure

distribution gives:

dpP GM
~ = —gp (g = r—zcos(g)) (7953,1’))

Based on the assumption that the disk is isothermal in the vertical direction (z), the pressure
becomes:

P = pc? (7.96)
Where c; is the speed of sound in the medium;

d d GM GM
—(p c?) = cszd—z = —pRTZ = —Q0ipz Q= - (7.97a,b)
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Where Q is the angular velocity in the disk.

2~ 29K 7 dy (7.98)
p v

_ _9% 2 _ T2’
Inp=-=—Fz - p(z) = pye 2% (7.99)

20?2
Where p, is the midplane density of the disk at (6 = 0) being the equatorial plane.

The equation can be rewritten as:

02

p(z) = Poe_h_I;F h =

0k |

2
2vg

(7.100a,b)

The latter equation also gives #, the vertical scale height of the disk. ‘A’ can be recast in terms of

the orbital velocity:

hz — % Vg = R * QK - ‘QK = V?K (71013,]3)
K
2vZR? h? 20 h o
= 2 " b (7.102)

The thickness of the disk as a fraction of the radius is given by the ratio of the speed of sound (in
that medium) to the orbital velocity. A ratio of h/R << 1 would get the disk classified as
geometrically thin. Thin disks are simple structures where radial pressure forces can be

neglected; gas velocity is same as a particle orbiting at the same radius.

For a thin disk, the orbital velocity of the gas is Keplerian:

Vg = % ; (7.103)

The specific angular momentum per unit mass is expressed as:

| =R *vg = VGMR; (7.104)
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At large R, gas has too much angular momentum to be accreted by the black hole. It has
to lose some of it in order to fall inward towards the black hole, within the disk, so there must be
a redistribution of the angular momentum from small R and large R. A torque would be

necessary for such angular momentum transport.

Standing Wave Characteristics

We focus on this because oscillating waves are ubiquitous phenomena in physical
systems, including accretion disks. Those of stars have been studied in detail while accretion
disks' have not been studied as extensively. Stellar oscillations and disk oscillations have many
commonalities and some important differences. The most particular difference is the force
balance. The geometry is different for either case. Stars are typically spherical and rotation
serves as a minor factor in their structure. Disks are set in a cylindrical reference frame and
rotation plays a larger factor in the structure.

A major restoring force against small perturbations is the pressure. In the case of disks,
the centrifugal force due to rotation serves as the major force acting in opposition to the
gravitational force and serves as the restoring force against small perturbations come from the
disk rotation. The rotational effects take two forms: the characteristics of oscillation modes, and
the excitation mechanisms of the oscillations. The rotational restoring force governs the
oscillations and their frequencies are characterized by the epicyclic frequency, «, defined by the

following relation:
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2 _ dqQ
k2 =20(20+12) (7.105)

with Q being the angular frequency of the disk. The radial distribution of € determines the
behavior of small oscillations. In terms of the perturbations, disks have no defined outer
boundary in the radial direction, and the epicyclic frequency changes over the radial distance of
the disk. The oscillations, to have observable features, have to be trapped in a specific region or

manifest global features to take on information from their physical situation.

General relativity plays a large part in defining the oscillations. Another factor in disk
rotational effects on the oscillations is the excitation mechanism. For disk oscillations, excitation
processes are important as well as for stellar oscillations. In the disk case, these would be the
viscous processes and they serve as the exciting influences by delivering heat to the disk and
serves as mediator of angular momentum transport in the radial direction. Viscosity has two
effects on the excitation of oscillations: thermal and dynamical. General Relativity figures in

prominently for both effects.

For adiabatic motions the equation of state is:
d_p_yﬁd_p— 0 P =KpY (7.106a,b)

dt pdt

with y being the ratio of specific heats.
The energy equation for adiabatic perturbations is:

i@(py, — ¢ py) = ypo (U * 4) (7.107)

with ¢, being the sound speed, and A as the Schwarzschild discriminant vector, defined as:
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14

A=1InVp,—2 Vinp, =V| In2 (7.108)
Y

Pg
An effective gravitational acceleration is present:
— 2p - 1
Gesr = g + QT o Vpo (7.109)
N7 = _(geff)rAr N7 = _(geff)ZAz (7.110a,b)

These are the Brunt-Vaisalia frequencies of the oscillations. When N,° > 0, the entropy is
confined to the vertical direction so the medium is convectively stable (4. < 0). If sz < 0, the
medium is convectively unstable. It applies for N7, The frequency is a measure of oscillations

in either direction and a definitive characteristic of the system.

Starting with the assumption that the disk is isothermal:

2

po(r,2) = po(r)e s (7.111)

with H being the half-thickness of the disk, related to (7.111) via (7.101a):

Py = po vi > Qf(r)H*(r) = % (7.112)

A dimensionless vertical coordinate is invoked:

n = ﬁ; for separation of variables (7.113)

Two sets of equations were derived, by Nowak and Wagoner, to describe the oscillations (Nowak

M. W.,, 1992):
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() (1- 22 )k =0 (7.114)

S dr \@2-x? dr @2H?
with x(r) slowly varying function of r to be determined by solving the separated equations with

boundary conditions.

d ( Po 69)
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Assuming the disk is convectively neutral in the vertical direction, meaning NZ2 =0,4, =0, and

y = 1 (for vertically isothermal disks). The latter equation reduces to:

2
a_ — n — + kg =0 Hermite equation (7.116)

A boundary condition on surface (7 = oo) entails that k be set equal to zero or a positive
integer, n (Okazaki, 1987). g(n) becomes: g(n) = H,(n); n=123.. .. (7.117)
The n = 0 mode is the fundamental mode in the vertical direction and the n = 1 mode is the first
overtone. Local perturbations with a radial wavelength «,, is defined by the earlier equation with
y =1 to a dispersion relation (Okazaki, 1987):

(@% — k¥)(@% — nQ2) = @2c2Kk?; (7.118)

This dispersion relation contains basic properties of the disk oscillations (Nowak M. W.,
1992) (Isper, Low-frequency modes and nonbarotropic effects in pseudo-Newtonian accretion
disks, 1994) (Perez, Relativistic Diskoseismology. 1. Analytical results for gravity modes., 1997)

(Silbergleit, 2001).
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Classification, and Coupling, of Radial and Vertical Oscillations

If n =0, i.e. the oscillations have no node in the vertical direction, the dispersion relation
becomes:
@% = Kk® + k2cZ; @ =0; (7.119a,b)

The former is the inertial-acoustic waves and the latter is a trivial mode.

A fluid element displaced in the radial direction returns to its original radius due to a restoring
force from the rotation of the compact object. The oscillations from this action are inertial
oscillations, and their frequencies are the epicyclic frequencies, k(r).

For compressible fluids, there is an extra restoring force due to a pressure variation,
resulting in acoustic oscillations. The two combine to create inertial-acoustic waves. For the
long wavelength limit in the radial direction, k.= 0.

In the case that n # 0, the dispersion relation becomes:

@? = k?; @?% = nOZ; (7.120a,b)

The former represents the inertial oscillations. The latter represents an extra mode of oscillations

and is the vertical oscillations of the disk and tied into the geometry of the disk itself.

For a perturbation of the disk plane in the vertical direction, a restoring force serves to
bring it back to the equatorial plane. The restoring force is the vertical component of the

gravitational force,

(ﬂ) (5) =(5)z=0%+z (7.121)

r2 T r3
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This oscillation correlates to the » = 1 mode and bears a similarity to surface gravity waves that

happen at the interface between two distinct fluids.

If there exists any nodes in the vertical direction, meaning n = 2, the frequencies of the
oscillations increase due to the pressure restoring force in addition to the gravitational restoring
force. Ideally, k.= 0, and the horizontal oscillations @? = k2 and vertical oscillations @? = nQ%
would be separated. Due to the disk not being homogeneous, in the radial direction, the
oscillations are coupled. Perturbations in the radial direction on the equatorial plane induce
vertical motion due to the radial inhomogeneity. Vertical perturbations also induce radial motion.
The coupling occurs through the pressure restoring force and is stronger with a shorter radial

wavelength and higher acoustic speed.

The dispersion relation gives two frequency possibilities for a given positive k?. Given
wq, W, with @, > @; > 0. Modes with @, are the p-modes and modes with @, are the g-
modes.
Axisymmetric wave modes (m = 0) bear distinct characteristics that need to be understood. For
modes of (m = 0, n = 0), the dispersion relation comes out as:

w? = k% + c2k?, wherew > k (7.122)
taking w as a positive value. This indicates the propagation region of the wave is above the
curve of k(7). If the disk touches the central object at a radius 7, and w > x(7;) the waves can
approach near the surface of the object and are reflected backward by the rotational barrier of the
central object when w < k(rp). In the context of a disk around a compact object in a general-

relativistic field, the radius or effective surface would be at the ISCO as opposed to the literal
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surface of a star.
For modes (m = 0, n =1), the structure of the propagation region changes to a degree.

Since k% <nQy’ (with n = 2), the propagation region is set above and below the curves of x and
V2 Qk. The below region is the domain of the g-mode (x(7) curve) and the above region is the

domain of the p-mode (v2 Q curve).

The differential equations describing the disk oscillations are comparable to those
describing stellar oscillations, although their dispersion relations are different (Nowak M. W.,
1992) (Perez, Relativistic Diskoseismology. 1. Analytical results for gravity modes., 1997)
(Nowak M. L., 1998) (Hines, 1960).

The wave motions' characteristics as described by the dispersion relation are adjusted by
the influence of General Relativity when a compact object is present. A deeper discussion is
made by numerous theorists (Isper, Low-frequency modes and nonbarotropic effects in pseudo-
Newtonian accretion disks, 1994) (Isper, 1995) (Perez, Relativistic Diskoseismology. 1.

Analytical results for gravity modes., 1997) (Silbergleit, 2001).

The epicyclic frequencies are modified in a general-relativistic field, and vanish at 7,,,. It
differs from the Newtonian scheme in that the radial distribution is not monotonic and increases
upward in the outer non-relativistic region as does Q, but approaches a maximum at a specific
radius, then decreases from that point to r,,; where it disappears. The radial distribution of K(7)
bears diagnostic characteristics in terms of wave trapping, particularly the g-modes (Okazaki,
1987) (Nowak M. W., 1992) (Perez, Relativistic Diskoseismology. 1. Analytical results for

gravity modes., 1997) and the p-modes (Kato S. F., 1980).
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The radial distribution of x(7) in the Kerr metric is:

1\ —2 1
GM M\2 6M M\z 3a?
k= (55) <1 +a (73)2) (1 — 2%+ 8a ()" - r%) (7.123)
and the vertical distribution of the vertical epicyclic frequency Q. is:
l 2
K2 =02 <1 —4a (%) + 3%) (7.124)

The dispersion relation is modified in the general-relativistic case:

(@2 — k?)(@?% — nQO?) = @?c2k? (7.125)

For thin disks, the strongest restoring force is the rotation of the compact object. The
characteristic frequency of the restoring force is the radial epicyclic frequency x. The radial
distribution of x(r) gives details on wave phenomena including trapping. If trapping is absent,
the perturbation wavelength becomes short as the wave propagates outward. Short wavelength
oscillations spread out through the disk and do not provide much information about the disk. A
phenomena that entails further attention and provides information about the physical
environment, are global oscillations and trapped oscillations. Two wave modes exist that can
become global: (m = 1) inertial-acoustic waves with n = 0, and inertial-acoustic waves with n =

1. The former is a deformation of the disk plane while the latter is a corrugation wave (c-mode).
In relativistic disks, the epicyclic frequencies do not come close to the Keplerian

frequency, Q. If the rotation of the disk is low (a << 1), low frequency oscillations manifest in

the disk, these being of the (m = 1) corrugation waves variety with n = 1.
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The dispersion relation is:
(w=0)2 =) (w—-0)2%-0%) =(w—- ¢’ k7 (7.126)

Due to the fact that ¥° << Q, the conditions from the dispersion relation change.
The difference between Q_, the vertical epicyclic frequency and Q, the disk angular frequency,
is still valid if the rotation is low (a << [). If we assume

(w—Q)?%—-0% > 200+ (02 - Q3) (7.127a)

(w—Q)%—Kk? > 0% —K? (7.127b)
then the dispersion relation gives us:

QZ _QZ
02

+20
2

(7.128)

2.2 2_02
given that % « 1 and 2 Qzﬂ* « 1, the innermost region of rapid rotating disks will have low-
frequency modes of oscillations with frequencies smaller than Q. (7.129a,b)
The pattern of oscillations slowly rotates in the opposite direction of the disk rotation. The

frequency is smaller than by the order of (k, * H)? « 1. (7.130)

Focusing on trapped oscillations in relativistic disks, they propagate away in the radial
direction and will not grow to observable amplitudes unless there are reflection boundaries.
Standing oscillations have to be trapped in a region to establish stable characteristics of a wave.
Starting with a fundamental mode (n = 0), particularly an axisymmetric oscillation (m = 0) and

@? = w?, 1 can get a dispersion relation of w? = k? + c2k?; (7.131)

The region the waves propagate in is defined by: w? < k2, since k,” has to be positive.
The wave propagation region is divided in two areas: inner region (» < r;) and outer region (r >

), where w < k... The region is where the waves propagate. When w > x,,, and the
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separation of the two areas for w < x4, 1s due to general-relativistic effects.

