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ABSTRACT 

 This thesis is comprised of four chapters that examine various aspects of remote 

sensing for ecological management in Theodore Roosevelt National Park. Chapter one 

reviews the use of remote sensing as a management tool and discusses its applications in 

TRNP. Chapter two describes the application of multiple remote sensing methods and 

how well they can detect and map invasive vegetation, particularly leafy spurge. Chapter 

three provides a study on defining and mapping vegetation communities in TRNP at 

varying spatial scales. Chapter four explores the use of remote sensing techniques to 

detect prairie dog mounds and map colonies.
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CHAPTER I 

AN OVERVIEW OF ECOLOGICAL DYNAMICS IN THE GREAT PLAINS AND 

REMOTE SENSING TECHNOLOGY 

INTRODUCTION 

Prairie Grasslands and the Great Plains 

 Covering an estimated 40% of the Earth’s surface, grasslands have been intensely 

altered by anthropogenic activities (Anderson 2006); it is therefore crucial to understand 

their historical dynamics, recognize changes over time, and understand changes brought 

on to the system by humans. Remote sensing technologies look promising as a tool to 

monitor ecosystems because they can provide large amounts of high-quality data in short 

amounts of time and in places that were potentially inaccessible before (Toth and Jozkow 

2016). High resolution imagery produced using unmanned aircraft systems (UAS) in 

combination with computational analysis techniques are hypothesized to produce high 

quality and accurate results (Watts et al. 2008). Managers and scientists hope to use these 

technologies to answer questions about the resources they manage. Theodore Roosevelt 

National Park (TRNP) has identified specific concerns and needs that include detection 

and mapping of invasive plants, mapping of vegetation communities, and detection and 

mapping of prairie dog colonies.  

In North America, grasslands of the Great Plains make up much of the central 

portion of the continent. The Great Plains extend south into Texas and north into Canada, 

bounded by the Rocky Mountains to the west and mesic forests to the east. All grasslands

1 



2 
 

are dominated by graminoids but vary geographically in species composition and 

structure in relation to regional climate. North American prairie are categorized as short 

grass prairie, mixed grass prairie, and tall grass prairie (Li and Guo 2014). Graminoids 

are the most common species in these vast grasslands, with dominant genera being 

Agropyron, Stipa, and Bouteloua (Barker and Whitman 1988). 

 Periodic disturbances are characteristic of prairie grassland ecosystems and play 

an important role in maintaining species richness (Gibson 1989). Disturbances such as 

fire, soil alteration, and grazing increases grassland heterogeneity and productivity 

(Fuhlendorf and Engle 2001, McMillan 2017). Grasses in the Northern Great Plains 

(NGP) have evolved in tandem with grazing herbivores who used them for forage, which 

in turn led to evolution in grasses tolerant to grazing pressures (Milchunas et al. 1988). 

Prominent native grazers in North American prairies include the black-tailed prairie dog 

(Cynomys ludovicianus) and the American plains bison (Bison bison). Although at 

opposite ends of the body-size spectrum, both are considered iconic prairie herbivores 

and keystone species. However, these are not the only herbivores that graze in a prairie 

grassland system. Other important grazers include wildlife such as pronghorn, elk, and 

deer, as well as domestic cattle and horses. Prairie ecosystem structure and function is 

thus the result of interactions of climate, disturbance-adapted vegetation communities, 

and grazing herbivores. 

Prairie dogs and bison evolved together with prairie grasslands, which created an 

ecosystem that was frequently disturbed. Prairie dogs are small, colonial members of the 

rodent family that historically lived throughout the NGP. Colonies are made up of 

multiple, closely related groups called “coteries” that inhabit separate burrow systems 
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(Crosby and Graham 1986). Through their burrowing activities, prairie dogs increase 

nutrient cycling (Coppock et al. 1983) and provide potential habitat for many other 

species (Hoogland 2013). Their alteration of the landscape leads to changes in vegetation 

community structure and ultimately increases biomass (Detling 1998). In addition, prairie 

dogs serve as prey for numerous predator species such as black-footed ferrets (Mustela 

nigripes), American badgers (Taxidea taxus), and coyotes (Canis latrans) (Hoogland 

2013). 

Bison are large-bodied ungulates that historically could be found throughout the 

NGP. Commonly referred to as “buffalo”, bison live in herd groups. Mature males spend 

most of the year living alone (Fischer 1967), and rejoin the large, mixed herds – 

containing mature cows and juveniles – during the breeding season (Hanson 1984). Bison 

change plant community structure through their indiscriminate grazing that promotes the 

growth of forbs, increases the amount of litter turned to soil, and increases the overall 

plant species richness. (Knapp et al. 1999). 

Although indigenous humans have inhabited and been a part of the Great Plains 

ecosystem for millennia, human impacts increased dramatically in the last two centuries. 

Throughout the 19th century, Euro-American settlers expanded into the western U.S., 

building railroads and towns and plowing grassland to develop crop fields. Prairie dogs 

were quickly considered a nuisance species because they burrowed through potential 

farm- and ranchland and interfered with the placement of railroads (Wuerthner 1997, 

Miller et al. 2007). Bison, through hunting for their hides by Euro-American settlers, 

were reduced to near extinction. Bison populations experienced a massive bottleneck in 
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the late 19th century, with their numbers reduced from millions to only several hundred in 

a matter of decades (Halbert et al. 2006). 

Loss or dramatic reduction in herbivore communities was only one of the 

fundamental changes that occurred with the arrival of Euro-American settlers. Fire, the 

other major, natural disturbance prevalent in grasslands was also suppressed. In addition, 

Europeans brought with them new plant species, many of which became established on 

the landscape (Dunn 1985). With seeds accidentally winding up in agricultural materials 

or products, humans aided in the spread of non-native plants across the U.S. (Guggisberg 

et al. 2012). These non-native species were able to thrive in their new environment, with 

many becoming established as exotic invasive species (Messersmith and Lym 1983). One 

exotic invasive species that is now prevalent in the NGP is leafy spurge (Euphorbia 

esula). 

The NGP looks drastically different today than it did when settlers first moved 

here, with the majority of open space being converted to agricultural lands. Some 

portions of the landscape, however, remain less altered by human activities and give us a 

glimpse into the past. Theodore Roosevelt National Park (TRNP), although developed 

and ranched before its establishment as a National Park, is one such area that is working 

to restore natural ecology. 

Theodore Roosevelt National Park 

Located in southwestern North Dakota, TRNP provides a remnant of prairie 

grassland and badlands topography. TRNP (28,508.8 total hectares) was established in 

1947 as Theodore Roosevelt Memorial Park and gained National Park status in 1978. 
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According to their purpose statement, Theodore Roosevelt National Park 

“…memorializes Theodore Roosevelt and pays tribute to his enduring contribution to the 

conservation of our nation’s resources by preserving and protecting the scenery, wildlife, 

and wilderness qualities of the North Dakota Badlands – the landscape that inspired 

Roosevelt and still inspires visitors today” (NPS 2014a). During its designation in 1978, 

12,108.1 hectares of the park were established as Theodore Roosevelt Wilderness. The 

park comprises three, geographically separate units that all lie along the Little Missouri 

River corridor. The South Unit, off Interstate-94 in Billings County, is the largest of the 

units (Figure 1). Encompassing 18,756 hectares, the South Unit receives most visitors 

each year and contains resident bison, numerous prairie dog colonies, multiple species of 

wildlife, and a demonstration herd of feral horses. The North Unit, located off Highway-

85 in McKenzie County (about 80 km north of the South Unit), is next in size (Figure 2). 

At around 9,741 hectares, the North Unit is a more rugged landscape that is also home to 

bison, a demonstration herd of longhorn cattle, prairie dogs, and other wildlife. Nearly 

the entirety of the North Unit is designated wilderness. The Elkhorn Ranch unit, also 

located in Billings County (about halfway between the north and south units) is the 

smallest unit at only 88.2 hectares and has no large resident wildlife; however, the 

Elkhorn Ranch is plagued with a large and difficult to control patch of leafy spurge.
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Figure 1: A map of the South Unit of Theodore Roosevelt National Park (TRNP) located in Billings County, North Dakota. The park 
boundary is depicted by the black outline, the local park road is shown in blue, and the United States Interstate 94 is shown in red.
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Figure 2: A map of the North Unit of Theodore Roosevelt National Park (TRNP) located in McKenzie County, North Dakota. The 
park boundary is depicted by the black outline, the local park road is shown in blue, and the North Dakota State Highway 85 is shown 
in red.
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TRNP is located in the semi-arid region of North Dakota known for its 

topography and geologic features. Surrounded by the Little Missouri National Grasslands 

and privately-owned ranchland, TRNP managers strive to preserve the landscape in as 

similar of conditions to the 1800s as possible (NPS 1987). The restoration and 

preservation of natural areas such as TRNP is considered by some to be the single most 

important environmental effort scientists and managers can make for the future 

(Schramm 1990). The park maintains two conservation herds of bison, – numbering 

between 100 and 300 in the North Unit, and 300 and 500 in the South Unit – and is 

inhabited by a variety of other species, including around 18 prairie dog colonies of 

various sizes that cover approximately 485.6 hectares, elk, white-tail and mule deer, 

pronghorn antelope, a demonstration herd of around 150 feral horses, and many species 

of small mammals, birds, insects, plants, etc.  

One of the factors preventing TRNP from occupying the natural state that 

Theodore Roosevelt himself enjoyed is the presence of exotic invasive plants. Leafy 

spurge grows throughout all three units of the park in all habitat types but can most 

commonly be found near stream beds and drainages (Anderson et al. 1996). Leafy spurge 

plagues the park and grows uncontrollably, choking out native vegetation and reducing 

forage for the herbivores that live there. Leafy spurge is not palatable to grazing wildlife 

because of the ingenol that is found in the latex of the plant, that acts as an irritant and 

can cause severe harm in the digestive system (Kronberg et al. 1993, Lym 1998). 

Established invasive plants have the potential to reduce forage by up to 75% in some 

instances (Lym and Messersmith 1985). This is not sustainable for wildlife such as bison, 
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and demonstration herds of feral horses and longhorn cattle that are confined to the park 

by the boundary fence. 

Managers and scientists at TRNP have tried various control methods for 

eradicating invasive plants from natural areas. Mowing and manual removal have proven 

to be ineffective for leafy spurge. Currently, TRNP employs the use of various herbicides 

such as and Perspective® (Aminocyclopyrachlor) for leafy spurge as their primary 

control method. Additionally, flea beetles (Aphthona spp.) are used and have been 

successful as a biological control method. However, the success of control operations 

heavily relies on the ability to detect the plants in the first place. 

The Rise of Remote Sensing 

Finding features of interest, such as invasive plants, in a national park with vast 

wilderness and roadless areas remains difficult, but remote sensing has the potential to 

help. Currently, employees travel by vehicle or by foot to locate features, but this leaves 

much undetected. With the increased availability of lower-cost high resolution imagery, 

remote sensing is being increasingly looked at as a viable method for surveillance 

(Lillesand et al. 2015). Remote sensing – which is any non-contact data collection 

method – allows researchers the possibility to detect and measure features over broader 

scales than they would be able to achieve from the ground (Whitehead and Hugenholtz 

2014). 

Remotely sensed data are characterized by their spatial, spectral, and temporal 

resolutions. Spatial resolution refers to the scale of the image and the size of the 

individual pixels in terms of their ground resolution, spectral resolution refers to the color 
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information contained within the imagery, and temporal resolution refers to the frequency 

of image acquisition (Liang et al. 2012). The “standard” spectral resolution includes the 

visible (to humans) red, green, and blue (RGB) wavelengths of light; this produces an 

image very similar to what humans can see. Multispectral resolution requires sensors (i.e. 

cameras) that can capture more than the standard 3-band RGB spectrum. Choosing the 

appropriate spatial resolution for remote sensing data requires an understanding of the 

size of the feature of interest and the amount of information needed (Atkinson and Curran 

1997). 

Remote sensing stepped into the global spotlight during the race to space in the 

mid-1900s and has evolved rapidly since then. Landsat-1 was launched in 1972 and 

became the first digital, civilian spaceborne remote sensor (Lulla et al. 2012). Landsat 

was groundbreaking, as it was equipped with a multispectral sensor (green, red, infrared 

1, and infrared 2 bands) that took photos with 80-meter ground resolution (Williams et al. 

2006). More than 40 years later, remote sensing via space technology has rapidly 

expanded; high resolution data can be acquired from satellites at more inexpensive prices 

than at the technology’s birth (Poli and Toutin 2012). Prior to the expansion of satellite 

imagery, manned aircraft surveys were considered the standard for remote sensing, 

however, now the gap in data quality is rapidly closing as many satellites have 

hyperspectral sensors that produce very high (sub-meter) resolution imagery (Toth and 

Jozkow 2016). 

The development and subsequent rise of unmanned aircraft systems (UAS) offers 

another a potential method for obtaining even higher resolution imagery. UAS share 

some of the same benefits associated with satellite and manned aerial data collection but 
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have potentially greater flexibility and cost-savings (Koh and Wich 2012). UAS are now 

widely used in various applications including general mapping, detection of features, 

wildlife surveys and conservation, and overall landscape dynamics (Whitehead et al. 

2014). For detection of invasive plants, UAS have shown promise for detection only 

under specific circumstances (Alvarez-Taboada et al. 2017). The potential for using UAS 

within the national park system, particularly TRNP, is appealing because they are thought 

to be low-impact systems that are unlikely to affect animal behavior or visitor 

experiences. UAS are currently banned for public use and may only be used under special 

circumstances such as search and rescue efforts or scientific research (NPS 2014b). 

Image acquisition is just the first step in the application of remote sensing 

technology. Useful information must then be extracted from the imagery. Traditional 

computational analysis of remotely sensed imagery employs pixel-based classification, 

typically performed in a software such as ArcGIS (Environmental Systems Research 

Institute, Redlands, CA). Pixel-based classification relies on variations between pixels 

within the image and can use unsupervised or supervised methods. Unsupervised 

classification refers to a “hands-off” approach, where the only information the computer 

receives from the user is how many classes are desired. The program then works to 

cluster pixels into separate groupings using a statistical clustering algorithm based on the 

available spectral bands for the desired number of classes to produce a classified image. 

Supervised classification requires the user to specify the desired number of classes and 

creates specific representative samples for the program to match. The computer analyzes 

the spectral composition within the training set to estimate the probability distribution of 

values for each class, then matches similar pixels to the samples. Many different 
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supervised pixel-based classification algorithms have been developed: maximum 

likelihood, random forest, and support vector machines (SVM) (Khatami et al. 2016). 

However, any pixel-based approaches are insufficient when the most accurate 

classification relies on contextual information such as shape, texture, and spatial 

characteristics (Gupta and Bhadauria 2014). 

 Object-based image analysis (OBIA) was developed to overcome the limitations 

of pixel-based classifications. Rather than use only information contained in individual 

pixels, OBIA attempts to create and classify meaningful objects by grouping pixels 

together (Blaschke et al. 2014). Accuracy when using OBIA for vegetation classification 

is highly dependent on factors such as sample size, quality, and the distribution of 

vegetation on the ground (Yu et al. 2006). Classifications derived using OBIA in 

software such as eCognition Developer (Trimble, Inc., Sunnyvale, CA) tend to produce 

more accurate classifications than pixel-based methods (Blaschke 2010). This extra 

information comes at a price, however, since processing time and computational 

requirements are much greater; in addition, the price and complexity of the software 

involved in producing these types of classifications can deter potential users. 

Although remote sensing has the potential to answer many questions that will 

inform ecological management, it is known to be highly context specific (Whitehead and 

Hugenholtz 2014). Detection of certain plants yields the best results only if the imagery 

were taken at the correct phenological stage (Müllerova et al. 2017). Using remote 

sensing to monitor biodiversity depends heavily on indirect approaches to identification 

(Turner et al. 2003). The use of remote sensing in combination with the above image 

classification methods has not been tested for fine-scale detection and mapping of 
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invasive plants, vegetation communities, and prairie dog colonies – all of which are 

important for managers at TRNP. Problem-specific data and experiments are needed to 

answer these ecological questions, which is what I aim to provide in this thesis. 

Objectives of Study 

 The purpose of this research is to provide insight on how remote sensing can best 

aid in meeting management objectives at Theodore Roosevelt National Park. Specifically, 

I hope to evaluate the use of unmanned aircraft systems (UAS) in combination with 

computational analyses such as pixel-based classification in ArcGIS and OBIA in 

eCognition. I will test the accuracy of these remote sensing techniques to detect, classify, 

and map invasive plants, vegetation communities, and prairie dog colonies. This will be 

addressed through the following objectives: 

1. Detect, classify, and map leafy spurge using imagery obtained by UAS and 

analyzed computationally, compare results with established ground-truthed data, 

and create a unit-wide map of occurrence. 

2. Define and map vegetation community structure using imagery obtained by UAS 

and analyzed computationally. 

3. Detect, classify, and map prairie dog mounds and colonies using imagery 

obtained by UAS and analyzed computationally and compare results with 

established ground-truthed data by creating colony perimeters.
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CHAPTER II 

DETECTING AND MAPPING INVASIVE PLANTS IN THEODORE 

ROOSEVELT NATIONAL PARK  

INTRODUCTION 

Invasive plants remain one of the largest ecological problems across the globe 

because of the negative impacts they impose on functioning ecosystems (Vila et al. 

2011). Invasive plants outcompete native species that provide vital food and nutrients for 

herbivores and pollinators, and they reduce overall plant species richness and biodiversity 

(Butler and Cogan 2004). In addition, exotic plant invasions have devastating global 

economic impacts (Pimentel et al. 2000). Once established, invasive exotics become 

difficult to control, allowing them to turn large areas of land into homogenous 

communities. These invasions become especially damaging when they occur in natural 

systems such as Theodore Roosevelt National Park (TRNP), where native species may 

still be well-represented, and ecological interactions intact. Invasives have the greatest 

potential for disruption in places that retain their original structure. 

 Leafy spurge (Euphorbia esula) has been identified as a serious concern not only 

in TRNP and other national parks (D’Antonio et al. 2004), but also in the entire Northern 

Great Plains (NGP) region (Lym and Messersmith 1985). In the early 1900s, 

homesteaders expanding westward brought a plethora of non-native vegetation with 

them, including leafy spurge (Stitt 2006). These introductions were often unintentional, 

with plants being brought over inadvertently in agricultural products such as hay or ship 
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ballasts (Messersmith and Lym 1983, Dunn 1985). Once in the new environment, these 

plants spread rapidly through seed contamination of agricultural equipment (Best et al. 

1979), as well as via seed dispersal that was propagated by wild and domesticated 

animals, insects, waterways, and areas of development such as roads (Messersmith and 

Lym 1985). 

Leafy spurge, a deep-rooted perennial weed, is one of the most abundant invasive 

plants in the NGP and infests roughly two million hectares of public and private land 

(Quimby and Wendel 1997), incurring a cost of $34.5 billion to the U.S. economy 

(Pimentel et al. 2005). As of the year 2000, leafy spurge was estimated to cover between 

5 – 10% of the south unit of TRNP and is extremely visible to park visitors (O’Neill et al. 

