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ABSTRACT 

Plants and arthropods are the base of grassland communities, and their interactions with 

environmental gradients and each other can determine their composition and spatial 

structure within a site. The composition and spatial structure of these communities can 

determine how they contribute to grassland function, yet grassland conservation and 

restoration efforts typically do not consider both plants and arthropods. As a result, our 

understanding of how plant and arthropod communities assemble in response to 

environmental gradients, and each other, in the same space is incomplete. Furthermore, 

most studies of grassland community assembly do not address assembly across multiple 

taxonomic levels, and those that do tend to focus on limited groups of taxa. My research 

expands on this by investigating the response of plants to environmental gradients, and 

the response of three arthropod functional communities to plant and environmental 

gradients across a northern tallgrass prairie. Soil abiotic variables and elevation were 

sampled at 229 plots systematically distributed across UND’s Oakville Prairie in 2014 

and 2015. Plant species were surveyed at the same plots in late summer of both years and 

used to describe plant species composition, native and non-native species composition, 

non-native species cover, functional group composition, and plant community 

architecture across the site. Arthropods were sampled in mid- and late summer of both 

years at three locations in the plant community (litter; mid-story; canopy) in a subset of 

plots (n = 37). Three environmental gradients (elevation, soil moisture, and soil salinity) 
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most strongly affected plant community composition in both years. The range of zonation 

across plant community composition metrics was most similar in response to elevation 

and most variable in response to soil moisture. Plant community architecture, which 

strongly affects site use by grassland birds, was not directly associated with site 

environmental gradients. Results show that plant community zonation patterns can vary 

depending on the ways in which the plant community is described. Litter arthropods 

responded to salinity in year one and canopy arthropods responded to salinity in year two. 

Mid-story arthropods responded to plant gradients in both years, and the salinity gradient 

in year two. Mid-story arthropods were poorly structured along plant cover gradients that 

responded to environmental variables, but were well-structured along plant architectural 

gradients that did not respond to environmental variables. Arthropod functional 

communities were structured over a wider range of salinity than plant communities. 

These results show that plants and arthropods can co-vary along strong environmental 

gradients. These results improve our understanding of how grassland plant and arthropod 

zonation patterns form in the same space, which can help to inform a more holistic 

approach to grassland restoration.
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CHAPTER I 

INTRODUCTION 

One of the foundational goals of community ecology is to describe how species interact 

with each other and their environment to assemble into communities along gradients and 

maintain community structure over time. Assembly in diverse communities and the 

patterns that emerge can be driven by complex, not easily discernable species interactions 

with multiple environmental gradients (Snow & Vince 1984; Vince & Snow 1984). 

Community assembly occurs with the introduction of species to a given area, and is 

responsible for the maintenance of established communities (Fukami 2010). Assembly 

within a community is defined by the spatial patterns of species coexistence that emerge 

within a given area (Dallas & Drake 2014).  

Clements (1916) proposed the first formal hypothesis of community assembly, the 

organismal hypothesis, which is defined by distinct, multi-species zones of association 

along environmental gradients. Gleason (1926) introduced an alternate hypothesis, the 

individualistic hypothesis, which predicts that species distributions along environmental 

gradients occur more independently of one another to form random species associations. 

In contrast to the organismal hypothesis which predicts that community assembly is 

driven by species interactions with the abiotic environment, the individualistic hypothesis 

predicts that community assembly is driven by species abilities to disperse to new areas 

and compete for limited resources (Weiher et al. 2011).  
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The debate about the influence of abiotic filters and biotic interactions on 

community assembly is still relevant to community ecology. Modern hypotheses of 

community assembly predict a combination of abiotic and biotic species interactions 

drive community assembly in a given area. Deterministic community assembly 

hypotheses predict that community assembly occurs in response to environmental 

conditions and biotic interactions, such that locations that share a species pool and similar 

environmental conditions will support similar species composition over time (Fukami 

2010). Historically contingent community assembly hypotheses predict that community 

assembly is largely determined by stochastic events (e.g., disturbance events; species 

dispersals), such that habitat patches with similar environmental conditions can support 

different species composition depending on the availability of resources and the order of 

arrival of colonizers (Fukami 2010). These two hypotheses predict that community 

assembly is driven by fundamentally different processes. Deterministic community 

assembly is driven by niche-based processes, while historically contingent community 

assembly is driven by neutral processes and environmental stochasticity. 

Niche-based assembly and neutral theory, have been at the forefront of debate 

about the underlying processes that drive community assembly. Niche-based community 

assembly processes are rooted in organismal ideas, predicting that assembly is driven by 

abiotic filters that act as a selecting force on the ability of species from a regional species 

pool to establish within a community (Weiher et al. 2011). If this is the case, we should 

see local species composition vary as conditions change along environmental gradients. 

Neutral theory is based on the assumption that species with similar trophic strategies 
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(e.g., primary producers) are ecologically equivalent (Hubbell 2001). So, the ability of 

species to disperse to new sites and stochasticity drive assembly under neutral theory 

(Chase & Myers 2011). If this is the case, we would expect to see random distribution of 

species composition along environmental gradients where dispersal is not a limiting 

factor. 

Realistically, both niche-based and neutral processes are likely to influence 

community assembly. Species need to be able to access available resources in order to 

establish in a novel environment (Tilman 2004). However, species need to be able to 

withstand the abiotic conditions present in a site in order to establish (Fattorini & Halle 

2004). Once established, species traits can limit potential distribution along 

environmental gradients (Keddy 1992), which can directly impact the spatial structure of 

a community through recruitment and exclusion (Seabloom & van der Valk 2003a). The 

alternative stable states hypothesis (hereafter ASS) incorporates both niche-based and 

stochastic processes into models of community assembly. ASS predicts that communities 

are restricted by niche based processes as predicted by the organismal hypothesis, but that 

there is an element of stochasticity that arises from environmental stochasticity and 

random species dispersals (Temperton & Hobbs 2004). So, if community assembly is 

consistent with ASS species composition at environmentally similar habitat patches can 

vary, but only species that are able to withstand local environmental conditions will be 

able to establish.  

These hypotheses of community assembly have been developed for plant 

communities without consideration of the associated animal communities. Plant and 
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arthropod communities are highly interdependent, but our knowledge about how these 

communities assemble in response to environmental gradients in the same space is 

incomplete. Research into grassland community assembly typically focuses on more 

limited taxonomic groupings, such as just plants or a single arthropod functional 

community. However, this narrow focus is not able to wholly capture community level 

processes (Drake 1991). My research broadens typical focus to be more inclusive of the 

plant and arthropod communities that form the base of grassland ecosystems. The results 

of my study improve our understanding of how grassland plant and arthropod 

communities assemble in the same space in response to gradients of soil environmental 

variables and interactions with each other. 

My study was conducted at Oakville Prairie Complex (hereafter Oakville), an 

approximately 453 ha remnant tallgrass prairie. Oakville is located in a largely 

contiguous 16 × 48 km grassland corridor in Central Grand Forks County, ND. 

Grasslands in this corridor are typically managed for cattle production (grazing or 

haying) or enrolled in state or federal conservation programs. Poorly drained soils and a 

shallow aquifer that results in highly saline soils characterize soil conditions throughout 

the area (Laird 1944; Sandoval et al. 1964). The accumulation of chloride salts makes 

salinity in Central Grand Forks County unique among saline soils in the northern Great 

Plains (Seelig 2000). Previous research at Oakville has shown that salinity transitions 

from non-saline soils in the upland areas to severely saline soils in the low, wet areas 

(Redmann 1972). This provides a unique gradient in addition to typical grassland 

environmental gradients, such as pH, soil moisture, soil texture, and elevation, to 
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investigate how grassland plant and arthropod communities assemble and over what 

environmental scales does assembly occur. 

 My study assesses how community assembly occurs across multiple taxonomic 

groups (plants and arthropods) in response to grassland environmental gradients. Chapter 

II assesses the response of plant species and functional group composition and plant 

community architecture to environmental gradients, and what these responses indicate 

about plant community assembly. Chapter III assesses the response of arthropod 

composition across three functional communities (litter; mid-story; canopy) to plant and 

environmental gradients, and what these responses indicate about community assembly. 

My study asks the questions: 1) what environmental gradients are influencing plant 

species and functional group composition and plant community architecture; 2) what 

environmental scales are these gradients acting on plant species and functional group 

composition and plant community architecture; 3) what plant and environmental 

gradients are influencing arthropod functional composition across three functional 

communities (litter; mid-story; canopy); and 4) what environmental scales are these plant 

and environmental gradients acting on arthropod functional community composition. The 

results of my study will show how grassland community assembly can occur across 

multiple taxonomic levels. 
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CHAPTER II 

PLANT ASSOCIATIONS WITH ENVIRONMENTAL GRADIENTS IN A 

NORTHERN TALLGRASS PRAIRIE 

 

Abstract 

Interactions with soil environmental gradients strongly influence how grassland plant 

communities assemble and how they are structured within a site. The composition and 

spatial structure of plant communities within a site contribute to ecosystem function and 

determine the ecosystem services that are provided to associated animal communities. In 

diverse ecosystems, such as grasslands, plant species and functional group composition 

metrics and plant community architecture can respond individually or as a whole to a 

complex suite of environmental gradients. These responses can determine the spatial 

structure of a plant community across a site. To determine how plant community 

composition and architecture respond to environmental gradients, and what this indicates 

about plant community assembly and over what environmental scales it occurs, I sampled 

soil environmental variables and plant species composition and plant community 

architecture at 229 plots distributed across a 453 ha northern tallgrass prairie. From plant 

species composition I calculated native and non-native species composition, non-native 

species cover and functional group composition. Plant species and functional group 

composition consistently responded to three environmental gradients (elevation, soil 
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moisture, and soil salinity).  Plant community architecture describes the physical 

structure of the plant community at Oakville. Plant community architecture did not 

respond to any environmental gradients, but did form strong correlations with plant 

compositional metrics. This shows that plant community architecture is not responding to 

environmental gradients, but may be influenced by the biological structure of the 

Oakville plant community. Plant species and functional group composition responded 

similarly to gradients of elevation, soil moisture, and soil salinity. However, zonation 

patterns of functional group composition were generally broader along each of these 

gradients. This shows that interactions with multiple strong environmental gradients can 

separately influence compositional patterns in grassland plant communities.   

 

Introduction 

Ecologists have long been interested in the effects of environmental gradients on plant 

community composition and assembly (e.g., Cowles 1899; Clements 1916; Gleason 

1926; Curtis & McIntosh 1951; Whittaker 1953; Whittaker 1960; Tilman 1986; 

Lookingbill & Urban 2005). Early debate about assembly polarized around whether 

plants assemble into communities in unison forming distinct community types in 

response to abiotic environmental gradients, or whether species assort individually along 

gradients driven by competition to form communities (Clements 1916; Gleason 1926). 

Realistically, species assembly into communities can occur both in unison and 

individually within the same space (Lortie et al. 2004). Regardless of how assembly 

occurs species must be able to withstand abiotic environmental conditions to establish 
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and spread through a site (Keddy 1992; Fattorini & Halle 2004; Andersen et al. 2015). 

My study investigates how environmental gradients influence plant community 

composition and zonation patterns in a northern tallgrass prairie, and what these patterns 

indicate about how plant community assembly occurs in the site.  

Plant species composition can be strongly influenced by changing environmental 

conditions within an ecosystem (Whittaker 1956; Nelson & Anderson 1983; Klimek et al. 

2007; Zelnik & Carni 2008; McGlinn & Palmer 2011). Changing environmental 

conditions within an ecosystem can also influence the architectural complexity of plant 

species (Reinhardt & Kuhlemeier 2002; Silveira & Oliveira 2013). If plant species are 

responding to the same environmental gradients this will likely influence plant 

architecture at the community level. In some communities, species composition, patterns 

of zonation, and changes in plant architectural complexity can be driven by simple 

interactions with a single environmental gradient, such as wetland plant community 

response to water depth (Seabloom & van der Valk 2003a). However, in more complex 

systems species interactions with multiple environmental gradients can strongly affect 

patterns of species composition within plant communities (Vince & Snow 1984; Snow & 

Vince 1984).  

Species traits determine their ability to withstand changes in conditions along 

environmental gradients (Savage & Cavender-Bares 2012). Within the past 15 years, 

research into how plant functional traits and composition respond to environmental 

gradients (Ackerly & Cornwell 2007; Edwards & Still 2008; Yan & de Beurs 2016) has 

improved our understanding of how species tolerance to environmental conditions 
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influence community assembly. For example, Willis et al. (2010) showed that 

environmental filtering of species based on functional traits occurred differently between 

the landscape and local scales in a Minnesota oak savanna, a community type that is 

closely associated with the North American tallgrass prairie. Edwards and Still (2008) 

found a difference in the distribution of C3 and C4 grasses along a precipitation gradient 

in Hawaii, which they attributed to the increased water use efficiency of the C4 

photosynthetic strategy allowing these species to thrive in drier habitats.   

The environmental associations and zonation patterns of non-native species are 

particularly interesting because they may not respond to the same environmental 

gradients or assemble over the same scales as native species. Dispersal limits the 

introduction of non-native species to novel communities. Non-native species are often 

either intentionally (e.g., Melilotus sp.), or inadvertently (e.g., Euphorbia esula) 

introduced into plant communities. Following introduction, there are several impediments 

to the establishment and spread of non-native species (Theoharides & Dukes 2007). Non-

native species need to be able to access resources in order to establish (Tilman 2004), and 

resources are usually most available following disturbance. In communities that are 

adapted to frequent disturbances for maintenance of structure and composition, such as 

grassland communities, suppressing natural disturbance, such as fire, can allow 

established non-native species to expand their distribution (Lenz et al. 2003; Flory & 

Clay 2010). Species introductions follow selection for specific traits which likely makes 

non-native species pools less tolerant of environmental extremes than native species 
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pools, which may limit the ability of non-native species to distribute along environmental 

gradients. 

Many studies of grassland community response to environmental gradients focus 

on common gradients such as moisture, pH and soil texture. However, there is increasing 

concern about how salinity affects grassland plant communities (Bui 2013). Salinity, 

when present, can strongly influence the composition of grassland communities (Piernik 

et al. 1996; Zalatnai & Kormoczi 2004; Aschenbach & Kindscher 2006; Valko et al. 