Waves moving inward from the outer disk with frequency w < K., approaches r, when
its frequency, w = x, occurs. The wavelength of the wave approaches infinity (k. = 0) at r = r»,
which means the waves are reflected back outward at that point. If w? > ke, the waves can
propagate unhindered towards the inner edge of the disk, which isn't the case for non-relativistic
disks where all the waves would be reflected back at r, if w = x°. There exists a wave
propagation region within the inner region of the disk for w < x,,,, and waves are trapped there
(Kato S. F., 1980). An inertial-acoustic wave propagates outward in the region by the inner edge,
or rms. If w < k., the wave reflects back at the boundary » = r;. A wave propagating inwards
towards the inner edge would be partially reflected back at the inner edge as outgoing acoustic

waves.

Outside the sonic radius, inward-propagating inertial-acoustic waves are linearly coupled
with other perturbation modes such as outward propagating inertial-acoustic modes, thermal and
viscous modes. An outward propagating inertial-acoustic mode is created and the wave is
standing initially, with one end anchored near the sonic radius, and spreads outward after
attaining maximum amplitude. This can be thought of as an inversion of the inward wave into an
outward wave.

A thermal mode is also reflected back at the inner edge as an outward propagating
acoustic wave, being linearly coupled with the other modes (Mammoto, 1996).

Perturbations are trapped between the inner edge and a radius that changes with parameters. A

spectrum forms in the trapped oscillations that manifest as QPOs with frequencies close to K.
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This is a standard feature of oscillations in the inner region of thin relativistic disks (Kato S. F.,
1998).

The first overtone (n = 1) of the g-modes also is trapped with frequencies of #;,,,. The
axisymmetric first overtone (m =0, n = 1) wave has two modes: (g-mode) inertial-gravity waves,
w? < Q%, and (p-mode) inertial-acoustic waves, with w? > Q%.

Focusing on the g-mode waves, at 7,,,,, Where x has a maximum at the radius, and decreasing
outward from there in both directions, the waves are trapped in a region »; < r < r,, where their
frequencies w < Ky, (Okazaki, 1987) (Nowak M. W., 1992) (Perez, Relativistic
Diskoseismology. 1. Analytical results for gravity modes., 1997). The oscillations in that region

will have frequencies around the value of 4y, in the vicinity of 7,,,.

A notable feature of the oscillations is that their frequencies are independent of any
changes in the disk structure provided the disk is geometrically thin. This is due to the fact K,
is dependent only on the mass of the central object. K, scales to the inverse mass of the
compact object since 7,4, scales to the mass of same object.

Calculations of the eigenfrequency for the g-mode oscillations were done using the Kerr

geometry (Perez, Relativistic Diskoseismology. 1. Analytical results for gravity modes., 1997).

The oscillation frequency fis (Nowak M. W., 1997):

F=700 (1) F@(1 - ) H (7132

with € as the small correction factor pertaining to the disk thickness and the radial and vertical

mode numbers. F(a) takes in the effects of the rotating compact object with a as a dimensionless

spin parameter and F(a) monotonically increases from F(0) to F(0.998). It was suggested the
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trapped oscillations were the source of the 67 Hz QPO signal detected in GRS 1915+105
(Nowak M. W., 1997).

Other modes of oscillations are also trapped in the inner disk. One-armed corrugation
waves (n = 1) propagate in the region within the inner disk specified by the frequency
combination:

(w— Q)% — Q2 > 0; w<Q—Q,; (7.133a,b)

when a << 1, are very close to each other.

Silbergleit discovered that one-armed corrugation waves are trapped in the inner region and the

region is wide and the eigenfrequency low, for low values of a, and the region is narrow and the
eigenfrequency high, for high a. The radial extent of the trapped region is a decreasing function
of a, and the eigenfrequency increases monotonically for increasing a (Silbergleit, 2001). The

eigenfrequency coincides with the Lense-Thirring frequency at its outer trapping boundary.

The Lense-Thirring frequency is the frequency of the vertical precession of a particle
around a rotating compact object. The Lense-Thirring frequency at r is the difference between
Qg and Q_:

Qur(r) = Qg(r) — Q, (1); (7.134)

The condition, w = Q — Q, implies the outer boundary of the trapped region is the radius where

the condition is satisfied, and since 1~{g, then becomes:

w ~ Q;r atthe outer boundary. (7.135)
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Trapped Oscillations

The trapped oscillations are a result of a non-monotonic spatial distribution of epicyclic
frequencies in relativistic disks. This would be of particular interest to us, especially if a
bounded region contained them. Another type of trapped oscillations exists along with the
epicyclic frequencies, including in Newtonian disks. In a Newtonian disk, a type of instability
occurs where outbursts occur in a non-relativistic disk and the disk undergo through limit-cycle
oscillations due to the thermal instability. The instability creates a transition front that separates

a hotter and cooler region from each other.

Consider a situation where an inner hotter disk touches an outer cooler disk at the
transition radius r,, and an axisymmetric p-mode with (z = 0) in the vertical direction exists in
the area » < r,,. The wave frequency is higher than the epicyclic frequency at 7. The wave
propagates outward in the inner disk and is reflected back at ;- due to an abrupt change in disk
thickness and a dearth of gas outside r, except towards the equatorial plane. The reflected wave
will reflect outward at r;, where the epicyclic frequency is equal to w, since the wave cannot
propagate beyond that radius. Oscillations with k(r)~w will be effectively trapped in that
region between r;, and r,. These trapped oscillations' eigenfunctions were studied and invoked
as an explanation for QPOs detected in white dwarf accretion disks (Yamasaki T. K., 1995). The
analysis showed these oscillations could be simulated by the k -mechanism (Yamasaki T. K.,

1996).

Another type of oscillations is theorized to be contained in the transition region between
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an ADAF (Advection Dominated Accretion Flow) disk and a Shakura-Sunyaev Disk (SSD).
ADAFs are thought to explain the spectra of the hard state of x-ray stars. Accretion disks are
thought to be ADAFs only in the inner regions and SSDs for the outer regions, so there must be a
transition region between the SSD and the ADAF regions. There is no single established model

for this transition region.

An important characteristic for the transition region is a super-Keplerian rotation
occurring in the region (Honma, 1996) (Abramowicz M. 1.-P., 1998). In the ADAF region, the
rotation is sub-Keplerian, but becomes super-Keplerian in the transition region and the velocity
plunges as the velocity distribution continues outward into the SSD region. Due to a super-
Keplerian rotation reverting to a Keplerian rotation in the narrow transition region, the specific

angular momentum also decreases sharply outward in this region.

This decrease in the specific angular momentum leads to the Rayleigh instability if the
inhomogeneity of the transition region is negligible. Other physical variables, such as density,
also change sharply, which serves to counteract any Rayleigh instability from occurring. If the
physical variables' actions are stronger than the Rayleigh instability, perturbations manifest as
oscillations rather than growing motions and the oscillations' frequencies would be low if the two
opposing actions are close in magnitude to each other as to almost cancel each other out. The
low frequency oscillations will be trapped in the transition region due to a number of reasons.
The regions outside the transition region contain physical quantities which distributions are not
sharp, so the propagation of the perturbations are moderated by the relation between the

epicyclic frequency «k(r) and the wave frequency w.
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Since the wave frequencies are smaller than k in surrounding media, the waves cannot
extend into the surrounding areas. So the waves are trapped in the narrow transition region.
It has been considered these waves would explain the 1-15 Hz QPOs detected in GRS 1915+105
(Markwardt, 1999). It would be expected that the trapped oscillations would not cause
observable luminosity variations, but the transition region emits considerable radiation with the
whole luminosity emitted from the SSD region (Honma, 1996) (Kato S. N., 1998) (Manmoto,
2000).

The trapped oscillations' presence in the transition layer between the ADAF and SSD
regions is based on an assumption that the transition region is a narrow region, which entails a
large turbulent conductivity. This possibility stands as an unanswered question as of yet

(Abramowicz M. G., 2000).

Viscosity induces an effect that leads to the excitation of oscillations. An increase of the
viscosity in the compressed phase, or decrease of the viscosity in the expanded phase, serves as
oscillation amplification. The viscous force is usually invoked using the a-model of turbulent
viscosity. A diffusive viscous force does not necessarily happen in reality due to the assumption
that turbulence happens instantaneously as a physical response to any change in the
surroundings, which would imply an infinite speed for the response. Others have sought to
remedy this physical paradox (Popham, 1992) (Narayan R. , 1992) (Kato S. 1., 1994)
(Papaloizou, 1994).

This physical paradox can be worked around, though.

In considering the effects of viscous forces on oscillations, the time scale of the
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turbulence is of the order of 1/€2, so when the frequencies of oscillations are lower than €, the
invocation of a diffusive viscous force is appropriate in a description of the viscous stress force
in steady disks. If the frequencies of oscillations are larger than €, the turbulence cannot
respond instantaneously to the change in the medium, which means a time lag in turbulence as a
response to the oscillations. Studies show that the time lag in response of turbulence acts in a
direction as to stabilize the oscillations (Kato S. , 1994) (Kato S. , Turbulent Stress Tensor in
Accretion Disks Derived by Second-Order Closure Modeling, 1994) (Yamasaki T. K., 1996).
Much remains to be discovered in this topic so there isn't an established full picture of this

phenomenon of how the turbulent viscosity drives the oscillations.

The presence of viscosity creates large scale circulations as well as accretion flows in an
unperturbed state. In the case of local oscillations, these effects only act to change the
frequencies of the oscillations to a Doppler-shifted one and do not affect the growth rate (Ortega-
Rodriguez, 2000). In ADAF disks, thermal energy via viscosity is not radiated away but
transported inwardly as internal energy. The thermal imbalance, created by a radiative loss
maintained by releasing of gravitational energy by contraction, renders the stellar pulsation
unstable. The viscous processes are more important in disk oscillations in contrast to stellar
oscillations and serve to drive the oscillations in disks through excitation by viscous processes of
turbulence. More has to be discovered in studies of turbulence to expand on their contribution to

oscillatory processes.
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CHAPTER VIII

RADIAL PULSATION (HELIOSEIMSOLOGY)

In this chapter we focus on radial pulsation so we can understand the phenomenon of
oscillatory motion in the accretion disk. Diskoseismology pertains to the study of small
perturbations of the geometrically thin, optically thick accretion disks around black holes.
Perturbations can be compared to travelling disturbances in any medium, such as sound waves,
and share such characteristic properties. Helioseismology is the study of same, applied to the
surfaces of stars and diskoseismology extends these principles to the surfaces of the accretion
disks in the extreme vicinity of the compact object (black hole for one). We use this as a starting
point and extrapolate these features for the disk at its inner horizon where the QPO signal
originates. We delved into the equations that describe helioseismology in the first chapter and
now we expand on the topic for a cylindrical reference frame and find how the physical

conditions change for that setting.

Helioseismology in a Cylindrical Reference Frame

Modifying the helioseismological approach to the disk scenario entails utilizing a

cylindrical reference frame rather than a spherical one. Starting with the cylindrical coordinate,
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r =+vVR?% + z%; (8.1)
R is the radial coordinate confined to the x-y plane in the Cartesian reference frame while
z is the vertical displacement from the equatorial plane.

Taking the derivative of 7 to find the velocity, then again to find the acceleration in terms of R

and z:
_4r _lrp2 o 21 AR\ 4 1rp2 4 213 dz
v="T=2[R?+222 5 2R (5) +3[R? + 2] 2+ 2z () (8.22)
R dR z dz
_ ar dz 8.2b
(R2+2227 % [R24z2]7 O (8.20)
dzr 1 dR\2 R2 drR\? R d?R 1 dz\ 2 z2 dz\?2
a=—= —_— — jub— -|— —_— - — _ +
dt? [R2+ZZ]% (dt) [R2+22]§ (dt) [R2+Zz]% dt? [R2+Zz]% (dt) [R2+Zz]§ (dt)
z d%z
— 8.3
[R2+22]% at? (8:32)
=12 1—(5)2 +RER 1z 1—(2)2 24z 8.3b
_rvR r dt? TUZ r dt? ( : )

The acceleration equation contains the individual acceleration terms for R and z, as well
as the corresponding centrifugal forces in both the R and z directions.
Given that v 1s projected in the R direction only and v, in the z direction only as well, the

centrifugal force components of the equation (8.3) reduce to:
v}% R\? 1712? R\? _ v}% R\? _
A=) -2(1-())=2(1-%))=0 r-r (8.4a)
vZ 7\2 vZ 7\2 vZ 7\2 _
7(1—(;))"7(1—(;)>=7(1—(;)>—0' r—oz (8.4b)

The acceleration equation is now simplified as:

d?r R d?R zd?z ) d?R d?z
= — 4+ =— =sin@—+ cosf — 8.5
dt? dt2 ( )

a =—=-——
dt? r dt? r dt?
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For a disk in hydrostatic equilibrium, a model is utilized to determine the range of
pulsation in the stellar matter. The interior of the disk is subject to a pressure P and the disk is

comprised of thin cylindrical rings of mass m, radius R, and height z.

