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ABSTRACT 

 

Increasing demands for oil, biofuels and food have posed several issues for 

grassland birds in the upper Midwest.  Conversion from grassland to cropland and 

avoidance of anthropogenic features has greatly reduced the amount of suitable habitat 

for many grassland birds; therefore, it is necessary to monitor the life history and 

demographics of these species, especially those who are indicators of grassland health.  

Nest attendance (i.e. how incubating parents spend time on the nest) is an important 

component of reproductive ecology and can serve as one of the first indicators of stress 

induced by changes on the landscape.  Camera monitoring using continuously recording 

surveillance cameras is one technique researchers use to observe nest attendance patterns; 

however, the influence of behaviors in response to camera monitoring on nest survival is 

largely unknown.  The objectives of this study were to determine (1) if and how 

characteristics of the hen, nest and landscape influence nest attendance patterns, and (2) if 

behaviors resulting from camera monitoring influence daily nest survival rates.  During 

the summers of 2012 and 2013 we radio-collared and monitored 103 nests of Sharp-tailed 

Grouse (Tympanuchus phasianellus) hens using continuously recording surveillance 

cameras. To address our first objective, we reviewed video from 55 nests from the day 

after camera installation until nest fate. We used repeated measures and multi-model 

inference approaches to determine if landscape characteristics (including anthropogenic 

features and important land cover) at three scales and characteristics of the hen and nest
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influence nest attendance patterns. For our second objective we reviewed video from 70 

nests during the first 24 hours after camera installation.  We noted how hens returned to 

the nest, nest attendance patterns, and if they had an interaction with the camera. We 

constructed daily nest survival rate models using the previously listed behaviors and used 

multi-model inference to rank models and evaluated model-averaged parameter 

estimates. In addition, we compared incubation constancy (i.e. the proportion of time 

eggs receive heat from incubating hens during a 24 hour period) between camera 

installation day, days when hens were flushed to check the nest, and days with no 

researchers present. Results from the first objective revealed lower nest attendance during 

2013 and at Blaisdell where there was less oil development and lower apparent nest 

success. In addition we noted only two nests to be within 250 m of an active oil well. 

Overall, it appears that large scale (site level) differences are driving patterns of nest 

attendance and predation and that further investigation into nest site selection, brood 

success, hen survival, lek attendance and specific characteristics of anthropogenic 

disturbances are needed to fully understand the influence of the landscape on 

reproduction. For our second objective we found that the way hens approach the nest was 

the only predictor of daily nest survival rates, and that incubation constancy was lower 

compared to days when researchers were not present.  We found that behaviors relative to 

camera monitoring did not greatly influence nest success; therefore, we recommend 

cameras as a valuable tool to study the impact of the changing landscape on nesting 

ecology.  
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CHAPTER I 

BACKGROUND AND LITERATURE REVIEW 

 

 Native gamebirds play an important role in the U.S. economy.  In 2011, more than 

2.4 million hunters spent approximately 22 million days hunting upland gamebirds in the 

U.S. (Southwick 2012).  In addition, these hunters spent more than $2.8 billion on costs 

associated with hunting trips including hunting equipment, lodging, and licenses 

(Southwick 2012).  In rural areas, some small businesses depend on income made during 

the hunting season (Southwick 2012).  Upland game hunters in North Dakota provided 

384 jobs and were collectively paid more than $12 million (Southwick 2012).  Many 

native gamebirds also serve as representatives for conservation.  Money spent on upland 

gamebird habitat supports other species that have similar habitat requirements.  Several 

native gamebirds such as Sharp-tailed Grouse (Tympanuchus phasianellus) and Greater 

and Lesser Prairie-Chickens (Tympanuchus cupido and Tympanuchus pallidicinctus, 

respectively) serve as indicators for grassland health (Vodehnal and Haulfer 2007, Dyke 

et al. 2011).  

Gamebird contributions to ecosystems and the economy depend on their ability to 

persist on the landscape.  Nesting ecology, a major component of population dynamics, is 

commonly monitored to ensure health of the population.  Given the changing land uses 

where gamebirds exist, there is a need to understand relationships between their nesting 

ecology and other population demographics relative to these changes with North Dakota 
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representing one of areas with rapid expansion of agriculture (Rashford et al. 2010, 

Wright and Wimberly 2013) and gas and oil development in recent years (Nordeng 2010, 

Walton 2015).   

Birds and Multi-use Landscapes 

Agriculture 

Agricultural production is on the rise in order to accommodate the growing food 

demands across the globe, and this has resulted in dramatic shifts in land use across North 

America (Wright and Wimberly 2013).  In the 2012 Census of Agriculture, the U.S. 

Department of Agriculture (USDA), National Agriculture Statistics Service (NASS) 

reported an increase of approximately 1.4 million harvested cropland acres between 2007 

and 2012, and 2.8 million acres since 1997 in North Dakota. Conversely, hay and pasture 

land decreased by more than 140,000 ha (350,000 acres) between 2007 and 2012.  

Market value of agricultural products sold has increased from approximately $5 billion in 

2007 to more than $10 billion in 2012 along with an increase of $2.9 billion in total farm 

production expenses.  North Dakota has also had a decrease in the number of cattle calf 

operations between 2007 and 2012.  In addition, Conservation Reserve Program (CRP) 

acreage enrollment in North Dakota has seen a decline (USDA 2013).  With greater 

profits and grassland conversion, wildlife populations must adapt to thrive in the dynamic 

agricultural landscape.  

 The effect of row crop agriculture on birds varies greatly.  For example, many 

grassland songbirds show strong, negative responses to habitat fragmentation, reduction 

of grassland area, and increase in row cropped area (Koper and Schmiegelow 2006).  

Conversely, many upland nesting gamebird and waterfowl species utilize crops as food 
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sources, and therefore respond much more positively when crops are included on the 

landscape (Koper and Schmiegelow 2006, McNew et al. 2011).  In Kansas, female 

Greater Prairie-Chickens were significantly heavier, produced larger eggs, and had higher 

nest and brood survival at sites with 37% cropland compared to sites with only 3% 

cropland (McNew 2011).  Although some grassland bird species, such as prairie grouse, 

use row crops, it is important to note that usage depends on life stage and time of year 

(Hovick et al. 2014), and that relationship is not linear because of the necessity of 

grassland for cover (Connelly et al. 1988). 

 Effects of various grazing schemes also vary in ways they influence different bird 

species.  Most upland gamebirds fare well in pastures under rest-rotation or deferred-

rotation grazing system that provide preferential nesting habitat while limiting time of 

disturbance (Holechek et al. 1982).  Even though the densities of nests at non-grazed 

pastures were double that of grazed, Kirby and Grosz (1995) found that apparent nest 

success of Sharp-tailed Grouse was 30% greater in grazed pastures.  Many grassland song 

birds are also supported by grazed pastures.  Therefore, incorporation of grazing schemes 

at varying intensities can simultaneously occur on the landscape to meet initiatives for 

conservation and working lands (Coppedge et al. 2008).  

Natural Gas and Oil Production 

 Gas and oil production has long been a part of North Dakota’s landscape (NDIC 

2013).  The North Dakota Industrial Commission, Department of Mineral Resources, Oil 

and Gas Division (hereafter “NDIC Oil and Gas Division”) is responsible for regulation 

of drilling, production, and statistical reporting within the state.  Annual oil production 

has exponentially grown, increasing from approximately 32 million barrels in 2000 to 
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nearly 400 million barrels in 2014.  The number of producing wells has also risen by 

more than 9,000 wells within that 14-year period.  To support this development the 

construction of new roads to connect energy infrastructure and improvements to existing 

roads have increased to safely accommodate the growing human population and need to 

transport goods (NDDOT 2013). 

This rapid increase in energy development experienced across North America has 

sparked the need to understand its impact on wildlife.  Many bird species show avoidance 

of anthropogenic structures, including roads in response to gas and oil development.  

Gilbert et al. (2011) found negative correlations between oil well density abundance of 

Brewer’s Sparrows (Spizella breweri), Sage Sparrows (Amphispiza belli), and Vesper 

Sparrows (Pooecetes gramineus).  In addition, they determined that response to oil well 

density was stronger in areas with active drilling suggesting that other disturbances 

associated with gas and oil production (e.g. well pad construction, well drilling, jack 

pump installation, associated truck traffic, etc.) also influence bird densities (Gilbert et al. 

2011).  Thompson et al. (2015) observed similar avoidance patterns to roads (150m) and 

well pads (150m to 267m) by grassland songbirds in North Dakota.  Changes in 

vegetation composition from sagebrush steppe to dusty grassland resulting from road 

traffic in oil fields in western Wyoming gave rise to shift from sagebrush obligate bird 

communities to those dominated by Horned Larks (Eremophila alpestris) (Ingelfinger 

and Anderson 2004), a grassland species that is associated with areas of sparsely 

vegetated grassland and agricultural use (Beason 1995). 

Responses to anthropogenic development have been predominantly studied in two 

species: Greater Sage-Grouse (Centrocercus urophasianus) and Lesser Prairie-Chickens 
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(Hovick et al. 2014).  Walker et al. (2007) reported that loss of sagebrush habitat and 

structures associated with gas and oil development significantly decreased both number 

of leks and male Greater Sage-Grouse attendance.  Female Greater Sage-Grouse have 

displayed avoidance of preferable winter habitat because of natural gas development 

(Doherty et al. 2008).  Female Lesser Prairie-Chickens in Kansas avoid nesting near 

anthropogenic features by selecting sites 150 m to 1000 m away from disturbances 

(Pitman et al. 2005). 

Use of Cameras for Monitoring Birds 

With increasing globalization there is a need to study influences of anthropogenic 

changes (e.g. land use changes, habitat fragmentation, increased energy development, 

etc.) on wildlife populations.  Techniques to monitor population responses focus on 

demographic rates that influence survival and reproduction.  For birds, nesting is one of 

the most important aspects of reproduction; however, events during the nesting period for 

many avian species remain unknown largely because of logistical challenges of observing 

the nest.  Dense cover at nests, cryptically colored attending adults, and/or limited access 

to nest locations pose challenges when observing many avian species (Ellis-Felege and 

Carroll 2012).  Using nest cameras allows researchers to observe events that would 

remain unknown without the presence of a camera or human observer.   

Nest predator identification, parental care, and nestling behavior are common 

objectives of interest in studying responses to landscape changes and can be monitored 

using nest cameras (Ellis-Felege and Carroll 2012, Pietz et al. 2012a).  Correct 

identification of nest fate and predators can help to detect changes in predator 

communities in response to land-use change and energy development (Burr 2014), and 
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can lead to more effective predator management if they are found to be major sources of 

nest failure (Thompson and Ribic 2012).  Video evidence can allow for accurate nest fate 

identification and predators when sign at the nest may be unreliable (Pietz and Granfors 

2000, Staller et al. 2005).  Land-use changes may not only alter habitat of nest predators 

but of the nesting species as well.  Coates and Delehanty (2008) used nest cameras to 

examine how hen age, nest characteristics, and habitat composition near Greater Sage-

Grouse nests influence parental care in the form of nest attendance patterns; a 

manifestation of the fitness tradeoffs attending parents face.   

Technological advancements and greater affordability have contributed to the 

increased use of cameras for nest monitoring.  Although their use has greatly expanded 

our knowledge of nesting ecology, our understanding of how camera monitoring 

techniques influence target species interest is still limited.  Failure to understand such 

impacts may result in inferences predicated on bird responses to cameras rather than the 

greater environment, or unnecessary increases in nest failure because of research 

activities.  Traditional methods of evaluating impacts of cameras on nesting birds have 

included calculating apparent nest success (nest considered successful if > 1 egg hatches), 

daily nest survival, predation rates, and abandonments within 72 hours of nests monitored 

with and without cameras (Brown et al. 1998, Pietz and Granfors 2000, Stake and 

Cimprich 2003, McKinnon and Bêty 2009).  Few studies report alterations of animal 

behaviors because of camera presence (Brown et al. 1998, McGowan and Simons 2006), 

and to our knowledge no one has evaluated if or how behaviors associated with camera 

installation are related to nest success. 

 



 
 

7 
 

Sharp-tailed Grouse Ecology 

 Sharp-tailed Grouse (hereafter “sharptail” or “sharptails”) are a medium-sized, 

ground-nesting upland game bird found throughout the grasslands of North America 

(Connelly et al. 1998).  Beginning in March, males begin to dance at breeding grounds 

known as leks (Connelly et al. 1998).  Females begin to arrive at leks in early April to 

reproduce (Connelly et al. 1998).  Nest initiation occurs between April and July (Marks 

2007).  Only females invest in parental care activities such as incubation and brood 

rearing.  Average clutch size is 12 eggs, with an incubation period of 21 to 25 days 

(Marks 2007).  In some areas, sharptails have been observed to re-nest up to four times 

per season if a clutch is lost (Connelly et al. 1998).  Nesting habitat may include areas 

with trees, dense brush, and thick, tall grassland areas (Connelly et al. 1998, Johnsgard 

2008). 

Population health of sharptails across North America has been declining because 

of changes in land use and habitat loss (Kirsch et al. 1973, Marks 2007, Johnsgard 2008).  

