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CHAPTER 1 

INTRODUCTION 



Chapter 1. Introduction 

1.1 Importance and Distribution of Water on Earth 

The earth might be named as the "water planet" or the "blue planet. " Water is essential for life, it is 

the most precious and irreplaceable resource on Earth . It is estimated that 99.4% (1.4 x 109 km 3) 

of the total available is surface water. Groundwater occurs only as 0.6% (9 x 106 km3
) of the total. 

However, of the vast amount of surface water, most of it is in the form of saltwater in oceans and 

inland seas (97 %). Fresh surface water accounts for only 2% of the total volume of water (Bear 

et aI. , 1999) Table 1.1 provides estimates for water availability on earth. Similar numbers have 

been obtained by Shiklomanov and Rodda (2003) . 

The fresh surface water resources that are accessible for human consumption are the water in 

lakes (0.3%) and streams (0.003%). These are dwarfed by the amount of groundwater (22%). 

As a water crisis is forecasted in the near future (Gleick, 1993), the welfare of the world 's 

population is closely tied to a sustainable exploitation of groundwater. Lakes, rivers, reservoirs, 

and aquifers account for less than one-third of all fresh water, with the rest locked in glaciers and 

permanent snow covers (Raskin et al. 1995). 

Earth has a limited supply of water and , in most cases, water is considered a renewable resource 

as it circulates through various parts of the environment. As the human population has expanded 

and the use water to meet various demands, including domestic, agricultural and industrial 

demands has increased , there are growing concerns about the availability of usable water. The 

multitude natural and human uses of fresh water are linked by the unitary character of the water 

cycle (Rogers and Lydon 1995). The use and misuse of water in one location can have far-flung 

effects, altering downstream resources , affecting the reliability of water flows , and degrading 

water quality and aquatic ecosystems. As the competition for limited resources increases with 

expand ing water use, water quality often deteriorates and ecosystem maintenance is 

com prom ised. 

Freshwater resources in arid and semi-arid lands have three main components: rainfall , surface 

water, and groundwater. Water that enters the ground and occupies the free space in soil and 

sediment as well as openings in bedrock including cracks and spaces between the grains is 

known as groundwater. For humans, groundwater forms an important part of Earth's water 

supply. Groundwater is usually freshwater, available nearly everywhere on the continents, and it 

is usually free of organic pollution, disease, and dangerous contaminants. However, groundwater 

is vulnerable to various source of pollution . It usually takes a long time for the pollutants and other 

substances disposed of, or spilled on or near the surface, to reach underground systems. Once 

groundwater is polluted or used up, recovery will be very slow. In some cases, it may not be 

possible to restore the depleted groundwater systems . Understanding groundwater and the 

hydrologic cycle may enable to conserve water for future use. 



Table 1.1: Global water reservoirs; Mather (1984) . 

Storage %of % of the liquid 

Category (10
3
km

3
) total freshwater 

Total global volume of water 1,384,000 100 -

Oceans and salt water lakes 1,350,000 97.5 -

Glaciers and ice caps 25,000 1.8 -

Freshwater: 9,000 0.65 100 

a. Groundwater 8,847 0.64 98.3 

b. Freshwater lakes 0,126 0.009 1.4 

c. Soil mOIsture 0,0225 0.001 0.25 

d Man-made reservoirs 0,0027 - 0.03 

e. Rivers 0,0018 - 0.02 

1.2 Physical Conditions and Water Resources in the GCC Countries 

The countries of the Arabian Peninsula, with specific reference to the Gulf Cooperation Council 

(GCC) countries, have similar physiographic, social, and economic characteristics, including arid 

cl imates, sparse natural vegetation , and fragile soil conditions. The natural water resources 

consist of limited quantities of surface water run-off resulting from flood events , groundwater in 

the alluvial aquifers, and extensive groundwater reserves in the deep sedimentary aquifers which 

are mainly non-renewable. The supplementary non-conventional sources include desalination of 

seawater and brackish water, and renovated wastewater. Water availability is governed by rainfall 

distribution in time and space, in relation to run-off generation, as well as topographic and 

geological features that influence water movement and storage. 

The total area of the GCC countries is estimated as 2557470 km
2 

(AI-Rashed and Sherif, 2000) , 

Figure 1.1. The peninsula is largely desert with the exception of the coastal strips and mountain 

ranges. In basic climate terms, a desert can be defined as an area which receives little or no 

rainfall and experiences no season of the year in which rain regularly occurs (Nicholson, 1995). 

The climate in the GCC countries is characterized by long, hot, dry summers and short, cool 

winters for the interior regions , and hot, somewhat more humid , summers and mild winters for 

coastal regions . Hydrometeorological parameters exhibit great variation , seasonal temperatures 

may range from _5° to 46°C in the north , central , and eastern parts of the peninsula. The coastal 

areas and mountainous highlands have lower and less extreme temperatures , ranging from 5° to 

35°C. Humidity is generally low in the interior, ranging from 10 to 30 percent. In the coastal areas 

it may range between 60 and 95 percent. The low percentage of cloudy days and the high solar 

radiation over the region result in high evaporation rates. The average annual rainfall in the GCC 

countries varies between 70 t0140 mm. The total annual evaporation ranges from 2,500 mm in 

the coastal areas to more than 4,500 mm in desert of Saudi Arabia (AI-Rashed and Sherif, 2000) . 

2 
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The main topographic features of the Arabian Peninsula are the western , southwestern , and 

south-eastern mountain ridges, as well as the central plateau . The mountain ridges divide 

numerous moderate-sized drainage basins that empty towards the Red Sea, Arabian Sea, and 

the Gulf of Oman, as well as larger basins that drain towards the central plateau and , in some 

cases, continue eastward towards the Gulf. Generally, the coastal drainage basins have steep 

reliefs and narrow coastal plains as compared with the mild slope and large catchments area of 

the inland region Steep slopes and well-defined topographic features control the availability of 

surface run-off as well as the modes of groundwater recharge. The remainder of the peninsula is 

characterized by low relief and poor drainage. In the Arabian Gulf region , the Tertiary sediments 

are made up of limestones, dolomites and evaporites. Although the Oligocene sediments were 

removed by erosion due to a worldwide drop in sea level , some areas remained submerged and 

Oligocene sediments crop out in Abu Dhabi and Oman and in the subsurface in off shore United 

Arab Em irates (AI-Ruwaih and Talebi , 2007) . 

The other major features that influence the availability of groundwater resources are the 

peninsulas igneous and metamorphic basement rock known as the "Arabian Shield," and the 

sequences of sedimentary layers known as the "Arabian Shelf'. The shield , which covers one­

third of the peninsula, consists of an outcrop of hard rock that begins in the western part of Saudi 

Arabia and extends from the Gulf of Aqaba in the north to the Gulf of Aden in the south. The 

shield has limited groundwater storage in the alluvial deposits of wadi channels, and weathered 

joints and fracture zones. 

The Gee countries, including United Arab Emirates, Bahrain , Kuwait , Saudi Arabia , Oman and 

Qatar, are suffering from water shortages. They are already under the water scarcity line as 

defined by the World Health Organization (WHO) (having renewable water resources <1000 

m
3
/y/capita). Rainfall scarcity and variability coupled with the harsh climatic conditions and high 

evaporation rates have characterized this part of the world as arid with a limited availability of 

renewable water. Surface water resources are scare to absent with the exception of mountain 

areas in southwestern part of Saudi Arabia, southern part of United Arab Emirates and northern 

and southern parts of Oman (AI-Rashed and Sherif, 2000) . The total surface runoff generated 

from rainfall is estimated as 4.83 billion m
3
/yr, of which 3.21 and 1.47 m

3
/yr are generated in 

Saudi Arabia and Oman , respectively (Khouri and Deroubi, 1990). About 0.15 billion m
3 

/yr of 

surface runoff are generated within the territory of the UAE (AI-Rashed and Sherif, 2000). The 

total amount of surface runoff in Kuwait, Bahrain and Qatar is less than 2 million m
3
/yr 

(Abdulrazzak, 1995). 

The increase of the gap between supply and demand of water in the Gee countries is attributed 

to the limited available surface water, high population growth and urbanization development, 

deficient institutional arrangements, poor management practices, water depletion and 

deterioration of quality, especially in shallow groundwater systems (Dawoud, 2005). To meet the 

increasing demands, water authorities have focused their efforts on the development and supply 

augmentation. Demands are being satisfied by the development of groundwater, installation of 

4 



new desalination plants, expansion in wastewater treatment plants and reuse, in addition to 

construction of dams to collect, store, and utilize surface water runoff. Currently, groundwater 

resources are being over-exploited to meet the increasing agricultural demands. This has led to a 

continuous deterioration in the quantity and quality of groundwater. Many aquifers in GCC 

countries are being mined, either because it has not been possible to regulate the pumping or the 

aquifers are non-renewable (Dawoud , 2005). The total volume of groundwater extracted from 

deep aquifer in the area over the period between 1980 and 2000 is estimated around 300 billion 

m
3

, of which 254.5 billion m
3 

were pumped from Saudi Arabia alone to satisfy the needs for the 

expansion in agriculture sector (AI-Rashed and Sherif, 2000). 

To meet domestic water requirement, the GCC countries have shifted to freshwater production 

through desalination plants. The GCC countries, by necessity, have become the world leader in 

desalination of seawater and brackish water and currently have more than 65% of total world 's 

desalination capacity (GWI , 2000). Experience with desalination in many of the Gulf states, 

particularly Saudi Arabia and Kuwait began as early as 1938 (EI Nashar, 2004). Desalination 

production in the GCC countries ranges between 78 and 88% of the designated plant capacity 

(AI-Rashed and Sherif, 2000). However, desalination remains as capital intensive and costly 

projects. In terms of wastewater recycling , available treated wastewaters are still not being reused 

to their potential ; planning for full utilization of treated effluent is still in the early stages. 

Introduced in the early 1980s in most of the GCC countries , treated wastewater represents one of 

the most important alternatives that can be used to meet some of the present water requirements 

and to lessen the long-term supply versus demand imbalance faced by these countries (AI-Zubari , 

1997). Large and small treatment plants were constructed in the GCC countries for wastewater 

treatment at the tertiary and secondary levels (AI-Saati , 1995; AI-Muzaini and Ismail , 1994; AI­

Hajj , 1995; and AI-Zubari , 1997). 

Domestic and industrial freshwater requirements for the GCC countries are mostly satisfied 

through desalination in additional to some limited amounts of groundwater from both shallow and 

deep aquifers. In UAE, the agricultural sector consumes about 85% of available water resources 

fOllowed by domestic water use, 14% and 4% for commercial and industrial use (Dawoud , 2005). 

In all GCC countries, agricultural requirements are mainly met through abstraction of water from 

shallow alluvial aquifers located in the coastal strips and inland basins, and from deep aquifers 

covering most of the Arabian Peninsula. In Saudi Arabia, rapid expansion of agricultural activities 

has resulted in substantial increases in water demands, leading to extensive mining of the deep 

aquifers. Likewise, agricultural water demand has sharply increased in the countries of Bahrain, 

Qatar, Oman, and the United Arab Emirates, where groundwater reserves are being mined . 

Government incentives and subsidies have encouraged farmers to cultivate large areas, placing 

great strain on existing groundwater resources . 
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1.3 Physical Setting of UAE 

The United Arab Emirates (UAE) lies in the southeastern part of the Arabian Peninsula between 

latitudes 22 ' 40' and 26 ' 00' north and longitudes 51 ' 00' and 56' 00' east. It is bounded from the 

north by the Arabian Gulf, on the east by the Sultanate of Oman and the Gulf of Oman and on the 

south and the west by the Kingdom of Saudi Arabia . The total area of the United Arab Emirates is 

about 83,600 km 2 (Sherif et al , 2005) 

The United Arab Emirates is a federation of seven Emirates: Abu Dhabi , Dubai, Sharjah , Ras AI 

Khalmah, FUjairah , Umm AI Quwain and Ajman. Six of the seven Emirates lie on the coast of the 

Arabian Gulf, while the seventh , Fujairah Emirate, is situated on the eastern coast of the 

peninsula and has direct access to the Gulf of Oman. 

By far the largest Emirate in UAE is Abu Dhabi. It occupies about 75% of the total area of the 

country. Abu Dhabi City is the capital of both the Emirate and the country. It also has the largest 

population numerically, but at the same time the lowest population density among the other 

Emirates. Dubai, has the highest population density, and is considered the business capital and 

the most important port in the country. 

The climate is arid with very high summer temperatures. The unique location of UAE, with the 

characteristic land-sea distribution and tropic of cancer passing through it, subtropical anticyclone 

above it, provides this region a tropical desert climate with several typical climate features . 

Generally, the temperature in the UAE varies between 41 and 50 °C during the summer and 

around 13 °C in the winter (Howari et ai , 2006). The geomorphic features have a major role in the 

movement of both surface water and groundwater. The geology determines the characteristics 

and patterns of the storage layers and structural zones of the hydrogeological systems. Such 

factors greatly affect surface water runoff from rainfall events, infiltration rates , storage capacity, 

and groundwater table fluctuation in the system. The infiltration rate and the vertical hydraulic 

conductivity of the upper layer of the unsaturated/saturated soil determine, to a great extent, the 

ability of the system to be recharged from rainfall events. In most arid regions , the amount of 

recharge would be in the order of 2% to 10% from the total volume of annual precipitation (Sherif 

et aI. , 2005). 

Previous studies (Sherif et al 2005 and 2006) indicated that the percentage of recharge form 

rainfall events is believed to be around 2% of the total precipitation in the UAE. However, this 

amount could be significantly increased through the proper implementation of water harvesting 

schemes including the construction of retention and detention dams across the main wadis . 

Under favorable conditions , where infiltration rates are very high and evaporation rates are 

relatively small , the recharge rate could be significantly enhanced. 
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Topographically, the UAE consists of two domains: low plains that cover 95% of the country, and 

high mountain covering about 5% and constitutes a natural barrier that isolates the Gulf of Oman 

to the east from the rest of the country (Baghdady and Abu-Zeid , 2002) The larger sandy desert 

zone covers over 90% of the country's surface area extending from the AI Mayann region in the 

northwest across to the eastern part of the UAE, where it is truncated by the mountain zone. The 

mountain zones consist of N-S mountain ranges parallel to the east coast. It has a north-south 

extent of about 150 km and east-west extent of 50 km . These mountains, from northern part of 

the Oman Mountains and evolve to form networks of wadis of which Dibba, AI Bih and Ham are 

the most significant (Ministry of Communication , 1996). If the topography is flat, rainwater would 

continue to accumulate on the ground surface causing ponds in the depression areas. Otherwise, 

if the land surface is mountainous, the rainwater will be collected through a number of tributaries 

and would reach the course of the main wadi causing floods. Depending on the hydrological 

conditions , rainfall intensity and duration of the rainfall event, the total volume of flood water 

vanes from one rainfall event to the other. 

Large areas of inland sabkha occupy the low land region . The largest of these is known as 

Sabkhat Matti , located in the western part of the country. The lands of Sabkhat Matti extend from 

the coast for about 120 km and reach an elevation of about 40 m (a.s.l) at its southern tip. The 

area adjacent to the Arabian Gulf Coast comprises a number of salt domes. These features often 

form islands in the sea and isolated hills on land. The highest of which is Jabal Dhana and it rises 

to 99 m a.s.1. Where the low-lying zone merges gradually with the mountains zone, several 

isolated anticlinal hills and mountains (trending generally, in N-S direction) occur. The highest and 

most extensive of these is Jabal Hafit with a maximum altitude of over 1000 m a.s.1 (AI Shamsei , 

1993). 

The desert zone ranges in altitude from sea level up to 300 meters. This region is characterized 

by sand dunes which rise gradually from the coastal plain , reaching elevation up to 250 meters 

above the sea level in Liwa-AI Batin basin (Ministry of Communication , 1996). 

The main aquifers in the UAE include the limestone aquifer in the north and east. Fractured 

Ophiolite rocks in the east, Gravel aquifers flanking the eastern mountain ranges on the east and 

west and sand Dune aquifers in the south and west Figure 1.2. The largest reserve of fresh 

groundwater in UAE occurs in the gravel alluvial deposits extending along the western side of the 

Oman mountain chain from Ras AI Khaymah to AI Ain . The sand dune aquifer covers about 74% 

of the total area of UAE (Sherif et aI. , 2005). It receives most of its recharge from the western side 

of the mountain , whereas the Arabian Gulf and Gulf of Oman are the main discharge area. The 

Limestone Aquifers are seen in the northern region at Wadi Bih catchment, as well as Jabal Hafit 

catchment in AI-Ain region . Most of the natural recharge to the aquifer systems is received at the 

heads of alluvial fans by infiltration from wadi's flows originated in the mountain zone. 
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The groundwater units in U.A.E include a rock sequence ranging in age from the Permian to 

Quaternary periods. This sequence IS ordered from oldest to youngest strata as follows (AI Shahl , 

2002)' 

a) Paleozoic: It deals with the Permian rocks Khuff Formation . 

b) Mesozoic: The age of rock sequence can be divided into Triassic (Lower, Middle and 

Upper), Jurassic (Lower, Middle and Upper) and Cretaceous (Lower, Middle and Upper). 

The Triassic includes the Triassic and Permian rocks and the Jurassic contains Hith 

anhydrite and Arab Formations. The Cretaceous age of rock sequence includes 

limestone marl and sandstone, Semail igneous complex, Hawasina complex, and 

Musandam limestone. 

c) Tertiary-Cenozoic: This age sequence can be divided into Paleocene, Eocene, Oligocene 

and Miocene. Marl and limestone are the common rocks in this sequence. 

d) Quaternary-Cenozoic: The common rocks in this sequence are Eolian sand , 

unconsolidated surficial deposits of gravel , gypsum deposits, and sabkha deposits . 

The UAE can be divided into five structural provinces, (Rizk et aI. , 1997): 

1) Rus AI Jiba l: This area has thrusrt faults sloping in the east and south directions. 

2) Diba Zone' It is a topographically low area and extends for 30 km from northeast to 

southwest, with an average width of 20 km . The Diba zone separates between 

Musandum calcareous sequence in the north and the ophiolite sequence in the south. 

The stratified rocks of tectonic boundaries exist in this zone. 

3) Ophioli te Sequence: The Wadi Ham fault (north west-southeast) and Wadi Thawban fault 

(east-west) represent the northern part of this sequence. This is a clear change in rock 

type on both sides of the valley. 

4) Hatta Zone: The folding and rock stratification in this zone are parallel to the longitudinal 

direction of the tectonic opening in the west-northwest direction . 

5) Western reg ion: The past late Maestrichtion calcareous deposits and associates rocks 

were subjected to folding along the western slopes along the northern Oman Mountains. 

The upper cretaceous-lower tertiary boulder beds and calcareous rocks represent the boundary 

between the north Oman Mountains in the south and Schisa sands in the north. There are several 

aqu ifers in the UAE; each aquifer has its own characteristics and water potentiality. Aquifers can 

also be classified as given hereafter. 

A- The Limestone aquifers 

These aquifers are found in the north and east, and are composed of limestones and dolomites. 

The rocks of these aquifers are well stratified, hard , dense and non-porous at the surface in Wadi 

AI Bih. The Jabal Hafit area south of AI Ain city is an example of this aquifer (AI-Shahi , 2002). 
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8- Ophiolite aquifer 

The Ophiolite sequence in the east is jointed and subjected to faulting . Groundwater in this area 

occurs only in joints and fractures , (Entec, 1995). The Ophiolite aquifer has been described to be 

of good quality due to jOinting , faulting and weathering of the .Semail beds' of the Northern Oman 

Mountains (Rlzk et aI. , 1997). A survey by Electrowatt Engineering Services Ltd. (1981) showed 

that the Ophiolite Suite consists of medium-grained gabbros and fine to medium-grained diorites. 

c- Gravel aquifers 

A large quantity of fresh groundwater in UAE occurs in the alluvial deposits of the piedmont plains 

bounding the eastern mountains from the east and west. These aquifers can be distinguished into 

the eastern gravel aquifer, the northwestern gravel aquifer and the western gravel aquifer (AI­

Shahi, 2002). 

0- Sand Dune aquifer 

The sand dunes cover about 74%of total area of UAE. The elevations of sand dunes change from 

sea level at the western coast to 250 m above ground level (sea level) at the Liwa-AI Batin basin 

in the south central part (AI-Shahi , 2002). 

1.4 Water Resources in UAE 

UAE is located in an arid area where the rainfall is very limited. The average annual rainfall varies 

between 20 to 140 mm/y. Measurement of rainfall in the UAE started in 1934; the maximum 

recorded average rainfall was 671 .2 mm in 1995, measured at Fhor Fakkan (Ministry of 

Agriculture and Fisheries, 1995). The mean daily pan evaporation is estimated as 9.75 mm (Rizk 

et aI. , 1995). 

Renewable water resources in the UAE are very limited. No surface water in the form of rivers or 

lakes is available. The rainfall is very scarce, random and infrequent. The UAE receives an 

average volume of 6.72 billion m
3 

of annual rain water (AI-Rashed and Sherif, 2000). However, 

this annual volume of rainfall is mostly encountered in few events. Rainfall represents the main 

source for recharging groundwater systems. Phreatic aquifers are recharged directly through 

rainwater infiltration, while confined aquifers are recharged through their outcropping areas. Apart 

from the quantity of rainfall , its distribution in space and time plays a vital role in the planning and 

management of water resources . When rain falls with heavy intensities and short durations, 

surface water runoff is generated . The infiltration rate of the upper soil layer may not allow large 

quantities of the accumulated rainwater to percolate down through the soil and reach the aquifers. 

The UAE has a low groundwater recharge rate and high evaporation rate (2000-3000 mm/y) with 

no reliable perennial surface water resources . To increase the groundwater recharge a number 
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of dams have been built at various locations in the country. Many dams and embankments of 

various dimensions with a total storage capacity about 122 million cubic meters were build during 

the last three decades,( Environment & Agriculture Information Center, 2007) . These dams are 

basically built for recharge purposes. They also provide protection against damage caused by 

flash floods . 

The UAE IS the second largest producer of desalinated water in the Arabian Gulf Region, with a 

production of about 5,465,784 million m
3
Jy (Mohamed et aI. , 2005). Because of a rapid increase in 

domestic and industrial water demand, several plants were installed, particularly in Abu Dhabi and 

Dubal Currently, desalination plants produce about 98 % of the total drinking water supplies in 

the UAE (Sommariva and Syambabu , 2001) . 

Treated wastewater is used for irrigation of green areas along the highways, greenbelts, and city 

gardens The annual production of treated wastewater in the UAE was 106 Mm3Jy of which 63 

Mm3Jy were used to irrigate golf courses , parks, and green areas (AI-Rashed and Sherif, 2000). 

The UAE has very limited potential for agricultural development since over 90% of the land is 

desert. In spite of the harsh weather conditions and soil and water constraints , a remarkable 

progress has been made in the agricultural sector, particularly during the last two decades. The 

main agricultural areas are located in the northeast (Ras AI Khaimah) , in the east along the coast 

from Kalba to Dibba (Fujairah) , in the southeast (AI AinJAbu Dhabi) and in the central region 

(Dibba/ Sharjah). About 85% of the total water consumption for irrigation purpose in UAE is 

groundwater (Rizk et aI. , 1999). 

