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ABSTRACT 

The maize zygote normally develops over approximately 45-days into a mature 

embryo comprised of five or six leaf primordia and several root primordia.  The 

developing embryo passes through the proembryo, transition, coleoptilar and stage 1 

(first leaf primordium) morphogenetic stages followed by the iterative formation of 

additional leaf primordia during stages 2 through 6 according to Abbe and Stein (1954).  

Using ethyl methanesulfonate (EMS) treatment of maize pollen from W22 inbreed we 

have produced lethal embryo specific (emb) mutants that have no obvious effects on 

endosperm development except for some reduction in kernel size in some cases.  Thirteen 

emb mutants were selected for further study.  Ten mature kernels that exhibited the emb 

phenotype were dissected for morphological analysis.  Eight of the embryo specific 

mutants had their development blocked at the transition to coleoptilar stage.  One embryo 

specific mutant had its development blocked from the proembryo stage to the coleoptilar 

stage. Two embryo specific mutants were blocked from the coleoptilar stage to stage 1 or 

later. Two embryo specific mutants were blocked from the coleoptilar stage to beyond 

stage 1.  Germination tests of 25 kernels samples containing mutant embryos revealed 

that almost all had zero germination although some did germinate albino seedlings from 

both normal and mutant kernels.  The use of EMS resulted in 30 self-pollinated ears out 

of 238 producing emb phenotype which is a frequency of 12.6%.  The abundance of 

EMS-induced mutations blocked early in embryo development suggest an abundance of 

genes acting during this period to regulate the changing patterns of signaling molecules 
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that underlie the cellular changes occurring during the proembryo and coleoptile stages.  

In order to further understand embryo development, 10 fluorescent protein constructs 

were evaluated in normal developing embryos from the proembryo stage to stage 1.  

Additionally, 11 fluorescent protein constructs were crossed with the emb mutant lines to 

later evaluate how the mutations affect expression patterns as compared to the normal 

embryos.  Two of the constructs involved with auxin transport, PIN1, and auxin inducible 

tissue expression, DR5, were more thoroughly evaluated.  The work performed here is 

foundational to understanding the genes involved in embryogenesis and will aid in 

developing a systems biology for embryogenesis.   
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CHAPTER I 

INTRODUCTION 

Maize  

 Corn or maize (Zea mays) has recently become the most productive crop in the 

world producing more than 1 billion tons of crop in both 2013 and 2014 (Flint-Garcia, 

2017). It is used as food for humans and livestock, as well as for non-edible commodities 

like plastic and ethanol. As the world population increases and climate change effects 

environmental conditions, the need for maize to be able to grow in harsh or new 

environments will also increase (Tigchelaara et al.2018).  In this aspect, maize has a 

history of people selectively breeding it to grow in new environments since its 

domestication in what is now central Mexico.  Early selective breeding from the Natives 

of North and South America allowed for maize to increase its range from what is now 

southern Canada to the southern Chile (Flint-Garcia, 2017; Ramirez-Cabral et al., 2017). 

With the arrival of the Europeans, maize has again expanded its range to every continent, 

except Antarica (Ramirez-Cabral et al. 2017).   

 In addition, the first cultivators of maize are believed to have domesticated maize 

from teosinte although the two plants seem very different (Flint-Garcia, 2017).  

Morphologically teosinte is a plant with many lateral branches each ending with a tassel, 

while maize has one main stock that ends in a tassel, but no lateral branches (Doebley et 

al., 1990).  The ears of teosinte also differ remarkably from maize.  Teosinte ears are 
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smaller, have two ranks of cupules, a single spikelet, hard outer glumes and are able to 

shatter which is to release its kernels. In contrast, maize has four or more ranks of 

cupules, paired spikelet, soft outer glooms, and they are unable to shatter therefore the 

kernels remain on the ear (Doebley, et al.¸1990).  These remarkable changes are thought 

to be the result of a difference in alleles in five master genes, which then affect up to 

1000 other genes (Flint-Garcia, 2017).        

In 2009 the maize genome was reported to be 2.3 gigabase containing around 

32,000 genes in 10 chromosomes (Schnable et al., 2009).    In order to further expand the 

range of growing conditions and environments in which maize can germinate and grow, it 

is imported to understand the function and identity of the genes. The genes involved in 

embryogenesis may aid in this goal, since during embryogenesis in maize the shoot apical 

meristem, root apical meristem, the scutellum and six leaf primordia (Randoph, 1936) are 

produce and form an embryo which is like a miniature plant.  As of now the genes 

involved in embryogenesis are not well known and many of them will need to be 

discovered before a systems biological approach can be established for maize 

embryogenesis.   

This research aims to produce embryo specific (emb) mutants using ethyl 

methanesulphonate in a W22 inbreed.  These mutants are recessive embryo lethal, which 

have little or no effect on endosperm development (Clark and Sheridan, 1991). 

Germination test will be performed to determine germination and kernels will be scored 

to determine single gene mendelian inheritance.  Each embryo specific mutant will have 

the extent of development to both characterize the phenotype generated by the mutation 

and to aid in identifying candidates for alleleism tests.  Identification of alleles will also 
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aid in gene identification in future research. In addition, the emb which was generated in 

a W22 inbred will be crossed into the B73 inbred line for propagation and future analysis 

in gene identification.  Finally, fluorescent protein constructs of 12 proteins involved in 

embryogenesis or meristem development will be evaluated in normal embryos to form a 

baseline set of expression patterns for embryogenesis.  These 12 fluorescent protein 

constructs will also be crossed into the emb lines for future evaluation of the effect the 

mutation has on the expression pattern of each fluorescent protein construct.  

 

Normal Kernel Development 

Double Fertilization 

Zea mays reproduces by double fertilization. The coat of the pollen grain contains 

and produces proteins that are required to penetrate the silk and produce the pollen tube 

(Vollbrecht and Evans, 2017).  The pollen tube penetrates the silks and grows in one of 

two transmitting tracks of the silk, after which the two sperm cells exit the pollen grain 

and enter the pollen tube.  Chemical signals guide the pollen tube growth toward the 

ovary, with the two sperm cells following behind the tip of the growing tube. (Vollbrecht 

and Evans, 2017).  The pollen tube grows between cells in the micropyle and ruptures 

when it enters the embryo sac releasing the two sperm: one of the sperm fuses with the 

egg cell to form the embryo and the second sperm fuses with the two polar nuclei to form 

the primary endosperm nucleus (Kiesselbach, 1949).   
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Proembryo Stage 

Embryo development begins with an asymmetric first cell division of the zygote 

between 28 to 40 hours after fertilization.   The apical cell is smaller, and the basal cell is 

noticeably larger.  This is the beginning of the proembryo stage. These cells go through 

further cell divisions, but the growth patterns and cell shape are irregular; only the 

orientation of smaller cells being apical to the larger basal cells is maintained (Figure 1-

a).  (Kiesselback, 1949; Randoph, 1936).  The apical cells go through more cell divisions 

and become the embryo proper, while the basal cells become the suspensor and with each 

cell division both apical and basal cells are reduced in size. The proembryo stage 

typically proceeds to 8-10 days after pollination (DAP) and develops into a club like 

shape (Figure 1-b) (Randolph, 1936; Sheridan and Clark, 2017).  In the late proembryo 

stage the peripheral cells of the embryo develop both anticlinal and periclinal walls 

allowing for both anticlinal and periclinal cell division.  In contrast, the rest of the cells in 

the embryo are dividing randomly and are small isodiametric cells (Figure1-c).  

(Randolph, 1936; Vernoud, 2005; Sherdian and Clark, 2017).     

Transition Stage 

 The beginning of the transition stage, 10-12 DAP, is marked by the anticlinal 

division of apical cells of the embryo proper advancing down the exterior of the embryo 

toward the suspensor producing an epidermal layer of cells, the protoderm (Randolph, 

1936). Concurrently cells in the subapical area divide and produce cells with cell walls 

that are at right angles to the original embryonic axis. There is a shift from cells 

differentiating on a vertical axis as seen in the proembryo to cells differentiating on an 

oblique axis indicative of the mature embryo (Randolph, 1936).   As the transition stage 
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continues to develop it is marked by the further differentiation of the cells at the anterior 

face of the embryo undergoing rapid division, eventually producing a lateral 

protuberance; These cells have a dense protoplasm and comprise a triangular section of 

meristematic cells that extend into the center of the embryo proper (Figure 1-d; Figure 2-

trans) (Randolph, 1936; Abbe and Stein, 1954).  As a result of the change from random 

division of cells to the development of the triangular meristematic cells extending to the 

anterior face of the embryo, the radial symmetry of the proembryo is changed into a 

bilateral symmetry of the transition stage which is through the midline sagittal plane of 

the embryo (Randolph, 1936; Vernoud, 2005).    In the late transition stage, the 

meristematic cells which were triangular in shape change in polarity to an oblique 

orientation in reference to the embryo’s longitudinal axis (Figure 1-e). The meristematic 

cells form a lateral structure which is the shoot-root axis of differentiation for subsequent 

stages of development (Randolph, 1936; Vernoud, 2005; Sherdian and Clark, 2017).  

While the shoot-root axis is developing, the embryo shows additional upward growth in 

the apical portion of the embryo, lateral growth in the embryo above the suspensor and 

enlargement along the posterior side of the embryo above the suspensor.  The embryo 

morphologically changs from a club like shape to a distorted triangular shape indicative 

of the early coleoptilar stage (Randolph, 1936; Vernoud, 2005).   

Coleoptilar Stage 

The coleoptilar stage, 12-14 DAP, is marked by the meristematic cells dividing 

into an upper anterior portion and lower posterior portion.  The upper anterior portion 

develops into the shoot apical meristem (SAM) and the coleoptile primordium. The 

coleoptile primordium forms on the face of the scutellum above the SAM and nearly 
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encircles it, which is then called the coleoptilar ring.  The lower posterior portion of 

meristematic cells will become the coleorhiza and root apical meristem (RAM).  The 

suspensor has an increase in growth becoming more prominent.  Further growth of the 

apical and dorsal regions differentiates into the scutellum with lateral growth causing the 

scutellum to flatten out. Elongated cells, originating from between the SAM and RAM, 

extend to the scutellum and will become vascular tissue supplying the scutellum (Figure 

1-f; Figure 2-col; Figure 3-a) (Randolph, 1936; Abbe and Stein, 1954; Vernoud, 2005; 

Sheridan and Clark, 2017).   

Stage 1 

The next six stages of development are named for the iterative formation of 

subsequent leaves; six leaves in total (Abbe and Stein, 1954). Figure 2 shows the sagittal 

view and the frontal view of development through the transition stage, coleoptilar stage, 

and Stages 1 through 6. Also, Figure 3 shows the coleoptilar stage and stages 1 through 4 

in a transverse cross section through the SAM.    Stage 1, about 14-18 DAP, is marked by 

the development of the first leaf primordium (Figure 2-1; Figure 3-b). It originates on the 

lower face of the SAM, opposite the coleoptile and diametrically opposite the scutellum.  

The first leaf primordium develops laterally to surround the back of the SAM and is 

encompassed by the coleoptile. The scutellum continues to enlarge as described earlier 

and has developed a scutellar groove in which the embryo protrudes slightly (Randolph, 

1936; Abbe and Stein, 1954).  
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Stage 2 

Stage 2, about 18-22 DAP, starts when the second leaf primordium develops on 

the face of the SAM opposite the first leaf primordium, encircles the SAM and is 

surrounded by both the first leaf primordium and the coleoptile (Figure 2-2; Figure 3-c).  

The coleoptile has almost completely surrounded the leaf primordia and SAM leaving 

only a small pore, termed the coleoptilar stage pore which is visible on the anterior face 

of the embryo.  The scutellum has enlarged further but has rounded out to be more ovate 

when viewing the anterior. The embryo proper when viewed from the anterior is an 

elongated structure that extends from the suspensor to the center of the scutellum and is 

situated in the scutellar groove.  The suspensor stops growing and Randolph states that it 

“persists apparently as a nonfunctional and unimportant part of the maturing embryo” 

(Abbe and Stein, 1954; Randolph, 1936).   

Stage 3 

 Stage 3, 22-28 DAP, the first two leaves continue to grow, and the third leaf 

primordium forms opposite the second leaf primordium increasing the size of the embryo 

proper (Figure 2-Stage 3; Figure 3-d). Three distinct regions can be seen on the anterior 

face of the embryo proper and is even more evident in sagittal sections.    The coleoptile 

is a nearly cylindrical structure at the top of the embryo proper and at its lower region 

there is a coleoptilar node.  Below the coleoptilar node is the scutellar node, which is a 

flatter structure and is directly connected to the scutellum. The coleorhiza, a nearly 

cylindrical structure, is directly below the scutellar node and in cross section the RAM is 

clearly recognizable.  In the frontal view, the edge of the scuteller groove borders the 

embryonic axis (Abbe and Stein, 1954).  
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Stage 4 

Stage 4, 28-37 DAP, is marked by the development of the fourth leaf primordium, 

with the embryo proper extending closer to the top of the scutellum (Figure 2-4; Figure 3-

e).  The scutellum appears elliptical to ovate in shape as viewed anteriorly and the edges 

of the scutellar groove have encroached onto the embryo proper from both sides near the 

scutellar node region.  Both the coleoptile and coleorhiza are flatter on the anterior face.  

The mesocotyl is now visible between the coleoptilar node and the scutellar node.   

Stage 5 and Stage 6 

Stage five (37-50 DAP), and stage six, (beyond 51 DAP) develop their additional 

leaf primordia and slightly increase in size, but no new structures develop.  However, the 

edge of the scutellar groove has further encroached onto he embryonic axis but does not 

cover the very top portion and the very bottom portion. (Figure 2-5 and 2-6) (Abbe and 

Stein, 1954).    

 

Defective Kernel Research 

Early Defective Maize Kernel Research 

Defective maize kernels have been reported by investigators since the first years 

of maize research.  D.G. Jones (1920) reported on defective maize kernels he observed 

which he termed defective seeds.  Three years later M.Demeric (1923) reported on 

defective maize kernels which he termed germless seeds. P.C. Manglesdorf (1923) 
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reported on defective maize kernels, which he believed were the same type as reported by 

D.G. Jones and referred to them as defective seeds.  

In 1926, Manglesdorf also assembled a more comprehensive report in which he 

stated that many scientists have reported seeds with defects since the Jones report and 

mentioned that each report used a different term to describe these defective seed 

(Mangelsdorf, 1926). The mutations that he was reporting on appeared in a variety of 

inbred lines. One line produced four defective kernel phenotypes. The first two occurred 

after 13 generations of inbreeding in two sister strains and then again four generations 

later, from a third sister strain, two more defective kernel mutants appeared.  These 

observations lead Mangelsdorf to conclude that “germinal changes do occur” in maize as 

has been reported in Drosophila (Mangelsdorf, 1926).    The report focused on 14 

defective seed mutants whose phenotypes segregated as a ratio of 3 normal:1 mutant; 

indicating a single gene recessive genotype.  These mutants were designated “de” with a 

subscript number 1-14; the higher numbers showing a more severe defective phenotype.   

His discussion noted that the pericarp and nucellus didn’t show any developmental 

problems, which is due to its maternal origins. Both endosperm and starch grain 

formation showed a decreased mass and slowed formation in those seeds with a more 

severe defective phenotype (de14) than those of the less severe defective phenotypes 

(de1).  The aleurone layer only formed in the defective seed mutants ranging from de1 to 

de10, but not those ranging from de11 to de15.  Embryo development was correlated with 

the endosperm development. The more severely defective seeds (de14) showed hardly any 

embryo development, while those less severe defective seeds (de1) showed development 

of the coleoptile, scutellum, and primordial leaf formations, but also abnormal growth.  
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The one exception being de4, which didn’t have an embryo and Mangelsdorf considered 

it akin to Demerec’s “germless” seeds (Demeric, 1923; Mangelsdorf, 1926).  In one 

experiment to determine the rate of growth and overall seed weight of the defective seeds 

compared to normal seeds, Mangelsdorf crossed the defective seed inbred lines with a 

different “unrelated stock”.  Mangelsdorf noted that morphology of some of the defective 

seeds was changed and in one case, de2, to such a degree as to be unrecognizable.  In 

Mangelsdorf’s report the defective seed mutants included those that didn’t germinate and 

those that did germinate, it wouldn’t be Neuffer and Sheridan (1980), and Sheridan and 

Neuffer (1980) that the defective seed phenotypes would be categorized more 

specifically.  

The First Large Screening for Defective Kernel Mutants 

The reports of Neuffer and Sheridan were centered around what they termed 

“defective kernel” mutants which they stated were the same type as those reported by 

Jones (1920) and Mangelsdorf (1923,1926). Defective kernel mutant is a more 

generalized term that includes kernels whose embryo and endosperm are affected.  Both 

dominant (eight kernels) and recessive (855 kernels) kernel mutants were found in their 

mutant populations, but they reported on the recessive kernel mutants in these reports 

(Neuffer and Sheridan,1980).  The defective kernel mutants are then divided into 4 types: 

• Type 1-both endosperm and embryo are affected, and embryo is not 

viable: 646 mutants 

• Type 2- both endosperm and embryo are affected, but embryo is viable 

which produces a seedling with a mutant phenotype. Most of these died as 
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seedlings and included phenotypes of white, yellow and yellow-green 

plants among other types.  A few gree to maturity: 59 mutants  

• Type 3- the endosperm is only affected and therefor produces a normal 

seedling. Many of these were allelic to known mutants: 147 mutants 

• Type 4- the embryo is only affected and expressed as germless kernels. 

These kernels were mostly found in the progeny of some of the 855 

receive mutants which had already been classified as type 1, 2 or 3; with 

only three found in the original 855. 

The defective kernel mutants were generated by treating pollen with ethyl 

methanesulfonate (EMS) and applying the pollen to the silks of normal ears.  The 

subsequent kernels were planted and both the 3461 plants and 3172 selfed ears that were 

produced were screened for heritable changes. Recessive kernel mutants accounted for 

855 of 2457 recessive mutants found on the selfed ears. All mutants were labeled with the 

capital letter “E” followed by a number, starting with 1.  Any additional mutants that 

appeared in subsequent generations were labeled with the addition of a letter “A”, “B”, 

and so forth (Neuffer and Sheridan, 1980).   

A chromosome mapping experiment was performed for 396 kernel mutants using 

18 B-A translocations, all except 7S and 8S, which allowed for coverage of 85% of the 

genome.  They were able to find the chromosome location for 165 mutants, which were 

located on all arms except 6S (Neuffer and Sheridan, 1980). These results indicated that 

genes for defective kernel mutants are scattered throughout the genome.   

A subset of 19 mutants were then evaluated for endosperm-embryo interactions, 

using materials which contained both the B-A translocation and the defective kernel 
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mutants.  Three types of kernels were produced by selfing the plants: hypoploid mutant 

embryo/hyperploid nonmutant endosperm; hyperploid nonmutant embryos/hypoploid 

mutant endosperm; and normal embryo/ normal endosperm. They determined that those 

kernels with mutant endosperm and nonmutant embryos produced normal seedlings 

except for two cases; E1122a and E1315A. This indicated that for most of these cases the 

mutant endosperm does not affect the nonmutant embryo.  The nonmutant embryo did 

affect the mutant endosperm in 10 cases: 3 nonmutant embryos helped the mutant 

endosperm; and 7 depleted the mutant endosperm.  In those cases with a mutant embryo 

and normal endosperm, 14 of the 19 indicated that the normal endosperm did not help the 

mutant embryo.  The remaining 5 helped the embryo develop a visually normal 

phenotype, although the subsequent growth was only normal in two mutants, one of 

which developed normal in the concordant mutant (Neuffer and Sheridan, 1980). 

Information including kernel phenotype, viability or seedling phenotype, and 

chromosome arm location was reported for 196 kernel mutants, which included two 

proline-1 mutants (Neuffer and Sheridan, 1980).  In Sheridan and Neuffer (1980), 150 of 

those mutants which had “easily distinguishable defective endosperms, displayed 

segregation patterns on mature ears, and had nonviable embryos or lethal seedling 

phenotypes in their original genetic background.” were further studied in morphological 

and embryo culture experiments. 

The morphological analysis included timing of mutant expression, phenotype of 

the immature kernel mutants, phenotype of immature mutant embryos, and developmental 

stage of immature mutant embryos.  As with Mangeldorf’s observations, the mutant 

kernels lagged behind in development compared to the normal kernels.  It was noted that 
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embryo development was further behind than endosperm development.  The data 

presented was relative to the endosperm development and showed that as early as 11 days 

after pollination (DAP) some mutants were noticeably behind in development; by 17 

DAP all but 127 of the 150 embryos showed developmental retardation.   These mutants 

showing an earlier delay in development had common phenotypic appearance and were 

described as “being smaller, lighter colored and more translucent in appearance” than 

normal kernels of the same ear.  The later developing kernel were closer to normal 

kernels in phenotype and consisted of two general types: A collapsed mature kernel 

phenotype that had a swollen appearance but lacked a solid endosperm; and kernels 

whose endosperm were smaller, but solid and appeared either colorless or pigmented 

(Sheridan and Neuffer, 1980). The immature embryos were analyzed by comparing 

normal embryo weight to mutant embryo weight which resulted in an average mutant 

embryo weight of 27% of normal embryos.   Also, most of the mutant embryos were less 

than 2/3 the size of the normal embryos.   

The development stage reached by 106 of the immature mutant embryos was 

presented and evaluated using Abbe and Stein’s standard (Abbe and Stein, 1954; 

Sheridan and Neuffer, 1980).  The results had 13 in early proembryo stage or unknown, 

three transition stage, four coleoptilar stage, 27 Stage 1, 30 Stage 2, 26 Stage 3, and three 

Stage 4 or later.  Additional histological studies confirmed that 20 of the mutant embryos 

were either blocked in development before stage 1 or degenerated.  The other 130 mutant 

embryos developed to stage 1 and later.  Even though these mutants develop to stage1 

and later, most of the mutant kernels are lethal.  This prompted additional research in 

which 102 of the mutants that developed to stage1 were cultured to determine if they are 
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autotrophs and could be rescued (Sheridan and Neuffer, 1980).  The embryos from these 

mutants were grown on either basal medium, enriched medium, basal medium lacking 

ammonium nitrate or enriched medium lacking ammonium nitrate. The basal medium 

was made using 4% sucrose, .08% agar and mineral salts of Murashige and Skoog (1962) 

which included ammonium nitrate.  The enriched medium was made by adding 20 amino 

acids, eight vitamins, and six nucleic acid bases to the basal meduium.   Twenty-one of 

the mutants showed little to no growth on any medium.  The remaining kernels grew into 

small plants less than 5cm tall or larger plants greater than 5cm with 60% of the 102 

kernel mutants producing plants over 5cm. Since many of these mutants are lethal under 

normal growing conditions, it was stated that loss of viability must happen during the 

later stages of development (Sheridan and Neuffer, 1980). In evaluating the response of 

each mutant growing in different media, there were four general results: 1) those plants 

that grew better on enriched medium compared to basal medium;  2) those plants that 

grew significantly better in basal medium, compared to enriched medium, must be 

sensitive to the additives that inhibited growth; 3)those plants that grew better in basal 

medium and enriched medium which were free of ammonium nitrate, therefore must be 

sensitive to the ammonium nitrate; 4) and those that grew best only on basal medium 

with no ammonium nitrate; which they believed must need a significant lower amount of 

nitrate to keep from becoming toxic (Sheridan and Neuffer,1980).  

These results indicated that ten of the defective kernel mutants could possibly be 

auxotrophs.  Nine grew best on enriched medium with ammonium nitrate and one on 

enriched medium with no ammonium nitrate.  One of these ten, E1121, was discovered to 

be allelic to a proline-requiring mutant pro-1(Sheridan and Neuffer, 1980).   
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Reports for Select Defective Kernel Mutants 

The developmental profiles of the defective kernel mutants were further 

elucidated in several follow up papers (Clark and Sheridan, 1986; Sheridan and 

Thornstenson, 1986; Clark and Sheridan, 1988).   The embryo mutants E1113A and 

E1428 were designated dek22 and dek23, respectively.  Each of these defective kernel 

mutants were examined at 4, 8, 10, 12, 16, 25, and 37 DAP; and at maturity by sectioning 

the kernels into 15 micron thick sections.  Development was blocked at transition stage 

for dek22 and at an abnormal coleoptilar stage for dek23. It was reported that the mutants 

lagged behind normal kernel development with embryo development exhibiting a more 

prominent lag than endosperm development.  It was observed that the embryo is retarded 

in growth as early as 8 DAP for dek22 and 12DAP for dek23.  The dek22 mutant develop 

to the transition stage by 16DAP and remains there with further development limited to 

the enlargement of cells and vacuolization. The dek23 mutant develops to an abnormal 

coleoptilar stage at 12DAP although there is no shoot apical meristem or coleoptilar ring; 

but both the scutellum and root apical meristem continue to proliferate up to maturity. 

Necrosis of at the site of the SAM is also observed in dek23 at 12DAP and “spread, more 

or less, throughout the embryo” (Clark and Sheridan, 1986).   The endosperm of dek22 is 

severely collapsed in contrast to dek23, which maintained an abundant endosperm with a 

collapsed crown.  