In North Dakota, sharptail populations are thought to be stable (Dyke et al. 2011); 

however, the impact of energy development and agricultural practices on these 

populations have been understudied (Hovick et al. 2014).  Dramatic increases in western 

North Dakota energy development have presumably threatened sharptail habitat and their 

behaviors (Dyke et al. 2011, NDIC 2015).  In a meta-analysis Hovick et al. (2014) found 

that oil and natural gas structures and roads displaced prairie grouse during all life stages, 

especially at leks.  These findings prompt questions of how energy development might 

influence other harder to observe behaviors.  Knowledge regarding nesting ecology of 
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sharp-tailed grouse is sparse, with little understanding regarding the impact of gas and oil 

development on the species (Hovick et al. 2014).    

Given sharptails are taxonomically grouped with the prairie grouse which include 

the Greater and Lesser Prairie-Chickens (collectively referred to as “prairie-chickens”) 

much of the current sharptail management is modeled after prairie-chicken and Greater 

Sage-Grouse responses to disturbances associated with gas and oil production (Pitman et 

al. 2005, Coates et al. 2008).  Since literature regarding impacts of human disturbance 

and land-use change is more abundant for prairie chickens (Hovick et al. 2014) and given 

the genetic and ecological similarities between prairie chickens and sharptails, our 

hypotheses about the impact of nest, hen, and habitat characteristics on nest attendance 

are modeled after prairie chickens.  

Avian Incubation 

Tradeoffs exist between the needs of the parent and of the offspring with life 

history characteristics driving parental investment patterns among species.  A large body 

of literature has shaped parental investment theories and reasons for variation in parental 

investment (Stutch 1963, Montgomerie and Weatherhead 1988).  For incubating birds, 

this tradeoff can be observed by monitoring nest attendance patterns.  A nest is 

considered attended if a parent is either incubating eggs or brooding chicks at the nest.  

When the parent is not attending the nest they are considered to be on recess (Skutch 

1963).  During this time, adults will take time for self-maintenance activities such as 

foraging (Skutch 1963).  For birds that need to camouflage both themselves and their 

nests from predators, limited movement is critical for reducing potential detection by 

predators.  Incubation constancy, or the percent time spent attending a nest either during a 
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24-hour period or daylight hours applying heat to eggs, is needed to fully understand 

activity budgets and movement at the nest (Skutch 1963).  These parental investment 

measures vary by species, individual and ecosystem depending on physiological and 

environmental constraints.   

Parental care may also be affected by nest age (Brunton 1990) and timing during 

the breeding season (Burnam et al. 2012).  For example, birds with higher re-nesting 

potential should defend their nest less, exhibiting the tradeoff between clutch and parent 

fitness (Montgomerie and Weatherhead 1988).  As the nesting season progresses, clutch 

size decreases with each nesting attempt as a direct result of reduced body mass from 

continued nesting effort (Ankney and Afton 1988, Pitman et al. 2006).  Weather patterns 

also may affect nest attendance behaviors.  Late spring and early summer, when cold and 

rainy weather is frequent, hen Northern Shovelers (Anas clypeata) were observed to 

increase incubation constancy; however, later in the summer, they were anecdotally 

observed to have longer recesses during late afternoon at times of warm ambient 

temperatures (Afton 1980).  

Study Objectives and Hypotheses 

The goal of this study is to examine nesting ecology of sharptails through the use 

of nest cameras.  Factors that influence nest attendance patterns (e.g. hen characteristics, 

attributes of the nest, landscape features, and disturbances) in sharp-tailed grouse are 

explored in Chapter 2.  Secondarily, we investigated the potential impacts of behaviors 

expressed within 24 hours after camera installation on daily nest survival rates (DSR) to 

validate current procedures used to study ground-nesting birds with cameras (Chapter 3).  

Finally, we describe conclusions on sharp-tail nesting ecology and make 
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recommendations for future nesting studies using cameras for ground-nesting bird 

research and monitoring.   

To evaluate sharptail nesting behaviors and responses to cameras, we specifically 

examined the following a priori hypotheses for each objective.   

 

Objective I (Chapter 2): How does nest attendance for sharp-tailed grouse vary relative 

to different landscape and land-use patterns? 

1. Hens with nests situated in heterogeneous landscapes providing food and other 

important resources with relatively few anthropomorphic features will spend more time 

on the nest, leave less frequently, and for shorter amounts of time.  Avoidance behaviors 

to anthropogenic features associated with energy development and human expansion 

have been documented in grouse nest site selection (Manzer and Hannon 2005, Hovick et 

al. 2014), and may have to spend more time avoiding anthropogenic features while 

foraging.    

2. Hens that are older, on late season nesting attempts, or that have larger clutches 

display strong parental investment behaviors spending more time on the nest, leave less 

frequently, and for shorter amounts of time.  Parental investment characteristics are also 

known to influence nest success, and have been studied relative to nesting dynamics in 

birds with a variety of hen (e.g., age) (Yerkes 1998) and nest characteristics (e.g., timing 

in nesting season, nest attempt, and clutch size) (Thompson et al. 1998, Pavel and Bures 

2008, Burnam et al. 2012).  



 
 

11 
 

3. A combination of landscape and hen and nest characteristics best describe nest 

attendance patterns, rather than a single driver of parental investment or environmental 

pressures. 

4. Neither landscape or hen and nest characteristics appropriately predict nest 

attendance patterns, and instead other factors not measured such as predator communities 

or microhabitat characteristics might drive nesting behaviors.  

 

Objective II (Chapter 3): How do daily survival rates of nests change relative to grouse 

behaviors after a camera is installed? 

1. Daily survival rates are higher for nests where hens spend more time on the 

nest, and take fewer recesses during the first 24 hours after camera installation.  Hens 

leaving nests unattended for long periods of time exposes sensitive eggs to potentially 

inclement weather and predators (Afton 1980).  Long absences in incubation can slow 

development, and these effects are exacerbated during periods of cold and wet weather 

(Afton 1980). 

2. Daily survival rates are lower for nests where hens do not immediately resume 

incubation upon return to the nest.  The way in which the hen returns after camera 

installation (e.g., sits next to, partially on, or directly on the nest) may be associated with 

nest success.  Prolonged time spent moving frequently within the vicinity of the nest may 

cue predators to nest location.  Therefore, it should be advantageous for hens to quickly 

return to the nest following camera installation.  The same logic can be applied to 

frequent or prolonged recess events. 
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3. Daily survival rates are lower for nests where hens have a camera interaction 

within the first 24 hours after camera installation.  Movements of the hen around the nest 

may result in increased detection of nests by predators.  Time and energy spent defending 

the nest against the camera may influence nest success by altering time spent incubating, 

and by increasing the chances of nest predation.  

4. As the duration of researcher interaction increases, incubation constancy 

decreases, which may translate to reduced nest survival.  Harvey (1971) observed that 

failed Blue Goose (Chen caerulescens; now classified as Snow Geese) nests had parents 

that were less attentive compared to successful nests supporting the hypothesis that 

reduced attentiveness (i.e. less protection) increases the probability of predation.  

Study Sites 

 As part of a large collaborative project exploring impacts of gas and oil on sharp-

tailed grouse demographics, we conducted field work for this study at two sites, Belden 

(centroid location: N 48.107922, W 102.393517) and Blaisdell (centroid location: N 

48.107922, W 102.393517), located in Mountrail County in western North Dakota 

(Figures 1).  These sites lie on the eastern edge of natural gas and oil development and 

are defined by the relative gas and oil activity within their bounds.  Nests located at 

Belden (Figure 2) are located in areas of higher oil well and road density than those in 

Blaisdell (Figure 3). Both sites are dominated by agricultural land-cover types including 

row crop fields, and pasture lands with scattered small water bodies and clusters of 

deciduous trees.  Rolling hills, buttes, and draws are common geomorphic features on the 

landscape.  Thus, the area provided an ideal location to evaluate sharptail nesting ecology 
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in the face of a variety of landscape characteristics, while validating nest camera 

technology to further understand implications of researcher methods.   
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Figure 1. Study sites, roads, and active oil wells located in Mountrail Co. North Dakota. 
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Figure 2. Belden nest locations, oil wells, and roads. Belden was our study site of “high” gas and oil intensity with an oil well density 
of 0.076 wells/km2 in 2012, and 0.950 wells/km2 in 2013.  A total of 26 nests from this site were monitored and nest attendance 
patterns reviewed.   
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Figure 3. Blaisdell nest locations, oil wells, and roads. Blaisdell was our study site of “low” gas and oil intensity with no oil wells 
during 2012 and an oil well density of 0.006 wells/km2 in 2013.  A total of 29 nests from this site were monitored and nest attendance 
patterns reviewed.  
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CHAPTER II 

NEST ATTENDANCE PATTERNS OF SHARP-TAILED GROUSE IN WESTERN 

NORTH DAKOTA 

 

Abstract 

Land use changes and increased gas and oil development in the upper Great 

Plains has generated the need to evaluate their influence on the region’s wildlife 

populations.  Sharp-tailed grouse (Tympanuchus phasianellus) are an important game 

species that face pressures from these anthropogenic practices.  Nesting behaviors are one 

of the least understood aspects of sharptail ecology.  By studying nest attendance 

patterns, we can observe the tradeoff between the health of the hen and success of the 

nest, one of the major contributors of population dynamics.  The objectives of this study 

are to (1) quantify nest attendance patterns, and (2) determine if/how nest attendance 

varies depending on the surrounding landscape.  We reviewed continuously recorded 

video from 55 nests of radio-collared sharptail hens from the summers of 2012 and 2013 

in an area of high and an area of low energy development intensity.  Incubation 

constancy, duration, and number of recesses were calculated for each day.  We calculated 

percent grass, developed, and fallow land as well as oil well density within 250 m, 450 m, 

and 800 m of each nest.  We used multi-model inference to evaluate how characteristics 

of the hen, nest, and landscape influence nest attendance.  Hens incubated for 

approximately 95.2% of the day (SD = 3.3%) and took 2.5 recesses (SD = 1.2) for 27.6 

minutes (SD = 23.5) in duration.  Year was the only parameter to predict nest attendance 
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patterns; however, we did find general trends of decreased parental investment in sites 

with low intensity natural gas and oil development compared to sites of high intensity 

development and lower nest success.  These finding suggest that further research is 

needed to fully understand the impacts that the landscape and energy development have 

on reproductive ecology of Sharp-tailed Grouse.  

Introduction 

 Grasslands of the upper Midwest are undergoing dramatic changes.  Increased 

need for food and biofuels has forced the conversion of grassland to row crop agriculture 

such as corn and soybeans (Wright and Wimberly 2013).  Between 2002 and 2012, North 

Dakota has experienced a decrease of 2.7 thousand ha (665 thousand acres) of grassland, 

a reduction in the number of cattle-calve operations, and an increase of 1.5 million ha 

(3.6 million acres) of harvested cropland (USDA 2014).  In addition, western North 

Dakota’s oil and natural gas production dramatically increased from approximately 33 

million barrels in 2000 to nearly 400 million barrels in 2014 (NDIC 2015).  The number 

of wells producing oil increased from approximately 3,300 to 12,500 in the same 14-year 

period (NDIC 2015).  Both the decline in grassland habitat and increased anthropogenic 

disturbance can have negative impacts on bird populations.  

 In agricultural areas, Greater Prairie-Chickens (Tympanuchus cupido) had lower 

nest success in pasture and hayland habitats and in areas with greater habitat 

fragmentation (Ryan et al. 1998).  Thompson et al. (2015) found avoidance of 

infrastructure associated with gas and oil development by grassland songbirds from 150 

m up to 267 m in North Dakota.  Increased use of roads in areas of heavy gas and oil 

development have been shown to change the vegetation community surrounding 
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roadways and altering bird communities (Ingelfinger and Anderson 2004).  During winter 

months, female Greater-Sage Grouse (Centrocercus urophasinaus) avoided areas of 

suitable sage-brush habitat that contained oil wells in the Powder River Basin in 

Wyoming and Montana (Doherty et al. 2008).  Pitman et al. (2005) found greater 

avoidance in Lesser Prairie-Chicken (Tympanuchus pallidicinctus) nest site selection 

relative to anthropogenic features when nesting in grassland rather than sage-sandbrush 

habitat in Kansas.  Burr (2014) found indirect influences of energy development on 

Sharp-tailed Grouse (Tympanuchus phasianellus) nest success.  Areas of intense gas and 

oil development had fewer nest predators and higher nest success than areas of less 

intense development (Burr 2014).  

Most studies evaluating the influence of gas and oil development on upland 

gamebird species focus on Greater Sage-Grouse and Lesser Prairie-Chickens (Hovick et 

al. 2014).  In 2011, North Dakota Game and Fish recognized deficiencies in knowledge 

of the impact of increasing oil development on the state’s wildlife populations (Dyke et 

al. 2011).  In response, they created a document that identified wildlife species that may 

be impacted by energy development, plans for evaluating impacts, and ways to mitigate 

disturbances (Dyke et al. 2011).  One of the species they identified as "at risk” was the 

Sharp-tailed Grouse. 

 Sharp-tailed Grouse (hereafter “sharptail” or “sharptails”) are an upland nesting 

gamebird found throughout the grassland of North Dakota.  The Plains subspecies (T. p. 

jamesi), found in western North Dakota, is thought to be doing the best of the six 

subspecies because of their utilization of row crops for forage during the fall and winter 

(Connelly 1998, Johnsgard 2008).  Although North Dakota sharptails are thought to be 



 

27 
 

doing well, little is known about factors influencing population dynamics, especially 

given the changes in land use and landscape characteristics in recent years.  