Newton’s 2™ law (equation 1.3) as applied to this scenario is:

2
ar_ _om 2nRzP, M being the mass of the compact object. (8.6)

dat? r2

The equilibrium model requires the left hand of the equation to equal zero, which means that the

following to be true:

GMm GMm GMm (1 . E) N GMm  2GMmz, _ ZﬂROZOPO (8.7)

R2+z2 Rz(l_(z)z) R2 R3 R3

and for the vertical gravity component in the disk, with the disk self-gravity being negligible, the

gravitational contribution comes from the cosine of the central object gravity:

GMm GMm (z
Trcosf =20 (2) (8.8)
Linearizing the coordinates and pressure gives:
R = Ry + 6R; z=2zy+ 6z; P =P, + 6P; (8.9a,b,c)
d?r d?R d?z
mﬁ = mﬁ+mﬁ (8103.)
_ (d2R0 " d2(6R)) n (dzzo n dz(é‘z)) (8.10b)
= M\ae dt? m\ae dt? )
d?r GMm
= T ReroRitGarony + 2n(Ry + 6R) (2o + 62)(Py + SP) (8.11a)
—[_gMmiy _,8R 520 502 SR 9z oP
= = (1 20422 ZRO) +2mRy (1 + Ro)zo (1 +ZO)P0 (1+ PO)]
(8.11b)
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= |- S + R 6R + 2500 258 57 4 2Ry 2Py + 2mRoZoPo (= ) + 2mRozoPy (= )
R} R3 Ry

2Ry 2o P, (‘;—’:)] (8.12¢)

Recall that the pressure relation can be substituted for another adiabatic relation:

ép 6R 6z
P_o_ —3)/R—0—3]/g (813)

The force equation, with eq. (8.38) inserted in the pressure relations, becomes:

d’r 2GMm GMm 2GMm
= R + OR

6z + 2mR P(6R>
mog = 3 Z + 2mRyzy P, R,

0 0

+2mRo 0Py (37) + 2mRozoPo (=3Y 3 = 37 %)

Zo

(8.14)

GMm

cMm s ] (8.15)

o

H<

Idz((SR] .\ d?

dt?
(8.16)
This is separable into two different equations in terms of R and dz.
d*(6R) GM
B [(3y —3) R_g] SR=0 (8.17a)
d?(8z) GM .
ey [(3y ~3) R_g] §z2=0 (8.17b)
The corresponding angular frequencies of the oscillating models are as follows:
GM
wd=3- 3}/)R—g (8.18a)
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w?=(3-3y) 2 (8.18b)

The disk scenario is hydrodynamically stable in the vertical direction and radial direction,
since the adiabatic index of the matter would have to be below that of y = 1 to encounter a
dynamical instability, which is a physical improbability. As the gas becomes increasingly
ionized, the adiabatic index, due to the larger specific heats, would approach unity, or a value of
one. So an dynamical instability in an accretion disk could be avoided in a cylindrical reference

frame even as the gas became highly ionized and its adiabatic index approached unity.

Adiabatic Index Relation for a Disk Distribution

The pressure follows a relation:

PVY = constant (8.19)
with the volume of concern depending on the geometry and mass distribution of the situation of
concern.

For a spherical mass density distribution:

1
V= SnR3 - P (gnR3> = constant (8.20a,b)

Which leads to the relation:

L -3y SR for linearized pressure and radius (8.21)
Py Ry

P =P, + 6P R=R,+6R (8.22)

P (1+5—P)(f )YR3V(1+6—R)3Y— tant 8.23

o ) (37™) Ro R,) = constan (8.23)
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(1+3) (14+38)7 = o g (8.24)

SR Py
6P 6R
1+E+3)/R—0—1 (825)
6P SR
=3y (8.26)

The geometry of a disk affects the mass distribution; the area of a cylindrical disk is:

A = 2nr? + 2nrh r = radius, z = height (8.27)
h h h SR
Leth= (E)R =z (Ry + 6R) =z R, (1 +R_o) and %: cos @,

(8.28a,b,c)
and cos 6 sweeps from a vertical range of z = & above the equatorial plane, to z = -4, below the

equatorial plane.

The volume of the disk becomes:
V=2mr3+nrth=2nr3 + nrd (E) (8.29a)
3 3 r

=nr3 E + g] =mr3 E + cos 0], z=h. (8.29b)

Which is not much different from a spherical distribution.

2 Y
PVY = constant —» P (nr3 [5 + cos 9]) = constant; (8.30)
Inserting the linearized terms yields the following expression:
Y 14 14
(P, + 8P)TY (Ry + SR)3 (3 + cos 9) = (P, + 6P) (3 n) (Ry + SR)3 (1 + 2 cos 9) =
3 3 2
constant; (8.31)

P, Gn)y RY (1 + i—P) (1 + i—R)gy (1 + %cos G)V = constant; (8.32)

0 0
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(1 + i—P) (1 + 5_R)3V _ PO( constant =1, (8.33)

() Ro gn)ngy(1+§cos H)Y B

I obtain the relation for a cylindrical disk distribution:

P 3y & (8.34)

Py Ro

The adiabatic relation is identical for a cylindrical distribution as it is to a spherical
distribution. The pressure gradient is proportional to the gravitational force directed radially in
the direction of the compact object so the equilibrium conditions will be in radial terms. The
vertical equilibrium conditions will be taken as the cosine of the radial terms since the disk self-

gravity is negligible and the compact object gravity is the dominant influence for the disk.

An interesting note is the correlation between the coefficients for both the cylindrical and

spherical distributions:

Y
The spherical distribution coefficient is: G n) , (8.35)

. o C . . 2 \Y 3 14
while the cylindrical distribution coefficient is: (5 n) (1 +cos 0 ) . (8.36)

Setting the two equivalent to each other, gives us a condition for cos 6:

G = (n(1efene))s eomo=f=f=d 7

Since the QPO ratio of the vertical and radial epicyclic frequencies is 3:2, we look at the

frequency ratio and compare it to the ratio of the height and radius:
q
0z _3_ 3 (%) (R = (%) (F).
=== 6E) =G (838)
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The vertical angular frequency w, is taken as the speed of sound, v, over the vertical
coordinate at the top of the disk where z = 4, and the radial angular frequency w, is taken as the
Keplerian velocity divided by the radial coordinate R, and the ratio of the two epicyclic
frequencies give us the ratio of the sound speed to Keplerian velocity, times the ratio of the
radius over the height. This relation holds true for any radius or height.

If we take the unifying geometric condition for the coefficients of both distributions, we get:

S
|

2R o

vs = vi for the QPO radius. (8.40)

There is only one location where the speed of sound matches the Keplerian speed at that
location. The QPO signal would emanate from that radial location where the Keplerian velocity
is greatest, and simultaneously induce a large sound speed in the vertical direction, creating a
large amplitude in the signal. That location is also known as the sonic point where the speed of
infalling material goes from subsonic to supersonic velocities. The sonic point is located at the

sonic radius, 7sonic.

In the Shakura-Sunyaev and Novikov-Thorne models, the sonic radius is determined to
coincide with the ISCO for sub-Eddington flows. As the accretion flow increases, the sonic
radius migrates away from the ISCO. So it stands to reason the ISCO is the qualifying radius for
the source phenomenon of the QPO signals for sufficiently low accretion rates. The relocation of

the sonic point shifts the originating radius of the QPO further out from the compact object
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through the accretion disk.

The geometric condition is useful in determining where the accretion turns from a disk-
like flow scenario to a spherical (Bondi) flow one. The significance of the co-existence of the
sonic point with the ISCO (also known as the marginally stable orbit, r,,;) in the same location
would explain the minority of cases of QPO candidates having a double QPO frequency. The
location of the sonic point is dependent on the rate of accretion flow and as the accretion flow
increases, the sonic point shifts below the ISCO into the plunging region. The speed of infalling
matter becomes super-Keplerian in that region and the noise in the spectral signal emitted from
that region due to the inbound turmoil of the falling matter would diminish the integrity of the
QPO signal, as denoted by the quality factor, and any kind of coupling of radial and vertical
oscillation modes would be inhibited. As the mass of the compact object increases, the mass
accretion rate would increase so an upper bound on compact object candidate mass would be

expected for a double QPO frequency signal.
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CHAPTER IX

THE DISKOSEISMOLOGICAL APPROACH

Expanding on the diskoseismological equations from the last chapter, I go further in

exploring the implications of the harmonic oscillation equation that describes the oscillation in

the disk. The extended harmonic oscillation equation can be expanded in several powers for a

better examination of the oscillation properties.

Starting with the following equation:

d?(6R) _ 2GMm SR — 36Mm (5R
dt2 ~  R3 R3 \R,

)6R + 4GMm (6R

. R—)Z SR +

o

ZGIV;m SR + (—3y);}Mm (S_R)
RO RO RO

This expression can be simplified as:

d?(6R) _ GMm

m g = (4—3y—3(i—§)+4(i—§)2+--~)6R

sy a3 (20) () - Jor =0

For the condition that the adiabatic index y = 5/3, the expression is modified further:

(1)1 (- on
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And the angular frequency becomes:

w? =%(1+3(i—’j)—4(‘;—’:)2+---)
1

() (1 3(2) - a(2) + )

The angular frequency yields the Keplerian frequency and the Keplerian velocity:

1

o= () <o =noo=r(E) =(

R
Compare this to the orbital frequencies in Kerr space-time:

1

W =2V, = (GT—I:I)E (1 +j f”_%)_l;

_ ¢
T GM2

o 2 2r
P=—===

a
M GM 1

The radial epicyclical frequency is as follows:

3
v = vl (1= 771+ 8772 -32772)

The vertical epicyclical frequency is as follows:

1

. 1
vo = vl (1 =4/ 772 +32772)

If we revert back to Newton’s second law expression with the linearized radial expression

(equation 8.68), not stopping at the first power:

11

= (12224 23 (£) + 2D EH (L) + )
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(9.5a)

(9.5b)

(9.6)

9.7)

(9.8a,b)

(9.9)

(9.10)

9.11)



(O @ ) en

PR G | 260 s 36 (spY2 4 4D (5R) 4 4mRS P, + 8RR, R +
4R SP (9.13)

d;(sz) = Za,gm SR —3GMm (5R)? +2M™ (5R)® + 8mRZP,6R + 4mR25P  (9.14)
TO0 = 2R + 2 SR — 2 (5R)? + 2™ (8R)? + 4mR} (12) 6P (9.152)

Inserting the hydrostatic equilibrium condition (equation 1.4) and the adiabatic relation (equation

8.34) into the above equation gives:

_ 4GMm SR — 3GMm (5R)2 4GMm (5R)3 (GMzm) (_3)/ i_lz) (9.15b)

R

mC0 - (4 3y — 3(%)+4(%)2—---)(""M’” ) (9.15¢)

8 . o D . .
If one neglects the powers of ?R, a harmonic oscillation equation is yielded with a simple angular

frequency:

d?(6R)
dt?

+ (3y —4)( )6R—O (9.16a)

1

w=(%)a- 3y)z (9.16b)

. 5 . . . . .
With the powers of ?R left in, one gets a harmonic oscillator equation in the following form:

dz‘i(fZR)+(3y_4+3(5?R)_4(6?R)2_...>(%)6R:0 9.17)

This gives us an elliptic equation. Let equation (8.82) be divided by Ri,
0
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Rio[dzd(fzm + (Sy 443 (%R) _ 4(%’?)2 _ )(%) 5R] =0 (9.18)
G (ra s )@ E) =0 Hex v

Ro

This can be rewritten as:

d? GM GM
d—t’z‘+(R—) (3y — 4+ 3x —4x? — - )x = 0, (R—) =0. (9.20)
dzx 2 3
F+a[(3y—4)x+3x —4x°] = 0. (9.21)
The o factor can be scaled out: Let T = at, and
(9.22)
dzx 2 3
=T [(By —4)x + 3x* — 4x3] = 0. (9.23)

A mathematical approach can be taken here to simplify this equation further. Multiplying both

sides by ;—x,

:—x (ZZT;C + [(By —4)x + 3x? — 4x3]) =0, (9.24)
£ +ior-n 40 ) <o =
(Z—:)Z + By — 4)x? + 2x3 — 2x* = 2c. (9.26)
(Z_’T‘)Z =2x*—2x3+ (4 -3y)x? +gq, where g = % (9.27a,b)

We can get a modified angular frequency as a solution from this elliptic equation.

This equation can be solved numerically or analytically. The numerical method can be used to
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find the characteristic frequency for the elliptic equation.
The perturbation model is scaled to this elliptic equation:

ax\t _ o 4 o3 _ 2
(dr) = 2x* — 2x3 + (4= 3Y)x% + q (9.28)

A time integral is obtained this way:

x dx'
t = fo ST e where g = 1. (9.29)
For an initial displacement, x, = —1, and (%) =0, (9.30a,b)
0
soat () =0=1+(4—3y)x — 2x3 + 2xf. (9.31)
dt x=2x

And solving numerically for the equation,

x ax
t(xn) - fxO \/2f4_2f3+(4—3y)5€2+1:

(9.32)

With the {{#(x,), x},.....} data.
A curve should appear from a minimum at #; and cross the x-axis in a sinusoidal manner

to a maximum at #,. The difference in the time interval is the half-period.

) d . . e
Since (d—:) = 0 at maximal displacement, and x = x,y,,, this indicates that

2
(%) =0 = 2Xpax — 2Xpax + (4 = 3V)Xhax + 1, forxya, < 1. (9.33)

The higher power terms are smaller than the lower power terms, which indicate that this
equation relates to small fluctuations and the requirement that q is larger than zero.
Obtaining the Fourier coefficients from the data and integrating numerically, then plotting them

on a graph can recreate the curve of the fluctuation.
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Physical Context of the Radial Potential Energy Expression

We return to the elliptic equation, which describes the radial displacement, that is also an
expression of the radial potential energy and is stated below:

dx 2
p(x) = (E) =2x*—2x3+ (4 - 3y)x? +q. (9.34)
Close to x = 0, the value of the adiabatic index term dominates.