2000). 

Because of its overall hardiness, abundance in disturbed areas, and ability to 

rapidly infiltrate patches of native plants, leafy spurge has historically been difficult to 

control (Dunn 1979). Management success depends heavily on the stage of invasion, so 

managers and scientists must be able to detect and map these species before they become 

established. In addition, managers are looking for safe, cost-effective, and accurate tools 

for detection and mapping. 

 With advances in technology and increasing availability of high-resolution 

imagery, remote sensing has the potential to be a valuable management tool (Turner et al. 

2003). Remotely sensed data are often limited by image quality, spectral composition, 

spatial resolution, sampling frequency in relation to flowering phenology – which has a 

large impact on detectability – and cost. I will test the utility of two data sources for 

detecting and mapping leafy spurge, including imagery from manned flights for the 
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National Agriculture Imagery Program (NAIP) and imagery from a fixed-wing unmanned 

aircraft system (UAS). Current NAIP products achieve 60 cm resolution and statewide 

coverage, whereas low altitude UAS imagery has a much higher spatial resolution of 2 to 

3 cm but limited spatial extent (i.e. 0.5 – 3 km2 per flight, depending on altitude and 

flight duration). Both of these data sources provide similar spectral composition using 

common sensors, such as affordable consumer-grade digital cameras (typically three 

spectral bands including red-green-blue, or RGB). Both may also contain a near infrared 

band that is commonly used for crop assessment. 

Previous attempts to map leafy spurge in TRNP using aerial photography and 

light reflectance had limited success (Everitt and Anderson 1995); detections were only 

possible if patches of leafy spurge were large and already covered areas of at least 2.8 

meters. Hyperspectral satellite imagery has also been tested for its utility in the detection 

of leafy spurge, often at lower resolutions than aerial imagery, and exhibited mixed 

results (Lawrence et al. 2006, Mairota et al. 2015). The limitations of these projects were 

similar, with small patches of leafy spurge remaining undetected. High resolution 

imagery that can be obtained through unmanned aircraft systems (UAS) promises a 

practical solution at detecting small patches of leafy spurge that offers cost-effective and 

flexibly timed data collection (Alvarez-Taboada et al. 2017). 

Large volumes of data produced by remote sensors require efficient and accurate 

analytical methods to be useful for detecting features of interest, such as invasive plants. 

In addition to comparing UAS imagery to NAIP imagery, I will also compare two 

different computational approaches that have been used for image classification. 

Anderson et al. (1996) used a suitability analysis to create maps of leafy spurge in TRNP 
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based on aerial photography. Traditional approaches to classification have employed 

pixel-based classifiers, such as maximum likelihood and support vector machines (SVM) 

in ArcGIS (Khatami et al. 2016). The latter methods are both examples of supervised 

classification, for which an investigator provides examples of the features of interest 

within an image (the training set) on which to base computer classification of the entire 

image. Pixel-based methods attempt to match the spectral composition of individual 

pixels to properties of individual pixels in the training set. Alternatively, object-based 

image analysis (OBIA) attempts to account for additional information contained within 

the images that is not available in pixel-based classification techniques (Blaschke et al. 

2014) such as size, shape, and texture of real-world objects, all of which are seen at a 

higher level than individual pixels. I used the software eCognition (version 9.1.2, Trimble 

2015) for OBIA. 

In this chapter, I will evaluate the use of remote sensing for invasive plant 

classification. Specifically, I will classify and map leafy spurge within TRNP based on 

NAIP imagery and UAS imagery and identify whether pixel-based classifications in GIS 

or OBIA in eCognition are more accurate at detection, and therefore which method 

produces the least error. 

METHODS 

Study Area 

 We obtained UAS imagery during the summer of 2018 in TRNP, located in the 

semi-arid region of southwestern North Dakota. TRNP is comprised of three 

geographically separate units. The largest unit, the South Unit, is located in Billings 

County and is approximately 18,756 hectares in size. One site of interest, the Talkington 



24 
 

trailhead, has a long-standing leafy spurge infestation and we selected that site for testing 

the utility of UAS imagery for mapping leafy spurge. 

Data Acquisition 

 In 2018, a University of North Dakota (UND) research crew from the Department 

of Biology flew a fixed-wing Trimble UX5 UAS at selected sites in TRNP, including 

Talkington. Flights occurred in late June to obtain imagery at a time when leafy spurge 

was flowering and most visible. Flights followed preprogrammed parallel line transects 

that permitted adequate overlapping photography of ground survey areas. Image overlap 

was 80%. We conducted flights at 75m and 90m. To facilitate analysis, I analyzed two 

portions clipped from the full extent photographed. Unmanned aircraft systems flight 

operations for this research were approved by the National Park Service (Study #THRO-

00099, Permit #THRO-2018-SCI-0010). Aerial imagery was obtained from NAIP for 

2016 and covers the entirety of both park units; NAIP imagery from 2018 was not 

included as it was not published at the time of data analysis. All remotely sensed data 

used in this research are listed in Table 1.
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Table 1: Images used for classification and their temporal, spatial, and spectral characteristics. The full 

extent of UAS imagery was 0.43 – 0.59 km2. The images listed here are two different clips from the full 

mosaiced image. 

Image Temporal Resolution Spatial Resolution Spatial Extent  Spectral Bands 

NAIP     

NUMosaic June – August 2016 60 cm 97.40 km2 R-G-B-NIR 

SUMosaic June – August 2016 60 cm 186.79 km2 R-G-B-NIR 

UAS imagery     

Talkington75(1) June 2018 2.21 cm 124 m2 R-G-B 

Talkington75(2) June 2018 2.21 cm 898 m2 R-G-B 

Talkington75NIR(1) June 2018 2.35 cm 124 m2 R-G-NIR 

Talkington75NIR(2) June 2018 2.35 cm 124 m2 R-G-NIR 

Talkington90(1) June 2018 2.71 cm 124 m2 R-G-B 

 



26 
 

Image Classification 

 The overall image classification workflow was structured in three main parts: data 

pre-processing, classification, and validation (Figure 3). All of the above steps were used 

for classifications performed in ArcGIS as well as eCognition. I created subsets of the 

Talkington image into two smaller portions to reduce processing time as seen in Figure 4.
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Figure 3: Summary of image classification workflow: images are processed (top) and fed through the desired classifier (center 
branches), the researcher creates training samples and rulesets (rulesets in eCognition only) (center of diagram), error assessments and 
KHAT statistics are calculated for best classifications (bottom), and landscape metrics are performed to gain further understanding of 
the system (bottom center).
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Figure 4: Talkington mosaic image collected from low-altitude UAS. Each box represents a small subset that was used for 
classification via pixel-based and object-based methods. The box on the left corresponds to the Talkington75(1) classifications and the 
box on the right corresponds to the Talkington75(2) classifications.
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I used the image classification tools available in ArcGIS (version 10.6, ESRI) to 

perform pixel-based classifications of the imagery using supervised methods. I chose 

maximum likelihood and support vector machine (SVM) classifiers for this purpose. The 

maximum likelihood classifier is one of the best-known algorithms for supervised image 

classification and is commonly used for pixel-based classifications (Erdas Inc. 1999). The 

SVM classifier groups similar pixels based on spectral values and creates pseudo-objects 

in n-dimensional space (segmentation), which are then used to create training samples 

(Cortes and Vapnik 1995). A series of segmentations were tested by adjusting the 

parameters of spectral detail and spatial detail. The final image segmentations were 

achieved using a spectral detail of 15, spatial detail of 15, minimum segment size of 20, 

and band indexes of 1, 2, and 3. Multiple training samples were created for each class 

then merged to form a reliable sample for the whole image. These training samples were 

then used by the classifier to identify classes that I delineated and assign pixels to the 

appropriate classes. 

 I used eCognition Developer (version 9.1.2, Trimble 2015) to perform object-

based image analysis (OBIA). A series of segmentations was tested by adjusting the 

parameters of scale, shape, compactness, and image weighting. Scale adjusts how large or 

small the desired image objects will be, shape adjusts the relationship between color and 

shape criteria for the resulting segments, compactness adjusts the overall area of the 

resulting segments, and image weighting refers to the importance given to each spectral 

band (El-naggar 2018). I tested the default scale parameter of 10 but this produced 

segments that were too small and cut features into multiple tiny parts. Additionally, I 

tested scale parameters of 50 and 100 but these produced segments that were undesirably 
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large and in that they incorporated multiple features into single segments that were not 

meaningful. The final image segmentations were achieved using parameters that 

appeared visually to represent a good compromise between these concerns (scale = 40, 

image layers (spectral bands) weighted equally, shape = 0.2, and compactness = 0.6). The 

Nearest Neighbor (NN) classifier was then used to classify objects based on training 

samples I created. I tested texture as a classification parameter, but the computer was still 

processing the image after two weeks so this attribute was eliminated from further 

consideration. Final classification parameters included mean color, brightness, standard 

deviation, maximum difference, area, shape, and mathematical band indices (Normalized 

difference vegetation index (NDVI) for images with an NIR spectral band). After initial 

classification, I examined the output and wrote rules to refine the classification based on 

misclassified regions. Each new rule had to be tested in an iterative fashion; when I wrote 

a new rule and it visibly did not resolve a misclassification, I removed that rule and wrote 

a new one. Commonly attempted rules included relative border, area, image object 

distance to vector layers, image object distance to other objects, and texture (GLCM 

quick 8/11). I repeated this process until further changes in the ruleset no longer corrected 

misclassifications and no additional options remained as indicated by program 

documentation, my own experience, and computational feasibility. 

 I ran error and accuracy assessments in the ArcGIS environment for both pixel 

based and OBIA classification techniques. I created confusion matrices where I examined 

omission (false negatives) and commission (false positives) errors. ArcGIS calculated a 

KHAT (Kappa) statistic for each matrix, which gives an estimate for the measure of actual 

agreement within a confusion matrix (Congalton and Mead 1983). The Kappa statistic 
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can be used to show how your classification performs against a completely random 

classification (Kappa = 0) (Congalton and Green 1999). Since I was attempting to 

determine the accuracy of a feature of interest with low spatial coverage (leafy spurge), I 

used equalized accuracy assessments with a minimum of 100 sample points per class. I 

used this approach because rare-class sample sizes are often so small when using 

proportional stratified random sampling (Stehman and Foody 2009) and that too few 

pixels of leafy spurge were included. For equalized accuracy assessments, overall 

accuracy for the entire classification and Kappa are less informative. Instead, producer’s 

accuracy (measure of omission error) and user’s accuracy (measure of commission error) 

for leafy spurge specifically are better at showing how the classifier performed in the task 

of identifying leafy spurge. 

Ground Truthing 

Ground-truthing data were collected in the summer of 2016 at Talkington. 

National Park Service (NPS) staff using a handheld GPS mapper walked around patches 

of leafy spurge to create polygons mapping the patch perimeters. The staff classified 

percent cover of spurge in each patch into broad cover classes as well as a description of 

the coverage type, i.e. dense, sparse, etc. I compared the classified images obtained using 

eCognition to the polygons created in the field to see if there was a correlation between 

on-the-ground and remotely sensed data. I used the Tabulate Area tool in ArcGIS to find 

the percent coverage of leafy spurge on the classified image, within the boundaries of 

each patch that had been delineated in the field. Then, I used the Field Calculator to 

determine the sum of the area and the percent cover of leafy spurge based on the 
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classified images, within the field-delimited polygons. I exported percent coverage into R 

(version 3.5.1, R Core Team 2018) and plotted against the ground-sampled patches. 

As a second verification method, I modeled percent cover of spurge from the 

classified images as a function of the ground truthing coverage, the area of the polygons 

(hectares), vegetation density characteristics (categorical with four levels: patchy, 

scattered, uniform, and dense), and interaction terms for area by ground truthing 

coverage, and vegetation density by ground truthing coverage. I log-transformed percent 

cover to meet the assumption of normally distributed errors and conducted the analysis in 

R (version 3.5.1, R Core Team 2018). 

Entire Unit Map 

The benefit of wider-area coverage available with NAIP imagery is only 

attainable if the wider area can be efficiently classified. OBIA is much more time-

consuming, so for the purposes of my thesis I only classified NAIP imagery using 

maximum likelihood pixel-based classification. Classes included bare ground, grasses, 

vegetation of interest, sagebrush, trees, and water. Since the yellow color of leafy spurge 

cannot be seen in the NAIP images, training samples for leafy spurge were created from 

knowledge of where it exited on the ground. In the final classification, I called the class 

that contained leafy spurge “vegetation of interest”, rather than simply “leafy spurge”; 

because the classifier commonly grouped other vegetation types in as well. This analysis 

yielded a map of the entire south unit. 

I compared a small subset of the NAIP classification with the object-based 

classification derived from UAS imagery. I used UAS imagery to test the accuracy of the 
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NAIP classification. Because of its very high resolution, UAS imagery served as a near-

ground truth for both image sources. The vegetation of interest class (shown in red) was 

compared with the leafy spurge class in the UAS classification using 700 validation 

points (Figure 5).
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Figure 5: Object-based classification performed on an image taken via UAS (top) compared with a pixel-based (maximum likelihood) 
classification performed on an image taken from NAIP (bottom). The UAS image was used as a near-ground-truth and the two images 
were compared to gain insight on errors. The red color in the NAIP classification corresponds to the vegetation of interest class and 
can be compared with the leafy spurge class (yellow) in the UAS classification.
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RESULTS 

SVM and maximum likelihood classifications of UAS imagery (Figure 6A) in 

ArcGIS both yielded limited accuracy for leafy spurge. Errors of omission ranged from 

41% to 61%, and errors of commission ranged from 21% to 82%. Light conditions were 

variable when flights were occurring (i.e. clouds were moving across the sky throughout 

the day, creating shadows) and the effects of this can be seen in the imagery. SVM is not 

well-suited to handle variations in light when segmenting the images and created large 

segments that were not meaningful; grasses, bare ground, water, and leafy spurge were 

often lumped together into large continuous objects in shadowed areas (Figure 6D). This 

caused accuracy to decrease. The maximum likelihood classifier seemed to handle 

variations in light slightly better than SVM, but that was not reflected in accuracy for 

leafy spurge (Figure 6C). 

OBIA classifications of UAS imagery using eCognition produced the 

classifications with the highest accuracy for detecting leafy spurge (Figure 6B). Errors of 

omission ranged from 15% to 49%, and errors of commission ranged from 39% to 85%. 

By all classification modes, UAS images that contained R-G-B bands performed better 

than images with R-G-NIR. All measures of omission and commission error for leafy 

spurge for all classification modes can be found in Table 2. 
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Figure 6: A) Talkington75(1) base image used for classification B) Classification 
produced using OBIA in eCognition C) Classification produced using maximum 
likelihood in ArcGIS D) Classification produced using SVM in ArcGIS. Classifications 
of leafy spurge are indicated by the color yellow. 
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Table 2: Percent omission and commission error for classifications of 

Talkington taken via UAS 

Classification 

Method 

No. Accuracy 

Points 

Percent Omission 

Error 

Percent 

Commission 

Error 

SVM    

Talkington75(1) 111 41% 21% 

Talkington75(2) 111 54% 80% 

MAXL    

Talkington75(1) 111 44% 26% 

Talkington75(2) 111 46% 80% 

Talkington75NIR(1) 111 60% 69% 

Talkington75NIR(2) 111 61% 82% 

Talkington90(1) 111 43% 49% 

ECOG    

Talkington75(1) 111 17% 46% 

Talkington75(2) 125 15% 54% 

Talkington75NIR(1) 111 42% 71% 

Talkington75NIR(2) 111 49% 85% 

Talkington90(1) 111 24% 39% 

Notes: All UAS images are R-G-B unless otherwise stated in the image name. The 
higher the percentage, the more errors the classifier made. 
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NAIP images that were classified using maximum likelihood in ArcGIS were not 

successful at detecting leafy spurge (Figure 7). For the south unit map, errors of omission 

were only 12%, whereas errors of commission were 92%. This means that leafy spurge 

was correctly found within the “vegetation of interest” class 88% of the time. However, 

many other groups – particularly taller vegetation – were also grouped into the 

“vegetation of interest” classification. This is what produced the 92% commission error. 

Approximately 10.18% (or 1,877 hectares) of the south unit is covered by this vegetation 

of interest (Figure 8), which may be an overestimate. 
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Figure 7: Maximum likelihood classifications in ArcGIS of NAIP imagery; North Unit (left) and South Unit (right). Vegetation of 
interest indicated by the color orange. 
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Figure 8: Areas identified as “vegetation of interest” shown in the south unit of Theodore Roosevelt National Park. This classification 
identifies known areas of leafy spurge, but also areas of taller vegetation through error. 
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Leafy spurge percent cover in UAS images classified in eCognition was 

moderately correlated with ground truthed data, with the largest correlation coefficient 

being 0.64 (p = 0.00002) for the Talkington90(1) image and the smallest being 0.067 (p = 

0.68) for the Talkington75(2) image. The NIR images produced lower correlations with 

ground data, whereas RGB images – aside from Talkington75(2) – produced higher 

correlations, which can be seen in the scatterplots in Figure 9. In the linear regression 

model, I was unable to estimate parameters for Dense area classifications since there was 

only a single observation in the dataset. Area (p = 0.0052), and the interaction term for 

area by ground truthed coverage (p = 0.0115) were the only significant terms in the 

model (Table 3), with Patch Area having a positive effect on classification.
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Figure 9: Scatterplots showing correlations between classified imagery and ground 
truthed data with 95% confidence intervals displayed. 
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Table 3: Model of the percent classified spurge as a function of ground spurge 

coverage, area, density, and interaction terms for area * ground spurge 

coverage, and density * ground spurge coverage 

Parameter Estimate Std. Error P-value 

Ground Spurge Coverage 0.36 0.19 0.0677 

Area 159.6 55.30 0.0052 

Density Patchy 9.24 12.80 0.4730 

Density Scattered 11.76 10.52 0.2675 

Density Uniform -7.78 5.77 0.1815 

Ground Spurge * Area -4.94 1.90 0.0115 

Ground Spurge * Patchy 

Density 

0.02 0.32 0.9556 

Ground Spurge * Scattered 

Density 

-0.14 0.20 0.4848 

Ground Spurge * Uniform 

Density 

NA NA NA 

Notes: Residual standard error was 4.075 on 69 degrees of freedom. Multiple R-
squared = 0.3642, adjusted R-squared = 0.2905, F-statistic = 4.941 on 8 and 69 
DF, p-value = 7.452e-05. 
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DISCUSSION 

Overall, RGB images obtained via a low-flying UAS and processed using object-

based image analysis in eCognition showed the best results and accuracies for detecting 

leafy spurge in TRNP. Both pixel-based classifiers performed similarly and only 

displayed limited success in detecting leafy spurge. In most classifications of all modes, 

errors of commission were more prevalent than errors of omission. Errors of commission 

mean the classification returned a false positive and errors of omission mean the 

classification returned a false negative. This means the maps produced may be accurate in 

some respects (i.e. for estimating potential area of invasion), there may be some slight 

overestimation due to errors of commission. 