1.5 Objectives of the Current Study 

The objective of this thesis is to study and simulate the vulnerability of the groundwater resources 

to seawater intrusion in the coastal aquifer of Wadi Ham , Fujairah Emirate. This aquifer is of 

specific importance for agricultural development. Irrigation in the area of Wadi Ham is mostly 

based on groundwater pumping from the aquifer of Wadi Ham. The specific objectives of this 

study include: 

1. Identify the geometric, geological and hydrogeological parameters that are relevant to the 

study and assessment of seawater intrusion in the area of Wadi Ham . 

2. Select a numerical model and calibrate the model based on available groundwater levels 

during the last two decades in the study area. 

3. Assess the vulnerability of the groundwater resources in the study area to seawater 

intrusion under different pumping scenarios. 
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4. Propose recommendations to decelerate the seawater intrusion process In Wadi Ham. 

To achieve the above objectives the following tasks will be performed :-

1 Conduct a comprehensive review of all previous investigations and publications related to 

groundwater resources in the area of Wadi Ham with specific reference to the coastal 

zone. 

2. Identify, store and present the geometric, geologic and hydrogeological information of the 

aquifer under consideration. All information and data will be stored as geographically 

referenced data such that they could be directly used by the selected model. 

3. Review the available groundwater flow and solute transport models with specific 

reference to variable density models and select a suitable one based on the available 

data and model requirements . 

4. Calibrate the selected model against the available data of groundwater levels over the 

last two decades. 

5. Employ the numerical model to assess and study the vulnerability of groundwater 

resources to seawater intrusion in the study area. 

6. Examine the effect of different pumping scenarios on the seawater intrusion in the study 

area. 

7. Propose (or make) recommendations and guidelines to reduce the possible impacts of 

seawater intrusion in the Wadi Ham coastal aquifer. 

1.6 Thesis Outline 

This thesis encompasses six chapters . Chapter 1 discusses the importance and distribution of 

water resources at the global level and presents a summary about the water resources availability 

in the Gulf Cooperation Council (GCC) countries , including UAE. The objectives of the study are 

also included. 

Chapter 2 discusses seawater intrusion and its mechanism under the dispersion-zone approach . 

Salinization sources are elaborated and the components of seawater are defined. Modeling 

approaches are presented and the causes of the seawater intrusion problem are outlined. The 

groundwater flow and solute transport governing equations are presented. SUTRA and other 

available numerical models are briefly discussed. 

12 



Chapter 3 reviews the geological and hydrogeological settings of the aquifer system in the area of 

Wadi Ham . The geometric and hydrogeological parameters are defined and the historical records 

of groundwater levels in a number of observation wells are discussed . Previous geophysical 

Investigations to assess the seawater intrusion in the Wadi Ham aquifer are presented. 

Chapter 4 discusses the calibration and validation of numerical models in general and elaborates 

the calibration and validation of SUTRA model in the area of Wadi Ham in particular. SUTRA­

Argus One modeling environment is presented and its capabilities and limitations are outlined. 

The calibration and validation of SUTRA are conducted on a set of groundwater level data. 

Chapter 5 discusses the simulation runs that have been conducted under steady- and unsteady­

flow and solute transport conditions . The simulation is conducted for different scenarios in the 

horizontal (area) 20 view as well as in the vertical (cross sectional) 20 view. The effects of 

groundwater pumping from Khalba well field , hydraulic conductivity and dispersivity are 

elaborated. 

Chapter 6 presents a summary, conclusions and recommendations of the study. A list of 

references that have been used in this study is also included. 
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Chapter 2. Literature Review 

2.1 Introduction 

During the last century, rapid urbanization and population growth have resulted in many 

environmental problems. Among those, the water shortage and pollution are most serious. People 

around the world are beginning to realize the interactions between human beings and the 

environment. Human activities are affecting the natural water ecological cycle in many ways. 

Overexploitation of groundwater resources has decreased groundwater levels and caused 

seawater intrusion in coastal aquifers . Human interactions can however change the natural 

balance and in special cases this can lead to degradation of the environment, including lower 

quality of the drinking water and degradation of agricultural land and crops. 

Degradation of groundwater quality is a very serious problem. In many countries, groundwater is 

the main supply of freshwater. Today more groundwater wells are abandoned as a consequence 

of degradation of the quality, and at present it is very hard to find new unpolluted groundwater 

reservoirs. Livestock and humans have fundamentally the same requirements with respect to 

water quality The content of dissolved solids should in general not exceed 6 g/l , but animals can 

drink water up to 10 g/I of total dissolved solid if the main constituent is NaCI (Matthess, 1982). A 

plant's requirement to the water quality is similar to the requirement of livestock and humans. 

Irrigation water with a content of 0.5 g NaCI is always usable and becomes unusable above 4 g 

NaCI (Matthess, 1982). Saltwater intrusion occurs when freshwater is overpumped from a 

freshwater reservoir which is adjacent to a saltwater reservoir. This is the situation in many large 

cities situated next to the ocean. Large cities have high demand for freshwater and usually have 

lim ited freshwater supplies such as good aquifers, lakes or rivers. Many regions in the world are 

facing the challenge of water shortage and pollution. The United Nations Environment 

Programme (UNEP) identified water shortage and global warming are the two most critical 

problems for the com ing few decades. 

Intrusion of seawater into coastal aquifers is a widespread contamination phenomenon that 

increasingly causes groundwater salinization problems. Seawater intrusion is especially severe in 

sem iarid reg ions where high pumping extraction rates are coupled with low freshwater recharge. 

Seawater intrusion, or encroachment, is defined as the migration of salt water into freshwater 

aqu ifers under the influence of groundwater development (Freeze and Cherry, 1979). One of the 

major concerns most commonly found in coastal aquifers is the induced flow of seawater into 

fresh water aquifers caused by groundwater development. In places where groundwater is being 

pumped from aquifers that are in hydraulic contact with the sea, the induced gradients may cause 

the migration of seawater from the sea toward production wells . 

Seawater intrusion is a natural process, by which seawater displaces and mixes with the fresh 

groundwater in coastal aquifers due to the density difference existing between waters of different 
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salinItIes In heavily exploited coastal aquifers, where groundwater pumping consistently exceeds 

recharge, the water table falls and seawater intrusion becomes a major concern Eventually, the 

lImIts for salInity in drinking water (established at 500 ppm of total dIssolved solids, TDS, by the 

American Environmental Protection Agency) as well as for agricultural uses may be exceeded in 

the pumped groundwater, thus making It unsuitable for human uses. A 3% mixing of seawater 

wIth freshwater In coastal aquifer would render the freshwater resource unsuitable for human 

consumption (Sherif and Kacimove, 2006) . Salinity in irrigation water can be detrimental to 

agriculture, reducIng yields and damaging crops of low tolerances to salt In some cases, 

conditions may necessitate a change to crops that are more salt tolerant. Salt water has also 

been shown by Jenkins and Moore (1984) to reduce soil erodibility. A common management 

approach when a pumping well becomes contaminated by saltwater is to relocate pumping further 

Inland (Barlow, 2003) . If no additional fresh water sources are available to satisfy the demands, 

the high groundwater extraction rate needs to be maintained or increased at the new location thus 

putting also groundwater further inland at the risk of saltwater intrusion . 

2.2 Mechanisms of Seawater Intrusion 

Seawater intrusion into freshwater supplies has become a cause of concern within the last 

century. The salinity distribution of the groundwater in coastal and deltaic areas is capricious as a 

result of past and ongoing natural processes including climate change, geologic processes and 

land subsidence, resulting in changes of the sea level relative to the land surface (Van Dam, 

1993). This problem is intensified due to population growth, and the fact that about 70% of the 

world population occupies coastal plains (Bear et aI. , 1999). 

Coastal aquifers are hydraulically connected to the adjacent marine water body. Consequently, 

they contain both fresh and saline (salty) groundwater. Fresh groundwater normally flows 

seaward within coastal aquifers, eventually intercepting saline groundwater. The lighter, 

freshwater (1 gram of salt per cubic centimeter - g/cm3) tends to override and "float" on the 

denser, saline water (1 .025 g/cm\ but mixing also occurs. This mixing zone is known by several 

names, including the "freshwater-seawater interface," the "zone of transition ," and the "zone of 

diffusion". The zone of diffusion is typically located near the marine shoreline. The exact location 

depends on several conditions , including the volume of freshwater discharge and the nature of 

the aquifer (confined or unconfined). In a typical coastal aquifer, the zone of diffusion dips down 

beneath the land surface. In the case of an island or peninsula, the zone of diffusion can extend 

beneath the entire land surface. As with most aquifers, coastal aquifers are recharged primarily by 

precipitation . Under natural conditions , aquifer recharge is in equilibrium with groundwater 

discharge. Consequently, the zone of diffusion maintains a position of relative stability, moving 

slightly landward or seaward in response to varying climatic and tidal conditions. When 

groundwater is pumped from coastal aquifers, freshwater that would normally discharge to the 

sea is intercepted , disrupting the natural equilibrium. This causes the zone of diffusion to migrate 
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landward and/or locally upward. Groundwater drawn into pumping wells can become increasingly 

saline Over time, the water can become unfit for consumption. 

The initial model for seawater intrusion was developed independently by Ghyben in 1888 and by 

Herzberg In 1901 . This simple model is known as the Ghyben-Herzberg relationship and is based 

on the hydrostatic balance between fresh and saline water in a U-shaped tube. They showed that 

the seawater occurs at a depth h below mean sea level represented by: 

h = pi hr 
ps - pj 

(2.1 ) 

where PI and Ps are, respectively, the density of fresh and sea water, and hr is the elevation of 

fresh water level above mean sea level. Substitution of pr(1000 kg/m 3
) and Ps(1025 kg/m 3

) in Eq . 

(2.1) shows that h = 40h l . I n other words, the depth to the fresh-saline interface below mean sea 

level (h) IS 40 times the elevation of the water table above sea level (hr) (Freeze and Cherry, 

1979). In general , if the water table in an aquifer is lowered by 1 foot, the freshwater-seawater 

transition zone will rise about 40 feet , and the total vertical thickness of the freshwater lens will be 

reduced by about 41 feet (Freeze and Cherry, 1979). 

This simplistic model ignores convection , dispersion and diffusion phenomena responsible for the 

distribution of salinity in coastal aquifers. In coastal aquifers, freshwater usually overlies the 

seawater separated by a transition zone. Management of limited groundwater resources in such 

situations is a delicate task and requires special attention to minimize the movement of the 

seawater wedge into aquifers and upconing of seawater near pumping stations (Reilly and 

Goodman, 1987). 

The transition zone between seawater and freshwater in a coastal aquifer start at the coast line 

and moves inland and downward (Figure 2.1). The width and length of the transition zone depend 

on many factors including oscillating sea level , dispersivity, freshwater recharge, hydraulic 

conductivity and other hydrogeological parameters. When the transition zone moves due to an 

oscillating sea level, change in freshwater flux, or change in recharge/pumping activities, a very 

intensive ion exchange and a following dissolution or precipitation of minerals can occur. In the 

seawater zone the dominating ions are sodium and chloride. In the freshwater zone the 

dominating ion are calcium and bicarbonate and the soil in the freshwater zone are typically 

dominated by calcium . When seawater intrudes into a freshwater zone the sodium in seawater 

ion-exchanges with calcium on the soil , the typical ions in the soil water become calcium and 

chloride. When the seawater re-draws , the calcium in the freshwater exchanges with sodium on 

the exchanger, the dominating ions in solution become sodium and bicarbonate. Research has 

shown that clay have different properties at different salinities, which in the case of seawater 

intrusion can result in clogging of pores (Goldenberg, 1985; Frenkel and Rhoades, 1978). 
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In a seawater Intrusion case the seawater flows into the freshwater and mixes with freshwater. 

This result in seawater gets less dense, move upwards and flow parallel with the freshwater. The 

outflow of freshwater is of great importance, as it gives the ultimate potential for groundwater 

recharge In an aquifer. The larger outflow, the larger potential for freshwater recharge. The flow of 

groundwater to the sea is driven by the difference in pressure between the freshwater and the 

sea. As the freshwater recharge comes from the rain and the rain varies over the year, the 

potential for groundwater recharge also varies over the year. In many cases the sea level is 

assumed constant, but the sea level can also vary due to e.g. tides , waves and storms. The 

general setup of the water table and a description of the coastal boundary in groundwater 

modeling have been studied by Nielsen (1999) who considered tidal forces and wave setup and 

found an expression for the mean water table which ought to be used in regional groundwater 

modeling. Saline water makes up 97.25% of all water on earth . It is present in oceans, seas and 

estuaries and as groundwater in their subsoils and in land areas where seawater has occurred in 

the geologic history and not been replaced by freshwater so far. Climate change can also bring 

about changes in the rate of natural recharge of the fresh groundwater (Bear et ai, 1999). 

Changes of climate have caused changes in sea levels throughout the geologic history in the 

present time the sea level arises; rising temperatures make the seawater expanding and the polar 

Ice caps and glaciers melting. 

2.3 Identification of Salinization Sources 

The distinction of different salinization mechanism is crucial to the evaluation of the origin , 

pathways, rates and future salinization of the coastal aquifer. The interpretation of salinization 

process should be based upon geological and hydrochemical criteria. Several geochemical 

criteria can be suggested to identify the origin of salinity, especially detection of seawater 

intrusion as opposed to other salinity sources in coastal aquifer. Yechieli and Sivan (2008) 

documented that it essential to determine first the origin of salinity in order to be able to cope with 

this problem. They discussed the chemical and isotopic evidences for identifying seawater 

intrusion. Chemical and isotopiC analyses are best tools for identifying the specific sources of 

salinity and their geochemical evolution (Jones et aI. , 1999). Like CI/Br , Nal CI , Ca/Mg , Ca 

(HC03+ S04) ratios, 0 and H isotopes and boron isotopes. Morell et al (1996) argued that Br is 

the best indicator for tracing seawater. 

2.3.1 Salinity 

Because of the contrast in marine and typical continental anion matrices, the clearest indication of 

possible seawater intrusion is an increase in CI- concentration as a proxy for salinity, although 

other processes may lead to a similar phenomenon. In coastal aquifers , where continuous over­

exploitation causes a reduction of the piezometric levels, intrusion of seawater results in a salinity 

breakthrough. Thus a time-series of chloride concentrations can record the early evolution of 
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rapid salinization processes Several prior studies evaluate the groundwater characteristics in the 

eastern part of the UAE (Jones and Marrei, 1982, Elschami, 1990, Rizk and EI-Etr, 1997, Rizk et 

al , 1997 and Brunke and Schhelkes, 1999). Based on these studies, it has been suggested that 

evaporation and seawater intrusion are possible sources of salinity in the groundwater of the 

region 

2.3.2 CIIBr ratio 

The CI/Br ratio can be used as a reliable tracer as both CI and Br usually behave conservatively 

except In the presence of very high amounts of organic matter. Seawater (CII Br weight ratio= 

297) IS distinguished from relics of evaporated seawater (hypersaline brines CI/Br <297, Dead 

Sea = 40; Starinsky et al.(1983) , evaporate-dissolution products (over 1000) and anthropogenic 

sources like sewage effluents (CI/Br ratios up to 800;(Vengosh and Pankratov (1998)) or 

agriculture-return flows (low CI/Br ratios) . It should be noted that the CI/Br signal can be modified 

by degradation of organic matter (Davis et aI. , 1998). Ben Hamouda et. aI. , 2008 documented that 

the Brl CI ration is often used for identifying a possible seawater intrusion because of its relativity 

constant value in the present seawater. 

2.3.3 Na/CI ratios 

NalCI ratios of saltwater intrusion are usually lower than the marine values. Thus low Na/CI ratio, 

combined with other geochemical parameters, can be an indicator of the arrival of the saltwater 

intrusion, even at relatively low chloride concentrations during early stages of salinization. The low 

NalCI ratio of seawater intrusion is distinguishable from the high (>1) Na/CI ratios typical of 

anthropogenic sources like domestic wastewater (Bear et al. (1999)) . 

2.3.4 Ca/Mg, Ca/(HC03 + 504) ratios 

One of the most conspicuous features of saltwater intrusion is commonly the enrichment of Ca 

over its concentration in seawater. High Ca I Mg and Ca I (HC03+ S04) ratios (>1) are further 

indicator of the arrival of seawater intrusion . It should be noted however, that saline water with 

high Ca can originated by a different mechanism, not necessary related to the base-exchange 

reaction and modification of modern seawater (Bear et al. (1999)) . 

2.3.5 0 and H isotopes 

Rectenwald and Bennett (2008) showed that stable isotopes (H , 0) were used to complement 

inorganic data to define different water masses in the Floridian aquifer system. Linear correlations 

are expected from mixing of seawater with 180 depleted groundwater in correlation of 00 versus 

0
180 or CI versus 0

180 different source with high salinity would result in different slopes due to 

evaporation processes that would change the isotopic composition of the saline end-member 

(Bear et al. (1999)) . 
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2.3.6 Chlorine-36 

Chlorlne-36 is a useful tool to trace different sources of salinity in groundwater systems (Carlson 

et ai , 1990; Mazor, 1992. and Phillips, 2000). Chlorine-36 is produced naturally by several 

mechanisms: (1) atmospheric production through the spallation reaction of 40Ar and neutron 

capture of 36Ar (meteoric) , (2) lithospheric production by the spallation reaction of K and Ca and 

neutron activation of 35CI (epigene) , and (3) subsurface production via neutron activation of 35CI 

(hypogene) (Bentley et al , 1986a; Bentley et aI. , 1986b; Carlson et aI. , 1990; Commander et aI. , 

1994, and Lyons et aI. , 1998). In situ production of chloride could be another source of 36CI in 

groundwater that is low in chloride (Yechiel et aI. , 1996). Also, 36CI has been produced 

anthropogenically in the 1950's during nuclear weapons testing (Lyons et aI. , 1998). 

The distribution of 36CI in the subsurface is controlled by the above sources as well as by the 

evapotranspiration and dissolution of halite (Bird et aI. , 1989 and Mazor, 1997). In general , high 

36CI/CI ratios are associated with areas of high precipitation, whereas low ratios are observed in 

regions of low precipitation (Phillips, 2000) . The meteoric 36CI tends to increase from the 

continental interiors toward coastal areas (Bentley et aI. , 1986a and Bentley et aI. , 1986b). 

Lehmann et al. (1995) suggested several other possible external sources of chloride to 

groundwater system which include seawater incursion, aquitard infiltration, and mixing with high 

salinity water from outside the aquifer. 

2.3.7 Boron isotopes 

The boron isotopic composition of groundwater can be a powerful tool for discrimination of 

salin ization source, in particular distinguish seawater from anthropogenic fluid such as domestic 

wastewater. The 0
11 

B values of seawater intrusion range over 30% to the seawater value 

(011B=39%), reflecting mixing of freshwater and seawater in coastal areas. Saline groundwater 

from coastal aquifer of Israel has high 0
11 

B values, up to 60%. The high 0
11 

B content of saltwater 

intrusion differ from the boron isotopic composition of sewage effluents (011 B=0-10%) and 

sewage-contamination groundwater (5-25%) , and thus can be used to trace the origin of the 

salinity (Vengosh et aI. , 1994, 1998). 

The geochemical features of brackish water within the transition zone of the seawater intrusion 

serve as an excellent tool to detect seawater intrusion . The most striking phenomena that 

characterize seawater intrusion is the difference between the chemical composition of the 

resulting brackish water and the simple mixture of seawater and groundwater. Several 

geochemical criteria are suggested to identify the origin of salinity, especially detection of 

seawater intrusion as opposed to other salinity sources in coastal aquifers. Table 2.1 gives the 

geochemical criteria for distinguishing the origin of saltwater (Sherif and Kacimov, 2006) 
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Table 2 1 Geochemical criteria for distinguishing saltwater origin (Sherif and Kacimov, 2006b) 

Measurement Criteria 

Chloride, CI A time-series of CI concentration can record the early evaluation 

of relatively rapid Salinization 

Cl/Br ratios CI/Br=297 'seawater 

CI/Br<297 Hypersaline Brine 

CI/Br> 1 000 Evaporate Dissolution product 

Cl/Br up to 800 Anthropogenic Source (e .g. sewage) 

Na/CI ratios (Molar) Na/CI- 0.86 seawater 

Na/CI<0 .86 seawater Intrusion 

Na/CI>O 1 Anthropogenic Source (e .g. sewage) 

Ca/Mg Ca/Mg>0.1 86 seawater intrusion 

Ca/(HC03 + S04) Ca/(HC03 + S04»1 Seawater intrusion 

2.4 Component of Seawater Intrusion 

2.4.1 Freshwater 

CompOSition of freshwater is dependent on regional and local conditions . There are many factors 

that can influence the composition of freshwater such as distance to seawater, weather, saltwater 

Intrusion , soilmatrix and others. 

The more the seawater is dominating in the region the more salty is the water. Oazy et al. (1997) 

found out that atmospheric input of salt had a considerable effect on the freshwater composition 

in the Cyclades (Greece) . They measured precipitation with total dissolved solids content (TOS) 

of 45-223 mgtJ. Appelo and Postma (1993) found chloride iso-concentration in precipitation from 

30m gIl at the shoreline to 2 mgtl , 150 km inland. Warm weather enhances the evaporation and 

the freshwater becomes more salty. This becomes more evident when groundwater is used for 

irrigation . The mineral in the soilmatrix is another important factor. When rocks degrade due to 

physical and chemical reaction , the degradation-products are minerals that are added to the 

groundwater. If pyrite is present in the soil , the freshwater could be dominated by sulfate and 

aqueous iron. In a carbonate rock, the freshwater would be dominated by calcium , magnesium 

and trace elements. 

When seawater mixes with freshwater, the latter becomes more salty. When saltwater intrudes a 

freshwater aquifer, ion exchange and mineral dissolution and precipitation changes the 

composition of the freshwater Table 2.2 shows different ion-composition freshwater reported in 

various studies. Large differences between in the composition of the freshwater are observed and 

some ions vary up to a factor of 10. In a saltwater intrusion an ion-exchange between Ca
2
+ and 

Na + is generally occurring, because Ca
2
+ has a large affinity to a exchanger and therefore 

occupies the main part of the exchanger in the freshwater zone of an aquifer even though there 

are more Na+ in freshwater. 
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Table 22 Composillon of freshwater and soil properties from various studies (Gomis et aI. , 1996, 1997; 
Appelo et ai , 1987, 1990). 

Parameter Gomis Gomis Appelo Appelo 90 Appelo et al 90 Appelo et al. 

96 97 87 Alphen sed . Ketelmeter sed . 90 Delft sed . 