In the case where x = 0, there is no displacement, and

2
2 _ ﬂ) _
Vi = (dT q. (9.35)
This gives us a context of the constant q. Another context can be found at the location of the
extrema, when X = Xpax, OF X = Xpin (OF Xp):

0=2xh —2x3, + (4 —3y)x% +q. (9.36)

To find the equilibrium points, I take the derivative of the equation:

8x3 —6x%+2(4—3y)x = 0. (9.37)
So a root exists at x = 0, therefore an equilibrium point resides at that location.
To find more equilibrium points, other roots have to be found:

8x2 — 6x + 2(4 — 3y) = 0. (9.38)

Two more roots are found:

o= B, = ()2 () - (- ©

Looking at the equation,

p(x) = 2x* — 2x3 + 2(4 — 3y)x?, (9.40)
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Let the adiabatic index term equal a quantity, B: (n —3y) = B, n = 4 for spherical,

n = 3 for cylindrical,

n = 2, for undetermined.

(9.41)

The value of ‘n’ is determined by the derived values multiplied with the Keplerian frequencies,
in each case of the helioseismological approach, whether it is the spherical (classical) reference
frame expressed by equation 9.16, or the cylindrical reference frame as taken for the accretion
disk reference frame expressed by equation 8.18. The final value of n =2 is a lower value taken
for an undetermined reference frame, presumably a flatter one, referring to accretion constrained
to a two-dimensional plane.

The radial potential expression equation with the B term now is expressed as:

ax\* _ 5 4 3 2
(£) =2x*— 243+ Bx? + q. (9.42)
Taking the case that y = 2’ the adiabatic index term turns negative. The adiabatic index term

. . 4 :
remains negative for any value above the value of y = p for which the term becomes zero, and

for all values less than 4/3, the term becomes positive. The motion would be unstable for a

positive adiabatic index term and stable for a negative one.

y=2 - 4-3y=-1 (9.43)

y < g - 4 — 3y > 0 (positive) (9.44)

Atx =0, p(x) =0, so in the case ¢ > 0, the energy would be below what it would be at x = 0, so it

never reaches the equilibrium point at x = 0. That value of x is an unstable equilibrium point and
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any perturbation to either direction sends any particle towards the other equilibrium points at the
bases of the curve, specifically, at the points x; and x,. There would be an oscillation motion
about these points.

In the case g > 0, there are two ranges of motion that circulate about the two non-zero
equilibrium points at x; and x.

In the case ¢ <0, there is a distorted range of motion with a suppressed oscillation motion

across the bottom of the curve.

q>0

Xi

g<0

X1

Figure 18. Diagram of the Radial Potential Energy curve with the roots shown for each case of

q.
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There are small oscillations about the equilibrium points x = x;, and x = x,, with a definite
frequency ratio.

There would be spring constants corresponding to the oscillations such that:

ky = (Z%’)xle, k, = (Z%’;’)xzxz. (9.45a,b)

2
TP —16x-16, k =16x-16 k =16x, - 16. (9.46ab.0)

Fory = g x;=-0.076, and x, = 0.826.
The spring constants become:
k, =7.211, k, =—7.211.
In this case, k; = - k».
The angular frequencies can be found for each equilibrium point. Finding the roots for
the equation for a given adiabatic index (y = 5/3, for example) is the first step.
The next step is taking the second derivative, with respect to x, of the equation then inserting

each value of the non-zero roots to yield an angular frequency for each root.

In the case of the adiabatic index term (4 — 3y), or B = -1, when taken with the adiabatic

index of 5/3, the first derivative of the equation, factored with respect to x, gives the roots:

8x3 —6x%+2(4—3y)x > 8x2 —12x + 2(4 — 3y) = 0. (9.47)

Foryzg, x=—-—-,1 (9.48)

The frequencies are found by inserting the root values into the second derivative of the equation

with respect to x.
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2
24(-3) —12(-3)-2=3+3-2=2=0? (9.49)
24(1)? —12(1) — 2 =10 = w} (9.50)

The ratio of angular frequencies is:

@2 _ (10 _ o A ratio of 2 (9.51)

For the adiabatic index term derived for a spherical reference frame with an value of n =4
(4 — 3y), and the ideal gas adiabatic index of 5/3 inserted into the equation, which yields an

value of B = —1, an integer ratio of 2 to 1 is found.

If the adiabatic index term is adjusted, like to (3 — 3y), the equation is modified further:
24x2 — 12x — 2(3 — 3y) = 24x2 — 12x — 4 = 0. (fory =2) (9.52)

The new roots are given:

1
x ==(3 £ V41). (9.53)
And the corresponding frequencies are:
2
24 (%(3 + \/41)) —12 (%(3 + \/H)> — 4 = 5447 = @? (9.54)
2
24 (§(3 - \/41)) - 12 (%(3 - JH)) — 4 = 15.0523 = w3 (9.55)
The ratio of angular frequencies is:
©2 - |52 _ 166, Aratioof 2. (9.56)
w1 5.447 3
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The adiabatic index term for a cylindrical reference frame with an value of n =3, (3 — 3y), in

the case of ideal gas, which gives a value of B = —2, gives an integer ratio of 5 to 3 (~1.66).

Doing the same thing with a new adiabatic index term, (2 — 3y), the equation is modified

further:

24x% —12x —2(2 —3y) = 24x2 —12x — 6 = 0. (fory = g)

The new roots are given:

And the corresponding frequencies are:

24(3(3+ x/ﬁ))z ~12(2(3+V57)) - 6 = 8587 = w3

24 (5(3 - ﬁ))z ~12 (g (3- \/ﬁ)) —6=19.9124 = w3

The ratio of angular frequencies is:

w 19.9124 ) 3
2= ~1.5. Aratioof =
W, 8.587 2

The adiabatic index term with value of n =2 (2 — 3y,and B = —3), in the case of ideal

gas,gives the magic ratio of 3to 2 (3 : 2, or 1.5).

(9.57)

(9.58)

(9.59)

(9.60)

(9.61)

The adiabatic index (B) term is the term that determines the ratio of the angular frequencies. It
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implies for a higher adiabatic index and a lower value of n, a smaller integer ratio of frequencies
occur. For double QPO frequencies that occur with those resonances, it’d reveal the situation the

accretion was occurring in, and its reference frame.

Context of the Orbital Frequencies

Going back to the orbital frequencies which are taken from equations (7.123 and 7124):

o= (@) (142 (2))

-1 -1

- (‘;M)1 (1 +a (% )1> (9.62)

wg = 2MVg (9.63)
1
1 A\z
M M
v, = |vK|<1—7+8a(T—3)2 —3‘j—2> (9.64)
1
1 A\z
ve = vkl <1 —4a (%) + 3j—> (9.65)

Expanding the radial epicyclical frequency in full then as a Taylor series, from equation (7.123):

1

v, = (Gr—’:’)% <<1 ta (%)%>_2>2 (1 -2 +8a (;”—3)% - 3;‘—2) (9.66a)
= (2 (1-20(8)) ) (1-2+sa(2) -52) (9.660)
= (2 (124 00 () + o0 (B (&) -2 - 16 () + ©0.660)
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Taking the same approach for the vertical epicyclical frequency, as stated by equation (7.124):

ve = (Z)? <1 ~2a (Tﬂg)?> (1 _4a (r%)'Z + 3;1—2)5 (9.67a)

The epicyclical frequencies can be regarded as a natural consequence of pulsations of
matter moving along the general relativistic metric field. The gravitational field imparts a

resonant influence that carries through to the natural frequencies of the emitted radiation.

Reconciling the radial epicyclical frequency expression with the classical helioseismological

expression requires setting these two equations equal to each other:

w = (—3)2 (3y — 4): (9.68)

N|R

0= (2 (1% +a (2 + 0 (2 (&) -2 - 1607 (%) + - 9.69

and setting equations (9.68) and (9.69) equal to each other and scaling out the common

Keplerian angular frequency factor:
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1 1

3y—4=1-"+6a(%) +6a (%) (%)2 ~3 —16a? (%) (9.70a)

1

~3y+5-2+6a (%)2 + 6a (Tﬂf (%)2 _3%_ 16q2 (B)=0  (©.700)

I get a constraint for the adiabatic index in respect to the mass and spin parameter of the compact
object. This equation can be solved for the adiabatic index in terms of M, a, and r.
Taking the same approach for the vertical epicyclical frequency with equations (9.67) and (9.68)

to find the vertical contribution to the constraint of the quantities between the two frequencies:

3y —4 = 1—6a(iw—3)%—6a(%)%(%)2+3:—2+8a2 (%) 9.71)
3y +5+6a (ﬁé); +6a (Tﬂg)% (8) -3%-8a%(%) =0 (9.72)

We set the surface boundary at the ISCO as the location where the pulsations would occur
and the inner disk begins, which entails inserting equation (8.136) into equation (8.135) for the

value of 7:

Ts = M + (3 +2,—-(B-2)B+z + 222))%) (9.73)

(@2 r(-2F) -G ea)f  om
5z

For the fractional displacements (%R) and (?), let  approach r,,; to determine the scope of the

fluctuations of the surface of the disk at its location. Inserting equations (8.136a,b) into equation
(8.135) gives the location of the ISCO in terms of the geometricized mass M and angular

parameter a, which is converted into terms of distance.
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When the radius is set for the ISCO, equation (9.72) can be solved for the adiabatic index
alone, in terms of M and a, now. Or the equation can be solved for the angular momentum
parameter a, if the adiabatic index is already determined and the mass known. Knowing two of
the quantities will yield the third one, for the radius the QPO emerged from.

The fluctuations can be mapped out in terms of a+ (or the dimensionless ratio of a/M) and
be used as a qualifying criteria for the adiabatic index versus the spin and how the spin of the
compact object affects the fluctuations. It can be used as a constraint with the mass and spin of
the compact object since determining either quantity gives the other automatically. Using
determined masses and spins of QPO candidates, these data can be applied to yield the value of
the adiabatic index at the ISCO and yield an insight into the nature of the gas as it enters the
plunging region below the ISCO.

The adiabatic index pertains to the presence of ionized gas and ideal gas and relativistic
gas and what ratio of ideal to relativistic gas is present and is at play. It can serve as a diagnostic
map of the distribution of the gases and the pertinent physical status. The radial and vertical
epicyclical frequencies conform to the diskoseismological equation in this form and in order to
maintain consistency, the adiabatic index has to accommodate the ratio of a/M to satisfy the
equation and maintain the integrity of the equations. Thus the distribution of ionized gas versus

relativistic gas can be mapped out using this as a criterion.
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Physical context of fractional displacements

To understand the meaning of the fractional displacements, we need to understand how
the waves move in space. Sound waves involved with the radial modes of stellar pulsations are
standing waves. Each standing wave for each mode has a node at one end (generally at the star’s
center, a fixed point with no moving gases), and an antinode set at the other end (at the star’s

. . 5
surface, open for movement of the gases). The fractional displacement, R—R, of the stellar gases
0

from its equilibrium position is solved for unity at the stellar surface.

SR
Ro

1; (9.75)

Although in reality, for classical Cepheid stars, the fractional displacement is more in the
range of 0.05 to 0.1 (Carroll B. O., 1996). To explore the pulsation mechanism and the
implications for the adiabatic index, there needs to be a discussion of the events that transpire
during the pulsation cycle.

Pulsating stars are essentially thermodynamic heat engines; the gases within the layers of
the star do work as they expand and contract during the pulsation cycle. If a layer does positive
work on its surroundings, it contributes to driving the oscillations. If a layer does negative work
on its surroundings, it dampens the oscillations. If the total work of the layers is positive, the
oscillations will grow in amplitude and if the total work is negative, the oscillations will decay as
aresult. So it continues until equilibrium is attained and the total work is zero.

A driving process entails heat flowing into a layer during a high-temperature part of the
cycle and leaving during a low-temperature part of the cycle. The driving layers absorb heat at

the time of their maximal compression, and maximal pressure will be attained after maximal

compression. The oscillations will be amplified at this point. At the center of the star, the matter

223



is compressed and the temperature rises as a consequence and thermonuclear energy is
. S8R . ) .
generated. The displacement ~ has a node near the center and the pulsation amplitude is very

small. The energy mechanism (e-mechanism) operates in the core of the star although it is not
enough to drive the pulsations.

If a layer became more opaque during compression, the energy flowing towards the
surface gets stored up and dammed, pushing the surface layers up. When the expanding layer
becomes more transparent, the trapped heat escapes and the layer collapses back to its original
position. In the remainder of the star, the opacity decreases with compression.

The density and temperature increases while the layers compresses. Although the opacity is more
sensitive to temperature changes, the opacity decreases with compression as a result. It requires
special conditions for stellar pulsations.

Regions within a star where the valve mechanism can operate successfully are the partial
ionization zones, where gases are partially ionized. Part of the work done on the gases while
compressed gets directed into 1onizing the matter rather than heating the gas itself. With a
smaller temperature rise, the opacity increases with the increase in density. The ions recombine
with electrons and release energy during expansion and the opacity decreases with the decrease
in density.

This opacity mechanism is referred to as the k-mechanism. In the partial ionization zone,
the k-mechanism is supported by the tendency of heat flow, during compression, into the zone
(due to its temperature being lower than that of its surroundings). The heat flow effect is referred
to as the y-mechanism, due to the smaller ratio of specific heats, Cy and Cp, having larger values
each. The partial ionization zones serve as the pistons that drive the pulsations of the star.

Convection is the thermal process that determines the efficiency of the pulsation. Hence, the
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adiabatic index tells us about the efficiency of the physical process driving the pulsations.

Thermodynamics and Internal Energy Transport

Three energy mechanisms come in play within stellar interiors: Radiation, Conduction,
and Convection. Radiation is energy transported purely through photon exchange between
particles and enables energy released in nuclear reactions and gravitation to eventually reach the
surface of stars and escape into space; Convection is a mode of energy transport within the layers
of a star in which hot buoyant masses transporting excess heat as cooler masses subside inwardly
within the star; and Conduction is the transportation of heat via collisive contact between
particles. The latter generally is regarded as negligible and usually neglected in stellar modeling

(Carroll B. W., An Introduction to Modern Astrophysics, 1996).