 Nest attendance, or how incubating parents spend time on the nest, is an important 

component of reproductive ecology (Trivers 1972).  Patterns in nest attendance can be 

one of the first indications of stress for incubating birds, often before we see changes in 

nest success or population level changes.  Stresses can include those associated with food 

availability, proximity, and quality (Afton 1980, Ankney and Afton 1988, Bókony et at. 

2009).  These stresses can have consequences on fitness, resulting in tradeoffs in time 

allocation made by the incubating parent to self-maintenance and attendance at the nest.   

 This time allocation tradeoff can be examined through three related parameters: 

number of recess events, duration of recess events, or overall incubation constancy.  The 

number of daily recesses is defined as how often hens leave the nest to engage in self-

maintenance activities during one day.  Average daily recess duration is how the hen is 

gone during each recess.  Finally, incubation constancy, or how much time hens spend 

incubating during a 24-hour period which represents parental investment in the clutch.  

Thus, patterns that result in less time spent attending the nest may indicate a decreased 

investment in the nest, suggesting greater priority on the hen surviving to the next year to 

reproduce (Stuch 1962).  The objective of this study was to classify nest attendance 

patterns of western North Dakota sharptails relative to characteristics of the landscape, 

hen, and nest using miniature surveillance cameras.   
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Methods 

Study Area 

As part of a larger study on sharptail ecology, we monitored nests at two study 

sites in Mountrail County, North Dakota, between March and August of 2012 and 2013. 

Belden (centroid location: N: 48.087094 W: -102.408549; area: 147.2 km2) and Blaisdell 

(centroid location: N: 48.269953 W: -102.086157; area: 158.3 km2) are primarily 

comprised of rolling hills, buttes, draws, and small wetlands. Based on reclassified U. S. 

Department of Agriculture National Landcover Dataset (Table 1) grassland was the 

predominant cover type at both Blaisdell and Belden (54% and 68%, respectively).  

Crops accounted for 22% of land at Belden and 37% at Blaisdell, with each containing 

approximately 2% fallow land.  Wetlands were found across 5% of Blaisdell and 2% of 

Belden.  Both sites had few trees and shrubs (Belden 4% and Blaisdell < 1%).  These 

sites lie on the eastern edge of oil development within Mountrail County and vary in 

intensity of energy development.  Blaisdell, our site of “low” intensity, had a maximum 

well density of 0.006 wells/km2 during 2013 (Burr 2014).  Belden, our site of “high” oil 

and gas development, had an increase of 0.183 wells/km2 between 2012 and 2013 

resulting in a maximum well density of 0.950 wells/km2 (Burr 2014).  Percent developed 

land (e.g., roads, towns, large farm operations, and towns) was approximately 3% at both 

Belden and Blaisdell.  

Field Methods 

 Sharptail hens were trapped at leks using walk-in style traps from March through 

mid-May during the springs of 2012 and 2013.  Upon capture we aged (i.e. juvenile or 

adult), weighed, and fitted hens with a metal leg band and either a 10.7 g or 16 g 
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necklace-style radio collar.  Between mid-May and July we monitored hen locations 

using hand-held, truck-mounted, and aerial telemetry to find nest locations.  Upon 

discovery of the nest, we recorded clutch size, nest attempt within the season, GPS 

location (Geographic Coordinate System: North America 1983; Datum: North American 

Datum 1983 UTM Zone 14), and location relative to other landmarks.  We used hen age 

as our only hen characteristic covariate (Table 1).  Nest characteristic covariates included 

nest attempt, maximum clutch size, and nest fate (Table 1). 

 At a subset of nests, a 24 hour infrared surveillance camera was installed 0.25 – 

0.5 m from the nest.  There were three components to the camera system: surveillance 

camera, camera box, and battery.  The surveillance camera was equipped with light 

emitting diodes (LEDs) for night vision capabilities.  Cameras were attached to a 0.6 m 

piece of steel rebar steaked into the ground.  The camera box housed a digital video 

recorder (DVR), and was attached to the camera with cable, and located at least 25 m 

from the nest.  Video was recorded continuously onto 32 gigabyte secure digital (SD) 

cards at high resolution at 10 frames per second.  Date and military time were set upon 

camera installation.  The DVR and camera were powered using a 12-volt 35-amp battery 

located next to the camera box.  We camouflaged all components with paint and 

surrounding vegetation, and attempts were made to minimize scent and vegetation 

disturbance around and leading up to the nest.  

 Batteries and SD cards were changed every 3 to 4 days.  We also checked for the 

presence of the incubating hen during these times with a portable Tote Vision LCD 

monitor and telemetry.  If the hen was not present, we approached the nest to determine if 

it was destroyed, hatched, or the hen was on recess. In the event that the nest had hatched 
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or been destroyed, we removed the camera and verified fate by reviewing video footage. 

Cameras were relocated to another active nest if available.   

Video Analysis 

 We watched video beginning at midnight of the day after installation until the day 

of nest fate.  We specifically watched for nest recesses.  We characterize these as any 

time the hen is not tending her eggs, but rather performing self-maintenance activities 

such as foraging.  These recesses do not include times when the hen was flushed off the 

nest by a researcher, predator, or non-predator animal.  Recess start and stop times, 

characterized by the hen leaving the nest bowl and then returning to sit down on the nest, 

along with day were recorded.  From this information we were able to derive our three 

metrics for nest attendance: daily number of recesses, average daily recess duration, and 

incubation constancy.  

Land Cover Analysis 

To evaluate the influence of land cover we took a two-step approach first by 

identifying important land cover covariates, then by identifying the appropriate scales to 

model those covariates.  To begin we reclassified land cover data for 2012 and 2013 

using ArcMap 10.1.3 (Environmental Systems Research Institute, Redlands, CA) from 

National Agriculture Statistics Service products (USDA 2014).  We created five broad 

categories: crops, grassland, trees/shrubs, water/wetland, fallow (i.e., areas with idle 

cropland and bare ground), and developed (Table 2).  To ensure correct assignment of 

land cover, we performed an accuracy assessment in ERDAS Imagine 2014 (Hexagon 

Geospatial, Madison, AL) using 2012 and 2013 National Agricultural Inventory Program 

(NAIP) imagery for reference. All Kappa values exceeded 0.80 suggesting land cover 
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reclassification was accurate for our purposes of evaluating broad land-use categories 

(Congalton and Green 2009).  

We decided to assess the percent cover of three land cover classes: grassland 

fallow, and developed areas (Table 1).  Grassland primarily consisted of pasture (Table 2) 

and provides important cover and forage (Connelly 1998).  Areas with fallow/idle 

cropland and bare ground were classified as fallow (Table 2).  Although oil wells were 

classified as bare ground, fallow/idle cropland constituted approximately 85% of this 

class.  These areas support communities of “weeds” that produce large amounts of seed, 

an important component of sharptail diet during the spring and summer (Connelly 1998).  

Roads constituted most developed areas; however these also included farms, towns, and 

businesses (including manufacturing facilities).  These areas act as disturbances that are 

avoided by both birds and mammals (Benítez-López et al. 2010).  Initially we modeled 

percent grassland as a linear and quadratic function and found no difference in model 

performance; therefore, we modeled percent grassland as a quadratic function as we 

recognize that other landscape components (i.e. trees and shrubs) are important habitat 

and food sources for sharptails (Johnsgard 2008).  We modeled percent developed and 

fallow as linear functions rather than a quadratic due to the limited range of values (Table 

1).  In addition to land cover variables, we calculated oil density within the five scales 

described below (wells/km2) based on well locations provided by the North Dakota 

Industrial Commission, Department of Mineral Resources, Oil and Gas Division as of 

August 2013. 

 Land cover compositions within a 50 m radius (microsite; scale associated with 

nest site selection), 437 m (local; area used by nesting prairie chickens), and 1600 m 
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(landscape scale; area used by hens during breeding season while not incubating) radius 

around the nest have been correlated to nest success (Manzer and Hannon 2005).  

Although these three scales are commonly used in prairie grouse research, we explored 

the possibility other intermediate scales (250 m and 800 m) in between the scales 

discussed above.  To determine the most appropriate scales (i.e. either 50 m, 250 m, 450 

m, 800 m, or 1600 m) to model nest attendance we generated 6 land cover combinations 

of % grassland2, % fallow, and % developed land.  For each combination we made 

models of incubation constancy for the given combination for each scale.  For example, 

we made 5 models that contained % grassland2 + % developed at 50 m, 250 m, 450 m, 

800 m, and 1600m (Table 3).  To evaluate which scales performed the best for each land 

cover combination we used multi-model inference and ranked models by lowest AICc 

and model weights (wi) (Burnham and Anderson 2002).  We used the PROC MIXED 

procedure in SAS to run models (Table 3).  We found that 250 m, 450 m, and 800 m 

models ranked in the top three models for more than 5 land cover combinations (Table 

3); therefore, we selected these three scales for our analysis.  

Sharptail nest locations tend to be clustered around leks; therefore, we tested for 

spatial autocorrelation by evaluating Moran’s I values generated in SAM (Spatial 

Analysis in Macroecology) (Rangel et al. 2010) for average incubation constancy, 

average recess duration, and average number of recesses for each bird.  We found no 

spatial autocorrelation between nests (all Moran’s I p-values > 0.05), allowing us to 

continue with our analysis without the inclusion of any spatial adjustments to account for 

dependence among nests. 
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In addition, we calculated distance to nearest well (m) and binned these distances 

into three classes: 0–450 m, 451–1600 m, and > 1600 m.  We chose to categorized 

distance to nearest well because of the large variation in distances between Belden and 

Blaisdell influenced model performance, with average distance to nearest well averaging 

722.16 m in Belden (min = 150.43 m, max = 1571.22 m; only 2 nests within 250 m of a 

well), and 3,638.55 m in Blaisdell (min = 564.21 m, max = 6742.54 m) (Burr 2014).  

Data Analysis 

 We used two-tailed t-tests to compare percent grassland2, fallow, and developed 

land at 250 m, 450 m, and 800m from the nest between Belden and Blaisdell.  We did 

this with the T.TEST function in Microsoft Excel 2010 (Microsoft Corporation, 

Redmond, WA) and a two-sample unequal variance test. This function produced p-values 

for us to evaluate if differences between sites are statistically significant.  In addition we 

calculated means and standard deviations for each land cover covariate at Belden and 

Blaisdell. 

We summarized patterns in number of recesses by calculating means for all nests 

and by year and site.  In addition, we plotted start time of recesses to characterize time of 

day for recesses.  To evaluate incubation constancy and average daily recess duration we 

generated 36 models. Due to correlation of land cover between spatial extents (i.e. 

percent grass at 250 m was highly correlated with percent grass at 450 m and 800 m) we 

did not mix spatial extents (Ellis-Felege 2010). We ran our models using PROC MIXED 

(Coates and Delehanty 2008, Burnam et al. 2012) in SAS (SAS Institute 2003).  We 

constructed models that we felt a priori held biological significance rather than using all 

combinations.  We evaluated models based on lowest AICc and model weight (wi) 
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(Burnham and Anderson 2002).  To assess the influence of each covariate we calculated 

model averaged estimates and evaluated statistical significance based on the exclusion of 

0 from 95% confidence intervals and magnitude of effect by examining β-estimates 

(Burnham and Anderson 2002). 

Results 

Land Cover Differences Between Sites 

 In general we found grass to be the predominant land cover type near nests at all 

distances and at both Belden and Blaisdell (Table 4).  We observed there to be more grass 

near nests at Blaisdell compared to Belden (Table 4).  Belden had greater proportions of 

fallow and developed land (with the exception of percent developed land at 800 m which 

was similar between sites) (Table 4).  We found percent developed land at 450 m to be 

the only statistically significant (p-value < 0.05) covariate that differed between Belden 

and Blaisdell; however, percent fallow land at 800 m had a p-value of 0.06 suggesting 

that this too maybe a notable difference between sites (Table 4).  

Nest Attendance 

 We monitored a total of 90 nests with cameras. Of those, we viewed 55 nests for 

this analysis, equating to 444 nest-days and over 10,650 hours of footage.  From this data 

we observed 1,115 recess events.  Our hens were 54.5% adult and had and average clutch 

size of 12.6 eggs (SD = 2.04).  Most of the nests we viewed were first attempts (78.2% of 

nests). Overall apparent nest success was 50.9%.  Apparent nest success was higher 

during 2012 (57.6%, n = 33 nests) than in 2013 (40.9%, n = 22), and it was higher for 

nests at Belden (57.7%, n = 26) than Blaisdell (44.8%, n = 29).  These estimates of nest 

success are comparable to those of a larger sample of 163 sharptail nests monitored both 
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with and without cameras (Belden = 62% successful, Blaisdell = 44% successful) (Burr 

2014). 

 From our summary statistics, we found that hens took approximately 2 to 3 

recesses per day (Table 5), once in the morning and once in the evening (Figure 4).  We 

observed hens at Blaisdell to take more recesses on average than those at Belden, and 

hens in 2013 to take more than hens in 2012 (Table 5). 

Average incubation constancy for all nests was 95.2% (approximately 22.8 

hours/day) (Table 5).  Hens in 2012 incubated longer than those in 2013. Belden hens 

incubated longer than their counterparts at Blaisdell.  Models containing year and year 

and site accounted for 75% of model weights and had a ΔAICc < 2.0 (Table 6).  Model-

averaged estimates for these models revealed year as the only statistically significant 

covariate that accurately predicts incubation constancy (Table 7).  We found that hens in 

2013 incubated 1.7% less (approximately 24.5 minutes) than those in 2012.  