PH - - - - 6.85 6.3 6.83 

Na +(mmolll) 6.3 2.17 0.1 5.6 3.3 21.4 

K+(mmol/l) 08 0.0873 0.1 0.7 0.4 0.693 

Cal+(mmol/l) 2.02 3.13 * 2 1.1 2.95 

Mgl+(mmol/l) 1.93 0.617 0.5 1.9 1.2 1.93 

Cr(mmolll) 4.3 2.96 0.1 4.5 4.5 21 .05 

S02-4(mmol/l) 0.09 1.72 0.4 0.1 0.07 0.142 

HC03-(mmol/l) 10.8 3.28 ** 10 4.7 14.37 

CEC(meq/100g) 7 13 2 1.19 10.2 0.51 

.. 
*In equilibrium with calcite 
**in equilibrium with a partial pressure of CO2 of 0.01 atm 

When saltwater with high concentration of Nat and CI- intrudes a freshwater zone the dominating 

ions in solution becomes Ca2
+ and CI- as Na+ exchanges with Ca

2t 
on the exchanger. When an 

aquifer is freshning the domination ions becomes Nat and HC0
3
-. 

The intrusion of seawater and formation of a relatively static interface zone between overlying 

fresh and underlying saline water, may produce local low redox conditions , due to decomposition 

of dissolved organic matter, fine suspended organic particulate, or organic rich sediments 

(Schhoeller, 1956; Custodio and Llamas, 1976; Hem , 1985). 

According to Custodio et al. (1987) , this process will cause increased Pco2, changes in pH , and 

the reduction of dissolved sulfate to H2S, resulting in low S04/ CI ratios. Such changes shift the 

calcium carbonate equilibrium and most commonly cause dissolution . The resulting increase in 

the Ca-content is frequently masked by exchange of Ca
2
+ for Mg2+ or Na + on clays previously 

eqUilibrated with more seawater-like cation matrices. 

As noted by Whitaker and Smart (1994) for the Bahamas, intense and episodic nature of rainfall , 

lack of soil cover, well developed karstic fissures and shallow depth of vadose zone, all contribute 

to significant inputs of organic matter to the freshwater lens. This generates potential for 

dissolution considerably greater than that predicted solely by simulations of inorganic mixing 

between basal freshwater lens waters and underlying saline groundwater. Whitaker and Smart 

(1994) documented that surface-derived organic matter penetrates the aquifer in the Bahamas to 

a considerable depth , supporting both aerobic and sulfate-reducing heterotropic bacteria. They 

noted that processes, rates and distribution of organically mediated carbonate dissolution are 

controlled by the balance between rates of input and consumption of oxygen and organic matter. 

22 



Freshwater in relation to groundwater in coastal areas can vary significantly. Between the 

rainwater and open seawater, the freshwater changes from rainwater composition to saltwater 

composition . 

2.4.2 Saltwater 

The composition of saltwater is dependent on global and regional factors. Compared to 

freshwater the composition of saltwater is very much alike around the world . The amount of salt in 

saltwater is measured in concentration [mmol/g] or[mg/l] or in mass-fraction [kg/kg] or [ppt] (part 

per thousand) also called the salinity. The salinity of seawater depends on the regional area. The 

pH of saltwater around the world is approximately 8.2 and the variation of the pH is very small. 

Table 2.3 shows the composition of saltwater from various studies , indicating that the main 

constituents in saltwater are Na+ and cr. 

2.4.3 Density 

The density of water depends on the temperature and salinity, which is shown on Figure 2.2. The 

density increases for increasing salinities and pure freshwater with zero salinity have maximum at 

approximately 4°C. Saltwater with a density of 1.0245 kg/l contains approximately 34.8 g of salts 

(Reilly and Goodman, 1985) 

2.4.4 Fresh I Saline water interface. 

The seawater problem occurs both on regional or large scale and on the local or small scale. The 

regional or large scale effects occur in large areas where the interface between fresh and saline 

groundwater moves slowly and smoothly in upward and lor inland direction. The large scale 

displacement is caused by groundwater table as in reclamation projects, new polder or for land 

improvement by drainage, by large excavations, such as borrow-pits for sand and gravel , and by 

excavations at the inner sides of sand dune. 

Table 2.3. Composition of saltwater from various studies (Gomis et aI. , 1996, 1997; Appelo et aI. , 

1987, 1990). 

Parameter Gomis 96 Gomis 97 Appelo et Appelo et 

al. 87 al. 90 

Na + (mmolll) 182.6 522 145 180.9 

K+(mmoIJI) 3.90 10.3 3.23 3.9 

Ca2+(mmoIJI) 4.20 11 .3 4.2 

Mg2+(mmoIJI) 20.6 61 .7 16.3 20.6 

Cr(mmolll) 212 606 169 212 

S02'4(mmolJl) 11 .6 20.2 0.9 11 .1 

HC03' (mmoIJI) 0.9 2.13 

* in equilibrium with calcite 
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Figure 2.2. Density as a function of temperature and salinity (Harremoes et a1. 1990) 

24 



Seawater intrusion Involves mixing between saline and freshwater components . Because of its 

significant salt content, a small fraction of seawater would dominate the chemical composition of 

the groundwater mixture. Contribution of the 1 % of seawater would almost triple the salinity of 

typical groundwater (with an initial chloride content of 100 mgtl) . Contribution of 5 % of seawater 

would result In water with salinity above 1000 mgClI1. Consequently, chloride ion concentration is 

a very sensitive indicator, particularly if background salinity levels of the regional groundwater are 

low. In as much as seawater has a high salt content relative to local fresh groundwater, the ionic 

ratios of seawater dominate the chemical composition of saline groundwater, assuming 

conservative behavior of the ion species. 

When mixing of two waters with different ion composition occurs, dissolution and precipitation can 

occur depending on prevailing conditions ; e.g., when water in equilibrium with calcite and a water 

in equilibrium with gypsum are mixed , calcite may precipitate. This effect is called the common ion 

effect. Mixing of two groundwaters with different CO2 pressures, both at equilibrium with calcite 

leads to subsaturation with respect to calcite. This effect is called mischungskorrosion in the 

German literature (Appelo and Postma, 1993). 

Eeman et al. (2008) focused on the mixing zone between thin , shallow freshwater lenses and 

underlying, upward seeping saline groundwater, under homogeneous isotropic conditions. The 

stable isotopes of 0 and H can also be used to describe the mixing process between saline and 

fresh water. Fresh groundwater is generally depleted in both 180 and 2H relative to seawater. 

Mixing of fresh and seawater should result in a straight line connecting the two end members. 

Such relationships have been utilized by Manzano et al. (1990) and Izbicki (1996) to distinguish 

different water sources in coastal mixing zones, and to signal possible variance from truly 

conservative behavior. The interface produced between fresh and saline waters is the product of 

the physical and chemical properties of these two water bodies, as well as external processes. 

The interaction between these waters is produced by the flow seaward of fresh waters derived 

from recharge. This flow towards the sea is the product of pressure gradients within the coastal 

mediums, which prevent the seawaters from infiltrating the coastal setting within natural 

conditions. At this interface between the two water bodies, fresh water pressures exceed that of 

the denser saline water, which produces the flow from land to sea. This flow is determined by the 

levels and gradients of the water table and piezometric levels, which in turn are determined by 

boundary conditions, such as surface water levels, rates of exchange and abstraction (Bear et ai , 

1999). Due to the contrasts in volume and densities of the two water bodies, the fresh water 

overlies the saline waters producing the saline wedge or intrusion phenomenon (DomeniCO and 

Schwartz, 1990). 

A salinity transition zone is formed with salinity ranging from that of seawater at the land-sea 

interface to that of freshwater at some distance into the aquifer. Within the transition zone, at least 

some of the intruding seawater re-circulates back into the sea, following flow patterns that are 
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determined by the freshwater flow, density differences, thermal convection , tidal oscillations and 

wave set-up. The shape and position of the transition zone depend on many factors , but at 

steady-state the transition zone is stationary Indicating a dynamic equilibrium between the natural 

fresh groundwater flow towards the sea and the re-circulating seawater inflow. Any disturbance of 

this water flow balance in the aquifer will change the position and shape of the transition zone. 

2.4.5 Transition zone 

The position of the salt wedge is usually indicated by the two lines, the 35000 ppm . Interface 

indicating boundary of seawater influence, and the 500 ppm interface making fresh water. 

Between these lines occur the so-called transition zones. The transition zone normally is a result 

of hydrodynamic dispersion (Bear and Dagan , 1964). Cooper (1959) developed a hypothesis 

stating that "where a zone of diffusion exists between the salt water and the fresh water, the 

saltwater is not static but flows in a cycle from the floor of the sea, to the transition zone, and back 

to the sea. This mixing phenomenon is related to the tidal fluctuations." He described the 

transition zone as the occurrence of circulation of saltwater. 

The most important factors that affect the transition zone are summarized next. 

Heterogeneity: A heterogeneous environment allows for a variable penetration of the seawater 

wedge. The effect is very negligible in shallow, low-permeability formations. The aquifer 

transmissivity, T, does not properly describe the conditions, since the transmissivity is not linearly 

correlated with the thickness. 

In case of stratified aquifers, if the upper layer is of low hydraulic conductivity, it favors the 

formation of a fresh water body; and if the upper layer is of high hydraulic conductivity, it favors 

the saltwater. In thick low-permeability aquifers, an important upward fresh water flow exists near 

the coast. If they are covered by a layer of highly permeable material , an extreme situation of the 

stratified aquifers appears and a salt or brackish water body may develop in the upper layer, 

especially in dry climates, floating on fresh water. 

Anisotropy: Both the flow pattern and the interface position are influenced by anisotropy. In 

general terms, a low hydraulic conductivity to vertical flow would tend to increase the depth of the 

interface; while a high hydraulic conductivity to vertical flow would tend to reduce its depth. 

Sea bottom: Sea bottom conditions can alter the fresh/saltwater relationships in coastal aquifers. 

A cover of low hydraulic conductivity cap acts as an obstacle to fresh discharges into the sea, 

thus tending to decrease the width of the transition zone and vice versa. Entrapped old sea water 

in deep lenticular or discontinuous permeable formations , not open to the sea, saltwater 

penetrated in earlier times (connate or infiltrated) , cannot be expelled , and only disappears by 

upward diffusion towards the fresh water body. This can last for centuries (Meinardi, 1976). In low 
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permeability recent formations , such as clay and silt deltaic lenses, salty connate water remains 

for a long time between fresh water bodies. 

Density and viscosity: Kempers and Haas (1994) stated that" if the fluids have equal viscosity 

and density and the heterogeneity of the porous medium is statically homogenous, the length of 

the dispersion zone between the fluids known to increase as (BX)1/2, where B is the dispersivity 

and X is the average displacement distance. Dispersivity is a soil characteristic parameter with a 

dimension of length and is regarded as a fundamental transport property of the soil matrix. For the 

case where the fluids differ in density, viscosity or both , there is effect on the dynamic of the fluid 

flow on the magnitude of the dispersivity B and validity of the X 1 /2 dependence of the dispersion 

zones length . Measurements demonstrate that the dispersivity does indeed depend on the 

displacement velocity. The dispersion zone does grow as X1/2 in presence of density contrast 

and viscosity contrast. Experiment, simulation and the model show that the dispersivity is strongly 

dependent on the displacement velocity in the conditionally stable flow regime. They also show 

that a nearly non-dispersive development of the shock front between the fluids occurs when 

gravity segregation dominates the dispersive effect of the porous medium. Even a very small 

difference in density, such as that between water and brine, can suppress the dispersivity 

significantly. 

Groundwater temperature: The temperature of groundwater is mainly a function of its mobility in 

an aquifer. Water temperature in the ground depends on many factors but can be related to 

recharge temperature, low velocity, and depth of circulation and it is over imposed on geothermal 

heat flow. 

Custodio (1986) state that "there is generally a clear temperature change between groundwater in 

movement and groundwater which is almost stagnate." In very thick aquifer, the geothermal 

heating of water, especially when the geothermal gradient is higher than normal, may lead to 

thermal induced convective water movements that increase the fresh/saltwater mixing or the 

exchange with ocean (Kohout, 1985). He also stated that "At great depth the temperature stays 

constant with time but increases with depth . This is mainly because heat is being generated , and 

therefore the temperature rise with depth varies from place to place." 

Usually, regional groundwater flow and contaminant transport studies in the vicinity of the coastal 

zone assume that the coastal boundary water level is equivalent to the mean sea level and that 

tidal- and wave induced variations have a negligible effect. As the position of a beach water table 

is an important factor in cross-shore sediment transport and beach stability on a sandy beach , a 

significant amount of work on beach groundwater has been done by researchers who have 

tended to concentrate on the nearshore water-table position and its transient variations. Grant 

(1948) noted that a high groundwater table accelerates offshore sediment transport and beach 

erosion, and conversely, a low water table may result in pronounced aggradation of the foreshore. 
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2.5 Seawater Intrusion Modeling 

Many researchers have attempted to model the physics of groundwater flow processes in 

beaches Dominick et al. (1971) used an Implicit finite-difference numerical solution of the 

Bousslnesq equation to simulate beach water-table response to tidal forcing . Their model was for 

a beach with a vertical face and , hence, this produces substantial differences from the real case 

of a sloping beach when predicting water tables and discharges. Fang et aL (1972) used a two­

dimensional finite-element model to solve the beach water-table response to tidal fluctuations . 

They considered a homogeneous beach with a vertical face. Li et al. (1997) presented a boundary 

element model for simulating tidal induced fluctuations of the beach water table. The model 

solves the two-d imensional fully saturated flow equation subject to free and moving boundary 

cond itions, includ ing the seepage dynamics at the beach face. Baird and Horn (1996) reviewed 

prevIous works on groundwater behavior in sandy beaches and discussed how models of beach 

groundwater process can be improved by using a numerical approach . The aforementioned 

stud ies were concerned particularly with the relationship between tides and beach water-tables 

emphasizing the tidal-induced fluctuations of the water table near the shore and the 

consequences for processes affecting beach stability . None of them give an accurate picture of 

groundwater hydrau lics and seepage velocity patterns near the sea boundary. 

Philip (1 973) showed for the first time that a sinusoidal tidal motion on a vertical beach would 

cause an inland water table over-height relative to mean sea level. Before him a number of 

investigators (e.g. Jacob, 1950) used a linearization of the Boussinesq equation to study the 

influence of tides on groundwater level in coastal regions and the result of this linear analysis is a 

constant groundwater level , at points far enough inland, in equilibrium with the mean sea level. 

Philip (1973) showed that for an aquifer with a horizontal impermeable base, a vertical interface 

between sea and land, and zero net discharge through the system, the linear analysis may be 

cons iderably in error and the groundwater levels are significantly above the mean sea level. 

Sm iles and Stokes (1976) confirmed Philip's prediction using a Hele-Shaw experiment that 

models groundwater flow. The physical explanation for the phenomenon is that with high water 

levels the effective transmissivity of the aquifer is greater and so water flows in from the sea more 

read ily than it flows out at low tide (Knight, 1981). Parlange et al. (1984) used second-order 

theory to describe the propagation of steady periodic motion in a porous medium, driven by the 

oscillating level of a reservoir in contact with it. Nielsen (1990) found an analytical solution to the 

one-d imensional Boussinesq equation for the sloping beach case using a perturbation technique. 

He showed that real beaches that are sloping produce an additional overheight as a result of the 

slope. He explained that the asymmetry of the tidal infiltration/draining process for a sloping 

beach results in a further rise of groundwater level. Nielsen (1990) acknowledged that if 

decoupling of water table and sea level occurs, the analytical solution will probably fail. 
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Analytical approaches to model coastal water table fluctuations usually are based on the one­

dimensional Boussinesq equation or its approximations. In addition to assumptions such as 

uniform thickness of aquifer, uniform hydraulic conductivity and a single inland boundary condition 

at which water-table oscillations reduce to zero, all analytical models are based on the 

assumption that the exit point of the water table on the beach face is coupled with the tidal sea 

level. 

In cases where there is a constant water level at the landward end of the aquifer, the overheight 

resulting from tidal pumping may have a significant effect on groundwater discharge to the sea 

and consequently on contaminant transport. This effect will be magnified where the aquifer is 

shallow and therefore the effects of tidal fluctuations are more significant. This problem has not 

been fully addressed, because of the limitations of the analytical solutions (Philip , 1973; Nielsen, 

1990) and the assumption that the landward boundary is far inland. Also none of the previous 

numerical simulations (Dominick et aI. , 1971 ; Li et aI. , 1997) have discussed this problem. In 

addition, most of the previous studies, including the numerical ones, have focused on the 

behavior of the water table in coastal beaches. Turner et al. (1996) , who showed that neglecting 

the effects of tidal fluctuations will lead to errors in predictions of groundwater discharge to the 

ocean. However, in their numerical simulation the complexities of the beach face such as mild 

beach slope, seepage face and the unsaturated zone were neglected. 

Ataie et al. (1999) used Glover's solution to quantify the sharp interface in relation to tides , and 

found that tidal activity causes the saltwater interface to move inland and become more 

dispersed. The magnitude and the tidal activity were measured by the ratio between amplitude of 

tides and aquifer depth. Ataie et al. (1999) also studied the influence of a sloping beach and found 

that saltwater intrusion increases with sloping beaches. Saltwater intrusion is more noticeable 

near top of aquifer at a sloping beach . 

The width of the transition zone increases with increasing dispersivities both longitudinal and 

transversal (Ataie et aI. , 1999; Korsbech, 1991). Korsbech (1991) also concluded that the 

penetration length decreased for increasing dispersivities. Ataie et al. (1999) found that constant 

freshwater flux on the landward side increases saltwater intrusion due to reduced groundwater 

gradient caused by over pumping . 

Mathematical modeling is an efficient and inexpensive method of predicting intrusion (Bear 1979). 

Two basic approaches in modeling are known - a variable density model (Voss, 1984) and a 

sharp interface approximation . The former deals with the advective dispersion equation for solute 

transport. The latter, if applied in a homogeneous rock , solves the Laplace equation with a priori 

unknown free boundaries (interface and phreatic surface) . If vertically averaged according to the 

Dupuit-Forchheimer (OF) concept, the free boundary problem is reduced to nonlinear partial and 

ordinary differential equations in a domain with two fronts , a tip and a toe (Bear 1979). 
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2.6 Cause of Seawater Intrusion 

In coastal aquifers freshwater is hydraulically connected to seawater. Under most natural 

conditions the hydraulic gradient ensures the net water flow is towards the sea, which protects the 

freshwater. However, the gradient is usually relatively small and any excessive net withdrawal can 

alter the hydrostatic balance. In this situation seawater can enter the aquifer and replace the 

freshwater. This phenomenon, known as seawater or salt water intrusion, can have adverse and 

long-term impacts on coastal groundwater systems and limit their use as a supply of good quality 

water for human and agricultural uses. The coastal areas of the world are characterized by high 

populations with about 50% of the world's population living within 60 km of the shoreline (Essink, 

2001) . What makes saltwater intrusion different and more complex than other solute transport 

problems is that the variation of concentration causes water density to vary in space and time. 

Density differences cause freshwater to float over seawater. This effect was first addressed by 

Ghyben (1888) and Herzberg (1901) , who empirically found that the depth to saltwater correlates 

with freshwater head. 

Field investigations have indicated that groundwater as an important source of water and solute 

input to coastal waters (Lewis, 1987; Moore, 1996; Kim et aI. , 2003) . According to Church (1996) , 

these scientific findings challenge our understanding of coastal and oceanic chemical mass 

balance and ecosystem functioning . On the one hand, the seaward flow of fresh groundwater to 

coastal waters may carry land-generated pollutants, which constitute a serious threat to coastal 

ecosystems, in addition to limit the available fresh groundwater resources. On the other hand, the 

quality and availability of these fresh groundwater resources in coastal areas are also threatened 

by seawater intrusion from the seaside (Bear et aI. , 1999). 

The contamination to the fresh water resources of coastal aquifers around the world has driven 

research , to gain a comprehension of the main contamination processes that occur. Several 

studies have been undertaken to identify natural and human induced contamination processes. 

These consist of internal and external processes of natural and anthopogenic origin , which 

promote pollution within coastal aquifers. Of these, three main processes have been identified as 

being specific importance in respect to the pollution of these resources : 

1. Chemical weathering of the natural geological deposits. 

2. Leaching of agricultural chemicals , accidental spillage/leaks and industrial processes 

such as mining . 

3. Intrusion of saline waters. 

Of the three main polluting processes highlighted above, the intrusion of saline waters has 

become one of the most characteristic types of water quality degradation occurring within coastal 
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aquifers (Fetter, 1994) This process has been recognized as the major constraint in the 

abstraction and utilization of the freshwater resources contained within coastal aquifers. 

Surface water has been the traditional primary water source for agricultural use in tropical 

environments The main reason for intensive use of surface water is its easy access an 

associated low cost. However, increasing pressure on surface water resources generated by 

econom ic and population growth has lead to diversification of the water supply sources. Thus, 

dunng the second half of the 20
th 

century, groundwater withdrawals have increased and currently 

groundwater accounts for about one-third of the world 's freshwater consumption (Essink, 2001 ). 

This Increase in groundwater extraction rates, often higher than natural recharge thresholds , has 

resulted in substantial decline in aquifer levels in many areas (Hiroshiro et aI. , 2006; Sethi et aI. , 

2006; Zhang et aI. , 2004; Sadeg and Karahanoglu , 2001 ; Zhou et aI. , 2000) . 

A second effect associated with concentration differences is the mixing between the two fluids . 

Mixing is caused by diffusion/dispersion processes and results in some of the salt being driven 

seawards by freshwater. The result is a vertical convection cell formed by seawater that flows 

landwards at depth and disperses into the freshwater flowing zone, where salt is flushed out by 

the discharg ing freshwater flow. The equilibrium assumption of Ghyben-Herzberg is not valid 

because seawater flux causes an energy loss. Therefore, the depth of the seawater wedge is 

underestimated. Seawater movement in coastal aquifers is caused by the combination of density 

driven flow and hydrodynamic dispersion. This effect was first discussed by Cooper (1964). When 

taking into account density effects, the groundwater flow and solute transport are coupled by the 

presence of the density in the gravity (buoyancy) term in the momentum balance equation of flu id. 

Three-d imensional ity may be a critical factor that has often been ignored when analyzing 

seawater intrusion processes. Irregular patterns of salinity can be caused by many factors such 

as variable th ickness formations, heterogeneity or variations in the depth of the aquifer 

boundaries. In homogeneous aquifers where the horizontal extension is large when compared 

with the th ickness, aquifer topography may become critical. The effective gravity is controlled by 

the slope and shape of the boundaries. When the lateral slope is large, vertical flow can diminish 

with respect to the lateral flow. The effect of variations in hydraulic conductivity on seawater 

intrusion is small compared to variations in volumes of groundwater pumping and recharge. 

Heterogeneity in hydraulic conductivity has only a short-term effect on the inward migration of the 

seawater wedge and associated concentration profiles. 

The extent of intrusion depends on a number of factors such as aquifer geometry and properties 

(hydraulic conductivity , anisotropy, porosity and dispersivity) , abstraction rates, depth , recharge 

rate , and distance of pumping wells from the coastline (Ghassemi et aI. , 1993). Complex models 

are required to quantify these factors. 
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DUring the last three decades, numerous studies have been published dealing with various 

aspects of solute movement in aquifers. Modeling of seawater intrusion into groundwater systems 

has also received much attention and several mathematical and numerical models have been 

developed These models predict the interface or transition zone between fresh groundwater of 

meteoric origin and seawater in the subsurface of coastal areas. Reilly and Goodman (1985) 

provided a historical perspective of quantitative analyses of seawater- freshwater in groundwater 

systems Bear (1979) provided mathematical description of the problems related to seawater 

intrusion In coastal aquifers. 