Exploring these energy mechanisms entails focusing on the equations that summarize the

phenomenon. Starting with the radiation pressure gradient equation:

d _

Prad — _gl g (9.76)
F,.q 1s the outward Radiative Flux; i is the Kramer's opacity, p the density, and c the speed of

light.

The radiation pressure gradient equation is also expressed as:
d d
APraa _ 2 o3l (9.77)

dr 3 dr

and merging the two equations (9.76) and (9.77), I get:
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dr 3 kp

dr 4ac T3

Frad (9~78)

and inserting the relation for radiative flux into equation (9.78):

Lra
Fraa =725 (9.79)
I get:
ar _ _ 3 Kplrad
dr  4ac T3 4mr? (©-80)

which gives us the temperature gradient for radiative transport. As the opacity or temperature
increases, the temperature gradient becomes sharper (more negative) accordingly. The radiation
is required to transfer all of the outward energy, and likewise for increases in density or

temperature decreases.

If the temperature gradient becomes too sharp, convection comes into play where the
hotter partitions of mass shift and rise as the cooler partitions sink inward. Convection is
generally difficult to summarize via straightforward equations and require the utilization of fluid
mechanics. Fluid mechanics invoke the Navier-Stokes equations, a three-dimensional set of
equations describing the motion of gases and liquids (Carroll B. W., An Introduction to Modern

Astrophysics, 1996).

Stellar computer programs invoke these equations in one dimension, the radial dimension
only, due to limitations in computing power and reduce a 3-D process to a 1-D approach. It
further requires a complex approach to deal with turbulent convection, especially in detailing the

viscosity and heat dissipation within the star.
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For convection, a characteristic length scale is invoked, referred to as the pressure scale
height, particularly in terms of the star size. The timescale for convection is also comparable to

that of the timescale for changes in the stellar structure, implying that the two are linked.

The pressure scale height is determined as such:

1 1dP _

dlnP
B he s a ©.81)
Assuming H), is constant, the variation in pressure can be inferred:
P = Pye Hr (9.82)
To derive a general expression for H, specifically, we go back to the hydrostatic equilibrium
equation:
P _ __ pGM
= 9P =3 (9.83)
Invoking this relation gives us:
1 __1dP _pg =
Hy, Pdr p’ Hp T gp (©-84)

To explore convection, we need to understand the thermodynamics at play. The first law

of thermodynamics refers to the conservation of energy for heat transport:

dU = dQ — dW (9.85)

in which the change in internal energy of a mass element, dU, is given by an amount of heat

supplied to the element dQ, minus the work done by the element upon its surroundings, dW.

The total internal energy per unit mass is:

U =

3=

k the average kinetic energy, m the average mass of particle in the gas
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(9.86a)

=3 (L) T = %nRT (9.86b)

2 \umyg
The internal energy is the kinetic energy per unit mass. The change in heat of mass element dQ
is referred to in terms of the specific heat of the gas, C. The specific heat is the amount of heat
required to raise the temperature by 1 K for a unit mass (Carroll B. W., An Introduction to

Modern Astrophysics, 1996).

The equations for the specific heats are:
- -
Cp = (5 . ¢ =), (9.87a,b)
(with C, at constant pressure, and C, at constant volume.)
The gas does a certain amount of work on its surroundings, expressed as dW. The gas exerts a
force across a particular distance. The work can be compared to the action of a piston; the gas

filling a cylinder, endowed with mass m and pressure P, can exert a force as expressed by the

following equation:

F =PxA (9.88)

and the work done per unit mass:
aw = (=) dr =22 dr =P av (9.89)
dW = dQ-pPdV (9.90)

In the case of constant volume, dV =0, so dU becomes:

(9.91)

v =dQly =2 _dT = ¢y dT (9.92)
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For a monatomic gas, du = ; nR dT (9.93)

For relativistic gas, dU =3nRdT (9.94)

so the specific heat becomes: (for constant volume)
C, = % nR for ideal gas (9.95)

C, =3nR for relativistic gas (9.96)

To find the specific heat (for constant pressure), for a monatomic gas (Carroll B. W., An

Introduction to Modern Astrophysics, 1996):

dv =2 ar-p%| ar (9.97)

dTlp dTlp
and the ideal gas law: PV =nR (9.98)
using the following relation: P Z—Z =nR (9.99)

and invoking the last three equations (9.97, 9.98, and 9.99) together gives us:
CydT = CpdT + nRdT (9.100a)

C, = Cp + nR; (9.101b)

The parameter y is defined as the ratio of specific heats:

y = E—Z (9.102)
For a monatomic gas,
v _ v mR_ gy Mgy 28 (9.103)
Cp Cy Cy =(nR) 3 3

This is the case whether the ideal gas is degenerate or not.
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For relativistic gas,

(9.104)

The adiabatic index also applies for both the degenerate or non-degenerate cases of relativistic
gas.

In the case of ionization, part of the heat that goes into increasing the kinetic energy of
the matter gets redirected into ionizing the matter instead. As a consequence, the temperature
doesn't rise as much, which indicates a larger value for the specific heats each in a partial
ionization zone. For increasing C, and C,, the value of y approaches unity (value of one). A
lower value for y implies increased ionization for the involved zone in question (Carroll B. W.,

An Introduction to Modern Astrophysics, 1996).

What occurs during convection is that a heated bubble of gas or plasma rises and expands
(adiabatically, or without any heat exchange) and travels through the star's inner layers. At some
point it loses its excess heat and thermalizes, dissolving into the surrounding gases. To

understand the conditions for convection, we start with a relation for the pressure gradient:

dP _ kT dp pk dT 1 kT du

— Y =
P = kp (6.126) ar = amnar T amndr i me dr (9.105a)
p dar T dr udr
Setting u as a constant and invoking another pressure relation:
ar _ y-1 2P
el Y = (9.106)
-1 p1-v2t (9.107)

dr Ky dr
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Inserting (9.106) into the above equation (9.107) and isolating the pressure gradient term gives

us:
a1 _L 1-yP\_Pdl
dr (1 Ky p p) T Tadr (©-108)
ap (y _kpYT 1y _ PdT
dr (1 Ky ) T Tdr (©-109)
dapP 1 P dT 1 P dT dInT
w(1-3) =25~ () =1%=0 ©.110)
For convection to occur, the following condition must be satisfied:
an® o r1 9.111)

dInP Y

Convection and radiation both transport energy simultaneously so conditions exist in the
case one can dominate over the other. Advection also transports energy in the case of accretion
disks due to gravity.

The temperature gradient determines which mechanism prevails in its operation. To
understand the events that occur with convection, the physical event must be discussed in more
detail. A bubble of gas rises towards the surface, traveling a distance dr.

If the bubble's density is less than that of its surroundings, it will rise accordingly. The buoyant
force acting on the bubble can be expressed by the following equation:
fe=pig 9.112)

where p; = fluid density, g is the local acceleration and f3 is the buoyant force per unit volume.

Another force acts in opposition to the buoyant force: the gravitational force:
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fo=plg (9.113)
and a net force acting upon the bubble can be expressed as:
fuer ==g8p 6p=p! — p} (9.114a,b)
If the bubble increases its density in relation to its surroundings after traveling a distance, the

bubble will sink and convection will stop.

In the case that p? <p; (bubble density less than surrounding density), (9.115)
the bubble will continue its rise and convection ensues (Carroll B. W., An Introduction to
Modern Astrophysics, 1996). To determine the condition for convection, we start with the

premise that the bubble is in near thermal equilibrium (T? ~ Tf)and p? = p§. (9.116a,b)

The bubble expands adiabatically and the pressures involved remain equal throughout the event;

PP =p7. (9.117)
The bubble moves over a certain distance:
b b, dp|P
(Bubble) pf = pi + El dr (9.118)
; s s 4 ap|®
(Surroundings) P; = P +E| dr (9.119)

Assuming the densities of the bubble and surroundings remain nearly equal, the condition gives

us:

dpb dpS

= - (9.120)
Focusing on the adiabatic relationship between pressure and density:
P = kp¥ (9.121)
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-1 4p _yPadp

Z_‘:: K ypY o = ar (9.122)
Inserting this into the condition (8.184) gives us:
Since P’ = P, (8.146) = - = = = (9.124)
The equation becomes:
%Z—’i @ _ 5_3_7; ’ (9.125)
1-%< 3. ouzo
(% _ 1) 12_1; > Z_i » (9.127)

The condition for convection to occur is that the adiabatic temperature gradient be greater

than the actual temperature gradient. As temperature decreases inside the star with increasing

radius, the temperature gradient is negative:

The inequality is written then as:

daT
dr

act

daT

=<0 (9.129)
dT
= (9.130)

In the case the actual temperature gradient is superadiabatic (larger than the adiabatic

temperature gradient), convection occurs. Convection will only occur when the following four
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conditions are met: (1) the stellar opacity is large, which indicates an extremely sharp
temperature gradient enabling radiative transport; (2) an area where ionization is happening,
creating a higher specific heat and lowered adiabatic temperature gradient; (3) the gravitational
acceleration is low (meaning lower adiabatic gradient), and (4) the nuclear energy generation rate
temperature dependence is large, incurring a sharp radiative flux gradient and large temperature

gradient.

The first three conditions occur readily in most stars while the fourth tends to occur deep
within stellar interiors, and tends to occur at a later stage in the star's evolution, when
temperature-dependent CNO cycle or triple-alpha processes are happening within the star

(Carroll B. W., 4n Introduction to Modern Astrophysics, 1996).

Determining the Adiabatic Index in the Outermost Layer of a Star

We are interested in determining the adiabatic index in an outermost layer of an
oscillating body. A method for detecting it was developed recently. The effective adiabatic
index can be determined for the outermost layer of a star, using observations of a slow-moving
magnetohydrodynamical wave in the corona (Van Doorsselaere, 2011). One such observation
was made for the Sun using the Extreme-ultraviolet Imaging Spectrometer on Hinode. The
spectrometer was used to detect oscillations in the electron density using the CHIANTI atomic

database for the spectroscopy.
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A relationship between the relative density and temperature perturbations was determined
from the time-dependent wave signals from multiple spectra lines, which found an effective
adiabatic index of 1.10 £ 0.02. This indicates the gas is highly ionized since the ratio of specific
heats approach unity. The adiabatic index plays an important part in solar and stellar models, as
well as natural plasma systems where it regulates the energetics of monatomic plasma. An
adiabatic index of y = 5/3 is often invoked in most cases, and determining the precise value of y
also enables more complicated physics (thermal conduction and radiative cooling) to be
explored. The measurement was made of the temperature and density dynamics in a coronal
loop. The comparison of the two quantities yielded the effective adiabatic index in the corona.
The effective adiabatic index bears information about the thermal properties of the corona.
Coronal seismology techniques were used to get results, which combined with the
magnetohydrodynamical theory of waves in structured plasmas enables measurement of the

intrinsic physical quantities (Roberts, 1983).

It was recently shown that the corona and chromosphere of the sun manifested transverse
waves (Tomczyk, 2007) (De Pontieu, 2007). Slow magneto-acoustic waves can be detected as
periodic variations in intensity and Doppler shifts, given that the observations are made along the
line of sight. Perturbations in velocity and intensity were observed using SOHO to single out hot
corona lines containing FE XIX and Fe XXI (Wang T. S., 2002) (Wang T. S., 2003). Accretion

disks also typically exhibit iron lines in their spectra.

The perturbations were taken as standing magneto-acoustic waves due to the quarter-

period phase shift between the velocity and intensity oscillations. Other observations confirmed
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the assessment of the disturbances being slow magneto-acoustic modes with periods of
approximately 5 minutes (De Moortel L. H., 2002) (King, 2003) (Robbrecht, 2001). The
perturbations were taken for slow-moving magneto-acoustic modes due to their propagation
speeds being less than the local sound speed, moving along magnetic field lines. The CHIANTI
software was used to determine the density from the line ratio of FE XII and FE XIII spectral
lines while taking the density variations in account. The electron density is expected to be

oscillating in phase with the intensity and the temperature variations mirror the trend.

Linearized MHD theory gives us the following equation (Goosens, 2003):

Lot _L T, (9.131)
Po  YerfPo  Yeff—1To’ )

with p being the mass density, P the gas pressure, and 7 the temperature. The ' subscript denotes

perturbed quantities and the 0 subscript denotes the equilibrium quantities.

For this equation, the equation of state follows a polytropic relation P = kpYeff; (9.132)

with the effective adiabatic index y,r.

The observable quantities bear a linear relationship summarized by the equation. The
implication of the effective adiabatic index veering from a value of 5/3 means the energy
equation in the MHD equations cannot be invoked with an adiabatic form using small correction
terms for energy losses and gains. Certain factors must serve to lower the adiabatic index (such
as thermal conduction, radiative losses, and turbulence). For the corona, the low amplitude of
the temperature variations indicates that thermal conduction is very efficient, which was

predicted by others (De Moortel L. H., 2003). Thermal conduction introduces a phase shift
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between the density and temperature perturbations. The phase shift is defined by the equation as:

tan ¢ = Xy—Drito, (9.133)

Poa)
with x = xp Ty 7>, (9.134)
being the parallel thermal conduction, and the density and temperature variations following the

equation e!(@t=k2)

with frequency w, the wave number £, time ¢, and z as the direction of the
magnetic field.