2014). Most studies of grassland salinity gradients occur in secondarily salinized sites. 

Salinity places physiological stress on plant species and this may cause salinity to more 

strongly affect plant community assembly than elevation and soil moisture. 

Understanding the effects of salinity on community assembly in semi-natural systems can 

improve our understanding of plant community response in secondarily salinized 

grasslands.  

 The grassland corridor in Central Grand Forks County, ND provides a unique 

opportunity to study how plant community structure and composition responds to 

environmental gradients. It is situated in the northern portions of the North American 

Tallgrass Prairie. In addition to moisture gradients, this grassland corridor experiences 

natural salinity levels that are greater than the surrounding areas in the Red River Valley, 

as a result of poorly drained soils and upwelling from the shallow aquifer (Laird 1944; 

Sandoval et al. 1964). Many of the plants that comprise the native flora of this area of 

North Dakota are halophytic species (e.g., Distichlis spicata), or species that are able to 

tolerate a wide range of soil salinity (e.g., Hordeum jubatum; Seelig 2000). Additionally, 
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management is infrequently and sporadically implemented in this area. The absence of 

regular disturbance may allow non-native species to increase their distribution into areas 

with tolerable environmental conditions. This may provide insight into the limits that 

stressful environmental conditions, such as high soil salinity, can place on non-native 

species distributions within tallgrass prairie habitats.  

My study investigated the response of plant community composition and 

architecture to environmental gradients in a remnant tallgrass prairie in this area of North 

Dakota and how response to these gradients influences community assembly. I ask the 

questions: 1) what environmental gradients do plant community composition and plant 

community architecture respond to; 2) how do these responses shape plant community 

structure at Oakville; 3) is the plant community responding consistently across all levels 

of composition and architecture. Knowing how plant community assembly occurs in 

grasslands with strong environmental gradients can help to inform restoration as human 

activity increases the amount of grassland area subject to strong environmental gradients 

globally. 

 

Methods 

Study Site 

The Oakville Prairie Complex (hereafter Oakville) is an approximately 453 ha remnant 

tallgrass prairie (centroid latitude 47.893, longitude -97.315) in the Central Grand Forks 

County grassland corridor comprised of the University of North Dakota’s Oakville 

Prairie Field Station and North Dakota Game and Fish’s Oakville/Crawford Wildlife 
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Management Area. The site has a slight elevation gradient (mean slope between adjacent 

plots = 0.46o ± 0.05o) and topographic relief is provided by the Blanchard beach ridges 

remaining from Glacial Lake Aggasiz (Laird 1944). Soils of the lowland areas are of the 

Ojata series, which are characterized by high salinity. Soils of the upland areas are 

primarily of the Antler series, and have moderate to low salinity (Redmann 1972; 

Whitman & Wali 1975; Soil Survey Staff NRCS). Soil salinity results from localized 

upwelling of saline ground water (Laird 1944; Whitman & Wali 1975). Prior to the 

initiation of my study, the most recent prescribed fire occurred in the southern portion of 

the site in the mid-1990s (Robert Seabloom, unpublished). Following year one of my 

study prescribed burns were performed in one area in the north (~62.9 ha) and one area in 

the south (~81.8 ha). Non-native species were sporadically managed with herbicide 

spraying until the early 2000s (Robert Sheppard, personal communication, 31 December 

2015).  

Sampling Scheme 

Permanent 10  10 m sample plots were established in a systematic grid (100 m spacing, 

n = 229 plots) across eight management units at Oakville (ArcGIS 10.1; ESRI; Redlands, 

CA; Figure 1). Sample plots were positioned ≥ 150 m from management unit borders (to 

minimize edge effects) and marked with a metal stake at their centroid. Relative plot 

elevation (m above ellipsoid; hereafter elevation) was measured at each plot’s centroid 

with a Trimble GeoExplorer 2008 (Trimble Navigation Limited; Westminster, CO) held 

at waist height.  
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Figure 1. Oakville and plant community sampling locations. Inset map depicts plant 

sample plot design. 

 

Soil Sampling 

In 2014 and 2015 soil moisture (% Volumetric Wet Content to 20 cm; %VWC) was 

measured at each plot’s centroid (Spectrum Field Scout TDR soil moisture probe; 

Spectrum Technologies, Inc.; Aurora, IL) twice per month following subsidence of 

standing water (early July 2014, mid-April 2015). Volumetric water content measures the 

ratio of the volume of water in a given volume of soil to the total soil volume, so that at 

saturation %VWC will be equal to the percent of soil pore space in a given volume of 

soil. Soil temperature (Specmeters; Spectrum Technologies, Inc.; Aurora, IL; oC; to 20 
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cm depth) was measured twice per month from mid-April to mid-August 2015. Soil cores 

(1 cm diameter  approximately 20 cm depth) were collected once from mid-July to mid-

August 2 m north of the center point of each plot (0.5 m spacing between years; Figure 

1). Soil cores were assessed for soil texture by soil particle size analysis, following the 

modified pipette method of Gavlak et al. (2005), and were measured for pH (Oakton 

acorn pH 5+ meter; Oakton Instruments; Vernon Hills, IL) and salinity (electrical 

conductivity; EC; μS · cm-1; Oakton Acorn Conductivity 6+ meter; Oakton Instruments; 

Vernon Hills, IL).  

Vegetation Sampling 

Two 0.5  2 m quadrats (one in a N-S orientation, one in an E-W orientation; Figure 1) 

were surveyed for plant species composition within each of the 10  10 m plots over a 

two-week period in late July 2014 and 2015. Species were recorded in each quadrat and 

the aerial percent cover (pi) of each species was estimated to the nearest 5 percent. Each 

species was individually assessed and species canopies could overlap, so total coverage 

could exceed 100% for a quadrat.  Rare species (e.g., < 5% coverage) were assigned a 

value of 1 percent (modified from Seabloom & van der Valk 2003b).  Aerial coverage 

values per species were summed to calculate functional group (cool season (C3) grass; 

warm season (C4) grass; non-grass graminoid; legume; non-leguminous forb; and woody) 

and native and non-native cover. Additionally, percentage bare ground was recorded in 

2015. Coverage values and total species (S) and functional group richness values were 

averaged across quadrats to generate a plot value for each year. 
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Plant community architecture was measured as vegetation height density (cm), 

vegetation live height (cm), vegetation dead height (cm), and in 2015 photosynthetically 

active radiation (PAR; μmol · m-1 · s-1) and percent bare ground. Vegetation height 

density (cm) was estimated with a Robel pole with methods adapted from Robel et al. 

(1970), Vermeire and Gillen (2001) and Vermeire et al. (2002). A Robel pole was placed 

with its bottom edge flush with soil level at plot centroid. An observer at 4 m distance 

from plot centroid, with eye line at 1 m height from soil level, measured the lowest band 

on the Robel pole that was not completely obscured by vegetation. Measurements were 

taken in each of the four cardinal directions, and these values were averaged to provide a 

plot value. A meter stick was placed perpendicular to the soil surface to measure 

vegetation live height (position of the tallest stem in cm) and vegetation dead height 

(position of tallest dead vegetation ≤ 45o angle with the ground surface in cm). Live 

height and dead height were measured at 2.5 m from plot centroid in each of the four 

ordinal directions. These measures were averaged to generate a single live height and a 

single dead height value for each plot. 

In year two above and below canopy PAR was measured monthly from early June 

through early August (Accupar LP-80 ceptometer; Decagon Devices; Pullman, WA). 

Measurements were taken between 1100 and 1600 CST. Two readings were taken at each 

plot’s centroid with the sensor bar in offset orientations (N-S and E-W). Above and 

below canopy values were used to calculate plot average percent intercepted PAR. 
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Data Analysis      

Distance matrices were constructed in R 3.2.0 using the ecodist package function 

distance() for each plant and environmental variable using distance measures appropriate 

for the type of data in each matrix (R Core Team 2015; Goslee & Urban 2007; Table 1). 

Euclidean distance is based on Pythagoras’ formula (Legendre & Legendre 2008) which 

makes it appropriate for data that tends to vary in a straight-line manner, such as 

environmental variables or spatial coordinates (Goslee & Urban 2007). Sorensen distance 

is calculated in city-block space, and is useful for proportional data, such as plant species 

relative abundance (McCune & Grace 2002). Sorensen distance can accurately measure 

the absolute difference between two samples in city-block space (Cha 2007). Distance 

matrices consisted of a single or suite of variables depending on the compositional metric 

of interest. For example, I used a composite functional group composition matrix  

Table 1. Distance matrices included in Mantel tests between plant community and 

environmental variables. Matrices were created separately for year one and year two 

except for Soil Texture and Elevation, which did not change between years.   
Matrix  Included Variables Distance  

Plant   

Species Composition Percent cover per species Sorensen 

   Native Composition Percent native species cover Sorensen 

   Non-Native Composition Percent non-native species cover Sorensen 

   Non-Native Cover Sum non-native species cover Sorensen 

Functional Composition Percent cover of C3 Grass, C4 Grass, Non-Grass 

Graminoid, Forb, Legume and Woody species 

Sorensen 

Architectural Structure Height density (cm); live height (cm); dead height (cm); 

% exposed ground♦; % intercepted PAR (μmol ∙ m-1 ∙ s-1)♦  

Euclidean 

Environmental   

pH pH Euclidean 

Salinity electrical conductivity (μS ∙ cm-1) Euclidean 

Soil Texture % sand, clay, silt Euclidean 

Soil Moisture Mean across season soil moisture (% VWC)  Euclidean 

Elevation Height above ellipsoid (m) Euclidean 
♦Exposed ground and PAR were not available in year one architectural Structure matrix. 
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(simultaneously assessing cover of all functional groups) and assessed cover of each 

functional group separately. 

Following Seabloom & van der Valk (2003a), Mantel tests (10000 permutations) 

performed in R 3.2.0 using the ecodist package function mantel() were used to assess 

correlations between the plant and environmental distance matrices within each sample 

year (R Core Team 2015; Goslee & Urban 2007; Table 1). Positive correlation of plant 

matrices with environmental matrices indicates that sites with similar composition of 

environmental variables also have similar composition of plant variables (Seabloom & 

van der Valk 2003a; Goslee 2007). All Mantel tests were repeated as partial Mantel tests 

with the inclusion of a control matrix of plot centroid UTM coordinates to control for 

spatial autocorrelation, but doing so did not affect the results and this matrix was not 

retained in the final analyses. 

Mantel correlograms (1000 permutations) were constructed in R 3.2.0 using the 

ecodist package function mgram() for plant matrices which met a minimum correlation 

criterion (rM ≥ 0.2 and p ≤ 0.01) with environmental matrices (R Core Team 2015; Goslee 

& Urban 2007). The minimum correlation criterion was determined from Mantel test 

results that indicated a natural break in the correlations of plant matrices with 

environmental matrices.  Mantel correlograms were used to determine over what 

distances in environmental explanatory matrices changes occurred within corresponding 

plant matrices. The number of bins in each correlogram was determined by Sturge’s rule, 

which gives similar results to alternative methods for choosing bin number when sample 

sizes are moderate or low (~ 200 or fewer; Dogan & Dogan 2010). Bin ranges were 
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calculated from the range of values along each environmental gradient and the number of 

bins, providing even bin size across each correlogram. 

Empirical Bayesian Kriging models (EBK) were constructed in ArcGIS 10.3 

(ESRI; Redlands, CA) with power semivariograms (100 iterations) to generate prediction 

surfaces for all environmental gradients that met the minimum correlation criteria with at 

least one plant matrix. EBK estimates a semivariogram from known data points, 

simulating new values at known data points from this semivariogram, estimates a new 

semivariogram from these new values and then estimates the likelihood that the new 

semivariograms could be produced from the original data (Krivoruchko 2012). This is an 

iterative process that reduces the error from traditional kriging models built on a single 

semivariogram. However, since predicted values are influenced by known values at all 

neighboring data points the predicted values may not reach the extreme values from the 

range of values at known data points. The prediction surfaces created with EBK models 

show how the environmental variables that influence assembly in plant communities and 

patterns of plant species composition are distributed across Oakville to form gradients. 

To show sufficient detail in each prediction surface six classes were chosen. Bin size for 

each class was determined with Jenks natural breaks. Jenks natural breaks provide a way 

of breaking up continuous data into discrete classes in choropleth maps which minimize 

the sum of absolute deviation from class means by repeatedly transferring values from 

class boundaries to adjacent classes until the sum of absolute deviation from class means 

is minimized (Coulson 1987; Brewer & Pickle 2002). 
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Results 

Environmental conditions varied between years and among management units. The 

number of monthly precipitation events and the mean accumulation (mm) per event 

differed between years (Appendix A; Table A.1). Across field season precipitation (1 

May – 15 August) was 54.4 mm greater in year one than in year two (Wunderground.com 

2016). Weather data were collected from the weather station at the Grand Forks Air 

Force Base which is approximately 7 km NW of Oakville. Soil salinity more strongly 

varied among management units in the second year than in the first year (Table 2; Figure 

2). Soil moisture differences among management units were consistent between sample 

years (Table 2; Figure 3). Monthly mean daily temperature (oC) and wind speed  

(km · h-1) were similar between years (Appendix A; Table A.1). 

In year one, 72 native and 22 non-native species were encountered. In year two, 

85 native and 14 non-native species were encountered. Typically, the most frequently 

encountered species were less abundant within plots (mean plot cover < 20%; Table 3). 

Table 2. F-values from two-way ANOVAs  

(n = 229) of effects of management unit and 

sample year on Oakville soil salinity and soil 

moisture. ANOVA models were built on type 

III sums of squares due to unequal sample 

sizes among management units.   
Model df F p 

Soil Salinity    

Unit 7 18.2534 <0.0001 

Year 1 12.2208 0.0005 

Unit  Year 7 5.6378 <0.0001 

Residuals 442   

Soil Moisture    

Unit 7 12.8304 < 0.0001 

Year 1 0.1486 0.7000 

Unit  Year 7 0.4886 0.8429 

Residuals 442   
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Among the most frequently encountered species, two native grasses (H. jubatum 

and Spartina pectinata) and two non-native grasses (Bromus inermis and Poa pratensis) 

tended to be dominant species within plots (mean plot cover ≥ 45%; Table 3). 