NAIP images that were classified using maximum likelihood in ArcGIS were not 

informative for detecting invasive plants. The images were taken on June 26, 2016 which 

corresponds to the peak phenology of spurge, but no visible spurge can be seen in the 

imagery. It has been previously established that the yellow-green color of leafy spurge 

bracts is necessary for detection (Everitt et al. 1995, Müllerova et al. 2017). A broad class 

that I named vegetation of interest was used to estimate the existence of leafy spurge in 

the NAIP imagery. Vegetation in this class was picked up by the computer as being a 

different shade of green than the background vegetation, since no yellow can be seen. 

The amount of vegetation of interest was overestimated due to the incorporation of taller 

vegetation into the class. Because of the lack of visible leafy spurge and the computer 

processing requirements for multiple high-resolution NAIP images, NAIP classifications 

were not pursued in eCognition. Future work may wish to incorporate eCognition 

classifications to see if that reduces error. In addition, training data for NAIP 
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classifications should be derived from higher resolution UAS imagery when spurge is 

clearly visible, or from larger, high percent cover patches mapped on the ground. 

 For UAS imagery, images with R-G-NIR showed lower accuracy than those with 

RGB images. The dip in accuracy for this image may come from the missing information 

the B band may have provided, and also implies that the NIR band is not as informative 

for this purpose. Future work will include using a Micasense camera which is capable of 

5-band imagery (R-G-B-RE-NIR) and this hypothesis can then be tested. 

The classifications achieved using eCognition in this research were performed using 

the same ruleset for every image. This shows the transferability of rulesets from one 

image to another. Individual image accuracy could be increased by creating a new ruleset 

specific to each image, but that is inefficient. This work demonstrates that rulesets can be 

transferred between images, especially between images of the same spectral resolution 

(i.e. R-G-B to R-G-B). 

For extremely high-resolution imagery, such as that derived from low altitude UAS 

flights, computational limitations of object-based classifications on single workstations 

remain a concern. Classifications run on a computer with dual processors and 128 GB of 

RAM took anywhere from between 14 hours at the fast end to 158 hours. When 

attempting to include texture (GLCM – quick 8/11) as a parameter, the classification was 

still running after 160 hours and the decision was made that this was not feasible to do on 

the computer we had available. Cloud or cluster computing is a potential option for this 

work in the future as it will drastically speed up processing times; however that increases 

the cost since additional software licenses will have to be purchased. 
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Previous studies have determined that a data fusion approach is sometimes useful for 

producing accurate studies of natural systems (Marvin et al. 2016), and the same can be 

applied for increasing accuracy in detecting leafy spurge via the methods described in 

this paper. Future work could look at including LiDAR (light detection and ranging) to 

aid in detecting leafy spurge as it has been used successfully in aiding image 

classifications (Li et al. 2006). If objects of interest stand taller than the grasses that 

surround them, vegetation height could be an important parameter to include. However, 

vertical scale needs to be considered. LiDAR collected from an aerial image flight may 

not be available at a fine enough resolution for UAS imagery. In addition, suitability 

analyses in ArcGIS (Anderson et al. 1996) and soil monitoring from the ground (Jordan 

et al. 2008) have shown to be useful for identifying invasive plants and have the potential 

for data fusion with classifications. 

Additionally, ground truthed data can be used as a verification method. The ground 

truthed data used in this study was collected two years prior to when the UAS was flown, 

so this could account in part for the low correlations. Future flight plans should include 

some incorporation of same-year ground testing so these data sources can be adequately 

compared. Although area of the ground truthing polygons – or, the size of the patch of 

leafy spurge on the ground – was significant in the linear model I performed, this should 

be revisited before a minimum threshold patch size can be determined for detection via 

remote sensing. Patch sizes that were very small in 2016 may have grown larger in the 

two years before the area was flown in 2018. This would skew results since the patch size 

being classified from the UAS imagery is larger than stated in the ground truthed data. 
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This research has demonstrated that classification of UAS imagery via eCognition is a 

viable strategy for detecting and mapping leafy spurge. Additionally, the combination of 

classified and ground-truthed data can provide an overall estimate of leafy spurge 

coverage for the entire park. Although I was unable to identify a threshold patch size of 

leafy spurge for detection, I was able to confirm that area is a significant component. 

Future work should use ground data and classifications from UAS imagery from the same 

year to determine this threshold patch size. The knowledge gained from these types of 

analyses can be used to make management decisions for targeting eradication efforts in 

high-priority areas.  
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CHAPTER III 

MAPPING VEGETATION COMMUNITIES IN THEODORE ROOSEVELT 

NATIONAL PARK 

INTRODUCTION 

Effective wildlife management requires an understanding and consideration of the 

vegetation communities that animals use to survive and reproduce. Vegetation influences 

habitat selection, so animals may be more likely to stay in certain areas if the vegetation 

can be used to meet their needs for food and shelter (Howe and Westley 1988). Because 

of the important link between wildlife and plants, it is important to understand and 

monitor vegetation communities. This is especially true for natural systems such as 

Theodore Roosevelt National Park (TRNP) that use forage allocation models to manage 

animal numbers (Irby et al. 2002) because of the park’s boundary fence that constrains 

their movement. Because animals such as bison, feral horses, prairie dogs, pronghorn, 

elk, and deer among many others all depend directly on vegetation composition and 

quality, mapping and monitoring the vegetation communities that support them is 

critically important. 

Past research has identified and defined the vegetation communities in TRNP. 

Hansen et al. (1984) delineated habitat types within the park using techniques and ideas 

proposed by Daubenmire and Daubenmire (1968). They identified 11 vegetation 

associations defined by different combinations of numerically dominant species. That 
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same year, Norland (1984) created 14 physiographic and vegetational classes; seven 

classes were unique to one unit or the other, while the rest were found in both units. 

These classes were breaks, cottonwood forests, wooded draws, upland grasslands, 

old river terraces, grassland flats, bottom grasslands, toe slopes, rolling grasslands, 

Achenbach hills, ridge and ravine, scoria hills, sagebrush bottoms, and prairie dog towns. 

Irby et al. (2002) created vegetation community categories specifically for a forage 

allocation model for ungulates. The Upland Grasslands category contained subcategories 

of graminoids, forbs, litter, climax grass species, and western wheatgrass, while the 

Hardwood Draws category contained green ash stems, chokecherry, serviceberry stems, 

snowberry stems, all species, bare ground, climax graminoids, exotic graminoids, 

invasive forbs, and palatable forbs. 

Traditional methods of vegetation sampling and monitoring, such as walking on 

foot to designated plots as presented by Daubenmire 1959, are impractical in areas as 

large as TRNP. Using remote sensing as a monitoring tool for vegetation can help 

identify important or critical areas where employees could then be sent to sample on foot, 

as well as cover large areas that would not be entirely sampled on foot. Remote sensing 

has been used extensively to estimate to map and monitor vegetation (Kastens and 

Legates 2002, Luscier et al. 2006, Walton et al. 2013, Dandois and Ellis 2013). 

Advances in technology have resulted in a variety of platforms from which to 

collect imagery, ranging from satellite to high altitude aircraft, to very low altitude 

unmanned aircraft systems (UAS). Different platforms with different sensors have 

different capabilities in relation to temporal frequency of sampling, spatial coverage, 

image resolution, and spectral resolution and breadth. The choice of platform and sensors 
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will depend on the specific problem and data needs, with spatial scale being an important 

factor to consider. Mapping vegetation communities for bison, for example, who move at 

a relatively large scale, might require the use of a different platform and sensor than when 

mapping for prairie dogs, who are more limited in their spatial extent. Different sources 

of imagery, therefore, may be most useful for each application. I had two sources of 

imagery available to me, each potentially most useful at different scales. Specifically, I 

used imagery obtained from manned flights as part of the National Agriculture Imagery 

Program (NAIP) to estimate vegetation classification at broader scales, and much higher 

resolution but more spatially limited imagery obtained using a UAS. The former 

produces 60 cm resolution (in recent years) and covers very large areas (e.g. statewide), 

whereas the latter has a much higher resolution of 2 to 3 cm but covers only small 

sections of the park per flight. 

In addition to testing the performance of imagery collected at different spatial 

scales for classifying vegetation communities in the park, I will also compare image 

classification methods for their performance for vegetation classification. Two methods 

for computational analysis that have been used for this purpose in the past are pixel-based 

and object-based classifications. Pixel-based methods often implemented in geographic 

information systems (GIS) have been used for vegetation monitoring to estimate forest 

types in India (Reddy et al. 2015) among many other examples. More advanced methods 

such as object-based image analysis (OBIA) implemented in eCognition software have 

been used for estimating percent ground cover of various species (Luscier et al. 2006). 

GIS is readily available at many higher education institutions, state and federal agencies, 

and in open source formats for anyone, whereas eCognition is less commonly used and 
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available only as a commercial product. A comparative study by Yu et al. (2006) found 

that the object-based classification from eCognition yielded higher overall accuracy, but 

the maximum likelihood classification from GIS performed better for vegetation classes 

of small sample sizes. In addition, Hussain et al. (2013) found that object-based image 

analysis has a higher potential of accurately detecting changes in very-high resolution 

imagery. 

In this chapter I will evaluate the use of remote sensing for vegetation community 

classification. I will classify the vegetation communities at multiple sites in TRNP based 

on NAIP imagery and UAS imagery and identify whether pixel-based or object-based 

methods yield better accuracy for each spatial scale. 

METHODS 

Study Area 

 This research was conducted in TRNP, located in southwestern North Dakota. 

This semi-arid region exhibits a prairie grassland ecosystem and badlands topography. 

TRNP is comprised of three geographically separate units, two of which are included in 

this study: the South Unit (18,756 hectares) is the largest and is located in Billings 

County, whereas the North Unit (9,741 hectares) is noticeably smaller and located about 

80 km to the north in McKenzie County. I used UAS imagery collected at sites in the 

South Unit and NAIP imagery for both units for this thesis. 

Data Acquisition 

 In the summer of 2018, a University of North Dakota (UND) research crew from 

the Department of Biology flew a fixed-wing Trimble UX5 at three sites at two altitudes. 

These sites were selected because of them containing either invasive vegetation or prairie 
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dog colonies. Flights followed preprogrammed line transects that permitted 80% 

overlapping photography of ground survey areas. Flights were conducted at 75m and then 

90m for each site. Unmanned aircraft systems flight operations for this research were 

approved by the National Park Service (Study #THRO-00099, Permit #THRO-2018-SCI-

0010). Aerial imagery that covers the entirety of both park units was obtained from the 

National Agriculture Imagery Program (NAIP) for 2016; NAIP imagery from 2018 was 

not included as it was not published at the time of data analysis. All remotely sensed data 

used in this research are listed in Table 4.
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Table 4: Images used for classification and their temporal, spatial, and spectral characteristics. I 

analyzed only portions of the full dataset from each site. 

Image Temporal 

Resolution 

Spatial 

Resolution 

Spatial Extent Spectral Bands 

NAIP imagery     

NAIPNUMosaic June – August 2016 60 cm 97.40 km2 R-G-B-NIR 

NAIPSUMosaic June – August 2016 60 cm 186.79 km2 R-G-B-NIR 

UAS imagery     

Talkington75(1) June 2018 2.21 cm 124 m2 R-G-B 

Talkington75(2) June 2018 2.21 cm 898 m2 R-G-B 

Talkington75NIR(1) June 2018 2.35 cm 124 m2 R-G-NIR 

Talkington75NIR(2) June 2018 2.35 cm 124 m2 R-G-NIR 

Talkington90(1) June 2018 2.71 cm 124 m2 R-G-B 

Lindbo75(1) June 2018 2.24 cm 134 m2 R-G-B 

Lindbo75(2) June 2018 2.24 cm 105 m2 R-G-B 

Lindbo75NIR(1) June 2018 2.18 cm 134 m2 R-G-NIR 

Lindbo90(1) June 2018 2.7 cm 134 m2 R-G-B 

BeefCorral75(1) June 2018 2.26 cm 612 m2 R-G-B 

BeefCorral75(2) June 2018 2.26 cm 662 m2 R-G-B 
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Image Classification 

 The overall image classification workflow was structured in three main parts: data 

pre-processing, classification, and validation (Chapter 2, Figure 3). This is true for 

classifications performed in ArcGIS as well as eCognition. The workflow is described in 

more detail in Chapter 2. All classified images can be found in Appendix A. 

I used the image classification tools available in ArcGIS (version 10.6, ESRI) to 

perform pixel-based classifications of the imagery using supervised methods. I chose 

maximum likelihood and support vector machine (SVM) classifiers for this purpose. The 

maximum likelihood classifier is the best-known algorithms for supervised image 

classification (Erdas Inc. 1999) and is commonly used for pixel-based classifications. The 

SVM classifier groups similar pixels based on spectral values and creates pseudo-objects 

in n-dimensional space (segmentation), which are then used to create training samples 

(Cortes and Vapnik 1995). A series of segmentations were tested by adjusting the 

parameters of spectral detail (level of importance given to spectral features) and spatial 

detail (level of importance given to the proximity between features). The final image 

segmentations were achieved using a spectral detail of 15, spatial detail of 15, minimum 

segment size of 20, and band indexes of 1, 2, and 3. Multiple training samples were 

created for each class then merged to form a reliable sample for the whole image. These 

training samples were then used by the classifier to identify classes that I delineated and 

assign pixels to the appropriate classes. 

 I performed object-based image analysis (OBIA) using eCognition Developer 

(version 9.1.2, Trimble 2015). I then tested a series of segmentations by adjusting the 

parameters of scale, shape, compactness, and image weighting. Scale adjusts how large or 
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small the desired image objects will be, shape adjusts the relationship between color and 

shape criteria for the resulting segments, compactness adjusts the overall area of the 

resulting segments, and image weighting refers to the importance given to each spectral 

band (El-naggar 2018).  The final image segmentations were achieved using a scale of 

40, image layer weights of 1, 1, and 1, shape of 0.2, and compactness of 0.6. Then, I used 

the Nearest Neighbor (NN) classifier to classify objects based on training samples I 

created. Classification parameters included mean color, brightness, standard deviation, 

maximum difference, area, shape, and mathematical band indices. After initial 

classification, I examined the output and wrote additional rules to refine the classifier.  

 For all classifiers, I defined classes as bare ground, grasses, leafy spurge (in 

images that included the invasive plant), prairie dog mounds (in images that included a 

prairie dog colony), the paved park road, sagebrush, taller and shrubby vegetation, trees, 

water, and areas of no data. In the NAIP imagery, I defined a “vegetation of interest” 

class that included leafy spurge as well as other taller vegetation. This is because the 

yellow color of leafy spurge could not be distinguished in the NAIP imagery. Areas of no 

data were present on the outer edges of the image mosaic and were not included in 

accuracy assessments. 

I ran error and accuracy assessments in the ArcGIS environment for both pixel 

based and OBIA classification techniques. To evaluate the accuracy of the overall 

landscape classification, I performed an accuracy assessment with stratified random 

points. Stratified random accuracies assign points proportional to the percent cover. A 

multinomial equation from Congalton & Green (1999) was used to calculate the 

appropriate number of points based on a 95% confidence interval. Confusion matrices 
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were created where omission (false negatives) and commission (false positives) errors 

were quantified and examined. ArcGIS calculated a KHAT (Kappa) statistic for each 

matrix, which gives an estimate for the measure of actual agreement between true and 

estimated classification within a confusion matrix (Congalton and Mead 1983). The 

Kappa statistic can be used to show how your classification performs against a 

completely random classification (Kappa = 0) (Congalton and Green 1999). 

For these assessments, overall accuracy – which is calculated by dividing the total 

correct by the overall total (Jensen 1996) – for the entire classification and the Kappa 

statistic are informative for classifier performance. Because of this, I performed 

proportional stratified random accuracy assessments. However, to gain insight on 

performance for individual classes, I performed equalized random accuracy assessments 

with each class getting a minimum of 100 accuracy points. I used this approach because 

rare-class sample sizes are often small when using stratified random sampling (Stehman 

and Foody 2009) and therefore introduces a sampling deficiency for looking at accuracy 

of individual classes. I examined the producer’s accuracy (measure of omission error) 

and the user’s accuracy (measure of commission error) for the equalized confusion 

matrices. All confusion matrices for all classifications can be found in Appendix B. 

RESULTS 

 NAIP imagery classified in ArcGIS using the maximum likelihood classifier 

produced low accuracies (Figure 10). The North Unit classification had an overall 

accuracy of 59% (overall error of 41%) and a Kappa of 0.49, while the South Unit 

classification had an overall accuracy of 61% (overall error of 39%) and a Kappa of 0.50. 

Water was considerably more accurate in the South Unit classification. Both units 
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showed higher errors of commission for water at 61% and 74%, respectively. Trees were 

identified at similar accuracy levels in both units. Sagebrush was more accurately 

identified in the North Unit than in the South Unit, whereas “vegetation of interest” was 

more accurately identified in the South than in the North Unit. Individual class accuracies 

for both units using an equalized random accuracy assessment can be found in Figure 10.
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 Figure 10: TRNP North Unit (left) and South Unit (right) classified via maximum likelihood in ArcGIS and 
corresponding producer's accuracies for each below the maps. The colors of the bars in the graphs correspond to 
the class color in the classification. Producer’s accuracy shows how often the classifier got it right; errors of 
omission are the inverse of producer’s accuracy. 
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UAS images classified by the SVM classifier in ArcGIS had relatively low 

accuracy (Figure 11). Images with prairie dog colonies (BeefCorral and Lindbo) had 

higher overall accuracies (65% and 72%), but low Kappa values (0.43 and 0.40). 

Maximum likelihood classifications of UAS imagery yielded higher accuracies than 

SVM. Overall accuracy ranged from 41% (Kappa = 0.27) to 76% (Kappa = 0.44). Images 

with prairie dog colonies produced the highest accuracies, whereas images that showed 

mostly vegetation produced slightly less accurate classifications. Light conditions were 

variable when UAS flights were occurring (i.e. clouds were moving across the sky 

throughout the day) and the effects of this can be seen in the form of shadows in the 

imagery. SVM is not well-suited to handle variations in light when segmenting the 

images and created large segments that were not meaningful. This caused accuracy to 

drastically decrease. The maximum likelihood classifier seemed to handle variations in 

light slightly better than SVM, but that was only slightly reflected in the accuracy 

assessments. 

OBIA classifications of UAS imagery produced the classifications with the 

highest accuracies. Accuracies ranged from 50% (Kappa = 0.35) to 85% (Kappa = 0.74) 

for the overall image accuracy, and images displaying R-G-B bands performed best. 

These classifications also produced higher overall accuracy for images that contained 

prairie dog colonies. OBIA was able to handle variations in light and therefore the 

changing light conditions did not cause any noticeable decreases in accuracy. 