 In experiments using kernels with mutant embryos for either dek22 or dek23 with 

genetically normal endosperms, termed nonconcordant, both dek22 and dek23 embryos of 

nonconcordant kernel displayed identical morphology to that of the concordant dek22 and 

dek23 embryos. This indicated that both mutated genes were not dependent on any 
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interaction with the endosperm to produce the mutant embryo phenotype (Clark and 

Sheridan, 1986).  

Additional research with the embryo lethal mutants bno*-747B, ptd*-1130, cp*-

1418, and rgh*-1210, which fail to produce leaf primordia, and fl*-1253B, which does 

produce leaf primordia (Sheridan and Thornstenson, 1986; Clark and Sheridan, 1988) 

supported and expanded the information obtained from the studies of dek22 and dek23.  

All of these mutations affect both the embryo and endosperm, with the embryo retarded 

in development earlier than the endosperm.  Development is blocked in transition stage 

for ptd*-1130, cp*-1418, rgh*-1210, while bno*-747B is blocked during coleoptilar stage 

and fl*-1253B is variably blocked from coleoptilar stage to stage 2. Similar to dek22 cells 

enlarge and vacuolize in ptd*-1130, bno*-747B, and rgh*-1210 as the kernels mature, 

however cp*-1418 and fl*-1253B show no abnormal cell enlargement like dek23.  

Necrosis was observed in ptd*-1130, rgh*-1210, and fl*-1253B which was also seen in 

dek23.  In contrast to dek22 and dek23, irregular cell growth in both the aleurone and 

embryo is seen in rgh*-1210, fl*-1253B, ptd*-1130, and bno*-747B (Sheridan and 

Thornstenson, 1986; Clark and Sheridan, 1988).  

The Second Large Screening for Defective Kernel Mutants 

Identification of more dek mutants was reported by Scanlon et al. (1994) isolating 

63 mutations from a Mutator stock that was produced by 1978 (Robertson, 1978).  They 

observed many different phenotypes, but specifically mentioned two types which were 

more common than most: those with reduced endosperm size (ren) and those with an 

empty pericarp (emp). The ren mutants almost always contained a small embryo, but the 

emp mutants usually didn’t contain an embryo (Scanlon et al., 1994). As with previous 
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studies, chromosome arm location was performed with B-A translocations, but also with 

the waxy-marked translocations or by allelism testing with other mapped mutants with 

similar phenotypes.  A total of 53 of the 63 mutants were mapped to 15 out of the 20 

chromosome arms.  

 The allelism tests also included testing those mutants that were mapped to the 

same chromosome arm with each other and with previously identified dek mutants that 

were mapped to the same arm. Alleles for already known mutants were found, along with 

alleles for new dek loci within the 63 mutations; 20 mutations with two or more alleles in 

all (Scanlon et al., 1994).  Alleles of several mutations showed phenotypic variations.  

The alleles for the gene brn1 designated brn1-R and brn1-307 displayed both variation in 

kernel phenotype and germination. The alleles for dek25 designated dek25-R, dek-1566 

are homozygous lethal, but dek25-2410 displayed 10% germination which were seedling 

lethal.  All three alleles for dek25 showed the same kernel phenotype.  The alleles for 

dek5 showed differences in inheritance and alleles for su1 displayed more wrinkling and 

translucence in the kernel (Scanlon et al., 1994).    

Current Defective Kernel Mutant Gene Identification 

The generation of dek mutants from EMS, and Mutator-transposons discussed 

above along with other studies produced materials to further understand dek mutants.  

Finding the gene’s location was greatly helped by the use of the Mutator stocks, since the 

DNA sequence of these transposons is known and genes that have been found are 

exclusively from these types of stocks.  A majority of the reports presented below on dek 

mutants indicate that most of the dek mutants examined are in nuclear genes which code 
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for proteins that are similar in function and are involved with the mitochondria, and 

possibly plastids.  

The dek1 mutant, which is active in aleurone development and embryonic axial 

pattern formation, was found to code for 2,159 amino acid (a.a.) protein (Becraft, 2002; 

Lid, 2002).  The protein contains an extracellular loop, 21 transmembrane regions and a 

cysteine proteinase domain that shares high homology with domain II and domain III of 

m-calpain. The calpain superfamily is found mainly in animals and dek1 is the only 

known calpain gene in plants. These genes are cytosolic enzymes, which are activated by 

Ca2+ and are part of signal transduction pathways (Lid, 2002).  

The mutant emp6 affects the basal endosperm transfer layer and arrests embryo 

development at late transition to early coleoptilar stage (Chettoor et al., 2015).  The gene 

codes for 408 amino acids. that is a putative plant organelle RNA recognition (PORR) 

protein that is targeted to the mitochondria.  The PORR proteins bind to organellar RNA 

and function in regulation or processing (Chettoor et al., 2015).  

The pentatricopeptide repeat (PPR) family is highly represented in dek mutants.  

It is one of the largest families of proteins in plants and is characterized by multiple 

repeats of a degenerate 35-amino acid motif with hydrophobic and hydrophilic residues 

(Small and Peeters, 2000; Hottori et al., 2004). These proteins are involved in regulation 

of posttranscriptional processes in organelles (Lurin et al., 2004).  Each of the PPR 

proteins which were identified because of dek mutants and briefly described in the 

following paragraph are targeted to the mitochondria and abolish the C to U editing at 

specific sites of the target RNA transcripts (Guitierrea-Marcos et al., 2007;  Liu et al., 
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2013; Li et al., 2014; Sun et al., 2015; Xiu et al., 2016; Qi et al., 2017; Chen et al., 2017; 

Yang et al., 2017). 

 One of the first described is empty pericarp4 which was localized to the 

mitochondria.  It appears to regulate a subset of mitochondria genes, since microarray 

and RNA gel blots reveal low transcript levels compared to wildtype (Guitierrea-Marcos 

et al., 2007). The dek mutant emp5, which is blocked in development in the transition 

stage, encodes for a protein that edits mitochondrial gene transcripts at10 sites in four 

genes: nad9(complex I), cox3(complex IV), rpl16 and rps12(both ribosomal proteins) 

(Liu et al., 2013).   A dek mutant small kernel 1, which is blocked in development from 

the coleoptilar stage  to Stage 1, encodes a protein that edits the nad7 RNA, which is a 

subunit of NADH dehydrogenase complex I in mitochondria (Li et al., 2014).  Another 

mutant emp7, blocked in development in the transition stage, fails to edit the ccmFN 

transcript which encodes for a subunit of cytochrome c synthetase in the mitochondria. 

This results in defects in the assembly of complex III (Sun et al., 2015).  The emp16 

mutants are blocked at the transition stage and fail in cis-splicing the mitochondrial nad2 

intron 4.  This results in an inability of complex I to assemble (Xiu et al., 2016).  The 

dek2 mutant results in a reduced splicing efficiency of nad1 intron 1; this results in a 

“functional reduction of complex I” (Qi et al., 2017).  The dek35 mutant affects the 

splicing of RNA for nad4, which is a subunit in complex I NADH dehydrogenase.  

Additionally, NAD7 was also decreased in dek35 mutant embryos (Chen et al., 2017). 

The defective kernel mutant, emp9, affects the RNA editing of ccmB-43 which is a 

“component of the ATP-binding cassette transporter and essential for cytochrome c 

maturation.” (Yang et al., 2017). The 30S ribosomal subunit is also affected since rps4-
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335 is not properly spliced in emp9 mutants. Therefore, emp9 mutants show a disruption 

in complex III, along with lesser effects on complex I and V (Yang et al., 2017).  

 

Embryo Specific Mutants 

First Screening for Embryo Specific Mutants 

 A group of mutations effecting maize kernels in which the endosperm is normal, 

but the embryo is stopped in development is named embryo-specific mutants (emb). Since 

these mutations only effect the embryo, they are in genes that may be essential for 

embryogenesis (Clark and Sheridan, 1991). The first major study to examine emb 

mutations reported on 51 mutants which were found in the Robertson’s Mutator stock 

(Clark and Sheridan, 1991; Sheridan and Clark, 1993).  

 The 51 emb mutants were tested for segregation ratios, lethality, chromosome arm 

location, and developmental profiles. The segregation ratios were reported to range from 

19% to 29% for 37 of the mutants, which are not significantly different from the expected 

3:1 ratio for one gene mendelian inheritance. The other 12 showed significantly lower 

segregation ratios with reductions ranging from 10% to 18%; two embs were not tested.  

The use of B-A translocations stocks uncovered the chromosome arm location for 25 out 

of the 45 embs tested, however the B-A translocation stocks only represented 40% of the 

genome (Clark and Sheridan, 1991).  The lethality of the embs was determined through 

germination tests, between 25 to 100 kernel mutants for each mutant, which resulted in 

just seven of the mutants able to germinate at high enough frequency to not be considered 

embryonic lethal (Clark and Sheridan, 1991; Sheridan and Clark, 1993).  The 



  

21 

 

development profiles of all 51 emb mutants were categorized into three groups based on 

major developmental events previously discussed: proembryo-transition, 11 mutants; late 

transition-stage 1, 29 mutants; and stage 2-stage 6, 10 mutants (Clark and Sheridan, 1991; 

Sheridan and Clark, 1993).   

 Clark and Sheridan concluded that the emb phenotype can be produced by many 

loci.  This is because the mutation frequency was relatively high with a mutation rate of 

51 out of 1000 gametes tested. The B-A chromosome tests indicate that the loci are 

throughout the genome. The variety of the mutants being blocked at stages from 

proembryo to Stage 6 point to a large group of genes associated with the emb phenotype.  

Clark and Sheridan also concluded that the emb loci are essential for embryo 

development because the embs were arrested in development before maturity and because 

of the embs failure to germinate (Clark and Sheridan, 1991; Sheridan and Clark, 1993).  

 Clark and Sheridan reported that the emb loci are fundamentally involved in 

morphogenesis.  The 51 emb mutants displayed a variety of morphology, which indicate 

a range of developmental events.   Those 10 emb mutants blocked in the pro-embryo to 

transition stage are likely involved in pattern formations affecting the “setting a part of 

the embryo proper and suspensor” and seven of 10 emb mutants failed to develop an 

embryo proper or were necrotic. These mutations may be in genes responsible for the 

change to asymmetric cell division of the proembryo at either: the first transverse cell 

division of the zygote; or the cell divisions which produce the embryo proper and 

suspensor (Sheridan and Clark, 1993).  The 28 emb mutants blocked at the late transition 

to stage 1 may be involved in embryonic axis formation.  Three of the mutants had the 

SAM or the coleoptile appear in a different location.  Eleven of them blocked SAM 
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formation, but still produced a scutellum (Sheridan and Clark, 1993). The 13 emb mutant 

embryos classified as being in the stage 2 to stage 6 group developed an embryonic axis.  

However, there was a variety of phenotypes of embryonic axis and scutellum formation 

(Sheridan and Clark, 1993).    

Although these mutations were categorized into three developmental groups, the 

data presented indicate a more complex situation.  Among the three developmental 

groups studied, 15 emb mutations had individual embryos with earlier or later stage of 

development than their group classification and only 14 out of the 51 emb mutations were 

blocked at a single stage of development as described by Abbe and Stein (1954).   Also, 

scutellum formation was affected by many of the mutations in all stages of development 

with misshapen scutellum or abnormal cell proliferations, and two even displayed a 

reduced scutellum size. There were two mutations affecting the coleoptile: one in an 

abnormal location and the other it’s elongation (Clark and Sheridan, 1991; Sheridan and 

Clark, 1993). 

Reports for Select Defective Kernel Mutants 

In order to better understand the emb mutants a further study was undertaken to 

better classify five out of the 51 emb mutants: emb-8516, emb-8522, emb-8535, emb-

8543, and emb-8547 (Heckel et al., 1999).    Each of these mutants are blocked in 

development before the coleoptilar stage and may be in genes involved with pattern 

formation of the embryo. All five emb mutants were tested and found to be non-allelic 

through a combination of complementation tests and B-A chromosome tests. 

Developmental profiles were taken at 9DAP and 16DAP as opposed to at maturity, as 

reported earlier. The development profiles were performed on 20 kernels from five sister 
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plants for each mutant and they reported that the phenotype was homogenous between 

kernels from the same ear and between sister plants (Heckel et al., 1999).  

The two mutants, emb-8543 and emb8547, resemble wild-type embryos which 

have stopped in development at the pro-embryo stage for both 9 DAP and 16 DAP, in 

contrast to transition stage at maturity (Clark and Sheridan, 1991; Heckel et al., 1999).  

However, it was noted that emb-8547 may be a different mutation, since the phenotype is 

slightly different from those reported by Clark and Sheridan (1991). Also, the B-A 

chromosome tests for chromosome arm location give different results, 4L in the 1991 

report and 6L in the 1999 report.  

The mutants emb-8522, emb-8535, and emb-8516 displayed abnormal 

development which didn’t resemble development of normal embryos.  It was reported 

that at maturity emb-8522 was blocked at mid-transition stage, emb-8535 was blocked 

from late proembryo to early coleoptilar stage, and emb-8516 was blocked at proembryo 

to early transition stage (Clark and Sheridan, 1991; Sheridan and Clark, 1993).   

Cytological sections revealed that both emb-8522 and emb-8535 cells showed no 

differentiation into an embryo proper and suspensor, but rather resembled a tubular 

structure (Heckel et al., 1999). The cells were large and didn’t resemble either cells of the 

embryo proper or suspensor, implying that neither cell type is a default in development. 

These emb mutations may be in genes which are involved in the formation of the embryo 

proper and suspensor.   The emb-8516 was initially described as being blocked at 

proembryo to early transition stage with occurrences of necrosis in the embryo proper at 

maturity (Sheridan and Clark, 1993).  At 9DAP and 16 DAP it was observed that two 
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embryo-like structures were developing from the suspensor.  This may indicate that this 

gene is involved in suspensor identity (Heckel et al., 1999).  

  Four of the 51 emb mutants were phenotypically analyzed using confocal 

microscopy: emb-8518, emb-8521, emb-8537, and emb-8542. Additionally, three 

fluorescent protein expression patterns were analyzed in these mutants: Lipid transfer 

protein 2(LTP2), Zea mays Outer Cell layer 1(ZmOCL1), and Knotted 1(Kn1). LTP2 is a 

protoderm marker, ZmOCL1 is a epidermal marker, and Kn1 is a SAM marker (Elster al., 

2000).   Two of the mutants arrested development in the proembryo to transition stage, 

emb-8521 and emb-8518.  This is evident by the lack of expression of Kn1 in either of the 

embs.  In emb-8521 development stopped in the pro-embryo stage and cell growth has 

restricted to apical-basal division. The protodermal layer was not fully established and 

LPT2 expression was present in some cells, which looked morphologically like 

protoderm cells.  Additionally, large cells protruded into the protodermal layer. (Elster 

al., 2000) In emb-8518 expression of LPT2 is seen in all cells of the protoderm layer and 

no protrusions of large cells into the layer is present.  This indicates that emb-8518 is 

further along in development than emb-8521.  Expression of ZmOCL1 is normally seen in 

all cells of the embryo proper in early embryo development and becomes restricted to the 

L1 layer during the transition stage.  In both emb-8521 and emb-8518, the ZmOCL1 

expression is present throughout the embryo proper.  These results indicated that radial 

patterning may be dependent on two steps; the first involving expression of LTP2 in the 

protoderm and the second involving ZmOCL1 expression being lost in the embryo proper 

cells except the protoderm layer (Elster al., 2000). 
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 The other two mutants, emb-8537 and emb-8542, developed to the coleoptilar 

stage or later.  They both showed a restriction of expression for ZmOCL1 to the 

protoderm layer that continued as the transition stage embryo transitioned into the 

coleoptilar stage.  During this transition, radial symmetry changes to a bilateral symmetry 

(Elster al., 2000).   Both embs also show expression for Kn1 at the correct position in the 

embryo, but the cells have “lost some meristematic character” (Elster et al., 2000). Since 

these mutants also fail to germinate, it is evident that the SAM is not fully developed in 

these mutants (Elster et al., 2000). In reference to emb-8537 it was shown that if a SAM 

develops, true leaves can develop absent of a coleoptile, indicating that coleoptilar stage 

development may be separate from SAM development. Additionally, in emb-8537 LTP2 

is expressed in the coleoptile and scutellum outer layer, but not the L1 layer of the SAM 

and leaf primordia which may indicate that the coleoptile is an appendix of the scutellum 

(Elster et al., 2000).   

  Another study analyzed four emb mutants of which two were found to be allelic 

and all of them were blocked at late proembryo stage or transition stage.  The allelic pair 

emb-7191 and emb 7917 were renamed emb-7919-1 and emb-7919-2, respectively; and 

only one allele was used in each of the follow up experiments.  All of the embs failed to 

form a embryonic axis or scutellum, and had a radial symmetry (Consonni et al., 2003). 

The embs were observed to have abnormal cell growth at 15-19 DAP, which lead to the 

disappearance of an identifiable suspensor with continued uncontrolled cell growth by 32 

DAP.  The proliferation of cells in the suspensor was examined by use of the TUNEL 

method which identify cell undergone programmed cell death (PCD) (Giuliani et al., 

2002). Normal developing embryos, at 14 DAP, have cells in “the scutellum surrounding 
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the shoot primordium and in the coleoptile” undergoing PCD; the cells in the suspensor at 

14DAP also were positive for undergoing PCD.  No PCD was detected in the emb seeds 

at 14 DAP in either the embryo proper or suspensor (Consonni et al., 2003).    These 

results lead Conosoni et al to state that if PCD is involved in the morphology of tissues 

and organs, that there might be a mechanism for PCD to not be initiated in the three emb 

mutants represented by: emb-7182; emb-7192; and emb-7191-1(or its allele emb-7191-2).  

This would explain why there is uncontrolled cell growth and why there were no cells 

undergoing PCD (Consonni et al., 2003).  

 Consonii et al also performed some embryo rescue experiments. Between 12 to 

18 DAP embryos from emb-7191-1, emb-7182, and emb-7192 were collected and 

cultured on basic MS medium for 15 days. Growth and development were retarded for 

each of the mutants, but each was able to yield individuals which were able to grow to 

seedlings.  In emb-7191-1 and emb-7182 the seedlings were albino. The seedlings of 

emb-7192 were able to be rescued and germinated normally (Consonii et al., 2003). 

These results lead the researchers to speculate albino seedling are the result of either: a  

SAM that is unable to produce a “ functional photosynthetic apparatus”; or the SAM was 

formed through organogenesis from cell have lost the “competence to differentiate 

functional chloroplasts” ( Consonii et al., 2003).  

Current Embryo Specific Mutant Gene Identification 

 Multiple studies have identified that the genes, which when mutated produce the 

emb phenotype, are involved with plastids.  An embryo specific mutant called lethal 

embryo 1(lem1) which aborts before transition stage is in a gene that encodes for the 
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plastid 30S ribosomal protein S9. It was found to have a nuclear localizing signal (NLS) 

domain, which had not been previously reported (Ma and Dooner, 2004).   A second 

mutant originally reported in the 51 embs of Clark and Sheridan (1991) and identified as 

emb-8516 was located to the gene ZmPRPL35-1 by its Mutator transposon.  It likely 

encodes for a L35 protein that is part of the 50S ribosome in plastids (Magnard et al., 

2004).  The mutant emb-8522 was the first pentatricopeptide repeat (PPR)gene associated 

with a maize embryo-lethal phenotype. Both chloroplast development and vegetative 

growth are effected by emb-8522.  It was demonstrated that the phenotype of this emb is 

dependent on the genetic background; in the R-scm2 and A188 background the emb is 

lethal, however in the B73 background the 80% of ears segregating for the mutants gave 

“rise to albino seedlings” (Sosso et al., 2012).  In another study involving emb mutants, it 

was discovered that emb16 is an allele of the WHIRLY1 (WHY1) gene.  Two previously 

found mutants of WHY1 gene resulted in albino seedling, as opposed to emb16 causing 

embryo development to stop at the transition stage (Zhang et al., 2013). They found that 

the genetic background effected the phenotype expressed by emb16.  The WHY1 gene is 

involved in chloroplast biogenesis and may be required for thylakoid membrane 

formation (Zhang et al., 2013).   The emb12 mutation has been found to be in a gene that 

encodes the plastid initiation factor 3.  However, it also negatively affects the expression 

of rRNAs and ribosome assembly in plastids (Shen et al., 2013).  The emb14 mutation 

affects a gene whose product is targeted to the plastids.  The gene encodes for a cGTPase 

and is functionally equivalent to the Arabidopsis gene AtNOA1 and shares similarities 

with YqeH in prokaryotes.  YqeH is important in 30S ribosomal subunit maturation and 

binds to “30S in a GTP/GDP dependent manner”.   
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Fluorescent Protein Fusion Constructs.  

Fluorescent Protein Tagging 

 The high-throughput technique termed fluorescent tagging of full-length proteins 

(FTFLP) was developed in A. thaliana to analyze the expression patterns and subcellular 

location of proteins (Tain et al., 2004).    Previous techniques used to examine expression 

in cells and tissues involved antibodies, a reporter or an antigenic tag.  These techniques 

are labor intensive, and the use of green fluorescent protein (GFP) had been shown to be 

faster, but it was shown that fusions of GFP to the N or C terminal has caused proteins to 

become non-functional (Tain et al., 2004).  However, if the fluorescent protein gene 

sequence is placed internally in the target protein sequence, then the target protein 

remains functional and can be localized to its known destination (Sedbrook et al., 2002).  

 The FTFLP technique uses the strategy of inserting a fluorescent protein in 

between signal sequences of a protein of interest to study expression patterns and 

localization (Tain et al., 2004). The fluorescent reporter needs to be stable within the cell 

when exposed to different physiological condition, such as pH.  Second, insertion should 

not affect posttranslational modifications, targeting signals, or protein conformation.  

Third, the expression of the tagged protein should occur from its native regulatory 

sequence in order to detect its developmental and tissue-specific regulation (Tain et al., 

2004).  

 A polymerase chain reaction (PCR) protocol was developed to insert a yellow 

fluorescent (YFP) or cyan fluorescent protein (CFP) DNA sequence into the target 

protein sequence.  In over 93% of the cases tested the insertion was 30 base pairs 
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upstream from the stop codon (Tain et al., 2004).  The selected gene was first amplified 

using two sets of primers.  Primers P1 and P2 were for one section and P3 and P4 for the 

second sections.  P1 and P4 were also complementary to a Gateway primer at the tail 

ends.  P2 and P3 were also complementary to the YFP or CFP.    The YFP or CFP also 

contained coding sequences that allowed them to be amplified in the first round of PCR.  

The second round of PCR, called triple template PCR or TT-PCR, involved amplification 

of all three fragments and resulted in overlapping templates. This leads to the YFP or 

CFP being inserted into the gene sequence and then the entire sequence being amplified 

by the Gateway primers (Tain et al., 2004).  Each of these YFP or CFP tagged genes 

were then cloned and transferred into agrobacterium and used to transform plants (Tain et 

al., 2004).   

 Each of the constructs for each gene includes:  a maximum of 3kb of the DNA 

sequence upstream from the start codon; the DNA sequence 1 kb downstream of the stop 

codon; the 5´UTR;  the promotor sequence;  the coding region with introns; and the 3´ 

UTR (Tain et al., 2004).   The gene sequence with the fluorescent protein inserted was 

transferred into an Agrobacterium binary vector in which the T-DNA has its promotor 

removed.  In addition, they constructed a second binary destination vector with a 

tetramerized Cauliflower mosaic virus 35S enhancer inserted to augment the expression 

of genes with weak promoters. In order to demonstrate that proteins targeted to different 

locations in the cell were not disrupted by the addition of the fluorescent protein into their 

structure, proteins with known expression locations were used for proof of concept: 

peroxisome, tonoplast membrane, plasma membrane, cell wall, plasmodesmata, 

cytoskeletal elements, nuclear membrane, proplastids, nuclear targeting, and cytosolic 
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localization (Tain et al., 2004).   The expression of the genes with a tagged fluorescent 

protein was compared between those with only the genes promotor to those with the 

promotor and 35S enhancer.  The location of the cell signal for all the constructs tested 

with the 35S enhancer sequence was the same as those without the 35S enhancer.  

However, for some proteins the signal was stronger in the constructs with the 35S 

enhancer sequence (Tain et al., 2004). 

 The work with the FTFLP technique in A. thaliana was expanded into Zea mays 

(Mohanty et al., 2009).  In the maize protocol they not only used the YFP and CFP, but 

also red fluorescent proteins (RFP).  These fluorescent proteins were inserted into the full 

genomic sequence including the regulatory regions with the aim of the entire sequence 

being limited in size from 8 to 9 kb.  The genes chosen for the initial 40 constructs were 

those with robust predicted functions based on evidence from localizations studies with 

antibody or expression data.  As with the A. thaliana, genes whose proteins localized to 

the full range of subcellular locations were used.  It was also noted that a quarter of the 

genes selected were requested from researchers in the maize community.  The rest of the 

genes were selected using multiple databases.  The first database was The Institute for 

Genomic Research (TIGR) maize databased in which 2,500 Assembled Zea mays 

(AZM’s) that were greater than 5kb and also 300 TIGR maize BAC sequences were 

evaluated (Mohanty et al., 2009).  An AZM is a consensus sequence which was 

determined by comparing multiple sequences and grouping those with similarities into 

group clusters (http://maize.jcvi.org/release5.0/azm5.shtml).   The Fgenesh database 

allowed for the prediction of genes from a genomic sequence and PSORT (protein sorting 

tool) was used to predict subcellular location.  (Mohanty et al., 2009).  Finally, GenBank, 
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Maize Assembled Genomic Island sequences, and MaizeGDB were used to find 

additional gene sequences.  Initially 40 proteins were tagged, and the seeds have been 

made available for use.  Additional proteins have been tagged since then and all 

fluorescent protein constructs can be requested from the web site at 

http://maize.jcvi.org/tigr-scripts/maize/cellgenomics/seed_request.pl (Mohanty et al., 

2009). 