The development of these models was largely motivated by groundwater issues; that is, 

assessment of fresh groundwater reserves , and prediction of seawater intrusion-the landward or 

upward movement of the interface in response to groundwater exploitation practices (e.g. Volker 

and Rushton, 1982; Custodio et ai. , 1987; Ghassemi et ai. , 1990, 1993; Bear et ai. , 1999; Zhou et 

ai , 2000; Sadeg and Karahanoglu , 2001 ; Gotovac et aL , 2001 ; Paniconi et aL , 2001) . 

Coupled simulation-optimization models of aquifer pumpage have been reported by Gorelick et al. 

(1984); Ahlfeld and Heidari (1994) ; Gordon et al. (2000) ; Mayer et al. (2002) ; Cheng et al. (2000) ; 

Mantoglou (2003) ; Mantoglou et aL (2004) . Determination of optimum pumping rates from coastal 

unconfined aquifers have been based mostly on linear and nonlinear optimization techniques 

using the concepts of a sharp interface and the Ghyben-Herzberg approximations. 

Groundwater pumping near the coast must be controlled to limit inward migration of the seawater 

wedge. The utilization of the freshwater resources of coastal aquifers by abstraction has been 

constrained by the intrusion of saline waters. These intrusions events directly pollute the 

resources by the interactions of the abstraction programs with the natural internal and external 

processes of the aquifer. 

The saline or brackish groundwater which is present below fresh groundwater in coastal and 

deltaic areas can also be abstracted. Such abstractions cause the volume of fresh groundwater to 

decrease. Complete control of the interface is possible by simultaneous abstraction of fresh and 

saline groundwater, in mutually adjusted proportions. The effect of pumping saline groundwater is 

described by the extreme, theoretical, situation in confined groundwater. The saline groundwater 

is pumped , theoretically, in the tip of the saltwater wedge at such a rate, in this extreme 

theoretical situation , that the piezometric level of the fresh groundwater above the saltwater 

wedge is horizontal. In that case the fresh groundwater above the saltwater wedge is stagnant. 

There is no loss of fresh groundwater by outflow into the sea and the flow of fresh groundwater 

can be abstracted totally . 

The abstraction programs undertaken in the utilization of the freshwater resources entail the 

sinking wells into the aquifer to allow direct abstraction via surface pumps. Due to these methods, 
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alterations in the subsurface pressure gradients or "head" occur. These changes in head have a 

direct affect on the position and movement of the interface between the fresh and saline waters . 

These alteralions in head and their relationship to the position and movement of the interface 

were characterized by the Ghyben-Herzberg principle (Domenico and Schwartz, 1990). This 

pnnclple states that any loss in head produces a rise in the interface between fresh and saline 

waters. This rise in the interface is referred to as "upconing" and the scale of which it occurs is in 

direct proportion to the head loss (Price, 1998). In many cases of saline pollution within coastal 

aquifers, the scale at which abstraction has been undertaken has not been monitored (CDWR, 

1958) This lack in monitoring has lead to over abstraction producing losses in head that generate 

an upconing of the interface that reaches into the abstraction zone. With the occurrence of this 

upconing the resources within the aquifer become polluted with the chemical changes induced by 

the intrusion of the saline waters. 

This Intrusion of the interface does not only render the resource within the aquifer useless, but it 

also alters the chemical composition of the groundwater (Bear et ai , 1999). These compositional 

changes in groundwater cause secondary detrimental effects, which threaten industrially sensitive 

structures within coastal settings. This threat is produced from the change of the water chemistry 

from a fresh water environment towards a saline or marine environment. 

This change in groundwater chemistry could cause acceleration in predicted corrosion times and 

a reduction in the overall life span of the structures (Sandberg et ai , 1998). This process would 

therefore produce a possible hazard in the long term to sites containing such structures. 

One such site is the British Nuclear Fuels low-level radioactive waste disposal facility , situated at 

Drigg , West Cumbria. Within this site, aquifer type media and processes have been identified 

(Sears, 1998). These characteristics along with the understanding of the 'active' processes of the 

saline intrusion would be classified as being at risk from chemical changes in groundwater. These 

changes in the groundwater chemistry could therefore produce acceleration in the predicted 

corrosion times of the facility 's structure. 

With the understanding of the effects that are caused through abstraction of fresh water resources 

from coastal aquifers and the awareness of secondary detrimental effects, monitoring of the 

saline intrusion phenomena is deemed essential. By monitoring the saline intrusion position over 

periods of activity such as tidal cycles , abstraction and recharge within the subsurface profile, 

mitigation programs can be put in place. These would allow abstraction of the resource to be 

reduced or stopped to thus allowing pressures between the two water bodies to equilibrate. The 

return to equilibrium of the pressures gradients would permit a consequent reduction of the 

upconing effect, thus preventing pollution of the resource. To undertake a monitoring exercise to 

enable the identification and assessment of the saline intrusion, clear objectives have to be 

identified and attained. 
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One characteristic identified within the coastal aquifers, which promotes these events, is the 

interface between the freshwaters of the aquifer and those of the encroaching seawaters. At this 

interface, a natural 'wedge' or saline intrusion occurs due to contrasts in the two water bodies' 

volume and density (Fetter, 1994). These are in turn influenced by, the "nature of geological 

formations present, hydraulic gradients, rate of withdrawal and recharge of groundwater" 

(Choudhury et ai , 2001). The resulting pressure gradients produced by these influences is an 

active and balanced phenomenon that regulates the storage and flow of freshwater within the 

aquifers. 

The natural external processes of the tidal fluctuations in seawater levels have been seen to 

influence these pressure gradients within the aquifer. Though the work of Ataie-Ashtisni, et al 

(2001) it has been shown that a quasi-steady-state rise and fall in the mean water-table position is 

produced in direct proportion the tidal fluctuations. These proportional changes seen in the mean 

water table levels are produced due to the movement of the saline intrusion into and out of the 

aquifer over tidal periods. During these periods, studies have shown that regions of coastal 

aquifers utilized as a resource for freshwater, have been seen to increase in salinity to the point of 

pollution (Choudhury et aI2001). 

The freshwater resources affected by an increase in salinity, have been utilized as a readily 

available supply of freshwater. These resources are abstracted by the implementation of pumping 

projects. The alteration caused by abstraction of the freshwater resource produces a depression 

around the wellhead in the potentiometric surface known as the 'cone of depression' (Price, 

1998). With the reduction of the overlying pressure produced by the freshwater, a consequent 

'upconing' of the interface between the fresh and saline water towards the pumping region takes 

place in direct proportion to a drop in pressure overhead (Domenico and Schwartz, 1990). 

The production of this upconing of the fresh and saline water interface has lead to saline pollution 

of resources within coastal aquifers. These affects caused by abstraction occur when monitoring 

of the abstraction in relation to pressure gradients and tidal fluctuations are neglected . This 

neglected in monitoring may result in an alteration in the gradients and the interface position, to 

the point that it produces an upconing event that infiltrates the resources being utilized (CDWR, 

1958). The consequences of these infiltrations have been recorded in the form of saline pollution 

events within the freshwater resources , which have resulted in the exclusion of the aquifers as a 

resource for freshwater. 

These adverse effects caused by the interactions of human and naturally induced processes can 

be prevented . This has been accomplished by the introduction of monitoring programs to identify 

and monitor the position of the interface between the fresh and saline waters using several 

different methods. 
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2.6.1 Saltwater upconing 

Saltwater upconing describes the phenomenon where saltwater is transported vertically upward 

under a well in response to pumping in a fresh water aquifer underlain by saltwater. Reilly and 

Goodman (1987) analyzed saltwater upconing beneath a pumping well. The upconing is in 

response to the pressure reduction due to drawdown of the water table around the well if the 

bottom of the well is close to the saline water level or the well discharge is relatively high. Where 

the regional fresh/saltwater system is in equilibrium , a pumping well screened in the fresh water 

zone can cause a disturbance of this equilibrium. 

Most investigators of upcoming have assumed a sharp interface between the two fluids is 

situation could be existing between immiscible fluids . For miscible fluids such as fresh/ saltwater, 

a mixing or transition zone having a finite thickness occurs. 

According to Schomorak and Mercado (1969) , the upcoming is in the form of an abrupt interface. 

Bear and Dagan (1964) made some assumptions to develop an expression that describes the 

upcoming of the interface as a function of time and distance from the pumping well. 

These assumptions are: 

1. The porous medium is homogenous and non deformable; 

2. The two fluids are incompressible and separated by an abrupt interface; 

3. The flow obeys Darcy's law; 

4. Velocity potential satisfies Laplace's equation . 

The Dagan and Bear (1968) expression for the rise of the cone below the center of the well is 

z(r=O , t ~CX) )= Q 
2n:dK(b.r ) 

r 

(2 .3) 

Schomarak and Mercado (1969) deduced that the linear relation between z and Q is 

z 1 1 
-> (- ~ - ) 
d 3 2 

(2.4) 

Limited to a certain critical rise Zcr , values. Where, z is upcoming rise (L) , Q is well discharge 

(L 3T l), r is water density (M/L\ and d is aquifer saturated thickness 

The rise accelerated and a certain critical rise Zcr reaches the bottom of the pumping well with a 

sudden jump. Bear and Dagan (1964a) stated that the maximum value of (z/d) does not exceed ~ 

in order to ensure the safe and salt-free operation of coastal wells . They gave the maximum 

permissible pumping rate which will ensure salt-free water by: 

s b.r 
Qmax 2 TT dzmax ( - )kz (2 .5) 

r 
Muscat and Wyckoff (1935) studied the problem of upcoming. Their analysis of brine coning 

beneath oil wells is hardly applicable to water wells . Bennet et aI. , (1969) developed type curves 

for determination permissible steady pumpage for partially penetrating wells. Rubin and Pinder 
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(1977) made an analysis of the upcoming phenomenon with accounting of the miscibility of the 

two fluids. They described upcoming as migration of a sharp interface penetrated by small 

disturbances due to dispersion. Diersch et al. (1984) simulated upcoming using the advection­

dispersion approach. They described upcoming as migration of a sharp interface penetrated by 

small disturbances due to dispersion . 

Louis (1992) studied the upconlng in an aquifer overlain by a leaky confined bed. He used 

Ghyben-Hezerberg relation and studied the critical pumping rate under different factors. He 

assumed that the critical pumping rate occurs when the interface rise is equal to 0.3 d from the 

distance between the well bottom and the interface. This value (0 .3 d) is changed due to the 

changes in anisotropy (the rate of critical rise increases with decrease of anisotropy) . He also 

concluded that the critical pumping rate decreases with the increase of well penetration degree. 

Reilly and Goodman (1987) stated ''The dispersion phenomenon is not the reason for the 

upcoming phenomenon; and that the saltwater intrusion may occur without any water extraction 

from the aquifer, due to the effect of the dispersion phenomenon." 

Diersch et al. (1984) used a finite element model to analyze the saltwater upcoming mechanism 

as a result of pumping and to determine the salinity of the pumped water. They took into 

consideration hydrodynamic dispersion and density dependencies. They found a good match 

between their results and those obtained by Bear and Dagan under subcritical conditions. Diersch 

et al. (1984) stated that their methodology is capable of describing critical or supercritical 

conditions. Stakebeek (1988) stated that "Upconing below abstraction wells is a very local 

phenomenon which can only be accurately measured by electrode cables located in the 

abstraction well. Measure when the upconed brackish zone is moving horizontally or vertically, 

when the abstraction has been finished , the use of at least two observation wells applied with 

electrode cables is recommended . When upcoming occurs, it takes the saltwater zone a long time 

(one year or more) to return to its original position". Custodio (1986) concluded that "in order to 

prevent saltwater upcoming in a pumping well , it is recommended to construct a second well at 

the same place. A careful control of fresh and saltwater discharge can maintain the 

fresh/saltwater interface at a convenient position between the two screens. In order to eliminate 

the second well , the single well must be used with two screens and two pumps, with a packer 

between them in order to isolate the upper and lower parts ." Rushton and Redshaw (1979) 

studied the effect of the layered aquifers on the upconing. They investigated the movement of 

saline water towards a pumping well by studying the flow patterns of a single liquid with the 

variable hydraulic conductivity and boundary conditions of the aquifer. They applied numerical 

relations of a finite difference technique with a vertical mesh spacing of 10m and logarithmic 

radial mesh spacing with six mesh intervals for each tenfold increase in radius (Rushton and 

Redshaw, 1979). The authors concluded that "in this case, the upward rise of the interface is 

markedly reduced . If constant, a similar layer occurring above the well between the top of the well 

screen and the water table the time taken for saline water to reach the well is reduced ." 
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2.7 Cases of Seawater Intrusion 

One of the earliest saltwater intrusion studies was the Biscayne aquifer in Florida, US which 

started In 1960 with field studies by Kohout (Kohout, 1965) and later Henry simulated the 

Biscayne aquifer intrusion numerically (Reilly and Goodman, 1985). Henry also posed a 

hypothetical aquifer Intrusion problem which has become a benchmark for numerical models. The 

problems mainly arise in areas with a high population and a subsequently high demand for water. 

In China there are examples of area with a high population density. Xue et al. (1995) present a 

case where a freeky aquifer in China has been contaminated by seawater. The transition zone 

was measured to be approximately 1.5 km . In their study they developed a 3-dimensional model, 

which were able to model the observed concentration. Three production wells with a production of 

10000 m
3
/day were installed which reduced the freshwater recharge . Spain has some examples 

where seawater has been drawn into a freshwater aquifer. The basin of the river Verde in 

southern Spain has been overexploited due to the area profitable agriculture and tourism (Padilla 

et aI. , 1997). The seasonal fluctuation of rainfall and water consumption in this area is very 

unfortunately as the rainfall is very scarce in the summer where the water consumption is high . An 

affected well , 1 km inland, showed a very large variation of chloride concentration from 20 mg/I up 

to 5 g/1. Padilla et al. (1997) also observed an unusual speed at which the salinization and 

desalinization took place. In their work they used a two-dimensional horizontal model using a 

sharp interface approximation of the fresh-saltwater interface and made some overall mass 

balances over a regional aquifer. 

The Djibouti aquifer in Somali is an example of over-exploitation (Housein and Jalludin , 1996). 

The climate in Somali is arid which enhances the processes leading to saltwater intrusion. The 

Djibouti aquifer has since 1960 been exploited which has lead to saltwater intrusion and chloride 

concentration from 15 mg/I in 1960 to 38 mg/l in 1995. Housein and Jalludin (1996) made a 

chemical analysis of the water quality from various wells in the area and found an increased 

concentration of calcium , which is attributed to dissolution of plagioclase or calcite . 

Holland is example of a country where saltwater intrusion occurs because of land reclamations 

and lowering of the groundwater table (Stuyfzand , 1995; Appelo et aI. , 1987). When land is 

reclaimed from the sea, the land still contains many salts that have to be flushed away with the 

freshwater; this process may take a very long time. 

Saltwater intrusion changes the groundwater chemistry via mixing, ion exchange, redox reaction 

and mineral dissolution/precipitation . Barker et al. (1998) examined the impact of saltwater 

intrusion had on a sandstone aquifer in Liverpool, and found that the governing processes near 

the intrusion was mixing between salt and freshwater, S04 reduction and calcite reduction . 

Further inland ions from previous saltwater intrusion, probably from the 70'ies where the 

freshwater abstraction peaked, were detected on the exchanger. 
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In 1997, the U.S. Geological Survey (USGS) , in cooperation with the San Juan County 

Conservation District, studied the possibilities of seawater intrusion on the Island and found that 

46 percent of 185 freshwater samples had chloride concentrations indicating seawater intrusion. 

Lopez Island lies among the San Juan Islands, an archipelago in the coastal waters of 

Washington State, just offshore of Seattle and of Vancouver, British Columbia. Its scenic views 

and relatively little precipitation have made it one of Washington's premier places to live. The 

Island's main freshwater source is the groundwater. Local surface water cannot be developed to 

meet the increasing needs of freshwater because the Island lacks of lakes and continuously 

flowing streams. However, there are concern that pumping more groundwater will affect its 

availability and quality. Because many wells are located near the shore and the recharge rates to 

the aquifers are low, there is a great potential for seawater intrusion 

In Australia, coastal Queensland is fortunate to have extensive groundwater resources . Many 

rivers have well developed alluvial tracts and deltas with extensive sand and gravel aquifers. The 

river delta systems usually contain rich soil and were an obvious target for agricultural 

development, particularly plantations of sugarcane in the late 19th century. Groundwater use for 

irrigation commenced shortly after settlement, but it was not until the expansion of the sugar 

industry in the mid-20
th 

century that we saw a rapid increase in irrigation from groundwater and 

the emergence of serious problems of seawater intrusion in many coastal areas of Queensland 

(Volker and Rushton , 1982; Hillier, 1993; Arunakumaren et aI. , 2000; Murphy and Sorensen, 

2001 ; Zhang et aI. , 2004) . Werner et aI. , 2008 documented that there is evidence of extensive 

seawater intrusion problem in Australia, most noticeable in Queensland and South Australia, but 

also in region of Western Australia, Victoria and Tasmania. Their studies had been used to 

underpin water resources management plans, which aim to control groundwater resources in 

these areas. 

A number of geophysical studies provided evidence that seawater penetrates further inland in the 

deepest parts of coastal aquifers. Flores-M 'arquez et al. (1998) compared the three dimensional 

shape of the basement of the Costa de Hermosillo aquifer (Mexico) with geochemical and 

geophysical data. The crystalline basement presents a structure of alternating horsts and grabens 

and the integration of all available data indicates that preferential pathways for seawater intrusion 

correspond to the lineation of basement depressions (grabens) . Yet, only two-dimensional density 

dependent flow cross sections of the aquifer were modeled. Thus, the three dimensionality of the 

flux due to the irregularity of aquifer bottom was not considered. 

Using the Direct Current method, Benkabbour et al. (2004) determined the depth of the bottom of 

the coastal aquifer of the Mamora Plain , Morocco and the lateral and vertical distribution of 

salinity. Seawater penetrates further inland in the proximity of the Sebou River, where the 

substratum is deeper. This further penetration was attributed to a greater aquifer thickness since 

seawater penetration inferred from Ghyben-Herzberg approximation is proportional to the square 
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of the aquifer thickness. However, according to this assumption the total freshwater flow in each 

vertical section is constant. Buoyancy effects due to density differences were not taken into 

account. The hydrogeological literature contains no qualitative analysis of the effect of aquifer 

morphology on seawater intrusion, although the need of such an analysis has been highlighted in 

a number of heat transport studies , In these studies, variable density was taken into account and 

the effect of aquifer slope in the heat plume movement and velocity was addressed, Bachu 

(1995) ; Bachu and Karsten (2002) studied density driven flow in sloping aquifers, applying the 

results to two sedimentary basins: Alberta (Canada) and Los Llanos (Colombia) , Malkovsky et al. 

(2002) highlighted the importance of natural convection in a heat-generating liquid waste plume in 

a sloping aquifer, which could cause acceleration as well as a slowing down of the plume 

depending on the parameters of the system. The role of the aquifer slope has also been 

addressed in brine movement in continental basins. Lahm et al. (1998) studied the role of salinity, 

derived variable, density flow in the displacement of brine from a shallow, regionally extensive 

aquifer and argued that density dependent flow causes a decrease in groundwater velocities and 

a reorientation of local flow directions of the aquifer within the mixing zone. 

Assouline and Shavit (2004) studied the effects of management policies, including artificial 

recharge, on salinization in a sloping aquifer in Israel. Although seawater intrusion processes 

were not taken into account, the importance of the thickness variations in the sloping aquifer in 

the salinization process was addressed. There has many much research on to saltwater intrusion 

in regions such as: in the Mediterranean coast of Israel by Shamir et al. (1984), in the Waialae 

aquifer of southern Oahu, Hawaii by Essaid (1986) , Emch and Yeh (1998) , in southern Oahu , 

Hawaii by Souza and Voss (1987) , in Hallandale, Florida by Andersen et al. (1988) , in the Yun Lin 

Basin , Taiwan by Willis and Finney (1988), in the Soquel-Aptos basin, Santa Cruz County, 

California by Essaid (1990a, 1990b), in the Jakarta Basin by Finney et al. (1992) , in the Dutch 

coast by Essink (1998), etc. Amongst these, the aquifer systems are characterized by either 

single layer (unconfined) or multiple layers with varying hydraulic properties. 

Luc et al. (2008) discussed the evolution of the seawater distribution around the Zwin estuary 

mouth which is modeled for a period of about five centuries . The evolution is simulated by the 3D 

density depended groundwater flow model MOCDENS3D (Lebbe & Oude Essink, 1999). They 

finalized that the historical evolution of seawater distribution around the Zwin estuary mouth 

results in a large number of different inverse density problem. Larabi et al. (2008) showed that the 

coupled flow and transport code (SEAWAT) was applied to the study seawater intrusion in the 

Rmel coastal aquifer in both qualitative and quantitative aspects. The result showed that seawater 

intrusion started in 1992 in the northern sector due to intensive pumping from the wells and 

reduced the recharge. The model is also applied to test the aquifer response to three planning 

scenarios for a period of 20 years . Yager and Misut (2008) presented the variable 

density/viscosity simulations were conducted to investigate processes controlling the migration of 

brine and saline water in the aftermath of a salt mine collapse, which threatens to contaminate an 
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overlying glacial- drift aquifer. Model result indicates that movement of brine and saline water is 

controlled by displacement of brine from the mine and mixing of water from bedrock fracture 

zones. 

According to Yang (2008) a three-dimensional , finite- element model capable of predictive 

simulation of the effects of reservoirs on the groundwater system for the Ping Tung Plain in 

southwestern Taiwan was developed. The finite-element numerical model FEMWATER was 

selected as an appropriate model for simulating feature at the Plain. The result of numerical 

modeling indicate that the advancing chloride front will move north in more permeable sand and 

gravel near the mouth of the Kaoping River. The chloride concentration will increase substantially 

over the next 50 years . 

2.8 Groundwater Modeling 

2.8.1 Introduction 

Models are helpful in simplifying and schematizing real systems using a set of assumptions. 

Models can then be applied to understand the flow system and the relationships with other 

systems and to get answers to different exploitation or preparation action. Modeling of saturated 

flow in porous media is generally straightforward with few conceptual or numerical problems. The 

applicability of flow models involving two or more liquids in porous media are even more 

complicated in terms of the process and parameters involved. Nevertheless, such models have 

been applied successfully. 

Mass transport is controlled by a variety of physical , chemical , and biological processes. 

Quantitative descriptions of the processes concerned with mass transport (advection, diffusion) 

are today well understood. Various types of models exist, including physical , analytical and 

numerical models. In modeling two systems are considered : prototype (the real system) and the 

analog system. 