Producer’s accuracies for individual classes in a vegetation dominated image 

(Talkington75(1)) are shown in Figure 11. Producer’s accuracy shows how often the 

classifier got it right; errors of omission are the inverse of producer’s accuracy. The 
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paved park road and water classes had high accuracy in all three classification modes. 

Producer’s accuracies for individual classes in a prairie dog colony dominated image 

(Lindbo75(1)) are shown in Figure 12. Individual classes performed differently in each 

classification mode, which is likely because of how similar classes such as bare ground, 

grasses, and prairie dog mounds are – the more similar the classes, the more likely the 

classification is to confuse them. Overall accuracy and Kappa statistics produced via 

stratified random accuracy assessments for all classification methods can be found in 

Table 5. 
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Figure 11: Producer’s accuracy for individual classes produced using an equalized 
random accuracy assessment for object-based classification in eCognition (top), 
maximum likelihood pixel-based classification in ArcGIS (center), and SVM pixel-based 
classification in ArcGIS (bottom). The colors of the bars in the graphs correspond to the 
class color in the classification. Producer’s accuracy shows how often the classifier got it 
right; errors of omission are the inverse of producer’s accuracy.
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Figure 12: Producer’s accuracy for individual classes produced using an equalized random accuracy assessment for object-based 
classification in eCognition (top) and for maximum likelihood pixel-based classification in ArcGIS (bottom). The colors of the bars in 
the graphs correspond to the class color in the classification. Producer’s accuracy shows how often the classifier got it right; errors of 
omission are the inverse of producer’s accuracy. 
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1 

Table 5: Overall accuracy and Kappa statistics for all classification methods 

Classification 

Method 

Main Feature 

in Imagery 

Overall Accuracy Kappa 

SVM    

Talkington75(1) Vegetation 0.47 0.34 

Talkington75(2) Vegetation 0.60 0.44 

BeefCorral75(1) Prairie Dogs 0.65 0.43 

BeefCorral75(2) Prairie Dogs 0.72 0.40 

MAXL    

NUMosaic NAIP 0.59 0.49 

SUMosaic NAIP 0.61 0.50 

Talkington75(1) Vegetation 0.58 0.45 

Talkington75(2) Vegetation 0.63 0.44 

Talkington75NIR(1) Vegetation 0.46 0.27 

Talkington75NIR(2) Vegetation 0.54 0.32 

Talkington90(1) Vegetation 0.41 0.24 

Lindbo75(1) Prairie Dogs 0.70 0.43 

Lindbo75(2) Prairie Dogs 0.71 0.46 

Lindbo75NIR(1) Prairie Dogs 0.73 0.47 

Lindbo90(1) Prairie Dogs 0.69 0.41 

BeefCorral75(1) Prairie Dogs 0.71 0.52 

BeefCorral75(2) Prairie Dogs 0.76 0.44 
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OBIA    

Talkington75(1) Vegetation 0.75 0.66 

Talkington75(2) Vegetation 0.79 0.67 

Talkington75NIR(1) Vegetation 0.50 0.35 

Talkington75NIR(2) Vegetation 0.61 0.43 

Talkington90(1) Vegetation 0.56 0.36 

Lindbo75(1) Prairie Dogs 0.83 0.69 

Lindbo75(2) Prairie Dogs 0.84 0.66 

Lindbo75NIR(1) Prairie Dogs 0.71 0.41 

Lindbo90(1) Prairie Dogs 0.70 0.44 

BeefCorral75(1) Prairie Dogs 0.85 0.74 

BeefCorral75(2) Prairie Dogs 0.84 0.62 

Notes: All UAS images are R-G-B unless otherwise stated in the image name 

 

DISCUSSION 

Overall, RGB images obtained via a low-flying UAS and processed using OBIA 

in eCognition showed the highest accuracies for landscape and vegetation community 

classifications. Both pixel-based classifiers performed similarly and only displayed 

moderate accuracy. Between the two NAIP classifications, the classes with the highest 

accuracy were trees, grasses, and sagebrush. Park road produced many errors of 

commission and therefore mis-identified many other features in the image, which 

lowered overall accuracy. Maximum likelihood was only moderately accurate when 

classifying NAIP images, so future work should incorporate classifications using nearest 
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neighbor information in eCognition as well. Additionally, eCognition would likely 

increase accuracy for the park road class since vector layers can be added as an additional 

information source used in the classification. “Vegetation of interest” was described in 

Chapter 2 but was not sufficiently precise as created here to be useful for its intended 

purpose (classifying leafy spurge). Without a more distinctive signal derived from known 

patches of flowering spurge, it appears to be synonymous with “vegetation with a slightly 

different shade of green”, which potentially included many different types of vegetation. 

Given the low overall accuracies and relatively low Kappa coefficients, this classification 

would not be considered reliable as a basis for management. If pursued in eCognition and 

with appropriate reference spectra (even derived from UAS imagery) to improve 

accuracy, NAIP may be useful for creating new forage allocation models or managing the 

vegetation for large herbivores since it produces broad scale classifications. UAS, 

although it produced more accurate results, will not achieve the spatial extent 

requirements needed for informing managers about vegetation availability for large 

herbivores. However, it can serve as a reliable source for identifying vegetation 

categories and mapping those onto concordant portions of NAIP imagery to create 

training data for classifiers. 

Images produced from flights that occurred over prairie dog colonies yielded 

higher accuracy than those that primarily featured vegetation. This could be because of 

the grazing behaviors of prairie dogs, since they clip vegetation and keep it short. The 

classifications therefore may be more accurate because of the short grass that dominates 

the image.  
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This work confirms previous findings that OBIA is better suited for classifying 

imagery than pixel-based methods (Yu et al. 2006, Hussain et al. 2013). In addition, some 

of the same classes that have been previously delineated for TRNP – specifically by 

Norland (1984) and Irby et al. (2002) were successfully classified in the UAS imagery. 

These classes include sagebrush, prairie dog colonies, grasses, and trees. 

Previous studies have determined that a data fusion approach is most ideal for 

producing accurate studies of natural systems (Marvin et al. 2016), and the same can be 

applied for increasing accuracy when mapping vegetation communities as outlined in this 

chapter. Additional work could look at including LiDAR (light detection and ranging) to 

aid in detecting features of interest. LiDAR has been successful at identifying sagebrush 

(Streutker and Glenn 2006), forest canopy (Simard et al. 2011), and mapping general 

rangeland vegetation communities (Bork and Su 2007).  This may aid in identifying trees 

and taller vegetation, which were often confused with other features of interest. Also, 

future work will incorporate using a multispectral Micasense camera that is capable of 

capturing 5-band images (R-G-B-RE-NIR). 

This research has demonstrated that classification of UAS imagery via eCognition 

is a viable strategy for mapping vegetation communities. Pixel-based strategies produced 

more error than object-based classification methods but provided a useful baseline for 

park-wide vegetation mapping. A logical next step would be to also classify NAIP using 

OBIA, using UAS imagery to identify training data in the NAIP imagery. Despite error, 

managers can use these classifications to gain insight on vegetation communities within 

TRNP to update forage allocation models or compliment previous work.  
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CHAPTER IV 

BLACK-TAILED PRAIRIE DOG COLONY MAPPING IN THEODORE 

ROOSEVELT NATIONAL PARK 

INTRODUCTION 

Animals can have dramatic impacts on the environment and local ecosystems. In 

prairie landscapes such as the Northern Great Plains, prairie dogs are considered by many 

ecologists to be ecosystem engineers and a keystone species because they significantly 

alter the terrestrial realm around them (Miller et al. 2000, Detling 1998, Holland and 

Detling 1990, Detling and Whicker 1987). Black-tailed prairie dogs (Cynomys 

ludovicianus) are small, herbivorous rodents who live colonially in burrow systems, form 

strong social bonds, and exhibit an extensive communication network (Hoogland 1995). 

They are also the primary prey of a federally endangered species, the black footed ferret 

(Mustela nigripes), and their colonies are critical habitat for that species (Biggins et al. 

1993). Because of their role in the function of prairie ecosystems, understanding their 

spatial distribution and dynamics is central to understanding the ecology of grasslands in 

areas where they are found. This understanding is important especially for natural areas 

such as Theodore Roosevelt National Park (TRNP), where prairie dogs are protected. 

Colony acreage in the park is constantly fluctuating, but has shown a gradual increase 

since the 1980s (Milne 2004). Managers need accurate, reliable, and cost-effective 

solutions for mapping prairie dog colonies, but accomplishing this by ground surveys is 

time-consuming and labor intensive. Advances in technology such as remote sensing 

(Jensen 1996) may help solve this problem if these methods prove sufficiently accurate 
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and affordable. My goal in this chapter is to test the efficacy of remotely sensed data 

collected using unmanned aircraft systems (UAS) and classified computationally for 

mapping prairie dog colonies. 

 In the beginning of the 20th century, there was an estimated 40 million hectares of 

prairies available for prairie dog habitat. However, after a nearly 98.5% decline by the 

1960s, this was reduced to only 600,000 hectares (Miller et al. 2000). Anthropogenic 

activities are largely to blame for this reduction. Prairie dogs were considered – and still 

are by some – to be a nuisance or pest species. Their burrows traversed potential farm- 

and ranchland and there were fears that prairie dogs would decrease available forage for 

livestock, a claim that has been hotly contested for years (Miller et al. 2007). Although 

prairie dogs consume the same forage species as cattle, cattle weights were not found to 

differ between on- and off-colony grazing (Uresk 1987). Despite an apparent lack of 

competition with domestic grazers, prairie dog burrows were feared to be hazardous to 

livestock health, should an animal step in one. Additionally, colonies interfered with the 

placement of structures such as railroads (Wuerthner 1997). Declines in prairie dog 

numbers were also brought about by Sylvatic plague (Yersinia pestis) (Pauli and Buskirk 

2006), which can decimate entire colonies and make it difficult for populations to persist 

(Antolin et al. 2002). 

 In places trying to protect this species such as Theodore Roosevelt National Park 

(TRNP), mapping colonies and their potential expansion is essential. By monitoring 

colony boundaries over multiple years, managers can gauge whether colonies are 

expanding, remaining the same, or declining. For other national parks such as Wind Cave 

National Park and Badlands National Park, colony size and expansion is crucial for the 
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prospect of reintroducing the critically endangered black-footed ferret, since prairie dogs 

are their primary food source and must be abundant enough to sustain a population. 

Additionally, colony size and expansion information can be useful when trying to 

manage for other species on the landscape such as bison who may benefit from the 

increased forage biomass available on prairie dog towns (Coppock et al. 1983, Archer et 

al. 1987). 

Current methods of mapping prairie dog colonies require sending personnel into 

the field to walk the colony boundaries on foot and mark active peripheral burrows with a 

handheld Global Positioning System (GPS). General guidelines for considering a burrow 

as “active” include finding fecal pellets, tracks, freshly disturbed dirt, or lack of 

vegetation around the mound (Milne 2004). However, ground mapping is suspected to be 

inaccurate because perimeter mounds are often hard to identify. Outermost entrances to 

the colony are usually smaller mounds, exhibit no mound at all, or are surrounded by 

taller vegetation and are therefore missed on ground observations (Hoogland 2013). 

 With increasing availability of high-resolution imagery and continued advances in 

technology, remote sensing has the potential to be a useful tool for mapping prairie dog 

colonies. Managers are looking for mapping methods to be informative, reliable, cost-

effective, and accurate, and remote sensing using unmanned aircraft systems (UAS) may 

provide these advantages (Alvarez-Taboada et al. 2017). UAS have been used to collect 

imagery for a wide variety of ecological objectives such as counting hippos (Linchant et 

al. 2018), measuring habitat quality for least bitterns (Chabot et al. 2014), and locating 

chimpanzee nests and trees (VanAndel et al. 2015). Hasan (2019) used UAS to collect 

imagery of a prairie dog colony to understand burrow spatial structuring, but they relied 
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on human visual detection for counting burrows in the imagery and found similar results 

to ground surveys. My study aims to test the effectiveness of computer-based 

classification to detect and map prairie dog burrows. 

 Two methods for computational analysis of remotely sensed data are pixel-based 

and object-based classifications. Pixel-based methods include maximum likelihood 

(Erdas 1999) and support vector machines (SVM) (Cortes and Vapnik 1995). Both of 

these methods are available in geographic information systems (GIS) software, in 

addition to a variety of other software tools. Object-based image analysis (OBIA) is 

implemented in specialized software, such as Trimble’s eCognition (version 9.1.2, 

Trimble 2015). GIS is readily available as a commercial application such as ESRI 

ArcGIS (version 10.6, ESRI) which is used by many higher education institutions, state 

and federal agencies, and in open source formats such as QGIS (QGIS Development 

Team) available to anyone at no cost. Trimble’s eCognition is less commonly used and 

available only as a commercial product. 

In this chapter I will evaluate the use of remotely sensed data collected via a small 

UAS for prairie dog colony mapping. I will classify prairie dog mounds using standard 

pixel-based statistical methods available in most GIS software and using object-based 

methods in eCognition software, then determine which method of computational analysis 

yields better accuracy.   

METHODS 

Study Area 

 This research was conducted over the summer of 2018 in TRNP, which is located 

in the semi-arid region of southwestern North Dakota. TRNP is comprised of three 
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geographically separate units, two of which were included in this study. The larger South 

Unit (18,756 hectares) is located in Billings County, while the smaller North Unit (9,741 

hectares) is located about 80 km to the north in McKenzie County. Two prairie dog 

colonies of interest in the South Unit were identified: Beef Corral and Lindbo Flats. The 

Beef Corral prairie dog colony is bounded by the Little Missouri River on the west and 

the paved park road cuts directly through the colony. The Lindbo Flats prairie dog colony 

is larger in size and occupies a relatively flat plain with the park boundary fence running 

through it. 

Data Acquisition 

 In the summer of 2018, a University of North Dakota (UND) research crew from 

the Department of Biology flew a fixed-wing Trimble UX5. Flights followed 

preprogrammed parallel line transects that permitted adequate overlapping photography 

of ground survey areas. Image overlap was 80%. Flights were conducted at 75m and then 

90m for each site. Unmanned aircraft systems flight operations for this research were 

approved by the National Park Service (Study #THRO-00099, Permit #THRO-2018-SCI-

0010). All remotely sensed data used in this research are listed in Table 6.
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Table 6: Images used for classification and their temporal, spatial, and spectral characteristics. Only 

portions of the full extent produced by each flight were classified. 

Image Temporal Resolution Spatial Resolution Spatial Extent Spectral Bands 

BeefCorral75(1) June 2018 2.26 cm 612 m2 R-G-B 

BeefCorral75(2) June 2018 2.26 cm 662 m2 R-G-B 

Lindbo75(1) June 2018 2.24 cm 134 m2 R-G-B 

Lindbo75(2) June 2018 2.24 cm 105 m2 R-G-B 

Lindbo75NIR(1) June 2018 2.18 cm 134 m2 R-G-NIR 

Lindbo90(1) June 2018 2.7 cm 134 m2 R-G-B 
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Image Classification 

 The overall image classification workflow was structured in three main parts: data 

pre-processing, classification, and validation (Chapter 2, Figure 3). This is true for 

classifications performed in ArcGIS as well as eCognition. The workflow is described in 

more detail in Chapter 2. I subset each image into two smaller portions to increase 

processing time: Beef Corral subsets are depicted in Figure 13 and Lindbo Flats subsets 

are in Figure 14. 
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Figure 13: Beef Corral prairie dog colony mosaic image collected from low-flying UAS. 
Each box represents a small subset that was used for classification via pixel-based and 
object-based methods. The box on top corresponds to the BeefCorral75(1) classifications 
and the box on the bottom corresponds to the BeefCorral75(2) classifications.
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Figure 14: Lindbo Flats prairie dog colony mosaic image collected via low-flying UAS. Each box represents a small subset that was 
used for classification via pixel-based and object-based methods. The box on top corresponds to the Lindbo75(1) classifications and 
the box on the bottom corresponds to the Lindbo75(2) classifications. 
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I used ArcGIS (version 10.6, ESRI) to perform pixel-based classifications of the 

imagery using the following supervised methods: maximum likelihood and SVM. The 

maximum likelihood classifier is the best-known algorithms for supervised image 

classification (Erdas 1999). The SVM classifier groups similar pixels based on spectral 

values and creates pseudo-objects in n-dimensional space (segmentation), which are then 

used to create training samples (Cortes and Vapnik 1995). A series of segmentations were 

tested by adjusting the parameters of spectral detail and spatial detail. Spectral detail 

refers to the level of importance given to spectral features in the image, whereas spatial 

detail refers to the level of importance given to the proximity between features. The final 

image segmentations parameters were achieved using spectral detail of 15, spatial detail 

of 15, minimum segment size of 20, and band indexes 1, 2, and 3. Multiple training 

samples were created for each class then merged to form a reliable sample for the whole 

image. These training samples were then used by the classifier to identify classes that I 

delineated and assign pixels to the appropriate classes. 

 I performed object-based image analysis (OBIA) using eCognition Developer 

(version 9.1.2, Trimble 2015).  Then I tested a series of segmentations by adjusting the 

parameters of scale, shape, and image weighting. Scale adjusts how large or small the 

desired image objects will be, shape adjusts the relationship between color and shape 

criteria for the resulting segments, compactness adjusts the overall area of the resulting 

segments, and image weighting refers to the importance given to each spectral band (El-

naggar 2018). The final image segmentations were achieved using a scale of 40, image 

layer weights of 1, 1, and 1, shape of 0.2, and compactness of 0.6. I used the Nearest 

Neighbor (NN) classifier to classify objects based on training samples I created. 
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Classification parameters included mean color, brightness, standard deviation, maximum 

difference, area, shape, and mathematical band indices. After initial classification, I 

created rules and tested them until a ruleset was developed. This process is described in 

more detail in Chapter 2. 

 I performed error and accuracy assessments in the ArcGIS environment for both 

pixel based and OBIA classification techniques. I created confusion matrices where 

omission (false negatives) and commission (false positives) errors were quantified and 

examined. ArcGIS calculated a KHAT (Kappa) statistic for each matrix, which gives an 

estimate for the measure of actual agreement within a confusion matrix (Congalton and 

Mead 1983). The Kappa statistic can be used to show how your classification performs 

against a completely random classification (Kappa = 0) (Congalton and Green 1999). 

Since I am attempting to determine the accuracy of a small feature of interest (prairie dog 

mounds), I performed equalized accuracy assessments with a minimum of 100 sample 

points per class. I used this approach because rare-class sample sizes are often small 

when using stratified random sampling (Stehman and Foody 2009) and therefore results 

in a sampling deficiency for prairie dog mounds. For equalized accuracy assessments, 

overall accuracy for the entire classification and Kappa are less informative. Instead, 

producer’s and user’s accuracy for prairie dog mounds specifically are better at showing 

how the classifier performed. Producer’s accuracy is a measure of errors of omission (i.e. 