There were notable changes in the frequency (≥ 10%) of three native grasses (S. 

pectinata; Muhlenbergia asperifolia; Pascopyrum smithii) and four non-native species 

(B. inermis; Melilotus officinalis, a legume; P. pratensis; Lappula squarrosa, a forb) 

between sample years. In addition, P. smithii and P. pratensis notably declined between 

years (> 10%), and B. inermis and M. officinalis cover notably increased between years. 

plant species typically comprised a low percentage (< 20%) of plot cover (Table 3).  

 
Figure 2. Mean salinity (μS ∙ cm-1) across management 

units and between sample years. Management Units A and 

F were burned between sample years. Error bars represent 

95% confidence intervals. Significant differences across 

management units and between years, determined with a 

Tukey’s post-hoc test, are indicated by different letters. 
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Figure 3. Mean soil moisture within management units in year one and year two. Error 

bars represent 95% confidence intervals. Significant differences, determined with a 

Tukey’s post-hoc test, are indicated by different letters. 

 

Table 3. Frequency of occurrence (n = 229 plots) and mean (± se) percent 

plot cover of the ten most commonly encountered native and non-native 

species at Oakville. 
Species Functional 

Group♦ 

Frequency (%) Cover (%) 

2014 2015 2014 2015 

Native      

Ambrosia artemisiifolia F 43.7 49.3 14.8 (1.6) 18.8 (1.8) 

Hordeum jubatum C3 40.6 51.1 66.7 (3.6) 61.4 (3.3) 

Helianthus maximiliani F 34.1 42.4 10.2 (1.4) 13.8 (1.4) 

Oligoneuron rigidum F 30.6 37.1 11.8 (1.7 14.5 (1.4) 

Symphoricarpos occidentalis W 31.9 31.0 20.6 (2.2) 22.8 (1.8) 

Symphyotrichum lanceolatum F 28.8 31.0 6.5 (0.7) 5.0 (1.1) 

Spartina pectinata C4 26.6 46.0 49.2 (4.8) 57 (5.3) 

Muhlenbergia asperifolia C4 12.2 37.6 6.7 (1.5) 8.7 (1.0) 

Pascopyrum smithii C3 10.9 37.6 30.7 (6.5) 15.5 (1.6) 

Glycyrrhiza lepidota L 21.8 24.0 11.3 (1.9) 18.1 (2.2) 

Non-Native      

Cirsium arvense F 47.6 52.0 8.3 (0.9) 8.4 (0.7) 

Sonchus arvensis F 45.4 50.7 11.8 (1.3) 12.3 (1.3) 

Bromus inermis C3 38.0 55.5 58.3 (4.0) 72.1 (3.2) 

Melilotus officinalis L 14.0 42.7 6.5 (1.8) 15.0 (1.7) 

Poa pratensis C3 30.6 22.2 63.2 (3.9) 47.8 (5.4) 

Sonchus oleraceus F 19.7 25.3 19.7 (2.6) 20.3 (2.2) 

Lappula squarrosa F 0 37.6 - 7.6 (1.0) 

Plantago lanceolate F 3.5 8.7 7.5 (3.3) 4.1 (1.9) 

Euphorbia esula F 4.8 6.1 10.6 (6.6) 18.7 (7.2) 

Taraxacum laevigatum F 5.2 3.9 6.4 (1.8) 10 (2.8) 
♦F = Forb; C3 = C3 grass; C4 = C4 grass; W = Woody; L = Legume 
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Figure 4. Native and non-native species cover across 

Oakville in year one and year two.  

 

Native species were present at 100% of plots in both years. Non-native species 

were present within 86% of the plots in year one and 93% in year two. Native cover (year 

one median = 100%, Q1 = 70.0%, Q3 = 100%; year two median = 100%, Q1 = 75.0%, Q3 

= 100%) was greater than non-native cover (year one median = 45.0%, Q1 = 3.0%, Q3 = 

100%; year two median = 85.0%, Q1 = 12.5%, Q3 = 100%) in year one (U = 32568, p < 

0.0001) and year two (U = 38075, p < 0.0001; Figure 4). 

Plant matrices differed in their correlation with environmental matrices 

(Appendix A; Table A.2). C3
 grass cover was the only plant variable that was not 

correlated with environmental matrices. C4 grass, non-grass graminoid and native cover 

and plant architectural structure were weakly (rM < 0.10, p ≤ 0.05) correlated with  
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Table 4. Plant matrices that were strongly correlated with at least one environmental 

matrix in either year one or year two. Correlation (rM) was determined by simple 

Mantel tests between matrices. Values that meet the criterion of strong correlation (rM 

≥ 0.2 and p ≤ 0.01) are listed in bold text. 
Plant Matrix Soil Salinity Soil Moisture Elevation 

2014 2015 2014 2015 2014 2015 

Species Composition 0.265*** 0.322*** 0.323*** 0.383*** 0.244*** 0.346*** 

   Native Composition 0.154*** 0.167*** 0.095** 0.188*** 0.147*** 0.225*** 

   Non-Native Composition 0.003 0.028 0.278*** 0.305*** 0.062** 0.189*** 

   Non-Native Cover 0.128*** 0.293*** 0.215*** 0.190*** 0.125*** 0.264*** 
Functional Composition 0.173*** 0.172*** 0.238*** 0.313*** 0.226*** 0.120*** 

   Forb Cover 0.084*** 0.199*** 0.051* 0.037 0.034 0.094*** 

   Legume Cover 0.052‡ -0.021 0.422*** 0.478*** 0.091** 0.163*** 

   Woody Cover 0.056‡ -0.018 0.327*** 0.520*** 0.194*** 0.218*** 

*** < 0.001; ** < 0.01; * < 0.05; ‡ < 0.1 

 

environmental matrices. C4 grass cover was weakly correlated with elevation in both 

years, and non-grass graminoid cover was weakly correlated with elevation in year two.  

In year one, native cover was weakly correlated to pH and soil moisture, but was not 

correlated to any environmental gradient in year two. In year two, architectural structure 

was correlated with salinity and weakly correlated with elevation, but in year one was not 

correlated with any environmental gradient. 

In both years, select plant matrix correlations with salinity, soil moisture and 

elevation met the minimum criterion to be considered strong (rM ≥ 0.20 and p < 0.01; 

Table 4). Species composition was strongly correlated with these gradients and weakly 

correlated with pH and soil texture in both years. Native species composition was most 

strongly correlated with elevation in year two. Non-native species composition was 

consistently strongly correlated with soil moisture in both years. Non-native cover was 

most strongly correlated with soil moisture in year one, and salinity and elevation in the 

year two (Figure 5). 
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Figure 5. Scatterplot of year two native and non-native cover along salinity, soil 

moisture and elevation gradients. Lines added for illustrative purposes are locally 

weighted polynomial regression curves of plot cover along each gradient. 

 

Forb cover was most strongly correlated (rM = 0.199, p = 0.0001) with salinity in 

the second year (Figure 6). Legume and woody cover were consistently and strongly 

correlated with soil moisture (Table 4; Figure 6). Woody cover was also strongly 

correlated with elevation in year two (Figure 6). 

The environmental gradients that were strongly correlated with at least one plant 

matrix (elevation, soil moisture, and soil salinity) occurred in SW-NE gradients across 

Oakville (Figure 7). Salinity was strongly positively correlated with soil moisture and 

strongly negatively correlated with elevation in both years, and soil moisture was 

strongly negatively correlated with elevation in both years (Appendix A; Tables A.3-

A.4). The scale of change in soil moisture closely resembles that of elevation across  
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Figure 6. Forb, legume, and woody cover along strongly associated 

environmental gradients in year two. Locally weighted polynomial 

regression curves showing plot cover trends along environmental gradients 

added for illustrative purposes.  

 

Oakville, with generally increasing moisture as elevation decreases. However, the scale 

of change in soil salinity does not resemble elevation or soil moisture. At upland 

positions across the site soil salinity was generally low (≤ 500 μS ∙ cm-1). Throughout the 

low, wet areas in the more southerly parts of Oakville salinity was moderate (≤ 1390 μS ∙ 

cm-1). Soils were only strongly saline in the low, wet areas of the northern most 

management unit.  



 

 

2
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Figure 7. Elevation, soil moisture, and soil salinity gradients across Oakville. Salinity and soil moisture 

gradients determined with Empirical Bayesian Kriging models with year two values. Elevation gradient 

determined by a digital elevation model (DEM) from the USGS, available from: 

http://viewer.nationalmap.gov/basic/.   

http://viewer.nationalmap.gov/basic/
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Table 5. Environmental distances (bin centroid value) over which plant matrices 

were positively and negatively correlated with site environmental gradients in year 

two as determined with Mantel correlograms.  
Plant Matrix Salinity (μS ∙ cm-1) Soil Moisture (%VWC) Elevation (m) 

 Positive  Negative  Positive  Negative  Positive  Negative  

Species 

Composition 

107.1-

535.5 

1178-

3319.9 

2.8-13.8 24.8;  

35.8-85.4 

1-1.7 3.1-10.0 

   Native  

   Composition 

- - - - 1-1.7 3.8-9.3 

   Non-Native  

   Composition 

- - 2.8-8.3 13.8-79.9  - - 

   Non-Native  

   Cover 

107.1-

535.5 

1178-

3319.9 

2.8-8.3; 

30.3; 52.3 

19.3-24.8;  

57.8-85.4 

1-1.7 3.8-10.7 

Functional 

Composition 

- - 2.8 – 19.3 35.8 – 85.4 - - 

   Forb  

   Cover 

107.1-

749.7 

1392.2-

2891.5; 

3319.9 

- - - - 

   Legume  

   Cover 

- - 2.8-19.3 30.3-74.4; 

85.4 

- - 

   Woody  

   Cover 

- - 2.8-19.3 35.8-79.9 1-1.7 3.8-7.2 

 

Plant species composition and non-native species cover responded similarly to 

soil salinity (Figure 8). Plant species composition and non-native cover were positively 

correlated among plots within 535.5 μS ∙ cm-1 of one another (Table 5; Figure 8). 

However, plant species composition and non-native species cover differed among plots 

 
Figure 8. Mantel correlograms of plant species composition, non-native species cover 

and forb species cover in response to changing soil salinity. Solid circles represent 

significant correlations. 
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that differed in soil salinity by greater than 1178 μS ∙ cm-1(Table 5; Figure 8). Forb 

cover was positively correlated over a longer range, and differences in forb cover began 

at a greater distance along the salinity gradient (Figure 8). Forb cover was similar among 

plots within 749.7 μS ∙ cm-1 of one another (Table 5; Figure 8). Forb cover differed 

among plots that differed by greater than 1392.2 μS ∙ cm-1 of one another (Table 5; 

Figure 8).     

There were more differences in patterns of positive and negative correlation 

among plant community metrics that were strongly correlated with the soil moisture 

gradient than the salinity gradient. Plant species composition was positively correlated 

among plots that were within 13.8% VWC of one another (Table 5; Figure 9). Plant 

species composition was different among plots that differed by 24.8% VWC and greater 

than 35.8% VWC (Table 5; Figure 9). Positive correlation occurred over the same range 

along the soil moisture gradient in functional group composition, legume cover and 

woody cover (Figure 9). Functional group composition, legume cover, and woody cover 

were similar among plots that were within 19.3% VWC of one another (Table 5; Figure 

9). However, negative correlation occurred over different ranges in each of these plant 

community metrics (Figure 9). Functional group composition differed among plots that 

differed by greater than 41.3% VWC (Table 5; Figure 9). Legume cover differed among 

plots that differed by 30.3-74.4 %, and 85.4% VWC (Table 5; Figure 9). Woody cover 

differed among plots that differed by 35.8-79.9% VWC (Table 5; Figure 9). The 

correlation patterns of non-native species cover along the soil moisture gradient differed 

from correlation patterns of non-native species composition. Positive correlation was 
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present over the same soil moisture range (Figure 9). Non-native species composition 

and non-native species cover were similar among plots that were within 8.3% VWC of 

one another. However, non-native species cover was additionally similar among plots 

that were 30.3% and 52.3% apart. The ranges of negative correlation of non-native 

species composition and non-native species cover differed (Figure 9). Non-native species 

composition differed among plots that differed by greater than 13.8% VWC (Table 5; 

Figure 9). Non-native species cover differed among plots that differed by 19.3-24.8% 

and greater than 57.8% VWC. 

 
Figure 9. Mantel correlograms of plant species composition, non-native cover, non-

native composition, functional group composition, legume cover and woody cover in 

response to changing soil moisture. Solid circles represent significant relationships.  
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Figure 10. Mantel correlograms of species composition, non-native cover, native 

composition, and woody cover in response to changing elevation. Solid circles 

represent significant relationships. 

 

All plant metrics that were strongly correlated with elevation correlated positively 

with elevation over the same range (Table 5; Figure 10). Plant species composition, 

native species composition, non-native species cover, and woody cover were similar 

among plots within 1.7 m of one another (Table 5; Figure 10).  However, the ranges of 

negative correlation differed among all plant metrics (Figure 10). Plant species 

composition differed among plots that differed by 3.1-10 m (Table 5; Figure 10). Native 

species composition differed among plots that differed by 3.8-9.3 m (Table 5; Figure 
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10). Non-native species cover differed among plots that differed by greater than 3.8 m 

(Table 5; Figure 10). Woody cover differed among plots that differed by 3.8-7.2 m 

(Table 5; Figure 10). 

 

Discussion 

My study assessed how plant community composition metrics and plant community 

architecture responded to multiple grassland environmental gradients. Overall, elevation, 

soil moisture, and soil salinity strongly affected plant structure and composition. 