De Moortel and Hood (De Moortel L. H., 2003) found a relation for the adiabatic index
that can be determined from the phase shift between perturbations:

Ar =cos¢ (y — DA,; (9.135)
for cases when thermal conduction is not negligible. Ar is the relative oscillation amplitude of
the temperature and A4, is the relative oscillation amplitude for the density.

The adiabatic index given for the corona is 1.17, which is higher than the given value of the
earlier equation. This approach can be applied in observations of accretion disks' spectra,
especially focused on the area of inner edges of the disks, where the QPO signals originate from.
The reflection edge is one of several qualifying candidates for the inner edge of an accretion
disk, where it is defined as the smallest radius capable of producing a florescent iron line.

The iron K, fluorescent line is a characteristic feature observed in numerous accretion
disks and its intensity and shape is dependent on the conditions near the inner edge. Doppler
shifts and intensity variations can be used to determine the adiabatic index using the correct
approach with the observation data and singling out the diagnostic features in the power
spectrum. The adiabatic index being determined through this method can be used as a criterion to
isolate the ratio of a/M from the helioseismological approach applied to the QPO frequency

expression.

237



This along with a high resolution observation and measurement of the event horizon as
well as determining the location of the ISCO through a drop-off in the quality factor
measurement in the power spectrum of any observations of the same candidate will give a more

precise measurement of both the compact object's mass and angular momentum.
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CHAPTER X

PULSATION ACTIVITY

We now look at the implications that come from the pulsations within the accretion disk
gas. Pulsations can reveal details of the interior of a stellar object. The radial oscillations of a
pulsating star are a result of sound waves resonating through the stellar interior. The sound
waves involved in the radial modes of stellar pulsation are standing waves, akin to these that
happen in an organ pipe capable of several modes of oscillation. The wave of each mode has one
node (fixed point) where the gases do not move, and one anti-node (moving point) at the star's
surfaces where the gases can undulate. The fundamental mode has the gas moving in the same
direction at every point along the pipe or the radial direction within the star. The first overtone

has a node between the center and the surface with the gases moving in opposite directions of
) . . 8
each side of the node, and the second overtone has two nodes. The fractional displacement, ?R,

is the amount of displacement of the stellar material from its equilibrium position relative to the
radial extent of the star. The radial modes have the motion of the stellar material confined to the

surface. The majority of the Cepheids pulsate in the fundamental mode.
The displacement %R also follows an exponential equation:

SR = R, etiwt; (10.1)

where © = /(3y —4) (i—’f ; (10.2)
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for values of y > 4/3, the exponent is positive and the displacement moves in a pulsation
(sinsoidal) pattern. If y < 4/3, the exponent is negative and the displacement is of the form

SR = A e *%; where the displacement approaches a floor value of zero. The value of ¥
determines the dynamical stability of a star and when y < 4/3, the star is doomed to gravitational
collapse.

In terms of the accretion disk, as the value of y approaches 4/3, and drops beyond that
value near the compact object, the stellar material will undergo gravitational collapse. This is
also the criterion that occurs with white dwarfs when electron degeneracy pressure fails as the
adiabatic index y approaches the relativistic value of 4/3 and they succumb to gravitational
collapse. The increase in gas pressure cannot overcome the inward pull of gravity and cause the

mass shell to rebound outward.

The range in space where matter obeys a polytropic equation of state with an adiabatic
index y > 4/3 is dynamically stable. At the place where y = 4/3, gravitational collapse is the fate
for matter in that region. The equation of state that matter obeys in an accretion disk obey a
polytrope with an adiabatic index higher than 4/3, especially at the accretion disk inner edge.
The QPO signal lends an insight into what happens at the inner edge with increased spin.

As the spin value a approaches the maximum value a = M, the ISCO (r,,,) approaches the same
radius as the event horizon at the same value and the accretion disk inner edge meets the edge of

the black hole.
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Lengths of Event Horizon versus ISCO
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Figure 19. Lengths of Event Horizon versus ISCO (Marginally Stable Circular Orbit) versus

The upper line is the curve representing the length of the ISCO or 7, and the lower line
is the curve representing the length of the event horizon of the compact object (also denoted as
ry). At maximal spin, the ISCO and the event horizon coincide at the same radius.

Using the QPO frequency equation along with the helioseismological expression, it yields
two expressions for the fractional displacement (range of pulsation along the radial extent of the

stellar body, provided y > 4/3) for each epicyclic frequency expression.

The radial fractional displacement and vertical fractional displacement are calculated at
the fixed radius = r,,, and then plotted for varying values of y versus varying values of a.
The significance of the radial fractional displacement is linked to the net work done within the
gaseous atmosphere of the astronomical body. Positive values indicate a positive work done, and

negative values indicate a negative work done.
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If the work is positive, the gas does work on the surroundings, and if negative, the
surroundings do work on the gas instead (Carroll B. W., An Introduction to Modern
Astrophysics, 1996). According to the first law of thermodynamics, in a reversible process, an
increment of heat §Q absorbed by an element of gas during an incremental change of state, must
equal a sum of incremental change of internal energy dU of the sample, and the incremental
work §W done on the surroundings:

dQ = dU + 6W; (10.3)

The quantity 6W is positive if the gas element absorbs heat as is the latter when it does work on
the surroundings. The net work done by the gas over a cycle equals the total heat absorbed:
W =¢dQ; (10.4)

The work must be positive for pulsations to occur. If heat is released (6Q < 0), the work
is negative. Regions that do positive work drive the pulsations in the atmosphere, and regions
that do negative work are dissipative.

The radial fractional displacement has a solution for a fixed radius, set at the ISCO. The
first has a smaller range of pulsation (for y = 5/3); a negative (inward ~ -0.05) pulsation range
for both low and high values of a. For all values of a, the pulsation is positive. As the spin
approaches a = M, the displacement turns upward again and grows larger in magnitude,
approaching infinity, which meets expectations when one considers the inner edge approaching
the event horizon at that spin value. It would be taken as a drastic response to the approaching
contraction of the marginally stable circular orbit (ISCO) towards the event horizon of the

compact object.
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The Fractional Displacement Solutions of the Simple Harmonic Oscillator Equation

First solution of radial fractional displacement versus spin for fixed r=ry,
OR/R

Figure 20. First solution of the radial fractional displacement versus spin.

For the radial fractional displacement, the values are positive for the majority of values of
spin parameter a (in Figure 20), for all adiabatic index values, when the displacement remains
positive and dips for increasing spin, and jumps towards positive infinity with near maximal
spin, suggesting an dynamic instability incurring for that spin value (resulting in an explosive
expansion in the gas), even with a high adiabatic index. The lower the value of the adiabatic

index, the sooner the dynamic instability in the inner disk occurs, and occurs for that of

relativistic gas the soonest.

Even with adiabatic index y = 5/3, the spin of the black hole modifies gravity such that it
causes a dynamical instability even for non-relativistic gas, meaning the value of a = 1.0 turns

into an asymptote that all curves for all values of ¥ turn sharply to avoid, towards infinity. As
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depicted in Figure 19, for the vast majority of spin values, with varying values of the adiabatic
index, the radial displacement is positive.

For decreasing values of y, the radial fractional displacement diminishes in magnitude and then
increases slowly, finally approaching the asymptote at the maximal value of a = M, indicating an

explosive expansion.

The first solution for the vertical fractional displacement (Figure 21) are all positive (for
all values of y) and starts from a floor value that varies for each adiabatic index, then increases
for increasing values of y and reaches a ceiling of 2.0 at a = M for non-relativistic gas, and 0.7
for relativistic gas. Pulsation occurs in the vertical direction, for all values of a, and most

strongly for ideal gas for maximal spin.

First solution of vertical fractional displacement versus spin for fixed r=ry;
0z/R

20k

Figure 21. First solution of the vertical fractional displacement versus spin.
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The other adiabatic indices show positive work for increasing spin, and the index of
relativistic gas shows positive work even only near maximal spin for the first solution. This is
the first solution to the vertical fractional displacement at a fixed radius, the ISCO, plotted versus
spin parameter a (Figure 21). For ideal gas, the displacement is positive and increases with spin,
indicating positive work is done and increases with spin until it reaches a maximal value then
takes a slight turn. Even with a slight decrease in the adiabatic index, the displacement turns
negative and the work done becomes negative although for all adiabatic index values, the
displacement and by inference, the work becomes positive, eventually with increasing spin.

With relativistic gas, the work does not become positive until near maximal spin. There
are pulsations in the gas atmosphere of the disk for positive displacements, and none for negative
displacements due to the dissipative energy that inhibit such pulsation activity. This would
indicate the QPO frequency versus the pulsations is not dependent on the nature of the gas as it is

advected past the ISCO.

First Radial Displacement for y=5/3
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Figure 22. First Radial Displacement for fixed index = 5/3.
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First Radial Displacement for y=3/2

Figure 23. First Radial Displacement for fixed index = 3/2.

First Radial Displacement for y=4/3
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Figure 24. First Radial Displacement for fixed index = 4/3.

The real values of the radial displacement for varying values of the adiabatic index, from

5/3 (ideal gas) to 4/3 (relativistic gas), are plotted over a radial range in terms of Schwarzschild

radii (in Figures 22, 23, and 24). For non-relativistic gas, the radial displacement is in the form
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of a steep peak that rises to a high amplitude near the inner disk edge then drops from there to a
smooth curve that approaches a horizontal asymptote of 1.0, for radial values beyond the ISCO.
As the spin decreases, the peak gets shallower and wider, indicating a wider dispersal in the work
being done within the inner disk in a widening ring that extends outward. The increased spin
would have the opposite effect, with the work becoming increased localized within a narrowing

ring set at the ISCO and radiating outward.

As the adiabatic index drops towards a mix of relativistic and ideal gases, the radial
displacement culminates in a shallower peak that also is shallower and wider for low spin, then
the displacement curve becomes narrower and the peak shifts to a higher amplitude. The radial
displacement is of a lower magnitude than that of non-relativistic gas, indicating a decrease in
the adiabatic index shows an inhibition in the work driving the pulsations. Maximal spin shows
a steeper peak with a narrower width and a more depressed distribution in the radial
displacement with increasing radial distance. In the case of non-relativistic gas, and an even mix
of ideal and relativistic gas, pulsation activity is supported at all radial ranges outward from the
ISCO. Even with increasing spin, the pulsation becomes more concentrated towards the inner

disk edge, especially with decreasing adiabatic index values.

With relativistic gas, for zero spin, the radial displacement starts out from a value of 1.0
and then decreases gradually from that value outward over increasing radial values. A peculiar
trend occurs when the spin increases and the amplitude of the displacement decreases but the
displacement also decreases gradually over all outward radii, and then at some point, as the spin

further increases, the displacement increases in magnitude at the inner disk edge and the curve
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drops more sharply and plunges beneath the x-axis into negative territory. With increasing spin,
the curve reaches negative values at higher radial values but the displacement is even more
negative. This indicates the presence of negative work being done within the inner disk and
suppressing pulsations in the region. For relativistic gas, the spin of the compact object acts to
suppress pulsation activity in the inner disk, which indicates there would be no expected QPO

signals for a high enough spin, in the case of relativistic gas at the ISCO.

Parameter Space for y vs. a, (First Radial Displacement Solution)

N\ 0.0

: 2

Figure 25. Parameter space for adiabatic index versus « (First Radial Displacement Solution).

The plotted parameter y versus a« (Figure 25) shows the constraint of y versus the dimensionless

ratio for a« (ax = a/M), so it satisfies the epicyclical frequency expressions (equations 8.129 and

. . . . . S8R
8.130) as plotted on a two-dimensional curve in three-dimensional space (y vs. ax vs. R—).
0
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Parameter Space for y vs. a, (First Radial Displacement Solution)

Figure 26. Parameter space for adiabatic index versus a (First Radial Displacement Solution).

The fractional displacement is positive for all values of the adiabatic index and all spin
values. Since the displacement is positive, it indicates positive work being done for any spin.
Near maximal spin, the adiabatic index affects the displacement significantly. For non-
relativistic gas, it increases to about 50 percent of the value for zero spin. For relativistic gas,
there is an extreme response to the spin in such that the displacement shoots up from a floor
value for median to near maximal spin values, to 2.0. The value for the same index in the case of
zero spin is approximately 0.25, indicating an eight-fold increase in the displacement.

A lower displacement indicates less work being done and less heat gain for median to
near maximal spin, for relativistic gas, than for zero spin or maximal spin. A similar trend occurs

for non-relativistic gas although the trend is not as extreme as in the relativistic gas case.
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First Vertical Displacement for y=5/3
OR/R

Figure 27. First Vertical Displacement for fixed index = 5/3.

First Vertical Displacement for y=3/2
OR/R
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Figure 28. First Vertical Displacement for fixed index = 3/2.
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First Vertical Displacement for y=4/3
SR/R

Figure 29. First Vertical Displacement for fixed index = 4/3.

The solution to the vertical fractional displacement is positive for all values of spin
parameter a for all radii outside a particular extent, and approaches zero with increasing radial
value, for non-relativistic ideal gas (Figure 27). As the adiabatic index goes to an even mix of
ideal and relativistic gases (Figure 28), the vertical fractional displacement drops in magnitude.
For zero spin, the displacement is a consistent flat value at 0.5 at all radii and for increasing spin,
becomes a curve with a peak just outside the ISCO. As the spin increases, the curve shifts
outward and widens. This would indicate positive work being done and heat being retained in an

annular region that would widen and shift outward with increased spin.