X% of prairie dog mounds correctly classified as prairie dog mounds), while user’s 

accuracy is a measure of errors of commission (i.e. Y% of objects classified as prairie 

dog mounds that were not actually prairie dog mounds). 
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Perimeter Delineation 

 I converted objects classified as prairie dog mounds for the entire raster to point 

features using the Feature to Point tool in ArcGIS. I then input the point data into the 

ConcaveHull (Fairhurst 2012) tool to create a perimeter polygon for the colony. None of 

the UAS imagery used in this study contains the true perimeter of the colonies, but one 

small area in BeefCorral75 can be compared with ground-data for testing this method. I 

used the Select by Attributes function in ArcGIS to remove mounds from the image that 

were located to the east of the park road, to the northeast of the stream that cuts through 

the image, and to the south of the southernmost line of trees. This minor digitization 

allowed for the comparison of ground-data from 2016 and 2018 with the ConcaveHull 

output. 

RESULTS 

 SVM classifications in ArcGIS yielded highly inaccurate results for 

detecting prairie dog mounds. Errors of omission ranged from 74% to 88%, while errors 

of commission ranged from 87% to 97%. The maximum likelihood classifier in ArcGIS 

produced images that were more accurate than the SVM approach, but only modestly so. 

Classifications produced by pixel-based methods in ArcGIS exhibited large areas of land 

that were incorrectly classified as prairie dog mounds (Figure 15C and 15D). Each 

mound is only around one meter across and therefore should appear as small dots on the 

image, just as they do in the base imagery (Figure 15A). Images processed using the 

OBIA approach in eCognition produced much higher accuracies for detecting prairie dog 

mounds. Errors of omission for prairie dog mounds ranged from 4% to 35%, while errors 

of commission ranged from 49% to 79% (Table 7). The decrease in errors can be seen by 
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looking at the image; prairie dog mounds have been correctly classified as small, round 

objects (Figure 15B). This much more closely reflects what the human eye can see in the 

base imagery. 

The ruleset I created in eCognition was developed for the BeefCorral image. That 

ruleset was used to classify all other images – including those taken at Lindbo Flats, an 

entirely different prairie dog colony that exhibits different landscape characteristics – to 

test for the transferability of these rulesets. By all classification modes, images that 

contained R-G-B bands performed better than images with R-G-NIR. 
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Figure 15: A) BeefCorral75(1) base image used for classification B) Classification 
produced using OBIA in eCognition C) Classification produced using maximum 
likelihood in ArcGIS D) Classification produced using SVM in ArcGIS. The brown color 
in the classification corresponds to prairie dog mounds, the off-white corresponds to bare 
ground, and the light green corresponds to short grasses. 

A B 

C D 
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Table 7: Percent omission and commission error for prairie dog mounds for 

each classification of Beef Corral and Lindbo Flats taken via UAS 

Classification 

Method 

No. Accuracy 

Points 

Percent Omission 

Error 

Percent 

Commission 

Error 

SVM    

BeefCorral75(1) 100 74% 87% 

BeefCorral75(2) 113 88% 97% 

MAXL    

BeefCorral75(1) 111 67% 94% 

BeefCorral75(2) 111 87% 97% 

Lindbo75(1) 125 65% 92% 

Lindbo75(2) 125 50% 89% 

Lindbo75NIR(1) 114 67% 92% 

Lindbo90(1) 107 59% 89% 

OBIA    

BeefCorral75(1) 100 4% 49% 

BeefCorral75(2) 100 27% 50% 

Lindbo75(1) 110 20% 59% 

Lindbo75(2) 111 21% 58% 

Lindbo75NIR(1) 106 35% 79% 

Lindbo90(1) 106 14% 65% 

Notes: All UAS images are R-G-B unless otherwise stated in the image name. 
The higher the percentage, the more errors the classifier made. 
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 The resulting perimeter based on all input points surrounded the entire image 

mosaic except for a few small sections of trees (Figure 16). This is expected since the 

colony extends past the boundaries of the UAS image and therefore prairie dog mounds 

can be seen even at the image edge. The isolation of the center portion of the colony 

(bounded by the park road and trees) allowed for adequate comparison between years 

(Figure 17). The boundary for that portion of the colony was larger in size in classified 

imagery than was mapped on foot: the perimeter from the 2016 ground data was 17.82 

hectares, the perimeter from the 2018 ground data was 17.36 hectares, and the perimeter 

from the 2018 classification was 19.89 hectares. This means that in 2018, 13.58% of the 

colony was undetected on foot.
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1 

Figure 16: Beef Corral colony perimeter (black line) as mapped by the 
ConcaveHull tool in ArcGIS. This perimeter accurately follows the edge of the 
image mosaic and correctly excludes small sections of trees where there were no 
prairie dog mounds. The perimeter was estimated from the classified map but 
displayed over the original mosaic to visualize the relationship. 
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2 

Figure 17: Colony perimeters for a central piece of the Beef Corral prairie dog 
colony. Ground data collected in 2016 is shown in blue, ground data collected in 
2018 is shown in green, and the perimeter based on the image classification for 
2018 is shown in red. 
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DISCUSSION 

 R-G-B images obtained by low-flying small UAS and processed using OBIA 

achieved the highest accuracy among the methods I tested for detecting prairie dog 

mounds in TRNP. The best pixel-based classifier was maximum likelihood, but it only 

detected prairie dog mounds half of the time. In all classifications of all modes, user’s 

accuracy was lower than producer’s accuracy. This means that errors of commission were 

more frequent than errors of omission. Although the maps produced here may be 

accurate, they may not be as reliable for field use (i.e. locating individual mounds on foot 

using the classified imagery as a map). The classes most commonly confused with prairie 

dog mounds were bare ground and short/clipped grasses. This intuitively makes sense as 

prairie dog mounds essentially are bare ground. 

 Individual prairie dogs can sometimes be identified with the naked eye in the 

imagery but were not segmented as separate objects in eCognition. Decreasing the 

segmentation parameter or obtaining even higher resolution imagery (< 2cm) may be able 

to delineate prairie dogs as individual objects, but this would drastically increase 

processing time and therefore was not tested in this work. However, future work may 

look at this and use classified prairie dogs in the imagery as another parameter for 

identifying mounds. It remains to be seen if individual prairie dogs can be reliably and 

consistently discerned in images. 

 The classifications achieved using eCognition in this research were performed 

using the same ruleset for every image. This shows the transferability of rulesets from 

one image to another. Of note is that the paved park road cuts through the Beef Corral 

prairie dog colony but cannot be seen in the Lindbo Flats colony. Since the ruleset was 
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developed for an image with a park road in it, some objects in the Lindbo Flats 

classifications were misclassified as park road when that class should not have been 

exhibited at all. However, this did not drastically impact overall accuracy for detecting 

prairie dog mounds. Individual image accuracy could be increased by creating a new 

ruleset specific to each image, but that is inefficient. This work demonstrates that rulesets 

can be transferred between images with relatively high success, especially between 

images of the same spectral resolution (i.e. R-G-B to R-G-B). 

Although the UAS images taken in 2018 did not capture any prairie dog colony 

boundaries, the methods presented in this study demonstrate a possible workflow for 

doing this work. Since no colony edge was present in the imagery, the image mosaic 

boundary was treated as a pseudo-perimeter for methods testing. The ConcaveHull tool 

accurately delineated the image mosaic based on burrow locations. I did minor 

digitization that took approximately 10 minutes. This step was necessary to remove 

mounds to the north-east of the northern tree line, mounds to the east of the park road, 

and erroneous mounds south of the southern tree line; this allowed for comparison of just 

the center piece of the colony since that was mapped as a separate piece in the ground 

truthed data. In a mosaicked photo of the entire colony, this type of minor digitization 

would not be needed. The boundary for the center portion of Beef Corral covered more 

area than the ground data and incorporated more taller vegetation within the colony 

boundary. By reviewing the imagery by eye, mounds can be seen in the taller vegetation 

that were likely missed on foot. This shows promise for using remote sensing for prairie 

dog colony mapping. 
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 For high resolution imagery, such as that derived from low altitude UAS flights, 

computational limitations of object-based classifications on single workstations remain a 

concern. A computer with dual processors and 128 GB of RAM was not able to handle 

entire UAS images in a single analysis (files of 1 to 3 GB in size). This is a common 

problem with a simple solution: tiling the large image into manageable rectangles and 

processing each separately. The resulting rasters can then be reassembled to produce a 

complete map. For the purpose of my thesis, I had to subset the UAS images for faster 

processing. Cloud or cluster computing is a potential option for this work in the future as 

it will drastically speed up processing times, however that increases the cost since extra 

software licenses will have to be purchased. 

Previous studies have determined that a data fusion approach is most ideal for 

producing accurate studies of natural systems (Marvin et al. 2016), and the same can be 

applied for increasing accuracy in detecting prairie dog mounds via the methods 

described in this paper. In addition, texture may be able to aid in mound identification 

because of prairie dogs disrupting surface soil outside of their burrows. 

 This research has demonstrated that classification of UAS imagery via eCognition 

is a viable strategy for detecting and mapping prairie dog colonies. Classified images 

captured more of the colony that was missed in ground observations. The knowledge 

gained from these types of analyses can be used to analyze colony growth and assess 

colony health. 
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APPENDIX A: 

CLASSIFICATION FIGURES 
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Appendix A: Figure 1. Maximum likelihood classification of the north unit of Theodore Roosevelt National Park 
from NAIP imagery. 
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Appendix A: Figure 2. Maximum likelihood classification of the south unit of Theodore Roosevelt National Park 
from NAIP imagery. 
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Appendix A: Figure 3. Object-based classification performed on a subset of a UAS image. 
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Appendix A: Figure 4. Object-based classification performed on a subset of a UAS image. 
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Appendix A: Figure 5. Object-based classification performed on a subset of a UAS image. 
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Appendix A: Figure 6. Object-based classification performed on a subset of a UAS image. 
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Appendix A: Figure 7. Object-based classification performed on a subset of a UAS image. 
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Appendix A: Figure 8. Maximum likelihood classification performed on a subset of a UAS image. 
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Appendix A: Figure 9. Maximum likelihood classification performed on a subset of a UAS image. 
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Appendix A: Figure 10. Maximum likelihood classification performed on a subset of a UAS image. 
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Appendix A: Figure 11. Maximum likelihood classification performed on a subset of a UAS image. 
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Appendix A: Figure 12. Maximum likelihood classification performed on a subset of a UAS image. 
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Appendix A: Figure 13. Support vector machines classification performed on a subset of a UAS image. 
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Appendix A: Figure 14. Support vector machines classification performed on a subset of a UAS image. 
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Appendix A: Figure 15. Object-based classification performed on a subset of a UAS 
image. 
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Appendix A: Figure 16. Object-based classification performed on a subset of a UAS 
image. 
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Appendix A: Figure 17. Maximum likelihood classification performed on a subset 
of a UAS image. 



118 
 

 

  

Appendix A: Figure 18. Maximum likelihood classification performed on a subset of 
a UAS image. 
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Appendix A: Figure 19. Support vector machines classification performed on a 
subset of a UAS image. 
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Appendix A: Figure 20. Support vector machines classification performed on a 
subset of a UAS image. 
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 1 

Appendix A: Figure 21. Object-based classification performed on a subset of a UAS image. 
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Appendix A: Figure 22. Object-based classification performed on a subset of a UAS image. 
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Appendix A: Figure 23. Object-based classification performed on a subset of a UAS image. 
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Appendix A: Figure 24. Object-based classification performed on a subset of a UAS image. 
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Appendix A: Figure 25. Maximum likelihood classification performed on a subset of a UAS image. 
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Appendix A: Figure 26. Maximum likelihood classification performed on a subset of a UAS image. 
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Appendix A: Figure 27. Maximum likelihood classification performed on a subset of a UAS image. 
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Appendix A: Figure 28. Maximum likelihood classification performed on a subset of a UAS image. 
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APPENDIX B: 

CONFUSION MATRICES
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Appendix B: Table 1. Ecognition UAS Talkington75(1) Stratified Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Leafy 

Spurge 

Park 

Road 

Sagebrush Shrubby 

Veg 

Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

35 5 0 0 11 0 0 0 3 54 0.648148 0 

Grasses 27 270 1 0 24 0 7 4 0 333 0.810811 0 

Leafy 

Spurge 

0 1 17 0 1 1 10 0 0 30 0.566667 0 

Park 

Road 

0 1 0 17 0 0 0 0 0 18 0.944444 0 

Sagebrush 0 1 0 0 36 0 0 3 0 40 0.9 0 

Shrubby 

Veg 

1 3 3 0 8 14 5 1 0 35 0.4 0 

Taller 

Veg 

1 20 7 0 15 4 180 2 0 229 0.786026 0 

Trees 2 3 0 0 2 5 4 5 0 21 0.238095 0 

Water 3 1 0 0 0 0 0 0 6 10 0.6 0 

Total 69 305 28 17 97 24 206 15 9 770 0 0 

Producers 

Accuracy 

0.507246 0.885246 0.607143 1 0.371134 0.583333 0.873786 0.333333 0.666667 0 0.753247 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.663031 
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 Appendix B: Table 2. Ecognition UAS Talkington75(2) Stratified Random Confusion Matrix 

Class Bare 

Ground 

Grasses Leafy 

Spurge 

Sagebrush Shrubby 

Veg 

Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

39 4 0 3 0 0 0 2 48 0.8125 0 

Grasses 23 376 0 26 2 15 5 0 447 0.841163 0 

Leafy 

Spurge 

0 1 3 0 4 2 0 0 10 0.3 0 

Sagebrush 0 1 0 35 0 0 2 0 38 0.921053 0 

Shrubby 

Veg 

0 1 0 3 11 2 1 0 18 0.611111 0 

Taller Veg 3 12 1 9 9 129 5 0 168 0.767857 0 

Trees 1 3 0 6 5 8 13 1 37 0.351351 0 

Water 2 0 0 0 0 0 0 8 10 0.8 0 

Total 68 398 4 82 31 156 26 11 776 0 0 

Producers 

Accuracy 

0.573529 0.944724 0.75 0.426829 0.354839 0.826923 0.5 0.727273 0 0.791237 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0.677671 
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Appendix B: Table 3. Ecognition UAS Talkington75NIR(1) Stratified Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Leafy 

Spurge 

Park 

Road 

Sagebrush Shrubby 

Veg 

Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

31 15 0 0 9 2 8 1 5 71 0.43662 0 

Grasses 21 190 2 1 21 0 27 0 0 262 0.725191 0 

Leafy 

Spurge 

0 3 14 0 10 7 21 2 0 57 0.245614 0 

Park 

Road 

1 1 0 15 0 0 1 0 0 18 0.833333 0 

Sagebrush 7 32 0 0 26 1 28 3 0 97 0.268041 0 

Shrubby 

Veg 

0 2 1 0 5 9 11 2 0 30 0.3 0 

Taller 

Veg 

6 57 8 1 22 4 101 5 2 206 0.490291 0 

Trees 0 5 3 0 4 1 9 2 0 24 0.083333 0 

Water 3 0 0 0 0 0 0 0 2 5 0.4 0 

Total 69 305 28 17 97 24 206 15 9 770 0 0 

Producers 

Accuracy 

0.449275 0.622951 0.5 0.882353 0.268041 0.375 0.490291 0.133333 0.222222 0 0.506494 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.354396 
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Appendix B: Table 4. Ecognition UAS Talkington75(2) Stratified Random Confusion Matrix 

Class Bare 

Ground 

Grasses Leafy 

Spurge 

Sagebrush Shrubby 

Veg 

Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

51 8 0 6 1 1 0 4 71 0.71831 0 

Grasses 8 307 1 19 3 49 3 1 391 0.785166 0 

Leafy 

Spurge 

0 1 1 0 1 6 1 0 10 0.1 0 

Sagebrush 5 19 0 21 0 5 3 0 53 0.396226 0 

Shrubby 

Veg 

0 2 0 2 3 5 0 0 12 0.25 0 

Taller Veg 1 51 2 16 12 73 4 0 159 0.459119 0 

Trees 2 10 0 18 11 17 15 1 74 0.202703 0 

Water 1 0 0 0 0 0 0 5 6 0.833333 0 

Total 68 398 4 82 31 156 26 11 776 0 0 

Producers 

Accuracy 

0.75 0.771357 0.25 0.256098 0.096774 0.467949 0.576923 0.454545 0 0.613402 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0.432442 
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Appendix B: Table 5. Ecognition UAS Talkington90(1) Stratified Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Leafy 

Spurge 

Park 

Road 

Sagebrush Shrubby 

Veg 

Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

21 14 1 0 5 1 5 2 3 52 0.403846 0 

Grasses 40 252 4 0 57 2 74 2 1 432 0.583333 0 

Leafy 

Spurge 

0 1 9 0 2 1 4 0 0 17 0.529412 0 

Park 

Road 

0 0 0 17 2 0 1 0 3 23 0.73913 0 

Sagebrush 0 2 2 0 5 1 3 0 0 13 0.384615 0 

Shrubby 

Veg 

0 0 0 0 0 5 2 0 0 7 0.714286 0 

Taller Veg 5 34 12 0 22 13 116 6 0 208 0.557692 0 

Trees 1 1 0 0 1 1 0 5 0 9 0.555556 0 

Water 2 1 0 0 3 0 0 0 2 8 0.25 0 

Total 69 305 28 17 97 24 205 15 9 769 0 0 

Producers 

Accuracy 

0.304348 0.82623 0.321429 1 0.051546 0.208333 0.565854 0.333333 0.222222 0 0.561769 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.369258 
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Appendix B: Table 6. Ecognition UAS Talkington75(1) Equalized Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Leafy 

Spurge 

Park 

Road 

Sagebrush Shrubby 

Veg 

Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

88 8 0 0 10 1 0 1 3 111 0.792793 0 

Grasses 4 96 0 0 11 0 0 0 0 111 0.864865 0 

Leafy 

Spurge 

1 3 61 0 3 19 21 3 0 111 0.54955 0 

Park 

Road 

1 0 0 110 0 0 0 0 0 111 0.990991 0 

Sagebrush 5 4 0 0 95 1 3 3 0 111 0.855856 0 

Shrubby 

Veg 

2 0 6 0 7 84 12 0 0 111 0.756757 0 

Taller 

Veg 

0 2 4 0 1 5 97 2 0 111 0.873874 0 

Trees 3 2 2 0 4 22 52 26 0 111 0.234234 0 

Water 15 1 0 0 0 0 1 0 94 111 0.846847 0 

Total 119 116 73 110 131 132 186 35 97 999 0 0 

Producers 

Accuracy 

0.739496 0.827586 0.835616 1 0.725191 0.636364 0.521505 0.742857 0.969072 0 0.751752 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.720721 



136 
 

 

 Appendix B: Table 7. Ecognition UAS Talkington75(2) Equalized Random Confusion Matrix 