Expression Profiles of Protein Fusion Constructs.  

 In my dissertation research project twelve fluorescent protein constructs were 

used in evaluating both normal embryo development and emb embryo development.  

They are described in the next sections and summarized in Table 1.   

pin1 

 PINFORMED1 is a member of the auxin efflux transporter family and is localized 

in the plasma membrane; initially found in Arabidopsis, it has three maize orthologues 

named ZmPIN1a, ZmPIN1b, and ZmPIN1c (Carraro et al., 2006; Gallavotti et al., 2008).  

It has been shown to accumulate in the L1 layer of axillary meristems and the 

inflorescent meristem in maize.  It is found at areas of vascularization. ZmPIN1 is polarly 

localized, upregulated in areas where auxin response maxima form and at areas of 

primordia emergence; and it is broadly expressed throughout the maize plant (Gallavotti 

et al., 2008).  PIN1 expression has been looked at in embryogenesis in two reports.  A 

report by Forestan et al. (2010) described PIN1 expression from the proembryo stage to 

stage 6, while a report by Chen et al. (2014) reported on PIN1 in early embryogenesis for 

proembryo stage to late transition stage.   

http://maize.jcvi.org/tigr-scripts/maize/cellgenomics/seed_request.pl
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 The Forestean et al.(2010) determined the distribution of ZmPIN1 during 

embryogenesis initially by immunolocalization and also using fluorescent proteins 

(Forestan et al., 2010). The proembryo stage embryo showed expression in the interior 

cells of the embryo proper, indicating that auxin is first produced and exported from these 

initial cells.  As the protoderm formed ZmPIN1 was detected in the anticlinal membranes 

of the protoderm cells that were differentiating which indicated movement of auxin to the 

upper tip of the embryo (Forestan et al., 2010).  The transition stage embryo showed 

expression at the adaxial surface where the SAM would appear and at the top of the 

scutellum.  The coleoptilar stage embryo showed expression in the coleptile, “the 

vasculature of the scutellum, the inner tissue of the SAM and the initials of the RAM.” 

(Forestan et al., 2010).   The next six embryo stages involving the sequential 

development of leaf primordia showed expression in the corpus of the SAM of the 

primordia, the vasculature of the differentiated leaves, in the coleorhiza of the RAM, and 

inthe seminal root primordia (Forestan et al., 2010).  

 Chen et al. (2014) reported that first expression of PIN1 was in the apical cells of 

the embryo proper, which they state indicates that auxin in brought into the embryo from 

surrounding tissue.  The early transition stage embryos have expression in the basal 

membranes of the cells of the apical portion of the embryo proper. The late transition 

stage embryos show expression just below the apical part of the scutellum down to near 

the basal part of the embryo proper (Chen et al, 2014).     
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dr5 

 A synthetic auxin response element called DR5 was created from the GH3 gene in 

soybeans (Ulmasov et al., 1997). The GH3 gene has multiple auxin response elements 

(AuxRE) in an auxin-response promotor of where each can function independent of each 

other. The GH3 promotor has AuxRE that consist of a TGTCTC element and a coupling 

element; both are required to confer auxin responsiveness (Liu et al., 1994; Ulmasov et 

al.,1995). DR5 is the nomenclature assigned to a site directed mutation at the 5’ end in 

the D1-4 composite AuxRE of the GH3 promoter which resulted in auxin induced 

transcription factor binding to AuxRE stronger than the natural occuring AuxRE 

(Ulmasov et al., 1995).  A synthetic DR5 reporter for auxin was produced by fusing 

seven tandem repeats of the DR5 upstream from a cauliflower mosaic virus 35S 

promoter-β-glucuronidase (GUS) reporter gene.  In comparison to a similar synthetic 

construct using the natural D1-4 AuxRE which was induced 5 fold by the presence of 25 

µM 1-naphthalene acetic acid, the DR5 synthetic construct was induced 25 to 50 fold 

(Ulmasov et al., 1997).  DR5 is detected on the axial surface of the embryo in transition 

stage, but not interiorly (Chen et al. 2014); DR5 is first detected in the embryo on the 

apical portion of the embryo in late transition stage (Chen et al., 2014).  

tcs 

 A synthetic reporter to report cytokinin activity was developed and named Two 

Component Signaling Sensor (TCS) (Muller and Sheen, 2008). Cytokinin signaling is 

done using a multi-step two component circuity dependent on histidine and aspartate 

phosphorylay using an A-type and B-type response regulator.  The A-type regulator 

represses signaling via negative feedback; and the B-type response regulator mediate 
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transcriptional activation in response to phosphorylay signaling (Muller and Sheen, 

2008).  The synthetic TCS has a concatemerized B-type Arabidopsis response regulator 

binding motifs and a minimal 35S promoter.  TCS was tested to and was able to 

phosphorlay output caused by the three known cytokinin receptors and relayed to any of 

the response regulators tested (Muller and Sheen, 2008). 

 TCS was reported to be expressed in the late transition stage at the tip and adaxial 

surface of the scutellum and the initiation site of the SAM. (Chen et al., 2014). The signal 

was still localized to these cells in the coleoptilar stage, but at a stronger expression 

(Chen et al. 2014).     In Arabidopsis, TCS first appears in the hypophysis at the 16-cell 

stage (Muller and Sheen, 2008).  By late globular stage the signal is only retained in the 

apical cells of the hypophysis.  At the heart stage, expression was seen near the shoot 

stem-cell primordium (Muller and Sheen, 2008).   

wus 

 WUSHEL (WUS) is a transcription factor first described in Arabadopsis and has 

two orthologues in maize: ZmWUS1 and ZmWUS2 (Nardman and Werr, 2006). There are 

two putative domains that have been identified: one homeodomain and the other an acidic 

amino acid cluster.  The acid cluster allows WUS to be a transcription regulator (Mayer 

et al. 1998).  WUS is known to regulate over 100 genes involving inhibition of auxin 

signaling and cell division to cytokinin signaling and meristem maintenance in 

Arabadopsis.  A major interaction is in a feedback loop with CLAVATA3 (CLV3), a 

secretory signaling peptide.  The CLV3-WUS feedback loop was first shown to also 

contain CLAVATA1(CLV1), a putative receptor kinase transmembrane protein; and WUS 

aids in the fine tuning of CLV1 transcription (Busch et al., 2010). The description of the 
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CLV-WUS feedback loop began with only the CLV3, CLV1 and WUS genes (Busch et 

al., 2010) as being a part of meristem maintenance, but since then two new signaling 

pathways have been discovered. The entire workings of the CLV-WUS feedback loop are 

only just being understood.  

 In Arabidopsis, WUS can be detected at the 16-cell stage in embryo development 

and stays confined to the center of the shoot meristem throughout embryo development 

(Mayer et al., 1998).  However, in maize, the two orthologues are differentially 

expressed.  The ZmWUS2 gene is expressed in the first leaf primordia in cells flanking 

the apex.  In sectioning it was seen that expression extended to leaf primordium which 

have detached from the shoot apex and is seen in lateral leaf domains with the greatest 

expression at the marginal tip and continued expression in P2/P3 leaves.  In contrast 

ZmWUS1, is first detected below the emerging coleoptile.  It is initially expressed in the 

L1 layer, but then expression extends to deeper layers.  Expression then stops when the 

second primordial leaf emerges and only shows up again in post germination (Nardman 

and Werr, 2006).   In this research only the ZmWUS1 gene was available for expression 

analysis.  

abphyll 1 

 Abphyll 1 is an A-type cytokinin-induced response regulator, which has also been 

identified as the Zea mays response regulator 3(ZmRR3) (Guilini et al., 2004).  It acts by 

regulating cytokinin signaling in the SAM using a negative feedback loop.  It controls 

phyllotactic patterning by limiting the space available for leaf primordia to develop at the 

apex of the SAM (Jackson and Hake, 1999; Guilini et al., 2004).  It is first detected in the 
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transition stage at the site of SAM formation. Expression continued in the SAM during 

the coleoptilar stage and was still being expressed in the SAM during stage 1 (Guilini et 

al., 2004).   

bes1 

 Brassinoid Insensitive-EMS-Suppressor 1 (BES1) in Arabidopsis is a homologue 

to BZR1 in Arabidopsis and was found to be the same gene as BZR2 (Yin et al., 2002; 

Wang et al., 2002).  Expression of BES1 is localized to the nucleus and cytoplasm in 

hypocotyls cells with stronger nuclear localization in elongating cells.  The addition of 

brassinolide increased the localization of BES1 to the nucleus (Yin et al., 2002).  The 

BZR1 gene that encodes for a nuclear protein which is a positive regulator of the 

Brassinoid signaling pathway.  In Arabadopsis BZR1 has a role in growth responses 

induced by brassinoids and regulates brassinoid biosynthesis and its expression is 

correlated with growing stems and cells undergoing elongation (Wang et al., 2002).  Both 

genes are involved in the brassinosteroid pathway, although the genes they target in the 

nucleus may not be the same group of genes (Yin et al., 2002).  The genes involved in the 

Brassinoid signaling pathway have been found to contain “high confidence homologs” in 

maize. A search of the maize genome for a BES1/BZR1 homolog found a candidate with 

a 50% identity and 62% similarity to Arabidopsis BES1; additionally, the rice homolog 

OsBZR1 shared 78% identity and 82% similarity (Kir et al., 2015).    

his1 

 The H1 histone or linker histone is ubiquitously found in eukaryotes, along with 

four other histones (Razafimaharatra et al., 1991).  The H1 histone is not part of the 
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nucleosome, which is comprised of the four other histones. H1 histone is a general 

repressor of gene expression, although it has been shown to be a “control element” for 

transcription in maize for some genes (Razafimaharatra et al., 1991).  The H1 histone is 

positioned outside of the nucleosome and can organize inter-nucleosomal linker DNA 

and stabilize higher order chromatin structures (Kotlinski et al., 2016).  The H1 histone 

consists of three domains.  The central hydrophobic globular region is responsible for 

interactions with the internucleosomal DNA.  The N-terminal domain is used to position 

the H1 histone in respect to the nucleosome.  The C-terminal domain allows for the 

formation of higher order chromatin structure (Razafimaharatra et al., 1991).  Expression 

of Histone1 using mRNA in a Northern blot has been shown to occur in meristematic 

tissue, but also in tissue undergoing elongation.  There is no H1 expression in fully 

formed organs (Razafirmaharatra et al., 1991).     

rab17 

 The maize abscisic acid responsive RAB17 is a gene that is a part of the RAB 

(Ras-like in rat brain) branch of the RAS superfamily and was first found in epitheialial 

cells in mouse tissue (Lutcke et al., 1993; Bhuin and Roy, 2014). RAB proteins are 

GTPase/GTP binding proteins which are found in organisms ranging from yeast to 

humans. They are associated with exocytic and endocytic organelles on the cytoplasmic 

face and with transport vesicles between these compartments (Bhuin and Roy, 2014).  

Rab17 in particular has been localized to the apical recycling endosomes that “facilitate 

transcytic transport to the apical and basolateral plasma membranes (Bhuin and Roy, 

2014).   The expression of Rab17, using in situ hybridization, during maize embryo 

development was found to be expressed in all embryo cell types in both the nucleus and 



  

38 

 

cytoplasm starting at 22 DAP (Goday et al., 1994).  The initial area where expression of 

Rab17 could be found was in the leaf primordia and radicle, although a weak 

hybridization was seen throughout the embryonic axis.  The scutellum showed very low 

expression or none. By 30 to 40 DAP Rab17 was detected in the “embryo axis organs” 

and scutellum.  In the embryonic axis the “prevalent accumulation” was in the embryonic 

radicle cortex, metaxylem cells in the central core, leaf primordia, coleoptile and 

provascular elements.  The scutellum showed hybridization in the procambium strands 

and surface epidermal cells (Goday et al., 1994). 

pyabby 

 The yabby14 gene is involved in leaf development.  In maize embryo 

development it is restricted to the three adaxial tiers of cells and may be involved in 

adaxial/abaxial patterning (Juarez et al., 2004).  Expression is broader in the first leaf 

primordia and becomes restricted in older leaf primordia.  In older leaf primordia 

expression is near the margin throughout the adaxial domain, but the expression is 

restricted to the central layer of ground tissue in the rest of the leaf (Jaurez et al., 2004).  

Either yabby14 is restricted to the adaxial/abaxial boundary in developing leaves or it is 

limited to “less determined cells” in the primordium (Juarez et al., 2004) 

prk 

 The PHOSPHORIBULOKINASE gene (PRK) encodes a chloroplast localized 

kinase which is only involved in the Calvin Cycle (Hariharan et al., 1998).   It catalysis 

the reaction in which Ru5P and adenosine triphosphate (ATP) are converted into 

ribulose-1, 5-biphosphate and adenosine diphosphate (Hariharan et al., 1998).   Research 



  

39 

 

in A. thaliana indicate that PRK is kinetically activated by light and regulated under the 

circadian clock.  PRK is down regulated during senescence and also regulated by the 

accumulation of reduced thioredoxins and metabolite in the stroma of chloroplasts (Marri 

et al., 2004).  PRK forms a supramolecular complex with several other proteins in the 

chloroplasts (Marri et al., 2004).  The expression of PRK and other genes that form this 

complex are inhibited by sucrose in the presences of light.   There were no RNA 

transcripts found in the roots and low levels were found in flowers and siliques (Marri et 

al., 2004).  In maize the ZmPRK gene is expressed in the bundle sheath cells where the 

Calvin-cycle occurs (Sawers et al., 2007).   

mre11b 

  The Mre11 gene was first discovered in Saccharomyces cereviciea and has two 

maize orthologues: Mre11B or ZmMre11B and Mre11A or ZmMre11A (Waterworth et 

al., 2007; Samanic et al., 2013).  The Mre11 gene is found in archaebacteria, bacteria and 

eukaryotes (Borde, 2007).  It has been shown in A. thaliana, other plants and animals that 

MRE forms a complex with two other proteins: Rad50 and NBS1 (Borde, 2007). This 

complex is involved in double stranded breaks by making single stranded overhangs.  

The MRE11 protein possesses three functions: endonuclease, exonuclease, and helicase 

actives (Sidhu et al., 2017).  In maize it has been shown that ZmNBS1 protein interacts 

with ZmMre11A protein, but not with ZmMre11B protein (Waterworth et al., 2007).  

However, ZmMre11B and ZmMre11A interact with each other in a yeast two-hybrid 

system. (Altun, 2008).  Although the exact function of ZmMre11B is not known, it is 

found in the nucleus of actively dividing cells and is developmentally regulated (Altun, 
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2008).   It has also been found that ZmMre11B is under positive selection and is found in 

a genome region which has undergone a selective sweep (Sidhu et al., 2017).     

zmperi 

The Perianthia (PAN) gene in A. thaliana encodes for a bZIP transcription factor 

(Chuang et al., 1999).  The protein coded for by PAN contains a basic region for binding 

to DNA and contains a region consisting of a leucine zipper which mediates homo- and 

heterodimerization.  A sequence analysis indicated that PAN is a TGACGT/C-binding 

protein with an amino-terminal bZip domain and a C-terminus enriched with glutamine 

and acidic amino acids (Chuang et al., 1999).   An immunohistochemical analysis of PAN 

expression determined that its protein is localized in floral and vegetative tissues.  It has 

been found in apical meristems, young leaf primordia, the whorls of the floral organ, 

developing petals, stamens and ovules (Chuang et al., 1999).   
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CHAPTER II 

MATERIALS AND METHODS 

Genetic and Morphological Methods 

Mutant Production by EMS Treatment 

 Mutations were produced by applying Ethyl methanesufonate (EMS) treated W22 

pollen onto the silks of B73 ears. The pollen parent source was the W22 inbred converted 

to the homozygous R1-scm2 purple stock provided by James Birchler or was a W22 

inbred stock converted to a homozygous r1-scm3 yellow kernel stock originally provided 

by Thomas Brutnell. The ear parent was an inbred B73 line that was a colorless yellow 

stock and is homozygous recessive for both C1 and R1 loci, which was provided by 

Thomas Brutnell.   The following items are used to perform this procedure: 

• Three 50 ml squeezable plastic bottles with caps. 

• Three additional caps modified by making a whole in the center and 

securely inserting a 250 µl disposable pipette tip with the tip trimmed. 

• 100 ml mineral oil. 

• Fine mesh kitchen strainer and wax paper. 

• 10 ml graduated cylinder.  

• Hooded safety overalls, safety goggles and latex gloves.  

• Knife to trim back ears.  
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• Lawson Shoot bags, Lawson tassel bags, and Lawson pollination bags. 

• Caution tape.  

 The day prior to treatment a knife was used to cut back husks of 150 ears, above the tip 

of the growing ear of B73 stock and the ear shoot bags replaced. Lawson tassel bags were 

put over the tassels of 20-30 W22 stock plants.  One-hundred fifty Lawson pollination 

bags were dated for the following day.  

On the day of the pollinations B73 ears were examined by lifting their shoot bags 

to determine that the silks had regrown to at least 1cm of length.  Three people were 

involved in the operation of this procedure. In the Field Research Lab one person, 

wearing goggles and latex gloves, added 33 µl of EMS to 100ml of mineral oil (Neuffer, 

1994).  This suspension was stirred and then divided evenly into the 50ml bottles. Pollen 

from the tassels of 7 to 10 W22 plants was collected by the other two people and brought 

into the lab.  The pollen was poured through the fine mesh kitchen strainer onto wax 

paper to remove anthers and additional debris.  About 7 cm3 of pollen was measured into 

a 10 ml graduated cylinder and then added to one of the EMS/mineral oil solutions in the 

50ml bottles. A timer was set for 35 minutes for the first bottle. This procedure was 

repeated for the other two bottles, with timers set to 45 and 55 minutes. One person was 

assigned to shake the bottles intermittently until pollination.   The other two people set up 

a portable table in the field near the B73 plants that were being pollinated. The dated 

Lawson pollination bags, and latex gloves were put on the table.  As the time neared for 

the first pollination, those two people performing the pollinations put on the hooded 

overalls, latex gloves, and goggles.  The pollination team is divided into the first person, 

who is applying the EMS/mineral oil/W22 pollen solution; and the second person, who 
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will follow and staple the dated Lawson pollination bags over the treated ears.   The 

person intermittently shaking the three 50 ml bottles with the EMS/mineral oil/W22 

pollen solution relocates to the table in the field along with the timers with the help of the 

other two people. At the beeping of the first timer, the cover of the 35-minute bottle is 

replace with the 250 µl pipette modified cover. The pipette was cut to allow for an 

increased flow rate of the solution. The first pollination team member takes the 50 ml 

bottle solution and goes to the first plant to be pollinated.  The shoot bag is removed, and 

the mineral oil solution is added to the top of the silks, about 0.5 to 0.6 ml per ear. The 

shoot bag is not replaced, and the first team member moves onto the next cutback ear.  

The second team member then puts a dated Lawson pollination bag over the pollinated 

ears and staples it securely to the stem of the plant.  About 45 to 50 ears are pollinated in 

5-10 minutes.  The same procedure is repeated with the 45-minute and 55-minute bottles.  

After pollinations were complete a yellow caution tape was put around the experimental 

area and the materials exposed to EMS were put into a black plastic bag and disposed of.  

The next day the dated Lawson pollination bags were replaced with Lawson pollination 

bags dated and labeled with the female and male parents by a team member.  The dated 

Lawson pollination bags were put into a black plastic bag and disposed of.  No one 

entered the EMS treated area until harvest. 

Screening for Embryo Specific Mutants 

 At harvest the ears were collected and husked, dried in their pollination bags on a 

forced-air dryer and then transported to the seed storage repository. Each ear was labeled 

with the pedigree of the parents on a cardboard tag that is attached to the cob with a 

parcel hook. The ears that showed a 20-30% seed set were selected as source ears for 
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possibly having mutations only affecting embryo development. In addition, ears that 

showed some kernels containing colorless yellow sectors on a purple aleurone 

background were also selected as suggested by M. Gerald Neuffer.   

Fifteen kernels were removed from the middle section of selected ears and were 

planted in the experimental field in Grand Forks, North Dakota or on Molokai, Hawaii. 

At maturity (time of flowering), the plants were self-pollinated which produced ears with 

F2 kernels.  In order to screen for new mutants, 100 kernels (or all the kernels on the ear 

if there were less than 100 kernels) were removed from the middle section of each self-

pollinated ear and placed in a seed envelope with the pedigree information from the ear 

tag written on it.  The kernel samples were poured onto a plastic tray.  Each kernel was 

inspected under a lamp with a 60-watt bulb and a 2x magnifying lens.   

Those ears whose kernels segregated for undeveloped embryos, but normal 

appearing endosperm had their kernels separated into two groups: those with normal 

embryos and normal endosperm; and mutant kernels with undeveloped embryos and 

normal endosperms.  The mutant kernels were counted and both the number of mutant 

and number or normal kernels was written on the seed envelope. The percentage of 

mutant kernels was calculated and written on the seed envelope. A second small coin 

envelope was used to put the mutant kernels in and the pedigree information from the 

seed envelope was written on it as well as the number of mutant kernels and the 

calculated segregation percentage. The small coin envelope was closed with a paperclip 

and inserted into the original seed envelope along with the normal kernels. The seed 

envelope was also secured with a paperclip and then filed.  
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Morphological Examination of Embryo Specific Mutants 

 The morphological assessment of development for each mutant was performed by 

examining 10-15 mature kernels of each mutant.  Previously identified mutant kernels 

were removed from small coin envelopes and were placed on moist filter paper in 120 

mm diameter Petri dishes which were covered with a lid and then sealed with Parafilm.  

The Petri dishes were kept at room temperature for three days before the kernels 

containing mutant embryos were dissected.  A Leica Wild M3Z dissecting microscope 

with 6.5x-40x magnification range aided by a Chui Technical Corporation Illuminator 

with two movable light sources was used to dissect and examine the kernels.   

 The kernels were removed from the Petri dish one at a time and placed under the 

microscope at 10x magnification and the lights positioned appropriately.  A large forceps 

with teeth was used to hold the kernels embryo side up and oriented with the vertical axis 

parallel to the forceps.  A #11 surgical steel scalpel was used to make two incisions on 

each side of the midline of the vertical axis.  A third incision was made perpendicular to 

and intersecting the other two incisions near the top of the kernel.   A #3T forceps was 

used to carefully peel the pericarp back and remove it at the base of the kernel.  In some 

cases, #4 or #5 forceps or the scalpel was used to remove fibrous tissues which remained 

in contact with the mutant embryo; magnification was adjusted up to 40x to aid in this 

delicate procedure.  The heat from the lights required applying water to the embryo with 

a dropper and wicking the excess water away with bulbous paper.  Photographs were 

taken of 10 or more embryos of each mutant using a Leica DFC 295 camera attached to 

the microscope and the Leica Application Suit V4 which accessed the camera and 

processed the images. Each image was identified by the source ear designation, mutant 
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designation, an individual embryo designation of that mutant, embryo stage, 

magnification, and the date.  The images were saved in files on the lab computer. 

 The stages of embryo development were determined using Abbe and Stein’s 

(1954) classification system. The proembryo, transition and coleoptilar stages occur 

sequentially before the first leaf primordium. The next six stages are designated Stage 1 

through 6, in reference to the subsequent development of each leaf primordium.  

Germination Test 

 Germination of the mutant embryos was determined by removing 25 kernels 

identified as mutant(normal endosperm and mutant embryo) and 25 kernels identified as 

having normal embryos from an ear segregating for the mutant phenotype.  The kernels 

were planted in a sand bench. The mutant kernels of one ear were planted in a single row, 

with ~1inch between kernels. In a parallel row the normal kernels from the same ear were 

planted likewise. Adjacent to the normal kernels, a parallel row of mutant kernels from a 

different mutant were planted, followed by a parallel row of the normal kernels; each of 

these rows was separated by about 2-2.5 inches and a total of 45 mutations were 

evaluated.   

Complementation Test 

 Allelism between mutations was determined using complementation tests in 

which a cross between two plants of different mutational events are crossed by double 

pollination as described by Sheridan and Clark (1987). Since the embryo specific 

mutations are recessive lethal, the tests are performed with the normal appearing kernels 

(with normal endosperm and normal embryo) of a self-pollinated ear that was identified 
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as segregating for a given mutant. These kernels will be either homozygous wildtype and 

not have the mutation present or heterozygous for the mutation; in a 1:2 respective ratio.  