However, the strength of correlation and the scales of response varied depending on the 

way in which community was characterized. Mainly, the strength of the relationship 

declined with coarser plant taxonomic and structural resolution. This is likely driven by 

changes in plant species pools and availability within more extreme environmental 

conditions, such as high salinity. Previous research has demonstrated that changes in 

plant species composition (Alhamad et al. 2007; Klimek et al. 2007; Seabloom & van der 

Valk 2003a), functional traits (Schwilk & Ackerley 2005; Yan & de Beurs 2016), and 

non-native species composition (Andersen et al. 2015; Uddin et al. 2013) can occur in 

response to environmental gradients and landscape position. The results of my study 

expand on this by showing how plant species, functional group, native species and non-

native species composition within the same plant community respond to environmental 

gradients.  

Approximately five decades ago several investigators described the Oakville plant 

community correlation with environmental conditions across the site (Redmann & Hulett 
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1964; Hadley & Buccos 1967; Hadley 1970; Redmann 1972; Whitman & Wali 1975). 

Since this time, there have been some notable changes in plant community composition 

within the site. Several species that had formed dominant community types in the mid-

1960s (Hadley & Buccos 1967; Redmann 1972) have become minor components of 

species composition at Oakville, most likely as a result of fire cessation. By the mid-

1980s Andropogon gerrardii and Schyzachyrium scoparium had become limited in their 

distribution across the site, no longer defining a major community type as described in 

the mid-1960s (Heidel 1986). Muhlenbergia formed a dominant community type in the 

mid-1960s, but in the current study M. richardsonis was not encountered and M. 

asperifolia was a frequently encountered subordinate species. A. gerardii, S. scoparium 

and M. asperifolia are all typical of drier, lower saline areas within the site. Hadley & 

Buccos (1967) described B. inermis as being restricted to dry, upland mounds in the 

southern portions of the site which had been frequently mowed prior to their survey 

(Redmann 1972). Since this time B. inermis has increased its distribution, becoming one 

of the most frequently encountered dominant species. This increase in presence of B. 

inermis may have influenced the decline of other dominant warm season grasses.  

Redmann’s (1972) description of the plant community across Oakville was based 

on surveys at 36 randomly distributed locations across the site, and then mapping the 

distribution of community types by comparison with aerial photographs. Redmann took 

soil samples from four widely distributed pits to describe the site’s soil conditions. My 

study takes a more thorough approach by systematically surveying the entire site to 

describe site-wide soil conditions and plant community in the same plots. Redmann used 
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polar ordination techniques to plot the distribution of major plant species along soil 

moisture and salinity gradients, so he was limited to determining correlation between 

plant community composition and environmental conditions. I used Mantel tests which 

are a more direct way to assess the correlation of plant community composition with 

changing environmental conditions between plots. Additionally, Mantel correlograms 

allowed me to determine over what range of change in environmental gradients plant 

community composition was positively or negatively correlated. Redmann showed broad 

scale change of community types across Oakville. The methods employed in my study 

were able to show finer scale change of species composition as a whole along the site, 

and tie these changes directly to environmental gradients. However, the findings of my 

study are generally in-line with the findings of Redmann’s study.  

Plant community species and functional group composition metrics formed well 

defined groups in response to elevation, soil moisture, and soil salinity. This suggests that 

niche-based processes are driving deterministic community assembly at Oakville (Chase 

& Myers 2011). Elevation, soil moisture, and soil salinity act as filters causing turnover 

in species and functional group composition across the site. These filters are acting more 

strongly on plant species composition metrics than functional group composition metrics. 

Plant species composition and non-native species cover responded strongly to each of 

these three gradients, but functional group composition metrics only responded strongly 

to subsets of these gradients. Zonation patterns of species composition metrics show that 

they are typically more well-structured in response to elevation, soil moisture, and soil 

salinity than functional group composition metrics. Turnover of species composition 
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metrics occurred at finer environmental scales in response to soil moisture and soil 

salinity than turnover of functional group composition metrics. Also, species composition 

metrics were negatively correlated over broader distances than functional group 

composition metrics in response to all three gradients. This suggests that these 

environmental filters are acting more strongly at the species composition level.  

 Plant species turnover across fine environmental scales will create distinct, 

localized plant species groupings. However, if functional group composition is changing 

over broader environmental scales changes in functional group composition along 

environmental gradients will be less predictable. This can have implications for grassland 

ecosystem services within a site. For example, Orford et al. (2016) have shown that 

pollinator diversity increases with grassland plant species diversity. However, many 

wildlife species, such as generalist arthropod herbivores and grassland birds, use of 

grassland habitats are affected by plant functional group composition (Joern 1982; 

Coppedge 2001). This may make it harder to predict how wildlife habitat can change 

within a site with strong environmental gradients than to predict how pollinator services 

will be provided. 

Functional group response to environmental gradients is driven by less dominant 

functional groups. Forb, legume, and woody functional groups were the only functional 

groups that responded to environmental gradients in either year at Oakville. Forb cover 

correlation with soil salinity in year two was just below the minimum correlation 

criterion. Legume and woody cover correlations with environmental gradients met the 

minimum correlation criterion. Legume composition consisted overwhelmingly of two 
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species (Melilotus officinalis and Glycyrrhiza lepidota) and woody composition consisted 

overwhelmingly of one species (Symphoricarpos occidentalis). C3 and C4 grasses did not 

respond to any environmental gradients. The response of legume and woody functional 

groups being driven by just a few species likely accounts for environmental filters acting 

less strongly at plant functional group level composition than species level composition. 

Plant community response to elevation was the most consistent across species and 

functional group composition metrics. Species composition, native species composition, 

non-native species cover, and woody cover were all positively correlated among plots 

within 1.7 m elevation of one another. The slight elevation gradient at Oakville means 

that elevation changes very little over long distances, so there should be little spatial 

variation in these metrics across the site. Species composition was negatively correlated 

over a wider distance along the elevation gradient than any other metric. However, the 

presence of beach ridges that provide relief on the landscape which can see a change in 

elevation of 2-3 m over a distance of less than 20 meters. So, change in species 

composition can occur over a short range when moving to a beach ridge from 

surrounding plains. Otherwise change in species composition is likely to occur over 

greater distances when moving from lowland areas to upland areas across Oakville. 

Native species composition and non-native species cover were negatively correlated over 

a wider distance than woody cover, showing that composition is more structured at the 

species level.  

There was more variation among plant responses to the soil moisture gradient at 

Oakville than there was to the salinity gradient. Functional composition, and in particular, 
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legume and woody cover remained positively correlated over a wider range along the soil 

moisture gradient than plant species composition, and negative correlation began at a 

greater distance along this gradient. This shows that more well defined distinct groupings 

are present in species composition along the soil moisture gradient, but that functional 

group composition and individual functional groups are also forming distinct groups 

along this gradient at broader environmental scales.  

Soil moisture is more influential of zonation patterns of non-native species 

composition and non-native species cover than it is of zonation patterns of species 

composition as a whole. Non-native species may be more restricted in their distribution 

along the soil moisture gradient than native species as a result of a more limited species 

pool (Andersen et al. 2015). Non-native species composition and non-native species 

cover remained positively correlated for a shorter range than plant species composition, 

and negative correlation began in these plant metrics at a shorter distance along the soil 

moisture gradient than in the plant species composition matrix. These areas are frequently 

inundated in the spring and early summer and non-native species may not be able to 

withstand seasonal flooding.  

Legumes and woody species were the only functional groups to respond to the 

soil moisture gradient and these functional groups were less well represented than grasses 

and forbs. There were two legume species (Glycyrrhiza lepidota and Melilotus 

officinalis) and one woody species (Symphoricarpos occidentalis) among the twenty 

species in the most frequently encountered native and non-native plant species. This 

reflects the limited species pool in these two functional groups compared to grasses and 



 

37 

 

forbs. So, it is likely the response of a few dominant species within the legume and 

woody functional groups are driving the response of functional group composition to soil 

moisture. The limited representation of legumes and woody species could explain why 

the response of functional group composition metrics to soil moisture was less well 

defined than the response of species composition metrics. Even though functional group 

composition is less well defined than species composition it is important to understand 

how functional group composition assembles and distributes across grasslands because 

this can alter the suitability of grassland habitat for desirable wildlife populations (Joern 

1982; Coppedge et al. 2001). 

Change in soil moisture occurred over approximately the same spatial scale as 

elevation and over a finer spatial scale than soil salinity across most of Oakville. 

Response to soil moisture was also more well defined than response to elevation. So, soil 

moisture will have led to more spatial variability in plant species and functional 

composition than elevation or soil salinity. The exception is the northern most 

management unit which ranges from highly saline to severely saline soils. In this unit 

there is little variation in soil moisture, but salinity and elevation do change across this 

unit. 

The responses of plant species composition, non-native species cover and forb 

cover to salinity were similar. Zonation patterns of plant species composition and non-

native species cover occurred over the same ranges in response to the salinity gradient. 

Structure in zonation patterns of forb cover in response to salinity was not as well-

structured. However, zonation patterns of all three of these plant metrics show that they 
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form distinct groups among plots that have similar levels of salinity and differ among 

plots that have more different salinity levels. Salinity places plant species under osmotic 

stress and can cause ion toxicity (Seelig 2000). Halophytes have evolved physiological 

and biochemical mechanisms to cope with high ion concentrations resulting from salinity 

without damage (Flowers & Colmer 2008). Several species native to Grand Forks 

County, ND, such as H. jubatum and S. pectinata, are halophytic or salt tolerant (Tesky 

1992; Howard 1996; Seelig 2000).  

Spatial variability of saline conditions is minimal across the southern portions of 

Oakville (Figure 7). Throughout the southern portions of the site salinity remains low or 

moderate and only becomes high or severe in the northern most unit of the site. If change 

of species composition, non-native species cover, and forb cover occur tightly with 

changes in soil salinity this could potentially result in low spatial variability of these plant 

composition metrics across the southern portions of Oakville.  

Despite strong correlations with species and functional group composition 

(Appendix A; Tables A.5-A.6), plant community architecture did not respond strongly 

to any environmental gradients. Plant community architecture only correlated with 

salinity and elevation in year two. This suggests that there is only a weak relationship 

between plant community architecture and the soil environment at Oakville, and this 

relationship does not the determining factor that causes change in plant community 

architecture across the site. Strong correlations with species and functional group 

composition suggest that plant community architecture is responding to changes in plant 

community composition across Oakville. These correlations show that plots with similar 
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species and functional group composition also had similar architectural structure. Many 

wildlife species, such as grassland birds and arthropods, select habitat based on plant 

community architecture or functional composition (Joern 1982; Hovick et al. 2014). So, 

maintaining architectural heterogeneity is important to sustain a diversity of wildlife 

populations (Tews et al. 2004). The response at Oakville shows that changes in plant 

species and functional composition can lead to changes in plant community architecture 

which will ultimately create architectural heterogeneity across grassland habitats.  

My study shows that community assembly processes are occurring similarly 

across different plant scales of plant species and functional composition at Oakville. 

Along each strongly correlated environmental gradient plant metrics form distinct groups 

among plots with similar environmental conditions and differ among plots that have 

greater difference of environmental conditions. This structure in response to 

environmental gradients shows that deterministic community assembly is occurring in the 

plant community at Oakville. The presence of three strong environmental gradients act as 

abiotic filters influencing plant species and functional composition. Demonstrating how 

plant communities can assemble and form patterns in response to strong environmental 

gradients in remnant communities can help to inform restoration practices that can 

improve restoration success in the Red River Valley of North Dakota where these strong 

environmental gradients are present on the landscape. Restoring these environmental 

gradients can increase the likelihood that a desirable plant community will be able to 

establish in restored sites.     
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CHAPTER III 

ARTHROPOD ASSOCIATIONS WITH PLANT AND ENVIRONMENTAL 

GRADIENTS IN A NORTHERN TALLGRASS PRAIRIE 

 

 

Abstract 

Arthropods comprise a large portion of grassland biodiversity, and provide 

decomposition, wildlife forage and pollination services within grasslands. Arthropod 

community composition, and the services they provide, can be spatially variable within 

grasslands and strongly influenced by plant and environmental gradients. However, the 

influence of plant and environmental gradients on the spatial variability of arthropod 

community composition is not well understood. To investigate these relationships, 

arthropods were collected at three locations within the plant community (litter; mid-story; 

canopy) across a structurally diverse northern tallgrass prairie during mid- and late 

summer 2014 and 2015. There were no plant or environmental gradients with which 

arthropods consistently correlated across functional community or across year. Litter 

arthropods correlated with plant and environmental gradients in both years, but not 

consistently. Litter arthropods responded strongly to soil salinity in year one and did not 

respond strongly to any gradients in year two. Mid-story arthropods responded strongly 

to grass cover and plant architectural gradients in year one and plant species composition, 

non-native species cover, and salinity gradients in year two. Mid-story arthropod 

composition did not become structured in response to any plant cover gradients  
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until becoming negatively correlated over a large change in plant cover occurred. Mid-

story arthropod composition was positive correlated among plots with similar plant 

community architecture and negatively correlated among plots in which plant community 

architecture differed more widely. This shows that mid-story arthropods are more well-

structured along plant community architecture gradients than plant cover gradients. Mid-

story arthropod zonation patterns in response to salinity were more well-structured than 

litter arthropods. Canopy arthropods did not respond to any gradients in year one, and did 

not respond strongly with any gradients in year two. These results suggest that plant 

gradients may not strongly affect litter and canopy arthropods and environmental 

gradients may not be affecting canopy arthropods at the site-scale. Mid-story arthropod 

response to environmental gradients can be stronger than litter arthropods. Mid-story 

arthropod community assembly can be driven by complex interactions with plant and 

environmental gradients that influence spatial structure of morphospecies composition 

differently.  There is clear stratification of arthropod communities (litter; mid-story; 

canopy) within the plant community at Oakville. This can influence the plant and 

environmental gradients that affect community assembly and formation of zonal patterns 

in each arthropod functional community 

 

Introduction 

Plant community assembly in response to gradients of environmental variables 

has been a major focus of research within community ecology since its inception. We 

have a good understanding of how community assembly processes in plant communities 
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determine species composition, and patterns within plant communities (Cowles 1899; 

Clements 1916; Gleason 1926; Curtis & McIntosh 1951; Whittaker 1956; Whittaker 

1960; Piernik et al. 1996; Solon et al. 2007). However, we have an incomplete 

understanding of how arthropod communities assemble in response to plant and 

environmental gradients. Changes in arthropod species composition along gradients will 

affect how arthropods contribute to ecosystem function within a site. Research that 

addresses arthropod community response to plant and environmental gradients usually 

has a narrow focus, such as on a single taxonomic group (Rypstra et al. 1999) or among 

arthropods at a single location within the plant community (Garcia et al. 2010; Pan et al. 