 Overall, hens took an average of 27.6 minutes for each recess (Table 5).  Similar 

to incubation constancy, as is expected given the relationship of these metrics, Blaisdell 

hens average daily recess duration was 29.6 minutes or 3 minutes longer than hens at 

Belden (Table 5).  During 2012, hens spent approximately 1 minute more on recess than 

those in 2013.  Like incubation constancy, site and site and year along with the intercept 

only model accounted for 75% of model weights (Table 8).  Unlike incubation constancy, 

no parameters were shown to be statistically significant in their ability to accurately 

predict patterns of average daily recess duration (Table 9). 
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Discussion 

Year was the only covariate that explained variation in any behavior.  We 

hypothesize that hens spent more time on the nest during 2012 than 2013 because of 

differences in weather patterns.  From January through March in Stanley, ND, average 

temperature was approximately 10°C cooler in 2013 compared to 2012 (NOAA 2013, 

NOAA 2014).  Average precipitation during the same months was 4.8 cm greater in 2013 

than 2012 (NOAA 2013, NOAA 2014).  The combination of cooler temperatures and 

greater snowfall in 2013 may have decreased access to food resources or required more 

energy devoted to thermoregulation prior to the breeding season.  To compensate for 

fewer energy reserves hens may have needed to spend more time foraging during 

incubation resulting in lower incubation constancy.  Hens may also have needed to take 

more, shorter recesses during 2013 to maintain proper temperatures for egg development, 

an incubation pattern observed in Common Goldeneyes (Bucephala clangula) (Mallory 

and Weatherhead 1993).  Although we observed differences in incubation constancy 

between the two years, Burr (2014) found no difference in nest survival.  This suggests 

that observed differences we found in the amount of time spent on the nest does not 

influence nest fate; however, we still do not understand how nest attendance and hen 

condition influence brood success.  Further research is needed to determine what nest 

attendance patterns optimize nest and brood success.  

We did not observe any other statistically significant tends in nest attendance 

patterns.  We did observe what we believe to be potentially biologically important 

differences between sites.  Greater parental investment (i.e. greater incubation constancy, 

shorter recess duration, and fewer recesses) was observed at Blaisdell, our site of low gas 
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and oil intensity.  We believe that one possible explanation for this pattern could be that 

Blaisdell hens could be in poorer body condition than those in Belden.  Bukaciǹska and 

Bukaciǹska (1966) found that unsuccessful pairs of Herring Gulls (Larus argentatus) left 

to feed more frequently and for longer periods of time.  In addition, Burr (2014) found 

higher nest predation at Blaisdell.  An alternative explanation could be that we are 

observing a life-history tradeoff that is caused by stress induced by increased predation. 

McNew et al. (2011) found that sites with less human disturbance had lower nest and 

brood success but higher hen survival.  This suggests than hens are increasing their 

probability of survival to the next breeding season at the expense of the current seasons 

reproduction (McNew et al. 2011).  In addition to our observations of decrease parental 

investment at Blaisdell and Burr (2014) observations of higher predation rates at the site, 

we may be observing a shift of life-history traits similar to long-lived species (lower 

yearly reproductive output) supporting the hypothesis of McNew et al. (2011).  

We did not observe any covariates other than year to explain variation of nest 

attendance patterns in any direction.  It is possible that little variation in nest attendance 

patterns could be the result of hen condition at the onset of breeding.  We predict that 

hens in high enough body condition to incubate exhibit similar nest attendance patterns 

whereas nests of hens in poor condition do not make it through the egg-laying stage and 

are not detected by our radio-telemetry methods that identify nests after incubation has 

started.  An alternative explanation could be that landscape changes are not yet drastic 

enough to observe statistically different incubation patterns.  Overall, there were only 

small differences in land-use between Belden and Blaisdell with both experiencing a 

variety of landscape disturbances; however, there were differences between sites and year 
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in oil well densities.  It is possible that oil well density was not a good predictor because 

sharptails are avoiding these structures prior to incubation.  We suspect some nest site 

selection to be occurring relative to proximity to oil wells, although formal nest site 

selection analysis were not conducted as part of this study.  We, however, observed only 

2 out of 55 nests (4%) to be within 250m of an oil well.  Both of these nests were at 

Belden and during 2013 when oil well density increased from 0.183 wells/km2
 to 0.950 

wells/km2 (Burr 2014).  Similar nest site avoidance of anthropogenic features from 144 m 

up to 1019 m has been observed in Lesser Prairie-Chickens in Kansas (Pitman et al. 

2005).  Energy development may not be so intense that it is forcing hens to nest in areas 

in close proximity to oil wells; therefore, we are not seeing influences of oil well density 

on nest attendance patterns.  It is possible that nest site selection and nest attendance 

patterns will change in response to increased oil production in North Dakota with 

development of new extraction techniques (Fahey 2011).  In addition, we also found a 

statistical difference in the percent developed land at 450 m, with Belden having more 

developed areas than Blaisdell.  Developed areas were primarily roads; therefore, we 

suspect more roads create more disturbances which can alter nest predator behavior (Burr 

2014). 

Although we did not find the landscape to change incubation behaviors, it could 

cause changes in other aspects of their reproductive ecology.  Burr (2014) found changes 

in nest success and nest predator community at large scales, with greater nest success and 

lower predator abundance being in areas of heavier energy development.  To validate our 

hypothesis that nest success, predator abundance, and nest attendance are functions of 



 

39 
 

human development we need to determine hen survival.  By doing this we can determine 

what factors drive the tradeoff between fitness of the hen and nest.  

We need to determine how density of and distance to nearest anthropogenic 

feature influences nesting ecology.  We used a course approach to classifying 

anthropogenic features.  Future research using more specific classification of 

anthropogenic features (e.g., quantify road traffic, identify flaring wells, determine 

amount of noise at the nest, are features within line-of-sight from the nest, etc.) is needed 

to develop specific strategies for future land-use and landscape configuration in multi-use 

landscapes.  In addition, we know little about the influence of gas and oil development on 

brood success for sharptails.  In Greater Sage-Grouse brooding females were found to 

avoid producing wells; however, there was no relationship between energy development 

and brood success (Holloran 2005).  

Management Implications 

As agriculture and the need for natural gas and oil increase there are several ways 

managers and biologists can help sharptails persist on the landscape.  We can continue to 

work with landowners to manage multi-use grasslands to provide good habitat for 

sharptails throughout the year.  By managing grasslands for sharptails and cattle 

production, we can provide optimal vegetation structure and composition for nest site 

selection (McNew et al. 2013), and habitat for cover and food during the winter 

(Connelly 1998).  To mitigate the impact of gas and oil development, we can encourage 

energy companies to concentrate multiple jack-pumps to a single pad increasing the 

amount of usable land for sharptails.  Thompson et al. (2015) found that grassland birds 

avoided multi-bore well pads at 150 m rather than 267 m at single bore-well pads.  
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Finally, future research questions should look to evaluate how energy development 

influences multiple aspects of life history traits to give a complete picture of how human 

disturbances alter population dynamics.  
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Tables 

Table 1. Definitions for covariates used to evaluate nest attendance patterns.  Abbreviations used in tables and figures.  

Covariate Abbreviations Description Range of Values 

Year  2012* or 2013 field season.  

Site  
Belden*: high intensity of gas and oil development. 

Blaisdell: low intensity of gas and oil development.  
 

Age  Juvenile* or adult.   

Nest Attempt  attempt Nest attempt within one year.   

Maximum Clutch Size max_clutch Maximum number of eggs found at the nest.  8 – 16 eggs 

Nest Fate  fate Successful or failed*.   

% Grassland2  250 m G2250 Percent grassland squared within 250 m of the nest. 4.48 – 100%2 

% Grassland2 450 m G2450 Percent grassland squared within 450 m of the nest. 1.80 – 100%2 

% Grassland2 800 m  G2800 Percent grassland squared within 800 m of the nest. <0.00 – 99.27%2 
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Table 1 cont. 

Covariate Abbreviations Description Range of Values 

% Fallow 250 m  F250 Percent fallow land within 250 m of the nest.  0 – 68.24% 

% Fallow 450 m   F450 Percent fallow land within 450 m of the nest. 0 – 25.66% 

% Fallow 800 m F800 Percent fallow land within 800 m of the nest. 0 – 14.93% 

% Developed 250  D250 Percent developed land within 250 m of the nest.  0 – 14.71% 

% Developed 450  D450 Percent developed land within 450 m of the nest. 0 – 24.97% 

% Developed 800  D800 Percent developed land within 800 m of the nest. 0 – 26.56% 

Well Density 450 m WellD450 Density of oil wells within 450 m of the nest. 0 – 0.003 wells/km2 

Well Density 800 m WellD800 Density of oil wells within 800 m of the nest. 0 – 0.004 wells/km2 

Nearest Well < 450 m NWell450 Nearest well is within 450 m of the nest.*   

Nearest Well 450 – 1600 m NWell450_1600 
Nearest well is between 450 m and 1600 m of the 

nest.  
 

Nearest Well >1600 m NWell1600 Nearest well is beyond 1600 m of the nest.   

*Baseline for comparison. 
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Table 2. Land cover reclassification scheme.  Percent contribution of NASS classification to reclassified category and landscape are 
also included.  
 

Reclassified 

Categories 

NASS  

Classification 

2012 2013 

% of Category % of Landscape % of Category % of Landscape 

Grassland Grassland/Pasture 94.6% 43.3% 94.6% 45.4% 

 

Other Hay/Non Alfalfa 4.0% 1.8% 4.0% 1.9% 

 

Alfalfa 1.4% 0.6% 1.4% 0.7% 

 

Clover/Wildflowers < 0.1% < 0.1% < 0.1% < 0.1% 

 

Sod/Grass Seed < 0.1% < 0.1% < 0.1% < 0.1% 

 

Total 

 

45.8% 

 

48.0% 

  
    

Cropland Spring Wheat 29.4% 11.1% 37.5% 13.1% 

 

Durum Wheat 26.4% 10.0% 14.8% 5.1% 

 

Canola 15.9% 6.0% 16.7% 5.8% 

 

Peas 6.8% 2.6% 13.3% 4.6% 

 

Flaxseed 6.1% 2.3% 4.0% 1.4% 

48 



 

49 
 

Table 2 cont. 

Reclassified 

Categories 

NASS 

Classification 

2012 2013 

% of Category % of Landscape % of Category % of Landscape 

Cropland  Winter Wheat 5.7% 2.2% 1.2% 0.4% 

 Barley 4.2% 1.6% 3.8% 1.3% 

 Sunflower 2.4% 0.9% 2.3% 0.8% 

 Corn 1.2% 0.5% 3.0% 1.0% 

 Lentils 0.8% 0.3% 0.8% 0.3% 

 Soybeans 0.5% 0.2% 1.4% 0.5% 

 

Dry Beans 0.3% 0.1% 0.2% 0.1% 

 

Rye NA NA < 0.1% < 0.1% 

 

Oats 0.2% 0.1% 0.6% 0.2% 

 

Mustard 0.2% 0.1% 0.2% 0.1% 

 

Buckwheat < 0.1% < 0.1% < 0.1% < 0.1% 

 

Millet < 0.1% < 0.1% 0.1% < 0.1% 
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Table 2 cont. 

Reclassified 

Categories 

NASS  

Classification 

2012 2013 

% of Category % of Landscape % of Category % of Landscape 

Cropland Safflower < 0.1% < 0.1% 0.1% 0.1% 

 Potatoes < 0.1% < 0.1% < 0.1% < 0.1% 

 Sorghum < 0.1% < 0.1% < 0.1% < 0.1% 

 Sugarbeets < 0.1% < 0.1% < 0.1% < 0.1% 

 Triticale < 0.1% < 0.1% < 0.1% < 0.1% 

 Dbl Crop Barley/Sorghum NA NA < 0.1% < 0.1% 

 Radishes < 0.1% < 0.1% < 0.1% < 0.1% 

 Total  37.8%  34.8% 

      

Water/Wetlands Open Water 74.3% 6.1% 74.3% 6.4% 

 

Herbaceous Wetlands 23.0% 1.9% 23.0% 2.0% 
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Table 2 cont. 

Reclassified 

Categories 

NASS 

Classification 

2012 2013 

% of Category % of Landscape % of Category % of Landscape 

Water/Wetlands Woody Wetlands 2.7% 0.2% 2.7% 0.2% 

 Total  8.2%  8.6% 

      

Developed Developed/Open Space 90.8% 3.1% 90.8% 3.3% 

 Developed/Low Intensity 8.6% 0.3% 8.6% 0.3% 

 Developed/Med Intensity 0.5% < 0.1% 0.5% < 0.1% 

 Developed/High Intensity 0.1% < 0.1% 0.1% < 0.1% 

 Total  3.4%  3.6% 

      

Trees/Shrubs Deciduous Forest 93.4% 2.9% 93.4% 3.0% 

 

Shrubland 5.4% 0.2% 5.4% 0.2% 

 

Mixed Forest 0.6% < 0.1% 0.6% < 0.1% 
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Table 2 cont. 

Reclassified 

Categories 

NASS 

Classification 

2012 2013 

% of Category % of Landscape % of Category % of Landscape 

Trees/Shrubs Evergreen Forest 0.6% < 0.1% 0.6% < 0.1% 

 

Total 

 

3.1% 

 

3.3% 

  
    

Fallow Fallow/Idle Cropland 85.8% 1.4% 85.8% 1.5% 

 

Barren 14.2% 0.2% 14.2% 0.2% 

 

Total 

 

1.6% 

 

1.7% 
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Table 3. Selection for spatial scale test by modeling incubation constancy relative to 
grassland2, developed, and fallow land at 50 m, 450 m, 800 m, and 1600 m in SAS using 
PROCMIXED.  ΔAICc and wi were calculated within a single model family.  
 