The first mutant was grown in a colorless yellow kernel stock and the second mutant was 

grown as in a purple kernel stock caused by anthocyanin production in the aleurone.  The 

purple parent is self-pollinated.  The yellow parent has its ear cutback to right above the 

cob and a knife is used to divide the silks into two halves by cutting into the cob about 

0.5-0.75cm.  A cardstock paper colored on one side and white on the other is cut into 3-4 

cm squares and inserted into the slit in the cob and the shoot bag is replaced.  The 

following day the white side of the ear is self-pollinated, and the shoot bag is replaced.  

The next day the purple pollen parent is crossed onto the other side of the yellow parent’s 

ear, the colored side of the cardstock.  The silks on the white side have stopped growth 

while the silks on the colored side will have continued growth and it is easy to 

differentiate.   After the ears have been harvested, dried and tagged, the ears from the 

purple parent are matched with the ears from the yellow parent.  Those ears that have 

matches are then further evaluated. First, all the purple ears had 100 kernels removed and 

scored for the presence of the mutations. Those that are found to display the mutation are 

heterozygous for the mutations and the corresponding crossed yellow ear is then 

evaluated.  The kernels on this ear are half yellow and half purple; the self-side and the 

crossed side, respectively.  Kernels from the selfed-side are removed and scored for the 

presence of the mutant phenotype.  Those ears segregating for the mutant phenotype, then 

have kernels from the crossed side removed and scored. If the kernels from the crossed 

side are all normal in appearance, then the two mutations complement each other and 

represent mutations in different genes.  Otherwise if the kernels segregate for the mutant 
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phenotype, then they have failed to complement each other, and the two mutations are in 

the same gene and therefore are allelic.  

  

Confocal Microscope Methods 

Fusion Protein Constructs Maintenance 

 The fusion protein constructs were received from Dr. David Jackson Lab in Cold 

Spring Harbor and Dr. Anne Sylvester’s Lab at the University of Wyoming and now can 

be obtained from the Maize Cell Genomics Database 

(http://maize.jcvi.org/cellgenomics/index.php). The constructs were planted in Jiffy pots 

in the greenhouse.  When the seedlings reached the 3 or 4 leaf stage of development the 

seedlings were sprayed with Bayer Liberty 280 SL herbicide (CAS number 77182-82-2) 

which contains glufosinate-ammonium as the active ingredient.   The plants which have 

the fluorescent construct also contain a gene for phosphinothricin acetyltransferase from 

Streptomyces hygroscopicus (Thompson et al., 1987) and this allows for those plants 

containing the fluorescent construct to survive the herbicide treatment.   The surviving 

plants were brought to the Maize Research Field in Grand Forks ND and allowed to 

acclimate to the weather for two or more days before being transplanted into the field.  At 

maturity the plants were self-pollinated and were either crossed by or crossed onto B73 

inbreed stock.  In subsequent years plants were further crossed onto/by B73 stocks; 

however, there were occasions when some plants were self-pollinated or in one instance 

crossed onto W22 inbreed stock.  

 

http://maize.jcvi.org/cellgenomics/index.php
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Fusion Protein Constructs in Embryo Specific Mutant Lines 

 Ears that had been identified as segregating for the presence of the emb phenotype 

for emb-16, emb-17, emb-18, emb-19, emb-20, emb-21 emb-22, emb-24, emb-25, emb-38, 

emb-40, and emb-49 were examined.  Sixteen kernels with a normal appearing embryo 

phenotype were removed from those ears and planted into jiffy pots in the greenhouse.  

On average, two out of every three plants should be heterozygous for the mutant allele. 

Five days later, an additional planting of 20 normal appearing kernels from the same ears 

were planted in jiffy pots.  Concurrently, 160 kernels for each fluorescent protein 

construct was planted into jiffy pots from ears whose plants had survived previous 

herbicide treatment and should contain the construct.  Another five days later, a final 

planting of 16 normal appearing kernels from ears segregating for each emb was planted 

into jiffy pots.  At the 3-4 leaf stage the herbicide treatment was applied to the fluorescent 

protein constructs.  The surviving fluorescent protein construct plants and the three sets 

of emb mutant plants were transplanted into the field.  All plants grown from kernels of 

ears segregating for an emb phenotype were self-pollinated and crossed onto available 

fluorescent protein construct ears.  Six to eight plants grown from kernels of ears 

segregating for an emb phenotype were crossed onto ears for each of the 12 fluorescent 

protein constructs.    After harvest, the self-pollinated ears were scored for the presence 

of the emb phenotype and matched to any ears crossed with a construct.    

Embryo Tissue Collection for Fresh and Paraformaldehyde Samples 

 Expression for each of the 12 fluorescent protein constructs in normal developing 

embryos was evaluated.  Each plant was self-pollinated, and the date and time was 

written on the pollination bag and in a field notebook.  Samples of kernels were taken at 7 
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DAP, 8DAP, 9DAP, 10DAP, 11DAP and 12 DAP in order to find embryos at the 

proembryo stage, transition stage, coleoptilar stage and stage 1.  When the sample were 

collected, the date and time was again recorded on the pollination bag and in the field 

notebook.  Each sample was taken by peeling back the husk and removing the top portion 

of the ear; around 6 to 7 kernels down.  The sample was put into a shoot bag labeled with 

the information from the pollination bag and paperclipped closed.  The shoot bag was 

then put into a snack sized Ziploc bag which was labeled with the plant number, 

collection date and fluorescent protein construct identification. The Ziploc bag was sealed 

and put into a cooler for transport to the lab in Starcher Hall on the University of North 

Dakota campus in Grand Forks, ND.  All samples were put into the refrigerator until they 

could be dissected or sectioned for mounting on slides.   

 When a sample was removed for mounting on slides, the sample was then cut into 

two equal sections: one section was used for making fresh tissue slides and the other 

section was treated with paraformaldehyde.  The fresh tissue sample was put back in the 

shoot bag and put on ice in preparation of making slides. A 2.5% solution of 

paraformaldehyde in 0.14 M potassium phosphate buffer at 6.8 pH was used for fixation.  

The kernels were left on the cob, but the interior tissue of the cob was removed. .  The 

samples were then put into a 30 ml vial and the 2.5% paraformaldehyde solution was 

added to fill the vial.  The vial was then put into the refrigerator for 1.5 to 2 days.  The 

paraformaldehyde was then poured out and the kernels were subsequently washed with 

the 0.14M potassium phosphate buffer once before being stored in the 0.14M potassium 

phosphate buffer for 1 to 2 days.  The buffer was then exchanged for new 0.14M 

potassium phosphate buffer and returned to the refrigerator for storage.    
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Production of Slides 

vibratome sectioning 

 Fresh tissue sample of kernels in the proembryo stage and early transition stage 

were sectioned with a vibratome. In preparation for sectioning 200 ml of 6% agarose gel 

was prepared and divided into test tubes of containing 20-30ml of gel each.  The tubes 

were covered with parafilm and refrigerated.  At the time of use one of the test tubes was 

then reheated in the microwave at high power in 15 second intervals until the agarose 

melted.  In between the heating intervals a metal spatula was used to pierce the gel to 

allow for trapped air to escape and liquid agarose to rise to the top. After all the agarose 

was melted, air bubbles persisted in the solution due to the high agarose concentration of 

6%.  To facilitate removal of the air bubbles and to ensure the agarose remained liquid, 

the test tube was put into a hot water bath at 80 Cº.     

Five to six kernels were removed from the cob using a scalpel and put into a small 

vial on ice. A rubber mold with a well 4mm deep by 10mm wide by 40mm long was 

filled with the 6% agarose gel.  The kernels were then inserted into the gel with the 

embryo side facing down. The mold was transferred to the refrigerator to allow the 

agarose to solidify for 3 to 5 minutes.  The mold was taken from the refrigerator and the 

agarose gel casting was trimmed using a razorblade to ensure that the top surface was 

flat.  The agarose gel casting was removed from the mold and the edges of the agarose 

were neatly trimmed.  A cyanoacrylate adhesive or superglue (Loctite) was applied to the 

top of the agarose gel casting and then the agarose gel casting was affixed to the 

vibratome specimen disc.  The kernels are orientated with the embryo’s frontal side 
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facing up and positioned near the top of the agarose surface.  The specimen disc was then 

put into the refrigerator to allow the glue to set. 

A VT 1000 S vibrating-blade microtome (vibratome) from Leica Biosystems was 

used for sectioning.  Wilkinson Sword double edge stainless steel razor blades were used 

as the cutting blade for the sectioning. The blades were cut in half and trimmed to fit into 

the knife holder of the vibratome.  The clearance angle of the knife holder was set 

halfway between the 5º and 10º indicators on the adjustment bar.  The bottom of the 

cooling bath was filled to about 1.5 cm depth with crushed ice. The buffer tray was then 

mounted onto the bolt inside the cooling bath.  The buffer tray was pushed down into the 

ice and locked into place; additional ice was added around the buffer tray.  The sectioning 

speed was set to 70 and the sectioning frequencies was set to 7 on the dial (70Hz).  The 

sections thickness mode was set to 150 microns.   

The specimen disc was then removed from the refrigerator and attached to the 

bottom of the buffer tray.  The specimen disc was rotated to orient the agarose gel with 

the smaller (1.0 cm) side parallel to the cutting blade and then secured in place.  

Potassium phosphate buffer was added to the buffer tray until the agarose gel was 

completely submerged.   

Slides for use with the confocal microscope were labeled with a slide number, the 

source plants identification number, the days after pollination, date of pollination, date of 

collection, the construct’s protein identification and fluorescent protein identification. 

Two mats were made from card stock and aluminum foil; the aluminum foil was taped to 

only one side of the card stock. The mats were each placed on top of an ice pack, 

aluminum foil side down.   Five or six blank slides were used to temporarily put the 
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sections on for later inspection.  The blank slides were put on one of the mats and the 

labeled slide was put on the other mat.  Each slide had a drop of phosphate buffer 

solution put on it to maintain moisture of the sections and the ice packs kept the buffer 

from evaporating and kept the buffer cool.    

A #3T forceps was used to delicately grab each section at the endosperm side to 

avoid damaging the embryo.  The first section from the first kernel was placed on the far 

top left side of the first blank slide. The first section of each subsequent kernel was like 

wise put on their respective slides. The second section of each kernel was placed to the 

right of the first section with each subsequent section placed in the same manner; a 

second row of sections was started below the first section when the top part of the slide 

was full.  After sectioning, the mat and ice pack were brought to the light microscope: A 

Leica Wild M3Z dissecting microscope with 6.5x-40x magnification range aided by a 

Chui Technical Corporation Illuminator with two positionable light sources.  Each slide 

was put under the microscope to find which section had the embryo in it. The section 

containing the embryo was then transferred to the labeled slide.  This was repeated for the 

next 5 slides, ending with the labeled slide having 6 sections with an embryo in each 

section.  A bulbous paper was used to wick away most of the phosphate buffer from the 

slide. The mounting solution was prepared by mixing 100ml glycerol ultrapure with 

100ml of 0.14M 6.8pH potassium phosphate solution to make a 50% glycerol in a 0.07M 

phosphate buffer mounting solution which was used in making slides. A coverslip was 

placed over the section and sealed with nail polish.  The slide was then put into the 

refrigerator on some bulbous paper to allow the nail polish to dry for a day, before being 

put in a slide box.  
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whole mounts 

Kernels in which the embryos could be easily seen were dissected with the aid of 

the Leica Wild M3Z microscope and the embryos removed. A labeled slide was prepared 

as described above and put on a mat which was placed on an ice pack.   Forceps were 

used to hold the kernels with the embryo side up.  Two incisions were made on each side 

of the embryo with a #11 surgical steal scalpel.  A third incision was made perpendicular 

to and intersecting the other two incisions near the top of the kernel.   A #3T forceps was 

used to carefully peel the pericarp back revealing the embryo. In some cases, the embryo 

stuck to the backside of the pericarp.   A #4 or #5 forceps was used to gently grab the 

suspensor of the embryo and remove the embryo from the kernel.  The embryo was easily 

removed and, in some cases, as with those stuck to the pericarp, the embryos were not 

attached to the kernel.   The embryos were moved to the labeled slide with the frontal 

surface of the embryo proper facing up.  In some cases, the embryos would flip over and 

couldn’t be reoriented. After five to six embryos were put on the slide, the phosphate 

buffer was drawn off with bulbous paper followed by adding a drop of 50% 

glycerol/0.14M phosphate buffer mounting solution to the slide.  The slides had a 

coverslip put on and were sealed with nail polish, before storing them in the refrigerator.  

Confocal Microscope Settings 

laser specifications 

 The confocal analysis was performed with the Zeiss LSM510 Meta confocal 

microscope provided by the Imaging and Image Analysis Core Facility at UND School of 

Medicine & Health Sciences.  It is equipped with a 10x lens, along with 40x, 63x, and 
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100x oil emersion lenses.   The light sources include a halogen bulb for bright field view 

and a mercury bulb to view fluorescent signals.  Three of the available filters were used 

with the mercury bulb: filter set 10 for the green fluorescent protein, filter set 40 the 

yellow fluorescent protein and filter set 15 for the red fluorescent protein.   Three lasers 

were also available for use.  An argon-based laser that can emit at four wavelengths:  458 

nm, 477nm, 488nm, and 514nm.  A Helium-Neon based laser that emits at 543nm 

identified as HeNe1.  A second Helium-Neon based laser that emits at 633nm identified 

as HeNe2.  For use with the lasers, multiple dichroic reflectors and emission filters were 

available. 

zen software program settings  

 The Zeiss LSM510 confocal microscope was run by the ZEN software package.  

The software allows for the user to manipulate the settings for the microscope by 

controlling   hardware selection for the lens, filters, light source (halogen or mercury 

bulb), lasers dichroitic reflectors and emission filters.  In addition, the ZEN software also 

controls the setting for image capture, tile scan, z-stack and post image modifications.   

 The laser set up for each type of the fluorescent proteins  is identical except for 

which laser and filters are used.  The excitation frequency of the fluorescent protein 

determined which laser was used: RFP excites at 556nm and uses the HeNe1 set to 

543nm; YFP excites at 520nm and  uses the argon set to 514nm; and GFP excites at 

505nm and uses the argon set to 488nm. The second input is the main dichroic reflector 

which only reflect specific wavelengths and must be set to match the wavelength of the 

laser: RFP-HeNe1 used HFT 488/543; YFP-argon used HFT 514/633; and GFP-argon 

used HFT 488/543.  A second dichroic is selected as a mirror to redirect the laser to 
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channels 2 and 3. The channel selected is dependent on the emission wavelength of the 

fluorescent protein and a matching filter:  RFP emits at 583nm and used channel 3 with 

filter BP 560-615; YFP emits at 532nm and used channel 2 with filter BP 530-600; and 

GFP emits at 505nm and used channel 2 with filter LP 505.    

 The image capture was initially set up to include a base set of options that could 

be later changed in special situations.  The frame size for images was set to 1024 x1024 

and never changed.  The pin hole size was initially set to 1.00 airy unit which 

corresponded to a 0.9-micron thick section for most sections.   Pin hole size was adjusted  

up to 3 airy units or 2.7 microns thick.  The power of each laser could be adjusted to 

increase its strength: the argon laser was set between 50-75% power and the HeNe1 was 

set between 7-20% power.  A setting named “speed” determined the time it took to do 

one pass across the field of view and was set to 4.  A setting named “averaging” 

determined how many passes were done across the field of view and was set to 4.  A 

speed of 4 and averaging of 4 allowed for one frame to capture an image in 2 minutes 5 

seconds.   

 Most of the images were taken while using the 63x oil emersion lens or the 40x 

oil emersion lens.  If the embryo was too large for it to be seen entirely in the field of 

view of one frame, the ZEN software had an option called Tile scan.  This allowed for the 

microscope to take multiple frames next to each other in order to capture an image of the 

entire embryo; the input was given as horizontal x vertical frames.  If the speed and 

averaging settings remained the same each frame would still take 2 minutes, meaning one 

image that was 2x2 frames would take 8 minutes.  In the case of large projects, the speed 



  

57 

 

and averaging would be adjusted to allow one frame to be captured in as little as 30 

seconds.   

 The ZEN software also allowed for a Z-stack to be taken.  A Z-stack is 

accomplished by capturing images that are directly above one another as you pass 

through the embryo.  A range from top to bottom is selected depending on where the 

signal is limited to inside the embryo.  Between 10-15 images were selected for each Z-

stack.  In some cases, a Z-stack combined with a Tile scan were done.    
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CHAPTER III 

RESULTS 

 

Production and Mutation Frequency of Embryo Specific Mutants 

 The production of new emb mutants by EMS application was generated in both 

the summer of 2011 and summer of 2012 in the UND maize research field in Grand 

Forks, ND. In 2011 EMS was used to treat pollen of W22 r1-scm3 and was applied to 

W22 r1-scm3 ears; the 2012 application of EMS involved treating pollen of W22 inbreed 

stock and crossing it onto B73 ears.  The ears produced from these two years were used 

as the source ears for kernels planted in the subsequent winter planting, winter 2011 and 

winter 2012, in Molokai, Hawaii.  The plants produced from these kernels were selfed 

pollinated and the subsequent ears had kernels removed and screened for emb mutant 

embryo segregation.  A total of 238 ears were screened, 140 in 2011 and 98 in 2012, in 

which emb’s were identified in 30 ears, 17 in 2011 and 13 in 2012.  This resulted in a 

frequency of 12.6 % with both years combined; or 12.1% in 2011 and 13.3% in 2012 for 

each year.   A third EMS treatment in 2013 treatment was performed by treating W22 

pollen and crossing the pollen onto B73 ears.  The ears produced in this treatment 

resulted in 27 emb mutations although frequency statistics could not be obtained since 

most of the planting was affected by mold.  This information has been presented in the 

online publication G3 by Brunelle, Clark and Sheridan, 2017.        
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Segregation Frequency 

 The segregation frequency in the founder ears of the mutant embryos for the 57 

embs identified range from 13.0% in UND-57 to 34.0% for UND-49. The 13 emb 

mutants reported here have a segregation frequency in their founder ears with ranges 

from 20.3% in UND-19 to 34% seen in both UND-38 and UND-49.  However, 

germination tests were conducted for 45 of the 57 emb mutants using a second group of 

ears which have been crossed with B73.  The germination test ears had a segregation 

range of 12.0% for UND-37 to 40.0% for UND-1.  In the 13 emb mutants presented here 

UND-19 and UND-40 had the lowest segregation values of 18.0%; and UND-17 had the 

highest with 27.0%.  In addition, a Chi-squared test was performed on the 45 ears used 

for the germination test of which only five showed a significant deviation (P < 0.05) from 

the expected 1:3 ratio for single gene Mendelian inheritance.  None of the 13 emb 

discussed here showed a significant deviation from the expected value.  This information 

has been presented in the online publication G3 by Brunelle, Clark and Sheridan, 2017.        

 

Germination 

  The germination test for kernels with normal embryos from ears segregating for 

kernels exhibiting the emb mutant phenotype were done for 45 emb mutants which 

included the 13 emb discussed in this dissertation (Brunelle et al.¸2017).  The kernels 

with normal embryos taken from ears segregating for the 13 embs discussed here resulted 

in five of the 13 emb’s having 24 of 25 kernels germinating with the other eight 
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producing seedlings for all 25.  In addition, four of 13 emb’s produced one, two or three 

white seedlings: UND-18, UND-22, UND-25 and UND-38. The occurrence of white 

seedlings was also observed in normal kernels planted from ears segregating for the emb 

phenotype in seven other mutants which were planted as part of the 45 emb mutants: 

UND-3, UND-8, UND-9, UND-29, UND-52, UND-53, and UND-56.  

  The emb kernels used in the germination test for kernels with mutant embryos 

were taken from the same ears as the normal kernels discussed above for 45 emb mutants 

(Brunelle et al, 2017).  The 13 emb mutants discussed in this dissertation showed results 

in which eight emb mutants showed no germination (UND-16, UND-18, UND-19, UND-

20, UND-21, UND-38, UND-39 and UND-49), three developed three seedlings (UND-

24, UND-25 and UND-40), and two developing one seedling (UND-17 and UND-22).  In 

addition, the one seedling produced by UND-17 was white. Three other mutants from the 

rest of the 45 emb mutants tested produced at least one white seedling: UND-28, UND-

52, and UND-56..  None of the seedlings survived past seedling stage except UND-52 

which grew a mature plant that appeared normal.   The data for all 57 mutations was 

published in the Brunelle, Clark and Sheridan, 2017 G3 mutant screen and the 

information specific to the 13 embs discussed in this paper is presented in Table 2. 

 

Complementation Test 

Complementation tests were done using 19 of the 57 emb mutants in which 35 

unique combinations were tested.  Only two combinations failed to complement:  UND-4 

and UND-9; UND-1 and UND-10. As for the 13 emb mutants evaluated here, eight of the 
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mutants were involved in test crosses, along with UND-9, which resulted in in 10 unique 

combinations. The pollen parent parents which had colored aleurone kernels included: 

UND-9, UND-18, UND-19, UND-20, UND-21, UND-22, UND-25, UND-39, and UND-

49.  The ear parents which were in colorless yellow stocks included: UND-9, UND-18, 

UND-20, UND-21, UND-22, UND-25, UND-39, and UND-49.  Thirty-five crosses were 

obtained in which both the pollen parent and ear parent were segregating for their 

respective emb mutant which is presented in Table 3.  The ten unique combination tests 

were UND-18/UND-2O, UND-18/UND-21, UND-18/UND-22, UND-18/UND-39, 

UND-19/UND-39, UND-20/UND-21, UND-20/UND-39, UND-21/UND-39, UND-

22/UND-25, and UND-49/UND-9. The number of crosses for each unique combination 

varied from one cross for UND-19/UND-39 to eight crosses for UND-18/UND-21.  Also 

seven out of the 10 unique combinations had crosses in which the pollen parent in one 

cross was also an ear parent in a cross with the same emb.  As an example, the eight 

crosses for UND-18/UND-21 consisted of three crosses in which UND-21 was the pollen 

parent and UND-18 was the ear parent; the other five crosses UND-18 was the pollen 

parent and UND-21 was the ear parent.  As stated above, all the crosses complement each 

other and Table 4 gives a summary of the crosses.  The data for all 57 mutations were 

published in the Brunelle, Clark and Sheridan, 2017 G3 mutant screen. 

 

Extent of Mutant Embryo Morphogenesis 

 The examining of the embryos for the 13 emb mutants used mature kernels, which 

were harvested and dried for storage.  The kernels were rehydrated in petri dishes as 

describe in methods, before dissections were performed.  Ten kernels for each emb were 
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used and their morphology is described in the following section and summarized in Table 

5. 

UND-16 

 Development in the UND-16 mutant embryo was consistently stopped at 

the late transition to coleoptilar stage.   Three embryo mutants were in transition stage 

with long suspensors and a rounded embryo proper (Figure 4-a,-b,-c )  All three showed 

necrosis of the embryo proper with the most prominent darkening at the top. Five other 

embryo mutants were stopped where the transition stage progresses into the coleoptilar 

stage (Figure 4-d,-e,-f,-g,-h )  .  The embryo has begun to change from the “ice cream 

cone” appearance of the transition stage and begins to expand more apically and broaden 

laterally.  There is no discernable coleoptilar ring.  Necrosis is seen in all five of these 

embryos with the tip of the developing scutellum being the most prominent necrotic 

section. In two (Figure 4-f and -g) of the five embryos the necrosis extends down one 

side of the embryo into an area resembling a triangle reminiscent of polarized cells 

formed when the axis of development is changing from a vertical to an oblique 

orientation (Randolph, 1936).  The ninth embryo(Figure 4-i) mutant is clearly in the 

coleoptilar stage with a discernable coleoptilar ring.  The entire embryo shows necrosis 

with the most prominent at the tip of the scutellum and sides of the scutellum.  One final 

embryo (Figure4 -j) mutant had an abnormal embryonic axis.  The bottom portion of the 

embryonic axis appears wider than normal and the top half splits into two smaller 

portions which appear as a “v” shape. The embryonic axis protrudes from the 

surrounding scutellum which is oval in appears from the frontal view. The tissue appears 

healthy except for a small amount of browning near the tip of the scutellum.  This 

embryo appears to have progressed beyond the coleoptilar stage and is similar to stage 3  
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or stage 4 in development, although the embryonic axis protrudes away from the 

scutellum, instead of being enclosed by it.  

UND-17 

 Embryo development for UND-17 is blocked at an early transition stage and 

possibly proembryo stage in eight embryos, at the coleoptilar stage in one embryo and an 

abnormal stage 2 or later in one embryo.  The eight embryos in the transition stage don’t 

have an enlarged embryo proper distinguishing it from the suspensor, which may indicate 

that the embryos may not have progressed into the transition stage.  Five of the embryos 

(Figure 5 -a,-b,-c,-d,-e) appear as uniformly thick cylinders with round tips and only their 

bases shows an enlargement of tissue.  Most of the tissue in all five embryos is healthy 

with only some browning at the tip of three (Figure 5 -b, -c, -d) and some browning on 

the lower three-quarters of a fourth (Figure 5-e); this may indicate the beginning of 

necrosis.  The other three embryos (Figure 5-f, -g, -h) show a very obvious thickening of 

the suspensor and in one case (Figure 5-h) the suspensor flattens out.  In all three cases 

the embryos narrow at the top as though a small embryo proper would be protruding from 

the much thicker suspensor.  Necrosis is seen at the base of one (Figure 5-g) and in most 

of the tissue of another (Figure 5-h).  The two groups of embryos may be related in the 

sense that the second group of three embryos may be the result of continued growth of 

the suspensor which was seen only in the lowermost portion of the suspensor in the first 

group.  The last two embryos, nine and ten,  have passed the transition stage.  The ninth 

embryo has reached the coleoptilar stage (Figure 5-i) and appears to have browning of the 

tissue throughout the embryo.  Additionally, the region of the SAM and coleoptilar ring  
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appears necrotic.  The tenth embryo (Figure 5-j) of UND-17 is an abnormal large 

coleoptilar stage or later.  Tissue of the embryonic axis appears normal but is enlarged.  