2015). Research to determine how community assembly processes act on arthropods at 

different locations within the plant community, and whether the same drivers are 

responsible for assembly and patterns of species composition is needed to better 

understand how grassland arthropod communities form. My study assesses to what extent 

three grassland arthropod functional communities (litter; mid-story; canopy), as 

determined by location within the plant community, are correlated with northern tallgrass 

prairie plant and environmental gradients, and what this tells us about assembly in these 

functional communities. 

Tallgrass prairies support diverse arthropod communities which provide essential 

services within these grassland habitats that maintain healthy grassland ecosystem 

function (Fox-Dobbs et al. 2010). Arthropods affect decomposition, soil health, 

pollination, and serve as a source of prey within the habitats they occupy (Landis et al. 

2008; Del Toro et al. 2012). Arthropod contributions to ecosystem function will vary 
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with location in the plant community. For example, detrivores can comprise a large 

portion of litter arthropod communities. Detrivores (e.g., Cylisticus convexus) in litter 

arthropod communities aid in nutrient cycling by breaking down dead plant matter 

(Miller 1993; Rapp 2001). Mound building arthropods that are also common components 

of grassland litter arthropod communities (e.g., ants and termites) can ameliorate stressful 

environmental conditions, creating habitat that supports species across a range of 

taxonomic levels (Wali & Kannowski 1975; Pringle et al. 2010). Mid-story arthropod 

herbivores can play a suppressive role on forb abundance within grasslands, influencing 

species composition and helping to maintain a high grass to forb ratio (La Pierre et al. 

2015). Grassland arthropods, such as aerial predators, also provide natural pest control 

(Cox et al. 2014). Pollinators typical of canopy arthropod communities provide valuable 

pollination services within agricultural landscapes (Isaacs et al. 2009).  

Arthropod interactions with plant and environmental gradients can determine 

composition, and zonation patterns in arthropod communities within a site (Potts & 

Willmer 1997; Siemann 1998; Pan et al. 2015; Lengyel et al. 2016). Arthropods respond 

to plant species composition, plant functional group composition, plant community 

architecture and soil abiotic environment (Crist et al. 2006; Mormul et al. 2011; 

Koricheva et al. 2000; Kwon et al. 2016). The location of arthropods within the plant 

community should determine how plant and environmental gradients affect composition 

and zonation patterns within arthropod functional communities (Bestelmeyer & Wiens 

2001; Johnson & Agrawal 2005; Pasquet et al. 2008; Pan et al. 2015; Kwon et al. 2016).   
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Vertical stratification is more clearly understood in woody ecosystems, as are its 

effects on stratification within associated animal communities. In grasslands vertical 

stratification has received little attention, yet heterogeneous grassland plant communities 

are clearly vertically stratified (Liira et al. 2002). We do not fully understand how 

arthropod communities fully exploit the architectural resources made available at 

different locations within grassland plant communities because most research focuses on 

a single location within grassland plant communities (e.g., Bestelmeyer & Wiens 2001; 

Johnson & Agrawal 2005; Pan et al. 2015) or limited representation of arthropod taxa 

from multiple strata within grasslands (Rypstra et al. 1999; Schaffers et al. 2008).  

Litter arthropods occupy a ground level position, so interactions with plant litter 

should most strongly affect their composition. Increased architectural complexity of plant 

litter can provide greater habitat (Nemec et al. 2014; Horvath et al. 2015) and provide 

protection from daily and seasonal soil temperature fluctuations (Rypstra et al. 1999; 

Mazia et al. 2006). Mid-story arthropod communities are commonly comprised of 

herbivores, and so mid-story arthropods should be directly associated with plant 

resources (Borror et al. 1981; Simons et al. 2016). Plant species composition can 

determine mid-story herbivore and predator diversity (Torma et al. 2014). Mid-story 

arthropods rely on plant community architecture to provide essential habitat (Rypstra et 

al. 199). Canopy arthropod communities are commonly comprised of highly mobile 

arthropods, such as pollinators, that often have wide foraging distance (Bidlingmayer & 

Hem 1981; Borror et al. 1981; Pasquet et al. 2008).  Canopy arthropod abundance and 
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richness can be determined by floral resources and plant canopy cover (Matteson et al. 

2013).  

Arthropod response to environmental gradients can be mediated through 

interactions with the plant community. It is well documented that plant community 

composition and structure are directly influenced by interactions with abiotic 

environmental gradients (Cowles 1899; Clements 1916; Gleason 1926; Curtis & 

McIntosh 1951; Whittaker 1956; Whittaker 1960; van der Valk 1981; Weiher & Keddy 

1995; Seabloom & van der Valk 2003a; Aronson & Galatowitsch 2008). Recruitment and 

exclusion of plant species based on their environmental tolerance can determine plant 

community structure (Fattorini & Halle 2004). The structure of plant communities can 

determine how arthropods use them, ultimately influencing arthropod community 

composition (Voigt & Perner 2004). Plant interactions with environmental gradients can 

determine plant phenotypic expression, and expressed plant phenotypes will influence 

arthropod community composition (Johnson & Agrawal 2005). Soil chemistry can alter 

plant tissue chemistry and plant morphology, thus influencing how arthropods use plants 

(Meindl et al. 2013). Plant mediated response to environmental gradients can determine 

arthropod community composition, but direct arthropod interactions with environmental 

gradients can also influence arthropod composition.  

Arthropods can also be directly influenced by environmental gradients through 

their exposure to and use of the abiotic environment. As adults, litter arthropods are more 

directly exposed to the soil environment than mid-story and canopy arthropods. It is 

likely because of this that the direct effects of environmental gradients have been better 
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documented in litter arthropods than mid-story or canopy arthropods. It has been shown 

that litter arthropod abundance and diversity can be influenced by soil salinity (Pan et al. 

2015; Kwon et al. 2016) and soil texture (Bestelmeyer & Wiens 2001). Soil salinity can 

also affect litter arthropod survival, reproduction and feeding behavior (Owojori et al. 

2009; Skarkova et al. 2016). As adults, mid-story and canopy arthropods will likely be 

less directly exposed to soil environments, so environmental influence on these 

communities should most often be mediated through interactions with plants.  

 The different ways that arthropod functional communities can respond to plant 

and environmental gradients makes it necessary to determine how these gradients 

influence arthropod composition and zonation patterns. My study investigated how 

morphospecies composition of three arthropod functional communities (litter; mid-story; 

canopy) change in response to plant composition and plant community architecture 

gradients and soil abiotic environmental gradients, and how response to plant and 

environmental gradients cause zonation patterns within arthropod functional communities 

in a northern tallgrass prairie. I asked the questions: 1) do arthropod functional 

communities differ in their response to plant and environmental gradients; 2) does 

arthropod community assembly occur similarly across each arthropod functional 

community; and 3) do plant and environmental gradients act on arthropod functional 

communities over the same environmental scales? I test the hypothesis that different 

arthropod functional communities respond to different environmental and plant gradients. 

The results of my study will improve our understanding of how interactions with plant 

and environmental gradients influence assembly and the patterns within arthropod 
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functional communities. Knowing how community assembly occurs across multiple 

arthropod functional communities and the environmental scales over which assembly 

occurs within a site will improve our ability to restore grassland arthropods and the 

services they provide.  

 

Methods 

Study Site 

The Oakville Prairie Complex is an approximately 453 ha remnant tallgrass prairie 

(centroid latitude 47.893, longitude -97.315) in the Central Grand Forks County grassland 

corridor comprised of the University of North Dakota’s Oakville Prairie Field Station and 

North Dakota Game and Fish’s Oakville/Crawford Wildlife Management Area. The site 

has a slight elevation gradient (mean slope between adjacent plots = 0.46o ± 0.05o) and 

topographic relief is provided by the Blanchard beach ridges remaining from Glacial 

Lake Aggasiz (Laird 1944). Soils of the lowland areas are of the Ojata series, which are 

characterized by high salinity. Soils of the upland areas are primarily of the Antler series, 

and have moderate to low salinity (Redmann 1972; Whitman & Wali 1975; Soil Survey 

Staff NRCS). Soil salinity results from localized upwelling of saline ground water (Laird 

1944; Whitman & Wali 1975). Prior to the initiation of my study, the most recent 

prescribed fire occurred in the southern portion of the site in the mid-1990s (Robert 

Seabloom, unpublished). Following year one of my study prescribed burns were 

performed in one area in the north (~62.9 ha) and one area in the south (~81.8 ha). Non-
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native species were sporadically managed with herbicide spraying until the early 2000s 

(Robert Sheppard, personal communication, 31 December 2015).   

Sampling Scheme 

A subset of sample plots (n = 37) across eight management units were selected for 

arthropod sample collection from the systematic grid of sample plots (n = 229) described 

in Chapter II (ArcGIS 10.1; ESRI; Redlands, CA; Figure 11).  Arthropod sample plots 

were spaced ≥ 200 m apart to minimize influence on specimen collection between 

adjacent arthropod sample plots. 

 

Figure 11. Oakville arthropod functional community sampling locations. Inset map depicts 

arthropod sample plot design. 
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Soil Sampling 

Soil moisture (% volumetric wet content; VWC), texture (% content sand, silt, clay), pH 

and salinity (electrical conductivity; μS ∙ cm-1) were measured as described in Chapter II. 

Environmental matrices were constructed from these measures taken at arthropod sample 

plots to describe environmental gradients in analysis of arthropod correlations. 

Vegetation Sampling 

The vegetation was surveyed as described in Chapter II to determine plant community 

composition and architecture. Plant species composition was recorded as aerial percent 

cover (pi) of each species encountered in a sample plot. Aerial coverage values per 

species were used to calculate native, non-native and functional cover. Plant community 

architecture was measured as height density (cm), vegetation live height (cm) and 

vegetation dead height (cm). Additionally, percentage bare ground and percent 

intercepted photosynthetically active radiation (PAR; μmol · m-1 · s-1) were measured in 

2015. Plant community composition and architecture matrices were constructed from 

these measures. 

Arthropod Sampling 

Arthropods were collected twice (mid-June and mid-July) in year one and year two. 

Three arthropod functional communities (litter; mid-story; canopy) were described based 

on the location within the plant community in which specimens were collected. These 

three arthropod functional communities were analyzed separately for correlation with 

plant and environmental gradients within Oakville.  
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Litter dwelling arthropods were collected with pitfall traps placed flush with soil 

level at the midpoint of each of the four arthropod sample plot borders during a three-day 

collection period (N2014 = 228, N2015 = 256; Figure 11). The specimens collected in each 

pitfall trap were stored separately following collection, so that four litter arthropod 

samples were collected per arthropod sample plot during each collection period. Sample 

sizes were reduced in year one and year two due to standing water (17 plots mid-June 

year one; 10 plots mid-July year two).  

Mid-story arthropods were collected by sweep net. Sweep net sampling was done 

along two orthogonal 10 m transects during each collection period (N2014 = 146, N2015 

=148; Figure 11). One sweep net sample consisted of three passes along one transect 

with 10 sweeps through the mid-story of the plant community per pass (3  10 = 30 

sweeps per sample). Following collection along each transect the contents of the sweep 

net were transferred to a one-gallon plastic sealable bag and placed on ice, so that two 

mid-story arthropod samples were collected per arthropod sample plot during each 

collection period. During the mid-July year one collection period, weather conditions 

preventing sampling at one plot. Sweep net sampling was completed within two days of 

pitfall and sticky trap collection  

 Canopy arthropods were collected with two-way sticky traps. Sticky traps were 

made by applying Tangle Trap™ Sticky Coating (Contech Enterprises, Inc.; Grand 

Rapids, MI) to an approximately 25.4  17.8 cm area on a yellow plastic card. Yellow 

was chosen to maximize the number of individuals and arthropod families collected 

(Hobeck et al. 1999). Sticky traps were unbaited to prevent favorably attracting any 
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arthropod group. One two-way sticky trap was hung with its bottom edge at canopy level 

on the east and west borders of each arthropod sample plot, with trap faces perpendicular 

to plot borders, during each three-day collection period (N = 148; Figure 11). One face 

of each sticky trap was considered one sample, so four samples per sticky trap effort were 

collected at each plot.  

Following collection, all samples were returned to University of North Dakota’s 

campus for storage until identification. Litter arthropods were stored in 70% ethanol and 

mid-story and canopy arthropods were stored in a -20oC freezer. Limited worker hours 

prevented identification of all collected samples. So, a random number generator was 

used to select one sample from each arthropod sample plot during each collection period 

for identification to prevent bias in sample selection. Litter (n2014 = 57, n2015 = 64) and 

mid-story (n2014 = 73, n2015 = 74) arthropods were identified to family. Canopy (n = 74) 

arthropods were identified to order because specimens collected with sticky traps were 

covered with sticky trap coating which prevented ability to identify them beyond order. 

Following taxonomic identification, specimens were grouped into unique morphospecies 

based on similarity of morphological characters, and the number of representative 

individuals of a morphospecies in each sample was counted. Morphospecies 

identification provides a conservative estimate of true arthropod taxa richness, and can be 

an adequate, quick assessment of arthropod community composition (Obrist & Duelli 

2010). Litter and mid-story specimens were categorized within the same morphospecies 

system.  Because canopy specimens could only be accurately identified to order, these 

specimens were classified with a separate morphospecies system. Each unique 
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morphospecies was photographed and intact voucher specimens (litter; mid-story) were 

deposited in the Grand Forks County Prairie Project morphospecies collection in the 

UND Landscape Ecology Lab. Morphospecies counts for each plot were pooled across 

collection period in each year and used in analysis of arthropod correlations.  

 

Data Analysis      

Arthropod trapping efficacy was tested with species accumulation curves constructed in 

R 3.2.0 using the vegan package function specaccum() with Kindt’s exact method 

(Oksanen et al. 2016; R Core Team 2015). Ugland et al. (2003) found that exact methods 

are able to more accurately predict species richness than traditional methods of 

constructing species accumulation curves. 