Model AICc ΔAICc wi Deviance 

Grassland
2
 + Developed + Fallow  

450 m -1308.30 0.00 0.74 -1320.53 

800 m -1305.40 2.90 0.17 -1317.57 

250 m -1302.90 5.40 0.05 -1315.12 

1600 m -1302.30 6.00 0.04 -1314.25 

Grassland
2
 + Developed   

450 m -1310.10 0.00 0.73 -1320.28 

800 m -1306.80 3.30 0.14 -1316.91 

250 m -1304.70 5.40 0.05 -1314.85 

1600 m -1304.40 5.70 0.04 -1314.52 

50 m -1304.10 6.00 0.04 -1314.28 

Grassland
2
 + Fallow   

450 m -1301.00 0.00 0.72 -1320.17 

800 m -1307.40 2.60 0.20 -1317.56 

250 m -1304.50 5.50 0.05 -1314.64 

1600 m -1304.40 5.60 0.04 -1314.52 
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Table 3 cont. 

Model AICc ΔAICc wi Deviance 

Grassland
2
     

450 m  -1311.80 0.00 0.71 -1319.92 

800 m -1308.80 3.00 0.16 -1316.89 

1600 m -1306.40 5.40 0.05 -1314.52 

250 m  -1306.20 5.60 0.04 -1314.25 

50 m -1306.10 5.70 0.04 -1314.21 

Developed     

450 m -1308.10 0.00 0.39 -1316.23 

250 m -1306.50 1.60 0.17 -1314.54 

50 m -1306.20 1.90 0.15 -1314.25 

800 m  -1306.10 2.00 0.14 -1314.23 

1600 m -1306.10 2.00 0.14 -1314.19 

Fallow     

450 m -1310.00 0.00 0.34 -1315.63 

800 m -1307.40 0.30 0.29 -1315.30 

250 m -1304.50 1.00 0.20 -1314.64 

1600 m -1304.40 1.40 0.17 -1314.23 
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Table 4. Land cover composition differences within 250 m, 450 m, and 800 m of nests at 
Belden and Blaisdell.  P-values generated from two-tailed, unequal variance, t-tests in 
Microsoft Excel.  Bolded covariates are those that differ significantly (p < 0.05) between 
Belden and Blaisdell. 
 

  

 Belden  Blaisdell 

Covariate p-value  Mean SD  Mean SD 

G2250 0.11  0.69 0.29  0.81 0.25 

D250 0.39  0.04 0.04  0.03 0.04 

F250 0.23  0.04 0.13  0.00 0.01 

  
 

  
 

  
G2450 0.28  0.56 0.28  0.65 0.32 

D450 0.04  0.05 0.06  0.03 0.03 

F450 0.35  0.03 0.06  0.01 0.05 

  
 

  
 

  
G2800 0.58  0.42 0.23  0.46 0.31 

D800 0.92  0.03 0.02  0.03 0.05 

F800 0.06  0.03 0.04  0.01 0.03 
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Table 5. Summary statistics for incubation constancy, average daily recess duration, and 
number of recesses for all nests, and by year and site.  
 

 Belden Blaisdell 2012 2013 All Nests 

Number of Daily Recesses 

Mean 2.3 2.9 2.4 2.6 2.5 

SD 0.9 1.3 1.2 1.1 1.2 

Min 1 0 0 0 0 

Max 9 8 9 8 9 

Average Daily Recess Duration (minutes) 

Mean 26.6 29.6 28.1 27.2 27.6 

SD 14.3 34.0 28.8 16.7 23.5 

Min 5.1 0.0 0.0 5.1 0.0 

Max 95.4 332.6 332.6 91.5 332.6 

Incubation Constancy (percent of 24-hr day) 

Mean 95.7 94.0 95.2 95.1 95.2 

SD 2.1 4.9 3.8 2.8 3.3 

Min 85.0 53.8 53.8 77.8 53.8 

Max 99.1 100.0 100.0 100.0 100.0 
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Table 6. Model selection results for correlation between incubation constancy and 
characteristics of the hen, nest, and landscape.  Models generated and run in SAS using 
PROC MIXED, ranked by lowest AICc from 55 Sharp-tailed Grouse nests.  Covariate 
abbreviations explained in Table 1. 
 

Model AICc ΔAICc wi K Deviance 

year -1316.6 0.00 0.442 2 -1324.68 

site + year -1315.9 0.70 0.311 3 -1326.01 

attempt + max_clutch + fate  + G2450 + 

F450 
-1312.6 4.00 0.060 6 -1328.95 

attempt + max_clutch + fate  -1311.5 5.10 0.035 4 -1323.65 

attempt + max_clutch + fate + age -1311.1 5.50 0.028 5 -1325.36 

attempt + max_clutch + fate +  G2450 + 

D450 + WellD450 
-1310.7 5.90 0.023 7 -1329.13 

attempt + max_clutch + fate  + G2800 + 

F800 
-1309.7 6.90 0.014 6 -1326.01 

attempt + max_clutch + fate + D250  -1309.5 7.10 0.013 5 -1323.79 

attempt + max_clutch + fate + D450  -1308.5 8.10 0.008 6 -1324.88 

intercept only -1308.1 8.50 0.006 1 -1314.18 

attempt + max_clutch + fate  + G2250 + 

F250 
-1308.1 8.50 0.006 6 -1324.41 

age + G2450 + F450 -1308.1 8.50 0.006 3 -1320.26 

NWell450_1600 + NWell1600 + 

max_clutch + attempt + fate 
-1307.8 8.80 0.005 6 -1324.16 

 

 



 
 

58 
 

Table 6 cont. 

Model AICc ΔAICc wi K Deviance 

NWell450_1600 + NWell1600 + 

max_clutch + attempt + fate + age 
-1307.6 9.00 0.005 7 -1325.98 

attempt + max_clutch + fate +  G2250 + 

D250 
-1307.5 9.10 0.005 6 -1323.87 

attempt + max_clutch + fate + D800  -1307.4 9.20 0.004 6 -1323.71 

attempt + max_clutch + fate + age + G2450 

+ D450 + F450 
-1307.3 9.30 0.004 9 -1329.88 

age + G2450 + D450 + WellD 450 -1307.3 9.30 0.004 4 -1321.58 

site  -1306.8 9.80 0.003 2 -1314.91 

age -1306.6 10.00 0.003 2 -1314.69 

attempt + max_clutch + fate +  G2800 + 

D800 + WellD 800 
-1306.6 10.00 0.003 7 -1325.06 

age + G2800 + F800 -1305.7 10.90 0.002 4 -1317.88 

attempt + max_clutch + fate + age + G2250 

+ D250 + F250 
-1305.5 11.10 0.002 8 -1326.05 

age + D450 + WellD 450 -1305.4 11.30 0.002 4 -1317.63 

attempt + max_clutch + fate + age + G2800 

+ D800 + F800 
-1305.3 11.50 0.001 9 -1327.87 

age + D250 -1305.1 12.20 0.001 3 -1315.25 

NWell450_1600 + NWell1600  -1304.4 13.00 0.001 3 -1314.53 

age + G2250 + D250  -1303.3 13.30 0.001 4 -1315.45 
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Table 6 cont.  

Model AICc ΔAICc wi K Deviance 

NWell450_1600 + NWell1600 + age -1302.9 13.70 0.000 4 -1315.06 

age + G2250 + F250 -1302.9 13.70 0.000 4 -1315.09 

age + G2800 + D800 + WellD 800 -1302.9 13.70 0.000 5 -1317.12 

age + D800 + WellD 800 -1302.6 14.00 0.000 4 -1314.75 
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Table 7. Model-averaged beta (β) estimates for covariates used to model incubation 
constancy relative to characteristics of the landscape, hen and nest.  Bolded covariates are 
considered statistically significant (β LCI and UCI do not include 0).  Abbreviations 
explained in Table 1.  
 

Parameter Estimate  SE LCI UCI 

intercept 0.936 0.027 0.088 0.989 

year -0.017 0.006 -0.030 -0.004 

site -0.002 0.002 -0.007 0.003 

attempt 0.000 0.002 -0.003 0.004 

max_clutch 0.001 0.007 -0.001 0.002 

fate  0.002 0.002 -0.002 0.006 

age 0.000 4.945E-04 -0.001 0.001 

NWell450_1600 0.000 1.190E-04 -2.146E-04 2.520E-04 

NWell1600 -5.000E-05 1.269E-04 -2.972E-04 2.000E-04 

G2250 -2.000E-04 1.828E-04 -3.806E-04 3.360E-04 

D250 3.900E-04 0.002 -0.003 0.004 

F250 2.700E-04 4.441E-04 -0.001 0.001 

G2450 -0.002 0.002 -0.007 0.002 

D450 0.001 0.003 -0.005 0.007 

F450 0.002 0.004 -0.006 0.010 

WellD450 -0.101 0.201 -0.496 0.293 

G2800 -2.800E-04 0.001 -0.001 4.650E-04 

D800 -1.300E-04 0.001 -0.002 0.001 
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Table 7 cont.  

Parameter Estimate  SE LCI UCI 

F800 0.001 0.003 -0.005 0.008 

WellD800 -0.007 0.041 -0.088 0.074 
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 Table 8. Model selection results for correlation between average daily recess duration 
and characteristics of the hen, nest, and landscape.  Models generated and run in SAS 
using PROC MIXED, ranked by lowest AICc from 55 Sharp-tailed Grouse nests.  
Covariate abbreviations explained in Table 1. 
 

Model AICc ΔAICc wi K Deviance 

year 4491.9 0.00 0.442 2 4483.81 

site + year 4493.6 1.70 0.189 3 4483.46 

intercept only 4494.6 2.70 0.115 1 4488.52 

age 4496.2 4.30 0.051 2 4488.14 

site + year 4496.5 4.60 0.044 2 4488.38 

age + D250  4498.2 6.30 0.019 3 4488.08 

attempt + max_clutch + fate  4498.5 6.60 0.016 4 4486.34 

NWell450_1600 + NWell1600  4498.6 6.70 0.016 3 4488.46 

age + D450 + WellD450 4499.2 7.30 0.011 4 4487.03 

age + G2250 + M250 4499.6 7.70 0.009 4 4487.4 

age + G2250 + D250  4499.6 7.70 0.009 4 4487.41 

age + G2450 + M450 4499.7 7.80 0.009 4 4487.54 

age + D800 + WellD 450 4499.7 7.80 0.009 4 4487.51 

attempt + max_clutch + fate + age 4499.8 7.90 0.009 5 4485.58 

age + G2800 + M800 4499.9 8.00 0.008 4 4487.73 

NWell450_1600 + NWell1600 + age 4500.3 8.40 0.007 4 4488.06 

attempt + max_clutch + fate + D250  4500.5 8.60 0.006 5 4486.27 

age + G2450 + d450 + WellD 450 4501.2 9.30 0.004 5 4486.92 
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Table 8 cont. 

Model AICc ΔAICc wi K Deviance 

age + G2800 + d800 + WellD 800 4501.7 9.80 0.003 5 4487.45 

attempt + max_clutch + fate +  G2250 + 

D250  
4501.8 9.90 0.003 6 4485.44 

attempt + max_clutch + fate + D450  4502 10.10 0.003 6 4485.66 

attempt + max_clutch + fate  + G2250 + 

M250 
4502.1 10.20 0.003 6 4485.82 

attempt + max_clutch + fate + D800  4502.1 10.20 0.003 6 4485.72 

attempt + max_clutch + fate  + G2450 + 

M450 
4502.2 10.30 0.003 6 4485.9 

attempt + max_clutch + fate  + G2800 + 

M800 
4502.3 10.40 0.002 6 4485.96 

NWell450_1600 + NWell1600 + 

max_clutch + attempt + fate 
4502.5 10.60 0.002 6 4486.17 

NWell450_1600 + NWell1600 + 

max_clutch + attempt + fate + age 
4503.8 11.90 0.001 7 4485.34 

attempt + max_clutch + fate +  G2450 + 

D450 + WellD 450 
4504 12.10 0.001 7 4485.59 

attempt + max_clutch + fate +  G2800 + 

D800 + WellD 800 
4504.1 12.20 0.001 7 4485.72 

attempt + max_clutch + fate + age + G2250 

+ D250 + M250 
4504.8 12.90 0.001 8 4484.24 
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Table 8 cont.  

Model AICc ΔAICc wi K Deviance 

attempt + max_clutch + fate + age + G2800 

+ D800 + M800 
4507.2 15.30 0.000 9 4484.58 

attempt + max_clutch + fate + age + G2450 

+ D450 + M450 
4507.5 15.60 0.000 9 4484.87 
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Table 9. Model-averaged beta (β) estimates for covariates used to model average recess 
duration relative to characteristics of the landscape, hen and nest.  Abbreviations 
explained in Table 1. 
 