As the adiabatic index approaches the value of relativistic gas (Figure 29), the fractional
displacement for each spin value drops in magnitude and manifests as a curve that extends out
and decreases in value over a radial range. Zero spin shows no curve for relativistic gas

indicating that there would be no displacement for a stationary black hole with relativistic gas at
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the ISCO. This would indicate that the gas would not likely be relativistic at the ISCO in such a
case and there would be no QPO signal apparent. The increased spin causes the displacement
curve to shift outward and widen as well. But the displacement reaches a lower amplitude with
the highest value for near maximal spin. Positive work is done in this case as well and the heat is
retained in a small annular region just outside the inner disk edge that broadens slowly with
increasing spin. In the immediate vicinity of the black hole, there is negative pulsation meaning
there is a loss in the heat, which would be consistent with the heat being rapidly absorbed

through the event horizon.

Parameter Space for y vs. a, (First Vertical Displacement Solution)
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Figure 30. Parameter space for adiabatic index versus a+ (Vertical displacement solution).
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Parameter Space for y vs. a, (First Vertical Displacement Solution)

Figure 31. Parameter Space for the adiabatic index versus a+ (Vertical Displacement Solution)

The parameter space as defined by the solution for the vertical fractional displacement
(Figure 31) is positive for all spin values and all adiabatic indexes. A higher spin induces a larger
vertical displacement for non-relativistic gas, indicating a higher range in pulsation in the vertical
direction. The opposite trend shows the opposite behavior: zero spin with relativistic gas shows
a minimal vertical displacement. Even with zero spin, ideal gas shows a vertical displacement of
1.0, and it increases from there as the spin increases. The relativistic gas climbs to
approximately the same vertical displacement as non-relativistic gas (at zero spin) with high spin
values and the displacement builds to a maximum for maximal spin (in either the ideal or

relativistic gas case).
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The Radial Displacement Solutions of the Elliptic Equation

The solution to the elliptic equation was calculated numerically and plotted for different
values of the adiabatic index. For each varying value of the adiabatic index, there was a
corresponding frequency and change in the range of the radial fractional displacement. A general
trend was discovered in the changes in the frequencies and the radial displacements. This
implies the nature of the gas affects the periodicity and range of pulsation in the gas. This can be
used as a diagnostic into the inner disk and determine how the gas behaves as determined by the
measured frequency from that region.
The first figure (Figure 32) is a graph of the radial displacement for ideal gas, with an
index of 5/3. The radial displacement oscillates from a low negative value (-0.05) to a higher

value of (+0.5). The period is 2.18267 seconds, which can be detected and approximated from a

visual observation of the graph.

Radial Displacement for y = 5/3
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Figure 32. The Radial Displacement for y = 5/3 for the elliptic equation solution for the radial

displacement calculated numerically.
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Radial Displacement for y = 1.6
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Figure 33. The Radial Displacement for y = 1.6 for the elliptic equation solution for the radial

displacement calculated numerically.

The radial displacement is identical to that for y = 5/3. The displacement increases

slightly in both directions. The period is 2.284 seconds for y = 1.6.

Radial Displacement for y = 3/2
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Figure 34. The Radial Displacement for y = % for the elliptic equation solution for the radial

displacement calculated numerically.
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The radial displacement continues to increase in both directions and the period is also
increasing in duration. The period in this case is 2.44 seconds. As the adiabatic index drops, the

pulsation grows stronger in magnitude and the period increases in time.
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Figure 35. The Radial Displacement for y = 1.4 for the elliptic equation solution for the radial

displacement calculated numerically.

The displacement also continue to grow larger in both directions and the minimum occur
near (-0.10) and the maximum near (0.60) for near-relativistic gas. The period for this case is
2.617 seconds. The behavior from this graph confirms a continued trend in the pulsation and

period changes.
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Radial Displacement for y = 4/3
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Figure 36. The Radial Displacement for y = s for the elliptic equation solution for the radial
displacement calculated numerically.

For relativistic gas as depicted by Figure 36, the radial displacements are the largest and

reach both the highest and lowest values of any adiabatic index. They approach a maximum of

(+0.65) and a minimum of (-0.10). The strongest fluctuations occur in this case and the period

also is the longest for any adiabatic index case. The period in this case is 2.749 seconds.

As the adiabatic index decreases, it changes the coefficient value of the adiabatic index

term in the elliptic equation and yields different roots for the equation (and hence, equilibrium

points for the physical actions of the pulsations). This would have an effect on the overall

frequency solution to the elliptic solution, causing it to get larger (or longer) in the time domain.

Finding the adiabatic index through observations of the accretion disk, particularly the
inner region, of a source similar to the way the adiabatic index was found for the corona of the

sun, would serve as a way to constrain the ratio of spin over mass, and together with a high
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resolution observation of the event horizon with a large telescope and using the equation:

Ty =M+ VM? — a?; (10.5)

The dimensionless ratio of a to M can be determined by comparing the measurement of
the event horizon to the ISCO, which can be determined by finding where the drop-off in the
quality factor is in radial terms from the center of the accretion disk. For example, the ratio of
the event horizon radius to the ISCO (Figure 40) for zero spin is 6 rs to 2 rs or 3 to 1. For

maximal spin, the ratio of ry to 1y (or ISCO)is 1 rsto 1 rs, or 1 to 1.

But it’s difficult to glean the approximate mass or spin independently of each other. The
adiabatic index y can be used independently as a way to pinpoint both the mass and spin of the
compact object source in question by using the epicyclic frequency relationship between the
adiabatic index and the ratio of spin to mass, to determine the adiabatic index at 1.

The epicyclic frequencies give a predictable relationship between the adiabatic index and the
ratio of black hole or neutron star spin to mass so it can serve as an identification tool to
determine the approximate mass of the compact object to a higher degree of accuracy and infer
the spin of same object.

The relativistic resonance model serves to provide a situational context for the
phenomenon of accretion and how the QPO signals emerge as a natural consequence of a
vibrating region situated along the inner edge of the accretion disk. The QPOs show up as
prominent peaks in the spectrum for each source and particularly sharper than any peaks that

would emerge from pulsations for any other ordinary star. The intense gravity of the compact
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object has an amplifying effect that enhances the peak to prominent amplitude that is hard to
miss in observations.

The thermal state of the accretion disk gives a disk spectrum that is close to that of a sum
of blackbody contributions from different radial locations. Its shape is determined by the radial
distribution of temperature, given by the Novikov-Thorne model, which is dependent on the spin,
given by the relation:

T =T(r,a%); (10.6)
The total radiative power L is determined by the averaged temperature, T, = Ty(a*), and the
surface area A = A(a”) of the radiative region. The total radiative power is given as:

L =0Ty A; (10.7)

By calculating different spectral shapes and the power of different a+ in the Novikov-
Thorne model, we can get a best-fit estimate for the temperature and area. Inconsistencies due to
assumed flow rates lead to error ranges in the determined mass estimates for the black holes in
question.

By using the diskoseismological approach to bring in the independent factor of adiabatic
index v, it can be used to narrow the error margin on mass and spin estimates for the compact
object in question and the approach puts the phenomenon of the QPO signal generation in a
physical context that points towards the relativistic resonance model as the salient cause and
explanation for the QPO. It can help clarify any assumptions about the conditions of the
accretion within the inner disk and make it possible to refine our understanding of the inner

workings of accretion disks.
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CHAPTER XI

CONCLUSIONS

QPO signals emanate from compact objects that are situated in a general relativistic
gravitational field. A double frequency signal detected from the same source are explained as the
radial and vertical epicyclic frequencies in a relativistic resonance model, emanating from
infalling matter moving through a curved space-time field that imparts a distinctive beat to its
oscillating motion.

I applied a helioseismological model that describes surface and interior oscillations in the

sun and yields a characteristic Keplerian frequency for the oscillations of its solar matter at the
. : Y . . _6R.
surface. In the Newtonian setting, the linearization part that yields the expression R—R is generally
0

equal to one in a flat space-time. Following that I applied the method to a general relativistic case
in a cylindrical reference frame.

In the general relativistic setting some differences were found. The difference in this
model with the Newtonian expression served as a general relativistic correction and my model
was amended with the epicyclic frequencies. Since Helioseismology hinges on one equation
found following from the hydrostatic equilibrium condition and linearized relations of R and P
(radius and pressure, respectively) to yield an eigenfrequency, this approach was applied to the
two eigenfrequencies of the QPO operating in two different dynamic directions (radial and

vertical) from a specific region (inner edge) of the disk and serves as a diagnostic probe into the
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area to indicate the driving phenomena behind the generation of the signal. In contrast to
helioseismology, diskoseismology introduces an additional degree of freedom, which provides

movement in the vertical direction as opposed to only in the radial direction.

. . S8R 8 . o
In this work two expressions are found for = and R—Z to determine the general relativistic
0 0

corrections in either direction within the disk. Using these newly derived expressions I explored
the range and nature of the pulsations in the inner disk. I assume a relativistic resonance model
for the disk, with the QPO signals emerging from the inner edge or the ISCO (Innermost Stable
Circular Orbit), the last radius where the orbits can remain Keplerian (space-time is sufficiently
quasi-Newtonian and flat) and typically regarded as the inner edge in all cases of accretion disks.
Any further inward, the particles’ orbits begin to precess (as a result of the curvature of the Kerr
space-time) and overlap, resulting into increased rates of collision and all lateral momentum is
dissipated as heat and radiated away and results into a fatal free-fall for the advecting plasma into
the event horizon of the black hole or surface of the neutron star. It is for this reason that the
region below or within the ISCO is called the “plunging region”. This is important because it
shows that the QPO signal cannot come from material below the ISCO. The signal would be
suppressed and vanish in the noise in the x-ray light curve due to the turmoil that occur in the
plunging region. I argue that the disk must behave according to the relativistic resonance model
such that that the inner disk edge vibrates due to matter moving along the edge of the plunging

region and the QPO signal emerge as a result of the vibration.

In Chapter II, the boundary layer is defined by requiring R+ to be at the ISCO because it
contributes and controls a significant amount of the luminosity of the accretion disk that contains

the QPO signal in its overall power spectrum. The same region set at the inner disk edge would
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contain standing perturbations in the region. This region is treated as a boundary layer that
modulates the luminosity and controls the scaling of the frequencies in both the radial and
vertical directions. The width of the boundary layer is calculated, invoking the physics of the
environment and the dimensions of the boundary layer reveal the physical parameters behind the
oscillations, i.e., the magnitude of the vertical oscillations versus that of the radial oscillations
being coupled to the size of the containing region and the ratio of the height to the radial width.
The boundary layer model was adapted into a cusp layer model where the radius was
extended outward to a selected radius (specifically, the ISCO) and the physical parameters
invoked for an annular region containing a significant luminosity that would be controlled by the
region. The boundary layer imparted its scaling onto the frequencies of the radiation emanating
from the controlling region. An equation was derived to give the dimensions of the boundary
layer and the ratio of the Keplerian angular frequencies derived from the equation that gives the
two locations of the ends of the cusp layer comes out to a rational ratio of 3 : 2. This mirrors the
ratio of the double QPO frequencies detected in observations for a number of QPO candidates.

In the calculation done here the two QPO frequencies emerge from two different radii.

In the relativistic resonance model, a coupling factor is invoked to relate the vertical and
radial epicyclic frequencies. Using the boundary layer calculations, the coupled resonance
equations by Abramowicz in a 2005 paper were explored and yielded a relation for the coupling
constant y in terms of the pressure. The coupling constant is strongest where the pressure is the
highest, which would be at the inner edge. Coincidentally, the sonic edge also is situated at the
ISCO.

We find that the vertical and radial oscillations would be the most strongly coupled at the
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ISCO. They also would be the most strongly coupled at the equatorial plane and their signal
would emerge most strongly where the flow was the thinnest. In that thin region the signal could
emerge without being scattered or re-absorbed by the heated, infalling matter.

For higher accretion rates, the sonic radius (the point where the speed of sound goes from
subsonic to transonic) shifts to a radius below the ISCO, which would explain why there are no
double QPO frequencies for higher mass compact objects since compact objects with higher
mass tend towards higher accretion rates which cause an increased separation, or dislocation, of
the sonic radius from the ISCO, which would lead to a decoupling of vertical and radial epicyclic
frequencies. Only one QPO frequency would emerge since the sonic radius would fall within the
plunging region, with the second signal lost in the noise due to the turmoil of the chaotic

collisions of the gas particles.

In Chapter IV, I discuss the heated gas as it spirals in towards the central object and above
a specific temperature (~ 10* K), the magnetic field flux lines become frozen into the plasma. In
terms of the Blandford-Znajek mechanism, I first use the Li-Xin model to compare the
comparative strengths of the magnetic field of the disk and the compact object (black hole
ergosphere to be specific). The black hole would likely be rotating and if contained an electric
charge, would create its own magnetic field. However, in nature, black holes do not have charge
so whatever ambient magnetic field would come from the plasma trapped within the ergosphere
of the black hole. The ergosphere is a region that extends from the event horizon to the static
surface. The static surface is where matter would appear to be moving at the speed of light to an
observer far away from the black hole as opposed to actually travelling at the speed of light. The

plasma trapped within this region would be outside the black hole and be rotating with the black
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hole. The Li-Xin model was used to find that the black hole magnetic field was weaker than that
of the disk magnetic field, except in the case of near maximal spin. So the disk magnetic field is
the primary source for the magnetic field in the accretion disk system. I then utilized the Li-Xin
model to model the magnetospheric radius due to the disk’s magnetic field, where the flow of the
ionized matter would be diverted by the innate magnetic field of the disk to a significant degree.
As far as the model goes, no significant disruption in the flow of the gas occurs to affect the
shape or dimension of the trapping region to a significant degree, even for high spin.