Physical model, except the electrical ones are mostly laboratory device and experimental 

apparatus, though they have been used for the solution of practical problem . Among the different 

possible models and analogs (Custodio and Llamas, 1976), only a few are used to study 

problems directly related to coastal aquifers. Hele-Shaw analog , especially the vertical ones, are 

the best suited. Bear and Dagan (1964) used a Hele-Shaw model to compare the results of an 

approximate solution for the movement of the interface in confined aquifer. The movement was 

caused by a sudden change in the rate of seaward flow of fresh water. Bear (1979) used a Hele­

Shaw model to compare the results of approximate solutions for the shape of the interface in 

which a thin semiprevious layer is present, and for the extent of the freshwater region above it 

under steady-state conditions. 
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Through the process of model calibration and verification the values of the different hydrogeologic 

conditions are varied to reduce the disparity between the model simulations and field data, and to 

Improve the accuracy of the model. The model can also be used to simulate possible future 

changes to hydraulic head or groundwater-flow rates as a result of future changes in stresses on 

the aquifer system . These are referred to as "predictive simulations." Monitoring of hydraulic 

heads, hydraulic gradients, and groundwater-flow rates (where appropriate) will be required to 

support pred ictive simulations using groundwater-flow models. 

Fate-and-transport models simulate the migration and chemical alteration of contaminants as they 

move with groundwater through the subsurface. Fate-and-transport models require the 

development of a calibrated groundwater-flow model or, at a minimum, an accurate determination 

of the velocity and direction of groundwater-flow based on field data. The model simulates the 

movement of contaminants by advection and diffusion , spread and dilution of contaminants by 

dispersion, removal , or release, of contaminants by sorption, or desorption, of contaminants onto, 

or from , subsurface sediment or rock, addition or removal of contaminants by contaminant 

sources or sinks, and chemical alteration of the contaminant by chemical reactions which may be 

controlled by biological processes or physical-chemical reactions. 

As with groundwater-flow models, fate-and-transport models should be calibrated and verified by 

adjusting values of the different hydrogeologic or geochemical conditions to reduce the disparity 

between the model simulations and field data. This process may result in a re-evaluation of the 

model used for simulating groundwater-flow if the adjustment of values of geochemical data does 

not result in an acceptable comparison with contaminant migration direction or rate. Predictive 

simulations may be made with a fate-and-transport model to predict the expected concentrations 

of contaminants in groundwater as a result of implementation of a remedial or corrective action . 

Mon itoring of groundwater chemistry will be required to support predictive simulations using fate 

and transport models. 

2.8.2 Numerical models 

The equations that describe the groundwater-flow and fate-and-transport processes may be 

solved using different types of models. Some models may be exact solutions to equations that 

describe very simple flow or transport conditions (analytical model), some models may use exact 

solutions of equations that described sources and sinks and other parameters that are solved 

together using the superposition principle (analytic element model) , and others may be 

approximations of equations that describe very complex conditions (numerical models) . Each 

model may also simulate one or more of the processes that govern groundwater-flow or 

contaminant migration rather than all of the flow and transport processes. 

Numerical models use approximations to solve differential equations describing groundwater flow 

or solute transport. They are capable of solving more complex equations that describe 
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groundwater flow and solute transport. These equations generally describe multi-dimensional 

groundwater flow, solute transport and chemical reactions . Numerical models use approximations 

to solve the differential equations describing groundwater flow or solute transport. 

The complete description of transport in porous media in mathematical models is made up of 

partial differential equation or a system of several partial differential equations together with initial 

and boundary conditions. To solve those equations, one can use analytical or numerical methods. 

Because of the irregular shape of the boundary, the spatial variability of the coefficients appearing 

in the equation and in the boundary condition , the nonuniformity of the initial condition and the 

nonanalytic form of the various source and sink terms, analytical solutions are virtually impossible, 

except for relatively simple problems. Solution of most problems can be obtained only by 

numerical methods. The oldest numerical method is the method of finite differences (Southwell , 

1940; Forsythe and Wasow, 1960; Fox, 1962; Kantorovich and Krylov1964) . In this method , the 

partial derivatives appearing in the basic differential equation are replaced by an algebraic 

equivalent, with a quotient of two finite differences of the dependent and an independent variable 

replacing the differential quotient. 

The second very powerful numerical method is the finite element method . An elementary way of 

presenting this method is used in structural mechanics, where the element are the actual parts of 

a structure like the beams and columns in the framework of a building , or grid of beams in the 

floor of a bridge. The deformation of each element is then expressed in terms of the forces acting 

upon it at the two ends. This enables us to express the displacement of each nodal point in terms 

of those of the neighboring nodes and the deformation of the connecting elements. The final 

system of equation is obtained from conditions of equilibrium at each side. 

The system of the linear equations obtained in the finite element method has the same structure 

as in the finite difference method. Actually , the two methods are very similar and from certain 

problem it has been shown that they can be considered as two representation of the same model. 

The finite element method is somewhat more flexible than the standard form of the finite 

difference method (Bear and Verruijt, 1987). Four major methods that can be used to solve the 

solute transport equation are: 1) the finite different method; 2) the finite element method ; 3) the 

random walk method (Uffink, 1990); and 4) the method of characteristics (Konikow and 

Bredehoeft, 1978). In the last method, the particle tracking technique is also employed to solve 

the advective transport and either the finite difference or finite element approach is used to solve 

the dispersive equation . 

The approximations require that the model domain and time be discretized. In this discretization 

process, the model domain is represented by a network of grid cells or elements, and the duration 

of the simUlation is represented by a series of time steps. Numerical solutions are much more 

versatile and with the widespread availability of computers, are now easier to use than some of 
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the more complex analytical solutions (Anderson and Woessner, 1992). The accuracy of 

numerical models depends upon the accuracy of the model input data, the size of the space and 

time discretization (the greater the size of the discretization steps, the greater the possible error) , 

and the numerical method used to solve the model equations. During a sensitivity analysis, 

calibrated values for hydraulic conductivity, storage parameters, recharge , and boundary 

conditions are systematically changed within a previously established plausible range. Figure 2.3 

outlines the steps involved in the solution of a groundwater model. 

Fie ld data 

Analytical 
solution 

Comparison wi th 

fie ld data 

Field data 

Numerical Formulation 

Computer Program 

Field data 

Presentation of result 

• includes sensitivity analysis 

Figure 2.3. Steps in groundwater model (Anderson and Woessner, 2002) 
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Numerical models are used to simulate complex two- or three-dimensional groundwater-flow and 

solute-transport problems, steady-state or transient groundwater flow or solute transport, assess 

regional- or local-scale flow or transport, estimate fluxes at simple or complex hydrogeologic 

boundaries, and simulate problems which cannot be adequately described using analytical 

models 

Sharp-interface models are based on the Ghyben-Herzberg principle that assumes a sharp 

interface between fresh and saline groundwater, which is able to represent the actual situation. 

The one-fluid models are based on freshwater dynamics only. These were used by Glover (1959) , 

Henry (1959) , Shamir and Dagan (1971) , Volker and Rushton (1982) and Ayers and Vacher 

(1983). It assumed that the water table and the sharp interface maintain continuous equilibrium 

and that the salt water is static. 

Alternatively, the two-fluid method may be used, in which coupled freshwater and salt water flow 

equations are solved simultaneously (e.g. Wilson and Sa da Costa, 1982; Contractor, 1983; 

Essaid, 1986; Willis and Finney, 1988). Most coupled two-fluid sharp-nterface models are limited 

to a quasi-three-dimensional single layer or a two-dimensional vertical section; however, Essaid 

(1990a, b) developed a quasi-three-dimensional model that allows for multiple aquifer layers. 

Saltwater dynamics are important during the transient period ; hence, a two-fluid model may be 

more appropriate for examining short-term responses (Essaid, 1986). Pinder and Cooper (1979) 

developed a numerical solution for the movement of the transition zone between fresh/saltwater in 

porous media. They solved the two-dimensional problem by considering both the equation of 

motion and the solute transport equation . They assumed that: a) the release of water from 

storage has a negligible effect on the movement of the interface; and b) the dispersion coefficient 

is constant in space and time. 

Segol et al. (1976) analyzed the general problem described by Pinder and Cooper (1970) . They 

solved pressures and velocities simultaneously in order to generate continuity of velocity between 

elements, and then they used the velocity field to solve the advection-dispersion equation to find 

the concentration . Bennett et al. (1969) made an electric-analog simulation model for a fresh 

water aquifer of variable depth with uniform varying penetration depth . They developed a solution 

with graphs for the design of skimming wells . Rivera and Ledox (1988) described the motion of 

saltwater and freshwater as a case of two-phase flow. Simulations were made both in steady and 

unsteady state conditions to establish the position and movement of the interface toe under 

different pumping rates . 

Rivera and Ledox (1988) originally examined the position and the movement of the saltwater 

interface using a simplified model combining a numerical solution with an analytical one. They 

found that the numerical solution could give acceptable results for the position of the interface in a 
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vertical cross section in steady state and that it was in agreement with an analytical solution. 

Stakelbeek (1988) used two different groundwater programs to simulate the movement of 

brackish zone under a pumping well . One of these programs neglected the density differences on 

flow He concluded that when upconing is simulated, the influence of the distance from the 

brackish zone (transition zone) to well filter on upconing has to be calculated and the vertical flow 

below the wells has to be considered. The degree to which the fresh/saltwater interface is 

dispersed could be important to a study. 

Henry (1964) developed the first solution for the steady salt distribution in an idealized aquifer, 

taking into account dispersion, based on the assumption of a constant dispersive mechanism . 

Rubin and Pinder (1977) used a dispersion tensor which was linearly dependent on velocity to 

analyze upconing due to well abstraction. They showed that the dispersive mechanism actually 

comprises (a constant) molecular diffusion term and a velocity-dependent mechanical dispersion 

term . Tompson and Gray (1986) developed a more general representation of dispersion in the 

macroscopic transport equation . 

Reev (1988) used a numerical model to investigate, both in the presence and absence of well 

abstraction, the effect of representing the hydrodynamic dispersion tensor as constant, linearly­

dependent on velocity in a cross-section perpendicular to the coast, and concluded that the effect 

of the increasing the dispersion coefficient is similar in both the abstraction and non abstraction 

cases. He stated that in the non abstraction case the greater inland penetration of saltwater 

occurs at the highest dispersion coefficient, while in the abstraction case it occurs at the lowest 

dispersion coefficient. When the abstraction is simulated, the results indicated that the low 

dispersion coefficient becomes significantly different as the magnitude of the dispersion 

coefficient increases. 

Uffink (1990) described the development of a transition zone in two-dimensional flows, starting 

from the known sharp interface. For calculating the velocity distribution, he used a similarity 

between the boundary layer problem in hydrodynamics and the flow of the groundwater near an 

interface. From this velocity distribution, the dispersion was determined by means of the random 

walk method. 

A narrow transition zone is simulated by means of a finite-element model of two-dimensional 

density flows by Voss and Souza (1986). They stated that a narrow transition zone amplifies any 

inconsistencies, inaccuracies or instabilities inherent in a given simulation model. They likely 

sources of simulation error are threefold : 

• Vertical discertization is typically too large for the desired level of transversal dispersion . 

• Inconsistent approximations of terms involved in the fluid velocity calculation can lead to 

the large artificial velocity and dispersion components in a simulation . 
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• The process of flow driven by density differences in the fluid may not be accurately 

represented by the simulation . 

Voss and Souza (1986) added that the following modeling approach rectifies these difficulties. 

• Vertical discertization must be in the order of the transversal dispersivity value when flow 

is predominantly horizontal. Transport simulation studies should always begin with a 

steady-state simulation for the case of zero transversal dispersion to check for the 

sharpest trans ition zone possible with a given mesh and flow field . 

• A numerical method that gives a consistent velocity approximation must be employed . 

The standard Galerkin finite-element method gives an inconsistent velocity approximation 

that can generate overwhelming artificial velocities in a simulation . 

Bruggeman (1990) described a general method for calculating a trans ition zone in three­

dimensional flow, making use of the so-called pressure generation . He assumed the following : 

1. The aquifer is homogenous and isotropic 

2. The viscosity of the fluid is constant 

3. The density of the fluid is related to the concentration of the solute 

4. The soil skeleton and the fluid are incompressible 

2.9 Governing Equations of Solute Transport in Groundwater 

When problems involve miscible fluids, it is necessary to solve the solute transport equation. To 

solve a solute transport problem one has to solve the groundwater flow and a solute transport 

equation. The govern ing equations of the dispersion zone and the flow pattern in coastal aqu ifers 

subjected to saltwater intrusion under the unsteady state conditions are (Bear and Veruijt, 1987): 

1. The general Darcy equation for ground water flow, 

k 
q = --( p + pgV:;) (2.6) 

f1 

where q the specific discharge vector (L r 1) , k is the permeability tensor (L 2) , ~ is the dynamic 

viscos ity (ML-
1 

T -\ p is pressure (ML-
1 

T 2) , P is the fluid density (ML-\ 9 is the gravitational 

acceleration (L T2) and z is a space coordinate (L) . Substitution of 

into the general Darcy equation, then equation (2 .6) can be written as, 

(2.7) 

where K is the hydraulic conductivity tensor (L r\ Ij/ is the equivalent hydraulic head (L), and 

Pr is the relat ive density (dimensionless) . 

2. The basic fluid continuity equation or the mass balance equation for the fluid which can be 

written as: 
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anp 
-- =- {XI + Rp * +pp a, (2 .8) 

Where, n IS the effective porosity( dimensionless), Rand P are the recharge and pumping rates 

per unit volume of aquifer medium , respectively (r\ and p. is the density of the recharged water 

(ML-3) 

3 The hydrodynamic dispersion equation or the mass balance equation for the salt ions can be 

wrrtten as, 

['lie 
- = - (qc - nD C) + RC * - PC 
C/ 

(2.9) 

where C is the solute concentration in mg/1. In the above equation , the effect of adsorption on 

dispersion process and solute transport is neglected. For two- dimensional vertical cross­

calculated as follows (Bear, 1979): 

V " V 2 

D u = aL Ir:', aT ,~, + D· 

v; Vz" • 
Dll = aTV/aLlVI+D (2.10) 

4. A constitutive equation relat ing fluid density to solute concentration, wh ich is expressed as: 

(2.11 ) 

where Cj is the freshwater (reference) concentration (ML-\ and a is known constant 

(dimension less) wh ich can be calculated as 

p , - Pr 
a =--"--'- (2.12) 

Cs -Cr 

where Ps is the seawater density (ML-\ and C
s 

is the seawater concentration (ML-\ A linear 

relationsh ip for the density and concentration is assumed in equation (2.11). Baxter and Wallace 

(1 916) developed an empirical relation which relates the salt concentration to fluid density as: 

(2 .13) 

where E is a constant (dimensionless)and has a value of 0.3 for concentrations as high as 

seawater. Examination of the main equations (2.7, 2.8, 2.9 and 2.11) reveals that there are four 

unknowns ('1/ ' V, C and P) in four equations. However, these equations can be combined into 

two nonl inear partial differential equations in only two variables, namely, the hydraulic head If/ 

and the concentration C. 

Simulation of flow involving water with high TDS or higher or lower temperatures requires that the 

effects of density be included in the model. This is the case of density-dependent flow of miscible 
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fluids that may be necessary to solve three models - flow, solute transport, and heat transport. 

Models that simulate density-dependent flow require an Initial pressure and density distribution . At 

the beginning of a time step, these initial values are used to generate the first approximation of 

the flow field . The resulting head values are input to the transport models, which redistribute 

solute and/or temperature A new density distribution is calculated from the transport results , 

ending the first iteration of the first time step. The second iteration begins with the substitution of 

the newly calculated densities into the flow model. Iteration is continued until closure is attained . 

This process is repeated for all time steps (Anderson and Woesner, 1992). 

2.10 Seawater Intrusion Modeling 

Two general approaches have been used to analyze saltwater intrusion in coastal aquifers: the 

disperse interface and sharp interface approaches. The disperse interface approach explicitly 

represents a transition zone that is a mixing zone (brackish water) of the freshwater and salt 

water within an aquifer due to the effects of hydrodynamic dispersion. In the transition zone there 

is a gradual change in density. The freshwater and saltwater are considered to be two immiscible 

fluids of different constant densities. 

The analysis, simulation and management of coastal aquifers are usually based on two 

assumptions: 

• Aquifer parameters, especially hydraulic conductivity , remain constant throughout the 

time-span under consideration. 

• The saltwater/freshwater interface is a movable boundary, modified by the effects of 

diffusion and hydrodynam ic dispersion (Volker et ai. , 1982). 

Since the beginning of the twentieth century, exclusive studies about saltwater intrusion have 

been performed and different mathematical models have been used to investigate this 

phenomenon quantitatively. The saltwater intrusion phenomenon in groundwater systems has 

been conceptualized by two general approaches: the sharp interface approach and the dispersed 

interface approach . In the former it is assumed that the saltwater and freshwater are immiscible 

fluids separated by a sharp interface. In the latter a transition zone of mixed salt and freshwater is 

considered to be present at the interface. In this approach , the diffusion and hydrodynamic 

dispersion effects, density dependent fluid flow and solute transport are incorporated . A historical 

perspective of salt-water intrusion is presented by Reilly and Goodman (1985). The models of 

Volker (1980) , who employed the finite element method for the saltwater intrusion problems in 

coastal confined and unconfined aquifers, Volker and Rushton (1982) and Taigbenu et al. (1984) 

who applied the boundary integral method, and the models of Mercer et al. (1980), Polo and 

Ramis (1983), Ledoux et al. (1990) , who used the finite difference method are based on the first 

approach. Also the recent model of Masciopinto (2006) is based on the sharp interface approach . 

Numerical models based on the dispersed interface approach have been used extensively to 
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Investigate different aspects of seawater intrusion by including the density difference between 

seawater and fresh groundwater (Segol et aI. , 1975; Volker and Rushton, 1982; Frind, 1982; Voss 

and Souza , 1987; Konikow and Arevalo, 1993). Ataie-Ashtianiet al. (1999a) studied the effect of 

tidal oscillations on seawater intrusion in coastal aquifers based on the dispersed interface 

approach. It was noted that the effect can be significant on near-shore groundwater 

hydrodynamics and saltwater intrusion, especially for a low relief beach. Custodio (1987) 

mentioned that in many real situations, such as slow freshwater flow, stresses caused by tidal 

oscillations and recharge events, and enhanced dispersivity by macroscopic heterogeneities, the 

sharp interface approach is a crude one. The sharp interface approach is computationally less 

demanding in comparison to dispersed interface approach. Ataie-Ashtiani et al. (1999a, b) 

presented a numerical model for simulation of groundwater flow in coastal aquifers that could 

handle tidal fluctuations and the seepage-face condition at the seaward boundary. In their model 

the seawater intrusion in coastal aquifer was simulated using dispersed interface approach. 

However, the model can be used either for simulation of contaminant transport or the seawater 

intrusion. Besides, solving density-dependent flow for dispersed interface approach is 

computationally demanding and therefore it imposes severe limitations on the scale of an aquifer 

considered for simulation . Also, Ataie-Ashtiani et al. (2001 , 2002) studied the influence of tidal 

fluctuation effects on groundwater dynamics and contaminant transport in unconfined coastal 

aquifers. In their studies the seawater intrusion interface into the coastal aquifers was not 

considered . 

2.10.1 SUTRA model 

One of the most commonly used models for simulation of density-dependent groundwater flow is 

a two-dimensional, finite-element model by Voss (1984) . The computer code named SUTRA 

(Saturated-Unsaturated Transport) is a product of the US Geological Survey and has become the 

widely accepted variable-density groundwater flow model throughout the world (Essink, 2003) . 

SUTRA (Voss, 1984), in conjunction with the Argus-One Graphic User Interface, is generally 

chosen as the basis for numerical modeling because of its ability to solve density-dependent 

groundwater flow and variably saturated flow, and also because it is readily available in source 

code form . This model implements a hybridisation of finite element and integrated finite difference 

methods employed in the framework of a method of weighted residuals . In the model, standard 

finite element apprOXimations are employed only for terms in the balance equations that describe 

fluxes of fluid mass, solute mass and energy. All other non-flux terms are approximated with a 

finite element mesh version of the integrated finite difference methods. The hybrid method is the 

simplest and most economical approach, which preserves the mathematical elegance and 

geometric flexibility of finite element simulation , while taking advantage of finite difference 

efficiency. The finite element method allows the simulation of irregular internal discretisation. This 

is made possible through use of quadrilateral elements with four corner nodes (Voss, 1984; Ataie­

Ashtiani et aI. , 1999). The SUTRA model has been successfully applied to solve seawater 
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mtruslon problems (e g. Voss and Souza, 1987; Souza and Voss, 1987; Bush, 1988; Ghassemi et 

aI. , 1990; Kacimove et aI. , 2008). 

Terry (2008) examined a density-dependent solute transport model to evaluate potential response 

to varying pumping stressing the upper Floridan aquifer in southwest Florida. Two-dimension , 

axisymmetric SUTRA models and a Monte Carlo statistic approach are used to evaluate upconing 

potential. The model was used to examine an upconing response to a pumping stress in a 

brackish water aquifer. 

Gingerich (2008) used a three-dimensional solute transport (3-D SUTRA) computer code to 

simulate the freshwater and the underlying brackish-water transition zone and incorporates 

hydrologic feature such as valley-fill barriers and the sediments that form a caprock and a barrier 

between the lavas of the West Maui and Haleakala Volcanoes. The code is capable of simulating 

variable-density groundwater flow solute transport in heterogeneous, anisotropic aquifers. He 

concluded that the groundwater flow model is useful as a tool to forecast the effects of future 

groundwater withdrawal and changes in recharge distributions. Sherif and Kacimov (2008) 

applied SUTRA to verify new methodology for controlling the seawater intrusion and enhancing 

the qual ity of the groundwater in the coastal aquifer. They concluded that seawater intrusion 

problems could be controlled through proper pumping of fresh/saline/brackish groundwater from 

the coastal zone. 

Kumar et al. (2007) described the use of SUTRA to define the current and potential extent of 

seawater intrusion in the Burdekin Delta under various pumping and recharge conditions. A 20 

vertical cross-section model, which accounts for groundwater pumping and recharge, was 

developed for the area. The Burdekin Delta aquifer consists mainly of sand and clay lenses with 

granitic bedrock. The model domain used vertical cross-sections along the direction of 

groundwater flow. The initial conditions used in the model are based on land use prior to 

agricultural development when the seawater wedge was in its assumed natural state. They 

demonstrated the effects of variations in pumping and net recharge rates on the dynamics of 

seawater intrusion. Simulations were carried out for a range of recharge , pumping rates and 

hydraulic conductivity values. Modeling results showed that seawater intrusion is far more 

sensitive to pumping rates and recharge than to aquifer properties such as hydraulic conductivity. 