The yellow/brown tissue of the scutellum shows signs of more prominent necrosis at the 

top.   

UND-18 

 Embryo development for UND-18 mutant embryos is stopped in both transition 

stage and the coleoptilar stage.  Two of the embryos are stopped at a normal appearing 

transition stage (Figure 6-a,-b).  Necrosis can be seen in both of these embryos with the 

necrotic tissue appearing just below the tip of the embryo.  A third embryo(Figure 6-3) in 

transition stage has an enlarged suspensor which tapers down to the top of the embryo; it 

looks similar to some of the UND-17 embryos.  Two other embryos have reached a late 

transition to early coleoptilar stage, but no visible coleoptilar ring can be seen; necrosis 

can be seen throughout one embryo (Figure 6-d) and the second (Figure 6-e) shows 

prominent necrosis at the lower part of the embryo proper.  The last five embryos reach 

the coleoptilar stage with a visible coleoptilar ring.  One embryo looks necrotic 

throughout the embryo, especially in the coleoptilar ring and apical portion of the 

scutellum (Figure 6-f) One embryo looks very healthy with a clear coleoptilar ring 

(Figure 6-g).  One embryo (Figure 6-h) is very necrotic on the frontal face of the embryo, 

but not in the coleoptilar ring region (Figure6-i).  Another embryo looks larger than the 

others with an enlarged suspensor which may indicate a later coleoptilar stage advancing 

into stage 1 (Figure 6-i).  The last embryo was in coleoptilar stage but showed abnormal 

growth (Figure 6-j).   
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UND-19 

 All ten of the embryos examined from this mutation appear to have developed 

beyond the coleoptilar stage and are being evaluated based on the scutellum and 

embryonic axis structure in their frontal view as described by Abbe and Stein (1954).   

Four embryos appear blocked in stage 1.  Two of the four embryos (Figure 7-a,-b) appear 

normal with abundant yellowing/brown necrotic tissue; The two other embryos are 

abnormal in growth with one showing the same yellowing/browning of tissue (Figure 7-

d), while the second has healthy appearing tissue with only the tip of the scutellum 

showing necrosis(Figure 7-c).  Three additional embryos have appeared to reach an 

abnormal stage 2 when referenced to the frontal view of development diagramed by Abbe 

and Stein (1954).  One of the three embryos show the same yellow/browning tissue 

throughout the embryo (Figure 7-f), while the other two embryos have healthy looking 

tissue with necrosis only visible at the top edge of the scutellum(Figure 7-g).   Another 

embryo (Figure 7-h) appears to have reached Stage 3 with an enlarged embryonic axis, 

along with the scutellum enlarging and expanding; however, the scutellum never 

encroached onto the embryonic axis as in stage 4. The final two mutant embryos (Figure 

7-i, -g) do show the scutellum encroaching onto the embryonic axis as with stage 4 or 

stage 5 normal embryos.  However, the embryonic axis is stunted in its vertical growth. 

The scutellum appears to have continued its growth with the cavity that the scutellar 

groove produces extending further to the top of the scutellum and the edges of the 

scutellar groove encroaching over the embryonis axis.  However, since the embryonic 

axis is stunted in growth the scutellum covers the top portion of the embryonic axis, but 

left room for the embryonic axis to grow into.  There is also noticeable browning of the  
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tissue at the apex of the embryonic axis. On the lower part of the embryonic axis the 

tissue is enlarged and is pushing through the scutellum.  It appears that growth continued 

on the lower portion of the embryonic axis while stopping at the top portion.   

UND-20 

 The majority of the ten mutant embryos for UND-20 are blocked at the coleoptilar 

stage with only two possibly entering stage 1. Two embryos (Figure 8-a, -b) appear to be 

at a coleoptilar stage but without an identifiable coleoptilar ring.  The next two embryos 

(Figure 8-c, -d) look almost identical in appearance with a scutellum extending apically 

and laterally, however there is necrotic tissue at the site where the coleoptilar ring is 

expected.   Three additional embryos (Figure 8-e, -f, -g) look similar to the previous two 

except that they are slightly larger, and the necrosis has expanded to cover a larger 

region.  The next two embryos have browning tissue, although no strong necrotic region 

can be identified.  One is in late coleoptilar stage (Figure 8-h) and is further enlarged than 

the previous three embryos.  The second embryo has an enlarged suspensor or RAM and 

appears to be at stage 1 (Figure 8-i) The last embryo (Figure 8-j) is very large, has an 

enlarged suspensor and resembles stage 2 of development in size, however there is no 

coleoptilar ring or embryonic axis present. In seven of the embryos (Figures 8-d to 8-j) 

the lower suspensor or possibly RAM appears enlarged; it may have continued growth.  

All embryos given stages beyond the coleoptilar stage have not been verified by 

sectioning and are only in reference to frontal development as indicated by Abbe and 

Stein (1954).  
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UND-21 

 Most of the ten UND-21 mutant embryos are blocked at the transition to 

coleoptilar stage and show necrosis throughout the embryo.  The two youngest embryos 

are in an early transition stage (Figure 9-a, -b), and both show necrosis beginning at the 

apical end of the embryo proper.  One embryo (Figure 9-c) is blocked at the transition 

stage with necrosis in the apical end of the embryo proper which continues toward the 

suspensor on the external lateral surface.  The next four embryos (Figure 9-d, -e, -f, -g) 

have grown into a mid-transition stage and are no longer “ice-cream cone” shaped, but do 

not resemble the coleoptilar stage in shape either.  All four are also entirely necrotic and 

appears as a mass of black cells.   The last two mutant embryos show abnormal growth.  

Both embryos have a coleoptilar ring but don’t resemble any normal stage of 

development.  The tissue of both embryos appear as though the scutellum was hindered 

in growth apically, but the lateral regions on both sides of the embryonic axis appear to 

have continued with growth. One mutant embryo has two protruding regions on either 

side of the tip of the scutellum.  Necrosis is seen in both embryos.  

UND-22 

 Development of the ten UND-22 mutant embryos is blocked from the early 

transition stage or possibly proembryo stage to stage 1.  Four of the embryos have an 

elongated suspensor with an increased diameter (Figure 10-a, -b, -c, -d). The apical part 

of the embryos is rounded and is the same diameter as the region directly below it. The 

lower part of the suspensor in two of these four embryos shows additional enlargement in 

diameter (Figure 10-a, -d).  The apical part of the four embryos has a small region of 

necrosis.  The embryos appear to be in either in a proembryo stage or early transition 
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stage.  Another embryo (Figure 1-e) displays a similar morphology but has a much-

increased thickening of the diameter causing the embryo to appear like a tube; necrosis is 

also present at the top of the embryo.  One embryo in transition stage (Figure 10-f), has a 

bulbous embryo proper with some necrotic tissue at the top of the embryo and the frontal 

face, although most of the embryo is healthy in appearance.    Two other mutant embryos 

(Figure 10-g, -h) are in the transition stage.  The suspensor of both embryos appears like 

healthy tissue, but prominent necrosis can be seen in the embryo proper at the apical 

region and a small region close to the suspensor in both embryos.  The last two embryos 

had reached coleoptilar stage as evidenced by the presence of the coleoptile (Figure 10-i, 

-j).  However, their development had continued, and they resemble embryos at stage 

1with some abnormal growth; verification of leaf primordia was not determined by 

sectioning and only the morphology of the external face of the embryo in relation to 

normal embryos as describe in Abbe and Stein (1954).  

UND-24 

 The ten embryos of the UND-24 mutant are blocked in development at the late 

transition or coleoptilar stage.  Two of the embryos (Figure 11-a, -b) have healthy 

suspensor tissue and the embryo proper has begun to expand apically and laterally.  

Between the tip of the embryo proper and the suspensor there is prominent necrosis in the 

region of the coleoptilar ring and meristematic develop.  Three other embryos (Figure 11-

c, -d, -e) reached the coleoptilar stage with prominent necrosis in the coleoptilar ring and 

surrounding region.  The lower region, where the root meristematic tissue develops, has 

healthy tissue and is enlarged. An additional two embryos (Figure 11-f, -g) have the same 

morphological structure, but there is little or no necrosis in the embryos.  Figure 11-h  
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shows an abnormal coleoptilar stage or stage 1 embryo and has an enlarged suspensor or 

RAM with a abnormally wide apical scutellum.  An abnormal stage 1 embryo (Figure 11-

i) shows growth laterally in the lower scutellum, but the apical growth of the scutellum is 

not equally advanced and appears like it is from a younger stage in development; the 

coleoptile is necrotic, and the surrounding tissue shows some necrosis.  The final embryo 

(Figure 11-j) is in an abnormal late coleoptilar stage to stage 1, but the scutellum has 

grown irregular and has flattened considerably on the apical portion making it difficult to 

distinguish a coleoptilar ring or embryonic axis.  All embryo stages beyond the 

coleoptilar stage have not been verified and are only in reference to frontal development 

as indicated by Abbe and Stein (1954).  

UND-25 

 Development of the embryo of the ten UND-25 mutant embryos was blocked at 

possibly the proembryo stage to coleoptilar stage, due to the size of the embryos all 

possible proembryos are considered transition stage.  Five of the embryos (Figure 12-a to 

12-e) have an elongated suspensor with the apical portion rounded, but not forming the 

typical bulbous embryo proper indicating that the embryos may still be in the proembryo 

stage.  The two embryos (Figure 12-a, -b) blocked earliest in development have healthy 

appearing tissue and Figure 12-b looks as though the lower half of the embryo contains 

purple pigment.   The other three of these first five embryos (Figure 12-c, -d, -e) show 

necrosis throughout.  The sixth embryo (Figure 12-f) blocked in either the proembryo or 

transition stage shows abnormal growth with widening of the suspensor at the base and a 

small area of browning of tissue. The seventh embryo is fully in the transition stage  
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(Figure 12-g) with healthy tissue, although the suspensor is elongated, as with other 

embryos cause by this mutation.  The eighth embryo (Figure 12-h) is blocked at an 

abnormal transition stage and exhibits necrosis in the embryo proper just below the top of 

the embryo.  The ninth and tenth embryos have reached the coleoptilar stage.  The ninth 

embryo (Figure 12-i) has an elongated suspensor with healthy appearing tissue and the 

embryo proper region has developed an expanding scutellum with a coleoptilar ring; the 

scutellum exhibits necrosis above the coleoptilar ring and in the expanding apical region 

above the coleoptilar ring.  The tenth embryo (Figure 12-j) has reached an abnormal stage 

1 with prominent irregular growth of the scutellum.     

UND-38 

 Embryo development of the ten UND-38 mutant embryos is blocked from a 

proembyro stage to stage1 or later. One embryo (Figure 13-a) has developed into an 

abnormal spherical mass which doesn’t resemble any stage of embryo development and 

is presumably in the proembryo stage. Six other embryos (Figure 13-b, -c, -d, -e, -f, -g) 

appear to be in a proembryo or transition stage of development although their 

morphology is variable.  Two embryos (Figure 13-b,-c) have a suspensor in which the 

lower three-quarters is more than double the thickness of the top last quarter. One of the 

embryos (Figure 13-d) has an elongated suspensor and the apical section is rounded with 

signs of necrosis.  The last three (Figure 13-e, -f, -g) of the six mutant embryos have an 

excessively long suspensor reaching the length of a fully-grown embryo, but still is in 

either the proembryo or transition stage; all of the also display necrotic patches 

throughout the embryo. Both embryos in Figure 13-f and 13-g have curled up at the top.  

One embryo (Figure 13-h) reached an abnormal transition stage to coleoptilar stage  
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although no coleoptilar ring is present.  The embryo proper sits upon an elongated 

suspensor and is rectangular in structure with a small protuberance pushing up from the 

center top.  The embryo proper is yellow/brown with patches of necrosis; in contrast the 

suspensor looks to be healthy tissue.  The last two embryos reached the coleoptilar stage 

and although no leaf primordia can be verified the two embryos appear as though they 

have reached more advance stages in reference to the exterior figures provided by Abbe 

and Stein(1954); one seems to be at stage 1(Figure 13-i) and the other at stage 4 or 

5(Figure 13-j).   

UND-39 

 The development of the ten UND-39 mutant embryos was blocked between the 

transition to coleoptilar stage or later.  One embryo (Figure 14-a) had grown an elongated 

suspensor with tissue which appears healthy and may be in late proembryo or early 

transition stage. A second embryo was blocked at the transition stage (Figure 14-b) with 

healthy looking tissue throughout, except for one small spot in the center of the embryo 

proper; the embryo appears enlarged in size. Two embryos that had reached the transition 

stage (Figure 14-c, -d) and had started to progress to the coleoptilar stage with apical 

elongation of the embryo proper; necrosis appeared is in small spots throughout both 

embryos.  The last embryo in the transition stage (Figure 14-e) has progressed much 

farther and appears morphologically closer to the coleoptilar stage although no 

coleoptilar ring can be seen; necrosis is concentrated in two areas in the embryo proper 

with less sever necrosis throughout the embryo proper and partially into the suspensor. 

Six embryos have stopped development in the coleoptilar stage with a variable 

morphology.  One embryo (Figure 14-f) has a necrotic embryo proper which has caused  
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the embryo to appear shriveled, however a coleoptilar ring can still be identified.  Two 

other embryos (Figure 14-g, -h) had reached the coleoptilar stage and have advanced 

toward stage 1 in the appearance of their scutellum morphology; necrosis was present in 

some tissue on the apical area of the scutellum and in several spots, but not very 

extensively.  The ninth embryo (Figure 14-i) was blocked in the coleoptilar stage and had 

healthy looking tissue, but the embryo appearred enlarged similar to of the transition 

stage embryos; some necrosis at the top of the embryo can be seen on the surface.  The 

last embryo (Figure 14-j) is in an abnormal coleoptilar stage; it also has extensive 

necrosis throughout the embryo.      

UND-40 

 The range of development in the ten mutant embryos of UND-40 included a 

necrotic transition or coleoptilar stage up to stage 3 or later.  The two earliest blocked 

embryos (Figure 15-a,-b) are highly necrotic transition stage embryos which appeared to 

be progressing to coleoptilar stage, but the necrosis obscures any surface structures and 

no coleoptilar ring can be distinguished.  The third embryo (Figure 15-c) with a similar 

highly necrotic tissue was in the coleoptilar stage with a coleoptilar ring.  Three other 

embryos that have reached the coleoptilar stage show abnormal growth.  One embryo 

(Figure 15-d) shows a partial invagination separating the embryo into two sections.  The 

smaller sections when examined with a frontal view is positioned in what might be the 

lower left lobe of the scutellum of a coleoptilar stage or later embryo.  The larger section 

comprises the rest of the embryo with the coleoptilar ring present. There is some necrosis 

in the embryo proper, but the suspensor shows much necrosis.  Another (Figure 15-e) of 

these three embryos appears more like a normal coleoptilar stage embryo, but with 
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abnormal growth at the junction of the suspensor and embryo proper; there is some 

necrosis in the embryo proper, but the suspensor is highly necrotic.  The last (Figure 15-f) 

of these three embryos has no suspensor and may be further along than coleoptilar stage 

although leaf primordia were never identified; necrosis is found at the apical part of the 

scutellum, and much of the tissue appeared darkened and unhealthy.  The last four 

embryos had reached the coleoptilar stage but appear to be in late stages of development. 

One was verified to be at Stage 3 or later, by hand dissecting the embryo sagittally and 

viewing the tissue under 40x magnification with the Lieca Wild M3Z brightfield 

microscope.   Two of these embryos (Figure 15-g, -h) appearred to be in stage 1 although 

the internal structures were not viewed for verification.  Another embryo (Figure 15-i) 

with healthy looking tissue appeared to be at stage 4 or later with some abnormal lateral 

growth at the base of the embryo; the presence of leaf primordia wasn’t verified but the 

external morphology matches that of Abbe and Stein (1954).  The last embryo examined 

(Figure 15-j) appeared to be at a stage 5 or 6 when compared to the developmental 

diagram produced by Abbe and Stein (1954) and showed some necrosis or drying of 

tissue on the outer layer of the scutellum; this embryo was cut in half and the internal 

structure did show the presence of leaf primordia, however only three leaf primordia 

could be clearly identified.   

UND-49 

 Embryo development of the ten UND-49 mutant embryos examined was blocked 

from the transition stage to stage 1 or stage 2.  One embryo (Figure 16-a) was elongated 

with a rounded tip without any expanded growth at the tip and may be a proembryo or 

transition stage. Four embryos are very consistent in structure and were in transition stage  
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(Figure 16-b, -c, -d, -e).  All four had a well-developed embryo proper, which had a 

bulbous embryo proper which has begun to extend apically appearing more ovoid rather 

than spherical; no lateral growth indicative of the coleoptile stage can be seen.  Necrosis 

in three of the embryos (Figure 16-b,-c,-d)  was usually on the apical or lateral edge 

where it contacts the endosperm, but only in small surface spots;  necrosis can be seen in 

the endosperm which is in contact with the necrotic regions of the embryo.  The fifth 

embryo (Figure 16-e) has prominent necrosis in cells that when examined in the frontal 

view appear in the peripheral edge of cells extending from the tip of the embryo to the 

suspensor.  The cells in rest of the embryo proper are not necrotic but appear unhealthy.    

The sixth embryo (Figure 16-f) had abnormal growth of both the suspensor and embryo 

proper in which the diameter of both had increase substantially.  The embryo looks 

similar to a bulbous transition stage but did not have a coleoptilar ring.  Three other 

embryos (Figure 16-g, -h, -i) in the coleoptilar stage were very consistent in morphology; 

the scutellum has expanded both apically and laterally and appear to between the 

coleoptilar stage and stage 1 when evaluating their development against frontal view in 

the diagram produced by Abbe and Stein (1954). Two of these three embryos (Figure 16-

g,-h) have healthy tissue with only a few surface spots of necrosis; the third embryo 

(Figure 16-i)  has prominent necrosis in the suspensor extending to the embryo and also 

in the coleoptilar ring.  The last embryo (Figure 16-j) had healthy looking tissue and had 

grown to appear fully developed in size but not morphology.  The embryonic axis was 

more prominent in the frontal view, since the scutellum had not moved over it as in 

normal embryos. The scutellum had a narrow tip with noticeable lateral lobes, in contrast 

to the ovoid appearance of more mature embryos.  When the embryo was cut in half, the 



  

75 

 

cross sections appeared to resemble stage 2 or later from Abbe and Stein (1954), but only 

two leaf primordia could be verified.  

 

Confocal Microscope Results  

Fusion Protein Constructs in Embryo Specific Mutant Lines 

 Eleven of the twelve protein constructs have been crossed into the thirteen emb 

lines focused on in this report (except pYABBY). Additionally, UND-25 does not have a 

cross with the DR5 construct. Plants were grown from the set of 13 emb’s crossed with 

DR5, PIN1, pWUS and TCS.  These plants were either selfed, crossed by or crossed onto 

B73 plants; kernels were collected and fixed with 2.5% paraformaldehyde in a 0.14M 

potassium phosphate buffer and later stored in the 0.14M potassium phosphate buffer.  

The embryos from some of the fixed kernels were used to verify a signal for PIN1 in 

UND-16, UND-17, UND-18, UND-19, UND-21, UND-22, and UND-24 as well as one 

plant with DR5/UND-16.  At least one embryo for each mutant and construct 

combination showed a signal; however, these have not been evaluated to any extent and 

will not be discussed here but summarized in Table 6. 

Summary of Fluorescent Protein Construct Signal in Normal Embryos 

 Ten of the twelve fluorescent protein constructs were able to be examined; only 

TCS and ZmPERI were not. Since not all embryos were carrying the fluorescent proteins 

constructs, these normal embryos were used as controls when identifying signal.    A 

positive result was determined if two or more embryos gave a similar expression and 

appeared to come from the subcellular location characteristic for that respective protein 
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or was indicative of that fluorescent protein construct in images provided on the website 

maize.jcvi.org from which the constructs originated.   A negative result was determined 

by having no expression in a stage of development for a fluorescent protein construct in 

at least five embryos from kernels which were removed from an ear whose plant showed 

resistance to herbicide treatment.  Seven of the constructs showed expression at the 

proembryo stage which corresponds to about 6-7 DAP: PIN1, DR5, PRK, MRE11B, 

ABPHYl1, RAB17, and BES1.  Two constructs, pYABBY and pWUS, showed no 

expression and no material was available for HIS1 at this embryo stage.  The transition 

stage, 8-9 DAP, showed expression in eight of the constructs: PIN1, DR5, HIS1, PRK, 

MRE11B, ABPHYl1, RAB17, and BES1.  Again, pYABBY and pWUS showed no 

expression in transition stage embryos.  The coleoptilar stage embryos, 10-11 DAP, 

showed positive results with eight of the constructs: PIN1, DR5, HIS1, MRE11B, 

RAB17, BES1, pYABBY and pWUS.  Both ABPHYLL1 and PRK had no material 

available to examine for the coleoptilar stage.   Stage 1, 11-12 DAP, was only examined 

in three constructs, PIN1, HIS1, and PRK; all three were positive for expression.  This 

information is summarized in Table 7 and one example for each construct is shown in 

Figure 17.  Two of these constructs, DR5 and PIN1, which are involved in auxin 

movement and response will be examined in more detail below.    

DR5 Signal in Normal Embryos 

proembryo stage to early transition stage: dr5-e1, dr5-e2, and dr5-e3 

 Expression of DR5 is very low in all the embryos resulting in using a minimum of 

1.8µm per slice to capture signals.  The earliest signal observed was in an early 

proembryo (Figure 18.a, 40x, 3.8µm; and 18.b, 63x, 3.8µm) and it can be seen in 
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between the embryo and surrounding tissue, along with cells within the embryo (DR5-

e1).  In Figure 18.a, strong DR5 expression can also be seen in tissue over 50µm away, 

but not in tissue directly surrounding the embryo.  Two Embryos in early transition stage 

can be seen showing signal (Figure 18.c and d, 40x, 5.0µm; and Figure 18.e and f, 40x, 

3.2µm). The first embryo (DR5-e2) shows signal in all of the cells in the slice of the 

embryo proper (Figure 18.c and d). The second embryo (DR5-e3) shows signal in cells of 

the suspensor and most of the embryo proper; but approximately the top quarter of the 

embryo proper lacks any expression (Figure 18.e and f.).    

late transition stage: dr5-e4 and dr5-e 

In late transition stage an embryo, DR5-e4, has expanded apically and is 

asymmetric in appearance from a frontal view with the right side of the embryo having a 

distinctive bulge (Figure 19.a-j and Figure 20.k- n, 2x1 tile, 40x, 2.7µm, 7.09µm, 

42.51µm range).   The surface slice (Figure 19.a &b) and the next slice (Figure 19.c &d) 

into the embryo show strong expression at the apical point of the embryo.  Expression 

can also be seen on the left side of the embryo, although to a lesser extent.  In the third 

slice (Figure 19.e & f), the signal at the tip has increased in area. The signal extends 

toward the base and through the center of the embryo proper to the suspensor; and around 

the center of the embryo proper a more intense signal curves to the left side of the 

embryo resembling a hook. The following slice (Figure 19.g & h) shows a further 

increase of expression at the tip of the embryo.  The expression in the middle of the 

embryo has faded except for the curved hook, with the basal part of the hook showing 

stronger expression. In the next slice (Figure 19.i &j) the tip of the embryo maintains 

roughly the same expression; in contrast the center of the embryo and the base have lost 



  

78 

 

all the expression, except for a weak signal that is directly below the basal part of the 

hook.  In next two slices (Figure 20.k -n), the embryo only shows signal at the tip of the 

embryo, but it is reduced in both area and intensity.  Another embryo, DR5-e5, in a late 

transition stage (Figure 20.o -z, 2.7µm, 3.54µm, 21.26µm range), but further along in 

development is symmetrical and expression has decreased.  The first three slices (Figure 

20.o -t) show expression starting at the tip and with each successive slice the signal 

advances toward the center of the embryo along the midline.  The fourth slice (Figure20.u 

& v) shows that the signal splits near the center of the embryo, where the coleoptilar ring 

forms. The signal goes around the center and closes slightly above the suspensor.  In the 

next two slices (Figure 20.w-z) the signal increases in strength around the center and at 

the base.  

early coleoptilar stage: dr5-e6 

 In early coleoptilar stage (Figure 21. 1.8µm, 9.67µm, 58.0µm range) the embryo, 

DR5-e6, is showing the formation of the region of cells that will become the coleoptile 

and the SAM, although they do not appear differentiated from each other yet.  In the 

surface slice (Figure 21.a), cells bordering the top part of the coleoptile/SAM region 

show expression and there is expression seen in the center of the coleoptile/SAM region.  