As stated in the earlier discussion on the Alfven radius, the ISCO remains the effective
edge of the inner disk so the pulsations will reflect off that radius as if it was a closed boundary.
For any electric current configuration (dipole, quadrupole, multipole), the Alfven radius remains
close to the ISCO as far as to be indistinguishable from the ISCO, for any mass measure. The
inner disk would remain thin without the advection-hindering effects of the disk’s magnetic field
that serves to dam the incoming material and divert it vertically within the disk or upward and

towards the poles for the purposes of providing jet material.

The inner edge of the disk also serves as a closed boundary which supports standing
waves along the circumference of the orbit and can retain integer multiples of wavelengths along
the length of the circumference. The lowest value integer wavelengths would have higher
amplitudes and would be more discernible than higher-valued integer wavelengths. This would
explain the higher prevalence of the parametric resonance (ratio of 3 : 2) of the epicyclic
frequencies in contrast to higher integer ratios. Multiple double QPO frequencies have been
found with the 3 : 2 resonance, most of them in neutron star binaries, but a small number have

been found for black hole binaries with this persistent feature. All other cases entail only one
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QPO frequency.

The inner edge of the disk can be treated as a membrane with boundary conditions of
both the compact object and the disk material on either side of the membrane, set equal at that
radius. The compact object’s gravity is the dominant influence and imparts its effect onto the
surface of the inner disk to a prominent degree. It also serves as the informing source for the
ISCO orbit that contains the standing waves. The orbit radius of the ISCO also serves as an

equipotential boundary between the disk self-gravity and the compact object’s Kerr gravity.

In Chapter VI, the accretion rate is discussed at length and is significant because several
variables as derived by Novikov and Thorne in 1973 (Novikov L. a., 1973), depend on the
adiabatic index: the mass accretion rate, the radius of influence, the density of the infalling
matter, and the temperature distribution. This underscores the significance of the adiabatic index
when it comes to accretion disks. The diskoseismological expressions from Chapter IX link the
adiabatic index to the mass and angular momentum parameter of the compact object as dictated
by the QPO frequency. The mass and angular momentum of a compact object can be determined
independently through other methods, such as measuring the event horizon (by the methods of
Event Horizon Telescope) and detecting the location of the QPO by finding the radius where the
quality factor of the x-ray emissions drop off to zero. We can then compare the ratio of the radial
lengths of the two quantities. Because the event horizon and the ISCO both simultaneously
shrink inward with increasing spin, at a predictable rate for each, it could be used to give the
dimensionless ratio of the angular momentum parameter to the mass, or a/M. That ratio can be
used to refine the mass estimates for the compact object under observation, and when those

quantities are inserted into the diskoseismological expressions, it will yield the value of the
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adiabatic index at the ISCO. Determining that value yields more information about the accretion
disk from which the QPO signal originates. That information can be used to refine accretion disk
models. Chapter VII explored the phenomenon of diskoseismology and how the disk oscillations

travel and translate into other forms of motion and energy within the accretion disk.

In Chapter VIII, radial pulsation equations are explored for any unique properties
inherent in the phenomenon and what information it can yield about the infalling gas. The
classical case of helioseismology, when it comes to radial pulsations, is set in a spherical
reference frame. I used the same methods and applied them to diskoseismology, taking the same
radial pulsation equations and adapting them for a cylindrical reference frame. In deriving the
adiabatic relation for a disk distribution, the geometry of a cylindrical disk yielded an expression
for the ratio of height to radius for a geometric condition. When applied to the ratio of vertical to
radial epicyclic frequencies, it gives a requirement that the speed of sound be equivalent to the
Keplerian speed at a particular location. It also yields a particular resonance of 3 to 2 between
the epicyclic frequencies at that point. In this case, the two QPO frequencies emanate from the
same radius.

In Chapter IX, we explored the radial pulsation equations, which are harmonic oscillator

. . . . a . .
equations extended in terms of a fractional displacement, ?R, and can yield, depending on how

. . . OR, . .
many powers in that term one can truncate, more than one solution. Since - typically is less

than one, any ascending powers of the term can be neglected (usually the first and higher) and a
simple harmonic oscillator equation is obtained. It also has a characteristic angular frequency in
terms of the Keplerian angular frequency multiplied by an adiabatic index term.

When further powers of the displacement term are examined, up to the first term, one gets
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an Abel ordinary differential equation. If further powers are included up to the second term, an
elliptic equation is obtained. In this case, the elliptic equation is numerically evaluated to get the
frequency solution for each case of the adiabatic index. For different values of the adiabatic
index, starting from that of an ideal gas, a period and displacement range is obtained. As the
adiabatic index value decreases with each computation of the frequency value, the period grows
longer in time and the perturbations slowly increase in magnitude. The largest perturbation
values are obtained for the adiabatic index of a relativistic gas, indicating a relativistic
environment is needed. As the adiabatic index value decreases towards unity, the period would

grow even longer.

The elliptic equation, when handled with a numerical fitting treatment, also gives a radial
potential equation yielding information about the pulsating matter. I found that for each root of
the equation, there exists an equilibrium point where matter would tend to settle in a potential
field and with a particular condition (value of q), the range of motion is revealed. The value of q
is indicated by initial conditions, or the square of the initial velocity at the start of the
perturbation action. With a positive g, the range of motion is divided into two oscillatory

regions, while with a negative q, a single range of distorted motion exists over a single region.

Taking the second derivative of the radial potential expression with respect to x and then
inserting each root of the same equation, can give us the angular frequency for each root. The
ratio of the angular frequencies is found by dividing the square root of the larger value (positive
root of the potential expression) by the square root of the smaller value (negative root of the

potential expression). This was the result that gave a general solution to the ratio of the
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frequencies and dependent on the B term in the solution.

The adiabatic index term (B) controls the value of the integer ratio. For decreasing values
of n, the value of B decreases as well and becomes more negative. For the adiabatic index term
derived for a spherical reference frame with a value of n =4 (4 — 3y), and the ideal gas
adiabatic index of 5/3 inserted into the equation, which yields a value of B = —1, an integer ratio

of 2 to 1 is found.

The adiabatic index term for a cylindrical reference frame with a value of n =3, (3 —
3y), in the case of an ideal gas, which gives a value of B = —2, gives an integer ratio of 5 to 3

(~1.66).

The next adiabatic index term with value of n =2 (2 — 3y,and B = —3), in the case of
ideal gas, gives the magic ratio of 3to 2 (3 : 2, or 1.5). For that integer ratio, as far as the radial
potential expression is concerned, a different reference frame is effective in terms of explaining

the pulsations of the matter.

A more conflated reference frame is responsible for generating the integer ratio of the
angular frequencies, in the case of ideal gas. When the index for relativistic gas (4/3) is inserted
into the second derivative of the radial potential expression with respect to x, it also yields an
integer ratio of 5 to 3 (5 : 3) for n = 2. The integer ratio of the frequencies due to the adiabatic
index for relativistic gas (in the cylindrical reference frame) is the same as that for the adiabatic

index of ideal gas in the spherical reference frame. The integer ratio of the frequencies for the
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relativistic gas index for one reference frame with a value of n, will equal that of the integer ratio
due to the index for ideal gas in a reference frame with a value of n — 1.

So based on this trend, a lower n (specifically, » = 1) will yield a 3 : 2 resonance in the
case of relativistic gas. This scenario is unlikely since the gas would only become relativistic
near the event horizon and the QPO signal with that integer ratio would only emerge from the
ISCO in the case that the compact object was near or at maximal spin. In that case, the ISCO
would have retreated all the way down to near or at the same radius as the event horizon itself.

The implication of the 3 : 2 ratio in the QPO frequencies in this context is that the gas
would tend to have a higher adiabatic index, and the inner disk in the double QPO frequency
case, would operate in a different reference frame, one distinct from that of the cylindrical or

spherical ones.

I found implications of the fractional displacements and pulsation ranges, for each case of
the adiabatic index, for each value of the spin parameter a. The elliptic equation solution is
found and numerically evaluated and plotted for each value of the adiabatic index.

I found that the radial fractional displacement at a fixed radius, set at the ISCO, is more
sensitive to the spin of the compact object than the vertical fractional displacement at the same
radius. As spin reaches its maximum possible value, the radial displacement moves towards
infinity, implying an explosive expansion outward from the ISCO. The vertical fractional
displacement is more stable, only increasing steadily to a value, which is twice that of zero spin,
at maximum spin. The pulsations are more stable in the vertical direction (in the cylindrical
reference frame), than in the radial direction (parallel to the equatorial plane). The radial

displacement turns negative for median values of spin for the relativistic gas index, which
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implies negative work is being done and heat was being released instead of gained and
supporting the pulsation activity. For median values of spin, all other index values also showed

decreased displacements but they all increased again as the spin increased towards the maximum.

The displacements are plotted across a radial range for different values of spin (for each
individual value of the adiabatic index), and in the case of ideal gas, the pulsations are most
pronounced within a few Schwarzschild radii of the inner disk edge and as the spin increases, the
distribution of the displacement peak changes, with the peak shifting to a lower value and the
peak broadening outward. This indicates the pulsations occurring in a broadening annular ring
that widens as the spin of the compact object increases. The same thing occurs with decreasing
adiabatic index value, although the displacements drop in value across all radii. For relativistic
gas, the displacement turn negative at a radius, starting at a radius of about 2.0 r, for a spin
value of 0.5 and increasing from there. This implies no pulsation activity is supported for
relativistic gas with a spinning compact object spinning at half the maximum possible speed or
above that, at extended radii within the accretion disk. The negative work indicates a dissipation
of heat beyond that radius and the positive work indicates a retaining of heat within a close

annular region within the inner disk.

It indicates the nature of the gas responsible for the QPO signal will be likely confined to
a region that is filled with gas that is likely to be ideal, rather than relativistic. Although a lower
adiabatic index (adjusted mix of ideal and relativistic gas) will still support pulsation activity for
any spin of the compact object, up to a point. The lowered adiabatic index will indicate an

increasingly concentrated annular region of heat that closes inward to the inner disk edge and
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contain the pulsation activity.

The vertical displacements show a similar trend to the radial displacements over a radial
range but reaches lower maximum peak values compared to that of the radial displacements.
They also decrease in amplitude for lower adiabatic index values. The vertical displacements do
differ from the radial displacement in that they all reach floor values that remain constant for all
radii outward, indicating steady heat retention over a distance from the equatorial plane.

With zero spin for any adiabatic index value, there is a flat constant value for all radii (1.0
fory =5/3,0.5 fory = 3/2, and 0 for y = 4/3. As the spin increases, the displacement starts to
gather up into peaks that shoot up then drop in amplitude and broaden with increasing spin. In
the relativistic gas case, the amplitude drops to around 1.0 for a variety of spin values and slowly
spreads out with increased spin. This indicates retention of heat for all radii in the vertical

direction although to a diminished extent.

The solution to the elliptic equation for the radial displacement was numerically
evaluated and yielded different periods and radial displacements for each adiabatic index value
(1.66, 1.6, 1.5, 1.4, and 1.33). The smallest radial displacements were found for that of ideal gas,
and as the adiabatic index dropped, the displacements increased, until they reached their largest
values for that of relativistic gas. The periods also became longer as the adiabatic index
decreased, from that of 2.18 seconds for y = 5/3, to 2.75 seconds for y = 4/3. As the

adiabatic index drops further, the period will get even longer.

A number of models have been considered here and explored to find characteristics that

can explain the emergence of the quasi-periodic oscillation signals that manifest in x-ray
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radiation from numerous binary systems. The QPO signals can either occur in one single peak in
the frequency spectrum derived from an x-ray light curve, or a double peak, in some cases. The
interesting feature for double QPO peaks is that they always occur with a rational resonance
ratio. The most prominent ratio is that of 3 : 2, and a number of models have arrived at that
resonance ratio as a feature. The boundary layer model, extended to the inner disk edge,
recreates the characteristics and the scaling of the epicyclic frequencies.

A geometric condition (equation 8.63) due to reconciling the coefficients of the
cylindrical and spherical reference frames where the accretion would become Bondi (or free-fall)
accretion also yields a specific ratio between the radius and height. When this condition is
invoked, with the ratio of Keplerian velocity and speed of sound, it yields the 3 : 2 resonance of

the vertical and radial frequencies, due to equation (8.64).

The elliptic equation also yields a radial potential equation that also creates the conditions
for a 3 : 2 resonance in the case of ideal gas that requires a particular reference frame for the
accretion disk scenario.

Ultimately results of my dissertation could be used to explore testable implications that
can be resolved with the LOFT satellite mission. Large Observatory for X-ray Timing (LOFT) is
a proposed ESA space mission slated to launch around 2022, and is dedicated to the study of
neutron stars, black holes, and compact objects by means of their rapid x-ray variability.

The source of the QPO origin can be resolved with more observations, like LOFT, and
more extensive knowledge of the conditions within accretion disks. Such knowledge would help
refine our understanding of accretion disks and binary systems in general. Most stars are found

in binary systems and understanding these systems would help us understand a major component
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of the universe. We would reinforce and expand our understanding and comprehension of the
astronomical fundamentals that operate in these systems. A QPO signal embodies more
information and can serve as an incisive probe into the mechanics of an accretion disk and binary
systems in general and reveal a lot. By using diskoseismology to connect the QPO signal to the
adiabatic index, which is connected to a lot of quantities within the disk, it can be turned into an
observational tool by itself. It would resolve a number of questions, particularly the density and
temperature distributions, among other quantities involved when it comes to the composition and
internal anatomy of accretion disks. By confirming the adiabatic index, it yields these quantities
in one single swoop and gives us a lot of information about the accretion disk. This information
can be used to further refine accretion disk models. So QPOs shed more light on the subject

matter than just the nature of the x-ray radiation in which they manifest.
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