Parameter Estimate SE LCI UCI 

intercept 29.246 4.401 20.621 37.871 

year 5.750 3.271 -0.662 12.161 

site 0.476 0.939 -1.364 2.316 

attempt 0.020 0.279 -0.526 0.566 

max_clutch -0.075 0.092 -0.254 0.105 

fate -0.054 0.234 -0.512 0.404 

age 0.351 0.617 -0.858 1.559 

NWell450_1600 -0.021 0.149 -0.313 0.271 

NWell1600 0.009 0.152 -0.289 0.307 

G2250 -0.156 0.245 -0.637 0.325 

D250 -0.028 1.837 -3.628 3.571 

F250 0.039 0.345 -0.637 0.714 

G2450 0.050 0.131 -0.206 0.306 

D450 -0.701 1.012 -2.685 1.283 

F450 -0.080 0.412 -0.888 0.728 

WellD450 0.015 0.081 -0.144 0.173 

G2800 0.013 0.119 -0.219 0.246 

D800 -0.483 0.773 -1.997 1.032 

F800 -0.309 0.589 -1.462 0.845 

WellD800 -0.005 0.024 -0.052 0.042 



 
 

66 
 

Figures 

Figure 4. Timing of 1,115 recess events of Sharp-tailed Grouse in western North Dakota.  
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CHAPTER III 

 EVALUATING RESEARCH METHOD BIAS: IMPACT OF BEHAVIORS 

ASSOCIATED WITH NEST CAMERA INSTALLATION ON INCUBATING 

SHARP-TAILED GROUSE NEST SUCCESS 

 

Abstract 

Use of cameras for avian nest monitoring can help us understand nest predator 

and parental behavioral responses to land-use changes.  Although a popular tool, little is 

understood about the impact of cameras on bird behaviors.  Few assess changes in daily 

nest attendance patterns or interactions with cameras.  The objectives of this study were 

to (1) evaluate how nesting behaviors of female Sharp-tailed Grouse (Tympanuchus 

phasianellus) within the first 24 hours after camera installation influence daily nest 

survival rates (DSR), (2) to determine how various nest monitoring activities influence 

nest attendance patterns.  We installed 24-hour infrared surveillance cameras and 

reviewed video for 96 nests during the summers of 2012 and 2013 in western North 

Dakota.  We calculated summary statistics for behaviors within 24 hours of installation 

and modeled DSR relative to behaviors.  We used a repeated measures approach to 

evaluate how incubation constancy changes with various nest monitoring activities.  

Within 24 hours of camera installation hens took two recesses, and incubated 

approximately 89% of the day, which is significantly less than days without research 

activity (P = <0.01).  Hens that sit next to the nest were 3.09 times less likely to succeed 
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than those that return directly to incubation.  No other behaviors influenced nest success.  

Most behavioral responses to cameras were minimal suggesting they continue to be a 

valuable tool for studying avian nesting ecology. 

Introduction 

Cameras have been a valuable tool for wildlife monitoring since their first use in 

the mid-1950s.  Since that time camera, digital video recorder (DVR) and power 

technologies have drastically improved to provide higher camera resolution and overall 

quality, all while extending battery life (Cox et al. 2012) and becoming more affordable.  

The combination of these advancements has resulted in numerous camera studies with 

larger sample sizes and higher video quality on a wide array of species occupying various 

habitats.  Greater accessibility has even led to citizen science based projects where 

volunteers stream video of bird nests and feeders (Desell et al. 2012, Cornell University 

2015). 

Cameras deployed at bird nests have become popular for studying nesting 

ecology, specifically in the areas of predator identification, parental investment, and 

nestling behavior (Cox et al. 2012).  By being able to observe nest events, biologists can 

focus management efforts to improve nest and/or nestling success.  However, for any 

monitoring technique to be validated as a useful tool, biases must be identified and 

understood to verify the assumption that research activities do not influence subject 

behavior.  

Nest success s (i.e., nest success is > 1 egg hatched,) is typically used when 

evaluating the impact of monitoring techniques.  In nest camera studies, the assumption is 

the presence of cameras near nests do not influence the fate of the nest, and nest success 
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of camera monitored and non-camera monitored nests are similar.  Richardson et al. 

(2009) performed a meta-analysis of camera effects on daily nest survival rates and found 

the majority of studies reported equal or higher nest success at camera monitored nests 

than nests without cameras.  Several potential reasons exist for this apparent increase in 

nest success.  Often because of limited number of camera systems or to ensure 

abandonment does not occur (Thompson et al. 1999, Pietz et al. 2012), cameras are 

installed later in incubation.  However, nests that are monitored in later stages of 

incubation have a higher probability of survival because there are fewer days remaining, 

resulting in a reduced the probability of observing a nest failure (Mayfield 1975).  It has 

also been proposed that scent and the novel objects left by researchers act as a deterrent 

rather than an attractant toward some common predators (Richardson et al. 2009).  

Few researchers report behavioral responses to cameras.  Reidy and Thompson 

(2012) removed cameras from songbird nests in Texas when non-normal (authors did not 

disclose what constituted normal activity) nesting activity persisted beyond one to two 

hours after installation.  Although removal of camera equipment may have increased nest 

success, no formal analysis on the effect of removal was performed, nor was there 

rationale provided for the selected “acclimation time” of one to two hours.  In a study of 

nest predator identification for New Zealand Robins (Pertoica australis) and Tomtits 

(Petroica macrocephala), Brown et al. (1998) reported a female robin standing between 

the camera and nest staring in the direction of the camera for approximately 16 minutes 

around dusk.  This nest was depredated eight days later (Brown et al. 1998).  The fate of 

this nest cannot be formally linked to this odd behavior and the small sample size 

prevents any meaningful analysis of the effect of the behavior on nest success (only one 
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bird exhibited behavior).  However, these examples beg the question of how parental 

responses at the nest might translate to changes in reproductive success as a result of 

cameras deployed at bird nests.  

Although many studies report no negative effect of camera presence on success, it 

is unknown if behaviors associated with camera installation influence nest survival.  If 

these behaviors are indeed important to nest success, then we can use their occurrence as 

indicators to help determine if camera presence is likely going to result in a failed nest 

because of research activity.  The time researchers have to make the decision to remove a 

camera is unknown, arbitrary, and has not been investigated.  Researchers make the 

assumption that this logistically convenient time is also biologically significant for the 

nesting bird.  Failure to make the decision to remove a camera within the appropriate 

amount of time may result in incorrect assumptions about the influence of research 

activity.  

In this study, we examine nesting behaviors of Sharp-tailed Grouse 

(Tympanuchus phasianellus; hereafter “sharptail” or “sharptails”) in relation to video 

camera installation and other common nest monitoring activities.  Sharptails are an 

upland nesting gamebird found throughout the grasslands of North America (Connelly et 

al. 1998).  In western North Dakota, sharptail populations have been subjected to heavy 

human disturbances because of the natural gas and oil development and exploration.  This 

study was conducted as an extension of Burr (2014), whose research evaluated the 

influence of gas and oil production relative to sharptail nest success and predator 

community.  As part of that research, nest success was evaluated relative to the presence 

or absence of a camera to determine potential biases of the monitoring technique.  He 
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found that camera monitored nests had higher daily survival rates (DSR) than those 

monitored using only radio telemetry to conduct regular nest checks (Burr 2014).  

Although the presence of cameras was not found to be detrimental to DSR, we 

wanted to explore if parental behaviors influenced DSR within the first 24 hours after 

camera installation.  Several use 24 hours as their duration between nest checks, 

therefore; the nest would be checked at the end of 24-hours using this method (Staller et 

al. 2005, Ellis-Felege et al. 2012).  We hypothesized that DSR is lower when hens do not 

resume incubation immediately upon return to the nest (potentially increasing activity 

and scent at the nest), spend less time on the nest, take more recesses, and have a camera 

interaction (i.e., visually or physically inspect camera) within the first 24 hours after 

installation.  We also evaluated how incubation constancy changes in relation to various 

research activities (Researcher Interactions and Incubation Constancy).  Here we 

hypothesized that incubation constancy decreases as duration of researcher interaction 

increases, and is different from days with no interaction. 

Methods 

Study Area 

As part of a larger study on sharptail nesting ecology, we monitored nests at two 

study sites in Mountrail County, North Dakota between March and August of 2012 and 

2013.  Belden (centroid location: N: 48.087094 W: -102.408549; area: 147.2 km2) and 

Blaisdell (centroid location: N: 48.269953 W: -102.086157; area: 158.3 km2) are 

primarily composed of rolling hills, buttes, draws, and small wetlands.  Sites are 

dominated by agriculture that includes row crops and pasture land with scattered clusters 

of shrubs and a few deciduous trees.  Intensity of energy development is the primary 
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difference between sites, with Belden being an area of “high” intensity (maximum well 

density of 0.95 wells/km2) and Blaisdell “low”  intensity (maximum well density of 0.01 

well/km2) (Burr 2014). 

Field Methods 

 We captured hens at leks (breeding grounds) using walk-in style traps (Toepfer et 

al. 1987) from March to mid-May.  Upon capture, hens were aged, weighed, and blood 

was collected.  We fitted hens with necklace style radio collars (either 10.7 or 16 g) along 

with a North Dakota Game and Fish metal leg band containing a unique identification 

number.  

 Radio-collared hens were located using hand-held, truck, and aerial-mounted 

telemetry every four to five days throughout the breeding season.  Once hens were 

located at the nest we recorded number of eggs, nest attempt, Geographic Positioning 

Systems location (Geographic Coordinate System: North America 1983; Datum: North 

American Datum 1983; Projection: UTM Zone 14), and relative location (to surrounding 

landmarks; used as an alternative to placing visual cues near the nest like flagging).  

 We selected camera monitored nests based on availability of nests and proximity 

to other camera monitored nests in an attempt to prevent clustering.  Miniature 

surveillance cameras containing light emitting diodes (LEDs; 950nm) and 4.3 mm lenses 

were used to record both day and night footage (Jet Security USA, Buena Park, CA).  

During 2013, the number of LEDs was increased from 7 to 24 to provide greater 

illumination and clarity for nighttime footage to aid in predator identification.  Cameras 

fitted with sunshields were attached to a 0.6 m piece of steel rebar and placed 

approximately 0.5 m from the nest.  Distance and position of the camera was dependent 
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on vegetation density and structure around the nest.  Minimal amounts of vegetation were 

removed to provide a clear field of view throughout incubation.  The camera box, a 

waterproof box (Seahorse, Corina, CA) housing a digital video recorder (DVR; 

Advanced Security, Belleville, IL), was connect by a cable and located at least 25 m from 

the camera.  The DVR recorded continuously at 10 frames per second at high resolution 

onto a 32 gigabyte secure digital (SD) card (Kingston Technology, Fountain Valley, CA).  

A 12-volt 35-amp battery placed next to the camera box powered the system.  Sunshield, 

rebar, cable, camera box, and battery were camouflaged using paint and surrounding 

vegetation.  Camera installation took 15 – 20 minutes to complete and researchers wore 

latex gloves to minimize scent left in the nesting area.  

 We visited the camera box every three to five days to change the SD card and 

battery and check for nest fate.  Hen presence at the nest was checked using a Tote Vision 

(Seattle, WA), and with telemetry (relative location to the nest).  If the hen was not 

present, we approached the nest to check for signs indicating a successful or failed nest.  

If the hen appeared to be still incubating, we checked camera positioning and cleared any 

vegetative growth obstructing the camera view.  If the nest was terminated, we used sign 

at the nest to determine fate and removed the camera.  Attempts were made not to flush 

hens from nests while we performed general camera maintenance (e.g., not approaching 

the nest, or being quick and quiet when working near the nest).  Camera maintenance 

typically lasted less than 5 minutes.  We considered a nest successful if > 1 egg hatched.  

Video was later reviewed to confirm nest fate and characterize nest behaviors. 
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Video Analysis 

 Data collection began at the start time of the first video or once installation was 

finished (no researcher in field of view).  Video was viewed using Windows Media 

Player (Microsoft, Seattle, WA) or by project scientists though the Wildlife@Home 

website (Desell et al. 2012). 

DSR and Camera Installation  

We characterized five nesting behaviors: recess number, incubation constancy, 

next to nest, partial on nest, and camera interactions (Table 10).  Both recess number and 

incubation constancy are derived from the nest recess behavior.  Nest recess was defined 

as any time the hen was not incubating the eggs (i.e., sitting on the nest), and was not 

caused by a researcher disturbance or predator.  Recess number is the number of recesses 

taken during the first 24 hours after installation.  Since increased activity by parents has 

been shown to decrease nest success (Bukacińska et al. 1996), recess number provides an 

indicator for how active or restless a hen is. It also represents the tradeoff between the 

hen’s self-maintenance (e.g., foraging) and the needs of the developing clutch (Skutch 

1962).  Incubation constancy is a concept introduced by Skutch (1962), and is the percent 

of either a 24-hour day (possible using continuous video as we did in this study) or during 

daylight hours spent incubating.  This commonly used metric represents a measure of the 

amount of heat applied to the eggs (Skutch 1962).    

We also examined how birds return to the nest by noting the presence of the 

partial on nest and next to nest behaviors (collectively “mode of return”).  When 

returning to the nest after being disturbed because of a human or other animal (non-

predator) hens may exhibit the partial on nest behavior.  In this circumstance, hens 
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initiate incubation of only a portion of the total clutch (eggs are still observed in the 

frame rather than completely covered by the incubating hens).  During the next to nest 

behavior, hens approach and sit directly adjacent to the nest bowl (no eggs are covered by 

the hen) acting as if they were incubating eggs.  

Finally, we recorded the presence of any camera interaction.  These included 

non-aggressive visual observation (hen’s attention clearly on the camera) or a physical 

inspection (hen pecks the camera a few times; not overly aggressive), to an attack of the 

camera (hen is aggressively defending her nest against the camera).  