Class Bare 

Ground 

Grasses Leafy 

Spurge 

Sagebrush Shrubby 

Veg 

Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

103 6 0 5 0 4 0 7 125 0.824 0 

Grasses 3 114 0 3 0 4 1 0 125 0.912 0 

Leafy 

Spurge 

0 0 58 0 39 19 9 0 125 0.464 0 

Sagebrush 2 3 0 111 1 5 3 0 125 0.888 0 

Shrubby 

Veg 

2 0 4 22 61 34 2 0 125 0.488 0 

Taller Veg 0 2 2 3 6 111 1 0 125 0.888 0 

Trees 4 0 4 26 20 37 33 1 125 0.264 0 

Water 11 0 0 0 0 1 0 113 125 0.904 0 

Total 125 125 68 170 127 215 49 121 1000 0 0 

Producers 

Accuracy 

0.824 0.912 0.852941 0.652941 0.480315 0.516279 0.673469 0.933884 0 0.704 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0.661714 
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Appendix B: Table 8. Ecognition UAS Talkington75NIR(1) Equalized Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Leafy 

Spurge 

Park 

Road 

Sagebrush Shrubby 

Veg 

Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

55 34 1 0 8 0 7 1 5 111 0.495495 0 

Grasses 5 94 1 1 7 0 3 0 0 111 0.846847 0 

Leafy 

Spurge 

1 14 33 0 17 23 20 3 0 111 0.297297 0 

Park 

Road 

3 10 0 92 0 0 6 0 0 111 0.828829 0 

Sagebrush 8 41 1 1 39 6 15 0 0 111 0.351351 0 

Shrubby 

Veg 

2 9 5 0 14 64 15 1 1 111 0.576577 0 

Taller Veg 1 9 5 2 10 1 79 4 0 111 0.711712 0 

Trees 4 13 10 1 13 12 30 27 1 111 0.243243 0 

Water 45 13 0 0 5 0 4 1 43 111 0.387387 0 

Total 124 237 56 97 113 106 179 37 50 999 0 0 

Producers 

Accuracy 

0.443548 0.396624 0.589286 0.948454 0.345133 0.603774 0.441341 0.72973 0.86 0 0.526527 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.467342 
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Appendix B: Table 9. Ecognition UAS Talkington75NIR(2) Equalized Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Leafy 

Spurge 

No 

Data 

Sagebrush Shrubby 

Veg 

Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

76 21 0 0 5 0 2 1 6 111 0.684685 0 

Grasses 2 96 1 0 2 1 9 0 0 111 0.864865 0 

Leafy 

Spurge 

0 10 17 0 5 28 45 6 0 111 0.153153 0 

No Data 0 86 0 0 20 0 5 0 0 111 0 0 

Sagebrush 9 21 0 0 64 3 13 1 0 111 0.576577 0 

Shrubby 

Veg 

0 0 9 0 7 75 17 3 0 111 0.675676 0 

Taller 

Veg 

0 11 3 0 8 7 82 0 0 111 0.738739 0 

Trees 6 14 3 0 20 8 30 28 2 111 0.252252 0 

Water 11 0 0 0 0 0 1 1 98 111 0.882883 0 

Total 104 259 33 0 131 122 204 40 106 999 0 0 

Producers 

Accuracy 

0.730769 0.370656 0.515152 0 0.48855 0.614754 0.401961 0.7 0.924528 0 0.536537 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.478604 
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Appendix B: Table 10. Ecognition UAS Talkington90(1) Equalized Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Leafy 

Spurge 

Park 

Road 

Sagebrush Shrubby 

Veg 

Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

85 12 1 0 9 1 1 2 0 111 0.765766 0 

Grasses 5 95 0 0 9 0 2 0 0 111 0.855856 0 

Leafy 

Spurge 

1 2 68 0 1 14 22 3 0 111 0.612613 0 

Park 

Road 

9 2 0 77 6 2 1 2 12 111 0.693694 0 

Sagebrush 0 5 0 0 101 0 4 1 0 111 0.90991 0 

Shrubby 

Veg 

2 1 10 1 7 85 3 2 0 111 0.765766 0 

Taller 

Veg 

0 5 5 0 4 9 87 1 0 111 0.783784 0 

Trees 2 2 5 0 4 14 16 68 0 111 0.612613 0 

Water 24 6 0 0 4 0 0 0 77 111 0.693694 0 

Total 128 130 89 78 145 125 136 79 89 999 0 0 

Producers 

Accuracy 

0.664063 0.730769 0.764045 0.987179 0.696552 0.68 0.639706 0.860759 0.865169 0 0.743744 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.711712 
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Appendix B: Table 11. Maximum Likelihood UAS Talkington75(1) Stratified Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Leafy 

Spurge 

Park 

Road 

Sagebrush Shrubby 

Veg 

Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

20 7 0 0 1 0 0 1 0 29 0.689655 0 

Grasses 17 225 0 0 42 2 32 2 1 321 0.700935 0 

Leafy 

Spurge 

0 0 10 0 0 1 3 0 0 14 0.714286 0 

Park 

Road 

25 8 0 16 3 0 1 0 1 54 0.296296 0 

Sagebrush 2 10 1 0 28 1 0 0 0 42 0.666667 0 

Shrubby 

Veg 

0 1 0 0 0 1 2 1 0 5 0.2 0 

Taller 

Veg 

0 18 9 0 1 25 112 4 1 170 0.658824 0 

Trees 4 40 3 0 18 12 48 8 0 133 0.06015 0 

Water 0 0 0 0 0 0 0 0 2 2 1 0 

Total 68 309 23 16 93 42 198 16 5 770 0 0 

Producers 

Accuracy 

0.294118 0.728155 0.434783 1 0.301075 0.02381 0.565657 0.5 0.4 0 0.548052 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.405378 



141 
 

  

Appendix B: Table 12. Maximum Likelihood UAS Talkington75(2) Stratified Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Leafy 

Spurge 

Park 

Road 

Sagebrush Shrubby 

Veg 

Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

13 0 0 0 4 0 1 0 2 20 0.65 0 

Grasses 25 357 0 0 30 2 38 2 1 455 0.784615 0 

Leafy 

Spurge 

0 0 2 0 0 1 2 1 0 6 0.333333 0 

Park 

Road 

21 5 0 0 6 0 0 0 1 33 0 0 

Sagebrush 2 1 0 0 22 0 0 2 0 27 0.814815 0 

Shrubby 

Veg 

0 0 1 0 0 0 2 0 0 3 0 0 

Taller Veg 0 16 1 0 2 19 71 1 1 111 0.63964 0 

Trees 1 19 0 0 18 9 42 20 0 109 0.183486 0 

Water 6 0 0 0 0 0 0 0 6 12 0.5 0 

Total 68 398 4 0 82 31 156 26 11 776 0 0 

Producers 

Accuracy 

0.191176 0.896985 0.5 0 0.268293 0 0.455128 0.769231 0.545455 0 0.632732 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.44308 
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Appendix B: Table 13. Maximum Likelihood UAS Talkington75NIR(1) Stratified Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Leafy 

Spurge 

Park 

Road 

Sagebrush Shrubby 

Veg 

Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

9 5 0 0 3 0 2 0 0 19 0.473684 0 

Grasses 30 217 2 2 36 1 52 2 1 343 0.632653 0 

Leafy 

Spurge 

0 4 10 0 6 8 13 0 0 41 0.243902 0 

Park 

Road 

17 5 0 14 5 1 2 1 4 49 0.285714 0 

Sagebrush 1 0 0 0 0 0 0 0 0 1 0 0 

Shrubby 

Veg 

1 1 1 0 1 0 6 0 0 10 0 0 

Taller 

Veg 

4 49 12 1 31 11 98 6 1 213 0.460094 0 

Trees 2 24 3 0 15 3 32 6 1 86 0.069767 0 

Water 5 0 0 0 0 0 1 0 2 8 0.25 0 

Total 69 305 28 17 97 24 206 15 9 770 0 0 

Producers 

Accuracy 

0.130435 0.711475 0.357143 0.823529 0 0 0.475728 0.4 0.222222 0 0.462338 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.274537 
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 Appendix B: Table 14. Maximum Likelihood UAS Talkington75NIR(2) Stratified Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Leafy 

Spurge 

Park 

Road 

Sagebrush Shrubby 

Veg 

Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

17 2 0 0 0 0 0 1 3 23 0.73913 0 

Grasses 10 317 0 0 39 1 53 5 0 425 0.745882 0 

Leafy 

Spurge 

0 0 3 0 2 6 8 1 0 20 0.15 0 

Park 

Road 

28 6 0 0 8 1 0 0 2 45 0 0 

Sagebrush 0 0 0 0 1 0 0 1 0 2 0.5 0 

Shrubby 

Veg 

1 2 0 0 0 1 1 0 0 5 0.2 0 

Taller 

Veg 

0 37 0 0 12 11 68 6 0 134 0.507463 0 

Trees 4 30 1 0 20 11 26 12 3 107 0.11215 0 

Water 8 4 0 0 2 0 0 0 3 15 0.2 0 

Total 68 398 4 0 82 31 156 26 11 776 0 0 

Producers 

Accuracy 

0.25 0.796482 0.75 0 0.012195 0.032258 0.435897 0.461538 0.272727 0 0.543814 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.325403 
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Appendix B: Table 15. Maximum Likelihood UAS Talkington90(1) Stratified Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Leafy 

Spurge 

Park 

Road 

Sagebrush Shrubby 

Veg 

Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

17 4 0 1 0 1 1 0 0 24 0.708333 0 

Grasses 18 224 1 0 48 2 48 3 1 345 0.649275 0 

Leafy 

Spurge 

0 0 3 0 0 5 5 1 0 14 0.214286 0 

Park 

Road 

21 13 0 15 3 1 1 0 2 56 0.267857 0 

Sagebrush 3 9 0 0 12 2 3 0 1 30 0.4 0 

Shrubby 

Veg 

1 0 6 0 0 10 7 1 0 25 0.4 0 

Taller 

Veg 

2 6 4 0 7 6 41 2 0 68 0.602941 0 

Trees 4 53 9 0 23 15 90 9 0 203 0.044335 0 

Water 2 0 0 0 0 0 2 0 1 5 0.2 0 

Total 68 309 23 16 93 42 198 16 5 770 0 0 

Producers 

Accuracy 

0.25 0.724919 0.130435 0.9375 0.129032 0.238095 0.207071 0.5625 0.2 0 0.431169 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.271369 
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 Appendix B: Table 16. Maximum Likelihood UAS Talkington75(1) Equalized Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Leafy 

Spurge 

Park 

Road 

Sagebrush Shrubby 

Veg 

Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

79 15 0 3 11 0 0 1 2 111 0.711712 0 

Grasses 4 94 0 0 10 0 1 1 1 111 0.846847 0 

Leafy 

Spurge 

0 1 83 0 0 5 22 0 0 111 0.747748 0 

Park 

Road 

47 21 0 35 4 0 0 0 4 111 0.315315 0 

Sagebrush 5 18 1 0 80 2 3 2 0 111 0.720721 0 

Shrubby 

Veg 

1 2 27 0 1 29 49 2 0 111 0.261261 0 

Taller 

Veg 

0 8 22 0 1 7 73 0 0 111 0.657658 0 

Trees 2 21 14 0 18 6 41 9 0 111 0.081081 0 

Water 13 4 0 0 0 0 0 0 94 111 0.846847 0 

Total 151 184 147 38 125 49 189 15 101 999 0 0 

Producers 

Accuracy 

0.523179 0.51087 0.564626 0.921053 0.64 0.591837 0.386243 0.6 0.930693 0 0.576577 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.523649 
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Appendix B: Table 17. Maximum Likelihood UAS Talkington75(2) Equalized Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Leafy 

Spurge 

Park 

Road 

Sagebrush Shrubby 

Veg 

Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

69 13 0 0 21 1 0 2 5 111 0.621622 0 

Grasses 2 97 0 0 9 1 2 0 0 111 0.873874 0 

Leafy 

Spurge 

0 0 23 0 0 33 42 13 0 111 0.207207 0 

Park 

Road 

66 21 1 0 20 0 0 0 3 111 0 0 

Sagebrush 4 9 0 0 84 2 5 7 0 111 0.756757 0 

Shrubby 

Veg 

1 4 13 0 1 43 44 5 0 111 0.387387 0 

Taller 

Veg 

0 8 3 0 0 10 87 2 1 111 0.783784 0 

Trees 3 9 2 0 13 24 53 7 0 111 0.063063 0 

Water 41 3 0 0 0 0 0 0 67 111 0.603604 0 

Total 186 164 42 0 148 114 233 36 76 999 0 0 

Producers 

Accuracy 

0.370968 0.591463 0.547619 0 0.567568 0.377193 0.373391 0.194444 0.881579 0 0.477477 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.412162 
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Appendix B: Table 18. Maximum Likelihood UAS Talkington75NIR(1) Equalized Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Leafy 

Spurge 

Park 

Road 

Sagebrush Shrubby 

Veg 

Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

67 21 0 0 5 4 10 0 4 111 0.603604 0 

Grasses 7 71 5 0 11 0 16 1 0 111 0.63964 0 

Leafy 

Spurge 

4 7 35 1 9 25 30 0 0 111 0.315315 0 

Park 

Road 

35 12 1 37 10 0 6 3 7 111 0.333333 0 

Sagebrush 6 41 13 2 20 0 26 1 2 111 0.18018 0 

Shrubby 

Veg 

25 17 9 0 9 10 39 2 0 111 0.09009 0 

Taller 

Veg 

3 14 14 1 15 5 59 0 0 111 0.531532 0 

Trees 6 27 10 1 20 4 32 10 1 111 0.09009 0 

Water 47 20 0 4 16 0 2 0 22 111 0.198198 0 

Total 200 230 87 46 115 48 220 17 36 999 0 0 

Producers 

Accuracy 

0.335 0.308696 0.402299 0.804348 0.173913 0.208333 0.268182 0.588235 0.611111 0 0.331331 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.247748 
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 Appendix B: Table 19. Maximum Likelihood UAS Talkington75NIR(2) Equalized Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Leafy 

Spurge 

Park 

Road 

Sagebrush Shrubby 

Veg 

Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

80 17 0 0 4 2 1 0 7 111 0.720721 0 

Grasses 4 84 1 0 11 2 8 1 0 111 0.756757 0 

Leafy 

Spurge 

1 5 20 0 2 53 23 7 0 111 0.18018 0 

Park 

Road 

80 8 0 0 10 0 5 0 8 111 0 0 

Sagebrush 12 25 4 0 21 6 35 8 0 111 0.189189 0 

Shrubby 

Veg 

2 9 12 0 8 35 40 5 0 111 0.315315 0 

Taller 

Veg 

1 8 8 0 4 18 67 4 1 111 0.603604 0 

Trees 5 19 6 0 20 13 36 12 0 111 0.108108 0 

Water 51 25 0 0 4 1 2 0 28 111 0.252252 0 

Total 236 200 51 0 84 130 217 37 44 999 0 0 

Producers 

Accuracy 

0.338983 0.42 0.392157 0 0.25 0.269231 0.308756 0.324324 0.636364 0 0.347347 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.265766 
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Appendix B: Table 20. Maximum Likelihood UAS Talkington90(1) Equalized Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Leafy 

Spurge 

Park 

Road 

Sagebrush Shrubby 

Veg 

Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

83 4 0 4 12 0 1 4 3 111 0.747748 0 

Grasses 7 88 1 0 5 0 9 0 1 111 0.792793 0 

Leafy 

Spurge 

0 0 57 0 0 31 22 1 0 111 0.513514 0 

Park 

Road 

48 22 0 30 1 0 2 0 8 111 0.27027 0 

Sagebrush 17 20 0 0 73 0 0 1 0 111 0.657658 0 

Shrubby 

Veg 

0 0 19 0 0 81 7 4 0 111 0.72973 0 

Taller 

Veg 

0 2 9 0 0 27 68 5 0 111 0.612613 0 

Trees 0 14 13 0 6 14 61 3 0 111 0.027027 0 

Water 46 10 0 0 0 0 0 0 55 111 0.495495 0 

Total 201 160 99 34 97 153 170 18 67 999 0 0 

Producers 

Accuracy 

0.412935 0.55 0.575758 0.882353 0.752577 0.529412 0.4 0.166667 0.820896 0 0.538539 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.480856 
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Appendix B: Table 21. Support Vector Machines UAS Talkington75(1) Stratified Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Leafy 

Spurge 

Park 

Road 

Sagebrush Shrubby 

Veg 

Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

19 3 0 1 12 0 3 3 1 42 0.452381 0 

Grasses 17 194 0 0 9 0 14 1 3 238 0.815126 0 

Leafy 

Spurge 

0 0 7 0 0 0 2 0 0 9 0.777778 0 

Park 

Road 

9 5 0 13 1 0 0 1 0 29 0.448276 0 

Sagebrush 1 6 0 0 20 0 1 0 0 28 0.714286 0 

Shrubby 

Veg 

0 4 6 0 2 8 13 2 0 35 0.228571 0 

Taller 

Veg 

1 35 8 0 4 4 94 2 0 148 0.635135 0 

Trees 0 24 7 0 14 11 61 4 0 121 0.033058 0 

Water 22 34 0 3 35 1 18 3 5 120 0.041667 0 

Total 69 305 28 17 97 24 206 15 9 770 0 0 

Producers 

Accuracy 

0.275362 0.636066 0.25 0.764706 0.206186 0.333333 0.456311 0.266667 0.555556 0 0.472727 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.348339 
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 Appendix B: Table 22. Support Vector Machines UAS Talkington75(2) Stratified Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Leafy 

Spurge 

Park 

Road 

Sagebrush Shrubby 

Veg 

Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

20 3 0 0 15 0 1 5 2 46 0.434783 0 

Grasses 15 316 0 0 10 0 17 1 0 359 0.880223 0 

Leafy 

Spurge 

0 0 2 0 0 1 1 1 0 5 0.4 0 

Park 

Road 

5 1 0 0 3 0 0 0 0 9 0 0 

Sagebrush 0 2 0 0 18 0 0 2 0 22 0.818182 0 

Shrubby 

Veg 

0 2 2 0 1 8 17 1 0 31 0.258065 0 

Taller 

Veg 

0 45 0 0 1 7 88 4 0 145 0.606897 0 

Trees 0 11 0 0 8 13 27 9 0 68 0.132353 0 

Water 28 18 0 0 26 2 5 3 9 91 0.098901 0 

Total 68 398 4 0 82 31 156 26 11 776 0 0 

Producers 

Accuracy 

0.294118 0.79397 0.5 0 0.219512 0.258065 0.564103 0.346154 0.818182 0 0.60567 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.445186 
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Appendix B: Table 23. Support Vector Machines UAS Talkington75(2) Equalized Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Leafy 