Distance matrices were constructed in R 3.2.0 using the ecodist package function 

distance() for each arthropod variable, and plant and environmental variables from 

arthropod sample plots as described in Chapter II (R Core Team 2015; Goslee & Urban 

2007; Table 6). Plant and environmental values from arthropod plots were used to 

construct distance matrices because the Mantel test determines correlation of two 

matrices consisting of different sets of variables from the same plots (Legendre & 

Legendre 2012). Matrices consisted of a single or suite of variables, and were constructed 

with distance measures appropriate to the type of data (Table 6). 

Correlations between arthropod composition matrices and plant or environmental 

matrices were assessed separately by year with Mantel tests (10000 permutations)  
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Table 6. Distance matrices included in Mantel tests between arthropod and plant or 

environmental variables. Matrices were created separately for year one and year two 

except for Soil Texture and Elevation, which did not change between years.   
Matrix  Included Variables Distance  

Arthropod   

Litter Composition Morphospecies counts Euclidean 

Mid-Story Composition Morphospecies counts Euclidean 

Canopy Composition Morphospecies counts Euclidean 

Plant   

Species Composition Percent species cover  Sorensen 

   Native Composition Native percent species cover Sorensen 

   Non-Native Composition Non-native percent species cover Sorensen 

   Non-Native Cover Sum non-native species cover Sorensen 

Functional Composition Sum cover of C3 grass, C4 grass, Graminoid, Forb, 

Legume and Woody species 

Sorensen 

Plant Architecture Height density (cm); live height (cm); dead height (cm);   

% bare ground♦; % intercepted PAR (μmol ∙ m-1 ∙ s-1)♦  

Euclidean 

Environmental   

pH pH Euclidean 

Salinity electrical conductivity (μS ∙ cm-1) Euclidean 

Soil Texture % sand, clay, silt Euclidean 

Soil Moisture Mean across season soil moisture (% VWC)  Euclidean 

Elevation Height above ellipsoid (m) Euclidean 
♦Bare ground and PAR were not available in year one Plant Architecture matrix. 

 

performed in R 3.2.0 using the ecodist package function mantel() as described in Chapter 

II (Goslee & Urban 2007, R Core Team 2015; Table 6). Positive correlation of arthropod 

matrices with plant or environmental matrices indicates that sites with similar 

composition of plant or environmental variables also have similar arthropod composition 

(Seabloom & van der Valk 2003a; Goslee 2007). All Mantel tests were repeated as partial 

Mantel tests with the inclusion of a matrix of plot centroid UTM coordinates to control 

for spatial autocorrelation, doing so did not affect the results and this matrix was not 

retained in the final analyses. 

Mantel correlograms were constructed in R 3.2.0 using the ecodist package 

function mgram() for arthropod matrices which met a minimum correlation criterion (rM 

≥ 0.30 and p ≤ 0.05) with plant or environmental matrices (Goslee & Urban 2007, R Core 

Team 2015). The minimum correlation criterion was determined from Mantel test results 
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that indicated a natural break in the correlations of arthropod matrices with plant and 

environmental matrices. Mantel correlograms were used to determine over what distances 

in plant or environmental explanatory matrices changes occurred within corresponding 

arthropod matrices. It is difficult to meaningfully interpret correlograms in response to 

composite variables because the resulting units of change in a composite variable do not 

correspond to measurable change along gradients of the composite variable, and for this 

reason Mantel correlograms were not constructed for these variables. The number of bins 

in each correlogram was determined by Sturge’s rule, which gives similar results to 

alternative methods for choosing bin number when sample sizes are moderate or low     

(~ 200 or fewer; Dogan & Dogan 2010). Bin ranges were calculated from the range of 

values along each environmental gradient and the number of bins, providing even bin size 

across each correlogram. 

Empirical Bayesian Kriging models (EBK) were constructed in ArcGIS 10.3 

(ESRI; Redlands, CA) with power semivariograms (100 simulations) to generate 

prediction surfaces for all plant and environmental variables that were included in Mantel 

correlogram analysis. The prediction surfaces created with EBK models show how the 

plant and environmental gradients that influence assembly in arthropod functional 

communities and patterns of arthropod composition are distributed across Oakville to 

form gradients. To show sufficient detail in each prediction surface six classes were 

chosen. Bin size for each class was determined with Jenks natural breaks. Jenks natural 

breaks provide a way of breaking up continuous data into discrete classes in choropleth 

maps which minimize the sum of absolute deviation from class means by repeatedly 
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transferring values from class boundaries to adjacent classes until the sum of absolute 

deviation from class means is minimized (Coulson 1987; Brewer & Pickle 2002). 

 

Results 

Precipitation, management and plant community composition differed between sample 

years. Monthly precipitation was greater in year one than in year two (Appendix A; 

Table A.1), and there were 54.4 mm more precipitation accumulation across the year one 

field season (1 May-15 August) than in year two (Wunderground.com 2016). Two 

management units (containing 29.7% of arthropod sample plots) were burned in the Fall 

of year one. Non-native species richness was greater in year one than in year two, though 

median non-native species cover increased in year two. In year one of my study 23.4% of 

encountered plant species (22 species) were non-native, which decreased to 14.1% of 

encountered plant species (14 species) in year two. Site-wide median non-native cover, 

vegetation live height (cm) and vegetation dead height (cm); increased from year one to 

year two (Appendix A; Figure A.1). 

The number of orders identified within each arthropod community was similar 

between years, but the number of families identified increased in the litter and mid-story 

communities in year two (Appendix A; Table A.7). Five arthropod orders (Araneae, 

Coleoptera, Diptera, Hemiptera and Hymenoptera) consistently contained the greatest 

number of families and morphospecies across arthropod functional communities. Diptera 

was the dominant order across all arthropod functional communities. Diptera was 

represented by more families and morphospecies than any other order in each arthropod 
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functional community in both years, except the litter arthropod community in year one 

(Appendix A; Table A.8). In the year one litter arthropod community Diptera, 

Coleoptera and Hemiptera were represented by the same number of morphospecies 

(Appendix A; Table A.8). 

Species accumulation curves show that trapping efforts did not capture true 

morphospecies richness in any arthropod functional community at Oakville (Figure 12). 

However, trapping more closely approximated true morphospecies richness in the year 

two mid-story arthropod community and the canopy arthropod community in both years 

than the remaining arthropod communities. The species accumulation curves for the litter 

arthropod community both years and the mid-story arthropod community in year were far 

from reaching the asymptote of the curves (Figure 12). The species accumulation curves 

for the mid-story arthropod community in year two and the canopy community in both 

years were close to reaching the asymptote of the curves (Figure 12).   

When viewed at the resolution of morphospecies, arthropod community 

composition differed within and among functional communities, and between years. The 

number of specimens collected and the number of identified morphospecies differed 

within each arthropod functional community between years (Appendix A; Table A.7). 

The average number of morphospecies per sample was similar in both years in the litter 

arthropod community (year one: 18.0 ± 0.6 morphospecies; year two: 20.3 ± 1.6 

morphospecies), but increased by over 10 morphospecies per sample in the mid-story 

(year one: 25.0 ± 1.1 morphospecies; year two: 41.1 ± 1.5 morphospecies) and canopy 

(year one: 33.2 ± 1.0 morphospecies; year two: 45.1 ± 1.0 morphospecies) arthropod  
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Figure 12. Species accumulation curves for year one and year two litter, mid-story 

and canopy arthropod communities constructed with Kindt’s exact method.  
 

communities in year two. The five most frequently collected morphospecies differed 

between litter and mid-story communities (Table 7). It was not possible to identify all 

specimens collected by sticky trap to family, so comparison of the morphospecies present 

that composed canopy arthropod composition with other functional communities was not 

possible. Within each arthropod functional community, only two of the top five most 

frequently collected morphospecies were common across years (Table 7). 

Arthropod functional community composition matrices were not correlated with 

each other within either year (Appendix A; Tables A.9-A.10) and composition was not 

correlated between years within any arthropod functional community (Litter: rM = -0.123, 

p = 0.8518; Mid-story: rM = 0.214, p = 0.0645; Canopy: rM = -0.036, p = 0.6077). 

Arthropod functional community composition matrices differed in their correlations with  
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Table 7. Morphospecies ID, order, family, presence (measured as the percent of plots collected at; n = 37) and mean count per 

sample of the five most frequently collected morphospecies (determined by presence) from each arthropod functional 

community in year one and year two.  
Order Family▼ Morphospecies 

ID♦ 

Presence 

(%) 

Mean 

Count 

Order Family▼ Morphospecies 

ID♦ 

Presence 

(%) 

Mean 

Count 

2014   2015   

Litter Litter 

Entomobryomorpha Tomoceridae ENTO.001 97.3 19.8 Entomobryomorpha Tomoceridae ENTO.001 86.5 21.2 

Hymenoptera Pteromalidae HYME.076 78.4 2.2 Araneae Salticidae ARAN.005 86.5 14.6 

Araneae Salticidae ARAN.017 73.0 8.4 Diptera Stratiomyidae DIPT.087 81.1 7.1 

Entomobryomorpha Isotomidae ENTO.002 70.3 22.9 Coleoptera Carabidae COLE.046 59.5 2.6 

Isopoda Cylisticidae ISOP.001 67.6 11.6 Entomobryomorpha Isotomidae ENTO.002 56.8 9.2 

Mid-Story Mid-Story 

Diptera Muscidae DIPT.009  100 16.9 Thysanoptera Thripidae THYS.001 97.3 14.9 

Diptera Anthomyiidae DIPT.053 81.1 7.12 Diptera Diastatidae DIPT.067 94.6 16.9 

Thysanoptera Thripidae THYS.001 78.4 32.2 Diptera Tachinidae DIPT.058 89.2 9.0 

Ixodida Argasidae IXOD.002 62.2 5.5 Hemiptera Cicadellidae HEMI.052 83.8 5.5 

Trichoptera Hydropsychidae TRIC.002 62.2 3.4 Diptera Muscidae DIPT.009 81.1 8.0 

Canopy Canopy 

Thysanoptera - THYS.001C 100 413.9 Thysanoptera - THYS.001C 100 358.7 

Diptera - DIPT.004C 100 52.8 Diptera - DIPT.004C 100 153.7 

Diptera - DIPT.002C 100 29.5 Diptera - DIPT.006C 100 57.6 

Diptera - DIPT.001C 100 20.8 Thysanoptera - THYS.002C 100 27.8 

Hymenoptera - HYME.001C 100 7.6 Diptera - DIPT.014C 100 24.5 
▼Canopy specimens were not identified past Order prior to grouping into morphospecies. 
♦Canopy specimens were assigned morphospecies identifiers separately from litter and mid-story specimens as indicated by the addition of C to the end of 

the morphospecies ID. 
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Table 8. Arthropod morphospecies composition matrix correlations with plant and 

environmental matrices. Correlation (rM) was determined with simple Mantel tests. 
Explanatory Matrix Litter Composition Mid-Story 

Composition 

Canopy Composition 

2014 2015 2014 2015 2014 2015 

Plant       

Species Composition 0.204* -0.032 0.197* 0.441*** -0.063 0.179* 

   Non-Native Composition -0.055 0.210* -0.143 0.022 0.044 0.112‡ 

   Non-Native Cover 0.027 -0.053 -0.003 0.353*** -0.025 0.169* 

Functional Composition 0.281* 0.003 0.304* 0.155* 0.065 0.159* 

   C3 Grass Cover -0.046 -0.083 0.372*** 0.037 -0.085 -0.110 

   C4 Grass Cover -0.079 -0.150 0.422** 0.049 -0.101 -0.099 

Plant Architecture 0.044 -0.132 0.507*** 0.166‡ -0.144 0.104 

   Height Density (cm) 0.079 -0.112 0.452*** 0.092 -0.164 0.063 

   Dead Height (cm) -0.081 -0.074 0.337* 0.130 -0.037 -0.069 

   % Intercepted PAR - -0.053 - 0.073 - 0.148* 

Environmental       

pH -0.017 0.238* -0.052 0.207‡ -0.067 -0.066 

Salinity 0.433* -0.068 0.015 0.727*** 0.042 0.204* 

Elevation 0.053 0.171* 0.077 0.091 0.088‡ 0.087‡ 

*** < 0.0001; ** < 0.01; * <0.05; ‡ <0.1 

 

plant and environmental matrices within year, and within arthropod functional 

community correlations differed between years (Table 8). No arthropod functional  

community composition matrix ever correlated with native plant composition, native 

plant cover, non-grass graminoid cover, forb cover, legume cover, woody cover, bare 

ground, soil moisture or soil texture. 

There were no plant or environmental matrices with which litter arthropod 

composition correlated with consistently. In year one, litter arthropod composition 

correlated with plant species composition, functional composition and salinity (Table 8). 

In year two, litter composition correlated with non-native plant species composition, pH 

and elevation (Table 8). Litter composition correlation with salinity in year one met the 

minimum criterion (rM ≥ 0.30 and p ≤ 0.05) for constructing Mantel correlograms.   
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There were two plant matrices (plant species and functional composition) with 

which mid-story arthropods consistently correlated, and the only correlation with an 

environmental matrix occurred in year two (Table 8). In year one, mid-story arthropod 

correlations with C3 and C4 grass cover, height density, and dead height (cm) met the 

criterion (rM ≥ 0.30 and p ≤ 0.05) for constructing Mantel correlograms (Table 8). In year 

two, mid-story arthropod correlations with plant non-native species cover and salinity 

met the criterion (rM ≥ 0.30 and p ≤ 0.05) for constructing Mantel correlograms  

(Table 8).  

In year one, canopy arthropod composition did not correlate with any plant or 

environmental matrices (Table 8). In year two, canopy arthropods correlated with plant 

species composition, non-native species cover, functional composition, percent 

intercepted PAR and salinity (Table 8). None of the canopy arthropod correlations with 

plant and environmental gradients met the minimum criterion (rM ≥ 0.30 and p ≤ 0.05) for 

constructing a Mantel correlogram. 