In the next two slices (Figure 21.b & c), the signal in the cells bordering the 

coleoptile/SAM region has reduced to only appear in the space between those two 

regions, but the signal in the center of the coleoptile/SAM region has increased in 

strength.  In the fourth slice (Figure 21.d) the coleoptile/SAM region cannot be 

distinguished, and this slice may be below that region, however there is a signal coming 

from the area which corresponds to the coleoptile/SAM region. There is a second signal 
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at the base of embryo proper, near the suspensor.  The fifth slice (Figure 21.e) shows a 

similar signal as the fourth slice, although the signal at the center has changed in shape to 

look like an arc; the signal at the base is still present but reduced in size. Additionally, 

DR5 expression can be seen near the top of the scutellum.  The sixth slice (Figure 21.f) 

has no basal signal. The signal in the center no longer looks like an arc since only the 

most apical region is expressing signal.  Extending from the center the signal moves up 

the midline of the embryo and fans out as it approaches the tip of the scutellum.  The 

final slice (Figure 21.g) has signal coming from the same general regions as the sixth 

slice, although weaker in the center and a slightly different pattern near the tip of the 

scutellum. 

late coleoptilar stage: dr5-e7 

 Late coleoptilar stage, DR5-e7, is larger and the coleoptilar ring is now distinct 

from the SAM (Figures 22 and 23, 3x3 Tile, 40x, 1.8µm slice, 6.55µm interval, 72.0µm 

range). In figures 22 and 23, the brightfield with DR5 expression is above the same slice 

showing only the expression of DR5.   Expression is seen in the center of the SAM and 

the coleoptilar ring (Figure 22.a-h) similar to that in the earlier coleoptilar stage of DR5-

e6.  The signal in the center of the SAM maintains the same size, but changes relative 

location with each successive slice and appears to move to the bottom of the SAM.  

Expression can also be seen prominently at the tip of the scutellum along the edges which 

fades and moves along the lateral edges of the scutellum toward the base. In the fifth slice 

(Figure 22.i & j), the expression in the SAM increases in area and two new areas of 

expression appear. At the base of the embryo near the suspensor expression can be seen 

and at the midline of the scutellum above the coleoptilar ring.  In the subsequent three 
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slices (Figure 22.k-l; and Figure 23.a-d) the expression at the bottom of the SAM 

increases in size to resembles the arc, as seen with DR5-e6, and moves upward toward 

the center of the SAM.  The signal at the base near the suspensor is still present but 

weakens in strength.  The expression from the midline of the scutellum gets stronger and 

broader, while the signal from the lateral edges of the scutellum fade.  The next three 

slices, slice 9 through 11 (Figure 23.e-j), show a loss of expression at the base near the 

suspensor and a further reduction in expression on the lateral edges of the scutellum. The 

expression which looked like an arc has moved further upward but is smaller and no 

longer looks like an arc; The midline expression has extended down and appears to 

connect to the smaller center expression.  With each successive slice from slice 9 to 11, 

the expression from the center, midline and scutellar edge fades that by the twelfth slice 

(Figure 23.k-l) only the very tip of the scutellum shows expression.   

Pin1 Signal in Normal Embryos 

proembryo stage: pin1-e1, pin1-e2, and pin1-e3 

 The first signal for PIN1(Figure 24.a-f, PIN1-e1, 40x, 2.0µm slice, 15.77µm 

interval, 78.83µm range) is seen in a few cells in the interior of a proembryo, one or two 

cell layers below the top of the embryo proper’s outer cell layer.  The expression in a 

slightly older proembryo, PIN1-e2, shows the expression widening and expanding up to 

the outer cell layer, although the strongest signal is still on the interior (Figure 24.g-l, 

PIN1-e1, 40x, 0.9µm slice, 3.62µm interval, 18.09µm range).  The signal from PIN1-e2, 

along with other embryos not shown, indicate that the expression extends from the frontal 

surface of the embryo proper to the opposite side of the embryo.  An embryo in late 

proembryo stage or early transition stage, PIN1-e3, (Figure 25.a-f, 40x, 1.5µm slice, 
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11.15µm interval, 55.76µm range) expression has expanded to cover the top half of the 

embryo proper with expression being observed 66.91µm from the frontal surface.   

transition stage: pin1-e4 and pin1-e5 

The next two embryos are in transition stage: PIN1-e4 (Figure 26.a-h, PIN1-e1, 

40x, 2.0µm slice, 8.41µm interval, 58.56µm range) and PIN1-e5 (Figure 27.a-i, PIN1-e1, 

40x, 2.0µm slice, 9.81µm interval, 78.48µm range).  In the PIN1-e4 embryo surface the 

expression is near the base of the embryo proper, near the suspensor; and expands toward  

ethe center of the embryo proper (Figure 26.a).  As the slices go deeper (Figure 26.b-e) 

into the tissue the signal increases in area apically and laterally, but not basally; the signal 

stays in the center of the embryo and doesn’t reach the surface cells.  In the last three 

slices (Figure 26.f-h), the signal reduces in area a bit and weakens in strength.  The 

nextmbryo, PIN1-e5, shows a similar pattern of expression as PIN1-e4 with the frontal 

surface showing weak expression in the center area of the embryo proper (Figure 27.a) 

with the second slice (Figure 27.b) showing expression at base of the embryo proper near 

the suspensor.  In the next five slices (Figure 27.c-g) the expression increases in area 

similar to PIN1e4, but the apical expression has extended to the tip of the embryo proper.  

In Figure 27.f and g, the pattern of expression looks like an “ice cream” cone with the 

bottom of the cone at the center top of the embryo. In the last to slices (Figure 27.h & i) 

the signal reduces in strength, but not area or shape.    

transition stage: pin1-e6 

Another embryo, PIN1-e6 (Figure 28 and 29, 40x, 0.9µm slice, 10.37µm interval, 

72.59µm range), in transition stage has a bulbous embryo proper.  The frontal surface 
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(Figure 28.a) shows expression on the apical portion of the embryo and in a prominent 

band crossing the center of the embryo which almost reaches the lateral sides of the 

embryo proper.  The second slice (Figure 28.b) shows a reduction in expression at the 

apical portion to the outer layer of cells, but the center band of cells has increased in both 

strength and width.  The third and fourth slices (Figure 28.c & d) still show some 

expression in the apical outer cell layer and the center band has increased in size to a 

circular region.   In the fifth slice (Figure 28.e) the circular region has elongated along the 

apical-basal axis and shows a very strong oval shaped signal.  Additionally, there is a 

weaker signal extending from the oval signal area to the top of the embryo.  The sixth 

(Figure 28.f) and seventh (Figure 29.g) slices show a narrowing of the oval shaped signal 

from both lateral sides and maintains the signal extending up to the apical outer layer of 

cells.  The eighth slice (Figure 29.h) has a weak signal in the same areas as the seventh 

slice.  

late transition stage: pin1-e7 

  Further along in development, PIN1-e7 (Figure 30 and 31) is in late transition 

stage and the embryo proper has begun to form the lobes seen in the coleoptilar stage.  

PIN1-e7 (Figure 30.a-f and Figure 31.g-i, 1x2 tile, 40x, 0.9µm slice, 9.04µm interval, 

79.59µm range) is oriented as a rear view of the embryo with the first slice (Figure 30.a) 

possibly being above the embryo since the signal is not clear.  The second slice (Figure 

30.b) is on or near the surface and shows expression on the apical portion of the embryo 

proper, which extends down the midline to the center of the embryo proper.  There is also 

a faint signal coming from the outer edge around the embryo and can be seen in figure 

30.b at the base of the embryo proper near the suspensor.  In the third slice (Figure 30.c), 



  

83 

 

the signal remains along the outer edge of the embryo and a weak signal can be seen 

extending down to the center of the embryo.  The fourth (Figure 30.d) and fifth (Figure 

30.e) slices show strong expression extending from the bottom to the top of the embryo 

proper in an ovoid shape similar to that of the sixth (Figure 30.f) and seventh (Figure 

31.g) slices in PIN1-e6.  Expression in the top outer layer of cells can still be seen in both 

the fourth and fifth slices of PIN1-e7, but the expression seen in bottom of the embryo 

proper has stopped and this may be because these slices are further to the interior.  The 

sixth slice (Figure 30.f) has maintained the expression from the center of the embryo to 

the lower part of the embryo. However, most of the expression in the upper part of the 

embryo proper has diminished but still shows enough expression to be contingent with 

the top outer layer of cells.  The seventh slice (Figure 31.g) shows weak expression in the 

outer layer of cells but has lost expression in the other areas of the upper portion of the 

embryo proper.  Expression in the lower portion of the embryo proper is in the center of 

the embryo and tapers as it extends to the bottom of the embryo proper.   The eighth slice 

(Figure 31.h) and 2x2 tile images of the same slice (Figure 31.j & k) show a central 

“mushroom” shaped pattern.  As can clearly be seen in figure 31.k, the outer layer of 

cells at the top of the embryo still show expression with the expression fading along the 

lateral outer cell layer of the embryo.  The ninth slice (Figure 31.i) no longer shows 

expression in the lower area near the base of the embryo proper where the stem of the 

“mushroom” appeared in the eighth slice.  The top portion of the “mushroom” still shows 

expression, but it is weaker and may corresponds with the area of expression seen in the 

first (Figure 30.a) and second (Figure 30.b) slices of PIN1-e6.  As with the other slices, 

expression can still be seen in the outer apical cells of the embryo proper.   
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late transition stage forming shoot apical meristem: pin1-e8 and pin1-e9 

 The next embryo, PIN1-e8 (Figure 32 and Figure 33.c-d), resembles a coleoptilar 

stage embryo in shape, but the coleoptilar ring and SAM have not fully formed.  PIN1-e8 

is shown with six slices in figure 32 (Figure 32.a-f, 2x2 tile,40x, 0.9µm slice, 9.76µm 

interval, 48.80µm range) and a close up of the surface slice figure 32.a in figure 39.c and 

d.  The surface of the embryo shows a morphologically distinct set of cells corresponding 

with the PIN1 signal which can clearly be seen when comparing figure 33.c, a brightfield 

image with the PIN1 signal, to an image of the brightfield only figure 33.d.  A second 

embryo, Pin1-e9 (Figure 33.a-b, 0.9µm slice, 40x), shows the same type of relationship 

between the PIN1 signal and the morphological differences between the cells.  The 

surface slice (Figure 32.a) also shows very weak expression in cells slightly above the 

prominent PIN1 signal in the center and there is a weak signal coming from the outer 

layer of cells at the apical region of the scutellum.  The second slice (Figure 32.b) shows 

expression coming from the same general area, but the signal has expanded slightly to the 

right of the embryo and has expanded to the bottom of the embryo proper.  In the second 

slice (Figure 32.b) the apical region of the scutellum and the region slightly above the 

more prominent signal area still have cells with weak signals.   In the third slice (Figure 

32.c) the signal broadens to form an oval shape similar to younger embryos; the signal 

reaches from slightly above the morphologically differentiating cells to the bottom of the 

embryo proper.   A signal can also be seen from a thin band of cells extending up the 

midline from the top of the oval shaped signal to the top of the embryo and then on the 

outer layer of cells on the top of the embryo.  The fourth slice, (Figure 32.d), shows a 

slight broadening of the central oval shaped signal.  The midline signal has also 
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broadened and increased in strength, although the outer layer of cells has maintained the 

same intensity of signal as in the other slices.  The signal is reduced in the fifth slice 

(Figure 32.e) and has receded slightly from the base.  The sixth slice (Figure 32.f), shows 

signal in the outer layer of cells at the top of the embryo similar to intensity as other 

slices and an even fainter signal extending partially toward the interior of the embryo. In 

both PIN1-e8 and PIN1-e9, the signal is stronger in all slices from the side of the embryo 

that is showing morphologically different cells.   

late transition stage, SAM formed, no coleoptile ring: pin1-e10  

 In the next two embryos, PIN1-10 and PIN1-11(Figure 34), the group of 

morphologically distinct cells in PIN1-8 & 9 have reached to the other half of the embryo 

and a distinct division between these cells with surrounding cells which appear as a half-

oval of cells in the center of the embryo; these cells are probably the beginnings of the 

SAM.  The younger embryo PIN1-10 (Figure 34.a-f, 2x2 tile, 40x, 0.9µm slice, 12.1µm 

interval, 60.49µm range), shows clear expression in the apical region of the scutellum 

(Figure 34.a).  The pre-SAM show expression which extends to the cells below the pre-

SAM region.  Expression from the more basal cells then circle up and are expressed in 

cells that are where the coleoptilar ring forms. The second slice (Figure 34.b) shows 

increased intensity in expression for cell in the outer cell layer of the apical region of the 

scutellum and has lost expression in cells further interior, except for those in the midline 

of the embryo.  The pre-coleoptilar ring cells and pre-SAM cells still show expression 

although weaker in strength. The cells directly below the pre-SAM region increased in 

signal and have broadened in area along as well as extending down the midline to the 

base of the embryo proper.  The next three slices (Figure 34.c, d, &e) have very similar 
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expression patterns that look similar to younger embryos already discussed.  There is a 

large oval shaped signal in the center of the embryo, with a band of cells in the midline 

extending up to the top of scutellum. The expression from the midline band of cells 

widens out as it reaches the top of the scutellum and the expression continues in the outer 

layer of cells along the lateral edges to half-way down the embryo.  The sixth slice 

(Figure 34.f) still shows expression in the other layer of cells at the top of the scutellum 

along with a weak signal coming from the midline band of cells and a faint signal from 

some central cells.   

late transition stage, SAM formed, no coleoptile ring: pin1-e11 

 The second embryo showing the pre-SAM cell morphology but lacking the 

coleoptilar ring is PIN1-e11 (Figure 34.g-l, 2x2 tile, 40x, 1.8µm slice, 9.67µm interval, 

48.3µm range).  In the first slice (Figure 34.g), the pre-SAM region no longer appears a 

half-oval, but a three-quarters oval.  Unlike younger embryos, there is no signal coming 

from the apical region of the scutellum or the outer layer of cells.  The signal is localized 

around the pre-SAM region and the pre-coleoptile cells.  Within the pre-SAM region the 

expression is restricted to a smaller region that resembles an oval with an apical-basal 

orientation.  The lower portion of the pre-SAM signal has stronger expression than the 

apical portion.  The cells surrounding the pre-SAM region show expression stronger at 

the base and weaker in the more apical pre-coleoptile region.  The second slice (Figure 

34.h) shows an increase of expression in the lower area surrounding the pre-SAM region, 

but no longer shows any expression in the upper most portion of the pre-coleoptile 

region. The oval shaped expression in the pre-SAM region had reduced in size to a 

smaller circular area with stronger expression and is positioned at the bottom of the pre-
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SAM region.  The third slice (Figure 34.i) still shows expression coming from the same 

area as the second slice, although the signal coming from the cells in the pre-coleoptile 

region doesn’t extend as far apically.  The pre-coleoptile signal is stronger on the lower 

lateral edges of the signal and the circular region in the pre-SAM region still shows 

strong signal.  In addition, a faint signal extending basally and contiguous with the rest of 

the signal reaches to the base of the embryo proper. The fourth slice (Figure 34.j) has a 

reduced expression in the pre-coleoptile region, although clear expression can still be 

seen from the two lateral sections that had strong expression in slice three.  The strong 

circular signal at the base of the pre-SAM region is now indistinguishable from the signal 

extending to the base of the embryo proper and forms an oblong signal.  Between the 

center of the embryo and the top of the scutellum a weak signal is coming from some 

cells stretching from the left to the right side of the embryo.  This signal may be at the 

edge of the embryo, but the tissue closer to the confocal microscope lens may be 

obstructing the view. The fifth slice (Figure 34.k) shows an expanding of the oblong 

signal laterally and apically.  The basal end of the signal shows a weakening of the signal 

in the center which appears like a ring of strong signal around a center of weaker signal.  

The strongest portion of the signal is in the center to apical section although not at the 

utmost apical end of the signal.  The apical portion of the signal is in the center of the 

embryo proper and from there a weak signal extends further upward along the midline of 

the embryo into the scutellum. The signal widens to form an arc and increases in 

expression; the arc may be at the apical edge of the embryo. The sixth slice (Figure 34.l) 

has signal coming from the same region as the fifth slice, however the lower oblong 

section has weakened in intensity.  Also, the signal from the oblong signal to the apical 
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end of the scutellum has widened and increased in intensity.   A seventh slice, not shown, 

had expression in the same area but much weaker.  Notably, this is the first embryo to not 

display a large oval signal indicative of all embryos from PIN1-e5 to PIN1-e10.    

coleoptilar stage: pin1-e12 

 The first embryo observed to have a coleoptilar ring is PIN1-e12. A Z-stack of the 

entire embryo shows the expression of PIN1 in figure 35 (Figure 35, 40x, 3x3 tile, 0.9µm 

slice, 7.11µm interval, 64.00µm range) and the signal around the SAM/coleoptilar ring is 

shown enlarged in figure 36 (Figure 36, 40x, 3x3 tile, 0.9µm slice, 7.11µm interval, 

35.55µm range) for the first six slices of the Z-stack from figure 35.  The expression is 

localized to the SAM and coleoptilar ring in the first two slices (Figure 35.a & b).  The 

first slice is of the frontal surface and figure 36.a shows the brightfield view, while figure 

36.b shows the signal only.  In figure 36.a, the SAM and coleoptilar ring have shrunk to a 

smaller circular structure than in younger embryos.  In figure 36.b, the entire coleoptilar 

ring shows strong expression with the strongest expression coming from the upper lateral 

portion of the ring.  The SAM shows a strong expression at the middle base of the 

structure with weaker expression extending up and around in the outer layer of perimeter 

cells of the SAM.  At the top of the SAM, expression has widened and is in all cells with 

a stronger expression in a few cells in the center top.  Finally, there is weak expression 

connecting the expression in the top cells to the basal cells leaving two small sections 

with no expression in the center region between the perimeter and midline of the SAM.  

The second slice (Figure 36.c) has a reduction in expression in the top portion of the 

coleoptilar ring until the two upper lateral edges are reached which still show strong 

expression; the width of the coleoptilar ring’s expression has also narrowed.  The SAM 
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shows increased expression in the basal portion but has lost expression in the lower cells 

of the perimeter.  The entire upper half of the SAM shows signal and expression is 

coming from the upper portion of the two regions previously not showing expression.  

The third slice (Figure 35.c) maintains expression in the coleoptilar ring and the SAM but 

has been reduces in both.  Figure 36.d shows that all expression in the upper part of the 

coleoptilar ring is gone, but the two upper lateral regions still shows strong expression.  

There is still strong expression coming from the lower region of the SAM. Expression 

from the upper most region of the SAM is gone, but the center of the SAM shows 

expression which extends to the base of the SAM.   Also, weak expression appears in the 

basal portion of the embryo directly below the coleoptilar ring and in the midline of the 

upper scutellum, which can be seen in both figure 35.c and 36.d.  The fourth slice (Figure 

35.d), shows increase strength of expression in the midline of the upper scutellum which 

reaches to tip of the scutellum and widens to a few cells on either side of the midline; 

however, there is a gap in signal from the coleoptilar ring signal and the bottom of the 

midline signal in the scutellum.  The basal signal has also increased in strength and 

resembles a “lightbulb” in shape with the wider portion at the base of the embryo near the 

suspensor.  The signal around the coleoptilar ring is further reduced and in figure 36.e it 

shows that the coleoptilar ring expression has reduced in area to the lateral edges and a 

weak expression in cells in the lower region.  The expression in the SAM has moved 

more basal and is contiguous with the “lightbulb” signal; the area at the base of the SAM 

with the most intense signal is now part of a larger intense signal which extends further 

toward the base of the embryo. The third or fourth slice may be below the SAM and the 

expression may not reflect expression in the SAM.   In the fifth slice (Figure 35.d) the 
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signal from the midline of the scutellum has increased in strength but is in the same area.  

The bulb shaped signal at the base of the embryo has a weaker signal in the center of the 

bulb with a perimeter of stronger signal. The coleoptilar ring (Figure 36.e) only has signal 

at the very lower lateral edges and the signal from the “lightbulb” has widened although 

it has not moved further up. The midline expression appears to have reached where the 

top of the coleoptilar ring is present in more shallow slices.  The sixth slice (Figure 35.f 

and Figure 36.g)) has lost all the coleoptilar ring signal and may be in tissue beneath the 

coleoptilar ring.  The “lightbulb” shaped signal at the base of the embryo looks the same 

as in slice five, and the midline expression in the scutellum has further increased in 

strength as well as moved slightly closer to the “lightbulb” signal. The seventh slice 

(Figure 35.g) shows that the midline expression has reached from the tip of the scutellum 

to the “lightbulb” shaped signal.  The eight slice (Figure 35.h) maintains much of the 

same signal as the seventh, but the lowest portion of the “lightbulb” no longer is showing 

signal.  The ninth slice (Figure 35.i) is further reduced in expression, although the 

midline expression still reaches from the tip of the scutellum to the middle of the embryo 

where the strongest expression remains.  The tenth slice (Figure 35.j) shows the faintest 

of signal from the same general area as that of the ninth slice.   

stage 1: pin1-e13 

 In the embryo PIN1-e13, 12 DAP , the development of the embryo has reached 

Stage 1: the SAM, first leaf primordia and coleoptilar ring are shown in figure 37 (Figure 

37, 40x, 3x3 tile, 0.9µm slice, 10.04µm interval, 110.45µm range).  The first slice (Figure 

37.a) only indicates expression at the very tip of the first leaf primordium. The second 

slice (Figure 37.b) still shows expression at the tip of the first leaf primordium, but also at 



  

91 

 

the base of the first leaf primordium and along its edge where it contacts the coleoptilar 

ring. The SAM, which is situated above the leaf primordium and below the coleoptilar 

ring shows expression.  A faint signal can be seen in the center of the upper portion of the 

coleoptilar ring.  The third slice (Figure 37.c) shows expression in the first leaf 

primordium in the same area, but slightly further to the base; also the structure of the leaf 

primordium can be seen as two small bumps on both sides of the SAM of which show 

some expression.  The SAM shows expression.  The coleoptilar ring has strong 

expression at the base of the first leaf primordium, but also expression can be seen around 

the entire ring.  In the fourth slice (Figure 37.d), the first leaf primordium no longer 

appears to be over the SAM, but resembles a “U” in which the SAM is place inside and 

the “bumps” from slice three are the top of the “U”.  There is expression in the coleoptilar 

ring as before with a stronger signal at the upper lateral edges and the where the base of 

the first leaf primordium and coleoptilar ring meet.  A small strong circular signal is 

coming from the first leaf primordium directly below the SAM, but still above the 

coleoptilar ring.  Additional weak signals can be seen at the top of the SAM and out of 

each “bump” on either side of the SAM.  The fifth (Figure 37.e) and sixth (Figure 37.f) 

slices show the same pattern of expression as the fourth slice, but the signal in the 

coleoptilar ring at the base of the first leaf primordium gets progressively weaker.  Also, 

the coleoptilar ring’s signal in the upper lateral sections moves progressively to the base 

along the arc of the coleoptilar ring and weaken at the top of the coleoptilar ring; as does 

expression in the two “bumps” of the first leaf primordium.  The strong expression at the 

base of the leaf primordium maintains its strength, but it also moves basally. Expression 

in the SAM weakens in the fifth slice and further weakens in the sixth slice but covers the 
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whole SAM in the sixth slice.  The seventh slice (Figure 37.g)   has lost all expression in 

the lower coleoptilar ring below the SAM and first leaf primordium and has lost 

expression in the upper portions of the lateral signals. The expression in the first leaf 

primordium has moved further to the base and is contiguous with the SAM signal, which 

extends up to near the top of the SAM. The strong signal at the base of the first leaf 

primordium is still present, and a weak signal is appearing even further toward the 

bottom of the embryo.   In the eight slice (Figure 37.h) the lateral coleoptilar ring signal 

appears to move further to the base of the coleoptilar ring and the signal at the bottom of 

the first leaf primordium is still prominently strong.  The signal in the area of the SAM 

and first leaf primordium look more like an extension of the more basal “bulb”-like 

signal, although noticeably there is a lack of signal where the coleoptilar ring would be 

located.  In the ninth slice (Figure 37.i), the “bulb” shaped signal is stronger and still 

extends into the SAM, but only on the inner edge or the first leaf primordium.  The lateral 

signals of the coleoptilar ring have moved further to the base and flank the larger signal; 

notably there is an increase in signal in the region where the basal coleoptilar ring would 

be located. In the tenth through the twelfth slice (Figure 37.j, k & l) the “bulb” shaped 

signal remains roughly the same in strength and area but is no longer showing signal in 

the SAM region.  However, the lower coleoptilar ring area now shows signal which is 

contiguous with the lateral signals in the tenth slice (Figure 37.j).  The signal along the 

coleoptilar ring is further reduced in area by losing expression in the most lateral regions 

in the eleventh slice (Figure 37.k) and more so in the twelfth slice (Figure 37.l).  A weak 

signal in the midline, similar to embryo PIN1-e12, was first seen in a slice (not shown) 

between the tenth and eleventh slice.  The embryo was quite large, and no signal was 
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obtained which was deeper into the embryo but may be due to the amount of tissue 

obscuring the signals.      