Spurge 

Park 

Road 

Sagebrush Shrubby 

Veg 

Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

52 24 2 5 18 4 0 4 2 111 0.468468 0 

Grasses 5 101 1 0 2 1 1 0 0 111 0.90991 0 

Leafy 

Spurge 

0 0 88 0 1 13 8 1 0 111 0.792793 0 

Park 

Road 

15 22 1 65 6 0 0 2 0 111 0.585586 0 

Sagebrush 4 10 1 0 90 0 5 0 1 111 0.810811 0 

Shrubby 

Veg 

0 9 19 0 1 50 29 3 0 111 0.45045 0 

Taller Veg 0 9 16 0 5 6 74 1 0 111 0.666667 0 

Trees 0 15 17 0 18 15 42 4 0 111 0.036036 0 

Water 16 40 4 1 27 4 10 1 8 111 0.072072 0 

Total 92 230 149 71 168 93 169 16 11 999 0 0 

Producers 

Accuracy 

0.565217 0.43913 0.590604 0.915493 0.535714 0.537634 0.43787 0.25 0.727273 0 0.532533 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.474099 
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Appendix B: Table 24. Support Vector Machines UAS Talkington75(2) Equalized Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Leafy 

Spurge 

Park 

Road 

Sagebrush Shrubby 

Veg 

Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

52 15 0 0 34 4 1 3 2 111 0.468468 0 

Grasses 7 98 0 0 1 1 4 0 0 111 0.882883 0 

Leafy 

Spurge 

0 0 23 0 0 38 32 18 0 111 0.207207 0 

Park 

Road 

54 33 0 0 22 1 1 0 0 111 0 0 

Sagebrush 6 18 0 0 73 2 7 5 0 111 0.657658 0 

Shrubby 

Veg 

0 4 16 0 0 60 26 5 0 111 0.540541 0 

Taller 

Veg 

0 13 4 0 1 11 81 1 0 111 0.72973 0 

Trees 1 11 6 0 8 35 39 11 0 111 0.099099 0 

Water 33 21 1 0 27 5 9 3 12 111 0.108108 0 

Total 153 213 50 0 166 157 200 46 14 999 0 0 

Producers 

Accuracy 

0.339869 0.460094 0.46 0 0.439759 0.382166 0.405 0.23913 0.857143 0 0.41041 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.336712 
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Appendix B: Table 25. Ecognition UAS BeefCorral75(1) Stratified Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Trees Pdog 

Mound 

Taller 

Veg 

Yellow 

Veg 

No 

Data 

Sagebrush Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

163 31 0 9 0 0 0 0 0 203 0.802956 0 

Grasses 25 450 4 5 0 0 0 3 0 487 0.924025 0 

Trees 0 0 15 0 0 0 0 0 0 15 1 0 

Pdog 

Mound 

3 3 0 3 0 0 0 1 0 10 0.3 0 

Taller Veg 0 4 16 0 31 1 0 0 0 52 0.596154 0 

Yellow 

Veg 

0 3 1 0 2 4 0 0 0 10 0.4 0 

No Data 0 0 0 0 0 0 10 0 0 10 1 0 

Sagebrush 0 2 1 1 0 0 0 6 0 10 0.6 0 

Water 0 2 0 0 0 0 0 0 8 10 0.8 0 

Total 191 495 37 18 33 5 10 10 8 807 0 0 

Producers 

Accuracy 

0.853403 0.909091 0.405405 0.166667 0.939394 0.8 1 0.6 1 0 0.855019 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.743865 
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Appendix B: Table 26. Ecognition UAS BeefCorral75(2) Stratified Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Trees Pdog 

Mound 

Taller 

Veg 

Yellow 

Veg 

No 

Data 

Sagebrush Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

117 38 0 5 0 0 0 0 0 160 0.73125 0 

Grasses 26 573 0 3 0 0 0 0 0 602 0.951827 0 

Trees 3 6 0 1 0 0 0 0 0 10 0 0 

Pdog 

Mound 

4 1 0 5 0 0 0 0 0 10 0.5 0 

Taller Veg 0 10 0 0 0 0 0 0 0 10 0 0 

Yellow 

Veg 

4 6 0 0 0 0 0 0 0 10 0 0 

No Data 0 0 0 0 0 0 10 0 0 10 1 0 

Sagebrush 3 7 0 0 0 0 0 0 0 10 0 0 

Water 10 0 0 0 0 0 0 0 0 10 0 0 

Total 167 641 0 14 0 0 10 0 0 832 0 0 

Producers 

Accuracy 

0.700599 0.893916 0 0.357143 0 0 1 0 0 0 0.847356 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.621794 
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 Appendix B: Table 27. Ecognition UAS BeefCorral75(1) Equalized Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Trees Pdog 

Mound 

Taller 

Veg 

Yellow 

Veg 

No 

Data 

Sagebrush Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

87 11 0 2 0 0 0 0 0 100 0.87 0 

Grasses 1 96 2 0 0 0 0 1 0 100 0.96 0 

Trees 0 2 86 0 4 0 0 8 0 100 0.86 0 

Pdog 

Mound 

17 22 1 51 3 0 0 6 0 100 0.51 0 

Taller 

Veg 

0 7 16 0 75 1 0 1 0 100 0.75 0 

Yellow 

Veg 

0 23 15 0 29 29 0 4 0 100 0.29 0 

No Data 0 0 0 0 0 0 100 0 0 100 1 0 

Sagebrush 3 7 23 0 0 0 0 67 0 100 0.67 0 

Water 0 18 0 0 0 1 0 0 81 100 0.81 0 

Total 108 186 143 53 111 31 100 87 81 900 0 0 

Producers 

Accuracy 

0.805556 0.516129 0.601399 0.962264 0.675676 0.935484 1 0.770115 1 0 0.746667 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.715 
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Appendix B: Table 28. Ecognition UAS BeefCorral75(2) Equalized Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Trees Pdog 

Mound 

Taller 

Veg 

Yellow 

Veg 

No 

Data 

Sagebrush Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

72 24 0 4 0 0 0 0 0 100 0.72 0 

Grasses 3 97 0 0 0 0 0 0 0 100 0.97 0 

Trees 14 83 0 3 0 0 0 0 0 100 0 0 

Pdog 

Mound 

15 35 0 50 0 0 0 0 0 100 0.5 0 

Taller 

Veg 

6 84 0 10 0 0 0 0 0 100 0 0 

Yellow 

Veg 

10 89 0 1 0 0 0 0 0 100 0 0 

No Data 0 0 0 0 0 0 100 0 0 100 1 0 

Sagebrush 2 96 0 0 0 0 0 2 0 100 0.2 0 

Water 100 0 0 0 0 0 0 0 0 100 0 0 

Total 222 508 0 68 0 0 100 2 0 900 0 0 

Producers 

Accuracy 

0.324324 0.190945 0 0.735294 0 0 1 1 0 0 0.356667 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.27625 
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 Appendix B: Table 29. Maximum likelihood UAS BeefCorral75(1) Stratified Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Yellow 

Veg 

Pdog 

Mound 

No Data Sagebrush Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

127 29 1 10 0 0 0 1 0 168 0.755952 0 

Grasses 26 400 2 7 5 1 0 7 0 448 0.892857 0 

Yellow 

Veg 

0 15 25 0 22 3 2 2 0 69 0.362319 0 

Pdog 

Mound 

38 46 0 1 0 0 0 0 0 85 0.011765 0 

No Data 0 0 8 0 4 0 0 0 0 12 0.333333 0 

Sagebrush 0 3 1 0 2 1 0 0 0 7 0.142857 0 

Taller 

Veg 

0 0 0 0 0 0 8 0 0 8 1 0 

Trees 0 0 0 0 0 0 0 0 0 0 0 0 

Water 0 2 0 0 0 0 0 0 8 10 0.8 0 

Total 191 495 37 18 33 5 10 10 8 807 0 0 

Producers 

Accuracy 

0.664921 0.808081 0.675676 0.055556 0.121212 0.2 0.8 0 1 0 0.711276 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.521217 
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Appendix B: Table 30. Maximum likelihood UAS BeefCorral75(2) Stratified Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Pdog 

Mound 

No Data Sagebrush Taller 

Veg 

Trees Total Users 

Accuracy 

Kappa 

Bare 

Ground 

96 45 10 0 0 0 0 151 0.635762 0 

Grasses 33 536 3 0 0 0 0 572 0.937063 0 

Pdog 

Mound 

28 54 1 0 0 0 0 83 0.012048 0 

No Data 0 0 0 0 0 10 0 10 0 0 

Sagebrush 1 0 0 0 0 0 0 1 0 0 

Taller Veg 0 0 0 0 0 0 0 0 0 0 

Trees 9 4 0 0 0 0 0 13 0 0 

Total 167 639 14 0 0 10 0 830 0 0 

Producers 

Accuracy 

0.57485 0.838811 0.071429 0 0 0 0 0 0.762651 0 

Kappa 0 0 0 0 0 0 0 0 0 0.449485 
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 Appendix B: Table 31. Maximum likelihood UAS BeefCorral75(1) Equalized Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Yellow 

Veg 

Pdog 

Mound 

No 

Data 

Sagebrush Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

82 15 0 14 0 0 0 0 0 111 0.738739 0 

Grasses 1 103 0 0 0 4 3 0 0 111 0.927928 0 

Yellow 

Veg 

0 65 10 0 0 1 15 20 0 111 0.09009 0 

Pdog 

Mound 

36 68 0 7 0 0 0 0 0 111 0.063063 0 

No Data 0 0 0 0 111 0 0 0 0 111 1 0 

Sagebrush 1 2 1 0 0 68 1 38 0 111 0.612613 0 

Taller 

Veg 

0 2 0 0 0 0 67 42 0 111 0.603604 0 

Trees 0 17 2 0 0 4 49 39 0 111 0.351351 0 

Water 0 83 0 0 0 0 1 0 27 111 0.243243 0 

Total 120 355 13 21 111 77 136 139 27 999 0 0 

Producers 

Accuracy 

0.683333 0.290141 0.769231 0.333333 1 0.883117 0.492647 0.280576 1 0 0.514515 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.453829 
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Appendix B: Table 32. Maximum likelihood UAS BeefCorral75(2) Equalized Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Yellow 

Veg 

Pdog 

Mound 

No 

Data 

Sagebrush Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

62 35 0 14 0 0 0 0 0 111 0.558559 0 

Grasses 2 109 0 0 0 0 0 0 0 111 0.981982 0 

Yellow 

Veg 

3 108 0 0 0 0 0 0 0 111 0 0 

Pdog 

Mound 

31 75 0 4 0 0 0 0 0 111 0.036036 0 

No Data 0 0 0 0 111 0 0 0 0 111 1 0 

Sagebrush 88 23 0 0 0 0 0 0 0 111 0 0 

Taller 

Veg 

0 103 0 8 0 0 0 0 0 111 0 0 

Trees 1 107 0 3 0 0 0 0 0 111 0 0 

Water 16 94 0 1 0 0 0 0 0 111 0 0 

Total 204 654 0 30 111 0 0 0 0 999 0 0 

Producers 

Accuracy 

0.303922 0.166667 0 0.133333 1 0 0 0 0 0 0.286286 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.197072 
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Appendix B: Table 33. Support Vector Machines UAS BeefCorral75(1) Stratified Random Accuracy Confusion Matrix  

Class Bare 

Ground 

Grasses Trees Pdog 

Mound 

Taller 

Veg 

Yellow 

Veg 

No 

Data 

Sagebrush Water Park 

Road 

Total Users 

Accuracy 

Kappa 

Bare 

Ground 

119 58 0 7 0 0 0 0 3 0 187 0.636364 0 

Grasses 26 375 6 6 14 3 0 7 0 0 437 0.858124 0 

Trees 0 0 11 0 2 2 0 1 0 0 16 0.6875 0 

Pdog 

Mound 

39 49 1 5 0 0 0 0 0 0 94 0.053191 0 

Taller 

Veg 

0 1 16 0 15 0 0 0 0 0 32 0.46875 0 

Yellow 

Veg 

0 10 1 0 1 0 0 0 0 0 12 0 0 

No Data 0 0 0 0 0 0 0 0 0 0 0 0 0 

Sagebrush 0 1 2 0 1 0 0 2 0 0 6 0.333333 0 

Water 0 1 0 0 0 0 0 0 5 0 6 0.833333 0 

Park 

Road 

7 0 0 0 0 0 10 0 0 0 17 0 0 

Total 191 495 37 18 33 5 10 10 8 0 807 0 0 

Producers 

Accuracy 

0.623037 0.757576 0.297297 0.277778 0.454545 0 0 0.2 0.625 0 0 0.659232 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0 0.439171 
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Appendix B: Table 34 Support Vector Machines UAS BeefCorral75(2) Stratified Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Pdog 

Mound 

Taller 

Veg 

Sagebrush Park 

Road 

Total Users 

Accuracy 

Kappa 

Bare Ground 94 59 4 0 0 0 157 0.598726 0 

Grasses 32 500 3 0 0 0 535 0.934579 0 

Pdog Mound 36 76 6 0 0 0 118 0.050847 0 

Taller Veg 0 0 0 0 0 0 0 0 0 

Sagebrush 1 1 0 0 0 0 2 0 0 

Park Road 4 3 1 10 0 0 18 0 0 

Total 167 639 14 10 0 0 830 0 0 

Producers 

Accuracy 

0.562874 0.782473 0.428571 0 0 0 0 0.722892 0 

Kappa 0 0 0 0 0 0 0 0 0.401875 
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 Appendix B: Table 35. Support Vector Machines UAS BeefCorral75(1) Equalized Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Trees Pdog 

Mound 

Taller 

Veg 

Yellow 

Veg 

Sagebrush Water Park 

Road 

Total Users 

Accuracy 

Kappa 

Bare 

Ground 

57 35 0 7 1 0 0 0 0 100 0.57 0 

Grasses 7 82 5 0 5 1 0 0 0 100 0.82 0 

Trees 0 13 45 0 40 2 0 0 0 100 0.45 0 

Pdog 

Mound 

37 47 1 13 0 0 2 0 0 100 0.13 0 

Taller 

Veg 

0 4 43 0 50 1 2 0 0 100 0.5 0 

Yellow 

Veg 

0 64 9 0 17 9 1 0 0 100 0.09 0 

Sagebrush 10 38 17 2 3 1 29 0 0 100 0.29 0 

Water 0 52 0 0 0 0 0 48 0 100 0.48 0 

Park 

Road 

57 7 7 27 0 0 0 0 2 100 0.02 0 

Total 168 342 127 49 116 14 34 48 2 900 0 0 

Producers 

Accuracy 

0.339286 0.239766 0.354331 0.265306 0.431034 0.642857 0.852941 1 1 0 0.372222 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.29375 
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Appendix B: Table 36. Support Vector Machines UAS BeefCorral75(2) Equalized Random Confusion Matrix 

Class Bare 

Ground 

Grasses Trees Pdog 

Mound 

Taller 

Veg 

Sagebrush Water Park 

Road 

Total Users 

Accuracy 

Kappa 

Bare 

Ground 

45 62 0 6 0 0 0 0 113 0.39823 0 

Grasses 3 106 0 4 0 0 0 0 113 0.938053 0 

Trees 5 106 0 2 0 0 0 0 113 0 0 

Pdog 

Mound 

29 80 0 4 0 0 0 0 113 0.035398 0 

Taller Veg 0 110 0 3 0 0 0 0 113 0 0 

Sagebrush 4 108 0 1 0 0 0 0 113 0 0 

Water 113 0 0 0 0 0 0 0 113 0 0 

Park 

Road 

58 43 0 12 0 0 0 0 113 0 0 

Total 257 615 0 32 0 0 0 0 904 0 0 

Producers 

Accuracy 

0.175097 0.172358 0 0.125 0 0 0 0 0 0.17146 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0.053097 
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Appendix B: Table 37. Ecognition UAS Lindbo75(1) Stratified Random Accuracy Confusion Matrix 

Class Grasses Bare 

Ground 

Taller 

Veg 

Pdog 

Mound 

Trees Water Sagebrush No 

Data 

Thistle Total Users 

Accuracy 

Kappa 

Grasses 461 27 1 1 0 0 2 0 0 492 0.936992 0 

Bare 

Ground 

49 184 0 6 0 0 1 0 0 240 0.766667 0 

Taller 

Veg 

3 0 20 0 0 0 1 0 0 24 0.833333 0 

Pdog 

Mound 

4 4 0 1 0 0 1 0 0 10 0.1 0 

Trees 1 3 2 0 2 1 1 0 0 10 0.2 0 

Water 2 1 0 0 0 7 0 0 0 10 0.7 0 

Sagebrush 0 2 0 0 0 0 8 0 0 10 0.8 0 

No Data 2 6 1 0 0 0 1 0 0 10 0 0 

Thistle 0 9 0 0 0 1 0 0 0 10 0 0 

Total 522 236 24 8 2 9 15 0 0 816 0 0 

Producers 

Accuracy 

0.883142 0.779661 0.833333 0.125 1 0.777778 0.533333 0 0 0 0.83701 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.691222 
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Appendix B: Table 38. Ecognition UAS Lindbo75(2) lf75RGBClip2 Stratified Random Accuracy Confusion Matrix 

Class Grasses Bare 

Ground 

Taller 

Veg 

Pdog 

Mound 

Trees Water Sagebrush Yellow 

Veg 

Park 

Road 

Total Users 

Accuracy 

Kappa 

Grasses 521 37 1 6 1 1 0 0 0 567 0.918871 0 

Bare 

Ground 

21 125 8 0 0 5 0 0 0 159 0.786164 0 

Taller Veg 1 7 5 0 0 0 0 0 0 13 0.384615 0 

Pdog 

Mound 

8 2 0 12 1 2 0 0 0 25 0.48 0 

Trees 1 0 0 2 3 4 0 0 0 10 0.3 0 

Water 3 0 0 0 0 7 0 0 0 10 0.7 0 

Sagebrush 8 1 0 0 0 1 0 0 0 10 0 0 

Yellow Veg 0 2 0 4 0 1 0 1 2 10 0.1 0 

Park Road 0 0 0 0 0 0 0 0 10 10 1 0 

Total 563 174 14 24 5 21 0 1 12 814 0 0 

Producers 

Accuracy 

0.9254 0.718391 0.357143 0.5 0.6 0.333333 0 1 0.833333 0 0.840295 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.663569 
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Appendix B: Table 39. Ecognition UAS Lindbo75NIR(1) Stratified Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Yellow 

Veg 

Pdog 

Mound 

Park 

Road 

Sagebrush Trees Taller 

Veg 

Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

50 8 0 3 0 0 0 0 0 61 0.819672 0 

Grasses 70 485 0 11 0 2 0 19 0 587 0.826235 0 

Yellow 

Veg 

0 2 0 0 0 2 0 6 0 10 0 0 

Pdog 

Mound 

33 9 0 13 0 0 0 0 0 55 0.236364 0 

Park 

Road 

8 2 0 0 0 0 0 0 0 10 0 0 

Sagebrush 3 3 0 0 0 2 0 2 0 10 0.2 0 

Trees 14 10 0 1 0 0 0 0 0 25 0 0 

Taller Veg 4 7 0 0 0 1 2 20 0 34 0.588235 0 

Water 5 2 0 0 0 1 0 1 1 10 0.1 0 

Total 187 528 0 28 0 8 2 48 1 802 0 0 

Producers 

Accuracy 

0.26738 0.918561 0 0.464286 0 0.25 0 0.416667 1 0 0.71197 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.418419 
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  Appendix B: Table 40. Ecognition UAS Lindbo90(1) Stratified Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Pdog 