Researcher Interactions and Incubation Constancy 

Three types of researcher interactions with grouse nests occurred during our 

study, classified as camera installation, flushing event, and no interaction (Table 11).  

Camera installation was only experienced once per nest and is specific to nest camera 

monitoring.  We categorized a flush day as a researcher activity when field technicians 

flushed hens to determine active incubation or to resolve camera problems.  Flush days 

would be common disturbances experienced when performing regular nest checks 

without the use of cameras or radio telemetry.  No interaction was categorized as days 

when hens were not disturbed or monitored by any physical presence of researchers.  

For this analysis, we used a subset of nests that were included in the DSR and 

camera installation analysis, flushed by a researcher at least once, and the entire period of 

camera monitoring was viewed.  During video review, duration and number of recess 

events for all days monitored up until the fate date (day the nest was hatched, abandoned, 

or destroyed) were recorded.  For interactions with multiple days (i.e. flushed multiple 
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days or multiple no interaction days) average incubation constancy was calculated to 

provide one value for the interaction (Slay et al. 2012).  

Data Analysis 

DSR and Camera Installation  

Because of the binomial nature of nest success, it is commonly thought of in 

terms of probabilities.  There are several ways of calculating nest success.  The most 

basic is to calculate apparent nest success, or the proportion of successful nests.  For 

example, of 100 nests monitored, 30 were successful, resulting in an apparent nests 

success probability of 30%.  This method does not take into account variation in nest 

discovery timing and exposure days (number of days monitored), resulting in 

overestimation of nest success (Mayfield 1961, Mayfield 1975).  Using the Mayfield 

method of estimation produces DSR estimates that can be applied to a nesting stage 

(Mayfield 1975).  Though useful, this method also has its limitations.  Results from this 

analysis are survival rates for various groups (or treatments) that can be analyzed using 

chi-squared statistics, resulting in a reduced sample size for each group (Dinsmore et al. 

2002).  There are also several assumptions made by the Mayfield method that are 

difficult to validate because of logistical restraints (i.e., known fate date, nest age, and 

constant survival throughout stage).  The nest survival model in program MARK (White 

and Burnham 1999) calculates DSR estimates, but has the added flexibility of 

investigating the influence of covariates using an information theoretic approach. For 

these reasons, we chose to utilize this program for analysis.  

We constructed models that represented our biological hypotheses with 

behavioral covariates of interest and DSR (Table 11) (Burnham and Anderson 2002) 
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using Program MARK (White and Burnham 1999).  Because of prior knowledge of DSR 

differences between our two study sites (Burr 2014), site was included in all models as a 

covariate.  Relative importance of each model was evaluated using Akaike’s Information 

Criterion corrected for small sample size (AICc) (Burnham and Anderson 2002).  

Likelihood and relative model strength was compared using AICc weights (wi) to 

determine the simplest hypothesis that explained DSR best (Burnham and Anderson 

2002).  We evaluated the magnitude of effect of covariates using model-averaged 

estimates, and calculated odds ratios (OR) for interpretation.  Odds ratio confidence 

intervals that exclude 1.0 are considered to be statistically significant, while odds ratios 

themselves are used to determine how many times more or less likely an event is to occur 

compared to a baseline category.  

Researcher Interactions and Incubation Constancy 

 Since repeated observations at a nest occurred, we used a mixed model approach 

(PROC MIXED) in SAS (SAS Institute 2003) to account for the dependency of multiple 

observations on the nest (Anderson et al. 2008).  Covariates included site and year, as 

they contribute to variability in other aspects of sharptails reproductive ecology (Burr 

2014), in addition to type of disturbance (flush, installation, and no interaction). Nest ID 

was categorized as our random effect.  

Results 

A total of 103 nests were monitored using cameras during the two-year study (47 

nests 2012; 56 nests 2013).  Of those, 29 (28.16) failed because of nest predation, 13 

(12.62%) because of abandonment, four (3.88%) because of hen mortality, and five 

(4.854%) from agricultural practices (four nests destroyed by cattle, and one destroyed by 
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haying equipment). Of the 13 abandoned nests, 10 were abandoned within 48 hours after 

camera installation. Of the 103 nests monitored, 53 were successful.  

DSR and Camera Installation 

 We evaluated 70 nests of incubating females to determine role of behaviors after 

installation on DSR.  Apparent nest success was 51.4% for all nests.  We omitted nests 

still in the egg-laying stage (2 nests), those where the entire 24-hour period was not 

captured because of camera malfunctions (11) or when hens tilted the camera off view of 

the nest during a camera interaction (2), and any nests abandoned, hatched or depredated 

within the first 24 hours (9 nests abandoned; 2 hatched; 4 depredated).  

 Within the first 24 hours after installation hens took an average of 2.44 recesses 

and exhibited an incubation constancy of 89.9% (Table 12).  Hens associated with failed 

nests in 2012 at Belden took more recesses than their counterparts (Table 12).  In 

addition, hens associated with successful nests in 2013 at Belden exhibited greater 

incubation constancy (Table 12).  At 50.0% of the nests, we observed the presence of a 

partial on nest behavior during the first 24 hours of camera monitoring (Table 12). We 

found 31.4% of hens exhibited the next to nest behavior (Table 12). Only 15.7% (n = 11) 

of hens had an interaction with the camera within the first 24 hours after installation.  

We constructed 17 models using behaviors exhibited within the first 24 hours 

after installation (Table 13).  Within our top models (10 models contained 95% of model 

weights), the presence of the “partial on nest” and “next to nest” behaviors were the most 

common parameters (Table 13).  Nests of hens that sat partially on their nest were 3.08 

times more likely to succeed than those that did not (Table 14).  In contrast, nests of hens 

that sat next to their nest were 3.08 times less likely to succeed (Table 14).  The next to 
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nest behavior was only observed after a human had flushed a hen off the nest, while the 

partial on nest behavior was also observed after predators flushed hens. Incubation 

constancy was not strongly correlated with DSR (Table 14).  Number of recesses and 

presence of a camera interaction within the first 24 hours showed little to no correlation 

with DSR (Tables 14).  

Researcher Interactions and Incubation Constancy 

 Based on 16 nests, hens of successful nests had higher incubation constancies for 

all three disturbance types (Table 15).  The same incubation constancy pattern was 

observed for nests in 2012 (Table 15).  Blaisdell hens had marginally higher incubation 

constancies during flush (Δ = 0.1%) and no interaction days (Δ = 0.12%) than Belden 

hens; however, hens at Belden incubated 4.0 % longer than Blaisdell hens during 

installation days (Table 15).  Incubation constancy decreased by 6.7% during installation 

day (P = 0.002), and 3.1% during a flush day (P = 0.129) compared to a no interaction 

day (Table 16).   

Discussion 

The mode of return most accurately predicted DSR.  Expression of the partial on 

nest behavior, a response observed when returning after a predator or non-predator 

animal flushes the hen off the nest, increased DSR.  Next to nest, a response unique to 

researcher interactions with the nesting hen, was equal in magnitude but decreased DSR.  

These behaviors are likely a form of anti-predatory response influenced by the type of 

disturbance experienced.  It is well established that humans induce responses that 

predators do not.  Incubating Hooded Plovers (Thinornis rubricollis) have been observed 

to leave nests unattended longer when disturbed by a human than by a non-human 
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(Weston and Elgar 2007).  Brunton (1990) found that Killdeer (Charaduius vociferous) 

displayed more intense parental defense behaviors more frequently in response to humans 

than to natural predators.  They suspected differences were the result of the close 

proximity humans came to the nest and chicks, something predators successfully deterred 

by distraction displays did not do (humans came within 1 m; closest predator came within 

21 m) (Brunton 1990).  Similarly, our research suggests that differences between human 

and predator behavior near nests result in different responses from incubating parents.   

We observed a negative relationship between incubation constancy and level of 

research interactions.  This can have implications for cameras installed at nests during 

inclement weather or early in incubation.  Afton (1980) found that long absences during 

cold and wet weather can slow embryonic development.  Habituation to other 

anthropogenic disturbances may explain why hens at Belden (an area subjected to heavy 

gas and oil development) were less affected by greater research disturbance than Blaisdell 

hens (an area of minimal gas and oil development; see Burr 2014).  The differences 

between years could be correlated with weather (2012 being one of the earliest breeding 

seasons on record, 2013 one of the latest).  During 2013, hens may not have been able to 

build up enough energy stores because of persistent snow cover.  Low energy stores at 

the onset of incubation have been shown to decrease incubation constancy in Greater 

Sage-Grouse (Centrocercus urophasianus) (Coates and Delehanty 2008), and several 

species of waterfowl (Aldrich and Raveling 1983, Thompson and Raveling 1987, Yerkes 

1998).  Despite incubation constancy on installation day being statistically different than 

a no interaction day, this trend was likely not biologically significant given incubation 

constancy on installation day was not a good predictor of DSR.  Similar relationships 
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between nest attendance and nest survival have been observed in other species. Varboven 

et al. (2001) found that although nest attendance of Eurasian Oystercatchers (Haematopus 

ostralegus) decreased when researchers were in the area. There was no noticeable change 

in egg predation rates.  

Because of a limited sample size, we did not examine the relationship between 

frequency of research-related flushes and incubation constancy and DRS in sharptails.  

Frequent disturbances at colonies of nesting birds have resulted in avoidance by re-

nesters later in the breeding season (Tremblay and Ellison 1979, Safina and Burger 

1983).  This could have consequences for sharptails. Along with their propensity for 

nesting close to leks (Connelly et al. 1998) and the threat of declining habitat availability 

(NRCS 2007), frequent disturbance may force hens to forgo subsequent nesting attempts; 

a tradeoff that may result in reduced lifetime reproductive output.  

When timing camera installation, we recommend installing fast, a few days into 

incubation, and during fair weather.  Duration of camera installation similar to the 

duration of a recess may reduce any “excess” time incubating parents have to spend away 

from the nest (Brown et al. 1998).  To even further reduce disturbance, we recommend 

waiting to install cameras when the incubating parent is on a recess (i.e., takes recess on 

own accord) if logistically feasible.  Pietz and Grandfors (2000) also suggest installing 

cameras near evening, forcing incubating parents to return to the nest before nightfall and 

reducing the amount of time spent off the nest.  Although eggs are more viable at low 

ambient temperatures during pre-incubation (Arnold 1993), nest abandonment decreases 

with increased nest stage (Pietz and Grandfors 2000).  Because of this, we encourage 

verifying initiation of incubation via egg candling, floating, or monitoring parent activity 
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around the nest using radio telemetry prior to installing cameras.  We believe that the 10 

nest abandonments within 48 hours of installation in our study were most likely caused 

by research activity.  Nine of those were located at Blaisdell, and 7 were during 2013.  A 

combination between  decreased  nest attendance and  increased nest predation at 

Blaisdell (compared to Belden; Chapter 2), and the difference between field crews could 

possibly account for these abandonments.  

Camera placement and concealment should be considered.  Using paint and 

surrounding vegetation for camouflage can reduce the chance of being noticed by both 

predators and the incubating parent.  If a clear entrance or exit exists, placing the camera 

to the sides would decrease the chances of the camera being directly in the birds view.  

Ensuring a clear view of the nest by removing and adjusting minimal amounts of 

vegetation during installation will reduce the number of re-visits throughout incubation.  

Prevent alteration of interactions between predators and nests (both an increase and 

decrease in predation) by reducing scent left by wearing rubber boots or gloves while 

handling, installing, and adjusting cameras.  Finally, minimize trampling down of 

vegetation with repeated trail use or excessive movement during installation.  

This research is one of the few to evaluate potential impacts of camera monitoring 

methods on bird behavior.  It is difficult to observe nesting behaviors without the 

presence of a camera or a human, and both induce their own potential biases.  In fact, 

Mayfield (1975) suggests that any nest observed is no longer in a natural state, making it 

difficult for us to define behaviors as “natural” or “unnatural.”  We did, however, 

examine the range of behaviors and their stimuli, giving us the ability to make inferences 
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about how various levels of human and non-human disturbances may influence nesting 

behaviors.  

The purpose of examining behaviors within the first 24 hours after installation 

was to determine if there is a way of quickly identifying behaviors detrimental to nest 

success.  As technology advances and popularity of wireless recording and viewing 

capabilities increases, our ability to identify and respond to these behaviors will be 

possible.  Responses may vary by taxa, reproductive strategy, and habitat; however, little 

is reported and therefore unknown about variability in behaviors and their effects.  By 

using this approach, we were able to broaden the understanding of how researcher 

activities influence nest success.  These insights provide future nest camera monitoring 

efforts to identify and remove nests from analyses that violate the assumption that 

research activity does not influence behaviors or outcomes, providing a dataset that more 

accurately depicts a “natural” system.  Such validation of monitoring methods for both 

effectiveness and potential impacts is encouraged as new and expanded technologies 

continue to be used in the field of wildlife ecology.  
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Tables 

Table 10. Classification and definition of parameters used for nest success analysis in 
program MARK.  Abbreviations in parentheses used in figures and tables.  
 

Parameter Definition 

Number of Recessesa 

(rss_num) 

Number of recesses during the first 24 hours after 

camera installation. 

Incubation Constancya 

(incu_con) 

Time spent on nest during first 24 hours after return to 

incubation. 

Camera Interactionb 

(ci) 
Presence of a camera interaction. 

Next to Nestb 

(nxn) 
Presence of hen lying next to nest. 