DR5 and PIN1 Expression in Late Transition Stage wtih SAM Present 

 An embryo with both PIN1 and DR5 present (which are involved with auxin) was 

produced with both signals shown in figure 38.  (Figure 38, 2x2 tile, 40x, 1.8µm slice, 

9.67µm interval, 48.3µm range). The distribution of DR5 and PIN1 in this embryo has 

already been discussed separately as DR5-e5 (Figure 21) and six of the seven slices were 

discussed as PIN1-e10 (Figure 34.g-l), therefore this section will only address their 

expression in relation to each other. In the first slice (Figure 38.a) PIN1 expression is in 

both the pre-SAM region and the pre-coleoptilar ring region. The DR5 expression is seen 

only faintly in the middle of the pre-SAM region and only in the upper lateral regions of 

the pre-coleoptilar ring.  The DR5 expression in the upper lateral regions is wider than 

that of the PIN1. In the second slice (Figure 38.b) PIN1 and DR5 both are still expressed 

in the center of the pre-SAM region.  PIN1 is still seen in the pre-coleoptilar ring, but 

DR5 can now only seen in the border that separates the pre-SAM region from the upper 

pre-coleoptilar ring area.  In the third slice (Figure 38.c) PIN1 expression has expanded to  

the base of the embryo proper and DR5 is also seen at the base, but only a small region at 

the most basal area.  DR5 and PIN1 both are showing the strongest expression of each in 

the lower center of the pre-SAM region.  PIN1 still shows expression in the lower part of 

the coleoptilar ring. In the fourth slice (Figure 38.d), PIN1 was expressed in the upper 

scutellum with a reduction in expression in the pre-coleoptilar ring. PIN1 and DR5 have 

increased in expression in the area reaching from the lower edge of the pre-SAM region 

to the base of the embryo proper.  However, DR5 shows a gap in expression where PIN1 
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expression weakens and appears at the utmost basal portion of the PIN1’s range of 

expression; the DR5 expression here is notably stronger than the PIN1.  The fifth slice 

(Figure 38.e) shows that the apical portion of the scutellum has strong PIN1 expression 

and DR5 has begun to be expressed in the upper midline area with weaker expression 

extending toward the top edge of the embryo. Expression for PIN1 in the lower region of 

the embryo resembles a “bulb” with a reduction of expression in the middle of the lower 

portion. DR5 shows the strongest expression in the upper portion of this “bulb” and, as 

before; has a gap in expression, before showing strong expression at the base of the PIN1 

expression region; the expression of DR5 then extends further basally toward the region 

between the embryo and suspensor, although expression in the suspensor could not be 

determined. The sixth slice (Figure 38.f), shows that the PIN1 expression has reached 

from the “bulb” region up the midline of the scutellum to just below the top of the 

embryo. DR5 expression is lost in the most basal region of the embryo with the strongest 

expression at the top of the “bulb” which is in the center of the pre-SAM region. DR5 

expression then follows the midline and coincides with PIN1 expression, except that two 

portions of the signal extend up to the outer layer of the embryo.  In the seventh slice 

(Figure 38.g) PIN1 maintains expression the same area as in the sixth slice, but the has 

decreased in strength.  In Addition, the upper portion which has formed an arc and is 

parallel with the top edge of the embryo has expanded laterally. DR5 has also maintained 

expression in the same area but has expanded expression at the top of the embryo and is 

coming from more cells in the outer layer of cells, although only mainly in two main 

areas.    
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CHAPTER IV 

DISCUSSION 

Comparison with Previous Screening of Embryo Specific Mutants 

 The generation of emb mutants in this report was accomplished by chemical 

mutagenesis using EMS and has produced different results from the Clark and Sheridan 

(1991) results using Robertson’s Mutator maize stocks. Clark and Sheridan reported that 

out of 1000 self-pollinated ears, 51 emb mutations were identified in which at least 45 

were independent mutation events resulting in a frequency of 4.5%.  In contrast, the EMS 

mutagenesis generated 30 selfed ears with an emb segregating out of 238 ears resulting in 

a 12.6% mutation frequency.  In comparing these two results, it is apparent that the EMS 

treatment can generate almost three times the amount of emb mutants as is generated 

using Mutator transposons.  The use of transposons may limit the gene loci that can be 

interrupted by transposition events, since the transposon must both move and have a basis 

for the target gene.  Genes in which a transposon is not close by may have a decreased 

probability of transposon insertion.  In contrast, EMS mutagenesis requires that the gene 

only contain a G-C nucleotide pairing in the gene which when changed to an A-T 

nucleotide pair will result in a mutation. In addition, EMS acts on the entire genome 

which allows for the mutation of virtually all genes.   As shown in the results reported 

here, EMS is effective at generating a large number of emb mutations.   
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 The segregation frequency for the emb phenotype on self-pollinated ears for the 

57 emb mutants ranged from 11% to 38.9% with an average of 22.3% for all ears, which 

indicates single-gene Mendelian inheritance.  This is similar to the Clark and Sheridan 

(1991) Mutator transposon results which ranged from a 10% to 29% segregation 

frequency; only four emb’s from the EMS treatment were above 29%.  Clark and 

Sheridan reported that 12 of the mutants had a low segregation frequency which they 

stated were those between 10% and 18% emb segregation. Likewise, the EMS treatment 

also resulted in 12 of the emb mutants segregating between 10-18%.    

Germination 

 The low germination of the frequency of most mutants indicate that many of  the 

genes that result in the emb mutant phenotype may be required for normal development 

from the proembryo stage oneward,  In addition, some mutants have been identified to 

form embryos that are further along in development, as with UND-19 or UND-40, and 

may have problems with establishing the conditions for late SAM development, or 

germination.   

Mutation Frequency and Complementation Tests 

The complementation test resulted in only two of the 24 unique combinations 

failing to complement each other and therefor are allelic: UND-1 and UND-10; UND-4 

and UND-9.  Since the crosses were selected based on similar phenotype the results are 

not entirely unbiased.  However, the majority of the combinations tested failed to 

complement and with the high frequency of mutation rate observed this may indicate 

hundreds of loci which may produce the emb phenotype when mutated.  
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Most Embryos are Blocked in Phase 2 

Normal embryo development has been described in nine stages by Abbe and Stein 

(1954) and in three developmental phases as described by Clark and Sheridan (Clark and 

Sheridan, 1991; Sheridan and Clark, 1993).  Thirty-four emb mutants have been 

evaluated of which the 13 emb mutants described in this report are represented by 130 

embryos, these were categorized according to Abbe and Stein (1954) and are presented in 

Table 5.  Since Table 5 is a reprinted from Clark and Sheridan (1991), the three 

developmental phases are presented in reference to the nine stages of development by 

Abbe and Stein (1954).Although the delineation between the first and second phase of 

Clark and Sheridan categorization divides the transition stage embryos into early 

transition stage which is in the first phase and late transition stage which is in the second 

phase. The second phase ends with the differentiation of the first leaf primordium and 

coincides with stage 1 of Abbe and Stein (1954), while the third phase includes stages 2 

through stage 6.  

In the two Clark and Sheridan reports, they categorized the 51 emb mutants into 

the three phases which resulted in a distribution of 12 in the first phase, 29 in the second 

phase and 10 in the third phase.  Using their guidelines, the 13 embs described in detail 

here and the additional 21 emb, include in the Brunelle, Clark and Sheridan (2017) report, 

would divide the embryos as: 6 in the first phase, 25 in the second phase and 3 in the 

third phase.  The categorization for the Brunelle, Clark and Sheridan material was based 

on which phase was best represented by each emb, and was determined by 5 or more 

embryos in that phase. In comparing these results, it is obvious that the majority of 

embryos are blocked in the second phase; 56.8% in Clark and Sheridan, and 73.5% in 
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Brunelle, Clark and Sheridan. The high proportion of embryos blocked in the second 

phase may indicate that there is an abundance of processes involved with SAM, 

coleoptile, and primordial leaf formation, as well as morphogenesis of the scutellum.    

Many Different Phenotypes 

A more detailed look at the 13 emb embryos presented here than described in 

Brunelle, Clark, and Sheridan 2017 show that 36 embryos were blocked in the first phase, 

82 embryos were blocked in the second phase, and 12 were blocked in the third phase.  

The majority of those embryos blocked in the first phase, 30 embryos, appear to be at the 

late proembryo to early transition stage with an elongated suspensor. This mutant 

phenotype occurred in UND-17, UND-22, UND-25, and UND-38.  The genes that these 

mutations are in may be involved with the establishment of the protoderm or in the shift 

from radial to bilateral symmetry which marks the change from a proembryo to a 

transition stage (Randolph, 1936).  

Two other embro specific mutants, UND-20 and UND-24, both show a uniform 

block at a late coleoptilar stage, where the scutellum has grown apically, but doesn't 

appear to have grown as much laterally.  They also both have either an enlarged 

suspensor or the RAM was established and wasn’t hindered in development and reached 

maturity.  Additional examination of the two emb mutants is needed such as sectioning. 

This may indicate that a gene or subset of genes may be involved in the apical expansion 

of the scutellum apart from the lateral expansion.  

Embryo UND-49 shows an interesting divide; six of its embryos stopped in a 

transition stage with a bulbous embryo proper and the other four embryos are at a late 
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coleoptilar stage or near stage 1 with one a verified stage 2 embryo.  The gene that the 

mutation is in could be involved in the establishment of the oblique meristematic axis 

(Randolph, 1936). However, since there are four embryos that appear to be blocked in 

latter stages, which have established oblique meristematic axis, then there may be other 

developmental processes occurring that allow for the further development of the embryo.  

The gene which the UND-49 mutation is in may also be required for scutellar 

development.  The first six embryos are blocked at the point in development prior to the 

scutellum expanding apically and also forming the lateral lobes. In addition, the four 

embryos in the later stages all appear with a scutellum resembling a coleoptile shape 

instead of becoming ovoid.  This morphology is even present in the largest embryo which 

has been confirmed to be in at least stage two.   

Three embryos, UND-16, UND-18, and UND-39, all show a majority of their 

embryos in a later transition stage or early coleoptilar stage, where the scutellum has 

formed.  In UND-16 the embryo is mainly in the transition stage and only forms a 

SAM/coleoptilar ring. UND-18 and UND-39 do attain coleoptilar rings, but never 

develop their scutellum much past the younger structure and still have a thin suspensor.   

UND-40 had three very necrotic embryos in the transition or coleoptilar stage, 

three similar looking embryos in the later coleoptilar stage that appear to have some 

necrosis, and four embryos that appear to be in stage1 to stage 4 with less necrosis or 

none.  The UND-40 embryo mutants may be needed in at different points in development 

which correspond with each of the stages for which it is blocked.  

UND-21 has seven of its mutant transition stage embryos with strong necrosis 

throughout the embryos.   Three addition embryos are not highly necrotic but are similar 
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in structure.  They have not progressed as far in necrosis but were still blocked in 

development. Since the mutation results in a highly necrotic phenotype the lack of a 

functional product not only stops the development of the embryo, but triggers cell death. 

The UND-21 mutation may therefore be in a gene which is very important in advancing 

into the coleoptilar stage. Additionally, UND-40 has two mutant embryo (Figure 15-a nd-

b) that show very similar phenotype to the seven highly necrotic transition stage embryos 

of UND-21 and may be both involved in the same processes.     

The last emb mutant UND-19 is the only one of the 13 emb mutants in which all 

of the mutant embryos appear to have advance past the coleoptilar stage and into the later 

stages, however, this is based only on frontal view morphology and hasn't been internally 

verified by identification of primordial leaves. The UND-19 mutation may be in a gene 

that doesn't activate until after the establishment of the first leaf primordia, which allows 

for the additional growth and development. However, it may also be needed for growth or 

development. UND-19’s germination test resulted in zero germination and the two 

embryos that appear furthest along in development have a stunted embryonic axis; these 

two instances may allude to a problem in the SAM’s ability produce a viable plant.     

Normal Embryo Development and Fluorescent Proteins 

 In order to understand how development is affected in emb mutant embryos it is 

not only useful to look at the morphology of the embryos, but also their physiological 

processes.  The thirteen protein constructs which were crossed into the emb lines allow us 

to observe processes which cannot be seen by morphological analysis alone.  When 

comparing the expression patterns of the eleven fluorescent protein constructs, which 

were examined for normal embryos, a few observations are worth noting.  First, the 
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expression patterns for some of the fluorescent proteins are similar at younger stages as 

shown in the Figure 17 of images e, g, and h, but diverge as the embryo matures (not 

pictured).  Second, expression in tissues, like the SAM, can display similar patterns of 

expression as with MRE11B in Figure 17.j and PIN1 in figure 36.b, but expression 

patterns in other tissue don’t overlap.  Third, expression in tissue like the SAM can show 

differences in expression, Abphyl1 (not pictured) shows expression in the entire SAM 

and not just the specific patter seen for MRE11b and PIN1.  These differences in 

expression patterns for these eleven proteins indicate that there are multiple processes 

directing tissue formation and differentiation in which the genes that result in the emb 

phenotype may be involved. 

Current and New DR5 Expression 

 DR5 is an auxin induced promoter that reports the presence of auxin in cells and 

tissues and which has not been well studied in maize embryos.  It has been found to be 

expressed in the apical portion of the normal proembryo and in the same relative location 

in the normal late transition stage embryo (Chen et al., 2014).  The research here 

confirms that expression occurs at these locations, but that there is additional expression 

not previously reported.  The first expression detected in this report is at the early 

proembryo stage but may not have originated from the embryo.  It could be residual 

expression from the pre-fertilization embryonic sac, antipodal cells and “sporophytic 

tissues of the nucellus” as reported by Chettoor and Evans (2015).  The next stage where 

expression was detected was in the transition stage, but due to low expression the image 

was originally identified as having no expression.  After verifying that low DR5 

expression which was detected in other stages of development could be seen more clearly 
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if laser strength, slice thickness and contrast settings were increased, these embryos were 

reevaluated with post image capture contrast/brightness settings.  Therefore, the images 

of the transition stage embryo are only of the frontal surface.  Chen et al. (2014), reported 

detecting signal in the endosperm on the adaxial side of the embryo and believed the 

embryo may be the receiving auxin from the endosperm.  They didn’t see any signal in 

the embryo, but the low expression may have been overshadowed by the bright 

endosperm expression.  Further analysis of this stage is needed to determine if expression 

of DR5 is seen within the embryo at this stage.  The next two embryos in Figure 19 and 

Figure 20 are a frontal view of embryos in late transition stage.  The Chen et al. report 

detected apical expression in a late transition stage embryo, however their embryo was 

from a sagittal view which make comparisons difficult.  Also, when viewing expression 

for DR5-e4 the endosperm tissue in the background and the tip of the embryo are 

excessively bright because the contrast was increased to see the DR5 expression in the 

embryo.   In Figure 1 of Chen et al. (2014), the surrounding tissue shows strong 

expression, but the intensity looks much weaker than that seen in Figure 19 and Figure 20 

of this report.  The additional expression of DR5 in the early coleoptilar stage and late 

coleoptilar embryos has not been previously reported.   

Current and New PIN1 Expression 

 PIN1 is localized to the plasma membrane and is involved in auxin efflux 

transport.  PIN1 expression in embryo development has been reported by both Forestan et 

al. (2010) and Chen et al. (2014).  Forestan’s Figure 4 “A” and “B” examples of 

expression starting at the proembryo stage with cells in the interior and appear similar to 

Figure 24 images “a” through “f”, however Figure 24 maybe earlier in development since 
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fewer cells exhibit expression, or it could be that Figure 24 is a frontal view and not 

sagittal views.  Also, expression seen in early transition stage embryos in Figure 24 “g” 

through “l” and Figure 25 looks like Chen et al.’s Figure 1 “O, P, Q, and R”.  The next 

stage of development described by Forestan et al.  is in the transition stage at the 

initiation of the SAM and internally scutellum presented in Figure 4 “D”.  The saggital 

view makes it difficult to match it to one of the embryos in this report, but it would most 

likely be similar to Figure 30.  The embryo PIN1-e7 shows the accumulation of PIN1 on 

the frontal face in a manner similar to Figure 4 “D” in Forestan et al.(2014), along with 

signal in the interior of the embryo which may be developing the scutellum.  In Chen et 

al. (2014) Figure 1 “U” through “W” show a sagittal view of a late transition stage and 

may be close in development to PIN1-e8 in Figure 32 of this report.  You can discern a 

separation of signal toward the front of the signal before it is more solid and stretches the 

along the apical-basal axis of the embryo. Of interest in this embryo (PIN1-e8) and 

another like it (PIN1-e9) presented in Figure 33, the SAM region has started to 

differentiate from the surrounding tissue beginning on the left side of the embryo and 

advancing toward the right side. Forestan et al. (2014) also has a sagittal view of an 

embryo in both the coleoptilar stage and Stage 1.  The frontal views presented in Figures 

35, 36 and 37 of this report verify the same general expression.   

 In both the Forestan et al. (2010) and Chen et al. (2014) PIN1 expression during 

embryo development has a gap in information which begins after each of their images of 

PIN1 at the early transition stage which both coincide with the PIN1-e3 embryo ( Figure 

25) of this dissertation.  The next embryos they report on much further along in 

development. Forestan et al. reports on a transition stage embryo that likely corresponds 
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with the PIN1-e7 embryo (Figure 30 and 31) and Chen et al. reports on a late transition 

stage embryo which may be an embryo between PIN1-e7 and PIN1-e8 (Figure 32).    

This would indicate that the embryos which are shown in Figures 26 through 29 of this 

report present information which has not been reported.  PIN1 appears at the frontal 

surface of embryo PIN1-e4 in transition stage (Figure 26) and widens as you advance into 

the embryo. Could the embryo be already setting up the location for the SAM and 

scutellum differentiation? This signal is maintained in PIN1-e5(Figure 27), but the 

interior signal now extends to the top of the embryo.  The next embryo, PIN1-e6, shows a 

long band across the frontal surface of the embryo (Figure 28 and 29) which could be 

delineating the lower boundary of the SAM across the face of the embryo.   

Another gap in information is between the late transition stage and the coleoptilar 

stage; this corresponds to the time after the SAM develops, but before the coleoptilar ring 

develops.   Embryos at this time in development appear to be in the coleoptilar stage, but 

if you stay strictly to Abbe and Stein’s (1954) categories they are in the transition stage.   

In Figure 34 two embryos are shown PIN1-e7 (images a-f) and PIN1-e8(images g-l).  

Both show that PIN1 is being expressed in the region above the SAM and appears as 

though this is for coleoptilar ring formation.  The interior expression which appears wide 

and globular in PIN1-e7 has reduced in area to focus in the basal portion of the embryo; 

most likely establishing the RAM.    
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CHAPTER V 

CONCLUSION 

 Normal maize embryo development is a complex process that needs to be better 

understood.  The embryo specific mutants discussed here may provide insight into how 

many genes are involved in the processes when evaluating the variety of morphology 

displayed by the 13 emb described.  In light of previous research with both dek and emb 

mutants this research supports the idea that there are likely hundreds of genes involved in 

maize embryo development and even in the emb mutant class alone. 

  This research has shown that the use of EMS increases the occurence of emb 

mutations by nearly three-fold and allows for blanket coverage of the genome. However, 

unlike Mutator, there is no transposon to aid in gene identification and further research 

will be needed to identify the genes of interest.  Further complementation test between 

current emb mutants need to be done and the generation of more embryo-specific mutants 

by additional EMS treatment or planting of current materials will aid in finding more 

mutant alleles.   

 In evaluating the 130 embryos from the 13 emb’s , along with the expression 

patterns of the 10 fluorescent protein constructs, it is clear that the process involved in the 

development of the embryo from the transition stage to the coleoptilar stage is very 

complex.  Evaluation of the PIN1 expression, it shows that there are multiple changes in 

expression for PIN1 as the embryo develops from a proembryo stage to a coleoptile 
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stage.  Each new region that begins expressing PIN1 may require new signals to begin 

expression; as well as signals which direct tissues to stop expression of PIN1.    

Additionally, the nine other fluorescent protein constructs display many changes in 

expression during development and expression pattern which are mostly different from 

each other; again suggesting many genes involved in embryogenesis that need to be 

identified.   In order to evaluate the emb mutants, a more complete set of expression 

patterns from the 12 florescent proteins are needed to distinguish the multiple changes 

during embryo development from transition to coleoptilar stage. 

 The embryo specific mutants produced in this project are a part of an overall goal 

to identify the genes involved specifically in embryo development.  Producing the 

mutations in the W22 inbreed line and crossing them repeatedly into the B73 inbreed line 

has prepared materials for bioinformatics analysis. Both the W22 genome (Spring et al., 

2018) and B73 genome (Schable et al., 2009) are available as references sequences and 

will be used in the bioinformatics analysis to located genes of interest for each emb 

mutant.  The production of additional emb mutants and the use of complementation test 

will be valuable in finding alleles for each emb mutant which will allow for better 

identification of the mutated genes.   

  The discovery of genes that are specific to embryo development is the 

foundational step to understanding the pathways and systems involved in embryo 

development.  As more genes are discovered and their functions determined, the 

development of a Systems Biology for maize embryogenesis becomes possible.  Kernel 

viability, germination, and plant growth are dependent on the genes involved with 

embryogenesis which may be essential in future application of genetic modifications of 
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maize when climate change or overpopulation will demand more food grown in more 

diverse conditions.   
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Protein Description of Activity Subcellular 

location 

DR5 Promoter used to report auxin inducible tissue specific 

expression 

Rough and 

smooth ER 

PIN1 Auxin efflux transport gene involved in plant 

architecture 

Plasma 

membrane 

TCS Synthetic cytokinin reporter  Nucleus 

 

pWUS Transcription factor involved in meristem maintenance, 

most notably as part of the CLAVATA3-WUS feedback 

loop.   

Nucleus 

Abphyll1 A-type cytokinin-induced response regulator involved 

with phyllotactic patterning.  

Nucleus and 

cytoplasm 

BES1 Induced by Brassinoid steroids and is found in growing 

stems and elongating cells.  

Nucleus 

HIS1 Repressor or control element for gene expression 

Chromatin linker protein 

Nucleus 

 

RAB17 

(dehydrin 1) 

A GTPase/GTP binding protein associated with exocytic 

and endocytic organelles and transport vesicles between 

compartments.  

Transport 

between 

recycling 

endosomes 

pYabby14 Transcription factor restricted to the three adaxial tiers of 

cells of the maize embryo and may be involved in 

adaxial/abaxial patterning. 

Nucleus 

 

PRK 

FEA4 

Chloroplast localized kinase involved in the Calvin 

Cycle.  

Chloroplasts 

or 

amyloplasts 

MREIIB DNA repair enzyme located in the nuclei of growing 

tissue 

Nucleus 

 

ZmPeri  bZip transcription factor Nucleus  

 

Table 1. The twelve fluorescent protein constructs with a description of their activity and subcellular 

location.   
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Mutatio

n 

Founder 

Ear 

Percent 

mutant 

kernels 

Source 

Ears for 

germinatio

n test 

Percent 

mutant 

kernels 

(χ2 ) 

Normal kernels emb kernels 

Number 

of 

kernels 

planted 

Number 

of 

seedlings 

Number 

of 

kernels 

planted 

Number 

of 

seedlings 

UND-16 FF609-1 24.4% KK121-11 23.0% 
(0.644) 

25 24 25 0 

UND-17 FF609-3 23.0% KK122-15 27.0% 
(0.644) 

25 24 25 1 

UND-18 HH110-

1 

22.1% KK124-5 19.0% 
(0.166) 

25 25(1w) 25 0 

UND-19 FF610-6 20.3% JJ252-2 18.0% 
(0.106) 

25 24 25 0 

UND-20 FF611-8 23.4% KK105-8 24.0% 
(0.817) 

25 25 25 0 

UND-21 FF614-1 26.3% KK131-4 24.0% 
(0.817) 

25 25 25 0 

UND-22 FF613-5 24.2% JJ266-12 20.0% 
(0.248) 

25 25(1w) 25 1(w) 

UND-24 FF625.1 24.1% KK134-3 25.0% 
(1.000) 

25 24 25 3 

UND-25 FF625-3 23.1% KK135-9 23.0% 
(0.644) 

25 25(2w) 25 3 

UND-38 GG293-

9 

34.0% HH494-2 24.0% 
(0.817) 

25 25(3w) 25 0 

UND-39 GG294-

11 

28.8% KK113-4 26.0% 
(0.644) 

25 25 25 0 

UND-40 GG295-

3 

21.0% KK139-2 18.0% 
(0.106) 

25 24 25 3 

UND-49 GG301-

1 

34.0% KK143-5 19.0% 
(0.106) 

 

25 25 25 0 

Table 2.  Germination test results.  The thirteen emb constructs founding ears with their segregation 

frequency are in the second and third column.  The ears used for the germination test and their segregation 

frequency are in the fourth and fifth column.  In parentheses below the segregation frequency is the p-value 

of a chi-squared test for single gene Mendelian inheritance. The sixth and seventh columns are the results 

for germination tests of normal kernels.  The eighth and ninth columns are the results for germination tests 

for emb kernels. A “w” preceded by a number and in parenthesis indicates the number of seedlings which 

were colored white.   
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Ear 

No. 