Analysis also shows that the effect of tidal fluctuations on groundwater levels is limited to areas 

very close to the coast. Tidal influences on saltwater intrusion therefore can be neglected when 

compared with the effects due to groundwater pumping . They recommend that a 3D model which 

accounts more realistically for the actual pumping regime and key spatial and temporal features of 

the lower Burdekin be used as a follow up to this study to refine their understanding of seawater 

intrusion in order to help optimize location and management of groundwater withdrawals " 

including the distance from the coast in which no groundwater should be extracted . 
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2.10.2 Examples of other seawater intrusion models 

Many other codes are available, including , FEFLOW (Diersch and Kolditz, 1998), ROCKFLOW 

(Koldltz et al ,1998), HST3D (Klpp, 1986), TVDT3D (Ackerer et ai , 1999), METROPOL (Sauter et 

aI. , 1993), MVAEM (Strack, 1995), SWICHA (Huyakorn et aI. , 1987), SWIFT (Ward, 1991 ), 

CODESA (Gambolati et aI. , 1999) and d3f (Fein and Schneider, 1999). Improvements in 

computer speed have facilitated the construction of adequately refined grids to reduce problems 

of numerical dispersion, which accounts for the emergence of 3D benchmark problems 

(Johannsen et aI. , 2002; Oswald and Kinzelbach , 2004) for density dependent codes. Variable 

density 3D models of real cases are also becoming increasingly frequent (Essink, 2001 ; Xue et 

al , 1995; Sciabica et aI. , 1994; Gambolati et aI. , 1999; Paniconi et aI. , 2001 ; Gingerich and Voss , 

2002; Milnes and Renard , 2004). 
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Chapter 3. Geological, Hydrogeological and Geophysical Investigations in Wadi Ham 

3.1 Introduction 

Groundwater resources constitute about 81% of the total water supply in the UAE. The agriculture 

development in UAE is mainly dependent on the availability of groundwater. Many productive 

farms are located in the coastal areas of the Emirates of Ras AI Khimah and Fujairah. 

Groundwater levels have declined significantly during the last decade due to the lack of rainfall. 

Current annual rainfalls are significantly lower than the average recorded rainfall over the last 50 

years. On the other hand, groundwater salinity has also increased during the last decade due to 

seawater intrusion problem . As a result, many farms have been abandoned. 

Wadi Ham is located in the Emirate of Fujairah. The valley floor is a flat-gravelly plain with 

triangular shape broadening to the sea and draining the surrounding mountains. It rises from sea 

level at Fujairah to approximately 100 m above sea level ; to the northwest. Few hills are scattered 

in different parts of the wadi. These hills subdivide the wadi into communicative zones. Along the 

coast, the inward land becomes a river terrace or alluvial plain . It is locally dissected by stream 

channels filled with cobble and gravel. The number and the depth of channels decrease towards 

the coast. The wadi plain is used for extensive agricultural activities. Some new industries have 

commenced in the vicinity of the coastal zone. Figure 3.1 provides a remote sensing image for the 

catchement area of Wadi Ham. 

3.2. Geological Setting 

Geology is defined by the physical and chemical properties and distribution of local rocks , as well 

as prevailing tectonic conditions (Toth, 1970). Geology influences the flow paths of groundwater 

because water will flow more readily through materials of higher permeability for a given hydraulic 

gradient. Gravel and sand mixtures have much higher permeability than silt and clay mixtures. 

The Emirate of Fujairah may be regard as the Land of wadis and dams in UAE, where more than 

thirty major Wadis are formed among many small wadis . The geologic map of Fujairah Emirates 

and the tectonic profile of the Oman Mountains are presented in Figures 3.2 and 3.3. The 

limestone of Northern Oman Mountains are sediments deposited on the autochthonous shelf (unit 

a). To the south these are cut off by the Dibba fault zone, which shows large olistholite blocks 

mixed with deep-sea sediments of the Hawasina Complex (unit c) . To the south, a metamorphic 

sheet appears (unit d) , overlain by the ocean floor rocks of the Semail Ophiolites (unit f) . Th is 

consists of a several kilometers thick slice of igneous basic and ultrabasic rocks , presumed to 

have originated as part of an upper mantle sequence beneath an ocean floor. Six major lithologic 

units are distinguished, of which three are exposed in Fujairah: Gabbros, transition Peridotites­

Gabbros, and Peridotites. The ophiolite sequence is jointed and fissured as it has been subjected 

to faulting . In the wadi floor it is overlain by recent to Pleistocence Wadi Gravels ranging in 

thickness from 22 to 57 meters (Sherif et aI. , 2005). 
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Figure 3.1. A remote sensing image for the catchment area of Wadi Ham. 
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Figure 3.2. A sketch for the geological map of Fujairah (revised after Geoconsult and Bin Ham, 1985). 
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The degree of consolidation varies from recent uncemented sandy gravel to the older well 

cemented and consolidated gravels. Clastics size ranges from silt grade to boulder sized material 

with a very high sand content. The gravels are typically composed of basic igneous clasts with 

other clasts of very well cemented sandstone and conglomerates (Entec 1996). The lithological 

information of available borehole in the Wadi Ham is presented in the Table 3.1. The locations of 

available boreholes are presented in Figure 3.4. It should be noted that HRP1 , HRP2 and HRP3 

are the same as OB1 , BH1 and BH2, respectively. 

The thickness of wadi gravel varies from 18 m at the upstream side of the dam to about 100 m 

near the coast (Figure 3.5) . The minimum thickness is found in the area of well number BHF-19, 

at the upstream of Wadi Ham dam and close to the mountain series. The maximum thickness is 

observed in the area of well number BHF-14 which is very close to the coast of Oman Gulf. The 

cross-sectional depth of wadi gravels and sand along the wadi course varies from 45 m to 64 m 

as shown in Figures 3.6 and 3.7. 

Table 3 .1. Lithological information of Wadi Ham 

SI BHF M.S.L Layer-I Layer-II Layer-III Remarks 
No No 
1 1 58.0 0-5m Clay 22-64m Sand 64m plus Left bank 

5-22m Gravel with Ophiolite 
sand 

2 3 12.0 0-63m Sand 63m plus - Left bank 
?Ophiolite 

3 4 11 .0 0-57m Sand 57m plus Ophiolite - Right bank 
4 5 8.0 0-24m Sand 24m plus Ophiolite - Right bank 
5 7 26.0 0-24m Sand 24m plus Ophiolite - Right bank 

6 9 45.0 0-25m Gravel with 25-49m Sand 49m plus Left bank 
sand Ophiolite 

7 10 20.0 0-48m Sand 48m plus Ophiolite - Left bank 

8 11 24.0 0-42m Sand 42m plus Ophiolite - Left bank 

9 12 25.0 0-38m Gravel with 38-73m Sand 73 plus Right bank 
sand Ojlhiolite 

10 14 8.0 0-99m Sand 99m plus ophiolite - Left bank 

11 15 680 0-28m Gravel with 28-53m Sand 53m plus Left bank 
sand Ophiolite 

12 16 550 0-47m Sand 47m plus Ophiolite - Right bank 

13 17 8.0 0-63m Sand 63m plus Sand -

14 18 36.0 0-58m Sand 58m plus Ophiolite - Left bank 

15 19 86.0 0-15m Boulders 15m plus Ophiolite - Left bank 

with-.9.ravel 

16 20 52.0 0-5m Boulder with 5-45m Gravel , fine 45m plus Left bank 

. gravel to coarse Ojlhiolite 

17 HRP1 - 0-21 m Boulder with 21-40m weathered 40-45m Boulder Left bank 

(OB1 ) gravel Gabbro with gravel , 46-
58m Ophiolite, 
and 59-137 m 

Gabbro 

18 HRP-2 - 0-15m Boulder 15-33m Ophiolite 33m plus Right bank 

(BH1) Gabbro 

19 HRP-3 - 0-18m Gravel with 18-21 m Boulder 21 m plus RighI bank 

(BH2) boulder Gabbro 

Note .' HRP1, HRP2 and HRP3 are the same as OB1, BH1 and BH2, respectively. 
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Figure 3.5. Variation of gravel thickness in selected boreholes. 
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The cross-sections (longitudinal profiles) in the area near to the Oman Gulf show that the gravel 

depth is varying from 24 to 99 m (Figure 3.8 and 3.9) . Its thickness decreases with increasing the 

distance from the shoreline. For example, within a distance of 3 km it varies from 24 to 73 m as 

shown In Figures 3 8 and 3.9. This is attributed to the regional dipping of Ophiolite series towards 

the wadi channel (Figures 3.10 and 3.11). It should be noted , however, that the information 

presented in this section is restricted to the total depth of the available boreholes and wells . The 

gabbro and diOrite of the Samail Ophiolite are encountered beneath the wadi gravels. The 

gabbro/diorite is likely to be confined in some places by the cemented units. The depth to the 

ophiolite layer varies from 15 to 100 m. The ophiolite basement is dipping towards the coast as 

well as towards the wadi course (Figures 3.8 -3.11). 

3.3. Hydrogeological Parameters 

Based on interpretation of the above data, two aquifers can be identified, namely the Quaternary 

aquifer which is composed of wadi gravels and constitutes the main aquifer, and the Fractured 

Ophiolite which is of low groundwater potentiality. The gravels are highly permeable and of 

variable hydraulic properties. They tend to be unconsolidated at the ground surface, becoming 

better cemented and consolidated with depth. Electrowatt (1981) subdivided them into recent 

gravels, being slightly silty sand gravel with some cobbles ; young gravels, which are silty sandy 

gravels with many cobbles and boulders and finally old gravels, which are weathered and 

cemented. Values of the hydraulic conductivity of the unconsolidated gravels tend to be very high, 

typically being 6 to 17 m/day and in the range 0.086-0.86 m/day for the cemented lower layers 

m/day (Electrowatt, 1981). 

In the unconsolidated gravels primary porosity is very high when compared to the cemented 

gravels. The storativity typically ranges from 0.1 to 0.3 (Electrowatt 1980). At a distance of 3.5 km 

directly downstream of the dam the saturated aquifer thickness ranges between 10 and 40 m with 

a transmissivity ranging from less than 100 to about 200 m
2
/day. In sections where the saturated 

aquifer thickness varies between 50 to 100 m, the transmissivity may reach more than 1000 

m
2
/day. Fourteen short duration (8 to 300 minutes) pumping tests performed by IWACO (1986) 

were analyzed by using both Cooper-Jacob and Theis methods. 

A pumping test was conducted on well number HAM-OB1 (HRP1) in December 2003 for 75 

minutes. Drawdown curves were analyzed using Cooper-Jacob and Theis methods. The data and 

results of analysis of the pumping tests are presented in Table 3.2 (Sherif et aI. , 2005) . Results 

show that the transmissivity varies from 4.3 to 11700 m
2
/d by the Cooper-Jacob method and from 

3.83 to 9120 m2/d by the Theis method . The hydraulic conductivities range from 4.73 to 203 mid 

using the Theis method and from 2.26 to 259 mId using the Cooper-Jacob method. Transmissivity 

values estimated by the IWACO (1986) ranged from 8.3 to 6959 m
2
/d. 
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Table 3.2. Estimated aquifer parameters 

Borehole UTM coordinate TEWACO Transmissivity Hydraulic Storativity 
m

2
/d (m2/d) conductivity 

(m/day) 
Northing Easting Cooper- Theis Theis Cooper-

Jacob method method Jacob 
method method 

BHF-1 2779163 429211 30 101 148 7.76 11.4 0.00161 
BHF-4A 2776995 433773 8630 11700 9120 203 259 201 x1 0'''' 
BHF-12 2776432 431865 1340 947 789 15.5 18.6 0.00239 
BHF-3A 2779800 432900 3450 6246 744 14 118 6.21x10-o 

BHF-5 2773400 432950 4347 8940 1260 105 745 1.33x10·"u 
BHF-10 2780250 431800 1230 480 258 6.79 12.6 0.00197 
BHF-1 1 2781000 430450 386 101 151 4.73 3.16 0.00666 
BHF-13 2774900 427800 8.5 4.13 3.83 25 .6 27.5 0.0101 
BHF-14 2778750 433900 2882 4750 3630 39.4 51 .6 3.03x10· 

HAM-OB1 2780166 427151 - 0.49 0.51 0.0058 0.0056 0.00128 
HRP1 

Table 3.3. Minimum and maximum values of the water table 

Obs. well Period Max. water table Min. water table Remark 
level Month/yr level Month/yr 

BHF-1 1987-2003 53.066 5-1996 8.876 7-1994 Active 
BHF-4 1988-2003 5.805 8-1996 2.585 7-2002 Active 

BHF-4A 1990-2003 5.777 8-1996 2.347 7-2002 Active 
BHF-9A 1987-2003 35.798 5-1996 0.728 6-1994 Active 
BHF-9B 1990-2003 35.59 5-1996 3.02 7-2002 Active 
BHF-12 1987-2003 11 .329 7-1996 -1.191 8-2002 Active 
BHF-1 5 1988-2002 64 .106 4-1996 13.516 10-2001 Abandoned 

BHF-16 1988-2003 54 .317 5-1996 33.627 9-2002 Active 
BHF-18 1988-2000 12.364 8-1996 -0.256 11-1989 abandoned 
BHF-19 1995-2003 86 .618 3-1996 52 .27 10-2002 Active 

BHF-20 1995-2002 53 .969 5-1996 21 .559 9-2002 abandoned 

BHF-17R 1988-2003 3.153 7-1996 0.823 8-2000 Active 

BHF-17A 1989-2003 3.897 6-1997 1.477 9-1999 Active 

GWR-6 1977-2002 5.015 9-1996 -3.955 12-1984 Active 

GWR-5 1977-2002 3.602 5-1996 -0.168 12-1980 Dry/abandoned 

3.4 Groundwater Levels 

Monthly groundwater levels for 16 observation wells in Wadi Ham area have been collected by 

the Ministry of Agriculture and Fisheries,. There is a significant variation in the groundwater level 

in response to recharge events. The maximum groundwater levels were observed in 1996. The 

maximum measured water table fluctuation reached 51 m and was found in observation well 

BHF-15, wh ich is close to the dam site. The minimum water table variation was recorded at 

observation well BHF-17A. The complete records of groundwater level fluctuation are given in the 

Table 3.3. The groundwater gradient in the plain area is very mild as compared to the gradient of 

groundwater within the wadi valley close to the dam area. At some locations, groundwater levels 

have declined below mean sea level. An example of the general trend of groundwater levels in 

observation wells located in Wadi Ham is presented in Figure 3.12. It is generally noticed from 

this figure that groundwater levels are declining with time in all the cases. The monthly rainfall and 

the groundwater levels are plotted on the same Figure to identify the relationship between them . 

A clear relationship is observed between rainfall events and groundwater levels. 
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Figure 3.12. Variation of monthly water table and rainfall events , Wadi Ham. 

3.5 Geophysical Studies 

Sherif et al. (2006) conducted comprehensive geophysical investigations in the area of Wadi Ham 

to identify the salinity distribution and delineate the effects of seawater intrusion on the 

groundwater quality. Four 20 Dc-resistivity profiles were run (Profiles 1-4; Fig . 3.4) to assess the 

groundwater quality and seawater intrusion in the coastal aquifer of Wadi Ham . Profile 1 was 

al igned parallel to the shore line and approximately at a distance of 700 m from the sea boundary. 

For profiles 1, 2 and 3 (Figure 3.4) , forty three electrodes spaced 5 m apart were used. In profile 4 

th irty five electrodes spaced 10m apart were used. The 20 apparent resistivity data were inverted 

to create a model of the resistivity of the subsurface using Res2dinv software. Res2dinv uses an 

iterative smoothness-constrained least-squares method (deGroot-Hedlin and Constable, 1990; 

Sasaki, 1992). 

To test interpretation, resistivity models were created based on the inversion results . The 

res istivity models were used to generate synthetic apparent resistivity data. The synthetic 

apparent res istivity data were inverted using Res2dinv and the resulting inversions were 

compared with the original inverted resistivity section . The resistivity models were adjusted and 

simplified to qualitatively match the field-data inversions. Generating resistivity models helped 

constra in interpretation of the field-data inversions to identify locations and orientations of 

res istivity anomal ies. The 20 Dc-resistivity field-data inversions, resistivity models and synthetic­

data inversions for profiles 1 (near the shore line and obseNation well BHF-17, Figure 3.4) are 

presented in Figure 3.13. The depth of penetration is approximately 50 m. Therefore, it did not 

reach the top surface of the Ophiolites bedrock which is more than 50 m in the area of profile 1. 
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Figure 3.14. Results of 20 dc-resistivity data and modeling for Profile 2 in Wadi Ham. 
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The cross-section of the true resistivity beneath profile 1 (near agricultural farms) represents the 

vanation in the lithology, degree of saturation of the alluvium gravel layer and the water quality 

(Figure 3.13). The depth to water table (the layer coloured in light blue in the depth-true resistivity 

section is ranging from 11 to 15 meters below ground surface. Its true resistivity is ranging from 

30 to 70 Om and its thickness is ranging from less than a meter in the center of the profile to only 

few meters at the sides of the profile. The brackish water zone is very thick below this profile and 

has a resistivity range of 1-30 Om . Only in the central area the saline water zone which has true 

resistivity values of less than 1 Om can be seen (dark blue) . The 1 Om refers approximately to 

electric conductance value of 1 0,000 ~S/cm , approximately Total Dissolved Solids of 6,400 mg/I 

(Sherif et aI. , 2006) . 

Profile 2 (Figure 3.14) is located 800 m to the west of profile 1 and parallel to it. The inversion 

results of this profile data indicates that the thickness of fresh zone started to increase, 

particularly in the northern part near Fujairah Airport. At the same time the thickness of the 

brackish water zone decreases. The saline water zone can only be seen in the southern side near 

Kalba town (dark blue colour and has a resistivity range of less 10m). 

Profile 3 (Figure 3.15) is located 800 m to the west of profile 2 and is parallel to the others. The 

interpretation results of this profile indicate that along the total length and to its maximum depth of 

penetration which is about 40 meters only the fresh and brackish water zones can be seen. The 

thickness of the freshwater zone increased. However, the upward coning of brackish water due to 

the cone of depression caused by intensive pumping (well field) in the middle part of the area is 

remarkable (Figure 3.15). 

Profile 4 is parallel to all the other sections and is located 800 m to the west of Profile 3. The 

interpretation results of this profile (Figure 3.16) indicates that along the total length and to its 

maximum depth of penetration which is about 40 m only the fresh water zone can be seen . The 

brackish and saline water zones were not observed in this profile. The quality of groundwater in 

this area is relatively better. 

Figure 3.17 presents a fence diagram of the true resistivity, including the salinity distribution in 

profiles 1 through 4 respectively. The groundwater contamination due to seawater intrusion 

increases mainly eastward toward the shore line and with a less degree southward. This is 

probably caused by excessive pumping in Kalba area or due to its bay which is about 3 km from 

the shore line (Sherif et aI. , 2006). 
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Chapter 4. Model Development, Calibration and Validation 

Groundwater flow and solute transport in porous media can be simulated both analytically and 

numerically. Analytical methods are based on the solution of closed form equations, while 

numerical methods are based on the approximate or iterative solutions. Each method has its own 

advantages and disadvantages as compared to the other. Analytical models are generally simpler 

In formulation and application and do not require detailed input parameters (data) . They provide 

accurate results when applied to small-scale problems, e.g., upconning phenomenon below 

pumping wells. Analytical models often require simplified assumptions and idealized domains. 

Numerical models are relatively adaptable and flexible and could be applied to heterogeneous 

systems and irregular domains. Many well-developed and verified numerical codes are available 

and can be employed to almost every case. These models include, among others, MODFLOW, 

MOC, MOCDENSE, and SUTRA. The main disadvantage of the numerical methods is the need 

for detailed field data in space and time that might not be available. Analytical solutions are often 

employed to verify numerical models for idealized domains, flow and boundary conditions. 

4.1. Calibration and Validation of Numerical Models 

Model calibration consists of changing the values of model input parameters, within a reasonable 

range, in an attempt to match a given aquifer hydraulic state or solute behavior within some 

acceptable criteria . This requires that field conditions at a facility be properly characterized. Lack 

of proper characterization may result in a model that is "calibrated" to a set of conditions which is 

not representative of actual field conditions. The calibration process typically involves calibrating 

to both steady-state and transient conditions. With steady-state simulations, there are no 

observed changes in hydraulic head or contaminant concentration with time for the field 

conditions being modeled. Transient simulations involve the change in hydraulic head or 

contaminant concentration with time. These simulations are needed to narrow the range of 

variability in model input data, since there are numerous choices of model input data values which 

may result in similar steady-state simulations. Models may be calibrated without simulating 

steady-state flow conditions , but not without some difficulty. 

Calibration includes comparisons between model-simulated conditions and field conditions for the 

hydraulic head data, hydraulic-head gradient (magnitude and direction), and water mass balance 

and for fate and transport models the solute concentrations, contaminant migration rates , 

contaminant migration directions, and degradation rates . Typically, the difference between 

simulated and actual field conditions (residual) should be less than 10 percent of the variability in 

the field data across the model domain . Errors should be randomly distributed, such that model 

results are not biased high or low within particular regions or over the entire model domain. A 
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"calibrated" model having a residual error less than 10 percent should not be considered accurate 

and without error. In our case there are not enough data for calibration. 

A second step in the calibration process is the "history-matching" process. This process has been 

referred to by others as "model verification". A calibrated model uses selected values of 

hydrogeologic parameters, sources and sinks, and boundary conditions to match field conditions 

for selected calibration time periods (either steady-state or transient) . This choice of "calibrated" 

model parameters is referred to as a "realization." However, the choice of the parameter values 

and boundary conditions used in the calibrated model is not unique. There may be an infinite 

number of statistically-similar realizations that give very different predictive model results . History 

matching uses the calibrated model to reproduce a set of historic field conditions, other than those 

used in the initial model-calibration process, in an attempt to reduce the number of realizations 

and variability in simulation results. 

The most common history-matching scenario consists of reproducing an observed change in the 

hydraulic head or solute concentrations over a different time period, typically one that follows the 

calibration time period. The best scenarios for model verification are ones that use the calibrated 

model to simulate the aquifer under stressed conditions. The process of model verification may 

result in the need for further refinement of the model. After the model has successfully reproduced 

measured changes in field conditions for both the calibration and history-matching time periods, it 

is ready for predictive simulations. 

4.2 Sensitivity Analysis 

A sensitivity analysis is the process of varying model input parameters over a reasonable range 

(range of uncertainty in values of model parameters) and observing the relative change in model 

response. Typically, the observed changes in hydraulic head , groundwater flow rate, or 

contaminant transport (migration rate and concentrations) are noted . The purpose of the 

sensitivity analysis is to demonstrate the sensitivity of the model simulations to uncertainty in 

values of model input data. The sensitivity of one model parameter relative to other parameters is 

also demonstrated. Some common parameter estimation programs incorporate a quantitative 

analysis of parameter sensitivity as part of the parameter estimation output. According to 

Anderson and Woesser (1992), the purpose of the sensitivity analysis is to quantify the 

uncertainty in the calibrated models caused by uncertainty in the estimation of aquifer 

parameters. 

A sensitivity analysis may be performed at any point in the model development process. Perhaps 

the greatest utility of a sensitivity analysis is in determining the direction of future data-collection 

activities. Parameters for which the model is relatively sensitive could require additional 

characterization; model-insensitive parameters would not require further field characterization. It 
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IS also useful to conduct a sensitivity analysis during predictive simulations to demonstrate the 

impact of varying pertinent model parameters on the simulation outcome. 