Mound 

Sagebrush Trees Taller 

Veg 

Water Total Users 

Accuracy 

Kappa 

Bare Ground 137 113 16 0 0 1 0 267 0.513109 0 

Grasses 34 402 8 4 1 24 1 474 0.848101 0 

Pdog Mound 13 5 4 0 0 0 0 22 0.181818 0 

Sagebrush 2 0 0 2 0 0 0 4 0.5 0 

Trees 0 0 0 0 0 0 0 0 0 0 

Taller Veg 1 8 0 1 1 23 0 34 0.676471 0 

Water 0 0 0 1 0 0 0 1 0 0 

Total 187 528 28 8 2 48 1 802 0 0 

Producers 

Accuracy 

0.73262 0.761364 0.142857 0.25 0 0.479167 0 0 0.708229 0 

Kappa 0 0 0 0 0 0 0 0 0 0.449205 
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Appendix B: Table 41. Ecognition UAS Lindbo75(1) Equalized Random Accuracy Confusion Matrix 

Class Grasses Bare 

Ground 

Taller 

Veg 

Pdog 

Mound 

Trees Water Sagebrush No 

Data 

Thistle Total Users 

Accuracy 

Kappa 

Grasses 97 10 1 3 0 0 0 0 0 111 0.873874 0 

Bare 

Ground 

27 77 0 7 0 0 0 0 0 111 0.693694 0 

Taller 

Veg 

9 3 94 0 0 1 4 0 0 111 0.846847 0 

Pdog 

Mound 

26 28 10 46 0 0 0 0 0 111 0.418182 0 

Trees 20 20 43 0 9 1 18 0 0 111 0.081081 0 

Water 8 2 0 1 0 100 0 0 0 111 0.900901 0 

Sagebrush 9 20 14 0 1 1 66 0 0 111 0.594595 0 

No Data 11 49 24 0 0 7 19 0 0 111 0 0 

Thistle 2 108 0 0 0 0 1 0 0 111 0 0 

Total 209 317 186 57 10 110 108 0 0 997 0 0 

Producers 

Accuracy 

0.464115 0.242902 0.505376 0.807018 0.9 0.909091 0.611111 0 0 0 0.490471 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.426674 
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Appendix B: Table 42. Ecognition UAS Lindbo75(2) Equalized Random Accuracy Confusion Matrix 

Class Grasses Bare 

Ground 

Taller 

Veg 

Pdog 

Mound 

Trees Water Sagebrush Yellow 

Veg 

Park 

Road 

Total Users 

Accuracy 

Kappa 

Grasses 95 7 1 8 0 0 0 0 0 111 0.855856 0 

Bare 

Ground 

22 77 9 1 0 2 0 0 0 111 0.693694 0 

Taller 

Veg 

11 52 47 1 0 0 0 0 0 111 0.423423 0 

Pdog 

Mound 

19 6 0 79 1 4 0 1 1 111 0.711712 0 

Trees 5 32 0 47 9 15 0 1 2 111 0.081081 0 

Water 21 7 1 8 1 73 0 0 0 111 0.657658 0 

Sagebrush 87 4 1 7 0 11 0 0 1 111 0 0 

Yellow 

Veg 

8 15 0 61 3 3 0 18 3 111 0.162162 0 

Park 

Road 

8 1 0 2 0 0 0 0 100 111 0.900901 0 

Total 276 201 59 214 14 108 0 20 107 999 0 0 

Producers 

Accuracy 

0.344203 0.383085 0.79661 0.369159 0.642857 0.675926 0 0.9 0.934579 0 0.498498 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.435811 
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Appendix B: Table 43. Ecognition UAS Lindbo75NIR(1) Equalized Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Yellow 

Veg 

Pdog 

Mound 

Park 

Road 

Sagebrush Trees Taller 

Veg 

Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

93 9 0 4 0 0 0 0 0 106 0.877358 0 

Grasses 13 85 0 4 0 0 0 4 0 106 0.801887 0 

Yellow 

Veg 

2 25 0 0 0 17 0 62 0 106 0 0 

Pdog 

Mound 

71 10 0 23 0 1 0 0 1 106 0.216981 0 

Park 

Road 

67 25 0 1 0 6 0 6 1 106 0 0 

Sagebrush 37 23 0 0 0 31 1 14 0 106 0.292453 0 

Trees 85 17 0 3 0 1 0 0 0 106 0 0 

Taller 

Veg 

2 12 0 0 0 5 0 87 0 106 0.820755 0 

Water 63 19 0 0 0 3 0 4 17 106 0.160377 0 

Total 433 225 0 35 0 64 1 177 19 954 0 0 

Producers 

Accuracy 

0.214781 0.377778 0 0.657143 0 0.484375 0 0.491525 0.894737 0 0.352201 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.271226 
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Appendix B: Table 44. Ecognition UAS Lindbo90(1) Equalized Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Yellow 

Veg 

Pdog 

Mound 

Park 

Road 

Sagebrush Trees Taller 

Veg 

Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

74 26 0 6 0 0 0 0 0 106 0.698113 0 

Grasses 7 94 0 0 0 0 0 5 0 106 0.886792 0 

Yellow Veg 0 0 0 0 0 0 0 39 67 106 0 0 

Pdog 

Mound 

42 25 0 38 0 1 0 0 0 106 0.358491 0 

Park Road 55 15 0 0 0 0 0 7 126 106 0 0 

Sagebrush 16 10 0 0 0 73 0 6 1 106 0.688679 0 

Trees 21 5 0 0 0 7 61 11 1 106 0.575472 0 

Taller Veg 2 7 0 0 0 6 0 91 0 106 0.858491 0 

Water 0 0 0 0 0 0 0 7 99 106 0.933962 0 

Total 217 182 0 44 0 87 61 166 194 954 0 0 

Producers 

Accuracy 

0.341014 0.516484 0 0.863636 0 0.83908 1 0.548193 0.510309 0 0.555556 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.5 
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 Appendix B: Table 45. Maximum likelihood UAS Lindbo75(1) Stratified Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Yellow 

Veg 

Pdog 

Mound 

Sagebrush Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare Ground 137 79 0 22 0 0 0 0 238 0.57563 0 

Grasses 44 425 0 6 5 1 27 1 509 0.834971 0 

Yellow Veg 0 0 0 0 0 0 1 0 1 0 0 

Pdog Mound 3 5 0 0 0 0 0 0 8 0 0 

Sagebrush 1 6 0 0 1 0 2 0 10 0.1 0 

Taller Veg 0 3 0 0 0 0 12 0 15 0 0 

Trees 2 5 0 0 2 1 6 0 16 0.375 0 

Water 0 5 0 0 0 0 0 0 5 0 0 

Total 187 528 0 28 8 2 48 1 802 0 0 

Producers 

Accuracy 

0.73262 0.804924 0 0 0.125 0 0.125 0 0 0.709476 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0.43174 
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  Appendix B: Table 46. Maximum likelihood UAS Lindbo75(2) Stratified Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Pdog 

Mound 

Sagebrush Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare Ground 122 68 20 2 0 0 1 213 0.57277 0 

Grasses 55 433 5 5 1 15 0 514 0.842412 0 

Pdog Mound 1 2 0 0 0 0 5 8 0 0 

Sagebrush 0 7 0 11 0 2 0 20 0.55 0 

Taller Veg 0 2 0 0 0 25 0 27 0 0 

Trees 3 1 0 6 0 9 0 19 0.473684 0 

Water 0 7 0 0 0 1 5 13 0.364615 0 

Total 181 520 25 24 1 52 11 814 0 0 

Producers 

Accuracy 

0.674033 0.832692 0 0.458333 0 0.173077 0.454545 0 0.712531 0 

Kappa 0 0 0 0 0 0 0 0 0 0.463335 
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  Appendix B: Table 47. Maximum likelihood UAS Lindbo75NIR(1) Stratified Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Pdog 

Mound 

Sagebrush Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare Ground 108 39 15 0 0 1 0 163 0.662577 0 

Grasses 49 454 9 4 2 23 0 541 0.839187 0 

Pdog Mound 16 16 4 0 0 0 0 36 0.111111 0 

Sagebrush 3 2 0 1 0 0 0 6 0.166667 0 

Taller Veg 10 6 0 1 0 4 0 21 0 0 

Trees 1 11 0 1 0 20 0 33 0.606061 0 

Water 0 0 0 1 0 0 1 2 0.5 0 

Total 187 528 28 8 2 48 1 802 0 0 

Producers 

Accuracy 

0.57754 0.859848 0.142857 0.125 0 0.416667 1 0 0.733167 0 

Kappa 0 0 0 0 0 0 0 0 0 0.470922 
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  Appendix B: Table 48. Maximum likelihood UAS Lindbo90(1) Stratified Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Pdog 

Mound 

Sagebrush Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare Ground 126 84 16 0 0 1 0 227 0.555066 0 

Grasses 47 410 10 2 0 25 1 495 0.828283 0 

Pdog Mound 9 21 2 0 0 0 0 32 0.0625 0 

Sagebrush 2 3 0 2 1 6 0 14 0.142857 0 

Taller Veg 1 3 0 1 1 0 0 6 0.166667 0 

Trees 0 6 0 2 0 16 0 24 0.666667 0 

Water 2 1 0 1 0 0 0 4 0 0 

Total 187 528 28 8 2 48 1 802 0 0 

Producers 

Accuracy 

0.673797 0.776515 0.071429 0.25 0.5 0.333333 0 0 0.694514 0 

Kappa 0 0 0 0 0 0 0 0 0 0.417322 
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  Appendix B: Table 49. Maximum likelihood UAS Lindbo75(1) Equalized Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Yellow 

Veg 

Pdog 

Mound 

Sagebrush Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

92 19 0 14 0 0 0 0 125 0.736 0 

Grasses 18 104 0 1 0 2 0 0 125 0.832 0 

Yellow 

Veg 

2 71 0 3 0 49 0 0 125 0 0 

Pdog 

Mound 

58 50 0 11 3 1 0 2 125 0.088 0 

Sagebrush 7 43 0 0 68 8 0 0 125 0.544 0 

Taller 

Veg 

0 23 0 0 0 102 0 0 125 0.826 0 

Trees 27 19 0 1 32 43 0 3 125 0 0 

Water 11 107 0 1 0 0 0 6 125 0.048 0 

Total 215 435 0 31 103 205 0 11 1000 0 0 

Producers 

Accuracy 

0.427907 0.23908 0 0.354839 0.660194 0.497561 0 0.545455 0 0.383 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0.294857 



179 
 

 

 
Appendix B: Table 50. Maximum likelihood UAS Lindbo75(2) Equalized Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Yellow 

Veg 

Pdog 

Mound 

Sagebrush Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

103 11 0 11 0 0 0 0 125 0.824 0 

Grasses 12 108 0 0 2 2 1 0 125 0.864 0 

Yellow Veg 0 98 1 1 1 23 1 0 125 0.008 0 

Pdog 

Mound 

54 47 0 14 7 0 0 3 125 0.112 0 

Sagebrush 13 74 0 2 35 1 0 0 125 0.28 0 

Taller Veg 0 31 0 0 0 94 0 0 125 0.752 0 

Trees 22 20 0 0 28 49 6 0 125 0.048 0 

Water 8 113 0 0 0 0 0 4 125 0.032 0 

Total 212 502 1 28 73 169 8 7 1000 0 0 

Producers 

Accuracy 

0.485849 0.215139 1 0.5 0.479452 0.556213 0.75 0.571429 0 0.365 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0.274286 
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  Appendix B: Table 51. Maximum likelihood UAS Lindbo75NIR(1) Equalized Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Pdog 

Mound 

Sagebrush Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

74 29 11 0 0 0 0 114 0.649123 0 

Grasses 11 93 6 1 0 3 0 114 0.815789 0 

Pdog 

Mound 

40 63 10 1 0 0 0 114 0.087719 0 

Sagebrush 51 26 1 19 2 15 0 114 0.166667 0 

Taller Veg 44 30 0 24 2 14 0 114 0.017544 0 

Trees 2 31 2 1 0 78 0 114 0.684211 0 

Water 4 3 0 2 0 0 105 114 0.921053 0 

Total 226 275 30 48 4 110 105 798 0 0 

Producers 

Accuracy 

0.327434 0.338182 0.333333 0.395833 0.5 0.709091 1 0 0.477444 0 

Kappa 0 0 0 0 0 0 0 0 0 0.390351 
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  Appendix B: Table 52. Maximum likelihood UAS Lindbo90(1) Equalized Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Pdog 

Mound 

Sagebrush Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

60 37 10 0 0 0 0 107 0.560748 0 

Grasses 6 95 2 0 0 4 0 107 0.88785 0 

Pdog 

Mound 

32 61 12 2 0 0 0 107 0.11215 0 

Sagebrush 6 31 1 50 0 18 1 107 0.46729 0 

Taller 

Veg 

19 21 0 29 7 29 2 107 0.065421 0 

Trees 1 23 1 3 0 79 0 107 0.738318 0 

Water 15 45 3 11 0 5 28 107 0.261682 0 

Total 139 313 29 95 7 135 31 749 0 0 

Producers 

Accuracy 

0.431655 0.303514 0.413793 0.526316 1 0.585185 0.903226 0 0.441923 0 

Kappa 0 0 0 0 0 0 0 0 0 0.34891 
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 Appendix B: Table 53. Maximum likelihood NUMosaic_NAIP Stratified Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Veg of 

Interest 

Park 

Road 

Sagebrush Trees Water No 

Data 

Total Users 

Accuracy 

Kappa 

Bare 

Ground 

95 12 0 1 3 5 2 0 118 0.805085 0 

Grasses 2 165 2 0 11 7 1 0 188 0.87766 0 

Veg of 

Interest 

0 27 52 0 9 43 0 0 131 0.396947 0 

Park Road 36 1 0 2 1 0 1 0 41 0.04878 0 

Sagebrush 13 58 0 0 28 19 0 0 118 0.237288 0 

Trees 0 7 18 0 2 99 0 0 126 0.785714 0 

Water 18 0 0 0 0 0 7 0 25 0.28 0 

No Data 4 0 5 0 0 0 1 0 10 0 0 

Total 168 270 77 3 54 173 12 0 757 0 0 

Producers 

Accuracy 

0.565476 0.611111 0.675325 0.666667 0.518519 0.572254 0.583333 0 0 0.59181 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0.495643 
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 Appendix B: Table 54. Maximum likelihood NUMosaic_NAIP Equalized Random Accuracy Confusion Matrix 

Class Bare 

Ground 

Grasses Veg of 

Interest 

Park 

Road 

Sagebrush Trees Water No 

Data 

Total Users 

Accuracy 

Kappa 

Bare 

Ground 

88 8 0 1 1 1 1 0 100 0.88 0 

Grasses 2 86 1 1 8 2 0 0 100 0.86 0 

Veg of 

Interest 

1 28 35 0 9 27 0 0 100 0.35 0 

Park Road 91 3 0 3 0 1 2 0 100 0.03 0 

Sagebrush 24 34 1 0 34 6 1 0 100 0.34 0 

Trees 2 4 14 0 1 79 0 0 100 0.79 0 

Water 70 3 0 0 1 0 26 0 100 0.26 0 

No Data 31 3 28 0 2 5 31 0 100 0 0 

Total 309 169 79 5 56 121 61 0 800 0 0 

Producers 

Accuracy 

0.28479 0.508876 0.443038 0.6 0.607143 0.652893 0.42623 0 0 0.43875 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0.358571 
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  Appendix B: Table 55. Maximum likelihood SUMosaic_NAIP Stratified Random Accuracy Confusion Matrix 

Class Veg of 

Interest 

Bare 

Ground 

Water Trees Park 

Road 

Grasses Sagebrush Total Users 

Accuracy 

Kappa 

Veg of 

Interest 

40 1 0 11 0 19 3 74 0.540541 0 

Bare 

Ground 

1 100 0 7 0 14 6 128 0.78125 0 

Water 2 2 6 0 0 0 0 10 0.6 0 

Trees 35 11 0 97 0 10 4 157 0.617834 0 

Park Road 0 15 0 0 1 9 1 26 0.038462 0 

Grasses 21 14 1 8 0 180 8 232 0.775862 0 

Sagebrush 13 12 0 8 0 44 25 102 0.245098 0 

Total 112 155 7 131 1 276 47 729 0 0 

Producers 

Accuracy 

0.357143 0.645161 0.857143 0.740458 1 0.652174 0.531915 0 0.615912 0 

Kappa 0 0 0 0 0 0 0 0 0 0.506747 
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  Appendix B: Table 56. Maximum likelihood SUMosaic_NAIP Equalized Random Accuracy Confusion Matrix 

Class Veg of 

Interest 

Bare 

Ground 

Water Trees Park 

Road 

Grasses Sagebrush Total Users 

Accuracy 

Kappa 

Veg of 

Interest 

43 0 0 17 0 34 9 103 0.417476 0 

Bare 

Ground 

0 84 1 3 3 10 2 103 0.815534 0 

Water 0 47 41 4 2 7 2 103 0.398058 0 

Trees 14 7 0 64 0 13 5 103 0.621359 0 

Park Road 0 76 0 1 6 14 6 103 0.058252 0 

Grasses 3 11 0 6 0 78 5 103 0.757282 0 

Sagebrush 3 15 0 5 0 53 27 103 0.262136 0 

Total 63 240 42 100 11 209 56 721 0 0 

Producers 

Accuracy 

0.68254 0.35 0.97619 0.64 0.545455 0.373206 0.482143 0 0.475728 0 

Kappa 0 0 0 0 0 0 0 0 0 0.38835 
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Appendix B: Table 57. Maximum likelihood NAIPTalkington75(2) compared with UASTalkington75(2) Equalized Random Accuracy Confusion 
Matrix 

Class Bare 

Ground 

Grasses Veg of 

Interest 

Park 

Road 

Sagebrush Shrubby 

Veg 

Taller 

Veg 

Trees Water Total Users 

Accuracy 

Kappa 

Bare 

Ground 

48 30 0 0 12 0 5 1 4 100 0.48 0 

Grasses 2 81 1 0 0 0 13 3 0 100 0.81 0 

Veg of 

Interest 

1 11 8 0 2 4 61 13 0 100 0.08 0 

Park 

Road 

35 51 0 0 5 0 4 2 3 100 0 0 

Sagebrush 1 61 0 0 13 1 21 3 0 100 0.13 0 

Shrubby 

Veg 

0 0 0 0 0 0 0 0 0 0 0 0 

Taller 

Veg 

0 0 0 0 0 0 0 0 0 0 0 0 

Trees 2 28 0 0 11 6 32 19 1 99 0.191919 0 

Water 29 21 0 0 3 0 3 8 36 100 0.36 0 

Total 118 283 9 0 46 11 139 49 44 699 0 0 

Producers 

Accuracy 

0.40678 0.286219 0.888889 0 0.282609 0 0 0.387755 0.818182 0 0.293276 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.203905 
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