In year one, the major univariate plant composition gradients the mid-story 

arthropod functional community composition responded to were defined by C3 and C4 

grass cover (Figure 13), and the major univariate plant community architecture gradients 

were defined by plant height density and dead height (cm) (Figure 14). In year one, 

salinity defined the major environmental gradient to which mid-story arthropod 

functional community composition responded (Figure 14). Each of these gradients occur 

in a similar N-S direction across the Oakville. Areas of higher salinity tended to have 

higher C3 grass cover and lower C4 grass cover. Height density was greatest through the 
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middle of Oakville. Salinity, pH, and non-native species cover define the major 

univariate gradients in year two (Figure 15). Each of these gradients occur in a similar 

SW-NE direction across the Oakville. Areas of higher salinity tended to have lower pH 

and lower non-native species cover. 

 
Figure 13. Year one C3 and C4 grass cover gradients across Oakville. Gradients 

determined with Empirical Bayesian Kriging models with year one values. 
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Figure 14. Year one salinity, height density, and vegetation dead height gradients across Oakville. Gradients 

determined with Empirical Bayesian Kriging models with year one values. 
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Figure 15. Year two salinity and non-native cover gradients across Oakville. Gradients 

determined with Empirical Bayesian Kriging models with year two values. 

 

In year one, litter arthropod composition was structured in response to salinity. 

Year one litter arthropod composition was positively correlated among plots that were 

within 162.6 µS · cm-1 of one another, and negatively correlated among plots that 

differed by greater than 2438.5 µS · cm-1 (Figure 16). 
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Figure 16. Mantel correlogram of year one 

litter arthropod composition in response to 

changing pH, and year two litter arthropod 

composition in response to changing salinity 

(µS · cm-1). Solid symbols represent values 

that are significantly different from zero. 

 

Despite a strong response to the C3 and C4 cover gradients in year one, mid-story 

arthropod composition only differed among plots at the extremes of these variables. Mid-

story arthropod composition was negatively correlated among plots that differed by 

greater than 85% C3 cover (Figure 17). Mid-story arthropod composition was also 

negatively correlated among plots that differed by 95 % C4 cover. Mid-story arthropod 

composition was more structured along the height density gradient. Mid-story 

composition was positively correlated among plots that were within 11.6 cm height 

density from one another and negatively correlated among plots that differed by more 

than 30.1 cm in height density (Figure 17). 
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Figure 17. Mantel correlogram of year one mid-story arthropod 

composition in response to changing C3 and C4 grass cover, height 

density (cm), and dead height (cm). Solid symbols represent 

values that are significantly different from zero. 
 

 

 

In year two, mid-story arthropod composition was negatively correlated among 

plots that differed by 95% non-native species cover (Figure 18). Mid-story arthropod 

composition was more structured along the salinity gradient. Mid-story composition was 

positively correlated among plots within 512.9 µS · cm-1 of one another, and negatively 

correlated among plots that differed by greater than 1880.5 µS · cm-1 (Figure 18). 
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Figure 18. Mantel correlogram of year two mid-story arthropod morphospecies 

composition in response to changing non-native plant species cover and changing 

salinity (µS · cm-1). Solid circles represent values that are significantly different from 

zero. 
 

 

 

Discussion 

Previous research has shown that grassland arthropod community composition can vary 

in response to plant architectural gradients (Nemec et al. 2014; Mazia et al. 2006; 

Horvath et al. 2015), plant compositional gradients (Torma et al. 2014; Farrell et al. 

2015), and environmental gradients (Bestelmeyer & Wiens 2001; Pan et al. 2015). 

Several studies have shown that response to plant and environmental gradients can affect 

arthropod community assembly, and zonation patterns of arthropod morphospecies 

composition within a site (Schaffers et al. 2008; Matteson et al. 2013; Nemec et al. 2014; 

Torma et al. 2014; Farrell et al. 2015; Horvath et al. 2015). However, these studies tend 

to focus on a single functional community or include a limited number of representatives 

from each functional community. My study took a more complete approach, including all 
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collected arthropods from three functional communities (litter; mid-story; canopy). My 

results show that arthropod, delineated by position within the plant community, response 

to plant and environmental gradients differs among functional communities. 

 Litter arthropod composition can be affected by plant community composition 

(Rypstra et al. 1999; Wolkovich et al. 2009) and soil environmental variables (Pan et al. 

2015; Kwon et al. 2016). The correlations of litter arthropods with plant gradients show 

that its relationship with plant composition was not a strong influencer of litter arthropod 

composition at Oakville. The trapping method used to collect litter specimens may have 

skewed the characterization of this community. Pitfall traps are more effective for 

trapping arthropods that are more active at ground level (Parsifka et al. 2007). This likely 

under sampled litter arthropods that are more active in the plant litter level, which may 

have resulted in lack of detection of a strong response to any plant gradients. 

Litter arthropods did respond strongly to soil salinity in year one. Unique 

groupings of litter arthropod composition occurred over a short distance of change along 

the soil salinity gradient. Litter arthropod composition does not become distinctly 

different until transitioning from one extreme of salinity to the other. This means that the 

litter arthropod composition in the most severely saline areas are different from litter 

arthropod composition in the least saline areas of Oakville. This shows that salinity did 

affect year one litter arthropod community assembly, but that zonation occurred at broad 

scales along the salinity gradient.  

Mid-story arthropods are dependent on plant community structure (Rypstra et al. 

1999), and mid-story arthropod community composition will vary with changes in plant 
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community structure (Johnson & Agrawal 2005). Mid-story arthropods did respond to 

plant community composition and plant community architecture at Oakville. The scale of 

plant community composition that mid-story arthropods responded to was different 

between years. Mid-story arthropods responded to functional composition and C3 and C4 

grass cover in year one and species composition and non-native cover in year two. Zonal 

patterns of mid-story arthropod composition in response to plant cover gradients (C3 and 

C4 grass and non-native plant species) show that mid-story arthropods only differ among 

plots that vary substantially in cover of these plant species. In year one, mid-story 

arthropods responded to plant community architecture, height density, and dead height, 

but did not respond to these gradients in year two. Mid-story arthropods were more well-

structured in response to plant community architecture gradients than to plant 

composition gradients. Mid-story arthropods form distinct groups among areas that have 

similar height density and dead height and differ among plots that have less similar height 

density and dead height. The differences in response to plant composition and plant 

community architecture suggest physical resources provided by the plant community are 

more important to patterns in mid-story arthropods than the actual species or functional 

groups that are present. 

In year two, mid-story arthropods responded strongly to salinity. There was a 

steeper salinity gradient in year two (Chapter II; Figure 2) which may have influenced 

nutrient content and morphology of plants along the salinity gradient (Hester 2001; 

Johnson & Agrawal 2005). Changes in plant morphology and nutrient content will affect 

herbivore community composition which will have cascading effects on the composition 
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of their predators (Johnson & Agrawal 2005). This may have led to the well-structured 

zonation patterns of mid-story arthropods in response to salinity, and may explain why 

they were more well-structured in their response to salinity than litter arthropods in year 

one.  

 The canopy community did not form correlations with any plant or environmental 

gradients in year one, but did form correlations with plant and environmental gradients in 

year two. Canopy arthropod correlations with plant and environmental gradients in year 

two may show increased use of the site in favorable years. There were fewer precipitation 

events in the months in which arthropod collection occurred in year two, which may have 

affected the abundance of aerial arthropods at the site (Gruebler et al. 2008). Oakville is 

an open grassland which does not provide much protection from wind and rain to aerial 

arthropods, and this may have an effect on how it is used by the canopy community 

(Gruebler et al. 2008). However, canopy arthropods did not respond strongly to any plant 

or environmental gradients which suggests that site-scale gradients may not influence 

canopy community assembly. This may be due to the highly mobile nature of this 

community.  

 Each arthropod functional community was structure along plant and 

environmental gradients with which they strongly responded. This shows that there are 

niche-based assembly processes acting on each arthropod functional community. 

However, if arthropod community assembly were driven solely by niche-based processes, 

as is predicted with deterministic assembly, they would have responded to the same 

gradients in each year. The inconsistent response to plant and environmental gradients in 
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each arthropod functional community suggest that there are also stochastic processes 

acting on arthropod community assembly in each functional community. The presence of 

niche-based and stochastic processes suggest that Oakville arthropod community 

assembly is in accordance with the alternative stable states theory of community 

assembly. 

Arthropod communities, and their relationship with the plant community, form 

the base of grassland food-webs. Interactions with plant and environmental gradients can 

determine how arthropod communities assemble and form patterns of community 

composition. Arthropod community composition and patterns within a site can influence 

how arthropods function in grassland habitats (Fox-Dobbs et al. 2010; Pringle et al. 

2010). Yet our understanding of how arthropod communities assemble and form zonation 

patterns of composition in response to plant and environmental gradients is limited. This 

study shows that arthropod response to plant and environmental gradients can vary based 

on location within the plant community. Understanding how arthropod community 

assembly occurs in remnant grasslands may inform our understanding of how community 

assembly will occur in grassland restorations (Wodika & Baer 2015). This can help 

restoration efforts, which typically solely focus restoration of plant communities, to better 

plan restorations that will include grassland arthropods.



 

71 

 

CHAPTER IV 

CONCLUSIONS 

Soil environmental variables can function as abiotic filters that influence  

assembly and distribution within plant and arthropod communities (Nelson & Anderson 

1983; Potts & Wilmer 1997; Fattorini & Halle 2004; Klimek et al. 2007; Pan et al. 2015; 

Kwon et al. 2016). Additionally, arthropod interactions with plant community can 

function as biotic filters that influence assembly and distribution within arthropod 

communities (Siemann 1998; Fantinato et al. 2016; Lengyel et al. 2016). However, we do 

not have a good understanding of how assembly processes act across multiple taxonomic 

levels to influence grassland plant and arthropod community structure. The associations 

among plants, arthropods and environmental gradients can show how assembly occurs in 

plant and arthropod communities to maintain patterns of community composition.  

Seabloom & van der Valk (2003a) used Mantel tests to show that prairie wetland 

plant species composition responds directly to environmental gradients, and Mantel 

correlograms to show how zonation patterns form in the plant community in response to 

these environmental gradients. They showed that plant species composition in natural and 

restored prairie wetlands respond to a single environmental gradient (water depth). My 

study expands on this by using Mantel tests to show direct response across multiple 

taxonomic groups (plants and arthropods) to environmental gradients and each
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other in a more complex system than prairie wetlands. I also employed Mantel 

correlograms to show how zonation patterns form in response to the gradients that 

strongly influenced plant and arthropod community composition.  

There were three environmental gradients (elevation, soil moisture, and soil 

salinity) that plant community composition consistently responded to in both years of the 

study. Change in elevation has been shown to influence plant community composition 

(Andersen et al. 2015), and soil salinity and soil moisture can function as abiotic filters 

that can determine spatial patterns in plant communities (Smith et al. 2015). Elevation 

changed from upland to lowland along a SW to NE gradient, and change in soil moisture 

and soil salinity occurred in this same direction (Chapter II; Figure 7). However, the 

extent of change along each of these gradients differed. Soil moisture was the most 

heterogeneous and soil salinity was the least heterogeneous over geographic space.  

 Overall, community assembly in response to elevation, soil moisture, and soil 

salinity was occurring deterministically across plant species and functional composition 

metrics. Even though community assembly was occurring in the same ways across plant 

species and functional composition metrics responses varied between them. Response of 

functional composition was driven by three functional groups: forb, legume, and woody. 

C3 and C4 grass composition did not respond to any environmental gradients. Zonation 

patterns of functional composition metrics were less well defined than zonation patterns 

of plant species composition metrics. Zonation patterns also varied depending on the 

environmental gradient that was driving response in the plant community.   
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Zonation patterns were most similar along the elevation gradient (Figure 19). 

Distinct groupings occurred over the same range in species composition, native species 

composition, non-native species cover, and woody cover. Zonation patterns in response 

to soil moisture were more variable than in response elevation or soil salinity (Figure 

19). This creates more spatial heterogeneity of species and functional composition 

metrics in response to soil moisture than the other gradients because soil moisture is more 

geographically heterogeneous and plant composition responses are more variable. 

Zonation patterns of plant species composition and non-native species cover were similar 

in response to soil salinity, and they were defined than over shorter ranges of salinity than 

the response of forb cover. Responses to soil salinity will create less spatial heterogeneity 

in plant species and functional composition across Oakville. Soil salinity is less 

geographically heterogeneous than elevation and soil moisture. Even the more well 

defined groupings of plant species composition and non-native species cover will remain 

similar over wider geographic distances across Oakville because of the broader extent of 

change across the site in response to salinity.  

Arthropod response to plant gradients was more complex than the responses of 

the plant community to environmental gradients. Arthropod functional communities 

(litter; mid-story; canopy) did not consistently correlate with any plant gradients, showing 

a different response of these three functional communities. Within each arthropod 

functional community response to environmental gradients between years was 

inconsistent. The inconsistencies in response to indicate that there is some stochasticity 

acting on arthropod community assembly. However, non-random distribution along plant 
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Figure 19. Response of plant and arthropod metrics to changes of elevation (m), soil moisture (% VWC), and salinity  

(µS · cm-1) as determined with Mantel correlograms in Chapters II and III. Solid lines represent range of positive correlation, and 

dashed lines represent range of negative correlation.  
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and environmental gradients indicates that there are some niche-based processes also 

acting on arthropod community assembly. 

Litter arthropods responded strongly to soil salinity in year one, but did not 

respond strongly to plant gradients which suggests that litter community assembly is most 

strongly influenced by salinity at Oakville. Mid-story arthropods responded to soil 

salinity in year two, and were more well-structured along this gradient than litter 

arthropods were in year one (Figure 19). The salinity gradient was steeper in year two 

than it was in year one which may account for the differences in structure along the 

salinity gradient between these two arthropod functional communities (Chapter II; 

Figure 2). Zonation patterns of mid-story arthropods in response to salinity were similar 

to plant species composition and non-native species cover (Figure 19). However, mid-

story patterns were less well defined. Mid-story arthropod community response to soil 

salinity was assessed with data from 37 plots that were widely distributed across 

Oakville, while the plant community response to soil salinity was assessed with data from 

229 plots that were more evenly distributed across Oakville. The differences in sample 

size and distribution of data collection points may be causing the differences seen in 

zonation patterns between plants and mid-story arthropods. 