4.3 The SUTRA-Argus Environment 

In this study, the USGS model SUTRA (Voss, 1984) is employed to simulate the groundwater 

conditions The model is used with Argus-One GUI to represent the domain and develop the input 

data Argus-One was also used to view the output of the different simulation runs. The study 

domain was discretized into a number of smaller quadrilateral elements. SUTRA simulates fluid 

movement and the transport of either energy or dissolved substances in subsurface environment. It 

employs a two-dimensional hybrid finite element and integrated finite difference method to 

approximate the governing equations that describe the two interdependent processes: 

1- Fluid density-dependent saturated or unsaturated groundwater flow, and either, 

2- a- Transport of a solute in the groundwater, in which the solute may be subject to 

equilibrium adsorption on the porous matrix, and both first-order and zero order 

production or decay, or 

b- Transport of thermal energy in the groundwater and solid matrix of the aquifer (Voss 

and Provost, 2002) . 

4.3.1 Capabilities and limitations 

SUTRA may be employed for areal and cross-sectional modeling of saturated zone flow and solute 

transport. It can be employed to model natural or man-induced chemical species transport, including 

processes of solute sorption, production and decay. 

SUTRA uses quadrilateral elements in cartesian or radial cylindrical coordinate systems. The mesh 

may be coarsened employing (pinch nodes) in areas where transport is unimportant or considerably 

small Hydraulic conductivities may be anisotropic and may vary both in direction and magnitude 

throughout the system as may other aquifer and fluid properties. The boundary conditions and other 

stresses such as sources and sinks can be time-dependent in the sense that they can vary from one 

time step to the other. One should always notice that SUTRA requires spatial and temporal 

discretization for the simulation of rapid variation either in the piezometric heads or in the 

concentrations. A special reference is made here to the region near the shore boundary where the 

cyclic flow exists and the concentration gradient is relatively high (Voss and Provost, 2002). 

Although SUTRA is mainly developed to simulate two-space dimensions, the thickness of the two­

dimensional region may vary from one point to the other. In other words, the third dimension is 

introduced, while all hydraulic and transport parameters are not allowed to vary in that direction. Fluid 

density may be constant or vary as a function of solute concentration or fluid temperature. SUTRA 

tracks the transport of either solute mass or energy in the flowing groundwater through a unified 

equation which represents the transport of either solute or energy (Voss, 1984). 
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Solute transport is simulated through numerical solution of a solute mass balance equation where 

solute concentration may affect fluid density. The single solute species may be transported 

conservatively, or it may undergo equilibrium sorption (through linear, Freundlich or Langmuir 

isotherms) The solute may be produced or decay through first- or zero-order processes. Dispersion 

processes modeled by SUTRA include diffusion and two types of fluid velocity dependent dispersion. 

The first type is the dispersion process for isotropic media in which direction independent values for 

longitudinal and transversal dispersivities are assumed. The second type is the dispersion process 

for anisotropic media. This process assumes that longitudinal dispersivity varies with the angle 

between the flow direction and principal axis of aquifer permeability when anisotropic conditions exist. 

SUTRA is structured in a modular, top-down programming style that allows for code readability and 

eases any desirable modifications. Fluid pressures and solute concentrations or temperatures at 

each node in the studied domain after each time step are obtained. The velocities are evaluated at 

the centroid of each element (Voss, 1984). 

4.3.2 Organization of SUTRA 

SUTRA (V06902D) is written in ANSI-STANDARD FORTRAN-77 and may be compiled and 

executed under most operating systems and on most computers. Many SUTRA applications require 

considerable array storage and computational effort. These applications must be carried out on 

large, fast scaler machines such as mainframes, minicomputers, work stations and 386-or-better 

microcomputers with math co-processors and at least a few Mbytes of memory, or on vector/array 

processing machines. 

SUTRA package contains 25 files (including one that contains a copy of a text file (SUTRA.DOC). 

The set of files includes: 

(1) SUTRA main routine (MAIN .FOR) , 

(2) 24 SUTRA subroutines contained in three files: a) USUBS.FOR, with two user- programmable 

routines, and b) SUBS1 .FOR and SUBS2.FOR, with all other subroutines, 

(3) two mesh data generation routines (MGENREC.FOR and MGENRAD.FOR) , 

(4) nine input data sets consisting of three data sets required to run each of three examples from the 

SUTRA documentation, 

(5) three output data sets with results from these three examples, 

(6) one routine for calculation of hydrostatic pressure data at specified pressure boundaries 

(PBCGEN. FOR), 

(7) a file for compiling and loading SUTRA problems under 640 K bytes using 

DOS/Microsoft-Fortran-4.0 or 5.0 (MSFOR.BAT), a file for running SUTRA which has been 

compiled under Microsoft Fortran (MSUTRABAT), 

(8) a file for compiling and loading SUTRA problems up to available extended memory size on a 486 

microcomputer using Lahey F77L-EM/32 Fortran 3.0 (L3FOR.BAT), a file for running SUTRA 

which has been compiled under Lahey Fortran (LSUTRA.BAT). 
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(9) a file executable under DOS on PC systems with an 8087/287/387 co-processor that was 

created using the SUTRA routines listed in (1) and (2) , and the Microsoft-Fortran-5.0 system with 

the utility files listed in (7), above (SUTRA.EXE, requires 531 Kbytes) . 

4.3.3. Modeling via SUTRA 

For problems in regional scale the real situation is geometrically simplified to be easier to solve. First 

the simplified domain must be discretized in space and time. 

Discretization: Adequate discretization is vital for two reasons (Voss 1984): 

1. The ability of a model to represent the variations in system parameters and to simulate 

complex processes depends on the fineness of discretization. 

2. The accuracy and stability of the numerical methods used to represent system processes, in 

particular, transport, depends on the spatial and temporal discretization. A better 

discretization is always obtained by making existing discretization finer, but the finer the 

discretizations are, the more computationally expensive the simulations become. The only 

way to explicitly check for inadequate discretization of a system is to simulate with a 

discretization that is assumed to be adequate and then with a significantly finer discretization 

and compare results . If there are no significant differences in the results , then the coarser 

simulation indeed has been adequately discretized. 

Guidelines: For adequate discretization, the following guidelines should be considered: 

1. Nodes are required where boundary conditions and sources are specified . As accurate 

simulation of processes near these specified points to be required , then a finer mesh is 

needed in these areas. 

2. A finer mesh is required where parameters vary faster in space. Thus, finer mesh is required 

at high concentration gradient (near sea side) in saltwater intrusion problems. A rule-of­

thumb is that at least five elements should divide the front in order to guarantee that the 

simulated front width arises from simulated physical processes rather than from spreading 

due to inadequate discretization. 

3. The spatial stability of the numerical approximation of the unified transport equation depends 

on the value of a mesh Peelet number, Pem, given by: 

(4.1) 

where llLL is the local distance between element sides along a streamline of flow. 0 1 is the 

longitudinal dispersivity of the porous medium. Stability is guaranteed in all cases when Pen ~ 

2, which gives a criterion for choosing a maximum allowable element dimension, llLL, along 

the local flow direction . This criterion significantly affects discretization. Spatial stability is 

usually obtained with SUTRA when 

(4.2) 
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A discretization rule-of-thumb for simulation with SUTRA which guarantees spatial stability in 

most cases is: 

(4.3) 

Taken in combination with the considerations of guideline (2) requiring at least five elements 

across a front, the previous rule implies that a minimum front width which may be simulated 

when the mesh is designed according to b.LL. 4 OL is 20 0L . 

4. Discretization for transverse dispersion also may be related to dispersivity. Although an exact 

guideline is not given, the object of transverse discretization is to make the local element 

perpendicular to a streamline small relative to the total transverse dispersivity: 

1 
toLL ~ a T +lVfk s", () w + (1 - £ )(),] (4.4) 

where b.LL is the local element dimension transverse to the flow direction. aT is the 

transverse dispersivity in 2 D [L). V is the magnitude of vector, aw is diffusivity is fluid phase in 

undefined transverse equation, £ is the porosity [ dimensionless] and as is diffusivity is solid 

phase in undefined transverse equation and Sw is the water saturation ( volume of water per 

volume of voids) . In the case where the transverse mixing rather than diffusion dominates 

the transverse dispersion an adequate but stringent rule-of-thumb may be, b.LT < 10 aT. 

5. Radial meshes with a well require very fine discretization near the center axis to 

accommodate the sharply curving pressure distribution. The radial element dimensions may 

increase outward and become constant at, for example, a size of 4 0L. 

6. Discretization in time is done by choosing the size of time steps. The adequacy of temporal 

discretization may be tested only by comparing results of simulations carried out with 

different time step sizes . For saturated flow simulation, temporal discretization begins with 

fine time steps which may become significantly larger as the system response slows. For 

transport simulation , changes in concentration or temperature at a point in a space are often 

due to the movement of fronts with the fluid flow. Therefore, adequate discretization of these 

parameters in time is always related to both fluid velocity and spatial gradients in the 

parameters. The higher the longitudinal spatial gradient and fluid velocity, the smaller the 

time step required for adequate temporal discretization . A general guideline is that relatively 

sharp fronts require time discretization which allows them to move only a fraction of an 

element per time step. Broad fronts with low gradient in concentration or temperature have 

adequate temporal discretization when time steps are chosen to move the front one or more 

elements per step. 

After preparing mesh and choosing adequate discretization, nodes and elements in the mesh must 

be numbered. As SUTRA uses the method of banded matrix for solving equations, careful numbering 

of the nodes is necessary for minimizing the bandwidth which is critical to computational efficiency. 
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4.3.4. Argus-One 

Argus-One is an independent Geographical Information System (GIS) for numerical modeling. Using 

a conceptual model approach, combined with export capabilities, Argus-One can be considered as 

an application development environment for development and deployment of graphical user 

interfaces for numerical models. Argus-One provides a user environment where geospatial (map­

type) information (or coverage) may be synthesized in preparation for use as input to numerical 

models. Like other GIS systems, the various types of geospatial information are stored and viewed in 

coverages or layers which can be viewed and interact with directly from the screen. Export scripting 

of Argus-One enables to export the synthesized information to input files for numerical modeling at 

the exact format the model requires. Combining the export scripting and the conceptual model 

approach, Argus-One offer a model independent environment which enables to use it as a pre­

processor for the model. At the same time, it also enables to interchangeably use geospatial 

coverages with Argus-one. Argus-One is composed of the two main modules. The first is the GIS 

module encompassing information layers (nodal information, boundary conditions, domain out lines, 

and other), data layers (data on grid and interpolation of data), and maps layers (import text, DXF, 

GIS shape fi les and images). The second is the mesh and grid module encompassing finite element 

mesh layers and fin ite difference grid layers. Complex finite element and finite difference meshes can 

be created. 

4.4. Wadi Ham Presentation and Discretization 

The study domain of Wadi Ham aquifer comprises an area of 117.81 km
2 

with a length of 11 .9 km 

east to west (Dam to coast of Oman Gulf) and a length of 9.9 km north to south (Fujairah to 

Kalbha) as shown in Figure 4.1. The study area and the aquifer boundaries were del ineated by 

digitizing the remote sens ing image of Wadi Ham . The model domain includes the Gulf of Oman 

and the oph iolite sequence rock outcrops. The ophiolite outcrops are separated as inactive or 

noflow area. The area of separated outcrop is about 6.56 km
2

. At the coast, many celis are 

located in the sea wh ich is considered to be constant-head cells with a head of 0.0 m (sea level) . 

Ponding area was delineated and marked on the study domain . The total area of ponding zone at 

the flood level is about 0.40 km 2
. Two well fields (Saraah and Kalbha) are identified. The Saraah 

well field is located about 800 m downstream (south-west) of the dam and the other in the Kalbha 

area is about 2.5 km west of the sea coast. Inflow boundaries were also considered as shown in 

the Figure 4.1, at the entry of Wadi Ham upstream of dam, at Wadi AI Hayl and at Wadi Hald in 

which underflow from high lying branches of wadis is encountered . To compensate the inflow to 

the aquifer from upstream area, specified flow boundaries are simulated by using 

injection/recharge wells with positive pumping rates . The Wadi Ham dam is located 8.5 km from 

the coast of Fujairah and the catchment area of the dam is approximately 195 km
2

. The main dam 

is situated at an elevation 75 m above mean sea level with a length of 600 m. The elevation of the 

dam crest is situated at 88.5 m above mean sea level. The height of the dam is 13.5 m. 
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Figure 4.1. Study domain and boundary conditions . 

75 



Data regarding dam storage, rainfall , observation wells, aquifer parameters, and well field 

pumping were assembled. The recharge to the aquifer was assigned through two zones 

corresponding to the recharge from rainfall and from the dam storage for the modeling period . In 

the vicinity of the study area, six rain gauges namely Fujairah , Farfar, Kalbha, Masifi, Bithna and 

Hamraniyah are available. However, in this case only Farfar daily rainfall was considered as it 

better represents the study area when compared to other gauging stations. The rainfall (m/day) 

was assigned on daily basis in the study domain. 

For the modeling purpose, the storage depth has been distributed in space over the ponding area 

(0.40 km
2

) of dam and in time to the total period of storage as m/day. The average period of 

storage for each storage event in the dam is considered approximately 60 days. The model area 

of lower plains of Wadi Ham composed of recent Pleistocene wadi gravels. This layer is underlain 

by the consolidated rocks of the Semail formation (Ophiolitic sequence) . The thickness of wadi 

gravel varies from 15 to 100 m in the upstream side of the dam to the coast. 

For the horizontal simulation, fine finite element mesh with a total number of 27277 quadrilateral 

elements of which 26026 elements were interior and 1251 were located on the boundaries. The 

mesh included 27897 nodes of which 26655 nodes were interior and 1242 were boundary nodes. 

The bandwidth of this grid system was 245. This fine discretization was made to ensure the 

stability of numerical solution and satisfy equations 4.1-4.4. A stress period is defined as a time 

period during which all time-dependent processes such as pumping and recharge are constant. 

Groundwater is exploited intensively from the sand and gravel aquifer for irrigation in the coastal 

plain between Fujairah and Khawr Kalbha. Several well fields are in operation for the domestic 

water supply by the Ministry of Electricity and Water including: 

a. Fujairah well field with a total pumping of 3.2 million m
3
/year until 1988. Very limited 

groundwater extraction was encountered after 1988. 

b. Shaara well field , 2 km downstream of Wadi Ham with a pumping of 1 million m
3
/year 

since 1988. The pumping duration was about 10 hr per day. However, out of the 9 wells 5 

wells were dried up in the year 2003. Discharges of the wells were drastically reduced 

from 1988 to 2003. 

c. New well field with about 60 wells is operated since 1995 near Kalbha. The total draft is 

about 6 million m
3
/year. A number of wells were in operation before 1995. 

To initiate the simulation, SUTRA requires initial assumptions for the groundwater level and solute 

concentration throughout the study domain. Proper initial assumptions for the starting heads and 

concentrations of the simulation can reduce the required simulation time Significantly. Initial head 

values were also used to calculate drawdown values. A stable piezometric surface head and 

concentration values may be obtained by the steady-state simulation. 
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4.5. Calibration of SUTRA 

Based on the availability and continuity of data in the study area, the calibration period was 

selected for 5 yrs from January 1989 to December 1993 (1826 days). A time interval (stress 

period) is defined as a time period during which all time-dependent processes such as pumping 

and recharge are constant and could not be changed by the user. The length of the stress period 

in th is simulation exercise was taken as one real month. 

SUTRA allows to change the time step by a user-defined multiplier to reduce the computational 

time at a later time of simulation when the system approached steady-state conditions. However, 

smaller time steps at the beginning of the simulation would ensure numerical stability. The time 

step multiplier is a factor that can be used to increment the time step size within each stress 

period . A time step multiplier of 1.2 was considered in the calibration period . 

The daily rainfall of Farfar was considered for the calibration period. The rainfall in m/day was 

assigned to the appropriate areas. For the calibration purpose, the ponding area (0.40 km 2
) was 

discretized in to a smaller quad elements to enhance the accuracy of simulation. The average period 

of storage for the each event in the dam is considered approximately 60 days . Evapotranspiration 

of 0.014 m/day and extinction depth of 2 m were considered for the model domain . The area 

occupied by the Gulf of Oman in the model domain was considered as a constant-head boundary 

in the model with head at sea level (0 .0 m) for 1826 days. The most common type of transient 

flow calibration starts the simulation from the calibrated steady-state solution to derive stable 

initial head conditions. However, there is no steady-state situation in the Wadi Ham study area. 

Water levels react almost instantly with great magnitude to rainfall events. Therefore, steady-state 

cal ibration was not performed in this simulation exercise. 

Based on the available geological information , the top layer is gravel and sand and the lower layer 

is ophiolite. The bottom ophiolite layer is impermeable in nature. Therefore one layer model of 

wad i gravel and sand is considered. Figures 4.2 and 4.3 show the contour map surface elevation 

and aquifer bottom in meters with reference to the mean sea level. Groundwater levels during the 

month of December 1988 in all observation wells were considered to initial groundwater levels in 

the study area (Ministry of Agriculture and Fisheries, 1989). The concurrent data of only 8 wells were 

available out of 16 wells that have been considered for the calibration of model from January 

1989 to December 1993. 

The model calibration was achieved by changing three parameters, namely, hydraulic 

conductivity" specific yield and pumping rates . In order to simulate the sudden response for the 

recharge in observation boreholes located in the vicinity of the dam , a rather small specific yield 

was imposed. Abstraction and inflow across the boundaries were also simulated by a number of 

simulation runs till the desirable calculated heads in each observation wells were achieved. 
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Figure 4.2. Ground-surface elevation contour map, meters with reference to seawater intrusion . 
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Figure 4.3. Contour map of aquifer bottom, meters with reference to seawater intrusion. 
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The recharge due to rainfall was also adjusted to ensure that the calculated heads at observation 

pOints are reasonably matching the field measurements. The recharge factor is about 20 percent 

of the rainfall. Although relatively high , the sand and gravel nature of the aquifer system in the 

study area allows for such high recharge. On the other hand, field observations indicated the 

direct effect of rainfall events on groundwater levels. The recharge factor in the ponding area was 

considered as 40 percent of the actual rainfall volume (Sherif et aI. , 2005) . The calibration 

process indicated a hydraulic conductivity in the range of 150-10 mId and a specific yield in the 

range of 0.01- 0.04 . 

The calibration was performed for matching measured groundwater levels in observation wells of 

complete records with corresponding simulated groundwater levels in space and time. Time 

series graphs of simulated versus observed groundwater levels are shown in Figures 4.4-4.6 for 3 

observation wells. As illustrated by these figures , the model simulates the trends and 

groundwater levels resulting from groundwater abstractions and recharge from the reservoir 

storage and rainfall events. However, the limited discrepancies in some of the peak values may 

be attributed to the accuracy of observed groundwater levels as measurements are taken once 

every month and not necessary on the same day of every month . Based on the comparison 

presented in Figures 4.4-4.6, the model is considered to be calibrated for the period January 1989 

to December 1993. It should be noted that no records for salt concentration in groundwater levels 

were available and hence the calibration was conducted for groundwater levels only. 

4.6 Validation of SUTRA 

The validation was carried out for a duration of about 11 yrs from January 1994 to March 2005 for 

a total of 4108 days. The time interval was also taken as one month . The average period of 

storage for the each event in the dam is considered approximately 60 days. Abstraction and 

inflow across the boundaries were also simulated by a number of simulation runs until the 

desirable calculated head in each observation well has been achieved. The pumping rate at 

Saraah well field during the initial period of validation was about 3150 m
3
/day . This rate was 

gradually decreased down to reach 1700 m
3
/day. This represents the closing down of few wells at 

Saraah well field either due to drying up of wells or the deterioration of the water quality. However, 

during the maximum pumping rate , the total volume of abstraction from the well field was 1.150 

MCM which is about the same as the pumping during the year 1988. 

In the Fujairah well field , the draft rate was scaled down from 2250 to 750 m
3
/day during the 

validation period. The pumping from several wells in this field was terminated during this period . 

The well field at Kalbha experienced a significant increase in pumping rate from 4000 to 20000 

m3/day. The number of wells increased significantly after 1995. The present pumping rate is about 

20000 m3/day, which is more or less the same as the pumping rate that was provided by the 

Sharjah Electricity and Water Authority. 
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Figure 4.4 . Observed and simulated hydrographs during the calibration period for BHF-1. 

--Obs ....... Calc 

60 

50 
BBF-9 I 

.-.. 40 E 
'-' 

'"0 
C<I 

30 
Cl,) 

:c 20 
,~.... -

10 -" - " - --~ - .: '" 

0 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 

Time (days) 

Figure 4.5. Observed and simulated hydrographs during the cal ibration period for BHF-9. 
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Figure 4.6. Observed and simulated hydrographs during the calibration period for BHF-15. 
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The observed field hydrograph and simulated hydrographs are presented in Figures 4.7-4.9 for 

three observation wells. Simulated hydrographs of all the observation wells exhibited the same 

trend of observed hydrographs. However, in some cases low and calculated peak head values did 

not match well with the observed heads. This may be attributed to the fact that the exact day of 

recording the groundwater level in the monitoring wells is not known and is not fixed from one 

month to the other Observation wells which are close to the dam are more sensitive to the 

recharge from the pondlng area than the wells situated far away from the dam. This could be 

attnbuted to the low specific yield of the aquifer, storage in the ponding area of the dam and 

extent and confinement of the aquifer. 

The analysis of the time series of storage in the dam and rainfall over the study domain shows 

that the variation in buildup of the groundwater table is much more related to the contribution of 

the rainfall and the storage in the dam rather than the inflow from the upper reach which is 

relatively small. It is also noted that peak values of the simulated groundwater levels are slightly 

shifted from the peak values of the observed levels. This might be attributed to the effect of the 

unsaturated zone which is not considered in this modeling exercise. 
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Figure 4.7. Observed and simulated hydrographs for the validation period (BHF-1) 
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Chapter 5. Steady and Unsteady Simulations of Seawater Intrusion 

5.1 Introduction 

This chapter is devoted to the presentation and discussion of different simulation runs of steady 

and unsteady (transient) conditions of groundwater flow and solute transport in the aquifer of 

Wadi Ham. Simulation runs are conducted in two dimensional horizontal (areal) and two­

dimensional vertical (cross sectional) flow fields. Although the new version of SUTRA can handle 

three dimensional flow fields , it requires comprehensive data and field measurements that may 

not be available In most cases. The lack of three-dimensional data, including among others, 

anisotropic hydraulic conductivities and dispersivities hinders the implementation of three­

dimensional solute transport models except for a limited number of field cases. 

It should also be noted that fully steady-state conditions of solute transport in groundwater 

systems cannot be achieved under most field (natural) conditions. Solute transport steady state 

conditions may require several decades (or even hundreds of years) to be achieved under 

constant boundary conditions and fixed excitations. In other words , seawater level and 

concentration , pumping and recharge activities including rainfall and irrigation practices, and 

inflow and outflow through the different boundaries of the domain under consideration should 

remain constant for several decades during which the steady-state conditions can be achieved. 

Because most of the parameters are not constant with time and cannot be fixed for several 

decades, the flow and solute transport will always remain under transient conditions. 

Steady-state simulations, however, provide the extreme situation of any contamination or 

seawater intrusion problem. Therefore, such simulations would provide an allusion on whether the 

area under investigation might be exposed to groundwater quality deterioration on the long term . 

Steady-state conditions can be simulated in SUTRA either by selecting the steady state option or 

by allowing the transient simulation to continue until achieving the steady state under which the 

changes, between two successive iterations, in groundwater levels and concentrations is very 

small and can thus be neglected. 