Partial on Nestb 

(pnn) 

Time spent laying partially on nest; not all eggs are 

being covered by hen. 

aData type: continuous 

bData type: binary 
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Table 11. Classification and definition of parameters for repeated measures analysis of 
incubation constancy using PROC MIXED procedures in SAS.  All parameters are binary 
variables.  
 

Parameter Definition 

site Study sites: Belden* or Blaisdell.  

year Years monitored: 2012* or 2013.  

installation day Incubation constancy on the day of camera installation. 

flush day 

 

no interaction day 

Incubation constancy on days when hen was flushed 

because of research activity not including installation day. 

Incubation constancy on days when no researcher activity 

occurred in the nesting area. 

*Baseline for comparison. 
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Table 12. Summary statistics of behaviors exhibited during the first 24 hours after camera 
installation.  Organized by nest fate (successful and failed), site (Belden and Blaisdell), 
year (2012 and 2013), and over all nests.  
 

  Successful Failed Belden Blaisdell 2012 2013 All 

Number of Recesses      

Mean 2.25 2.65 2.63 2.29 2.52 2.39 2.44 

SD 1.48 1.81 1.88 1.43 1.77 1.57 1.65 

Min 0.00 1.00 1.00 0.00 0.00 0.00 0.00 

Max 6.00 9.00 9.00 6.00 9.00 6.00 9.00 

Incubation Constancy (percent of 24-hr day)  

Mean 91.39 88.27 90.84 89.09 93.37 87.18 89.92 

SD 7.79 10.52 6.82 11.00 2.81 11.47 9.25 

Min 59.87 49.53 72.15 49.53 87.10 49.53 49.53 

Max 97.78 90.10 97.78 99.10 99.10 97.78 99.10 

Next to Nest (number of nests) 

Number 9.00 13.00 13.00 9.00 9.00 13.00 22.00 

Partially on Nest (number of nests) 

Number 22.00 13.00 17.00 18.00 13.00 22.00 35.00 

Camera Interaction (number of nests) 

Number 9.00 2.00 8.00 3.00 7.00 4.00 11.00 
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Table 13. Daily survival rate (DSR) models relative to behaviors exhibited within the first 
24 hours after camera installation ranked by lowest AICc score from 70 nests of 
incubating females.  Covariate abbreviations explained in Table 1.  
 

Model AICc Δ AICc wi L K Deviance 

site + pnn + nxn 303.89 0.00 0.71 1.00 4 295.86 

global  308.70 4.81 0.06 0.09 7 294.61 

site + pnn 309.30 5.41 0.05 0.07 3 303.28 

site + incu_con + pnn 309.51 5.63 0.04 0.06 4 301.48 

site + nxn  310.66 6.77 0.02 0.03 3 304.64 

site + pnn + ci 310.97 7.08 0.02 0.03 4 302.94 

site 311.29 7.40 0.02 0.03 2 307.28 

site +incu_con + nxn 311.67 7.78 0.01 0.02 4 303.63 

site + incu_con 311.95 8.06 0.01 0.02 3 305.93 

intercept only 312.37 8.48 0.01 0.01 1 310.36 

site + nxn + ci 312.42 8.53 0.01 0.01 4 304.39 

site + rss_num 312.78 8.89 0.01 0.01 3 306.76 

site + ci 313.07 9.18 0.01 0.01 3 307.05 

site + incu_con + ci 313.63 9.75  < 0.01 0.01 4 305.60 

site + incu_con + rss_num 313.65 9.76 < 0.01 0.01 4 305.61 

site + rss_num + ci 314.71 10.83 < 0.01 < 0.01 4 306.68 

site + incu_con + rss_num + ci 315.48 11.59 < 0.01 < 0.01 5 305.42 
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Table 14. Model averaged beta (β) estimates and odds ratios for parameters used in daily 
nest survival analysis of behaviors within the first 24 hours after camera.  Bolded 
parameters are those shown to be statistically significant (β L CI and U CI do not include 
0; OR L CI and U CI do not include 1).  Abbreviations explained in Table 1.  
 

Covariate 

 β  

Estimate 

β  

SE 

 β  

L CI 

 β  

U CI 

Odds Ratio 

 (OR) 

OR  

L CI 

OR  

U CI 

intercept 3.68 0.69 2.33 2.03 39.58 10.30 152.20 

site -0.81 0.39 -1.57 -0.05 0.44 0.21 0.95 

incu_con 0.02 0.02 -0.02 0.05 1.02 0.98 1.06 

rss_num -0.08 0.11 -0.30 0.14 0.93 0.75 1.15 

pnn 1.13 0.43 0.28 1.97 3.08 1.32 7.17 

nxn -1.13 0.46 -2.02 -0.23 0.32* 0.13 0.79 

ci -0.18 0.48 -1.12 0.76 0.83 0.33 2.14 

*For interpretation: 1/OR = 3.09 times less likely to occur. 
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Table 15. Summary statistics for average incubation constancy (percent of 24-hr day) by interaction day type (i.e. installation 
day, flush day, and no interaction day).  Organized by nest fate (successful = 9 nests and failed = 7 nests), site (Belden = 9 
nests and Blaisdell = 7 nests), year (2012 = 9 nests and 2013 = 7 nests), and over all nests.  If there were multiple flush days 
and no interaction days for one nest, average incubation constancy was calculated.  
 

  Installation Day Flush Day No Interaction Day 

  
Mean SD Min Max Mean SD Min Max Mean SD Min Max 

All Nests 

 
88.54 9.63 59.501 96.96 92.12 2.69 87.34 96.69 95.23 1.94 90.40 97.56 

              

Fate 

Successful 88.76 11.38 59.51 96.96 92.46 2.53 88.47 95.96 95.54 1.31 93.08 97.00 

Fail 88.26 7.69 74.50 96.23 91.69 3.03 87.34 96.69 94.82 2.66 90.40 97.56 

              

Site 

Belden 90.27 7.17 74.50 96.23 92.07 3.21 87.34 96.69 94.98 2.54 90.40 97.56 

Blaisdell 86.31 12.36 59.51 96.96 92.19 2.09 89.73 95.96 95.54 0.75 94.43 96.56 

              

Year 

2012 93.09 3.03 87.10 96.96 92.15 2.67 88.47 96.69 95.77 1.28 93.08 97.56 

2013 82.69 12.20 59.51 93.65 92.08 2.93 87.34 95.96 94.53 2.49 90.40 97.00 
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Table 16. Influence of interaction type on incubation constancy derived from repeated 
measures analysis using PROC MIXED procedure in SAS with baseline for site was 
Belden, year was 2012, and no interaction for installation and flush day.  
 

Parameter β SE df t P 

intercept 82.58 2.77 13 29.84 <0.01 

site 1.16 1.64 30 0.71 0.49 

year 3.92 1.64 30 2.39 0.02 

inst_day 6.69 1.99 30 3.36 <0.01 

f_day 3.11 1.99 30 1.56 0.13 
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CHAPTER IV 

CONCLUSIONS 

  

The Upper Midwest is experiencing dramatic landscape changes though grassland 

conversion and energy extraction.  Sharp-tailed Grouse (Tympanuchus phasianellus) 

(hereafter “sharptail” or “sharptails”) inhabit these same areas that are undergoing these 

changes.  As an indicator species of grassland health (Vodehnal and Haulfer 2007, Dyke 

et al. 2011) the need to study the influence of the landscape and energy development on 

sharptails is ever-growing.  Developments in camera technology provide the ability to 

observe the once unknown nest activities of many avian species.  Although valuable, it is 

necessary to recognize the potential influence nest camera monitoring has on hen 

behavior (Brown et al. 1998) which may lead to changes in nest success (Richardson et 

al. 2009).  The goal of this research was to evaluate the influence of human activity (via 

land-use and research activities) on sharptail nest attendance patterns.  

We installed miniature infrared surveillance cameras at 103 sharptail nests during 

the summers of 2012 and 2013.  Of those a subset of 55 nests were reviewed for nest 

attendance patterns from camera installation to nest fate.  We used a repeated measures 

analysis to determine how nest attendance patterns are influenced by characteristics of the 

landscape, hen, and nest (Chapter 2).  To evaluate our method of nest camera monitoring 

we reviewed the first 24 hours after camera installation for 70 nests (Chapter 3).  We 

modeled daily nest survival rates to determine how behaviors following camera 
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installation influence nest survival.  In addition, we used a repeated measures analysis to 

determine if incubation constancy (the proportion of time eggs receive direct heat from 

incubating parents during 24 hours) differed between days with various research 

activities (i.e. camera installation, nest checks, and no research activity). 

 We found that hens incubate for approximately 95.2% of the day and took 

approximately 2.5 recesses for 27.6 minutes each.  Year was the most dominant driver of 

nest attendance patterns.  We suspect that the primary difference between years was 

related to winter and spring weather resulting in more energy devoted to 

thermoregulation and a shorter breeding season.  We observed what appeared to be 

decreased parental investment at Blaisdell compared to Belden and suspect that a larger 

predator population (resulting from less human development) and higher nest predation 

to be drivers of this pattern (McNew et al. 2011).  We did not find any landscape 

covariates to predict nest attendance patterns in any direction; however, we did observe 

differences in percent developed land between the two sites, which translates into Belden 

having a greater proportion of the landscape devoted to roads.  Although none of the 

covariates we used predicted nest success, there could be others that more heavily 

influence these patterns.  

We have yet to understand the influence of land use changes and energy 

development on other aspects of sharptail ecology.  Out of 55 nests, we only observed 2 

to be within 250 m of a well.  Both nests occurred at Belden during 2013, when the site 

experienced an approximate 24% increase in oil well density.  As scientists we need to 

begin to pinpoint specific characteristics about the landscape or anthropogenic features 

that help or hinder optimization of nest attendance patterns (e.g., distance to and density 
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of flaring wells, number of wells per pad, number of active drilling rigs in the area, types 

of roads and intensity of traffic, etc.).  In addition, we still do not know how land use 

changes and energy development influence brood success, adult survival and lek 

attendance.  Regions with natural gas and oil reserves will be faced with greater pressure 

to produce with increasing demand for oil, and areas with fertile soil are similarly 

pressured to produce crops for food and biofuels (Searchinger et al. 2008, Wright and 

Wimberly 2013).  It is the responsibility of scientists representing our natural resources 

(including flora, fauna, and natural energy reserves) to collaborate, continually monitor 

and find was to reduce the impact of oil and natural gas extraction on wildlife.  

We observed hens to take 2 to 3 recesses within the first 24 hours after camera 

installation and incubated for approximately 89.9% of the day.  Apparent nest success 

was 51.4% for the 70 nests we used to analyze the influence of behaviors related to 

camera installation to daily nest survival rates.  We found that the way hens approach the 

nest to be the best predictors of nest success.  Nests with hens that sat partially on the nest 

(a behavior also displayed when hens are flushed off nest due to other animals) were 3.08 

times more successful than those that did not.  Conversely nests of hens that sat next to 

the nest (a behavior observed only when humans were the cause of hens being flushed off 

nests) were 3.09 times less likely to succeed.  We suspect that these two behaviors are 

stress responses, and they differ due to the way researchers and other animals behave at 

the nest (i.e. humans spend more time at the nest than animals that do not depredate 

nests).  In addition, we found that incubation constancy was significantly lower on 

camera installation days compared to days when researchers did not visit the nest.  There 

was no difference in incubation constancy between days when researchers visited the nest 
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to perform a nest check or quickly adjust the camera or surrounding vegetation.  These 

results are expected because the time it takes to install a camera is longer (by 

approximately 15 minutes) than a nest check or adjustment of the camera or surrounding 

vegetation.  

The major caveat to this study is that we are unable to know for certain how 

behaviors associated with camera use influence nest survival because we cannot monitor 

nests without the presence of a camera or researcher (each impose their own biases).  To 

account for this we looked at the range of hen responses to camera monitoring.  Mayfield 

(1975) suggests that it is impossible for researchers to truly observe natural behaviors 

because the subject has been exposed to the presence of the researcher.  Although we 

cannot avoid this paradox, there are several ways to reduce as much research bias as 

possible.  

Several logistical considerations should be accounted for to ensure optimal video 

quality to meet study objectives while reducing the potential influence of nest cameras on 

nest success.  Nest location, and surrounding vegetation determine how cameras are to be 

concealed.  Concealment of cameras and associated equipment is essential because it 

prevents interactions between the nesting birds and the camera, as well as any 

interactions with nest predators.  Power requirements are determined by nest ease of 

access to the location and recording device requirements.  Cameras may need light 

emitting diodes (LEDs) for night vison to observe events in low-light and nighttime 

nesting events.  Lens focal length determines how far the camera can be placed from the 

nest, while retaining image focus (Cox et al. 2012).  Video recorder devices and settings 

are determined by the data required, ranging from still images, motion triggered, time 
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lapsed, and continuous video.  Finally, strategies for secure data storage and filtering of 

these massive datasets should be well developed prior to data collection.  

The purpose of this study was to determine how human actions influence one 

aspect of sharptail nesting ecology, nest attendance.  To our knowledge, this is the first 

study to relate nest attendance of sharptails to the landscape and gas and oil development.  

In addition, we are one of the few to evaluate the potential impacts of camera monitoring 

on bird behavior and relate those behaviors to nest success.  Results from this study 

reaffirm the need to collect unbiased data, make management decisions based on robust 

results, and to continually monitor wildlife using appropriate, unbiased methods to 

clearly determine the impact of anthropogenic changes on wildlife.  
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