The mid-story arthropod functional community was the only arthropod functional 

community to respond strongly to plant gradients. Mid-story arthropod response to plant 

gradients was not influenced by plant gradient response to environmental gradients. In 

year one mid-story arthropod community composition responded to plant gradients (C3 

and C4 grass cover) that did not respond to any environmental gradients. In year two, 
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mid-story arthropods responded to plant species composition and non-native species 

cover, but patterns of mid-story arthropod composition in response to non-native species 

cover were not similar to patterns of non-native species cover in response to 

environmental gradients. Mid-story arthropod composition did not become structured 

until reaching extreme differences in non-native species cover. In year one, mid-story 

arthropods also responded to plant community architecture, height density, and dead 

height. None of these plant gradients responded to environmental gradients.  

Canopy arthropods did not correlate with any gradients in year one and did not 

respond strongly to any plant or environmental gradients in year two. This suggests that 

site-scale gradients may not be strongly influencing assembly or zonation patterns in 

canopy arthropods, and is not able to provide much insight into how they used Oakville.  

My results show how assembly occurs in grassland plant communities in response 

to strong environmental gradients, and how assembly occurs in grassland arthropod 

communities in response to plant and environmental gradients in the same space. 

Environmental gradients (elevation, soil moisture, and soil salinity) strongly influence 

plant community assembly similarly across all resolutions of community in response to 

these gradients. Though, patterns of plant species and functional composition varied in 

response to environmental gradients. Arthropod functional community response to plant 

and environmental gradients differs with location in the plant community, and mid-story 

arthropods was the only community that responded to plant and environmental gradients. 

Mid-story arthropod community assembly along plant gradients was not similar to plant 

community assembly along environmental gradients. However, mid-story arthropod 
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community assembly in response to salinity was very similar to plant community 

assembly in response to salinity. 



 

 

 

7
8

 

APPENDIX A:  

ADDITIONAL FIGURES AND TABLES 

 

 
 

 

 

Table A.1. Mean year one and year two daily temperature (oC), daily wind speed (km · h-1) and per precipitation event 

accumulation (mm) summary for field season by month in year one and year two. Mean values calculated from data 

collected at the Grand Forks Air Force Base, ND weather station. Data were retrieved from 

http://www.wunderground.com.  
Weather Metric May June July August 

2014 2015 2014 2015 2014 2015 2014 2015 

Mean Daily  

Temperature (oC) 

High (se) 

18.2 (1.4) 18.2 (1.3) 23.3 (0.6) 24.4 (0.7) 25.5 (0.6) 27.0 (0.5) 25.1 (0.5) 26.5 (0.7) 

 Average (se) 12.3 (1.1) 11.4 (0.9) 18.1 (0.4) 18.2 (0.5) 19.4 (0.6) 21.1 (0.5) 19.5 (0.4) 19.4 (0.7) 

 Low (se) 6.6 (1.1) 4.7 (0.8) 13.0 (0.5) 12.0 (0.5) 13.4 (0.5 15.4 (0.6) 13.9 (0.6) 12.2 (0.7) 

Mean Daily  

Wind Speed (km · h-1) 

High (se) 

27.3 (1.6) 30.0 (2.2) 29.5 (1.7) 26.9 (1.7) 27.5 (2.2) 27.1 (2.1) 22.9 (1.9) 25.1 (1.6) 

 Average (se) 14.8 (1.9) 16.1 (1.5) 15.1 (1.0) 12.4 (0.9) 13.6 (1.1) 13.1 (1.2) 10.5 (0.8) 11.9 (1.0) 

Mean Gusting Wind 

Speed (km · h-1) 

Days with Gusts 

20 25 25 21 19 17 14 15 

 Mean Gusts (se) 44.2 (1.9) 44.7 (3.2) 47.1 (3.8) 44.6 (2.4) 45.5 (2.8) 46.9 (3.9) 42.4 (5.5) 44.1 (2.9) 

Per Event 

Precipitation (mm) 

Events 

15 14 16 14 8 10 8 3 

 Accumulation (se) 5.1 (1.5) 9.0 (3.8) 9.9 (3.8) 6.5 (2.1) 16.6 (14.1) 10.9 (2.9) 8.8 (2.5) 19.6 (10.3) 

http://www.wunderground.com/
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Table A.2. Correlations of year one and year two plant community matrices with environmental matrices. Values 

represent Mantel correlation (rM; 9999 permutations). Values that meet the criteria for strong correlation (rM ≥ 0.20 
and p < 0.01) are listed in bold text.  
Plant Matrix pH Soil Salinity Soil Texture Soil Moisture Elevation 

2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 

Species Composition 0.064** 0.071** 0.265*** 0.322*** 0.059** 0.124*** 0.323*** 0.383*** 0.244*** 0.346*** 
   Native Species Composition -0.015 0.046‡ 0.154*** 0.167*** 0.0001 0.028 0.095** 0.188*** 0.147*** 0.225*** 
   Non-Native Species Composition 0.062* 0.050‡ 0.003 0.028 0.111*** 0.091** 0.278*** 0.305*** 0.062** 0.189*** 

   Non-Native Percent Cover 0.030** 0.051* 0.128*** 0.293*** 0.068*** 0.073*** 0.215*** 0.190*** 0.125*** 0.264*** 
Functional Group Composition 0.042‡ 0.045‡ 0.173*** 0.172*** 0.061* 0.093* 0.238*** 0.313*** 0.226*** 0.120*** 

   C3 Grass Cover -0.031 0.02 -0.050 -0.008 -0.025 -0.041 -0.050 -0.030 0.038 0.048‡ 

   C4 Grass Cover -0.004 -0.051 -0.045 -0.059 -0.035 -0.055 -0.070 -0.052 0.075** 0.062* 

   Graminoid Cover -0.036 0.088‡ 0.052‡ 0.067‡ 0.019 0.033 -0.061 -0.05 0.016 0.076* 

   Forb Cover 0.001 -0.002 0.084*** 0.199*** 0.049 0.03 0.051* 0.037 0.034 0.094*** 

   Legume Cover 0.022 0.064‡ 0.052‡ -0.021 0.049 -0.007 0.422*** 0.478*** 0.091** 0.163*** 

   Woody Cover 0.042 -0.024 0.056‡ -0.018 0.064‡ 0.024 0.327*** 0.520*** 0.194*** 0.022*** 

Plant Architecture 0.072‡ 0.010 0.0004 0.163*** -0.049 -0.007 0.005 0.25 -0.004 0.074** 

   Height Density 0.070‡ 0.020 0.005 0.027 -0.049 -0.017 0.044 0.057‡ 0.006 0.072* 

   Dead Height 0.006 0.002 -0.025 0.005 -0.005 -0.040 -0.049 -0.052 -0.060 -0.006 

   Bare Ground - -0.063 - 0.211*** - 0.002 - -0.056 - 0.022 

   PAR - -0.066 - 0.283*** - 0.038 - 0.113** - 0.129*** 

*** < 0.001; ** < 0.01; * < 0.05; ‡ < 0.1 
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Table A.3. Correlations among year one environmental variables. Values 

represent Pearson’s correlation coefficient (r). Significant values (p < 0.05) 

have been marked with an asterisk. 
Environmental 

Variables 

pH Salinity Sand 

Content 

Clay 

Content 

Silt 

Content 

Seasonal 

Moisture 

pH 1      

Salinity -0.362* 1     

Sand Content 0.177* -0.415* 1    

Clay Content -0.055 -0.243* -0.187* 1   

Silt Content -0.075 0.496* -0.530* -0.734* 1  

Seasonal Moisture -0.222* 0.704* -0.543* 0.013 0.364* 1 

Elevation 0.016 -0.489* 0.524* 0.262* -0.587* -0.561* 

 

 

 

 

 

 

Table A.4. Correlations among year two environmental variables. Values 

represent Pearson’s correlation coefficient (r). Significant values (p < 0.05) 

have been marked with an asterisk. 
Environmental 

Variables 

pH Salinity Sand 

Content 

Clay 

Content 

Silt 

Content 

Seasonal 

Moisture 

pH 1      

Salinity -0.498* 1     

Sand Content 0.251* -0.403* 1    

Clay Content -0.020 -0.278* -0.187* 1   

Silt Content -0.156* 0.519* -0.530* -0.734* 1  

Seasonal Moisture -0.401* 0.564* -0.538* 0.014 0.360* 1 

Elevation 0.196* -0.511* 0.524* 0.262* -0.587* -0.607* 
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Table A.5. Correlations among year one plant community matrices. Values represent Mantel correlation (rM). 

 Species 

Composition 

Functional 

Composition 

C3 

Cover 

C4 

Cover 

Graminoid 

Cover 

Forb 

Cover 

Legume 

Cover 

Woody 

Cover 

Native 

Composition 

Non-Native 

Composition 

Non-Native 

Cover 

Functional 

Composition 

0.441*** 1          

   C3  

   Cover 

0.177*** 0.245*** 1         

   C4  

   Cover 

0.137*** 0.258*** 0.648*** 1        

   Graminoid    

   Cover 

0.093** 0.108** 0.091* -0.012 1       

   Forb  

   Cover 

0.140*** 0.101*** 0.056* -0.022 0.003 1      

   Legume  

   Cover 

0.025 0.104** -0.067 -0.094 -0.064 0.003 1     

   Woody  

   Cover 

0.123*** 0.169*** 0.007 -0.062 -0.059 -0.069 0.213** 1    

Native 

Composition 

0.433*** 0.257*** 0.263*** 0.340*** 0.172*** 0.125*** -0.046 0.066* 1   

Non-Native 

Composition 

0.157*** 0.058* -0.077 -0.13 -0.051 0.025 0.199*** 0.136** -0.151 1  

Non-Native 

Cover 

0.325*** 0.162*** 0.019* 0.017‡ -0.004 0.095*** 0.071*** 0.047*** 0.246*** 0.492*** 1 

Plant 

Architecture 

0.291*** 0.228*** 0.310*** 0.119* 0.023 0.189*** -0.03 0.028 0.229*** -0.076 0.016‡ 

*** < 0.001; ** < 0.01; * < 0.05; ‡ < 0.1 
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Table A.6. Correlations among year two plant community matrices. Values represent Mantel correlation (rM). 

 Species 

Composition 

Functional 

Composition 

C3 

Cover 

C4 

Cover 

Graminoid 

Cover 

Forb 

Cover 

Legume 

Cover 

Woody 

Cover 

Native 

Composition 

Non-Native 

Composition 

Non-Native 

Cover 

Functional 

Composition 

0.501*** 1          

   C3  

   Cover 

0.242*** 0.145** 1         

   C4  

   Cover 

0.149*** 0.092* 0.672*** 1        

   Graminoid  

   Cover 

0.073* 0.192*** 0.090‡ 0.105* 1       

   Forb  

   Cover 

0.247*** 0.192*** 0.103** 0.012 0.065‡ 1      

   Legume    

   Cover 

0.125*** 0.176*** -0.028 -0.052 -0.067 0.033 1     

   Woody  

   Cover 

0.176*** 0.254*** -0.012 -0.012 -0.066 -0.017 0.349*** 1    

Native 

Composition 

0.485*** 0.260*** 0.344*** 0.425*** 0.177*** 0.161*** 0.078* 0.098** 1   

Non-Native 

Composition 

0.284*** 0.182*** 0.002 -0.053 -0.081 0.046* 0.279*** 0.225*** 0.174*** 1  

Non-Native 

Cover 

0.490*** 0.322*** 0.131*** 0.082*** -0.075 0.168*** 0.052* 0.037* 0.518*** 0.463*** 1 

Plant 

Architecture 

0.376*** 0.196*** 0.428*** 0.135** -0.022 0.150*** -0.022 0.053 0.260** -0.046 0.193*** 

*** < 0.001; ** < 0.01; * < 0.05; ‡ < 0.1 
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Figure A.1. Plant and environmental variables which were strongly correlated with at least 

one arthropod matrix in one but not both years of the study. Boxplots represent data 

collected at arthropod sample locations. 
 

 

 

 

 

Table A.7. Specimen count and number of orders, families and morphospecies 

represented in each arthropod functional community at Oakville in year one and year 

two. 
Functional 

Community 

Number of 

specimens 

Number of  

Orders 

Number of 

Families 

Number of 

Morphospecies 

2014 2015 2014 2015 2014 2015 2014 2015 

Litter 4092 3686 20 19 79 95 110 146 

Mid-Story 4480 8231 17 14 94 113 177 186 

Canopy 23411 31137 14 16 - - 127 183 
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Table A.8. Number of families and morphospecies identified in the five most frequently collected orders in each arthropod 

functional community across years. 

Functional 

Community 

Litter Mid-Story Canopy 

2014 2015 2014 2015 2014 2015 

Families Morphospecies Families Morphospecies Families Morphospecies Families Morphospecies Morphospecies Morphospecies 

Araneae 8 15 9 16 9 15 10 19 11 13 

Coleoptera 11 17 13 22 15 25 17 32 22 22 

Diptera 14 17 28 34 34 59 34 55 40 62 

Hemiptera 10 17 7 21 18 47 16 48 17 33 

Hymenoptera 10 12 11 16 16 24 20 30 19 32 

 

Table A.9. Correlations among year one Oakville arthropod 

functional community composition and diversity matrices. 

Values represent Mantel correlation (rM). 
 Litter 

Composition 

Mid-story 

Composition 

Canopy 

Composition 

Litter Composition 1   

Mid-story Composition 0.137‡ 1  

Canopy Composition 0.096 -0.087 1 

*** < 0.001; ** < 0.01; * < 0.05; ‡ < 0.1 

 

Table A.10. Correlations among year two Oakville arthropod 

functional community composition and diversity matrices. 

Values represent Mantel correlation (rM). 
 Litter 

Composition 

Mid-story 

Composition 

Canopy 

Composition 

Litter Composition 1   

Mid-story Composition -0.080 1  

Canopy Composition 0.026 0.114 1 

*** < 0.001; ** < 0.01; * < 0.05; ‡ < 0.1 
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