Hydrogeological systems are mostly heterogeneous and isotropic. On the other hand , estimation 

of most hydrogeological parameters including, porosity, specific yield , hydraulic conductivity, 

dispersivity and others is based on some measurements that are conducted at specific points. 

The measured values of the different parameters are then interpolated "or generalized" to cover 

the entire study domain. This approximation of parameters involves uncertainties and hence field 

experiences and prior knowledge about the performance and response of the groundwater 

system under different excitations are required to ensure meaningful results. Calibration and 

validation of numerical models ensure that models are capable of representing the system under 

investigation under different flow conditions. Independent sets of data should therefore be used. 
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Because of the limited availability of data, the results presented in this chapter should be 

considered In a qualitative manner rather than quantitative. 

5.2 Areal Simulations 

Areal (horizontal) simulations were conducted to assess the behavior of the Wadi Ham aquifer 

under different pumping scenarios. The effects of changing the hydraulic conductivities and 

disperslvities were also investigated. 

5.2.1 Steady State Simulations 

Three different sets of runs were conducted for areal simulation under steady-state conditions. In 

all runs the hydraulic head at the land side, upstream of the Wadi Ham Dam was set as 45 m 

(amsl) The hydraulic head at the Gulf of Oman was set equal to the seawater level. The hydraulic 

conductivity in the longitudinal direction, Kxx, was set equal to 86.4 mId . In the lateral (transversal) 

direction the hydraulic conductivity, Kyy, was set equal to 8.64 mId . The ration between the 

longitudinal and lateral hydraulic conductivities was set as 10: 1. The longitudinal dispersivity, OL, 

was set equal to 200 m while the transverse dispersivity, 0T, was set equal to 10m. These values 

were set based on initial trials of SUTRA simulations to obtain an adequate concentration 

distribution in the aquifer. The ratio between the longitudinal and transverse dispersivities was set 

as 20:1. Values of the hydraulic conductivities were based on the obtained results from the 

calibration process, while values of the longitudinal and transverse dispersivities were based on 

data found in the literature. The seawater concentration was set as 35 kg/m
3

. The following 

groups of runs were conducted: 

Group 1: Effect of Pumping 

Hydraulic parameters were kept constant. Pumping rate from Khalba well field was changed as: 

Run 1: Total pumping was set as 450 m
3
/d . (Basic Run) 

Run 2: Total pumping was set as 900 m
3
/d . 

Run 3: Total pumping was set as 1800 m
3
/d . 

Run 4: Total pumping was set as 4000 m
3
/d . 

The results of the above four simulation runs are presented in Figures 5.1-5.5 Figure 5.1 

presents the resulting equipotential lines under the steady-state conditions of Run 1, while the 

Figures 5.2-5.5 demonstrate the resulting equiconcentration lines under various pumping 

scenarios. An increase in the pumping from the Khalba well field has a major impact on the 

seawater intrusion in the Wadi Ham aquifer. Under the reduced pumping rate of 450 m
3
/d , 

seawater intrusion was limited to the southern eastern part of the study domain as indicated in 

Figure 5.2. As the pumping increased, the seawater occupied more area. Under scenario 4, the 

seawater occupied about 50% of the study domain . The results indicated that seawater intrusion 

is very much dependent on groundwater pumping from the Khalba well field . 
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Figure 5.1. Equipotential under steady-state conditions (Run 1, Group 1) . 
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Figure 5.2 . Equiconcentration lines under steady-state conditions (Run 1, Group 1). 
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Figure 5.4 . Equiconcentration lines under steady-state conditions (Run 3, Group 1). 
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Figure 5.5, Equiconcentration lines under steady-state conditions (Run 4 , Group 1). 

Group 2: Effect of Longitudinal Hydraulic Conductivity, Kxx 

All hydraulic parameters and the pumping from the Khalba well field were kept constant. Only the 

longitudinal hydraulic conductivity was changed as: 

Run 1: Kxx = 86.4 mId. (Basic Run) 

Run 2: Kxx = 100.0 mId. 

Run 3: Kxx = 120.0 mId. 

Run 4: Kxx = Kyy = 8.64 mId. 

The results of the above four scenarios are presented in Figures 5.6-5.9. It should be noted that 

the lateral hydraulic conductivity, Kyy, was kept unchanged (8.64 mId) . Therefore, the degree of 

anisotropy changed among the four tested scenarios. In the last scenario (Run 4) , the system is 

considered to be isotropic with regard to the hydraulic conductivity, 

Increasing the longitudinal hydraulic conductivity, Kxx, allowed more freshwater to travel from the 

ponding area of the dam toward the seaside. Therefore, the less area was affected by the 

seawater intrusion. However, when Kxx was reduced and set equal to Kyy, the seawater intrusion 

occupied more area as less freshwater was able to move toward the seaside (Figure 5.9) . 
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Figure 5.6. Equiconcentration lines under steady state conditions (Run 1, Group 2). 
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Figure 5.7. Equiconcentration lines under steady state conditions (Run 2, Group 2). 
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Figure 5.B. Equiconcentration lines under steady state conditions (Run 3, Group 2) . 
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Figure 5.9. Equiconcentration lines under steady state conditions (Run 4, Group 2). 
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Group 3: Effect of Dispersivity 

The dispersivity in the area of Wadi Ham has never been measured. Dispersivity accounts for the 

lack of Information about the pore velocity fluctuation when passing from the microscopic to the 

macroscopic configuration of the solid-liquid interface. It measures dispersive properties of the 

system Dispersivlty has traditionally been considered as a characteristic single-valued property of 

the entire medium (Sherif et al. 1988) 

For an IsotropIc medium, the number of non zero components of the dispersivity tensor is 21 . All are 

related to two parameters only, the longitudinal dispersivity, Ol , and the lateral dispersivity, aT. 

Laboratory experiments have shown (Sherif et al. 1990) that Ol is of the order of magnitude of the 

average sand grain size. Transverse or lateral dispersivity aT is estimated as 10 to 20 times smaller 

than 0l. Values between 0.1 and 500 m can be found in the literature. In this study, the basic values 

of the longitudinal dispersivity, Ol, and the lateral dispersivity, aT, were set equal to 200 m and 10m, 

respectively 

In Group 3, all hydraulic parameters and the pumping from the Khalba well field were kept 

constant as for the first two groups. Only the longitudinal and lateral dispersivities were changed 

between among the different runs . 

Run 1: 01 = 200 m, at = 10m. 

Run 2: 01 = 200 m, at = 1 m. 

Run 3: 01 = 100 m, at = 1 m. 

Run 4. 0 1 = 50 m, at = 1 m. 

The resulting equiconcentration lines are given in Figures 5.10-5.13. In scenario 2, where the 

longitudinal dispersivity, 0 1 was kept constant as 200 m, while the transverse dispersivity, at was 

reduced to 1 m, the lateral spread of the seawater intrusion reduced significantly. The impact of 

intrusion was limited to the area in the proximity of the Khalba well field (Figure 5.11). In scenario 

3, where the longitudinal dispersivity 01 was reduced to 100 m, the affected area remained as 

before. However, the width of the dispersion zone (distance between equiconcentration lines 0 

and 34) decreased significantly (Figure 5.12). Reducing the longitudinal dispersivity, ai , to 50 m 

while maintaining the lateral dispersivity, at, at 1 m did not have a tenable impact on the seawater 

intrusion process. 

It should be noted that all the above simulations (presented in Figures 5.1-5.13) were conducted 

under the steady-state conditions. Therefore, the time scale of the seawater intrusion process has 

not be considered. 
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Figure 5.10. Equiconcentration lines under steady-state conditions (Run 1, Group 3) . 
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Figure 5.11 . Equiconcentration lines under steady-state conditions (Run 2, Group 3) . 
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Figure 5.12 . Equiconcentration lines under steady-state conditions (Run 3, Group 3) . 
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Figure 5.13. Equiconcentration lines under steady-state conditions (Run 4, Group 3) . 
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5.2.2 Unsteady-State Simulations 

SUTRA was employed to demonstrate the seawater intrusion process, In areal view, under 

transient cond itions The simulation was conducted with the option of "transient groundwater flow" 

and "transient solute transport." The same hydraulic and hydrogeological parameters that were 

used in the Basic Scenario (Run 1, Group 1) were employed. The maximum allowable simulation 

time was set equal to 10 years . The time step (in seconds) was set as one day with a multiplier of 

1 2 every ten Iterations The maximum allowable time step (in seconds) was set as one month . 

Outputs "NPRINT in SUTRA" were produced every month. This allows to generate maps of 

equipotential and equiconcentration lines every month throughout the simulation period "10 

years " As before, seawater concentration was set as 35 kg/m
3

. 

The resulting equiconcentration lines, after 1, 3, 6, and 12 years of simulation are presented in 

Figures 5.14-5.17, respectively. After one year of simulation, the maximum concentration in the 

study domain was 32 kg/m
3 

(Figure 5.14) and this relatively high concentration was limited to a 

narrow zone along the Gulf of Oman. The concentration decreased rapidly inland. The high 

concentration (10 kg/m
3 

and above) was limited to a zone of about 1 km away from the shore 

boundary. Otherwise, the concentration was relatively low (8 kg 1m
3 

and below) between the Gulf 

of Oman and the Khalba well field . 

After three years of simulation (Figure 5.15), high equiconcentration lines started to migrate 

inland Equiconcentration line 34 kg/m
3 

migrated inland to a distance of about 1 km from the 

shoreline in the direction of the Khalba well field . The red lines (high equiconcentration lines) 

occupied a larger area as compared to the case presented in Figure 5.14. The green and blue 

lines (lOW equiconcentration lines) occupied less area indicating that the width of the dispersion 

zone has decreased. 

The same seawater intrusion pattern continued after 6 years and 10 years of simulation (Figures 

5.16 and 5.17) High equiconcentration lines continued to move inland and the width of the 

dispers ion zone continued to decrease but at a lower rate . The seawater continued to occupy 

more area indicating more deterioration of the groundwater quality. The total affected area has 

also increased. 

Figures 5.14-5.17 reveal that seawater intrusion occurs more rapidly during the early sim ulation 

time and then the rate of intrusion declines over the time. In other words, almost all 

equ iconcentration lines moved faster during the first 3 years of simulation. It is also noted that 

lower equiconcentration tend to move faster as the early stage of simulation , while high 

equiconcentration lines continue to shift for a longer period . The system did not achieve steady­

state cond itions after 10 years . Such conditions might be fully achieved after several decades. 
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Figure 5.14. Equiconcentration lines after 1 year of simulation. 
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Figure 5.15. Equiconcentration lines after 3 years of simulation . 
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Figure 5.16. Equiconcentration lines after 6 years of simulation . 
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Figure 5.17. Equiconcentration lines after 10 years of simulation . 
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5.3 Vertical Simulation 

SUTRA was employed to simulate the seawater intrusion in a vertical cross-section under 

unsteady-state conditions. Thus, a vertical cross section perpendicular to the shoreline and 

running along the main wadi was considered . The geometric shape and the depth of the aquifer 

were deduced from the available surface contour maps (topography) and boreholes. The length 

of the study domain was 9 km and the depth of the aquifer varied from 75 m at the seaside to 

about 25 m at the land side In between , the depth of the aquifer varied based on the available 

boreholes. 

The free water level at the land side was set as 45 m above the sea level. At the seaside, the free 

water level in the aquifer was set at the sea level. The bottom boundary was considered 

Impermeable; i.e., no flow for water or salt ions is allowed. Other hydrogeological parameters 

were considered as given in the basic run (Group 1, Run 1 of the horizontal simulation). 

The resulting equipotential lines after one month of simulation are presented , with an equal 

interval (Figure 5.18) Vertical equipotential lines were encountered in the study domain indicating 

horizontal flow field (horizontal streamlines) . On the other hand, the distance between the 

equ ipotential lines near the land side was less than that near the sea boundary. This indicates a 

steep slope of the water table at the land side and a mild slope of the water table at the seaside. 

This is also very much consistent with the slope of the ground surface. The groundwater flow 

velocities at the landside were relatively high. Equipotential lines (and the velocity field) achieved 

steady-state cond itions within one year and exhibited minor changes after the first month of 

simulation. 

Figure 5.19 shows the equiconcentration lines after one month of simulation. The intrusion was 

limited to a short distance from the sea boundary and the maximum concentration , at the lower 

point of the seaside boundary, was 9 kg/m
3

. The upper part of the seaside boundary remained 

fresh , ind icating that the intrusion starts from the bottom of the aquifer and then moves inward to 

the land side. 

Figures 5.20-5.22 present equiconcentration lines after 1, 5 and 10 years of simUlation . The 

intrusion occupied the full depth of the aquifer as the equipotential lines were mostly vertical. On 

the other hand, the maximum concentration near the seaside was 22 kg/m
3 

after the first year, 30 

kg/m
3 

after 5 years , and 33 kg/m
3 

after 10 years of simulation. Unlike the flow field , the transport 

of salts and the seawater intrusion process did not achieve steady-state conditions even after 10 

years of simulation. 
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Figure 5.18. Equipotential lines after one month of simulation . 
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Figure 5.19. Equiconcentration lines after one month of simulation. 
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Figure 5.20. Equiconcentration lines after one year of simulation . 
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Figure 5.21 . Equiconcentration lines after five years of simulation. 
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Figure 5.22 . Equiconcentration lines after ten years of simulation . 
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Chapter 6. Summary, Conclusions and Recommendations 

6.1 Summary 

The lack of freshwater has already become commonplace around the globe. The growing 

population , rising standard of living, and expanding opportunities exert increasing demands for 

varied needs for water These needs may be domestic, agricultural , industrial , touristic and 

others. By the middle of this century many parts of the world , including those where water is 

plentifully available now, will experience severe water shortages. The problem is more 

pronounced in arid and semi-arid regions where the lack of freshwater constitutes a major 

deterrent to their sustainable development. Despite the severe shortages, water continues to be 

misused, wasted and polluted . This requires, more than ever before, accurate assessment, 

proper development, improved management, efficient utilization , and increased conservation and 

protection of the available freshwater resources . 

The UAE typifies an arid area and has very limited renewable freshwater resources . Currently, its 

main source of freshwater is through desalination which is quite expensive. Brackish groundwater 

IS mainly used for agricultural development. Due to the scarcity and randomness of rainfall , 

surface water resources are quite limited and do not contribute significantly to the water budget 

not only in the UAE but also in other countries located in the Arabian Gulf Peninsula. 

The growth of population in UAE coupled with an increase in human, agricultural, and industrial 

activities has imposed an increasing demand for freshwater. This increase in demand is often 

covered by extensive pumping of fresh groundwater, causing subsequent lowering of the water table 

or piezometric head and upsetting the dynamic balance between the freshwater body and the saline 

water body The classical result of such a development is saltwater intrusion. A two to three percent 

miXing with seawater renders freshwater inadequate for human consumption. A five-percent mixing is 

enough to abandon the use of a freshwater aquifer. 

When dealing with saltwater intrusion problems, two different approaches can be employed. The 

sharp-interface approach and the dispersion zone approach. The basic concept and even the 

governing equations are totally different in the two approaches. Under the sharp-interface approach 

the freshwater and seawater bodies are considered to be immiscible fluids like oil and water. The 

interface is also considered as an impermeable boundary and hence the water and salt ions are not 

allowed to cross this boundary. Under the dispersion-zone approach, the two water bodies mix and 

the density of the mixed fluid varies from that of the seawater near the sea boundary to that of the 

freshwater near the land boundary. The water flow is mainly under the hydraulic gradient and is thus 

governed by the Darcy equation, while the transport of the salt ions is mainly under the concentration 

gradient and is governed by advection, dispersion and adsorption processes. 
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Under the dispersion-zone approach, two different methods can be implemented; the constant­

density and the variable-density methods. In the constant-density method, the density of the fluid in 

the dispersion zone is not affected by changes in fluid concentrations. In the variable-density method, 

the density is related to the fluid concentration using a constitutive equation. This study employed the 

variable-density approach. 

The shape and degree of seawater intrusion in a coastal aquifer depend on many factors . These 

factors are, among others, the type of aquifer (confined, phreatic, leaky, or multi-layer) and its 

geology, water table and/or piezometric head, seawater concentration and density, natural rate of 

flow, capacity and duration of water withdrawal or recharge, rainfall intensities and frequencies, 

physical and geometric characteristics of the aquifer, land use, geometric and hydraulic boundaries, 

tidal effects, variations in barometric pressure, earth tides, earthquakes, and water wave actions. 

Some of these factors are natural and related to the hydraulic and geometric characteristics of the 

hydrogeological system, while others are artificial and related to human activities. The latter can be 

re-planed to reduce the seawater intrusion encroachment. . 

This thesis is devoted to the study of the seawater intrusion problem in Wadi Ham aquifer, 

Fujairah Emirate. The aquifer has been used wisely as a source of freshwater for drinking and 

irrigation purposes for several decades up to the year 1980. Extensive groundwater pumping was 

then initiated to meet increasing agricultural demands. Coincidentally, in 1996, the rainfall (main 

source of groundwater recharge) declined sharply. Groundwater levels dropped and as a result 

many wells were abandoned. Due to the direct hydraulic contact between the freshwater in the 

aquifer and saline water of the Gulf of Oman, the saline water encouraged the aquifer and the quality 

of the groundwater has deteriorated significantly. 

SUTRA Argus-One modeling environment was employed to simulate seawater intrusion in the 

coastal aquifer of Wadi Ham . SUTRA is based on the finite element method and employs the 

dispersion zone (constanUvariable density) approach. Based on the available data, the model was 

calibrated for the a period of 5 years and was then validated for another period of 11 years . Only 

groundwater levels were considered in this calibration/validation process as no records were 

available for the concentration of salts in the groundwater. 

The model was then used to simulate the groundwater flow and seawater intrusion in the Wadi 

Ham aquifer in the horizontal (areal) and vertical (cross sectional) views. For the horizontal 

simulation both steady and unsteady (tranSient) conditions were considered and the effect of 

groundwater pumping, hydraulic conductivity, and dispersivities were considered . In the vertical 

section, the simUlations were conducted under the unsteady-state conditions. Equipotential and 

equiconcentration lines were presented for the different cases. Recommendations are made to 

alleviate the seawater intrusion problem in the Wadi Ham . 
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6.2 Conclusions 

Many countries , including United Arab Emirates, suffer from water shortage problems. Due to the 

lack of other water resources, aquifers have been over exploited to meet increasing demands. 

The dynamic balance between freshwater and seawater has been disturbed and the quality of 

groundwater deteriorated. The situation is exacerbated by recent decline in the rainfall. The 

seventy of the problem varies from one aquifer to another depending on many factors. Excessive 

pumping , regarded as the main factor which accelerates the seawater intrusion process, requires 

urgent attention. 

Based on the current study, the following conclusions are made. 

1 The average annual ra infall in UAE has declined sharply during the last decade. The rainfall 

events are less frequent and drought conditions prevail. In most cases, rainfall intensity and 

duration are not sufficient to generate surface water runoff. This is fully applicable to the study 

area in Wadi Ham. 

2. Due to the lack of recharge from rainfall and the excessive pumping of groundwater to meet 

the increasing agricultural demands in the area of Wadi Ham, groundwater water levels have 

declined significantly and the quality of the groundwater has deteriorated. Many wells have 

therefore been abandoned. 

3. The decline of groundwater levels in the aquifer of Wadi Ham has disturbed the delicate 

balance between the freshwater in the aquifer and the saline water of the Gulf of Oman. The 

aquifer has been exposed to a severe seawater intrusion problem . This has caused further 

deterioration to the quality of the groundwater. 

4. Previous geophysical investigations (Sherif et aI. , 2006) outlined the shape of the dispersion 

zone in different sections parallel to the shoreline. A fence diagram was also established to 

elaborate the change of the saline water zone with the distance from the shoreline. 

5. Information and data about the hydrogeological conditions and groundwater levels in the Wadi 

Ham aquifer are available but not complete. Data on the salinity distribution are mostly 

unavailable. 

6 SUTRA model has been successfully calibrated and validated to simulate historical records of 

groundwater levels in the aquifer of Wadi Ham. The model has not been calibrated to the 

salinity distribution due to lack of relevant data. 
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7 The model has been used to simulate the seawater intrusion in the areal view of the Wadi Ham 

aquifer under steady- and transient-flow conditions For the vertical simulation, the model was 

employed under unsteady conditions. All the results were presented in contour maps of 

equipotential and equiconcentration lines. 

8 The effects of pumping from the Khalba well field , longitudinal hydraulic conductivity and 

dlspersivity on the seawater Intrusion were investigated under steady-state conditions. 

9 The amount of pumping from Khalba well field has the major effect on the overall intrusion 

migration . Reducing groundwater pumping will help to improve the groundwater quality. 

10. Increasing the values of longitudinal hydraulic conductivity allowed more freshwater to travel from 

the pondlng area of the dam Wadi Ham toward the seaside . Therefore, less seawater intrusion was 

encountered. 

11 Reducing the lateral dispersivity from 10 to 1 m limited the impact of seawater intrusion to the area 

in the proximity of the Khalba field . 

12. Vertical simulation scenarios indicated a steep slope of water table near the land side and a mild 

slope near the seaside. Equipotential lines and hence the flow field achieved the steady state 

conditions after one year of simulation while equiconcentration lines and hence the solute transport 

required much more time to achieve semi-steady state conditions. 

13. In the cross-sectional simulation, the resulting equipotential lines were mostly vertical 

indicating that the flow velocities are mostly horizontal. On the other hand, the hydraulic 

gradient near the land side is relatively steep and near the shore boundary is relatively mild. 

14. Due to lack of data and unknown levels of anisotropy and heterogeneity of the porous medium 

in the aquifer, the results should be considered in a qualitative manner rather than quantitative. 

6.3 Recommendations 

The following recommendations are made. 

1. Groundwater pumping should be monitored , controlled and reduced in the coastal aquifers of 

UAE to prevent the possibility of further deterioration of the groundwater quality. Flow meters 

should be fixed to measure the groundwater pumping in all farms . 
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2. Contour maps for groundwater levels should be developed annually to assess the trends and 

revise the pumping policy. Long-term sustainability of the groundwater resources, with specific 

reference, to coastal aquifers, should be ensured. 

3 Drilling of new pumping wells in coastal areas should be fully assessed and reviewed by 

pertinent authorities to ensure that these new wells will not accelerate the seawater intrusion 

process. Location and pumping rates should also be investigated to minimize any possible 

adverse impacts. 

4. A comprehensive Geographical Information Database for the hydrological and hydrogeological 

systems of UAE, encompassing all related data should be developed and be accessible to 

researchers and professionals in the area of water resources development and management. 

This database will also support the decision makers. 

5. A national program for public awareness regarding the importance of groundwater resources in 

UAE and the possible means for water conservation should be launched . This will ensure the 

long-term sustainability of the water resources in the country. 

6. Artificial recharge of groundwater resources should be implemented at a larger scale. Treated 

wastewater and surface water that might be generated from rainfall events should be fully 

utilized to recharge the depleted aquifers. This will help to restore both the levels and quality of 

the groundwater and decelerate the seawater intrusion process. 
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