Pollen Parent   

Selfed-colored 

Ear Parent 

Selfed side-colorless 
Crossed side-colored Complement 

1 UND-9 Seg 27.0% UND-49 Seg 24.6% 
UND-49xUND-9 

(LL931-13x929-2) 
No Seg Yes 

2 UND-9 Seg 18.0% UND-49 Seg 19.5% 
UND-49xUND-9 

LL931-10x929-8 
No Seg Yes 

3 UND-18 Seg 25.0% UND-20 Seg 24.5% 
UND-20XUND-18 

MM536-2X525-5 
No seg 

Yes 

 

4 UND-18 Seg 17.1% UND-20 Seg 25.9% 
UND-20XUND-18 

MM537-1X523-2 
No seg 

Yes 

 

5 UND-18 Seg 23.1% UND-21 Seg 35.1% 
UND-21XUND-18 

MM538-1X523-4 
No seg 

Yes 

 

6 UND-18 Seg 23.1% UND-21 Seg 31.4% 
UND-21XUND-18 

MM538-2X523-4 
No seg 

Yes 

 

7 UND-18 Seg 25.1% UND-21 Seg 26.2% 
UND-21XUND-18 

MM538-3X523-5 
No seg 

Yes 

 

8 UND-18 Seg 25.4% UND-21 Seg 30.6% 
UND-21XUND-18 

MM540-1X522-5 
No seg 

Yes 

 

9 UND-18 Seg 25.4% UND-21 Seg 29.3% 
UND-21XUND-18 

MM540-11X522-5 
No seg 

Yes 

 

10 UND-18 Seg 16.0% UND-22 Seg 26.3% 
UND-22xUND-18 

KK687-8x680-1 
No Seg Yes 

11 UND-18 Seg 16.0% UND-22 Seg 20.0% 
UND-22xUND-18 

KK688-1x680-1 
No Seg Yes 

12 UND-18 Seg 17.9% UND-39 Seg 20.0% 
UND-39XUND-18 

MM543-7X523-7 
No seg 

Yes 

 

13 UND-18 Seg 17.1% UND-39 Seg 25.5% 
UND-39XUND-18 

MM545-4X523-2 
No seg 

Yes 

 

14 UND-19 Seg 18.7% UND-22 Seg 16.8% 
UND-22xUND-19 

MM688-11x681-6 
No Seg Yes 

15 UND-20 Seg 20.7% UND-18 Seg 23.1% 
UND-18xUND-20 

MM530-4x525-1 
No seg Yes 

16 UND-20 Seg 28.0% UND-21 Seg 17.8% 
UND-20XUND-21 

MM539-4X524-3 
No seg 

Yes 

 

17 UND-20 Seg 22.4% UND-21 Seg 27.0% 
UND-21XUND-20 

MM540-2X525-7 
No seg 

Yes 

 

18 UND-20 Seg 32.7% UND-21 Seg 28.2% 
UND-21XUND-20 

MM540-6X525-2 
No seg 

Yes 
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19 UND-20 Seg 22.4% UND-21 Seg 23.3% 
UND-21XUND-20 

MM540-9X525-7 
No seg 

Yes 

 

20 UND-20 Seg 32.7% UND-39 Seg 19.8% 
UND-39XUND-20 

MM545-6X525-2 
No seg 

Yes 

 

21 UND-21 Seg 18.8% UND-18 Seg 25.0% 
UND-18XUND-21 

MM530-1X526-8 
No seg 

Yes 

 

22 UND-21 Seg 18.9% UND-18 Seg 22.7% 
UND-18XUND-21 

MM530-3X526-3 
No seg 

Yes 

 

23 UND-21 Seg 14.0% UND-18 Seg 25.0% 
UND-18-UND-21 

MM530-9X527-12 
No seg 

Yes 

 

24 UND-21 Seg 27.0% UND-20 Seg 16.9% 
UND-20XUND-21 

MM537-6X527-14 
No seg  

Yes 

 

25 UND-21 Seg 27.8% UND-20 Seg 32.8% 
UND-20XUND-21 

MM537-9X527-3 
No seg 

Yes 

 

26 UND-21 Seg 15.0% UND-39 Seg 22.2% 
UND-39XUND-21 

MM543-8X526-5 
No seg 

Yes 

 

27 UND-21 Seg 14.0% UND-39 Seg 25.3% 
UND-39XUND-21 

MM543-11X524-12 
No seg 

Yes 

 

28 UND-21 Seg 27.0% UND-39 Seg 32.0% 
UND-39XUND-21 

MM543-12X527-14 
No seg 

Yes 

 

29 UND-22 Seg 19.0% UND-25 Seg 20.0% 
UND-25xUND-22 

KK690-1x682-5 
No Seg Yes 

30 UND-25 Seg 19.3% UND-22 Seg 14.8% 
UND-22xUND-25 

KK687-10x683-9 
No Seg Yes 

31 UND-39 Seg 22.5% UND-20 Seg 30.6% 
UND-20XUND-39 

MM536-3X528-3 
No seg 

Yes 

 

32 UND-39 Seg 20.0% UND-20 Seg 25.0% 
UND-20XUND-39 

MM536-10X528-6 
No seg 

Yes 

 

33 UND-39 Seg 23.0% UND-21 Seg 39.0% 
UND-21XUND-39 

MM541-4X529-6 
No seg 

Yes 

 

34 UND-49 Seg 24.0% UND-9 Seg 21.6% 
UND-9xUND-49 

LL932-7x930-1 
No Seg Yes 

35 UND-49 Seg 29.0% UND-9 Seg 22.0% 
UND-9xUND-49 

LL932-3x930-6 
No Seg Yes 

Table 3.  Detailed results of the complementation tests involved with the thirteen embs.  The first column is 

number 1 -35 and correspond to the same number in Table 4.  The second column is the emb identification 

of the pollen parent followed by the segregation values for that plant’s selfed ear in the third column.   The 
fourth column is the emb identification of the ear parent followed by the segregation values for the selfed 

half of its ear in the fifth column.  The sixth column shows the cross side of the ear parent and the sources 

wplants are listed in the seventh column. The eighth column gives the segregation frequency of the crossed 

side. The ninth column indicated if the two embs complement each other.   
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Pollen 

parent 

UND-9 UND-

18 

UND-

19 

UND-

20 

UND-

21 

UND-

22 

UND-

25 

UND-

39 

UND-

49 

Ear 

parent 

         

UND-9         C(34), 

C(35) 

UND-18    C(15) C(21), 

C(22), 

C(23) 

    

UND-20  C(3), 

C(4) 

  C(24), 

C(25) 

  C(31), 

C(32) 

 

UND-21  C(5), 

C(6), 

C(7), 

C(8), 

C(9) 

 C(16), 

C(17), 

C(18), 

C(19) 

   Cw(33)  

UND-22  C(10), 

C(11) 

    C(30)   

UND-25      C(29)    

UND-39  C(12), 

C(13) 

C(14) C(20) C(26), 

C(27), 

C(28) 

    

UND-49 C(1), 

C(2) 

        

Table 4.  Complementation tests involving eight of the thirteen emb’s focused on in this report. The pollen 

parents are listed across the top and the ear parents are listed down the side.  The “C” indicates that the 
emb’s complimented each other.  The number in parenthesis corresponds to the detailed information 

provided in Table 3.     
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 Pro T C 1 2 3 4 5 6 

UND-17  8 1  (1)     

UND-25  8 1 (1)      

UND-38  7  (1)   (1)   

UND-22  8  (2)      

UND-16  8 2       

UND-18  5 5       

UND-21  8 0       

UND-39  5 5       

UND-49  5 2 (2) 1     

UND-24  2 5 (3)      

UND-20   8 (1) (1)     

UND-40  2 4 (2)      

UND-19    (4) (3) (1) (2)   
Table 5.  The frequency of embryos blocked at each stage is shown for each of the 13 emb mutants under 

the embryo stage heading. For stages 1–6, values in “()” indicate the number of embryos that appear 
morphologically farther along in development beyond the coleoptilar stage; however, we have not 

confirmed the development of leaf primordia. col, coleoptilar stage; pro, proembryo stage; trans, transition 

stage; Stages 1-6 are indicated by their number only.   

 

 

 

  0-10          10-12          12-14         14-18          18-22          22-28         28-37          37-50          50+ Days after 

pollination 
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 DR5 PIN1 pWUS TCS HIS1 PRK 
MRE 

11B 
AB1 RAB17 BES1 

Zm 

PERI 

UND-16 + 
S 

+ 
S 

+ + + + + + + + + 

UND-17 + 
+ 
S 

+ + + + + + + + + 

UND-18 + 
+ 
S 

+ + + + + + + + + 

UND-19 + 
+ 
S 

+ + + + + + + + + 

UND-20 + + + + + + + + + + + 

UND-21 + 
+ 
S 

+ + + + + + + + + 

UND-22 + 
+ 
S 

+ + + + + + + + + 

UND-24 + 
+ 
S 

+ + + + + + + + + 

UND-25 - + + + + + + + + + + 

UND-38 + + + + + + + + + + + 

UND-39 + + + + + + + + + + + 

UND-40 + + + + + + + + + + + 

UND-49 + + + + + + + + + + + 

Table 6.  Thirteen emb crossed with eleven fluorescent protein constructs.  “+” indicates an ear segregating 
for the emb from a plant which was positive for herbicide resistance for one of the fluorescent protein 

constructs. “-” indicates no such ear is available.  “S” indicates that a signal for that fluorescent protein 

construct was identified in the corresponding emb mutant.   
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Protien Proembryo  

6-7 DAP 

Transition  

8-9 DAP 

Coleoptile  

10-11 DAP 

Stage1  

11-12DAP 

PIN1 + + + + 

DR5 + + + na 

TCS na na na na 

HIS1 na + + + 
PRK + + na + 

MREIIB + + + 
na 

ABPHYl1 + + na na 

RAB17 + + + na 

BES1 + + + na 

ZmPERI na na na na 

pYABBY 
- - + na 

pWUS 
- - + na 

Table 7. Florescent protein construct signals for normal embryos. The top row indicates the stage of 

development as determined by Abbe and Stein (1954) with the days after pollination (DAP) that the stages 

were likely collected.  The protein-fluorescent constructs are listed in the leftmost column.  A “+” indicates 
that an embryo of the corresponding stage was identified for that protein-fluorescent construct in the left 

column. A “-” indicates that no embryo was identified for that construct and stage for at least five-six 

embryos. The “na” indicates that there is no data for these materials.  
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Figure 1. Normal development of a maize embryo from proembryo stage to coleoptilar stage. (a) early 

proembryo; (b) proembryo; (c) Late proembryo; (d) transition stage; (e) late transition stage; (f) coleoptilar 

stage.   

Note. Figure.  Modified from “Developmental morphology of the caryopsis in maize” by L.F. Randoloph, 
1936, Journal of Agricultural research, Figure 5, 892; and Figure 6 893.  

a 
b 

c 
d 

e f 
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Figure 2. Eight of the nine stages of development as proposed by Abbe and Stein.  Each stage of 

development has the sagittal view on the left and the frontal view on the right. Beneath the pictures are the 

stages of development proembryo (pro), transition (trans), coleoptile (col) and Stage 1 through Stage 6.  

The days after pollination is presented below the stage of development. In between the sagittal view and 

frontal view are symbols that are referenced in the legend which identify important structures for each stage 

of development.   

Note. Figure.  Modified from “The growth of the shoot apex in maize:embryogeny” by Abbe and Stien 
1954, American Journal of Botonay 41,, Figures 2-9 pg287.  

 

Transition Stage     

(10 to 12 days) 

Coleoptilar Stage 

(12 to 14 days) Stage 1            

(14 to 18 days) 

Stage 2     

    (18 to 22 days) 
Stage 3         

(22 to 28 days) 

Stage 4 

(28 to 37 days) 

        Stage 5 

  (37 to 50 days) 

Stage 6       

     (50 days to harvest) 
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Figure 3.  A cross-section of embryos for five stages of development (a) coleoptilar stage (b) stage 1 (c) 

stage 2 (d) stage 3 € stage 4.  Sc= scutellum, c=coleoptile, st= shoot apical meristem, l1= first leaf 

primordium, l2=second leaf primordium, l3 = third leaf primordium, l4 = fourth leaf primordium.   

Note. Figure.  Modified from “Developmental morphology of the caryopsis in maize” by L.F. Randoloph, 
1936, Journal of Agricultural research, Figure 8, p. 896. 
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Figure 4.  UND-16 embryos blocked in development (a) transition stage; (b) transition stage; (c) 

transition stage; (d) late transition stage; (e) late transition stage; (f) late transition stage; (g) late 

transition stage; (h) late transition stage; (i) coleoptilar stage; (j) abnormal coleoptilar stage. 
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Figure 5.  UND-17 embryos blocked in development (a) early transition stage; (b) early transition stage; (c) 

early transition stage; (d) early transition stage; (e) early transition stage; (f) early transition stage; (g) early 

transition stage; (h) early transition stage; (i) coleoptilar stage; (j) abnormal coleoptilar stage possible Stage 

2. 
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Figure 6.  UND-18 embryos blocked in development (a) transition stage; (b) transition stage; (c) transition 

stage; (d) late transition stage; (e) late transition stage; (f) coleoptilar stage; (g) coleoptilar stage; (h) 

coleoptilar stage; (i) late coleoptilar stage; (j) abnormal coleoptilar stage. 
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Figure 7.  UND-19 embryos blocked in development.   All of the embryos appear to have developed 

beyond the coleoptilar stage and are being evaluated based on the scutellum and embryonic axis structure 

in their frontal view as referenced to Abbe and Stein (1954). (a) stage1; (b) stage 1; (c) stage 1; (d) stage 1; 

(e) stage 2; (f) stage 2; (g) stage 2; (h) stage 3; (i) stage 4; (j) stage 4. 
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Figure 8.  UND-20 embryos blocked in development (a) early coleoptilar stage; (b) early coleoptilar stage; 

(c) coleoptilar stage; (d) coleoptilar stage; (e) coleoptilar stage; (f) coleoptilar stage; (g) coleoptilar stage; 

(h) late coleoptilar stage; (i) stage 1; (j) stage 2.  Those embryos beyond the coleoptilar stage have not been 

verified and are only in reference to frontal development as indicated by Abbe and Stein (1954).  
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Figure 9.  UND-21 embryos blocked in development (a) early transition stage; (b) early transition stage; (c) 

transition stage; (d) transition stage; (e) transition stage; (f) transition stage; (g) transition stage; (h) late 

transition stage; (i) abnormal coleoptilar stage; (j) abnormal coleoptilar stage. 
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Figure 10. UND-22 embryos blocked in development (a) early transition stage; (b) early transition stage; 

(c) early transition stage; (d) early transition stage; (e) abnormal transition stage; (f) transition stage; (g) 

transition stage; (h) late transition stage; (i) stage 1; (j) Abnormal stage 1.  

Those embryos beyond the coleoptilar stage have not been verified and are only in reference to frontal 

development as indicated by Abbe and Stein (1954). 
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Figure 11.  UND-24 embryos blocked in development (a) late transition stage; (b) late transition stage; (c) 

coleoptilar stage; (d) coleoptilar stage; (e) coleoptilar stage; (f) coleoptilar stage; (g) coleoptilar stage; (h) 

abnormal stage 1; (i) abnormal stage 1; (j) abnormal stage 1.  

Those embryos beyond the coleoptilar stage have not been verified and are only in reference to frontal 

development as indicated by Abbe and Stein (1954). 
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Figure 12.  UND-25 embryos blocked in development (a) early transition stage; (b) early transition stage; 

(c) early transition stage; (d) early transition stage; (e) early transition stage; (f) early transition stage; (g) 

transition stage; (h) transition stage; (i) coleoptilar stage; (j) abnormal stage 1. 

Those embryos beyond the coleoptilar stage have not been verified and are only in reference to frontal 

development as indicated by Abbe and Stein (1954). 
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Figure 13. UND-38 embryos blocked in development (a) proembryo; (b) early transition stage; (c) early 

transition stage; (d) early transition stage; (e) early transition stage; (f) early transition stage; (g) early 

transition stage; (h) late transition stage; (i) stage 1; (j) stage 4 

Those embryos beyond the coleoptilar stage have not been verified and are only in reference to frontal 

development as indicated by Abbe and Stein (1954). 
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Figure 14.  UND-39 embryos blocked in development (a) transition stage; (b) transition stage; (c) transition 

stage; (d) transition stage; (e) late transition stage; (f) coleoptilar stage; (g) coleoptilar stage; (h) coleoptilar 

stage; (i) coleoptilar stage; (j) abnormal coleoptilar stage. 
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Figure 15.  UND-40 embryos blocked in development (a) transition stage; (b) transition stage; (c) 

coleoptilar stage; (d) coleoptilar stage; (e) coleoptilar stage; (f) coleoptilar stage; (g) stage 1; (h) stage 1; (i) 

stage 4; (j) Stage 4 or 5 

Those embryos beyond the coleoptilar stage have not been verified and are only in reference to frontal 

development as indicated by Abbe and Stein (1954). 
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Figure 16. UND-49 embryos blocked in development (a) transition stage; (b) transition stage; (c) transition 

stage; (d) transition stage; (e) transition stage; (f) abnormal coleoptilar stage; (g) coleoptilar stage; (h) 

coleoptilar stage; (i) coleoptilar stage; (j) Stage 2 verified by cross section. 

Those embryos beyond the coleoptilar stage have not been verified and are only in reference to frontal 

development as indicated by Abbe and Stein (1954). 
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Figure 17.  Examples of expression for seven fluorescent protein constructs in normal developing embryos 

(a) pWus coleopotilar stage; (b) RAB17 transition stage; (c) PRK coleoptilar stage; (d) Abphyll1 transition 

stage; (e) BES1 transition stage; (f) HIS1 coleoptilar stage; (g) MRE11B coleoptilar ring. 
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Figure 18.  DR5-RFP expression in normal embryos: DR5-e1, DR5-e2, DR5-e3.  (a) DR5-e1, proembryo, 

40x, 3.8µm; (b) DR5-e1, proembryo, 63x, 3.8µm; (c) DR5-e2, 40x, 5.0µm, signal/brightfield; (d) DR5-e2, 

40x, 5.0µm, signal only; (e) DR5-e3, 40 x, 3.2µm; (f) DR5-e3, 40x, 3.2µm, signal only.  All bars are 50µm. 
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Figure 19.  DR5-RFP expression in normal embryo: DR5-e4. Late transition stage, 2x1 Tile, 40x, 2.7µm 

slice, 7.09µm interval, 42.51µm range. Each slice is paired with the signal/brightfield image preceding the 

signal only of the same image. (a-j) slices 1 through 5 of 7. All images 100µm bar. 
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Figure 20. DR5-RFP expression in normal embryos:  DR5-e5, DR5-e6.  Late transition stage. Each slice is 

paired with the signal/brightfield image preceding the signal only of the same image (k-n) DR5-e5, 2x1 tile, 

40x, 2.7µm slice, 7.09µm interval, 42.51µm range.  Slices 6 and 7 of 7; (o-z) DR5-e6, 40x, 2.7µm slice, 

3.54µm interval, 21.26µm range. All images 100µm bar. 
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Figure 21.  DR5-RFP expression in normal embryo: DR5-e6.  Early coleoptilar stage, 2x2 Tile, 40x, 1.8µm 

slice, 9.67µm interval, 58.0µm range. Images taken with PIN1 (see Figures 34 and 38)   All images 100µm 

bar. 
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Figure 22.  DR5-RFP expression in normal embryo: DR5-e7.  Late coleoptilar stage, 3x3 

tile, 40x, 1.8µm slice, 6.55µm interval, 72.0µm range. The first 6 of 12 slices. Each slice is paired with the 

signal/brightfield image above the signal only of the same image.  All images 100µm bar. 
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Figure 23.  DR5-RFP expression in normal embryo: DR5-e7 continued.  Late coleoptilar stage, 3x3 
tile, 40x, 1.8µm slice, 6.55µm interval, 72.0µm range. The 7 through 12 of 12 slices. Each slice is paired 

with the signal/brightfield image above the signal only of the same image.  All images 100µm bar. 
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Figure 24.  PIN1-YFP expression in normal embryos: PIN1-e1, PIN1-e2.  Proembryo stage (a-f) PIN1-e1, 

40x, 2.0µm slice, 15.77µm interval, 78.83µm range; (g-l) PIN1-e2, 40x, 0.9µm, 3.62µm interval, 28.94µm 

range.  Image “g” is a brightfield with signal and “h”- “l” are subsequent images with signal only.  All 
Images have 50µm bar. 
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Figure 25.  PIN1-YFP expression in normal embryo: PIN1-e3.  Early transition stage, each slice is paired 

with the signal/brightfield image above the signal only of the same image. PIN1-e3, 40x, 1.5µm slice, 

11.15µm interval, 55.76µm range. All images have 50µm bars. 
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Figure 26.  PIN1-YFP expression in normal embryo: PIN1-e4.  Transition stage, 40x, 2.0µm slice, 8.41µm 

interval, 58.56µm range.  All Images have 100 µm bar. 
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Figure 27.  PIN1-YFP expression in normal embryo: PIN1-e5.  Transition stage, 40x, 2.0µm slice, 9.81µm 

interval, 88.29µm range.  All Images have 100 µm bar. 
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Figure 28.  PIN1-YFP expression in normal embryo: PIN1-e6.  Transition stage, 40x, 1x2 tile, 0.9µm slice, 

10.37µm interval, 72.59µm range. (a-f) Images of the surface (image “a”) to 51.85µm (image “f”) into the 
embryo. All Images have 100 µm bar. 
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Figure 29.  PIN1-YFP expression in normal embryo: PIN1-e6 continued.  Transition stage, 40x, 1x2 tile, 

0.9µm slice, 10.37µm interval, 72.59µm range; (g) 62.22µm deep slice; (h) 72.59µm deep slice and last 

slice. All images have 100 µm bar. 
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Figure 30. PIN1-YFP expression in normal embryo: PIN1-e7.  Rear view, late transition stage, 40x, 1x2 

tile, 0.9µm slice, 9.07µm interval, 72.59µm range; (a-f) Images of the surface (image “a”) to 45.37µm 
(image “f”) into the embryo. All Images have 100 µm bar. 
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Figure 31.  PIN1-YFP expression in normal embryo: PIN1-e7 continued.  Late transition stage, 40x; (g-i) 

Embryo, 1x2 tile, 0.9µm slice, 9.07µm interval, 72.59µm range; (j) 2x2 tile of image “h’; (k) 2x2 tile of 
image “h’, signal only. All images have 100 µm bar. 
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Figure 32. PIN1-YFP expression in normal embryo: PIN1-e8.  (a-f) PIN1-e8, transition stage to coleoptilar 

stage, 40x, 2x2 tile, 0.9µm slice, 9.76µm interval, 48.80µm range; All images have 100 µm bar. 
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Figure 33.  PIN1-YFP expression in normal embryo: PIN1-e8, PIN1-e9.  Transition stage to coleoptilar 

stage, 40x, 2x2 tile, surface of embryo zoomed to formation of coleoptilar ring. Embryo PIN1-e8, (a) 

brightfield with signal and (b) brightfield only, 20µm bar; Embryo PIN1-e9, (c) brightfield with signal and 

(d) brightfield only, 100 µm bar. 
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Figure 34.  PIN1-YFP expression in normal embryo: PIN1-e10, PIN1-e11.  Transition to coleoptilar stage, 

40x, 2x2 tile (a-f) PIN1-e10, 0.9µm slice, 12.1µm interval, 60.49 µm range; (g-l) PIN1-e11,1.8µm slice, 

9.67µm interval, 48.33µm range. All images have 100 µm bar. 
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Figure 35.  PIN1-YFP expression in normal embryo: PIN1-e12.  Coleoptilar stage, 40x, 3x3 tile, 0.9µm 

slice, 7.11µm interval, 64.00µm range; (a-b) expression at coleoptilar ring and SAM; (c-e) expression in 

RAM, SAM, scutellar midline and coleoptilar ring; (f-j) expression only in scutellar midline and RAM 

which weakens in each successive slice. All bars are 100 µm. 
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Figure 36.  PIN1-YFP expression in normal embryo: PIN1-e12 continued.  Coleoptilar stage, 40x, 3x3 tile, 

0.9µm slice, 10.04µm interval, 110.45µm range; (a-e) expression seen in SAM and coleoptilar ring which 

weakens the deeper the slice; (g) expression begins in RAM; (f-k) Ram still show expression with scutellar 

midline expressing (l) 40x, 0.9µm slice showing  expression at the tip scutellum between images h to k. 

100um scale bar. 
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Figure 37.  PIN1-YFP expression in normal embryo: PIN1-e13. Stage 1, 40x, 0.9µm slice, 10.04µm 

interval, 110.45µm range; (a-f) expression seen in first SAM, coleoptilar ring and first leaf primordium; (g-

i) expression in RAM begins and not as prominent previous regions; (j-l) expression only in area below 

SAM and first leaf primordium.  All bars 50 µm. 
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Figure 38.  PIN1-YFP and DR5-RF expression in normal embryo. (a-g) coleoptilar stage, 40x, 2x2 tile, 

1.8µm slice, 9.67µm interval, 58.0µm range. Individual expression of DR5 and PIN1 in Figures 36 and 50, 

respectively; (h-i) late coleoptilar stage, 40x, 1.8µm slice (i) at surface; (j) slightly below “i”, but unknown 
depth.  All images 100µm bar. 
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